
University of Nevada, Reno

A Web-Based Application for Automatic

Evaluation of Programming Assignments

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Aswathi Mohan

Dr. Frederick C. Harris, Jr., Thesis Advisor

August, 2017

c© by Aswathi Mohan 2017
All Rights Reserved

i

Abstract

The assessment of programming assignments are complicated and time-consuming.

Also the number of students enrolling for programming courses is increasing tremen-

dously. The instructors or graders have to dedicate more time to grade the assignment

manually with tasks such as downloading source files, compiling and running the pro-

gram, and entering the grade. This thesis presents an online assignment submission

and automatic evaluation web platform for programming classes (Submit). This ap-

plication allows instructors to create new courses, manage enrolled students for the

course, create assignments, etc. The students are able to enroll in courses with a

specific join token given by the instructor. Then the students are able to access the

assignment and upload the program files for the assignment. They are also able to

test the code against the public test cases created by the instructor. The source code

compiles and runs automatically and compares the student output with the expected

output created by the instructor. The student will get instant feedback for their sub-

mission such as output, whether the test is passed or not, what output was expected,

and the difference between those two outputs. The instructors are able to grade the

assignment and comment on the submitted program via a web interface. The appli-

cation has been developed with Ruby on Rails and Flask and can utilize the features

of both frameworks.

ii

Dedication

I dedicate this thesis to my family and especially my husband who have encouraged

and supported me throughout my journey.

iii

Acknowledgments

I would like to express my sincere thanks to my adviser, Dr. Frederick C. Harris,

Jr. and my committee members Dr. Sergiu M. Dascalu and Dr. Jeffrey C. LaCombe

for their time and suggestions. I would like to thank Nolan Burfield for the initial work

on the system that lead to the thesis. I am grateful to several of my colleagues for

their passionate participation, inspiration, valuable suggestions, and support during

the integration and testing and providing valuable comments on this research project.

Finally I would like to express gratitude to my family for their support throughout

my study.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background and Related Work 3

2.1 Overview . 3
2.2 Related Work . 3
2.3 Libraries and Frameworks . 6

3 Design 10

3.1 Overview . 10
3.2 Requirements Specification . 10

3.2.1 Functional Requirements . 10

3.2.2 Non-Functional Requirements 11

3.3 Use Case Modeling . 12

3.4 Database . 15
3.5 Architecture . 27

4 Implementation 30

4.1 Submit web application . 30

4.1.1 Overview . 30
4.1.2 View Implementation . 30

4.1.3 Model Implementation . 31

4.1.4 Controller Implementation . 32

4.2 RESTful API . 35
4.3 Flask App . 36

4.3.1 Requests . 37

v

4.3.2 Request Queue . 39

5 Application Walkthrough 41

5.1 Instructor Walkthrough . 42

5.1.1 Login . 42

5.1.2 Instructor Home Page . 43

5.1.3 Create New Course . 44
5.1.4 Instructor Actions . 45
5.1.5 Manage Enrolled Students . 46

5.1.6 Create New Assignment . 46

5.1.7 Instructor Actions for Assignment 48

5.1.8 Create Test Cases . 48
5.2 Student Walkthrough: Part1 . 53

5.2.1 Student Home Page . 53

5.2.2 View Assignments . 55

5.2.3 Assignment Submission and Testing 56

5.3 Grader Walkthrough . 59

5.3.1 Grader Home Page . 59

5.3.2 Grader Actions Page . 60

5.3.3 View and Grade Assignment 60

5.3.4 Comments . 62
5.3.5 Grade File . 62
5.3.6 View All Grades . 63

5.4 Student Walkthrough: Part2 . 64

6 Conclusions and Future Work 67
6.1 Conclusions . 67
6.2 Future Work . 68

Bibliography 71

vi

List of Tables

3.1 The functional requirements of Submit 11

3.2 The Non-functional requirements of Submit 11

vii

List of Figures

3.1 The Use Case diagram for the Instructor 16

3.2 The Use Case diagram for The Administrator 17

3.3 The Use Case diagram for the Grader 18

3.4 The Use Case diagram for the Student 19

3.5 Diagram representing the relationship between Database Tables . . . 20

3.6 Users Table . 21
3.7 Assignments Table . 22

3.8 Courses Table . 23
3.9 Test Cases Table . 23
3.10 Inputs Table . 24

3.11 Run Methods Table . 24
3.12 Submissions Table . 25
3.13 Run Saves Table . 25
3.14 Compile Saves Table . 26

3.15 Upload Data Table . 26

3.16 Comments Table . 27
3.17 An architecture diagram of Submit Rails App 28

3.18 An architecture diagram of Submit 29

4.1 Sample View implementation . 31

4.2 Cutout of a Model implementation 32

4.3 REST Base API controller for parsing JSON 35

4.4 API submission Controller for parsing JSON request 36

4.5 Example for Flask App used in Submit 37

4.6 Example for sending HTTP request from Rails to the Flask App . . 38

4.7 Example for Per-Request After-Request callbacks used in the Flask
App . 39

4.8 Celery task queue used in Flask App 40

5.1 Submit Log In Page . 42

5.2 The Instructor Home Page . 43

5.3 The New Course page . 44

5.4 Instructor Action Page . 45

viii

5.5 View of Manage Enrolled Students page 46

5.6 View of creating new assignment . 47

5.7 Instructor Actions Page for managing assignments 48

5.8 View of Test Case page where instructor uploads program, creates run
methods, adds inputs and sets program parameters 49

