
University of Nevada, Reno

New Money Data Vending

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Nolan Perry Burfield

Dr. Frederick C. Harris, Jr., Thesis Advisor

December, 2016

c© by Nolan Perry Burfield 2016
All Rights Reserved

We recommend that the thesis
prepared under our supervision by

NOLAN PERRY BURFIELD

Entitled

New Money Data Vending

be accepted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Sergiu M. Dascalu, Committee Member

Dr. Gregory R. Stone, Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

 December, 2016

THE GRADUATE SCHOOL

i

Abstract

This thesis presents a system, New Money Data Vending, that will provide users

with information on the stock market. This information is to be purposed to executing

trades to maximize profit. The system is broken down into three parts. The first part

is the system that pulls that data on the financial system. The purpose of this thesis

discusses the pulling of market data, historical prices of a stock, and financial data,

company filings with the Securities and Exchange Commission. This part is built to

automate the process and requires no user interaction to properly build the database

of the financial data. The second part is a RESTful service that will provide access

to the database. The rest service returns JSON objects of the queried financial or

market data. The final part is a user interactive website in order to present the users

with the data stored in the database, and allow for the storage of this data.

ii

Dedication

I dedicate this thesis to my family and friends who have supported me.

iii

Acknowledgments

I would like to thank my adviser, Dr. Frederick Harris, and my committee

members Dr. Sergiu Dascalu and Dr. Gregory Stone for their time and suggestions.

I would like to thank Raja Singh for the initial work on the system that lead to the

thesis. Of course, I would like to thank my family for their support.

This material is based in part upon work supported by the National Science

Foundation under grant number(s) IIA-1329469. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Figures vi

List of Tables viii

1 Introduction 1

2 Background and Related Work 3

2.1 Market Data . 3
2.2 Financial Data . 4

2.2.1 Overview . 4
2.2.2 Electronic Data Gather and Retrieval 4
2.2.3 Xignite . 5

2.2.4 Form 4 . 5
2.3 Libraries and Frameworks . 7

3 Design 10

3.1 Overview . 10
3.2 New Money Data Vending Requirements 10

3.2.1 Functional Requirements . 10

3.2.2 Non-functional Requirements 10

3.3 Use Case Modeling . 12

3.3.1 Overview . 12
3.3.2 Detailed Use Cases . 12
3.3.3 New Money Resource Builder Use Cases 12

3.3.4 New Money RESTful Service Use Cases 13

3.3.5 New Money Website Use Cases 15

3.4 Database . 17
3.5 Architecture . 24

4 Implementation 27

v

4.1 New Money Resource Builder . 27

4.1.1 Overview . 27
4.1.2 Market Data . 28
4.1.3 Financial Data . 30

4.2 New Money RESTful Service . 37

4.2.1 Overview . 37
4.2.2 Requests . 38

4.3 New Money Website . 40

4.3.1 Overview . 40
4.3.2 Company . 42

4.3.3 Insiders . 49

5 Conclusions and Future Work 51
5.1 Conclusion . 51
5.2 Future Work . 51

5.2.1 Resource Builder . 52
5.2.2 Restful Service . 52
5.2.3 Website . 52

Bibliography 53

vi

List of Figures

2.1 A top half of the SEC rendition of a Form 4 document 6

3.1 This diagram represents the relationship between the developer actor
and the New Money Resource Builder 13

3.2 This diagram represents the relationship between the New Money Web
Client actor and the New Money Rest Service 14

3.3 This diagram represents the relationship between the user actor and
the New Money Web Client . 16

3.4 A zoomed portion of the companies table on the ERD 18

3.5 A zoomed portion of the insiders table on the ERD 19

3.6 A zoomed portion of the historical data table on the ERD 20

3.7 A zoomed portion of the Form 4 table on the ERD 21

3.8 A zoomed portion of the non-derivative table on the ERD 22

3.9 A zoomed portion of the derivative table on the ERD 23

3.10 This is an entity relationship diagram of only table names of the New
Money Data Vending database for the market and financial data . . . 24

3.11 An architecture diagram of the New Money Data Vending system . . 26

4.1 The full index page of the EDGAR database 31

4.2 The Master index of a single quarter filed in the EDGAR database . 32

4.3 Part of the XML format of the Form 4 document that is pulled from
EDGAR . 34

4.4 This is an example REST controller endpoint that will build a list of
all the insiders for a certain company 37

4.5 controller example . 40

4.6 An example of thymeleaf in an HTML document; building a table off
of a list of historical data . 41

4.7 The New Money Data Vending home page 42

4.8 A view of all the companies in a table 43

4.9 The top view of a page showing Berkshire Hathaway company meta-data 43

4.10 A CSV of the historical data downloaded from New Money Website . 44

4.11 The full data of all historical data points on Facebook Inc. 45

4.12 The Facebook Inc. graph zoomed in to limit the time period shown
and better see the candlestick . 45

vii

4.13 The two types of candlestick values for a single day, showing gain or
loss [37] . 47

4.14 A table built of the raw data, the table is limited to only showing 10
values for readability . 48

4.15 A table of the insider transactions on a company; this is showing mul-
tiple owners and their trade made . 49

4.16 A view of all the insiders in a table 50
4.17 A view of a single insider selected showing their transactions among

companies . 50

viii

List of Tables

3.1 The functional requirements of the New Money Data Vending 11

3.2 The Non-functional requirements of the New Money Data Vending . . 11

1

Chapter 1

Introduction

Market capitalization of the United States is larger than 19 trillion dollars [46], and

within the United States 54 percent of Americans are invested in the stock market [10].

Individuals that are trading in the markets do so to provide themselves with retire-

ment, or make large purchases down the road. With the advancement of technology

the average stock trader has access to their own at home trading platform to execute

trades at as low as $5 a transaction [25]. With the ability to generate a steady income

from the markets there is also the ability to lose in the markets. Banking companies

are required to guarantee the safety of clients money (up to $250,000 [9]), but the

securities market has no such guarantee. The Securities and Exchange Commission

(SEC) recommends conducting research about the company prior to purchasing stares

of their company [26]. Information on the securities market is difficult to find; large

companies dominate the supply of the data. The Bloomberg Terminal, which has

subscription costs in the thousands [33], is one such company that capitalizes on the

need for market and financial data to drive the securities trading companies.

This thesis presents a system that automatically pulls market data and stores

this information into a database to be provided to the average user in a fashion that

most users can understand. This is referring to the data providers that do exist

currently do not provide a simple, user friendly method of data collection that can be

local to all users. Market data is pulled from Yahoo stocks, which is the daily price

points of stocks. Financial data is gathered from an SEC database named EDGAR.

The EDGAR database is the SEC stored filings from all publicly traded companies.

2

Since the SEC has a goal of transparency between investors and companies they

requires public companies to disclose “meaningful financial and other information to

the public.” [32] The form focused on in this thesis is the Form 4 insider trading

form (one of the most filed forms in the EDGAR database). The automation of the

gathering and storage of this data keeps the system light and minimal overhead minus

the need to keep the system running at speeds reliable to the users. The user of this

system will be given a user interface of the data stored in the database, and options

to view this information on each company.

