
University of Nevada, Reno

A Web Based Application for Model Creation and
Output Visualization with the NCS Brain Simulator

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Cameron Jason Rowe

Dr. Frederick C. Harris, Jr., Thesis Advisor

May, 2016

We recommend that the thesis
prepared under our supervision by

CAMERON J. ROWE

Entitled

A Web Based Application for Model Creation
and Output Visualization with the NCS Brain Simulator

be accepted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Sergiu Dascalu, Committee Member

Dr. Yantao Shen, Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

 May, 2016

THE GRADUATE SCHOOL

i

Abstract

UNR’s Brain Computation Lab has developed the NeoCortical Simulator (NCS)

to simulate brain activity on relatively large models. Initially, NCS inputs could only

be configured using convoluted text files or Python scripts. The NCS Daemon was

created to act as a service for accessing NCS from remote applications. This thesis

presents the NCS web interface, a web application for creating brain models and

simulation parameters, as well as visualizing outputs in realtime as dynamic graphs.

It also has the ability to view constructed models in 3D. The web interface has many

features to work with NCS directly, including the ability to launch simulations, save

working models to a database, or export models as JSON files or Python scripts. The

web interface is designed to be the front-end for NCS.

ii

Dedication

For my family.

iii

Acknowledgments

I would like to thank Dr. Frederick C. Harris, Jr., Dr. Sergiu Dascalu, and

Dr. Yantao Shen for being on my committee, with special thanks to Dr. Harris for

giving me the opportunity to do research in the HPCVIS lab and the Brain lab. I

would like to thank Christine Johnson for her work on the NCS daemon as well as

Matthew VanCompernolle and Daniel Chavez for their initial work and design of the

web interface. I would especially like to thank Daniel for keeping me focused and

believing that I could finish on time. Finally I would like to thank my parents for

providing me the utmost love and support.

This material is based in part upon work supported by the National Science

Foundation under grant number(s) IIA-1329469. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background and Related Work 3
2.1 Neuroscience . 3

2.1.1 Overview . 3
2.1.2 Neurons and Channels . 3
2.1.3 Synapses . 5
2.1.4 Stimulus . 5

2.2 Computational Neuroscience . 6
2.2.1 Overview . 6
2.2.2 Models . 6
2.2.3 Simulators . 7

2.3 Neocortical Simulator . 7
2.3.1 Overview . 7
2.3.2 Simulation Composition . 8
2.3.3 PyNCS . 8
2.3.4 NCS Daemon . 9
2.3.5 Web Components . 9

2.4 Libraries and Frameworks . 9
2.4.1 Overview . 9
2.4.2 Python . 11
2.4.3 Javascript . 11
2.4.4 HTML . 11
2.4.5 CSS . 11
2.4.6 LESS . 12
2.4.7 AngularJS . 12

v

2.4.8 Bootstrap . 13
2.4.9 ThreeJS . 13
2.4.10 Highstocks . 14
2.4.11 NodeJS . 14
2.4.12 Flask . 15
2.4.13 RabbitMQ . 16
2.4.14 JSON . 17
2.4.15 MongoDB . 17

3 Design 18
3.1 Overview . 18
3.2 Web Interface Requirements . 18

3.2.1 Functional Requirements . 18
3.2.2 Non-functional Requirements 18

3.3 Use Case Modeling . 20
3.3.1 Overview . 20
3.3.2 Detailed Use Cases . 20

3.4 Architecture . 25

4 Implementation and Results 27
4.1 Overview . 27
4.2 Login and User Registration Page . 27

4.2.1 Login . 27
4.2.2 User Registration . 28

4.3 Model Builder . 28
4.3.1 Overview . 28
4.3.2 Layout . 29
4.3.3 Left Drawer . 29
4.3.4 Current Model Panel . 32
4.3.5 Parameters Panel . 34
4.3.6 Model Operations . 35

4.4 Simulation Builder . 38
4.4.1 Overview . 38
4.4.2 Layout . 38
4.4.3 Parameter Panel . 38
4.4.4 Input/Output Panel . 40
4.4.5 Input/Output Specifications Panel 40
4.4.6 Launch Simulation . 41

4.5 Reports . 43
4.5.1 Overview . 43
4.5.2 Layout . 43
4.5.3 Simulation Selector . 43
4.5.4 Report Panels . 44

4.6 Visualizer . 48

vi

4.6.1 Overview . 48
4.6.2 Layout . 49
4.6.3 Configuration Panel . 49
4.6.4 WebGL Renderer . 49

4.7 Summary of Software . 53

5 Conclusions and Future Work 56
5.1 Conclusions . 56
5.2 Future Work . 57

5.2.1 Interface Enhancements . 57
5.2.2 Daemon Enhancements . 58

Bibliography 59

vii

List of Tables

3.1 The NCS web interface functional requirements. 19
3.2 The NCS web interface non-functional requirements. 19

viii

List of Figures

2.1 The structure of a neuron, from [28]. 4
2.2 An example of a simple PyNCS Python script from [18]. 10
2.3 An example of AngularJS Directives. 13
2.4 An example of a simple Flask application. 16

3.1 A use case diagram of the NCS web interface. 21
3.2 An architecture diagram of the NCS web interface. 26

4.1 The login page to the web application. 28
4.2 The registration page for the web application. 29
4.3 The layout of the model builder tab. 30
4.4 The left drawer with built-in models and model populated from database. 31
4.5 The preview panel view with the contents of a cell group. 32
4.6 An example of a simple model JSON from [18]. 33
4.7 The current model panel with breadcrumbs showing components sev-

eral levels deep. 34
4.8 An example of a complete model. 36
4.9 The channels panel for editing channel parameters. 37
4.10 The initial view of the simulation builder tab. 39
4.11 A possible input configuration in the simulation builder tab. 41
4.12 A possible output configuration providing a synaptic current report on

a synapse connection. 42
4.13 The initial view of the reports tab. 44
4.14 The reports tab with two active reports. 45
4.15 The reports tab with one report and its configuration panel. 47
4.16 The visualization tab with a model consisting of 15 cells, with a con-

nection probability of 40% and a spread of 30. 50
4.17 JavaScript code for creating a synapse connection between two points. 52
4.18 The visualization tab when the user is selecting cells. 53
4.19 The visualization tab with cells selected. 54

1

Chapter 1

Introduction

Neuroscience, or the study of the nervous system, has existed since the time of the

ancient Egyptians, but has become increasingly popular ever since the 1960s. The

critical downfall to traditional neuroscience is that to study the nervous system, you

have to perform invasive procedures, such as implanting electrodes in specific areas of

an animal’s brain. Computational neuroscience aims to solve this problem by simulat-

ing brain activity using computers rather than experimenting on live animals. Modern

brain simulators are constructed using various types of neuron and synapse models

which use neuron spiking functions to build a mathematical relationship between an

input stimulus and the probability that a neuron voltage will spike.

Many modern brain simulators exist, including the NeoCortical Brain Simulator

(NCS). NCS was developed at the University of Nevada, Reno, and allows for a variety

of model and simulation parameters to be set [13, 32] . NCS can view live output from

a running simulation, including neuron voltages, neuron firings, synapse currents, and

synapse voltages. To interface with NCS, users currently have to create text based

input files, and view text based result files. NCS has had many components added

to it to make interfacing with external applications and creating input specifications

easier. These components include PyNCS, a front-end to NCS written in the Python

programming language, which allows users with programming experience to create

their models and parameters programmatically, and the NCS Daemon, which allows

for remote launching of simulations, and remote viewing of simulation outputs. This

paper presents the NCS web interface, a web application that provides a graphical

2

user interface for constructing brain models, setting simulation parameters, viewing

simulation outputs, and visualizing 3D representations of constructed models to be

used with NCS.

This thesis is structured as follows: Chapter 2 presents the underlying neu-

roscience used, a background of computational neuroscience, the components of the

NeoCortical simulator, and a list of libraries and frameworks used in this work. Chap-

ter 3 discusses the design of the application, the software engineering functional and

non functional requirements, and the use case modeling for the application. Chapter

4 provides details of the implementation of the web interface, including the four main

components, model builder, simulation builder, reports, and visualizer. Chapter 5

summarizes the work presented and provide ideas for future work on NCS, the NCS

daemon, and the NCS web interface.

3

Chapter 2

Background and Related Work

2.1 Neuroscience

2.1.1 Overview

Neuroscience is the study of the nervous system and the cells in which it is composed

of, and consists of the brain, spinal cord, and the nerves throughout the body [34]. By

looking specifically at these cells, neuroscientists can learn how the nervous system

processes information, as well as how the cells react to received information. This

section only discusses the basic functional components of the brain to achieve a basic

understanding of the underlying components for a brain simulation. The components

discussed include neurons, synapse connections, channels, and stimuli.