5.9 View of creating run methods . 50

5.10 View of input page . 51

5.11 Create Outputs . 52

5.12 View of the Student page of Submit 53

5.13 View of Student enrolling into a course 54

5.14 The Assignment page . 55

5.15 The view of student uploading solution for the assignment 57

5.16 The output view for running program 58

5.17 View of the Grader home page of Submit 59

5.18 Grader Actions Page for managing assignments 60

5.19 View and Grade Assignment . 61

5.20 The Online Text Editor in Submit . 62
5.21 Sample View Grade file . 63

5.22 Sample View of Comments and Grade Page 64

5.23 Sample View of Comments for the student code 65

5.24 Sample Grade file . 66

1

Chapter 1

Introduction

The popularity of computer science courses is continually increasing. As a result, the

number of students enrolling in computer science classes is also increasing. Computer

science instructors assign many programming assignments to enhance the outcomes

of the learning process by students, but the evaluation process of programming as-

signments is not straightforward. The assignment grading became a burden for in-

structors. It involves time-consuming steps like compiling and testing programs with

various inputs. These kind of evaluations limit the number of programming assign-

ments that an instructor can assign during a course period. One way of alleviating

this problem is to automate the evaluation process. This thesis introduces an online

assignment submission and automatic evaluation web platform for computer science

programming classes. The goal of this project is to be able to easily create and rapidly

evaluate student programming assignments, in a consistent manner with a low error

rate.

The Submit application is capable of creating courses, managing enrolled stu-

dents, creating assignments and their test cases, and automatic grading of students

submission. The students can enroll in courses, view the assignments, and submit

the solution for the assignments. The students are also able to test their assignment

with the public test cases created by the instructor before submitting it. The system

gives instantaneous feedback for the test with outputs and the difference in output as

compared to instructor’s expected output. The instructors/graders are able to view

and grade the submission and are able to add comments on each line of the code.

2

Finally, the instructor can upload the grade which creates a pdf file with grades,

grader’s comment, and details of each test case such as input data, pass or fail the

test cases. There is an option to download the assignment as a zip file and download

the grades of students as an Excel file.

The application has been developed with Ruby on Rails and Flask. The front-

end is designed with Rails which handles user’s request for each page. The back-end

is handled by both Rails and Flask. A MySQL database is used for storing user

data and other information. The Rails App handles the user login, course creation,

assignment creation, managing enrolled students, and assignment submission. The

Flask App handles the generating expected output based on test cases created by the

instructor and testing the student’s submission. The Flask App compiles and runs

the program automatically and compares the output with instructor’s output and

gives the difference between two.

This application reduces the effort and time needed to grade the assignment, so

the instructor can include more assignments for their courses. Since the application

runs on two different frameworks and on different systems, it can utilize the resources

and advantages of both. This makes the application faster and more efficiently handles

multiple users.

The rest of this thesis is organized as follows. Chapter 2 covers background of

other related applications that are used for automatic assignment grading, frame-

works, and libraries used for implementing the application. Chapter 3 discusses the

design of the application, the software engineering functional and non-functional re-

quirements, the use case model for the application, and a detailed design of the system

architecture and database. Chapter 4 goes into detail of how the system was imple-

mented. Chapter 5 goes over an application walkthrough of its functionality. Finally,

the thesis wraps up in Chapter 6 with a discussion of the conclusion and the future

work.

3

Chapter 2

Background and Related Work

2.1 Overview

The advancement in computer technology popularizes the computer science and en-

gineering course. As a result, there are many people attracts into this field and many

students are enrolling for programming classes. The instructors have to assign more

homework to enhance the student’s skill. This will increase the number of submis-

sions. In this situation, the assignment grading became a burden for the instructors

and graders. The automatic assignment evaluation can alleviate this problem to a

certain level. This chapter will discuss other application developed to automate the

assignment evaluation and features and improvements in our new application.

2.2 Related Work

The popularity of computer science and engineering attracts more people into this

field and more people are interested in learning different programming languages. The

increase in the number of students enrolling for programming classes will increase the

effort for the instructor to manage the class. The instructor has to add more problems

to enhance the student’s skill, but the programming assignment grading becomes

a burden for instructors or graders since it takes a lot of time. There are some

applications available online and some Universities developed theirs on applications

which focus on grading programming assignments for computer science classes and

help graders to grade the assignment easily with less time spent on grading. A few

4

examples of such online assignment evaluation applications are WebCAT, Stepik,

Instructure, Marmoset, and automatically grading programming homework platform

developed by MIT, etc. One of the advantages of these systems is that the users

get instantaneous feedback for their answers. Even if a user fails to pass the test

cases for the problem at the very first attempt, the feedback inspires the students to

re-attempt the problem until he reaches the correct solution.

Marmoset, developed by University of Maryland [25, 26],is a grading system for

handling student programming project submission, testing, and review of the code.

The system evaluates student submission against public test cases and test cases that

are not visible to students. This system also takes a snapshot of a student’s work

every time and saves it in a file. This data is useful for studying how students learn

programming languages. It works in different programming languages and is designed

to work with both small and large projects. Currently, the instructors and teaching

assistance of the University of Mary Land using this system but not available to

public.