The rest of this thesis is structured as follows: a little background into the

financial markets, the libraries used, and some related work is presented in Chapter

2. Chapter 3 goes over how the system is designed with use cases, requirements, and

the articheture of the system. Chapter 4 gives the build of each of the four pieces of

this system; the resource builder, the RESTful service, and the website. Finally the

paper wraps up in Chapter 5 with a discussion of the future work and the conclusion.

3

Chapter 2

Background and Related Work

2.1 Market Data

Market data is easily available to the average person, but in a format that does not

allow analysis to be performed on it. This data comes in the forms of charts from many

different companies (eg. Yahoo, Google, Scottrade, TD Ameritrade, etc.). Market

data is the historical prices of a traded commodity; in this case the commodity is

stocks. These prices include the opening cost, closing cost, highest cost in the day,

lowest cost in the day, and volume. There is a limited number of published papers

on the means an everyday trader could pull this market data. Chan [5] mentions

many databases to gather this information from, but does not provide a method of

extraction. Most of there databases are not free to access except Yahoo, that is

why the focus of the market data comes from Yahoo Finance. The Yahoo database

requires a programming background in order to extract the market data in the large

scale means of analytics. Hilpisch [13] provides the code in Python to achieve this

and [8] and [49] give tutorials to write the code, however this is not the ideal method

for an everyday user to get market data.

The Yahoo stocks data provides a comprehensive list of data to the user. This

data is stored in a database that is open to query that will return data in a JSON

or CSV format to the user. This is a free method of data extraction and storage

to fill the New Money Data Vending database with all previous market data. Using

Yahoo will be the method (discussed later in Chapter 4) to extract market data for

4

the purpose of this application [49].

NASDAQ offers a service to pull market data as well, but this comes at a cost

to the user. The fees for pulling data is not cheap, NASDAQ Data-on-Demand has

an annual fee of $2,400. This price is not sustainable for an average trader [19].

2.2 Financial Data

2.2.1 Overview

Financial data is a crucial part of a companies success. The information provided

gives insight into revenue, debt, company owners, and futures of the company. The

vending of this data is largely corporate, so publications on this are not available.

A few were found discussing the crawling of data associated to EDGAR (EDGAR

is discussed more in Section 2.2.2). Garcia and Norli [11] discuss crawling EDGAR

for the Form 8K, which is filed by companies when giving a public announcement.

The 8K form is the second highest filed form behind the Form 4. Their goal in

gathering the Form 8K information was to find CEO turnovers, and they achieved

this using Pearl to pull and parse the files. The other paper by Lyon [18] goes over the

gathering of central index keys and correlating them to the company in a graphical

user interface. The financial market is large and secretive, and that is one big reason

for creating the New Money Data Vending application.

2.2.2 Electronic Data Gather and Retrieval

The Electronic Data Gather and Retrieval (EDGAR) database is the SEC storage

center for all the filings from the publicly traded companies. This is not limited to

the Form 4 documents that are discussed in this thesis. EDGAR has been around

since 1994 and has more than 4 million filings in the database. EDGAR uses central

index keys (CIK) to correlate files to companies. The EDGAR database has an FTP

access point, and also access to the files through the SEC website. The SEC site has

a graphical user interface that is difficult to navigate, and document organization is

5

not well. Providing a different infrastructure to view these forms in a cleaner method

is more beneficial to the users [31].

2.2.3 Xignite

Xignite is one company that rivals with the data vending industry, including the

largely dominate Bloomberg [47]. This company provides an API to subscribers

to pull market and financial data. The company however does not provide inside

into how they disseminate their financial data. Xignite is well developed and offers

subscriptions to many different markets including foreign. The price of this product

was based off of an annual subscription, but Xignite claims price is based off “’how’

and ’the scale’ the data will be used or displayed” [48].

2.2.4 Form 4

Overview

The Form 4 for SEC filings is an Insider Trading Form; the Form 4 is only one of the

insider forms, there are also Form 3 and Form 5. The context of this insider trading is

the buying and selling of stock of a company that a person is categorized as an insider.

The SEC requires insiders to file with them after conducting a trade (Figure 2.1 is

an example of a Form 4 document). Those that are considered insider are people

that are corporate insiders (company officers or directors), or those that own ten

percent or more of the company. These people are required to file a “statement of

ownership regarding those securities” using Form 3. Form 5 is then used to provide

more transactions that did not show up on the Form 4 documents. There are also

amendments to these forms and they are the number followed by an A (ex. Form

4/A). These forms provide valuable information to the securities market, and papers

discussing the parsing of these documents were not able to be found [28].

6

Figure 2.1: A top half of the SEC rendition of a Form 4 document

Uses

The Form 4 filings are useful to trades in order to see movements in trends that

will be in the companies future. The transactions on these forms come as a type

either derivative or non-derivative. The non-derivative is a relationship between the

actual share of the company being traded. Derivative transactions come in the form

of options, which have an underlying security value. There are theories that apply to

reading the trends of insider action, since insiders have knowledge of company futures

that the average person may not see. The New Money Data Vending provides the

data of the insider actions, their relation to the company, and the quantity that is

being traded upon.

7

2.3 Libraries and Frameworks

The three parts of the New Money Data Vending depend on multiple libraries and

frameworks. This includes integrated development environment (IDE) eclipse, ser-

vices for networking, and user interface styling. These libraries and frameworks are

listed in this section.

Java 8 is the programming language that handles the networking and the database

connection. Java is concurrent, class-based, and object oriented programming lan-

guage. Java is highly regarded in the networking capabilities it has, and provides

better speeds than other networking options. Java offers programmers many stan-

dard classes, which is a great choice for development [23].

MySQL offers a multi-threaded and multi-user structured query language (SQL)

database. MySQL is designed to handle heavy loaded systems. The data is stored in

structured tables, which can be accessed via multiple threads. The MySQL database

was chosen for its robustness, easy of setup, and common language (SQL) [22].

The Spring Framework is a Java platform that offers the infrastructure to han-

dle Java applications. The Spring Framework has libraries that will connect to the

database and the model-view-controller networking structure. Spring provides de-

pendency injection to alleviate the need to dependencies being strongly coupled in an

application. Dependency injection allows for interfaces of objects, therefore changing

an object from one type to the other will have no problems with the system (ex.

switching from a MySQL database to MongoDB). Spring has a Core container that

includes the fundamentals of Spring with the Beans for dependency injection, and

the context which inherits the Beans. The next level handles the integration to the

database and the networking of the application. This level is the Alliance-compliant

aspect-oriented programming implementation (the key part to the decoupling), mes-

saging, and data access/integration [24].

Spring Boot offers a Spring build platform that comes pre-built to “Just Run”

as a web application. Spring Boot runs the Spring application as a Java Jar or with

8

a Spring runner. Spring Boot uses Maven to handle packages, which is useful to port

the same application as it to another machine with minimal alterations to be provided

to the machine (not to the application itself). The use of this software on the New

Money Data Vending software was to get a working skeleton with proper packages

up and running quickly [45].

Apache Maven handles the project construction and libraries through a POM file.

Maven allows the project to be built and run across machines. The Maven software

will even handle reporting and documentation [2].

Apache Commons Net handles the client side of networking for application. The

use for Apache Commons Net in New Money Data Vending is to run the file transfer

protocol connections to the EDGAR database and extract the files. This library

will allow for the anonymous authentication as well to the Securities and Exchange

Commission EDGAR server. [1].