2.1.2 Neurons and Channels

The human brain is an extremely complex object, containing upwards of 100 billion

neurons. A neuron is the most fundamental cell that composes the brain. Neurons can

both receive inputs as well as send outputs to neighboring neurons. Input is achieved

by receiving some form of stimulus through dendrites which are connected to the soma,

the cell body. Output is sent through the axons to the neighboring cells, as shown in

Figure 2.1. Output from one neuron is received as input to another neuron through

the excitatory postsynaptic potential [23]. Neurons have gated ionic channels, which

can open and close given that special conditions are met, such as when a membrane

voltage is a certain value, or certain chemical compositions are present, etc. The gated

4

Figure 2.1: The structure of a neuron, from [28].

5

channels are necessary because the cell membranes of a neuron are impermeable. Ion

channels can have different levels of electrical charge both inside and outside the cell

membrane, creating a difference is electrical charge known as membrane potential.

When the membrane potential exceeds a certain threshold, an action potential signal

is transmitted across a synapse to another neuron [14]. When this action potential

is triggered, the neuron has been considered to have fired, meaning that a spike in

voltage was observed.

2.1.3 Synapses

Given that every neuron in the brain can have up to 10,000 synapses, it has been

estimated the human brain has as many as 100 trillion synapses. Synapses are what

form the network which allows the brain to store memories and learn new actions.

A synapse is a connection between neurons which can transfer the action potential

between cells. The brain learns by firing a neuron that is connected to another

one repeatedly, leading to long-term potentiation, which is an increase in excitatory

postsynaptic potential, which is the strength of the synapse between two neuron over

time.

2.1.4 Stimulus

In order to view the behavior of the nervous system, stimuli in the form of an electric

current must be applied to target areas of the brain to observe how the system

reacts to changes in neuron firing rates and cell membrane potentials. Mathematical

functions have been created to describe a relationship between a stimulus and the

resulting behavior of a cell. This observation translates to how an electric current

will determine the probability of a neuron to spike [23].

6

2.2 Computational Neuroscience

2.2.1 Overview

Computational neuroscience enables researchers to study brain structures and information-

processing properties using neural simulators [27, 29]. Using brain simulators to study

neural behaviors has many advantages to traditional methods, in that experiments

do not require in vivo and in vitro methods, often performed on living organisms, as

the behaviors can be simulated.

2.2.2 Models

There exist many different types of spiking neuron models used when simulating

brain activity. These models often have tradeoffs between biological realism and

computational time complexity. The spiking neuron models can be described as

mathematical models to determine how action potentials are fired and propagated.

This section will discuss the three model types used in the NCS simulator, Izhikevich

(IZH) [16], Hodgkin-Huxley (HH) [15], and leaky integrate-and-fire (LIF) [9].

Izhikevich

The IZH neuron model was designed to be as computationally efficient as possible

while attempting to retain biological accuracy similar to that of the HH model. IZH

has many parameters that can be modified enabling it the simulate fast spiking neu-

ron firing rates, regular spiking rates, and bursting rates. These rates were initially

discovered by observing the motor cortex of a rat [18]. The model was proven to be

computationally efficient by simulating a mammalian cortex of 10,000 neurons and

1,000,000 synapses [16].

Hodgkin-Huxley

The HH neuron model is one of the most biologically accurate models, however it is

also one of the most complex computationally. The model was designed by researchers

7

observing ion concentrations and electrical currents in a giant squid axon in 1952. The

HH model describes three currents and how ions flow through the cell membrane via

channels. These three currents include a higher potassium current on the outside

membrane, a higher sodium current on the inside membrane, and a leak current [15].

Leaky-Integrate-and-Fire

Given that the HH model is so computationally expensive, the LIF neuron model

is a more simplistic model that approximates the HH model, focusing primarily on

the leak current of neurons. Each channel on a neuron membrane leaks current at a

specific rate which is dependent on the membrane capacitance. The model contains

a specific threshold, and when the leak current falls below that threshold, the neuron

fires and the voltage is reset to the initial value [9].

2.2.3 Simulators

Brain simulators, also referred to as neuron simulators, use neuron models instances

to perform biologically realistic simulations on the system using a series of specific

time-steps. There are several brain simulators currently used today, including but not

limited to BRIAN [10], GENESIS [4], NEST [25], and NEURON [7]. Each simulator

listed provides different focus areas and features. Most brain simulators run slowly

as computational times for certain neuron models can be computationally expensive

as stated previously. Simulators are starting to gain increased performance by using

GPUs to aid in computation. GPUs can provide massive increase in performance

as they are designed to execute large amounts of instructions in parallel, which is

important to brain simulations as the number of cells and synapses can be large [14].

2.3 Neocortical Simulator

2.3.1 Overview

NCS is a brain simulator that can be run on a heterogeneous cluster of machines

using both GPUs and CPUs to perform simulation computations. NCS uses NVIDIA

8

CUDA to run general purpose GPU (GPGPU) code on NVIDIA GPUs, and the

message passing interface (MPI) library for distributing computation across machines.

Using the distributed cluster along side multiple GPUs, NCS can run large simulations

consisting of up to 1,000,000 neurons and 100,000,000 synapses in realtime [13]. NCS

runs modified versions of the three neuron models listed above, and can run various

different combinations of each. Mathematical descriptions of these models have been

done in previous works, so please see [13, 17] for a detailed description.

2.3.2 Simulation Composition

A simulation that is run on NCS uses four core components: neuron models, synapses,

stimuli, and reports. Neuron models, synapses, and stimuli have been discussed

previously. Reports are specified output values generated from a running simulation.

NCS has several optional components that can also be included in a simulation, such

as groups, aliases, and calcium dependent channels for LIF neurons and voltage-

gated channels for LIF and HH neurons. Each simulation runs with a time-step of

one millisecond, where at each time-step the neuron membrane voltage and spike state

are reported. Synapses work by checking if a presynaptic neuron triggers an action

potential, a current will travel from that neuron through the synapse to a postsynaptic

neuron. Stimuli can be applied to groups of cells, and can inject a specified amount

of current, or can clamp the membrane voltage at that time-step. When reports are

created, they are given a target which can be individual neuron groups. The reports

are the only feedback a user would receive from NCS.

2.3.3 PyNCS

NCS is powerful but has had a convoluted interface system which required users

to create text files to specify simulation parameters. Attempts have been made to

translate inputs from other simulators, but this was not an optimal solution [19].

PyNCS is a front-end to NCS written in Python so users can write simple scripts to

configure and launch NCS simulations. PyNCS provides a high level API that allows

9

users to add neurons, synapses, stimuli, neuron groups, neuron aliases, reports, and

the ability to launch a simulation. A PyNCS script can be seen in Figure 2.2. More

details on the PyNCS API can be seen in [29].

2.3.4 NCS Daemon

The NCS daemon is a centralized service for handling requests made from outside

sources to communicate directly with NCS. The daemon is a core component to the

web interface as many requests have to be handled by the daemon. The daemon is re-

sponsible for many aspects of the web interface, such as handling user accounts, NCS

requests, and report streaming. The daemon must store user accounts, which con-

tains user login credentials and stored models. For more information on the daemon

capabilities, refer to [18].

2.3.5 Web Components

Previous work has been done to create a web interface to NCS. The interface contained

the ability to create brain models, simulation parameters, view output reports, man-

age a model database, and had a component where a virtual robot could run based

on output data from NCS [3, 1, 20]. Most of these components were rough prototypes

with limited functionality, and could not work with NCS as no communication was

present. There was also a visualization component, however was limited to a desktop

application [6].

2.4 Libraries and Frameworks

2.4.1 Overview

The NCS web interface depends on several libraries and frameworks to function. The

libraries range from style aids to controlling the structure of the entire program. The

libraries used are listed in this section.

10

#!/usr /bin /python

import os , sys
import ncs

def run (argv) :

sim = ncs . S imulat ion ()

I zh i k ev i ch neuron
regular_spiking_params = sim . addNeuron ("regular_spiking" ,"izhikevich" ,

{
"a" : 0 . 02 ,
"b" : 0 . 2 ,
"c" : −65.0 ,
"d" : 8 . 0 ,
"u" : −12.0 ,
"v" : −60.0 ,
"threshold" : 30

})
group=sim . addNeuronGroup ("group_1" , 1 , regular_spiking_params , None)

I n i t i a l i z e the s imu la t i on
i f not sim . i n i t (argv) :

p r i n t "failed to initialize simulation."
return

Add st imulus
stim_param = {

"amplitude" : 10
}

sim . addStimulus ("rectangular_current" , stim_param , group , 1 , 0 . 1 , 1 . 0)

Report neuron vo l tage
r epor t=sim . addReport ("group" , "neuron" , "neuron_voltage" , 1 , 0 . 0 , 1 . 0)
r epor t . t oA s c i i F i l e ("./regular_spiking_izh.txt")

Run the s imu la t i on f o r 1 second
sim . run (durat ion =1.0)

return

i f __name__ == "__main__" :
run (sys . argv)

}

Figure 2.2: An example of a simple PyNCS Python script from [18].