WebCAT is an open-source tool for automatically grading programming assign-

ments [6, 32]. Along with the automatic grading, WebCAT uses a different approach

to grade a student’s code.It supports grading of the assignments where students are

asked to submit their own test cases. It is a language independent tool that focuses

on test driven development. This assessment approach is proposed by Stephen H.

Edwards of Virginia Tech. But this system cannot be used for managing courses and

students. It is only for assignment submission and evaluation. Also, students have to

submit their own test cases.

The automatically grading programming homework platform developed by MIT

can automatically identify errors in student programming assignments and suggest

corrections [14]. This system will identify the minimum number of corrections neces-

sary to get a program working rather than the way the student approached and solved

the problem. This application provides specific feedback, including the line numbers

of specific errors with recommended corrections. Currently, teaching assistance of the

5

University is using this system but it still on developing and testing stage and not

available to public.

Instructure is an online software for managing courses [10]. This platform pro-

vides access for students to their courses, materials associated with the course, and

a submission option. Instructors are able to create assignments, upload file, grade,

etc. Students are able to view and submit assignment. But these applications are

not able to automatically evaluate the submission as Submit does. This application

is available online.

Submit is an online platform for assignment submission and evaluation for com-

puter science classes. It is designed for evaluating programming assignments. This

application is made for instructors, students, and graders. Instructors are able to

create a course, manage students, create assignments and evaluate the assignment.

The students are able to view the assignment, submit the source code for the assign-

ment, and test the assignment against test cases defined by the instructor. Some test

cases are visible to students and some are invisible. The instructors or graders can

evaluate the assignment automatically and upload the grades. The student gets in-

stant feedback for their submissions like the error in their outputs, comments for their

submission, and grades. It is a simple and powerful platform for computer science

programming classes.

The previous version of this application, ‘Submit: An Online Submission Plat-

form for Computer Science Courses’ [18] is able to manage assignment submission

and automatic evaluation of assignment and grading. The old system manages the

course, grades assignments, handles files and provides grades and feedback. However,

the system does not support multiple users at a time and cannot able to manage

infinite loops and errors. This will break the application.

The new version of the Submit is able to handle multiple users and handle infi-

nite loops and errors. Now the new application is developed on Ruby on Rails and

Flask frameworks. Both the framework are configured in two different systems. So

the application can utilize the features of two frameworks and resources of the two

6

systems. A celery queue is configured for scheduling jobs in Flask App. So the in-

coming request from the users are added to this queue and serves one by one. So

the system can handle multiple users without breaking the application. The new

system also handles the infinite loops and errors. The Flask App is responsible for

creating instructor outputs and evaluating assignment against different test cases. If

there any infinite loop or faulty code in the submission, the application stops the

further processing of the code and send a feedback to the user. The feedback includes

the message showing the error or exceeds max time limit for the process in the case

of infinite loops. This application is now implemented with a RESTful API which

can ensure the interoperability between the Rails and Flask framework configured on

two different systems on the web. This REST API handles the incoming RESTful

requests with data [1] and the project controller parses the data from JSON format

and saves that into the database. It assures the security using defensive programming

software design to continue functions in unpredicted situations.

2.3 Libraries and Frameworks

Submit depends on multiple libraries and frameworks. These include Ruby on Rails,

Flask, Celery, services for networking, and user interface styling. These libraries and

frameworks are listed in this section.

Rails is a web application development framework running on Ruby language

which is designed to make programming web applications easier. It is an open source

software and has an elegant and compact design which effectively creates a domain

specific language for writing a web application. It allows us to write less code while

achieving more than many other languages and frameworks. The common web pro-

gramming tasks such as generating HTML, making data models, and routing URLs

are easy with Rails, and the application code is concise and readable. Rails combines

the Ruby programming language with HTML, CSS, and JavaScript to create a web

application running on a web server. In this project, Ruby on Rails is used to develop

the application’s front end and back-end with Model View Controller design [24, 37].

7

Rails official website is very useful to develop the application on Rails. We have to

install Ruby language 2.2.2 or newer before installing Rails and other dependencies.

Tutorialspoint [27] and Codeacadamy [4] are very good websites to learn Ruby on

Rails for beginners.

Ruby is a dynamic, object oriented, general purpose, open source programming

language. It is very flexible and easy to read and write. This language was influenced

by many other languages and developed as an alternative to scripting languages like

Perl and Python. Ruby on Rails is developed with Ruby language. In this application

development Ruby is used as the scripting language [23, 24]. The beginners can learn

Ruby language from Codeacademy [4] which provides an interactive tutorial for Ruby.

MySQL database offers a multi threaded and multi-user structured query lan-

guage (SQL). MySQL is designed to handle heavy loaded systems. The data is

stored in structured tables, which can be accessed via multiple threads. The MySQL

database was chosen for its robustness, easy setup, and it is using common lan-

guage SQL [19]. We have to install MySQL server and client prior to application

development and create tables in the database. MySQL documentation [19] and

codeacademy [4] helped to learn SQL queries.

Hyper Text Markup Language (HTML) is the language that a web browser reads

to render the display. HTML uses tags to describe to the web browser how exactly to

display the content. HTML is used in this application to design the web page for the

user interface. The W3 school will be a great place to learn and practice HTML [29].