The Java Database Connectivity (JDBC) provides a library to connect to a

MySQL database through Java. This connector is not explicitly called through the

New Money Data Vending application, but is the backbone of the connection the

Spring utilizes. The connection allows for Spring to POST and GET data from the

MySQL database used [20].

Hyper Text Markup Language (HTML) is the language that a web browser reads

to render the display. HTML uses tags to describe to the web browser on how exactly

to display the content. HTML is used in this application to design the web page for

the user interface [42].

Cascading Style Sheets (CSS) is used to describe how to style HTML content.

CSS is used to define layout, design, and variations (ex. The display for screen

resolutions). This is used in the application to add style to the user interface and not

have a standard display that would be uninteresting to the user [41].

Bootstrap is a front-end framework making the design of web pages simplistic

and consistent across devices. Bootstrap is a HTML, CSS, and Javascript framework

to make the web page responsive. The application utilizes Bootstrap in order to make

9

nice features for the user and prevent reworking a project front-end to work for mobile

devices [4].

Javascript allows for dynamic web page content. This library is used in the New

Money Data Vending application through the use of Bootstrap and the TechanJS

charts. Javascript is a necessary part of this application in order to do the data

visualization that is present to the user, and the data handing to the front-end [43].

TechanJS is the stock charts that are used for the data visualization of the market

data. This library is written in CSS and Javascript. These charts available are built

with market data in mind, and have a pre-built candlestick feature to display the

particular market data that is collected by New Money Data Vending [6].

Eclipse is an integrated development environment (IDE) specifically for Java

applications. The use of this is invaluable since the IDE provides error checking, code

completion, package management, automatic imports, and the ability to run the Java

application from inside the IDE. Eclipse also provides plugins to run the Spring Boot

and builds Maven projects [7].

10

Chapter 3

Design

3.1 Overview

New Money Data Vending has three parts associated to it: resource builder, rest

service, and the web client. These three parts are all key to providing the end user

with the market and financial data that is asked for. In this section the requirements,

use cases, and architecture of the New Money Data Vending system is discussed.

3.2 New Money Data Vending Requirements

3.2.1 Functional Requirements

The functional requirements of the three parts of New Money Data Vending are

combined into one single table. The functional requirements can be found in Table

3.1.

3.2.2 Non-functional Requirements

The non-functional requirements of the three parts of New Money Data Vending are

combined into one single table. The non-functional requirements can be found in

Table 3.2.

11

Table 3.1: The functional requirements of the New Money Data Vending

Number Description
FR01 The website shall show a list of companies stored in the database
FR02 The website shall show information on a single company
FR03 The website shall display a single company raw historical data
FR04 The website shall display a single company graph of the historical data
FR05 The website shall show a single company Form 4 financial filings
FR06 The website shall show information on a single insider
FR07 The website shall show the filings associated to a single insider
FR08 The REST service shall send a list of all companies
FR09 The REST service shall send a companies historical data
FR10 The REST service shall send company data
FR11 The REST service shall send company insider transactions
FR12 The REST service shall send insider data
FR13 The REST service shall send all data on a single insider
FR14 The Resource builder shall get company market data from Yahoo
FR15 The Resource builder shall get Form 4 information from EDGAR
FR16 The Resource builder shall parse Form 4
FR15 The Resource builder shall store data in the database

Table 3.2: The Non-functional requirements of the New Money Data Vending

Number Description
NFR01 The website will interface with New Money Rest
NFR02 The website will be written with Java Spring
NFR03 The REST service will interface with MySQL
NFR04 The REST service will be written with Java Spring
NFR05 The Resource Builder will interface with MySQL
NFR06 The Resource Builder will be written with Java

12

3.3 Use Case Modeling

3.3.1 Overview

The use cases of the New Money Data Vending system will be split into the three

components that represent it. The website will focus on the user as the actor; in-

teractions with the front end. The website will be making the calls for data to the

REST service. The web client will be the next actor interacting with the RESTful

services provided. The last actor in the use cases of the system will be the Resource

Builder actor. This is the one that will have the calls to build the database with the

proper market and financial data.

3.3.2 Detailed Use Cases

The Sections 3.3.3, 3.3.4, and 3.3.5 define the three section of the New Money Appli-

cation use cases.

3.3.3 New Money Resource Builder Use Cases

A detailed use case diagram of New Money Resource Builder can be found in Fig-

ure 3.1.

13

Figure 3.1: This diagram represents the relationship between the developer actor and
the New Money Resource Builder

Get Company Information from Yahoo

This will pull the historical data from a selected company from the Yahoo Finance

service. It will also parse this data and store it in the database.

Get Form 4 from EDGAR

This will pull all the Form 4 documents associated to a certain company.

Parse Form 4 Document

This will run the parse on the pulled Form 4 document, and store the information in

the database.

3.3.4 New Money RESTful Service Use Cases

A detailed use case diagram of New Money RESTful service can be found in Figure 3.2.

14

Figure 3.2: This diagram represents the relationship between the New Money Web
Client actor and the New Money Rest Service

Get a List of Companies in the Database

This will return a list of all the companies that are in the database of New Money

Data Vending.

Get the Historical Data of a Single Company

This will return a list of all the historical prices of a company.

15

Get Company Profile

This will return information associated to a company. This is the name, ticker, cik,

and address.

Get Company Insider Transactions

This will return all the insider transactions of a single company.

Get Insider Profile

This will return the information associated to an insider. This is the name, cik, and

address.

Get Insider Transactions

This will return a list of all the insider transactions for all companies.

3.3.5 New Money Website Use Cases

A detailed use case diagram of New Money Website can be found in Figure 3.3.

16

Figure 3.3: This diagram represents the relationship between the user actor and the
New Money Web Client

View All Companies

This will show all the companies that are stored in the database for viewing.

View Company

This will allow the user to view the information on a single company.

View Company Raw Historical Data

This will allow the user to view the raw historical data stored in the database in a

table format in the web browser.

17

View Company Historical Data as Graph

This will allow the user to view the historical data stored in the database in an

intractable graph.

View the Insider Transactions on a Company

This will show the user the selected companies insider transactions. These are the

purchases and sales related to that company specifically.

View an Insider Profile

This will allow the user to view the profile associated to a single insider.

View the Transactions for a Single Insider

This will allow the user to view the profile of a single insider. This is all the trades

that they executed across all companies.

3.4 Database

The New Money Data Vending stores all the market and financial data in a MySQL

database. The SQL database requires the definitions of tables, and the types of values

that are stored in those tables. The tables in the New Money Data Vending data

base are as follows:

• Companies table will store the information on a single company (Figure 3.4)

• Insiders table will store the information on a single insider (Figure 3.5)

• Historical Data table will store each record of a company market data through-

out the companies history (Figure 3.6)

• Form 4 Files table will store the header information on a Form 4 document

(Figure 3.7)

18

• Non-derivative table stores the data in the non-derivative tables on the Form 4

document (Figure 3.8)

• Derivative table stores the data in the derivative tables on the Form 4 document

(Figure 3.9)

Figure 3.4: A zoomed portion of the companies table on the ERD

19

Figure 3.5: A zoomed portion of the insiders table on the ERD

20

Figure 3.6: A zoomed portion of the historical data table on the ERD

21

Figure 3.7: A zoomed portion of the Form 4 table on the ERD

22

Figure 3.8: A zoomed portion of the non-derivative table on the ERD

23

Figure 3.9: A zoomed portion of the derivative table on the ERD

24

Specifics on what each table data represents will be in Section 4.1. The entity

relationship diagram of the database explained above can be seen in Figure 3.10.