11

2.4.2 Python

Python is the programming language used to write the web interface’s server. Python

is a dynamically typed, interpreted, general-purpose and multi-paradigm program-

ming language which allows for fast prototyping while still providing adequate per-

formance. Python’s standard library is extremely large and makes it really simple to

add functionality to existing programs. It is for this reason, as well as the fact that

several web frameworks written in Python already exist, that Python was chosen for

the web interface [26].

2.4.3 Javascript

JavaScript is the primary programming language used for creating dynamic web appli-

cations. JavaScript is a dynamically typed, interpreted, multi-paradigm programming

language that allows for manipulation of elements displayed on a webpage, as well as

providing the primary structure for program logic [8].

2.4.4 HTML

HyperText Markup Language, or HTML, is the standard language used for dictating

the structure of webpages. The structure is defined by nesting HTML elements inside

one another. HTML elements are denoted using tags, with the ending tag includ-

ing a slash, such as <input> ... </input>. The structure helps determine how styles,

positions, and sizes of elements on the page are relative to each other [8].

2.4.5 CSS

Cascading Style Sheets, or CSS, is the standard language used to provide style to a

webpage. CSS allows you to define specific style parameters on a class level, or for

an individual object id. These styles are then linked in to the webpage through the

use of HTML class and identifier attributes [8].

12

2.4.6 LESS

LESS is a stylesheet language that is compiled to CSS, but allows for additional func-

tionality. LESS provides several features on top of CSS including variables, functions,

operators, and more. All styles for the web interface are written in LESS as the addi-

tional functionality makes it easier to write good styles, and increases maintainability

of the source code [31].

2.4.7 AngularJS

Overview

AngularJS, often referred to as Angular, is an open-source web application frame-

work for creating single page web applications. It provides a client-side Model-View-

Controller (MVC) for dynamic manipulation of webpage components based on specific

program logic. Angular allows an application to be split into separate controllers, that

each get their own scope where each scope keeps program logic restricted to specific

areas of the webpage. This allows for the application to maintain a more modular

design for ease of development [11].

MVC

Model-View-Controller is a programming design pattern where data is decoupled from

the visualization of that data. The first component, model, is where data and program

logic are represented. The next component, view, is what displays the data. Finally,

the controller, is what allows interaction between the view and the model data.

Directives and Data Binding

Angular provides methods for directly modifying html elements using directives that

are placed inside the HTML. Angular directives have the signature ng−[directive] where

[directive] can perform specific operations. These directives include repeating ele-

ments, showing elements when a expression is true, and many more. This allows for

easily creating dynamic pages that can change based on program logic. Angular also

13

<div ng−c o n t r o l l e r="Simple">
<button type="button" ng−c l i c k="addRandomNumber()">

Add Random Number
</button>

<div class="row" ng−repeat="number in randomNumbers">
<h3>Random Number : {{number}}</h3>

</div>
</div>

<sc r i p t >
app . c o n t r o l l e r ("Simple" , ["$scope" , f unc t i on ($scope) {

$scope . randomNumbers = [] ;

$scope . addRandomNumber = func t i on () {
$scope . randomNumbers . push (Math . random ()) ;

} ;
}]) ;

</s c r i p t >

Figure 2.3: An example of AngularJS Directives.

allows inputs to be directly bound to a specific model property through the use of

data bindings. An example of a few angular directives can be seen in Figure 2.3.

2.4.8 Bootstrap

Bootstrap is a front-end library for improving the look and feel of web applications.

Bootsrap allows for responsive layouts, meaning that the look of an application will

dynamically change and still work on mobile devices. Bootstrap also improves the

look and feel of common elements like buttons as well as adding special styles for

components like panel containers [30].

2.4.9 ThreeJS

ThreeJS is library that provides easy access to WebGL and 3D rendering. WebGL is

a subset of OpenGL that allows 3D rendering for web applications. ThreeJS contains

many common geometric shapes and can be considered a full 3D rendering engine.

ThreeJS abstracts away writing custom GLSL shaders, although custom shaders are

still supported. In its place, ThreeJS uses material classes for styling objects with

14

things like colors or textures, while mesh classes are used for representing geometric

shapes [33].

2.4.10 Highstocks

Highstocks is a JavaScript library for creating dynamic charts and graphs of supplied

data. Highstocks is a derivation of the library Highcharts; Hicharts is similar to

Highstocks, however it is intended for static data or for viewing small slices of dynamic

data. Highstocks builds on this by providing methods for being able to scroll through

large data sets, as well as providing the ability to “zoom in” on specific sections of

the data. Highstocks as well as Highcharts provide methods for exporting the current

view of the graph as an image for download [12].

2.4.11 NodeJS

Overview

NodeJS is a server side runtime environment for handling build tasks geared towards

web development. The web interface uses four common components of NodeJS, which

are described below [22].

NPM

Node Package Manager (NPM) is a tool for managing server side packages when

building a web application. NPM has the ability to install new packages from a

configuration file, update installed packages to newer versions, and uninstall packages

no longer needed. The three components listed below, Bower, WebPack, and Gulp,

were all installed using NPM.

Bower

Bower handles the installation of libraries to be used in the client-side web applica-

tion. This includes AngularJS, Bootstrap, Highstocks, and other libraries used in this

project. It has similar functionality to NPM, in that it installs, maintains, and can

remove packages that are being used by the application.

15

WebPack

WebPack enables multiple JavaScript files to be combined into one large JavaScript

file for use on the client. This has several benefits, including increased performance

as the browser does not have to make several fetch requests for each file, and makes

the code more modular as different sections can be split into different files. WebPack

also has the added benefit of applying local scopes to each file, meaning that if one

file needs a component of another file, the second file must be included using the

require("file.js") command. Again this provides more modularity for a more robust

code base.

Gulp

Gulp is a build tool that can run subprocesses on triggered events. For instance, Gulp

can watch for file changes in a directory, and perform an action when a file changes.

This can be used to merge all of the HTML into a single file when any of the HTML

files change, compile the LESS code into CSS code when the LESS files are changed,

and call WebPack on the JavaScript files when they are changed. Gulp can also copy

files to the target build directory for any of these actions. Gulp is also in charge of

launching the web interface’s Python server on first execution.

2.4.12 Flask

Overview

Flask is a micro webframework written in Python for creating a RESTful web server.

Flask defines the route a URL can take, and specific actions can be executed when a

route is passed to the server. An example of this can be seen in Figure 2.4 [2].

REST

Representational State Transfer (REST) is a design pattern for communication be-

tween a client and a server. For web applications, URLs, or Uniform Resource Lo-

cations, are commonly used to identify a REST resource. In the case of the web

16

from f l a s k import Flask
app = Flask (__name__, stat ic_ur l_path=’’ , s t a t i c_ f o l d e r=’’)

@app . route (’/’)
def main () :

return app . s end_s ta t i c_ f i l e (’index.html’)

i f __name__ == ’__main__’ :
app . run (port=8080)

Figure 2.4: An example of a simple Flask application.

interface, a simple form of REST is used where URLs correspond to specific actions

the server should execute. Data can be passed using specific URLs with GET or

POST commands. Data is sent from the server to the client through GET requests,

and data can be passed from the client to the server using POST requests.

Sessions

Sessions are a feature of Flask that allows a specific state of the client to be saved

server side while the server connection is active. What this means is, client-side

data can be saved through the server periodically or when specific events occur. For

instance, the web interface saves the state of the current model every 30 seconds, or

whenever a critical action is taken, such as a new cell is added. This ensures that

even if the user accidentally refreshes the page, their data is not lost.

2.4.13 RabbitMQ

RabbitMQ is a message queue library that allows for storing data in queues, and

forwarding that data when a connection is available. This allows a user to login,

launch a simulation, and logout, and still expect the report data to be available.

RabbitMQ will allow this to happen by filling a data queue even while the user is

offline. The the user returns and logs in, the data will be made available [24].

17

2.4.14 JSON

JavaScript Object Notation (JSON) is a data representation that is human readable,

and can be used to send data across a network because JSON objects can be easily

serialized. Given that JSON originated from JavaScript, web applications have native

support for JSON objects. Many programming languages also have support for JSON

built-in, and if they don’t, libraries usually exist to work with JSON objects. JSON

is the primary data representation for the web interface, and for the NCS Daemon

[5].

2.4.15 MongoDB

MongoDB is a No-SQL database where JSON objects are used as the internal data

representation. MongoDB uses a binary format of JSON, called BSON, for perfor-

mance and storage reasons. MongoDB is used for the flask sessions mentioned earlier,

and is used extensively for storing data in the NCS Daemon [21].