Cascading Style Sheets (CSS) is used to describe how to style HTML content.

CSS is used to define layout, design, and variations. This is used in the application

to add style to the user interface and not have a standard display that would be

uninteresting to the user. W3 school [28] and Codeacademy [4] are a good place to

learn and practice CSS.

JavaScript allows for dynamic web page content. JavaScript is a necessary part

of this application in order to do the data visualization that is present to the user and

the data handling to the front-end. In this project, the JavaScript is used for data

8

handling and automatic updating of web pages. W3 school [30] and Codeacademy [4]

helped me to learn and understand JavaScript in an interactive way.

Flask is a popular extensible web framework for developing web applications

written in Python. It is based on Werkzeug toolkit and Jinja2 template engine [8].

Since it does not require particular tools or libraries it is called a micro framework.

It has no database abstraction layer, form validation, or any other components where

pre-existing third-party libraries provide common functions. Flask framework sup-

ports extensions that can add application features as if they were implemented in

Flask itself. Extensions exist for object-relational mappers, form validation, upload

handling, various open authentication technologies and several common framework

related tools [33]. It consists of features such as development server and debugger,

integrated support for unit testing, RESTful request dispatching, and much more. In

this application, the Flask is used to create outputs for test cases and run test cases.

We need to install Python2.6 or newer and configure virtual environment before in-

stalling Flask. The Flask documentation will provide steps to install Flask [8].

Celery is an asynchronous task/job queue which is based on distributed message

passing. Celery is written in Python, but the protocol can be implemented in any

language. Celery focuses on real-time operation but also supports scheduling. Celery

communicates via messages, usually using a broker to mediate between clients and

workers. To initiate a task the client adds a message to the queue, and the broker

then delivers that message to a worker. Celery can consist of multiple workers and

brokers, giving way to high availability and horizontal scaling. The execution units

are called tasks and are executed concurrently on a single or multiple worker servers

using multiprocessing, evenlet or gevent. Tasks can execute asynchronously in the

background or synchronously wait until it is ready [3]. In the Submit application, the

Celery queue handles the request from the Rails App. We have to install the message

broker RabbitMQ before installing Celery, which is running in background. The

installation steps for Celery queue is provided in the Celery documentation. Celery

is also running in background of Flask App [15].

9

RabbitMQ is a lightweight feature-complete, stable, durable, and easy to install

open source message broker. Its an excellent choice for a production environment.

RabbitMQ is the default message broker with celery so it doesn’t require any addi-

tional dependencies or initial configuration [22].

Python is used for Flask application development. It is a high level, object

oriented, general purpose, powerful programming language. Its features like dynamic

type system and automatic memory management together with its interpreted nature

make Python an ideal language for scripting and application development in most of

the platforms. Python has an extensive and comprehensive standard library which

is freely available and makes the application development easier [21]. Biginners can

learn Python from Tutorialspoint and Codeacademy [4]. The python ibrary also help

to develop the application.

JavaScript Object Notation (JSON) is used for storing and exchanging data

between a browser and a server [11]. It is a lightweight data-interchange format and

easy for humans to read and write. It was derived from JavaScript but it is a language

independent data format and easy to generate and parse [31]. In Submit it is used

to exchange between Rails and Flask. W3 school and JSON documentation will help

to learn the structure and create JSON object. Python and Ruby have different

functions to encode data in JSON format.

10

Chapter 3

Design

3.1 Overview

The software requirement specification is the basis for software development. It de-

scribes the functional and non-functional requirements, and includes a set of use

cases that describe user interactions that the software must provide [7]. This chap-

ter discusses the functional requirements, non-functional requirements, and use-case

modeling of the Submit web application.

3.2 Requirements Specification

3.2.1 Functional Requirements

The functional requirements describe the functionality that the system is supposed

to perform. It depends on the type of software, expected users and the type of

system where the software is used. The functional requirements include the technical

details, data manipulation, data processing, data integration, security requirements,

performance, data migration, and conversion [34]. Functional requirements for the

Submit web application are listed below in Table 3.1. Functional requirements are

labeled as FR.

11

Table 3.1: The functional requirements of Submit

FR01 Allow users to login to their account
FR02 Allow users to edit their account
FR03 Allow users to edit files within the web page
FR04 Allow instructors and admins to create courses
FR05 Allow instructors to edit courses
FR06 Allow instructors to open or close course enrollment
FR07 Allow instructors to create new assignments
FR08 Allow instructors to specify start and due dates on an assignment
FR09 Allow instructors to specify how to compile and run uploaded submissions
FR10 Allow students to enroll in courses
FR11 Allow students to submit assignment files
FR12 Allow instructors to mark student as a grader of the course
FR13 Allow graders to function as an instructor without the ability to create courses
FR14 Allow students to view assignment grades and grader comments
FR15 Allow graders to run submission against test cases
FR16 Allow graders to create comments on a students submission
FR17 Allow instructors to edit assignments

3.2.2 Non-Functional Requirements

The non-functional requirements describe the specific behavior or functions that the

system is supposed to perform. It can also be referred to as the quality attributes of

the system architecture. Response time, scalability, reliability, maintainability, usabil-

ity, etc., are some of the examples of non-functional requirements [35]. Non-functional

requirements of the Submit application are listed in Table 3.2. Non-functional require-

ments are labeled as NFR.