Figure 3.10: This is an entity relationship diagram of only table names of the New
Money Data Vending database for the market and financial data

3.5 Architecture

As stated previously there are three parts to the New Money Data Vending system.

Each of these parts contain their own type of architecture in their individual design,

and then the interconnections of each rely on the connection to the parts they have.

Below each of the three parts are described. Figure 3.11 is a visual of the architecture

layout.

New Money Website Architecture

The website was built in Java Spring Boot and follows the basic model-view-controller

style. The controller of the system makes the REST calls the the REST service. The

data retrieved from this service is then placed into one of the Model definitions.

These models define the data that is expected from the REST service in order to

create consistency in the views of the data. The view will be the front end to the

user, offering the user the ability to see the data of the model.

25

New Money RESTful Service Architecture

The RESTful service of the New Money system has a model and controller setup.

The model defines the tables of the MySQL database, and handles the connection

between getting and receiving that data. The controller of the system will handle the

incoming RESTful requests for data. The controller gets the data from the database

and packages the data in a JSON format and send it back.

New Money Resource Builder Architecture

The Resource Builder is also a model and controller setup. The models are associated

to the REST models since the two share the same database. The controller of this

system however is in charge of the connections to Yahoo and EDGAR and then the

subsequent parsing of the data provided from those two services.

26

Figure 3.11: An architecture diagram of the New Money Data Vending system

27

Chapter 4

Implementation

4.1 New Money Resource Builder

4.1.1 Overview

The New Money Resource Builder is the system that builds the database and popu-

lates it with the data. This is built with Java and takes advantage of the Java Spring

database interface, and the dependency injections. The interface with the Java Spring

does a lot of the heavy lifting when the system is initialized. Spring checks that the

database exists, the tables exist, and ensures that exceptions with the connections

and saving of the data is handled. The system on startup will run a setup phase that

will pull all the data of all the companies that is saved in a master list of companies

built by the developers. This list is stored as a CSV and is parsed with the company

information that is a part of the database. These values that all companies have are,

and relate to, the database table companies:

• Name The name of the publicly traded company.

• Ticker The ticker associated to the company, used to reference the company

on the exchange.

• CIK The central index key of a company, this is how the company relates to

the EDGAR database.

28

• Exchange The exchange that the company is traded on (ex. New York Stock

Exchange (NYSE) or NASDAQ).

• Street1 The street address of the company headquarters.

• Street2 If necessary and better description of the Street address of the company

headquarters.

• City The city of the company headquarters.

• State The state of the company headquarters.

• Zip The zip code of the company headquarters.

• State Description Only applies to out of the Unites States companies.

The data pulled by the resource builder include both the financial data (Form

4 documents) and the market data. All these components are stored in the MySQL

database, and the approach to do this is discussed in detail in the following two

sections.

4.1.2 Market Data

Overview

The market data is gathered from the Yahoo financial database that is offered for free,

this was a means to avoid one of the many other companies that charge large fees for

access to their market data. This database has the historical data for all companies

in the financial market. A note about the historical data is that the current day

does not become “historical data” until the market closes (Market times in Pacific

Standard Times are 6:30 a.m. to 1:00 p.m. [44]).

Yahoo Finance Database

The Yahoo database is accessed through an API service that Yahoo has built to get

their market data. These endpoints are built to query for a specific company, the

29

date ranges, the format type, and the data asked for. The format type can be one

of the many data transfer formats such as JSON, XML, or CSV. In this system the

CSV is the file that the New Money Resource Builder accesses, and parses based off

the comma separation. The data is not specified in this system since all the data is

required for storage (these values are discussed later on). The date ranges are only

used when the system needs to update the already stored data, since if a date is not

provided all the data is returned. Then once this data is pulled it is handed off to

the parser to store the data.

Historical Data

The Yahoo data is the Historical Data in the New Money Resource Builder. The

historical data is the historical prices of a certain company throughout the time of

the company being publicly traded. This is recorded information on each of the

days the market is open. This information if useful to see daily moves (which can

relate to information made public that day) or see yearly trends that develop over

the companies lifetime (ex. company reports lower earnings in the summer time so

prices always drop). The ability to see the trends in a companies history helps in

the investment decisions, but having the data available in a database in a raw format

gives the ability to run computational analysis on the data. The information provided

by Yahoo for historical data is stored in the database. This data is a CSV form that

is parsed by separation of the commas and formated to the double representation in

the database. The historical data table is the database representation of those values:

• Day The day associated the the date of the recorded historical prices.

• Month The month associated the the date of the recorded historical prices.

• Year The year associated the the date of the recorded historical prices.

• Adjusted Close The amendment to the closing price due to company trans-

actions before the open of the next day [14].

30

• Close The price the stock closed at [15].

• High The highest price in the day the stock was at [15].

• Low The lowest price in the day the stock was at [15].

• Open The price the stock opened at [15].

• Volume The amount of shares of the company traded in the day [16].

4.1.3 Financial Data

Overview

The financial data comes from the EDGAR database, which is where the SEC files

all the submitted forms received from the companies. This database will have all the

financial information such as quarterly and yearly reports from companies, corporate

announcements, and insider transactions. The latter is what will be focused on in

this section since Form 4 is the highlight of the New Money system. The Form 4

requires parsing of the data that is in an XML format, and storage in the database

requires the connections to be made to companies and insiders.

EDGAR

The EDGAR database is accessed through file transfer protocol (FTP) to grab the

data in the file system. The SEC is in charge of the EDGAR system, and therefore

files the submitted forms to the file system each day. A daily index is kept in EDGAR

to show how many files are added to the system each day. This is useful for pulling

information each day after the system is initialized. The initialization process of the

system however pulls from an index file that is the combination of all forms submitted

for each quarter of the year. This is referred to as the full index of EDGAR. To

initialize the system with this it will parse through each year and each quarter of the

year. Figure 4.1 shows the years that are stored in the system.

31

Figure 4.1: The full index page of the EDGAR database

In each quarter full index there is a file called the master index. This is the file

that will give meta-data on all the filings in each quarter (Figure 4.2 has an example

32

of this). This single file is pulled and parsed by the system. Each line represents

something that will be referred to as DailyData; this includes the company name, the

CIK, the form type, and the file path to the form. Each piece of the line is stored in

a DailyData object, and then placed in a Dictionary which has the key of the form

type.

Figure 4.2: The Master index of a single quarter filed in the EDGAR database

Once the EDGAR master index is fully parsed, the processing begins. Java will

process the information on an Interface class for form parsing. The interface class

requires a List of the DailyData to be assigned to it in “Init”. This list is consistent for

all the form types so the interface can variable can be assigned to any form type parser.

The class becomes reassigned after the category of the form type is determined. This

is done with having Java create a new instance of the class based off a string that is

created from the form name. Each form type will have a class that implements the

33

general form parser class. The “Init” of the specific form class is called to run the

processing of the collected master index data.