18

Chapter 3

Design

3.1 Overview

The web interface acts as a front end to NCS. The interface is split into four core

components: model builder, simulation builder, reports, and visualizer. The brain

builder can create new models, modify models by adding cells, synapse connections,

channels, and columns, as well as the ability to import and export models. The

simulation builder can modify simulation parameters, and can create inputs and out-

puts to be triggered at certain times with certain probabilities. The reports allow

for output to be seen in dynamic graphs displaying the requested output, such as

neuron voltage, synapse current, etc. The visualizer provides a 3D representation of

the model created using WebGL to render neurons as cubes.

3.2 Web Interface Requirements

3.2.1 Functional Requirements

The functional requirements are based on the interface functionality of the web in-

terface. The list of functional requirements are listed in Table 3.1.

3.2.2 Non-functional Requirements

The non-functional requirements are based on requirements of communicating with

the NCS daemon and implementation specifics for meeting the desired behavior of

the system. The non-functional requirements are listed in Table 3.2.

19

Table 3.1: The NCS web interface functional requirements.

Number Description
FR01 The web interface shall add new users.
FR02 The web interface shall login users given valid user credentials.

FR03 The web interface shall retrieve the personal, lab, and global models
for a user from the NCS daemon.

FR04 The web interface shall save personal, lab, and global models.

FR05 The web interface shall allow a user to revert a model to a previous
save.

FR06 The web interface shall allow a user to modify a brain model.

FR07 The web interface shall import NCS simulation Python scripts and
will be reflected in the interface.

FR08 The web interface shall export brain model and simulation
parameters to a JSON file or a NCS simulation Python script.

FR09 The web interface shall configure simulation parameters.
FR10 The web interface shall create input stimulus and output reports.

FR11 The web interface shall display live graphs of report data in
real time.

FR12 The web interface shall configure report graphs for thresholds and
plot lines.

FR13 The web interface shall display a 3D rendering of a created model.

Table 3.2: The NCS web interface non-functional requirements.

Number Description

NFR01 The web interface will be written in HTML, LESS, JavaScript,
and Python.

NFR02 The web interface will use AngularJS to handle connecting
data to interface.

NFR03 The web interface will use Bootstrap for layout and styling.
NFR04 The web interface will use Flask for client-server communication.
NFR05 The web interface will use MongoDB for storing session information.
NFR06 The web interface will use JSON for requests and data passing.

NFR07 The web interface will use RabbitMQ to stream report data
from the NCS daemon.

NFR08 The web interface will use Highstocks for rendering report data.
NFR09 The web interface will use ThreeJS for rendering 3D models.

20

3.3 Use Case Modeling

3.3.1 Overview

To better understand the functionality of the web interface, use cases are provided in

this section. These use cases show how the user can interact with the web interface.

A diagram of the use cases is shown in Figure 3.1 and detailed use cases are discussed

below.

3.3.2 Detailed Use Cases

Register

When a user first visits the website, they will have two options, either login if they

already have an account, or register a new account. To register a new account a user

must supply a valid email address, a first name, a last name, a password, and a lab

id. If the daemon is able to create an account, the user will be returned to the login

page to login to their account.

Login

In order for the user to have access to the web application, the user must login to the

website upon arrival. If the user provides valid credentials, they will be redirected to

the model builder tab of the application. If the user does not supply valid credentials,

an error will be displayed telling them they input the wrong values.

View Tab

Once the user is logged in, they have the option to view any of the four tabs. The

user can select any tab at any time to change their view.

Create New Model

Once a user is logged in, they will initially have an empty model. The user can simply

start to add components such as new cell groups, or previously created configurations.

21

Figure 3.1: A use case diagram of the NCS web interface.

22

Choose Existing Model

When the user has an empty configuration, they can choose to load an existing model.

Once a model is selected, the interface will be updated to display all of the components

and parameters for that model.

Upload Python Script or JSON File

The user has the option to upload a JSON file consisting of a previously exported

model, or a NCS Python script that has been previously exported or created by

hand. Once a file has been uploaded, the interface will be updated to display all of

the components and parameters for that model.

Edit Model

Once a user has started a new model or loaded an existing one, they can begin to edit

the model. The user can add new components, such as cell groups, cell aliases, or

connections. Previously saved components can also be added to the model through

the side panel. When a specific component is selected, the user can modify the

parameters of that component. For instance if a cell group is selected, the user can

modify the number of cells in that group, or modify the parameters for that cell type

directly. When at least two cell groups are present, a user can create a connection

between them.

Save Model

After a user has made changes to a model, they can choose to save that model. When

the user chooses to do so, they will be prompted to name the model, and which

database to save it to, personal, lab, or global. Once the model is saved, it can be

accessed later through the side panel.

Clear Model

If a user wants to create a new model and discard all current components and pa-

rameters, they can choose to clear the model. This will discard the current working

23

model and clear the interface to a state as if the user had just logged in.

Undo Model Change

If a user wants to discard the changes they’ve made, but not clear out the current

model, they can choose to undo the most recent changes. This will revert the current

model to the state that it was at when it was last saved.

Export Model to Python Script or JSON File

A user can choose to export the current model either as a JSON file that is the exact

representation of the model, or as a Python script that can be executed to instantly

launch PyNCS.

Edit Simulation Parameters

When the user views the simulation tab, they can edit several global simulation

configuration options. These options include the simulation name and duration.

Add Stimulus

The user can add many stimulus configurations to the simulation. The stimulus

consists of a stimulus type, specific parameters for that stimulus type, an input prob-

ability, a start and end time, and a list of input targets. Input targets consist of cell

groups and synapse connections created in the model builder.

Add Report

The user can add many output reports to the simulation. The report consists of a

report type, an output probability, a start time and an end time, as well as a report

target and a target type.

Launch Simulation

Once a user is satisfied with the model configuration and simulation parameters, they

can launch a simulation on NCS. The user will be prompted if they want to launch

24

the current model or a previously saved model. Once a model is launched the user

can view the output in the reports tab.

Hide / Show Report

When the user is viewing reports, they can choose to hide or show specific reports

when the minimize / maximize button is pressed.

Configure Report

Each report has a configuration panel that can be expanded to show configuration

options for the specific graph being viewed. Configuration options include setting

minimum and maximum thresholds, adding additional thresholds to add gradient

values to the graph, and plot lines can be added on the horizontal axis to help identify

a reference point for the nearby values.

Export Image

At any point, a user can export the data currently being displayed on the graph. The

export formats are: a png image, a jpeg image, a svg image, or a PDF.

Configure Scene

When viewing the 3D model, the user can configure the scene being rendered. The

configuration options include a toggle for the rendering of neurons, synapses, and

columns. and threshold values for firing neurons.

Rotate Model

The user can choose to rotate the 3D model to see it from different angles. The model

can be rotated in both the horizontal and vertical directions. This allows for all sides

of the model to be seen.

Select Cells and Connections

The user can click and drag the mouse over the scene to select all cells and synapses

within the selection box. This allows for specific areas of the model to be seen more

25

easily compared to the parts not selected.

View Cell Information

The user can hover the mouse over specific cells and synapses to bring up a panel with

more information about the object being highlighted. If the object is a neuron, the

information displayed is the cell name, the input current, and the voltage of the cell.

If the object is a synapse connection, the information displayed is the presynaptic

connection and the postsynaptic connection.

3.4 Architecture

The web interface consists of a client-server architecture to achieve the functionality of

the use cases provided in the previous section. The web interface acts as a client which

connects to its own Flask server. The web interface and its server then communicate

with the daemon which acts as a proxy server for the web interface. The daemon then

communicates directly with NCS and streams results back to the web interface. The

system architecture diagram is shown in Figure 3.2. The web interface is composed

of four main components which each correspond to their own tab in the application.

These include model builder, simulation builder, reports, and visualization. The

arrows in the diagram represent actions that can be taken from each entity.

26

Figure 3.2: An architecture diagram of the NCS web interface.

27

Chapter 4

Implementation and Results

4.1 Overview

This chapter describes each of the components used in the web interface. It also

describes where and how the libraries and frameworks described in Chapter 2 were

used to develop the interface.

4.2 Login and User Registration Page

4.2.1 Login

When the user first visits the application webpage, they will be greeted with the

login screen. From here the user will be required to input valid credential that were

previously registered. When the user enters their credentials, an HTTP request is

sent to the server to login. The server then forwards the request to the daemon which

will perform an account authentication and return success or failure based on the

users information. If the user is authenticated, they will be redirected to the model

builder tab and can begin working. If they are rejected, an error message is displayed

asking them to try again. If the ‘Remember me’ option is selected when the user logs

in, a cookie will be created that does not expire for four weeks, allowing them to use

the site without logging in for that time period. If they do not select this option, the

cookie will expire when they close the web browser, prompting them to login next

time they return. The login screen can be seen in Figure 4.1.

28

Figure 4.1: The login page to the web application.