Table 3.2: The Non-functional requirements of Submit

NFR01 The website will be developed on Ruby on Rails.
NFR02 The test cases will be running on flask.
NFR03 Be fast at serving pages and files.
NFR04 Be intuitive and quick to learn.
NFR05 Be compatible across all major web browsers.
NFR06 Support many students in multiple courses.
NFR07 Data and user information shall be stored in MySQL.

12

3.3 Use Case Modeling

A use case is a written description of the list of actions or event steps of how the

user will perform tasks, typically the interactions between a role and a system, to

achieve a goal. It outlines a user’s point of view and a system’s behavior as it re-

sponds to a request. Use cases help us to explain how the system should behave and

react under given condition by successfully achieving the goal of that system, set by

stakeholders. [38] In the Submit system, there are four types of users: Administrator,

Instructor, Grader, and Student. Use cases are labeled as UC.

UC01: Log In

All users must have an account to access the website. The system is linked with

University’s NetID and password, so all users should be login with those credentials.

UC02: Create Courses

Instructors and administrators will be able to create new courses. They will be able

to specify course name, description, term and year and whether the course is open or

not.

UC03: Edit Courses

The instructors will be able to edit courses.

UC04: Delete Courses

The instructor will be able to delete courses.

UC05: Enroll Courses

Students and graders must be enrolled in a course to view and access the assignments.

Each course has a twelve character registration token that must be given by the

instructor to enroll in that course.

13

UC06: Manage Enrolled Students

Instructors will be able to view all enrolled students in a course and edit their roles

or remove them from the course.

UC07: Edit Users

The Submit administrator will be able to view all enrolled users and edit their infor-

mation and roles.

UC08: Create Assignments

Instructors will be able to create new assignments in courses. The instructor will be

able to specify assignment name, possible points, assignment available date and due

date.

UC09: Create Test Cases

Instructors will be able to create run methods and test cases which consist of inputs

and expected outputs, for which all submitted code for a given assignment will be

run and tested.

UC010: Edit Test Cases

The instructors will be able to edit and update test cases.

UC011: Create Run Variables

The instructors will be able to specify run constraints such as maximum CPU run

time and maximum core size.

UC012: View Assignments

The students will be able to view all the assignments for the course. This includes

assignment name, available date, due date, and time.

14

UC013: Submit Assignments

Students will be able to submit their assignment once they are satisfied with their

testing against the given test cases. Once the assignment is submitted, then the files

may not be edited any more by the student.

UC014: Edit Submissions

Students will be able to edit their assignment by adding, removing, or modifying their

uploaded files. Besides that, the files may be edited directly with the application’s

built in text editor before submitting the assignment.

UC015: Run Test Cases

Instructors, students, and graders will be able to run assignment submission code

against a set of test cases. Certain test cases may be created as hidden and this will

be only visible to instructors and graders.

UC016: Unsubmit Assignment

Instructors will be able to change the status of submission from submitted to not

submitted. Then the students are able to edit or resubmit the assignment.

UC017: Grade Submission

Instructors and graders will be able to grade student’s submissions. It can be done

either one at a time or all at once. They will be able to create grade file based on the

results.

UC018: View and Comment on Submissions

Instructors and graders should be able to view code submitted by students. They

can open the files in the built in text editor and provide feedback through comments

for each line. This will be visible to students.

15

UC019: Upload files

Students and instructors will be able to upload their file by ’click’ or drag-drop.

UC020: Download Files

Instructors and graders will be able to download the assignment as a zip file and

grades of all students as an Excel file.

Use Case Diagrams

The use case diagram for the Submit application is shown below. It shows the users

or actors for various use cases and its association and relationship between an actor

and use cases. There are four different kind of users in this application. The use

case diagram for the instructor is shown in Figure 3.1. The use case diagram for the

administrator is shown in Figure 3.2. The use case diagram for the grader is shown

in Figure 3.3 The use case diagram for the student is shown in Figure 3.4.

3.4 Database

Submit stores all data associated with the website in a MySQL database. The

database requires the definition of tables and the type of values stored in tables. This

includes user data with encrypted and salted passwords, uploaded data files, course

information and so on. Here the database structure is relational because there is a

relationship exist between database tables such as ‘has-many’, ‘belongs-to’ and ‘has-

and-belongs-to-many’ [5]. The relationship that between database tables is shown in

Figure 3.5. The tables in the Submit application database are as follows:

16

Figure 3.1: The Use Case diagram for the Instructor

17

Figure 3.2: The Use Case diagram for The Administrator

18

Figure 3.3: The Use Case diagram for the Grader

19

Figure 3.4: The Use Case diagram for the Student

20

F
ig

u
re

3.
5:

D
ia

gr
am

re
p
re

se
n
ti

n
g

th
e

re
la

ti
on

sh
ip

b
et

w
ee

n
D

at
ab

as
e

T
ab

le
s

21

• Users Data table will store details of each user such as first name, last name,

Netid, and email. Also, it stores the account creation time, update time, login

count, failed login count, last requested time, current login time, current login

IP, and last login IP to ensure security. The ID is used as a primary key. This

table has relations to courses, submissions, and roles tables. (Figure 3.6)