Form 4

The Form 4 is the only document in the EDGAR database that is parsed and stored

in the New Money Resource Builder. This form was picked because it is the most

filed in the EDGAR database, and having this information stored is beneficial to the

traders. The file pulled from the EDGAR database for a Form 4 is in eXtensible

Markup Language (XML). This gives a standard to each file and allows parsing of

the document possible without any errors or edge cases. The XML form is setup by

the SEC and follows a standard that can be viewed in the guide sheet [27]. Figure 4.3

shows an example of the XML; from this it can be seen the company being traded is

Apple Inc. by the Senior Vice President Donald Rosenberg. The trade type is on a

derivative of restricted stock.

34

Figure 4.3: Part of the XML format of the Form 4 document that is pulled from
EDGAR

The data from the XML is parsed using a DOM tree provided by Java [12]. The

DOM tree allows access to nested values and iterations on these values. Recursion on

the elements of the XML document will grab all the required nested values. Once the

35

recursive iterations find a function in the class by the same name as the name, that

function is called. Once in the function it is possible to iterate through all the child

elements and grab the values from them to be stored in the object. These levels that

are called include the insiders that are trading on the form, and the trades executed

on the form.

The database at this level has four piece to save a From 4 in New Money Data

Vending. An insider table is built to create an insider; information on the insider is

all the same as a company minus the exchange and ticker. An insider header that

will relate an insider to the filed transactions; this header points to an insider, then

save the relation the insider has to the company, and the date this was filed. There

are two types securities that can be traded on, derivative and non-derivative. In

those two there will either be an acquire or disposal of the security. The two types of

trades have nearly identical tables, but derivative transactions contain a conversion or

exercise price, transaction price per share, exercise date, expiration date, underlying

security title, underlying security shares, and underlying security value. These two

types also have a potential to have a footnote attached to each value, so the footnote

must also be saved in the database. Below is a list of all the values that a transaction

can have [29].

• Security Title The name of the security type (ex. Common Stock A).

• Conversion or Exercise Price The price to the exchange from one convertible

asset to the another (Derivative Only).

• Transaction Date The date the transaction took place.

• Deemed Execution Date The date the execution takes place only if calcula-

tion is pursuant.

• Transaction Form Type The type of form being file (in all cases for this it

is 4).

36

• Transaction Code The type of transaction that is being done (ex. gifted,

open market, etc.).

• Equity Swap Involved This stated if the transaction is a future, so transaction

will happen later.

• Transaction Timeliness If the transaction was either early or late.

• Transaction Shares The shares involved in the transaction.

• Transaction Total Value The total value of of the transaction.

• Transaction Price Per Share The price of each share involved (Derivative

Only).

• Transaction Acquired Disposed Code If the transaction was a purchase or

sale.

• Exercise Date The date the derivative is conducted (Derivative Only).

• Expiration Date The date the derivative is called upon (Derivative Only).

• Underlying Security Title The name of the underlying security being traded

(Derivative Only).

• Underlying Security Shares The shares of the underlying security being

traded (Derivative Only).

• Underlying Security Value The value of the shares of the underlying security

being traded (Derivative Only).

• Shares Owned Following Transaction The shares owned of the asset after

the transaction.

• Value Owned Following Transaction The value owned of the asset after

the transaction.

37

• Direct or Indirect Ownership If the shares are held personally or elsewhere.

• Nature Of Ownership Who conducted the transaction.

• Footnotes The footnotes are associated to all the above, and there is a footnote

for each one saved in the database.

4.2 New Money RESTful Service

4.2.1 Overview

The New Money RESTful Service is in charge of sending the data from the database.

This information is the market and financial data that was built in the resource

builder. The rest service is built using Java Spring Boot for the simplicity of setup,

the predefined networking capabilities, and the database interface. The rest service

has various endpoints to hit that send the data back to the requester. These endpoints

come in the form of controllers. Figure 4.4 is one endpoint that will return a JSON

list. This particular function is building a list of insiders that belong to a specified

company. The models are the values that are returned as the JSON values, and these

models are the same structure as the database which was discussed in Section 4.1 and

is in Figure 3.10. A note to add to the rest section is this service only provides GET

requests, no endpoints have been created to POST data to the database. This section

will go over the endpoints that are integrated to the New Money RESTful Service.

Figure 4.4: This is an example REST controller endpoint that will build a list of all
the insiders for a certain company

38

4.2.2 Requests

The requests on the RESTful service is aided by Java Spring Boot. The Spring Boot

framework creates the database connection with objects called repositories. These

extend a create-read-update-delete (CRUD) class that will get requested information

from the associated database. The endpoint are also handled by the Spring Boot, so

each URL mapping and connected values will be handled with the Spring Boot.

Get All Companies

This controller endpoint will return a list of all the companies in the database. This

list is a JSON format with all the meta-data associated to each company.

Get Company

This controller endpoint will return a JSON that is the single company requested.

The JSON will have all the meta-data for the one particular company. The URL

requires a path variable to look up the company in the database; that path variable

is the ticker of the company.

Get Insiders and Relations on a Company

This controller builds a JSON of the insiders on a company and withing the insiders

is details of all the transaction that are associated to them. A note about that

transactions is that it is not the particular data on the transaction itself, but the fact

that there was a transaction, the date that the transaction was filed, and the position

the insider has to the company. The URL for this requires a path variable which is

the ticker of the company.

Get Non-derivative Forms for a Specific Transaction

This controller builds a list of all the non-derivative that relate to a specific transaction

form. This is a single Form 4 may have multiple non-derivative transactions, so this

is all those transactions in a JSON list of all the data related to the non-derivative

trade. This URL requires the id built for the certain Form 4 document.

39

Get Derivative Forms for a Specific Transaction

Same as the non-derivative controller. This controller builds a list of all the derivative

that relate to a specific transaction form. This is a single Form 4 may have multiple

derivative transactions, so this is all those transactions in a JSON list of all the data

related to the derivative trade. This URL requires the id built for the certain Form

4 document.

Get Historical Data for a Specific Company

This controller builds a JSON list of each historical data meta-data for a specific

company. The URL requires the company ticker.

Get Insider

This controller endpoint will return a specific insider and the meta-data for that

insider. This also includes the transactions that were made (again a note on this;

transactions are only dates and positions). The URL for this requires the insider

CIK.

Get All Insiders

This controller endpoint will return a list of all insiders that are stored in the database.

This is a JSON format with all the meta-data associated to each insider.

Get All Trades on an Insider

This controller endpoint will return the transactions that were made by a single

insider. This URL requires the CIK of the insider.

Get Company of a Transaction

This controller endpoint will get the transactions company. This is the company

meta-data that is being traded in a certain transaction. The URL for this requires

the header value for the transactions.

40

4.3 New Money Website

4.3.1 Overview

The New Money Website is built in Java Spring Boot to take advantage of the web

features provided. This includes the controller endpoints to map to a path, the

models that are returned to the views, the template views that can be built with

thymeleaf, and the functions to call rest API services. The website follows a model-

view-controller architecture; the models are the models are the data stored in the

database that was built using the New Money Resource Builder, the controllers will

read in the requests and return the view, and the views are the front-end provided to

the user.