4.2.2 User Registration

If the user does not have an account, they can choose to create one by selecting

the ‘Register an Account’ link on the login page. This will display the registration

form which has many required components, which can be seen in Figure 4.2. These

components include first name, last name, institution, lab id (which is required for

storing models in a lab database), email address and password. When the user has

entered their information, an HTTP request is made to the server to register the user.

The server then forwards this request to the daemon which will add the user to the

database.

4.3 Model Builder

4.3.1 Overview

The model builder tab is where users will create and modify their models to be run

on NCS. The user can perform many operations on the model, including adding

and removing cells, adding and removing synapse connections, adding and removing

channels, as well as adding and removing columns. When a specific component is

29

Figure 4.2: The registration page for the web application.

selected, the parameters of the component can be modified.

4.3.2 Layout

The model builder is separated into three main layout components. There is a column

in the center of the page that is the current view of the components for the model you

are working on. Also, there is a column on the right side of the page that consists of

the specific parameters for the selected component. A left drawer can be located on

the left side of the screen but is initially hidden until the user toggles it to be viewed.

The top of the tab contains several buttons for managing the current model. This

includes buttons to clear the current model, undo the current changes, and save the

current model. The layout can be seen in Figure 4.3.

4.3.3 Left Drawer

The left drawer is located at the left side of the screen and is hidden until the user

decides to toggle it to be viewed, and can be seen in Figure 4.4. The left drawer

uses an Angular controller, the DrawerController for managing the view. The left

30

Figure 4.3: The layout of the model builder tab.

drawer contains a filter that can filter the types of models provided. There are three

filter options: all, local, and database. The all filter will show all available models,

where the local filter will only show example models built-in to the software, and

database will only show models loaded from the daemon. Models loaded from the

daemon include the users personal collection, their lab collection, and their global

model collection. When the page is first loaded, an HTTP request is made to the

server to fetch the models from the daemon, and the model list is populated.

Preview Panel

When models are loaded into the drawer, the user has the ability to preview the

content of the models that are available. When the preview icon is selected on one of

the models, a panel will appear that shows the contents of the model. This preview

will behave differently depending on if an individual cell, a cell group, or an entire

model is selected. If an individual cell is selected, the specific parameters for that cell

31

Figure 4.4: The left drawer with built-in models and model populated from database.

are displayed. If a cell group or model is selected, then all components within that

group are also shown, with the ability to navigate through and add specific portions

of the viewed group, as shown in Figure 4.5. If a user wants to add an item from

the drawer to the model, they simple have to double click on it. This will trigger a

ng−doubleclick directive which adds the current element into the model.

Import and Export Model

Import Model The web interface provides the ability to upload a pre-existing

JSON model or PyNCS script into the browser to be worked on. When the user

selects a file to upload, an HTTP request is sent to the server containing the file

contents. The server will perform different actions based on the filetype. If the file

contains a JSON object, then the JSON is loaded and returned to the client. If the

file is a PyNCS script, a request is made to the daemon to convert the PyNCS script

to a JSON file. The JSON object is then returned from the daemon and a response

is sent to the client containing the JSON object.

32

Figure 4.5: The preview panel view with the contents of a cell group.

Export Model The model currently being worked on can be exported for later use.

The model can either be exported as a JSON file, or as a PyNCS script. An example

of an exported model can be seen in Figure 4.6. When an export is triggered, an

HTTP request is made to the server containing a JSON object that contains both

the current model parameters as well as the current simulation parameters. If JSON

was the chosen export format, then the JSON object is simply written to a file and

returned to the client as a download. If a PyNCS script is the selected output, a

request is sent to the daemon to convert the JSON object to a PyNCS script. The

script contents are returned to the server which writes the contents to a file before

triggering a download of the script file on the client.

4.3.4 Current Model Panel

The current model panel is the Bootstrap panel that is located on the left of the model

builder tab. This panel contains a list of the current contents of the model the user

is working on, and is where new components will be added. Cell groups, cell group

folders, synapse connections and columns will all be displayed here. New components

can be added by selecting any of the ‘+’ buttons located at the top of the panel. All

of these buttons will trigger a modal window with specific parameters to be set for

33

{
"author" : "Jane Doe" ,
"cellAliases" : [] ,
"cellGroups" : {

"cellGroups" : [
{

"name" : "IZH Cells" ,
"num" : 150 ,
"type" : "Izhikevich" ,
"parameters" : {

"a" : {
"type" : "exact" ,
"value" : 0 . 2

} ,
"b" : {

"type" : "exact" ,
"value" : 0 . 2

} ,
"c" : {

"type" : "exact" ,
"value" : −65

} ,
"d" : {

"type" : "exact" ,
"value" : 8

} ,
"threshold" : {

"type" : "exact" ,
"value" : 30

} ,
"u" : {

"maxValue" : −11,
"minValue" : −15,
"type" : "uniform"

} ,
"v" : {

"maxValue" : −55,
"minValue" : −75,
"type" : "uniform"

}
}

}
] ,

} ,
"description" : "Regular Spiking" ,
"name" : "Test Model" ,
"synapses" : []

}

Figure 4.6: An example of a simple model JSON from [18].

34

Figure 4.7: The current model panel with breadcrumbs showing components several
levels deep.

the type of component to be added. Each model gets its own Angular controller to

limit the scope of the ModelBuilderController as much as possible. Once components

have been added, they can be selected by clicking on them. If the component is a

cell group folder, this means that the folder can contain subcomponents that are not

visible at the current scope of the model. These folders can be double clicked to

trigger a ng−dblclick event that will cause the current list of components to be hidden,

allowing the subcomponents to be viewed. When the subcomponents are shown, a

breadcrumb trail is added to the top of the panel which shows where you came from.

This trail will keep growing the deeper the user traverses into the model, and can be

seen in Figure 4.7. At any point the view can be changed to any of the parent views

by clicking on the desired breadcrumb. Components can be removed by selecting the

remove button attached to each component.

4.3.5 Parameters Panel

The parameter panel is the panel located on the right hand side of the page and

contains all of the specific parameters for the selected component. The parameters

35

are represented in large tables that can list all of the possible options. Each cell

type gets its own table, and which table is displayed is dependent on the scope’s

displayed. classification component as well as the displayed.parameters.type component

set in the ModelBuilderController. The displayed object is set when a component is

selected in the current model panel. These two classifications will determine the

parameters shown, as an Izhikevich cell will have different parameters from a NCS

cell. Any parameters that can be edited will be highlighted in blue and can be edited

by clicking on it. This will trigger an angular-xeditable component that displays

the input field inline with the value. Angular-xeditable components are third party

Angular directives that allow data values to be edited on the same line they are

displayed [35]. Data values are checked before being saved for correct values by

triggering an onbeforesave event which validates the data. A complete model example

can be seen in Figure 4.8.

If the cell type permits it, a sub-panel representing channels will be displayed at

the bottom of the parameters panel. Channels can be added to both Hodgkin Huxley

cells as well as NCS cells. When the channel panel is selected, more parameter options

are displayed for the selected channel, as seen in Figure 4.9. These can be edited the

same way as the cell group parameters, by clicking on them. Multiple channels can

be added to a single cell group and can be removed by selecting the remove channel

button.

When a synapse connection is selected, the panel displays parameters for the

selected synapse similar to the parameters for a cell group. The same is true when

the user selects a column to edit. All of the parameters can be edited the same way

using a x-editable input component.

4.3.6 Model Operations

There are three global model operations that can be performed on the current model.

The model can be cleared, the last save can be deleted and the current changes will

be removed and a previous version will be loaded, or the model can be saved. Each

36

Figure 4.8: An example of a complete model.

37

Figure 4.9: The channels panel for editing channel parameters.

operation has a button at the top of the model builder tab, and each button will

spawn a modal window to confirm or prompt for more information. Each modal

gets its own controller, again to minimize the use of the ModelBuilderController as

much as possible. ‘Clear Model’ will simply prompt before clearing the model. When

the option to clear the model is selected, the ClearModelController will simply tell

the CurrentModelService to clear the loaded model. Once the model is cleared, the

interface will automatically update to display an empty model. ‘Undo Last Save’ will

prompt the user for where the last model save is located, either in the personal, lab, or

global model database. Once this is selected, and the option to undo the last save is

selected, an HTTP request will be sent to the server which will forward the request to

the daemon. The daemon will then remove the most recent save and return a previous

version of the model. Upon success, the previous model is returned to the client, where

the interface is updated to show the previous version. When ‘Save Model’ is selected,

a modal is presented prompting for the model name and which database to save to.

38

Once the data has been entered and selected, the SaveModalController will create an

HTTP request to save the model. The request will then be forwarded to the daemon

and the model will be saved.