Figure 3.6: Users Table

• Assignments table will store the information of assignments such as assignment

name, description, course id, start date, due date, and total grade. It also

stores the record of assignment creation time, updating time, and whether the

assignment is submitted or not. The ID is used as a primary key. This table

has relations to submissions and test cases tables. (Figure 3.7)

22

Figure 3.7: Assignments Table

• Courses table will store the information of each course such as name, id, de-

scription, term, and year. It also stores the record of assignment creation time,

updating time, whether the course is open to students or not. The join token

associated with each course will be stored in this table. The ID is used as a

primary key. This table has relations to users table, assignments table, and

different user roles. (Figure 3.8)

• Test cases table will store the information regarding test conditions of each

assignment. It includes run constraints such as CPU time, max core size, as-

signment id, creation time, and updating time. This table has relations to run

methods and upload datum tables. (Figure 3.9)

• Inputs table will store the inputs for each assignment, its corresponding outputs,

and description. It also stores the record of inputs creation time, updating time,

and the input is student visible or not. This table has relations to run saves

and compile saves tables. (Figure 3.10)

• Run methods table will store the details of run command, name and description,

and other details that required to run the assignment. The ID is used as a

23

Figure 3.8: Courses Table

Figure 3.9: Test Cases Table

24

Figure 3.10: Inputs Table

Figure 3.11: Run Methods Table

primary key. This table has relations to the inputs table. (Figure 3.11)

• Submissions table will store user id, assignment id, submission time, key, the

status of submission, and grade. It also stores the record of assignment creation

time and updating time. The ID is used as a primary key. This table has

relations to upload datum, run saves and compiles saves tables. (Figure 3.12)

• Run saves table will store the final results of the assignment evaluation such as

whether it passed the test cases, output, the difference between student, and

instructor output. The ID is used as a primary key. (Figure 3.13)

25

Figure 3.12: Submissions Table

Figure 3.13: Run Saves Table

26

Figure 3.14: Compile Saves Table

Figure 3.15: Upload Data Table

• Compile saves table stores the information of compiled output. That means

if there is a compile error, the details of that error is stored in this table.

(Figure 3.14)

• Upload data table will store files related to the assignment, its type, contents,

and id. It also stores whether the file is shared or not, submission id, test case

id, created time, and updated time. This table has relations to the comments

table. (Figure 3.15)

• Comments table stores comments for students’ program codes. It includes line

number, content, upload datum id, created time, and updated time. (Fig-

ure 3.16)

27

Figure 3.16: Comments Table

3.5 Architecture

The web application is built on Ruby on Rails. It is designed to run on two back-

ends, Rails and Flask framework. Each of them has its individual design and then

is interconnected. The website was built with Ruby on Rails which uses the Model-

View-Controller (MVC) architecture [12]. Rails offers simple integration of data re-

trieved from the controller with the MySQL database. The models are responsible

for validating data in order to create consistency and then saving data to a database.

Figure 3.17 shows the architecture of the Submit Ruby on Rails framework design.

The view will be the front-end to the user which generates an output for the user.

Each view is connected to a controller action that will communicate with data. The

controllers are responsible for linking the front-end views with the back-end models

and database. The model maintains the relationship between objects and database

which handles data validation [17].

The following steps explains the flow of working of the Submit application:

Step 1: The user request the page.

Step 2: The router identifies the controller and action

Step 3: The controller instantiates or manipulate the models.

Step 4: The model add or retrieve data from the database.

Step 5: The model renders data to the controller.

28

Figure 3.17: An architecture diagram of Submit Rails App

Step 6: Controller renders the view.

Step 7: The rendered view is send to the user.

The creation of test cases and testing assignments against test cases are handled

by the Flask server. The data required to create correct outputs and run the test

cases are sent to Flask in JSON format from Rails using HTTP request. The Flask

handles all the requests and parses the content. After that, it compiles and run the

program and generates outputs. The result is sent back to Rails in JSON format.

The RESTful service handles the incoming RESTful requests for data. The controller

gets the data and saves it into the database and updates the web page with the new

result.

The asynchronous job queue Celery is used to schedule the jobs. The tasks are

executed concurrently on one or more worker servers and the task can be executed

asynchronously in the background or wait until ready(synchronously). RabbitMQ is

used as the message broker to communicate between server and client. Figure 3.18 is

the architecture of Submit’s design for creating outputs and run test cases.

The following steps explain how Submit handles ‘Run Test’ request and ‘Create

29

Figure 3.18: An architecture diagram of Submit

Output’ request.

1. The user requests ‘Run Test’/‘Create Output’.

2. The router identifies the controller and action. The controller sends an HTTP

request to Flask App with data in JSON format. The request will be add to

the queue in a Celery job queue.

3. The Flask handles the request as a Per-Request After-Request callback. It

sends back a unique key back to the controller and saves it into the database

and returns to the Flask App.

4. The Flask App the processes the request and sends the results back to Rails as

an HTTP request. The data will be encoded in JSON format.

5. The RESTapi handles this request and checks for the key and consistency. Then

it parses the data and saves the results into the database.

6. Controller renders the view.

7. The rendered view is sent to the user.

30

Chapter 4

Implementation

4.1 Submit web application

4.1.1 Overview

The Submit web platform is developed to support instructors to manage their courses

and programming assignments more easily and sufficiently. It helps instructors and

graders speed up assignment grading and upload the comments and grades very

quickly and easily. The students also get instant feedback on their submissions.