The controller is the endpoints that are hit by the front-end user, this controller

will call the New Money Rest Service, set the models to the template view, and render

the view to the front-end web browser. Figure 4.5 is one such endpoint that will build

a view page. The particular function hits the rest service for the specified company

and the historical data of that company. This function will then add those models

as attributes to the view, which renders the page using thymeleaf. When required to

return a model to the view, the controller is the interaction to the New Money Rest

Service, and builds the models.

Figure 4.5: controller example

The view portion of the New Money Website is built with HTML, CSS, and

Javascript. To make styling easier with some pre-built views Bootstrap was used.

With Spring Boot rendering the views has a method to build the templates. Thymeleaf

is the library on the Java Spring Boot that helps in rendering the template pages.

41

Thymeleaf takes the models and will build them into the HTML and Javascript pages

when accessed. This happens on the server side, so the page is requested by the

front-end and the returned HTML document is built server side and returned with

the correct values in the HTML document. Figure 4.6 is a code snippet of thymeleaf

in HTML. The thyme leaf is looping across an array, and building a table of the

historical data with formatting on the integers and double variables.

Figure 4.6: An example of thymeleaf in an HTML document; building a table off of
a list of historical data

The core components to the view are the navigations. There is a top navigation to

get to the selection of companies or insiders. The side navigation bar is for navigating

once insider a company. The side bar will offer a path back to the main company

page, or the insiders on the company. Figure 4.7 is the home page, which shows off

the top and side bars.

42

Figure 4.7: The New Money Data Vending home page

The following few sections will go over the views that are provided by the New

Money Website to showcase some of the data that is stored in the database.

4.3.2 Company

The company portion of the website has three distinct points to a company view.

The user will first navigate to the company page, which will then provide a list of

companies that are stored in the system (Figure 4.8 shows the table). The user then

can select a company to view the stored data on that company. The company page

will provide links in the left navigation bar to select the company home page, or

the insiders on the company. The main content of the page has company details,

historical data chats, and historical data raw table. The company has meta-data

associated to it, so that is presented on the top of the page (Figure 4.9) in what is

called the company card. The user can toggle on and off the chart and data tables.

43

Figure 4.8: A view of all the companies in a table

Figure 4.9: The top view of a page showing Berkshire Hathaway company meta-data

Historical Data

The historical data for a company is displayed in both a graph and raw data table.

The graph and table both can be toggled on and off, and the data is also able to be

downloaded in a CSV file. The controllers for the display of this will get both the

company data, and the historical data and return these to the view. The controller

endpoint to the CSV download will return to the user a file format which inherently

is downloaded by the users browser. Figure 4.10 is a top portion of the downloaded

data.

44

Figure 4.10: A CSV of the historical data downloaded from New Money Website

The graph is rendered on the same page as the company information, but in an

iframe. This is to allow the Javascript associated to the TechanJS (Javascript library

to build charts) to render full screen. This iframe has an independent endpoint on the

controller that will grab the company data and the historical data and send the model

data to the view for the graph. The TechanJS graph is in a candlestick format which

shows off the historical data in an efficient way. A description of what a candlestick

graph is can be found below. The graph in Figure 4.11 is a full graph of Facebook Inc.

The data in the full view is not that readable, but the graph offers a zoom option,

so the use can zoom into certain points in the companies time and see price-points

better in that view (Figure 4.12).

45

Figure 4.11: The full data of all historical data points on Facebook Inc.

Figure 4.12: The Facebook Inc. graph zoomed in to limit the time period shown and
better see the candlestick

The candlestick is a common representation of stock data in a chart. This format

show the open, high, low, and close of a stock in a single day with one point on a

graph, and example can be seen in Figure 4.13. The days representation is a box with

two line on the top and bottom. The line out of the top will stop at the “high” of

46

the day. The line out of the bottom will stop at the “low” of the day. The box will

represent the “open” and “close” of the stock, with the top and bottom of the box

representing those values. Depending on the color of the box will represent a drop or

gain in the stock price for the day. If a drop in the price occurred then the open will

be the top of the box, and the bottom of the box will be the close. In the case of the

candlestick graph in this paper red is a drop, and green is a gain [37].

47

Figure 4.13: The two types of candlestick values for a single day, showing gain or
loss [37]

The raw data for the historical information on a company is displayed in a table

on the HTML page. The table is built with Bootstrap features, so the table is search-

able (helps to find dates), sortable by value of all columns, and the size of the table

can be limited or expanded to show the raw data rows. Providing the user with a

48

table will allow the comparison of the figure and raw data side by side to have the

ability to look up exact values on certain dates. The Figure 4.14 shows the table in

the page.

Figure 4.14: A table built of the raw data, the table is limited to only showing 10
values for readability

Financial Data

The financial data controller calls the rest endpoint to grab all insiders on a company.

This will return the JSON with the users and their transactions in relation to the

company. It is necessary to make a call to the rest service to grab the derivative and

non-derivative forms. The view will build the company portfolio again and a table

showing the transactions. The table has the insider name, and below them is the

relation to the company, and then the trade that was performed. Due to the nature

of the trades there is not much consistency for the Form 4 tables that are filled or

not, so there is limited information provided to the user in the table This includes

the name of the stock traded, the date it was traded, and if it was purchased or sold.

Figure 4.15 shows the table for a company.

49

Figure 4.15: A table of the insider transactions on a company; this is showing multiple
owners and their trade made

4.3.3 Insiders

Insiders are collected and stored from the Form 4 documents. A lot of times insiders

apply to multiple trades among multiple companies. New Money Website allows the

selection of a single insider to view all their transactions. Figure 4.16 shows the

ability to select an insider that is stored in the database. Once an insider is selected

their profile page is provided to the front-end. This requires the controller to grab

the meta-data on an insider, and all their transactions. The transactions must be

associated to a company, so the controller grabs the company meta-data. Then each

transaction will need to be associated to the derivative and non-derivative trades

made inside each company.

50

Figure 4.16: A view of all the insiders in a table

The insider view will provide the same profile page as a company does, showing off

the insider stored meta-data. Then the list of transactions to the insider is presented

in a table. This table is organized by the companies that trades took place in.

Figure 4.17 shows this page describe for Warren Buffett and the transactions on two

companies, Berkshire Hathaway and Moodys Corp.

Figure 4.17: A view of a single insider selected showing their transactions among
companies

51

Chapter 5

Conclusions and Future Work

5.1 Conclusion

The system described in this thesis, New Money Data Vending, focuses on the start of

a system to provide both market and financial data to users. The idea of the system is

to automate all the data collection and form parsing. The collected data is stored in

a database, and provided to users through a RESTful service or a front-end website.

The whole system back-end was developed with Java Spring, and the front-end is

a web application. The focus of the data provided to the user was historical data

and the Form 4 documents that the Securities and Exchange Commission requires all

publicly traded companies to file.

The system is relevant and useful due to the growing capabilities of computational

systems. While the stock market is not a new concept, information access speed

through computation is relatively new. Computer speeds are growing, and the ability

of data vending was an old market dominated by large corporations charging large

fees. The automation of data collection, storage, and vending is useful to all large

financial corporations (ex. mutual funds or hedge funds).

5.2 Future Work

The New Money Data Vending system is in the very beginning stages of development,

and requires many more features and enhancements to provide the best data vending

system for users.