4.4 Simulation Builder

4.4.1 Overview

The simulation builder tab is where simulation parameters can be configured, and

where simulations can be launched on NCS. Simulation parameters include the sim-

ulation name, the duration the simulation will run, as well as simulation inputs and

outputs. When a user decides to launch a simulation, they can choose to launch the

simulation they currently have loaded, or can choose from a previous saved one.

4.4.2 Layout

The simulation builder tab is split into three main views. There is a top panel which

contains the global simulation options such as name and duration. There is a tabbed

column on the bottom left which indicates a list of inputs and outputs. The panel

in the bottom right includes the specific parameters for the input or output that is

selected.

4.4.3 Parameter Panel

The parameters panel simply contains options to be used as global simulation con-

figurations. There are six global options, with two primary options, simulation name

and duration, and the other four options are not currently used but are reserved for

future use. The simulation name is used to keep track of a specific simulation config-

uration to be run. The duration specifies how long the simulation should run on NCS

before being terminated. The duration is given in seconds. These inputs are directly

connected to the underlying data through ng-model directives.

39

Figure 4.10: The initial view of the simulation builder tab.

40

4.4.4 Input/Output Panel

The input and output panel consists of two lists which can be toggled by selecting the

input or output (IO) tab options. As IO objects are added, theses lists will grow larger

with the ability to select specific inputs and outputs. The IO objects are displayed

through the use of the ng-repeat directive which repeats the contents for each item

in the list. Each list group is shown or hidden based on the currently selected tab.

When an IO object is created, an object is created with defaulted parameters. When

an IO object is selected, the SimulationController sets the selected object to the IO

object clicked. IO objects can be removed by selecting the ‘x’ button next to the

object. This will remove the object from either the inputs or outputs list and the list,

and if the currently selected object is the one removed, the selected object is updated

to a different object in the list. An IO object can also be renamed by clicking on their

name in the list. This will open a dynamic text input option to rename the object.

This is achieved by using the x-editable library and attaching an editable component

to each of the list objects.

4.4.5 Input/Output Specifications Panel

The input and output specification panel is used to specify specific parameters for

a specific input or output object. When an item is selected, the specification panel

title is updated to that of the IO object’s name. Different parameters are then shown

based on the class type of the IO object selected, which is either "simulationInput"

or "simulationOutput". When an input object is selected, the parameters displayed

include the stimulus type, a list of specific input parameters, the probability of the

input, the start time, the end time, and input targets. The stimulus type is a selection

object with the options rectangular current, rectangular voltage, linear current, linear

voltage, sine current, and sine voltage. For each specific input parameter, the user can

choose a value type of exact, uniform, or normal. If a value type is exact, the exact

value is used. If a value type is uniform, the minimum value, maximum value, mean,

41

Figure 4.11: A possible input configuration in the simulation builder tab.

and standard deviation are used with a uniform distribution calculated at runtime in

NCS. The same is true if a value type is normal, however a normal distribution is used

instead of a uniform distribution. Multiple input targets can be added dynamically

given a loaded model. The list of input targets is dynamically updated when the user

updates the model. After the user updates the model, when the simulation tab is

selected, a "page-changed" event is triggered which causes the SimulationController to

update all possible input and output targets.

4.4.6 Launch Simulation

When the user has successfully configured their simulation, they can choose to launch

a simulation. When this happens, a modal window is displayed prompting the user

which model they would like to use with their simulation, the current model loaded, or

42

Figure 4.12: A possible output configuration providing a synaptic current report on
a synapse connection.

a previously saved model. When the model is executed, a LaunchSimulationController

is used to load the possible models which have been loaded from the daemon for the

user’s account. When the user launches the simulation, if the user selected the current

model option, the model is copied from the CurrentModelService, otherwise it is set

from the list of loaded models. The model and the simulation parameters are then

saved as a JSON object and an HTTP request is made to the server to launch the

simulation.

Streaming Data

When the launch simulation request is received by the server, the sever looks to see

if the user already has running simulations, and if not creates a new report_object

to cache the local result data obtained from the daemon. Once the report objects

are retrieved or created, the server then spawns a thread for each active report to

be tracked from NCS. Each thread establishes a RabbitMQ channel to the daemon

message queues for transferring the data from the daemon to the server. When the

server is started, a persistent connection is created to the daemon which is later used

43

to create channels that connect to specific message queues. When a channel is created,

a specific routing key is created that has the format "[username]..[report_name]" which

guarantees that each report for each user gets a unique routing key. A channel will

stream data until a "STOP" message is received. The server then forwards the request

to the daemon which handles launching the simulation and streaming the results.

4.5 Reports

4.5.1 Overview

The reports tab is where outputs specified in the simulation builder tab can be viewed

as graphs. Graphs can be viewed as live output from NCS or can be viewed by

uploading a file of a previously run result. Graphs can then be exported to an image

to be used later.

4.5.2 Layout

The layout of the report tab is very simple. When the tab is first viewed, you have

the option to connect to a running simulation, or upload a previously generated

report file, as seen in Figure 4.13. When one of these options is selected, the active

simulations panel will be populated with the corresponding outputs. Several graphs

can be rendered at once, as shown in Figure 4.14.

4.5.3 Simulation Selector

When a user connects to a running simulation, it is possible that the user may have

several simulations running in parallel. If the user has several simulations running,

they can choose which simulation they want to view by selecting one of the possible

simulation tabs in the active simulations panel. All of the displayed data is determined

by which simulation is currently active. Because of this, when the user selects a

simulation tab, the ReportsController will set the active simulation to the index of

the simulation selected. When the active simulation changes, all of the data in the

tab is updated to reflect the change.

44

Figure 4.13: The initial view of the reports tab.

4.5.4 Report Panels

When report data is available, all of the reports will be displayed in their own col-

lapsable panel. Each panel will contain the graph of the data being displayed, as well

as a panel for configuring the graph. Each output graph panel can be minimized or

maximized to enable seeing multiple results easier.

Constructing Graphs

When the user connects to a running simulation, the server is sent an HTTP request to

get information about the current configuration being run on NCS. When a simulation

is launched, a request is sent to the daemon to launch the simulation on NCS as

described in Section 4.4.6. After a simulation has been launched, an HTTP request

can be made to retrieve the current report specifications. This request will return the

current configuration, including all active simulations, and all reports connected to

each active simulation, as well as the data currently stored for each report. Once the

configuration has been loaded, a Highstocks StockChart is created for each report in

the active simulation. The StockChart uses defaulted values for gradients and plot

45

Figure 4.14: The reports tab with two active reports.

46

lines when the graph is initially created, although these can be customized later.

Streaming Data

Once the charts have been created, an HTTP request is made to the server every

250 milliseconds to update the data. This time was chosen because the amount of

data being passed can be large if a simulation has a lot of cells and a high output

probability. NCS has a time-step of 1 millisecond in which all report data will be

updated [29]. Due to this limitation, data is grabbed in bulk to ease the number of

requests the web interface has to make to the server. Once data is received, each

report is updated with its corresponding data and the graphs are redrawn.

Configuration Panel

Each graph has the ability to be customized through the configuration panel attached

to each graph. Each graph has a collapsable configuration panel that can modify

the gradients used in the graph, add additional gradients, and add plot lines to act

as a reference point when viewing data. The configuration panel is implemented

as a Bootstrap panel−collapse object that is initially set to a collapsed state. The

configuration panel can be seen in Figure 4.15.

Thresholds To represent the threshold colors, a form−group is used where the back-

ground color of the HTML element corresponds to the current color being used. When

selected a colorpicker angular directive is used to provide a popup that is bound to

the gradient data from the current report object. This allows colors to be changed.

The ReportsController has several watchers that watch for when the gradients are

changed, and when they are trigger the graph to be updated and redrawn with the

new look. A watcher is an Angular function that will check if specified data is changed

every time the scope is updated. This gives users realtime feedback as they customize

their graphs. Additional thresholds can be added and can be set to specific areas in

the graph. What this means is when a user adds a new threshold, they can control

a slider which acts as a range between the smallest and largest values in the graph.

47

Figure 4.15: The reports tab with one report and its configuration panel.

This causes the threshold to be set at the specified value in the range of smallest to

largest.

Plot Lines Plot lines can be added which are lines that can be placed on the

horizontal axis to act as a reference point for data being displayed. When a plot

line is added, the ReportsController will create a new object with the configuration

settings of the plot line and add it to the plotlines array. The ReportsController has a

watcher on the plotlines array and when it changes, either by adding a new plot line,

48

by changing the configuration of a previously existing plot line, or by removing a plot

line, the current graph is updated and redrawn to show the change.

Graph View

The graph generated has several sections for making viewing of the data easier. By

default, the graph will display all of the data that is available for the specific report.

The graph is structured in a way that the x-axis represents the time the data was

received, and the y-axis represents the specific value for that data point. The y-axis

can be a synaptic current, neuron voltage, number of cells fired, and an input current.