This web application is built with the advantages of Ruby on Rails and Flask. Its

Model-View-Controller framework provides the default structure for a database, web

service, and web pages. The MVC design aids in the separation of tasks for simi-

lar page requests, user interaction, and database implementation. The views section

holds the information on how to display the web page, the controllers handle the

requests, and the models handle the data. The MySQL database is what the model

integrates with and stores all the data associated with the Submit website [13].

This section discusses the implementation of the Submit web application. It

includes the implementation of different subsystem and controllers, models, and views

associated with it, along with some screen shots.

4.1.2 View Implementation

In Ruby on Rails, web requests are handled by the Action Controller and Action View.

The controller is concerned with the communication with the database and the view

31

is responsible for compiling the responses. For each controller, there is an associ-

ated views directory which holds the files that make the views associated with that

controller. These files are used to display the view that results from each controller

action. The view generates an output for the user. It is built with HTML/Embedded

Ruby files which allows HTML/CSS integration with Ruby. Every web connection to

a Rails application results in the displaying of a view [17]. Figure 4.1 shows a sample

view implementation in Submit.

Figure 4.1: Sample View implementation

4.1.3 Model Implementation

In MVC architecture, the model keeps the relationship between the object and the

database and it handles data validation, association, and transaction. A model il-

lustrates a singular object in Rails. This is implemented in Active Record library,

which provides an interface and binding between the tables in a relational database

and the Ruby program code that manipulates database records. An Active model is

a base library which contains various modules used for developing classes. There are

many models associated with submission application development which connect the

controller actions and the database. User sessions, courses, assignments, submission,

etc. are examples of some models implemented in this application [27]. Figure 4.2

shows a sample model implementation in Submit.

32

Figure 4.2: Cutout of a Model implementation

4.1.4 Controller Implementation

In MVC architecture, the Controller coordinates the actions between model and view.

The controller directs the flow of data. It receives the user commands and works with

models to process the commands and displays the web page properly by the view. The

controller is responsible for routing external requests to internal actions and manages

sessions which gives the impression of progressing interaction with our application.

The Submit web application is driven by a set of controllers. Each controller is

responsible for certain actions of Submit such as user sessions, courses, assignments,

submission, etc. The controllers are further divided into actions and these actions

are linked to the applications routes. When a specific route is called, the associated

controller action finds the required models and passes them to an associated view [27].

The controller uses JavaScript and AJAX for reloading page content for tasks such

as deleting a file or updating a page. The controllers that the Submit application use

are described below with its functionalities.

Application Controller

The Application controller is the base controller created by Rails which is inherited

from the Action controller. All the other controllers are inherited from the Application

controller. The Application controller is not associated with any views or models.

33

Assignment Controller

The assignment controller manages everything related to the assignment. The assign-

ment model validates whether all the required fields are set, the due date is valid, and

all students can view the assignments. The assignment controller is related to creating

new assignments, grading all assignments, editing and updating assignments, down-

loading all grades and the instructor can make the submission status from submitted

to not submitted. There is a view and a model associated with this controller.

Comments Controller

The comments controller manages the creation and deletion of comments. The in-

structor can comment on the student’s submission on the corresponding line of code.

There is a favorites list associated with this. This controller checks whether the com-

ment is unique for each line. Both the students and graders can view the comments.

Courses Controller

The course controller handles the course. The course model validates and makes sure

that all required fields are set and all the data are in an acceptable range like the

term, year, and, open. The course controller manages the functions such as create

new courses, edit, update and delete courses, manage the students joining the courses

with join token, manage enrolled students (edit, update or remove users), view, and

download grades etc. There is a view and a model associated with this controller.

Inputs Controller

The inputs controller is undertaking the activities related to inputs for test cases

of each assignment. Each input is associated with a name, description, and data.

The instructor can edit, update, and delete inputs. These are handled by the inputs

controller.

34

Run Methods Controller

The run method controller acts as a holder for multiple inputs and runs the command.

The run command describes how to compile and run the program. We can also edit,

update, and delete run method.

Submission Controller

The submission controller is responsible for all actions related to assignment sub-

mission and grading. It contains all the files and information related to a student’s

assignment submission. Submission controller can run, edit, delete, submit, and

grade. The submission will be locked once it is submitted, and then students can’t

modify after that unless the instructor unlocks the submission. It is also responsible

for run-save updates, output deletion, and the creation of pdf grade files.

Test Cases Controller

This module handles the test cases associated with the assignments. The instructor

composes the test cases and sets constraints like CPU time and max core size. It also

generates required outputs based on the instructor’s code and inputs. The instructor

can edit, update, and delete test cases.

Upload Data Controller

This controller manages all uploaded files related to each assignment. It handles the

program files uploaded by the instructor, assignments submitted by the students,

shared files like make files, grade files, shared uploaded data in test cases, comments,

and downloading files.

User Session Controller

This controller manages the user authentication. The user must have a valid NetID

and password to login or register to the course. This is a part of the AuthLogic gem

which handles the session logic.

35

Users Controller

The users controller handles user account information such as user name, and email

id. Users can create, update, and delete the account.