52

5.2.1 Resource Builder

The resource builder will be expanded to include the parsing of more forms from the

EDGAR database. The next form to focus on the the earnings reported each quarter

by companies. These earnings values will allow for the historical data to interact

with the financial data and allow for the calculations of price per share and revenue

streams.

5.2.2 Restful Service

With more features being implemented in the back-end there is a need to display this

in the front-end. The rest service will need to add more endpoints to allow for the

return of the new data in the database. Not only will the rest service provide JSON

forms of the database data, but it will need to consume requests to run analytics of the

database data. These analytics will be built by the users, and queued on a separate

server. This service will be the analytics portion on New Money Data Vending.

5.2.3 Website

As with the rest service needing updates when the database updates, the front end

will need to create new endpoints to view the data. With that the website will need

to be updated to have user login, and user sessions. The front-end will also be cleaned

up to compete with the modern websites with dynamic page loading and rendering.

53

Bibliography

[1] Apache. Apache commons net. [Accessed on 26 November 2016]. url: https:
//commons.apache.org/proper/commons-net/.

[2] Apache. Welcome to apache maven. [Accessed on 26 November 2016]. url:
https://maven.apache.org.

[3] Jan Bodnar. Mysql java tutorial. [Accessed on 26 November 2016]. url: http:
//zetcode.com/db/mysqljava/.

[4] Bootstrap. About bootstrap. [Accessed on 26 November 2016]. url: http :

//getbootstrap.com/about/.

[5] Ernie Chan. Quantitative trading: how to build your own algorithmic trading
business. Volume 430. John Wiley & Sons, 2009.

[6] Andre Dumas. Techanjs. [Accessed on 26 November 2016]. url: http : / /

techanjs.org/.

[7] Eclipse. About the eclipse foundation. [Accessed on 26 November 2016]. url:
https://eclipse.org/ide/.

[8] Kelly Elias. Download stock ticker symbols. [Accessed on 26 November 2016].
url: http://www.jarloo.com/download-stock-ticker-symbols/.

[9] Federal Deposit Insurance Corporation. Fdic: federal deposit insurance corpo-
ration. [Accessed on 26 November 2016]. url: https://www.fdic.gov/.

[10] Gallup. In u.s., 54% have stock market investments, lowest since 1999. [Accessed
on 26 November 2016]. url: http://www.gallup.com/poll/147206/stock-
market-investments-lowest-1999.aspx.

[11] Diego Garćıa and Øyvind Norli. Crawling edgar. The spanish review of financial
economics, 10(1):1–10, 2012.

[12] Lokesh Gupta. Java xml dom parser example tutorial. [Accessed on 26 Novem-
ber 2016]. url: http://howtodoinjava.com/xml/java-xml-dom-parser-
example-tutorial/.

[13] Yves Hilpisch. Python for finance: analyze big financial data. ” O’Reilly Media,
Inc.”, 2014.

[14] Investopedia. Adjusted closing price. [Accessed on 26 November 2016]. url:
http://www.investopedia.com/terms/a/adjusted_closing_price.asp?

lgl=no-infinite.

https://commons.apache.org/proper/commons-net/
https://commons.apache.org/proper/commons-net/
https://maven.apache.org
http://zetcode.com/db/mysqljava/
http://zetcode.com/db/mysqljava/
http://getbootstrap.com/about/
http://getbootstrap.com/about/
http://techanjs.org/
http://techanjs.org/
https://eclipse.org/ide/
http://www.jarloo.com/download-stock-ticker-symbols/
https://www.fdic.gov/
http://www.gallup.com/poll/147206/stock-market-investments-lowest-1999.aspx
http://www.gallup.com/poll/147206/stock-market-investments-lowest-1999.aspx
http://howtodoinjava.com/xml/java-xml-dom-parser-example-tutorial/
http://howtodoinjava.com/xml/java-xml-dom-parser-example-tutorial/
http://www.investopedia.com/terms/a/adjusted_closing_price.asp?lgl=no-infinite
http://www.investopedia.com/terms/a/adjusted_closing_price.asp?lgl=no-infinite

54

[15] Investopedia. Ohlc chart. [Accessed on 26 November 2016]. url: http://www.
investopedia.com/terms/o/ohlcchart.asp?lgl=no-infinite.

[16] Investopedia. Volume. [Accessed on 26 November 2016]. url: http://www.
investopedia.com/terms/v/volume.asp?lgl=no-infinite.

[17] Shivprasad Koirala and Marla Sukesh. Learn mvc (model view controller) step
by step in 7 days day 1. [Accessed on 26 November 2016]. url: http://www.
codeproject.com/Articles/207797/Learn-MVC-Model-View-Controller-

step-by-step-in.

[18] Douglas A Lyon. Multi-threaded data mining of edgar ciks (central index keys)
from ticker symbols. In Parallel and distributed processing, 2008. ipdps 2008.
ieee international symposium on. IEEE, 2008, pages 1–7.

[19] NASDAQ. Nasdaq data-on-demand. [Accessed on 26 November 2016]. url:
http://www.nasdaqdod.com/.

[20] Oracle. About jdbc resources and connection pools. (sun java system application
server platform edition 8.2 administration guide). [Accessed on 26 November
2016]. url: https://docs.oracle.com/cd/E19830-01/819-4712/ablii/
index.html.

[21] Oracle. Java platform se 8. [Accessed on 26 November 2016]. url: http://
docs.oracle.com/javase/8/docs/api/.

[22] Oracle. Mysql 8.0 reference manual. [Accessed on 26 November 2016]. url:
http://dev.mysql.com/doc/refman/8.0/en/introduction.html.

[23] Oracle. The java tutorials. [Accessed on 26 November 2016]. url: https://
docs.oracle.com/javase/tutorial/.

[24] Pivotal Software. Introduction to the spring framework. [Accessed on 26 Novem-
ber 2016]. url: http://docs.spring.io/spring/docs/current/spring-
framework-reference/html/overview.html.

[25] Scottrade. Trading fees, investment fees, and other transaction prices. [Ac-
cessed on 26 November 2016]. url: https://www.scottrade.com/online-
brokerage/trading-fees-commissions.html?icid=8|180|1010|71.

[26] Securities and Exchange Commission. Analyzing analyst recommendations. [Ac-
cessed on 26 November 2016]. url: https://www.sec.gov/investor/pubs/
analysts.htm.

[27] Securities and Exchange Commission. Edgar ownership xml technical specifica-
tion (version 5.1). [Accessed on 26 November 2016]. url: https://www.sec.
gov/info/edgar/ownershipxmltechspec.htm.

[28] Securities and Exchange Commission. Fast answers. [Accessed on 26 November
2016]. url: https://www.sec.gov/answers/form345.htm.