The y-axis will dynamically change based on the type of graph presented. If no type

is presented, such as when the data is uploaded from a file, the axis will simply be

labeled "Data". The graph has the ability to zoom to specific parts of the data, and

scroll throughout the data once it has been zoomed. This is achieved through the

HighStock chart built-in scrolling functionality. If the zoomed view is placed at the far

right, only the new data will be displayed as it is received by the ReportsController.

Export Image

HighStock charts have the ability to be exported as an image of a current graph.

When the user chooses to export an image, they can export the image as either

a .png, .jpeg, .svg, or .pdf. When the export occurs, the data currently rendered,

including thresholds, plot lines, and the current zoom level are what is rendered to

the image.

4.6 Visualizer

4.6.1 Overview

The visualizer tab provides a 3D rendered WebGL view of the current model loaded.

This tab is considered to be in a prototype stage as the functionality is currently

limited to simply rendering a constructed model. The visualizer tab can be seen in

Figure 4.16.

49

4.6.2 Layout

The visualizer tab has two components, the configuration panel at the top of the tab,

and the WebGL renderer below it.

4.6.3 Configuration Panel

The configuration tab is a panel that contains options for configuring the WebGL

renderer. It contains options for toggling the rendering of neurons, connections, and

columns. It also has the ability to set a minimum and maximum threshold, as well as

the threshold color which exists as a gradient between the two colors. These thresholds

exist to help render a running simulation which is not currently implemented.

4.6.4 WebGL Renderer

Scene Initialization

The WebGL render is a HTML canvas object that has a ThreeJS WebGL renderer

attached to it. When the VisualizationController is initialized, the ThreeJS WebGL

renderer is created and attached to the HTML canvas that represents where the

scene will be visualized. The renderer uses two cameras to achieve the current look,

a ThreeJS PerspectiveCamera and a ThreeJS OrthographicCamera. The PerspectiveCamera

is used for rendering the 3D scene. The OrthographicCamera is used for rendering 2D

elements, namely the selection box which is discussed later. A ThreeJS Scene object

is created to handle the rendering of the scene which will contain all of the objects

to be rendered. A second Scene object is created to hold all 2D objects such as the

selection box described below. This 2D Scene object is rendered using the Orthographic

camera. An OrbitControls object is added to the PerspectiveCamera to enable mouse

input that can rotate the scene. Event handlers are then added for mouse input to

enable interaction with the scene.

50

Figure 4.16: The visualization tab with a model consisting of 15 cells, with a connec-
tion probability of 40% and a spread of 30.

51

3D Model Construction

Once the scene is setup, the 3D models can be constructed either from the current

model, or from a randomly generated model for testing purposes. Cubes are used

to represent neurons, cylinders are used to represent synapse connections, and trans-

parent cubes are used to represent columns. Since no positional information is given

when constructing models other than the positions of columns, objects need to be

constructed using random locations. If neurons have an associated column, they will

be given uniformly distributed locations within the volume of the column. If no col-

umn is present, the neurons will be uniformly distributed throughout the entire scene

with a given spread. Columns are constructed using the presynaptic and postsynap-

tic connection information. Since all neuron objects are created first, a lookup is

performed when constructing the synapse objects to find the location of both the pre

and post synaptic connection objects to attain their positions. Once the positions are

known, a cylinder is created, rotated, and placed as shown in Figure 4.17. Finally

the column objects are created using the information supplied when the columns are

added in the model builder tab. Columns are represented as bounding boxes which

will contain neurons inside of them.

3D Selection

Models and connections can be selected by clicking and dragging the mouse to high-

light specific object. 3D group selections was achieved by creating a SelectionBox

class that is initialized with a start position and dynamically updates as the user

drags the mouse. The selection box when updating can be seen in Figure 4.18. When

the user releases the mouse, first the selection boundaries are computed, then for

every object in the scene, the objects coordinates must be converted to screen coor-

dinates. This is done by getting the objects position from the matrixWorld property

which is a matrix representing the global transform of the object, then projecting the

camera transform onto the position vector. The x and y positions are then updated to

reflect the size of the canvas being rendered. Once the object’s position is represented

52

f unc t i on createCyl inderFromPoints (p1 , p2 , c o l o r) {
i f (c o l o r === undef ined) {

c o l o r = 0 x f f 0000 ;
}

var d i r e c t i o n = new THREE. Vector3 () . subVectors (p2 , p1) . normal ize () ;
var l ength = p1 . distanceTo (p2) ;

var mat = new THREE. MeshBasicMaterial ({ c o l o r : c o l o r }) ;
var geo = new THREE. CylinderGeometry (0 . 1 , 0 . 1 , length , 8) ;
var c y l i nd e r = new THREE.Mesh(geo , mat) ;

var pos = new THREE. Vector3 () . addVectors (p1 , p2) . d i v i d eS ca l a r (2) ;
c y l i nd e r . p o s i t i o n . copy (pos) ;

var q = new THREE. Quaternion () ;
i f (d i r e c t i o n . y > 0 .99999) {

q . s e t (0 , 0 , 0 , 1) ;
}
e l s e i f (d i r e c t i o n . y < −0.99999) {

q . s e t (1 , 0 , 0 , 0) ;
}
e l s e {

var ax i s = new THREE. Vector3 (d i r e c t i o n . z , 0 , −d i r e c t i o n . x) .
normal ize () ;

var ang le = Math . acos (d i r e c t i o n . y) ;
q . setFromAxisAngle (ax is , ang le) ;

}

c y l i nd e r . quatern ion . copy (q) ;
return c y l i nd e r ;

}

Figure 4.17: JavaScript code for creating a synapse connection between two points.

53

Figure 4.18: The visualization tab when the user is selecting cells.

in screen coordinates, we can simply check if that screen coordinate falls within the

boundaries of the selection box. For all objects within the selection, their colors are

updated to a brighter version to show that they have been selected. An example of

selected cells can be seen in Figure 4.19.

4.7 Summary of Software

The NCS web interface was developed using command-line tools and a text edi-

tor. The main development tool is NodeJS which handles building all of the com-

ponents of the application. This includes combining all HTML files into a sin-

gle file, combining all JavaScript files into a single file, and compiling the LESS

code into a single CSS file. NodeJS also handles launching the Python server,

and the Flask framework will restart the server if any changes are made to the

code. The NCS web interface is an open source application, and can be found at

54

Figure 4.19: The visualization tab with cells selected.

55

https://github.com/BrainComputationLab/ncb. For perspective, the web inter-

face contains approximately 11,000 lines of code, and uses a total of 49 classes, con-

sisting of Python classes, JavaScript classes, AngularJS controllers, and AngularJS

services.

https://github.com/BrainComputationLab/ncb

56

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Computational neuroscience is a new growing field that allows researchers to study

neuroscience like never before. Instead of performing invasive procedures on living

creatures, neurological structures and behaviors can be studied by simulating their

activity on computers. Many brain simulators have been created, including the Neo-

Cortical Simulator (NCS) developed at the University of Nevada, Reno. NCS is a

brain simulator that can be distributed across a homogeneous cluster, which allows

for large simulations to be run in real time. The problem with the current approach

is that developing models and simulations to run on the simulator can be compli-

cated and requires programming knowledge. The NCS web interface was developed

to solve this problem by providing a web application to construct brain models and

simulation parameters as well as visualizing output data and a 3D representation

of the created model. The web interface provides intuitive methods for developing

models, and makes it easy to launch simulations on NCS, while making results easy

to understand and learn from.

57

5.2 Future Work

5.2.1 Interface Enhancements

The web interface provides a lot of great features, however there are many improve-

ments to be made. One major improvement that could be made would be to remove

the web interface server completely and have the client communicate directly with the

daemon. The current problem is that the server simply acts as a proxy to the daemon,

where most requests are simply forwarded to have the daemon perform the actual op-

eration. This makes the sever act as a middleman to the middleman, meaning that

it could be removed and performance improvements could be made.

Another area for improvement would be streaming data for the reports tab. With

the current implementation, the report tab polls the server at a specific interval to

retrieve new data that has been output from NCS. This could be improved by adding

the ability to directly stream the data through a technology like WebSockets that can

keep a persistent connection open between the client and the daemon. This would

improve performance as every piece of data that comes in would be instantly streamed

to the client.

One interesting addition to the web interface would be to make a native mobile

application for constructing models. The benefit would be to provide a better look

and feel when working on mobile devices, and performance could be improved by

writing natively compiled code that could outperform the code written in JavaScript.

The application could be made more robust and secure by handling local data on

client devices.

The visualization tab has many improvements that could be made. First, all

the tab can do currently is visualize the models that have been created. The ability

to visualize neurons firing corresponding to a running simulation could be added to

visualize the behavior in three dimensions. Also, the visualizer assumes that all cell

groups only contain one cell; the ability to render cell groups of arbitrary sizes would

improve the functionality of the visualizer greatly.