[29] Securities and Exchange Commission. Form 4. [Accessed on 26 November 2016].
url: https://www.sec.gov/about/forms/form4data.pdf.

http://www.investopedia.com/terms/o/ohlcchart.asp?lgl=no-infinite
http://www.investopedia.com/terms/o/ohlcchart.asp?lgl=no-infinite
http://www.investopedia.com/terms/v/volume.asp?lgl=no-infinite
http://www.investopedia.com/terms/v/volume.asp?lgl=no-infinite
http://www.codeproject.com/Articles/207797/Learn-MVC-Model-View-Controller-step-by-step-in
http://www.codeproject.com/Articles/207797/Learn-MVC-Model-View-Controller-step-by-step-in
http://www.codeproject.com/Articles/207797/Learn-MVC-Model-View-Controller-step-by-step-in
http://www.nasdaqdod.com/
https://docs.oracle.com/cd/E19830-01/819-4712/ablii/index.html
https://docs.oracle.com/cd/E19830-01/819-4712/ablii/index.html
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://dev.mysql.com/doc/refman/8.0/en/introduction.html
https://docs.oracle.com/javase/tutorial/
https://docs.oracle.com/javase/tutorial/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
https://www.scottrade.com/online-brokerage/trading-fees-commissions.html?icid=8|180|1010|71
https://www.scottrade.com/online-brokerage/trading-fees-commissions.html?icid=8|180|1010|71
https://www.sec.gov/investor/pubs/analysts.htm
https://www.sec.gov/investor/pubs/analysts.htm
https://www.sec.gov/info/edgar/ownershipxmltechspec.htm
https://www.sec.gov/info/edgar/ownershipxmltechspec.htm
https://www.sec.gov/answers/form345.htm
https://www.sec.gov/about/forms/form4data.pdf

55

[30] Securities and Exchange Commission. Information for ftp users. [Accessed on
26 November 2016]. url: https : / / www . sec . gov / edgar / searchedgar /

ftpusers.htm.

[31] Securities and Exchange Commission. Using edgar - researching public compa-
nies. [Accessed on 26 November 2016]. url: https://www.investor.gov/
researching-managing-investments/researching-investments/using-

edgar-researching-public-companies.

[32] Securities and Exchange Commission. What we do. [Accessed on 26 November
2016]. url: https://www.sec.gov/about/whatwedo.shtml.

[33] Zachary M. Seward. This is how much a bloomberg terminal costs. [Accessed
on 26 November 2016]. url: http://qz.com/84961/this-is-how-much-a-
bloomberg-terminal-costs/.

[34] Kathy Sierra and Bert Bates. Head first java. ” O’Reilly Media, Inc.”, 2005.

[35] Raja H. Singh, Nolan Burfield, and Frederick Harris Jr. Data retrieval and
parsing of form 4 from the edgar system using multiple cpus, 2016.

[36] Raja H. Singh, Nolan Burfield, and Frederick Harris Jr. Market data extractor
(mdx): a system to download market data, 2015.

[37] StockCharts. Introduction to candlesticks. [Accessed on 26 November 2016].
url: http://stockcharts.com/school/doku.php?id=chart_school:

chart_analysis:introduction_to_candlesticks.

[38] The Thymeleaf Team. Thymeleaf. [Accessed on 26 November 2016]. url: http:
//www.thymeleaf.org/.

[39] Meltem Sönmez Turan, Elaine B Barker, William E Burr, and Lidong Chen.
Sp 800-132. recommendation for password-based key derivation: part 1: storage
applications, 2010.

[40] Tutorialspoint. Jdbc tutorial. [Accessed on 26 November 2016]. url: http:

//www.tutorialspoint.com/jdbc/.

[41] W3Schools. Css introduction. [Accessed on 26 November 2016]. url: http:

//www.w3schools.com/css/css_intro.asp.

[42] W3Schools. Html introduction. [Accessed on 26 November 2016]. url: http:
//www.w3schools.com/html/html_intro.asp.

[43] W3Schools. Javascript introduction. [Accessed on 26 November 2016]. url:
http://www.w3schools.com/js/js_intro.asp.

[44] Wall Street Daily. Nyse holiday closings 2016-2017. [Accessed on 26 Novem-
ber 2016]. url: http://www.wallstreetdaily.com/nyse-stock-market-
holiday-closings-schedule/.

https://www.sec.gov/edgar/searchedgar/ftpusers.htm
https://www.sec.gov/edgar/searchedgar/ftpusers.htm
https://www.investor.gov/researching-managing-investments/researching-investments/using-edgar-researching-public-companies
https://www.investor.gov/researching-managing-investments/researching-investments/using-edgar-researching-public-companies
https://www.investor.gov/researching-managing-investments/researching-investments/using-edgar-researching-public-companies
https://www.sec.gov/about/whatwedo.shtml
http://qz.com/84961/this-is-how-much-a-bloomberg-terminal-costs/
http://qz.com/84961/this-is-how-much-a-bloomberg-terminal-costs/
http://stockcharts.com/school/doku.php?id=chart_school:chart_analysis:introduction_to_candlesticks
http://stockcharts.com/school/doku.php?id=chart_school:chart_analysis:introduction_to_candlesticks
http://www.thymeleaf.org/
http://www.thymeleaf.org/
http://www.tutorialspoint.com/jdbc/
http://www.tutorialspoint.com/jdbc/
http://www.w3schools.com/css/css_intro.asp
http://www.w3schools.com/css/css_intro.asp
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/js/js_intro.asp
http://www.wallstreetdaily.com/nyse-stock-market-holiday-closings-schedule/
http://www.wallstreetdaily.com/nyse-stock-market-holiday-closings-schedule/

56

[45] Phillip Webb, Dave Syer, Josh Long, Stephane Nicoll, Rob Winch, Andy Wilkin-
son, Marcel Overdijk, Christian Dupuis, and Sebastien Deleuze. Spring boot ref-
erence guide. [Accessed on 26 November 2016]. url: http://docs.spring.io/
spring-boot/docs/current/reference/htmlsingle/#boot-documentation-

about.

[46] Worldbank. Market capitalization of listed companies (current us$). [Accessed
on 26 November 2016]. url: http://data.worldbank.org/indicator/CM.
MKT.LCAP.CD.

[47] XIGNITE. Market data feed and api. [Accessed on 26 November 2016]. url:
http://www.xignite.com/.

[48] Xignite. Support. [Accessed on 26 November 2016]. url: http://www.xignite.
com/Support/FAQ.aspx?faqtype=Topics&faqcat=Subscriptions#270.

[49] Yahoo. Yahoo query language (yql). [Accessed on 26 November 2016]. url:
https://developer.yahoo.com/yql/.

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-documentation-about
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-documentation-about
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-documentation-about
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD
http://www.xignite.com/
http://www.xignite.com/Support/FAQ.aspx?faqtype=Topics&faqcat=Subscriptions#270
http://www.xignite.com/Support/FAQ.aspx?faqtype=Topics&faqcat=Subscriptions#270
https://developer.yahoo.com/yql/

	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Market Data
	Financial Data
	Overview
	Electronic Data Gather and Retrieval
	Xignite
	Form 4

	Libraries and Frameworks

	Design
	Overview
	New Money Data Vending Requirements
	Functional Requirements
	Non-functional Requirements

	Use Case Modeling
	Overview
	Detailed Use Cases
	New Money Resource Builder Use Cases
	New Money RESTful Service Use Cases
	New Money Website Use Cases

	Database
	Architecture

	Implementation
	New Money Resource Builder
	Overview
	Market Data
	Financial Data

	New Money RESTful Service
	Overview
	Requests

	New Money Website
	Overview
	Company
	Insiders

	Conclusions and Future Work
	Conclusion
	Future Work
	Resource Builder
	Restful Service
	Website

	Bibliography