58

Lastly, the implementation of many components could be greatly simplified by

fully exploiting all of the features AngularJS has to offer. Given that Angular was

being learned as development was underway, certain components were brute forced

where Angular could have been used to simplify the amount of HTML used in the

application. This would require full rewrites of many components, and thus is a low

priority.

5.2.2 Daemon Enhancements

As stated previously, the daemon and web interface server could be merged to have

a single service access both NCS and provide a REST interface for the web interface.

On top of this, the daemon could add features such as adding inputs and outputs to

a simulation after it has been launched. This would allow a long running simulation

to behave more dynamically as more information could be obtained by adding more

inputs or outputs after after the simulation has already launched.

59

Bibliography

[1] E. Almachar, A. Falconi, K. Gilgen, D. Tanna, N. Jordan, R. Hoang, S. Dascalu,
L. Jayet Bray, and F. Harris. NeoCortical Repository and Reports: Database
and Repository for NCS. Proceedings of the International Conference on Software
Engineering and Data Engineering (SEDE-2014), 2014.

[2] Armin Ronacher. Flask (A Python Microframework). http://flask.pocoo.
org/, 2016. [Online; accessed 1-May-2016].

[3] J. Berlinski, C. Rowe, M. D. Chavez, N. Jordan, D. Tanna, R. Hoang, S. Dascalu,
L. Jayet Bray, and F. Harris. NeoCortical Builder: A Web Based Front End for
NCS. Proceedings of the 27th International Conference on Computer Applications
in Industry and Engineering (CAINE-2014), 2014.

[4] J. Bower and D. Beeman. The Book of GENESIS. 2003.

[5] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
2014.

[6] Justin E Cardoza, Alexander K Jones, Denver J Liu, Roger V Hoang, Devyani
Tanna, Laurence C Jayet Bray, Sergiu M Dascalu, and Frederick C Harris Jr.
Design and implementation of a graphical visualization tool for ncs. In Proceed-
ings of The 2013 International Conference on Software Engineering and Data
Engieering (SEDE 2013), pages 37–43, 2013.

[7] N. Carnevale, M. Hines, and J. Moore. NEURON: for empirically-based sim-
ulations of neurons and networks of neurons. http://www.neuron.yale.edu/
neuron, 2013. [Online; accessed 1-May-2016].

[8] David Flanagan. JavaScript: the definitive guide. " O’Reilly Media, Inc.", 2006.

[9] W. Gerstner and W. M. Kistler. Spiking Neuron Models. Single Neurons, Popu-
lations, Plasticity. Cambridge University Press, 2002.

[10] D. Goodman and R. Brette. The Brian Simulator. Frontiers in Neuroscience,
3(2):192–197, 2009.

[11] Google. AngularJS - Superheroic JavaScript MVW Framework. https://
angularjs.org/, 2016. [Online; accessed 1-May-2016].

[12] Highcharts. Interactive JavaScript charts for your webpage | Highcharts. http:
//www.highcharts.com/, 2016. [Online; accessed 1-May-2016].

http://flask.pocoo.org/
http://flask.pocoo.org/
http://www.neuron.yale.edu/neuron
http://www.neuron.yale.edu/neuron
https://angularjs.org/
https://angularjs.org/
http://www.highcharts.com/
http://www.highcharts.com/

60

[13] R. Hoang, D. Tanna, L. Jayet Bray, S. Dascalu, and F. Harris. A Novel
CPU/GPU Simulation Environment for Large-Scale Biologically Realistic Neural
Modeling. Frontiers in Neuroinformatics, 7:19, 2013.

[14] Roger Viet Hoang. An extensible component-based approach to simulation sys-
tems on heterogeneous clusters. PhD thesis, University of Nevada, Reno, 2014.

[15] A. Hodgkin and A. Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of Physiology,
117(4):500–544, 1952.

[16] E. Izhikevich. Simple Model of Spiking Neurons. IEEE Transactions on Neural
Networks, 14(6):1569–1572, 2003.

[17] L. Jayet Bray. A Circuit-Level Model of Hippocampal, Entorhinal and Prefrontal
Dynamics Underlying Rodent Maze Navigational Learning. PhD thesis, Univer-
sity of Nevada, Reno, 2010.

[18] C. M. Johnson. A Centralized Service for Accessing the NCS Brain Simulator
Through a Web Interface. Master’s thesis, University of Nevada, Reno, 2015.

[19] Nathan M Jordan, Kimberly B Perry, Nitish Narala, Laurence C Jayet Bray,
Sergiu M Dascalu, and Frederick C Harris Jr. Design and implementation of
an ncs-neuroml translator. In Proceedings of the International Conference on
Software Engineering and Data Engineering (SEDE 2012), Los Angeles, CA,
pages 13–19, 2012.

[20] T. Kelly. Neocortical Virtual Robot: A framework to allow simulated brains
to interact with a virtual reality environment. Master’s thesis, University of
Nevada, Reno, 2015.

[21] MongoDB, Inc. MongoDB. https://www.mongodb.com/, 2015. [Online; accessed
1-May-2016].

[22] Node.js Foundation. Node.js. https://nodejs.org/en/, 2016. [Online; accessed
1-May-2016].

[23] M. A. Paradiso, M. F. Bear, and Connors B. W. Neuroscience: Exploring the
Brain. Lippincott Williams & Wilkins, 2007.

[24] Pivotal Software, Inc. RabbitMQ. https://www.rabbitmq.com, 2015. [Online;
accessed 1-May-2016].

[25] H. E. Plesser, M. Diesmann, M. O. Gewaltig, and A. Morrison. NEST: The
Neural Simulation Tool. Encyclopedia of Computational Neuroscience, pages
1849–1852, 2015.

[26] Python Software Foundation. Applications for Python. https://www.python.
org/about/apps/, 2016. [Online; accessed 1-May-2016].

[27] E. Schwartz. Computational Neuroscience. Mit Press, 1993.

https://www.mongodb.com/
https://nodejs.org/en/
https://www.rabbitmq.com
https://www.python.org/about/apps/
https://www.python.org/about/apps/

61

[28] C. L. Stanfield, W. J. Germann, M. J. Niles, and J. G. Cannon. Principles of
Human Physiology. Pearson/Benjamin Cummings, 2011.

[29] D. Tanna. NCS: Neuron Models, User Interface, and Modeling. Master’s thesis,
University of Nevada, Reno, 2014.

[30] The core Bootstrap Team. Bootstrap The world’s most popular mobile-first and
responsive front-end framework. http://getbootstrap.com/, 2016. [Online;
accessed 1-May-2016].

[31] The core LESS Team. Getting started | Less.js. http://lesscss.org/, 2016.
[Online; accessed 1-May-2016].

[32] Corey M Thibeault, Roger V Hoang, and Frederick C Harris Jr. A novel multi-
gpu neural simulator. In BICoB, pages 146–151, 2011.

[33] three.js. three.js - Javascript 3D library. http://threejs.org/, 2016. [Online;
accessed 1-May-2016].

[34] H. Tuckwell. Introduction to Theoretical Neurobiology: Volume 2, Nonlinear and
Stochastic Theories. Cambridge University Press, 2005.

[35] Vitaliy Potapov. Angular-xeditable :: Edit in place for AngularJS. https:
//vitalets.github.io/angular-xeditable/, 2013. [Online; accessed 1-May-
2016].

http://getbootstrap.com/
http://lesscss.org/
http://threejs.org/
https://vitalets.github.io/angular-xeditable/
https://vitalets.github.io/angular-xeditable/

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background and Related Work
	Neuroscience
	Overview
	Neurons and Channels
	Synapses
	Stimulus

	Computational Neuroscience
	Overview
	Models
	Simulators

	Neocortical Simulator
	Overview
	Simulation Composition
	PyNCS
	NCS Daemon
	Web Components

	Libraries and Frameworks
	Overview
	Python
	Javascript
	HTML
	CSS
	LESS
	AngularJS
	Bootstrap
	ThreeJS
	Highstocks
	NodeJS
	Flask
	RabbitMQ
	JSON
	MongoDB

	Design
	Overview
	Web Interface Requirements
	Functional Requirements
	Non-functional Requirements

	Use Case Modeling
	Overview
	Detailed Use Cases

	Architecture

	Implementation and Results
	Overview
	Login and User Registration Page
	Login
	User Registration

	Model Builder
	Overview
	Layout
	Left Drawer
	Current Model Panel
	Parameters Panel
	Model Operations

	Simulation Builder
	Overview
	Layout
	Parameter Panel
	Input/Output Panel
	Input/Output Specifications Panel
	Launch Simulation

	Reports
	Overview
	Layout
	Simulation Selector
	Report Panels

	Visualizer
	Overview
	Layout
	Configuration Panel
	WebGL Renderer

	Summary of Software

	Conclusions and Future Work
	Conclusions
	Future Work
	Interface Enhancements
	Daemon Enhancements

	Bibliography