4.2 RESTful API

The RESTful API is an application program interface used to communicate with two

different web services which will help to manage the application easily. It ensures the

interoperability between the computer system on the web. It uses HTTP requests

to GET, PUT, POST, and DELETE data. The REST API service has routes and

controller setup. We can define the end points in the form of routes. The controllers

of the system handle the incoming RESTful requests with data [1]. Then the project

controller parses the data from JSON format and saves that into the database.

Base API Controller

The Base API controller is used to handle the authentication and extract the common

API functionalities. This approach requires re-authentication on a per-request level.

It is a very simple approach and ensures statelessness. Figure 4.3 is the Base API

controller of the Submit application. It checks whether the JSON object is empty or

not before parsing the request [1].

Figure 4.3: REST Base API controller for parsing JSON

36

API Submission Controller

It is the project controller for the REST API. The project controller parses the data

from the JSON format and saves that into the database. It assures the security

using defensive programming software design to continue functions in unpredicted

situations. It checks whether the JSON object has the required key using ‘has key’

before continuing to parse the JSON request. Unless it has the key, it stops parsing

and considers it as a bad request [1]. Figure 4.4 is the API submission controller of

the Submit application.

Figure 4.4: API submission Controller for parsing JSON request

4.3 Flask App

Flask is a micro-framework for Python which is based on Werkzeug, Jinja2 libraries [8].

In this project, Flask is used for creating test cases and running and testing the test

cases for the assignment instead of running on Rails. This App is running in the back-

ground which speeds up the processes. When the instructor creates the test cases,

they are sent to the Flask App and then Flask is generating corresponding outputs

based on the program and inputs. In the case of testing the assignment, when the

user hits the run button, then the request is sent to the Flask App. The Flask App

then compiles and runs the program and compares the outputs with the instructor’s

output and sends back the result to Rails. Figure 4.5 shows an example of the Flask

App used in this project.

37

Figure 4.5: Example for Flask App used in Submit

4.3.1 Requests

The Rails App sends the data to the Flask App in the form of HTTP request. The

data is encoded in JSON format because it is a lightweight data interchange format

and easy to generate and parse. Here we used Per-Request After-Request callbacks

because the REST API requires re-authentication on a per-request level [9]. When

the Flask App gets a request from the Rails App, it generates a key and sends it

to Rails App. Rails saves this key into the database and returns to the Flask App.

After that, the Flask sends back the results to Rails, and the outputs are saved into

the database.

In order to create the test cases, the instructor defines the run methods and

inputs in the specific fields and uploads a sample code for each assignment. When

the instructor hits the ‘Create Output’ button, an HTTP request is sent to the Flask

App. The data required to generate the output is sent as a JSON object. It contains

details such as course name, assignment name and id, current username and id, run

constraints such as CPU time, max core size, run name, run command, input name,

38

input data, program file, and make file. Figure 4.6 shown below is an example of

sending a request to the Flask App.

Figure 4.6: Example for sending HTTP request from Rails to the Flask App

On the Flask side, the App parses the JSON object and then compiles and runs

the program with the given data. The subprocess Popen is used to compile and run

the program. This will generate the required output. This output is again encoded

into JSON format with JSONEncoder() function, and the response is sent back as

an HTTP request. On the Rails side, the REST API handles the request, then parse

JSON and saves the outputs into the database.

For running the test, the user has to click the ‘Aswathi thesis reportRun Test’

button. Then the request sends as an HTTP request to the Flask App with required

data in JSON format. In this case the JSON file contains details such as course name,

assignment name and id, current username and id, submission id, run constraints

such as CPU time, max core size, run name, run command, input name, input data,

outputs associated with input, program file submitted by the student, and make file.

The Flask App handles this request the same as it handles the output generation.

Here it parses the JSON data and compiles and runs the student’s programs. After

creating the output, then it is compared with the instructor’s outputs associated

with each input. The difflib module is used to compare each character of the output.

Then the result encoded into JSON format and the response is sent back as an

HTTP request. The output associated with each input is sent back to Rails one by

one as it completes each test case. On the Rails side, the REST API handles the

request and then parses the JSON and saves the outputs into the database. The

39

view associated with the submission controller displays the outputs. The page will

be updated automatically when the outputs are saved in the database. Figure 4.7

shown below is an example of Per-Request After-Request callbacks used in the Flask

App.

Figure 4.7: Example for Per-Request After-Request callbacks used in the Flask App

4.3.2 Request Queue

An asynchronous task/job queue is used here to schedule the jobs in the Flask App.

Celery is used here for managing job queue. Celery can execute the tasks in the

background and leave the application free to respond to other requests. After finishing

each tasks, the Celery sends the result back to the Flask App. This will help to

run each test without interruption. Celery requires three components: The Celery

Client, Celery Workers, and a Message Broker. The Celery Client is used to provide

background jobs, in Flask it runs with the Flask application. The Celery Worker

processes the jobs in the background. The Celery Client uses message broker to

communicate with the message queue. RabbitMQ is used as the message broker

which is the default message broker for Celery. Implementation of Celery job queue

is shown in Figure 4.8.

40

Figure 4.8: Celery task queue used in Flask App

The main feature that Submit has from the previous application is that Submit’s

back-end is running on two frameworks: Rails and Flask and the implementation

of the job queue. Two major processes that this application has is the test case

creation and testing of the submission, both are running on Flask. This makes the

application faster, and it could use the resources of both frameworks. Also, the queue

implemented is running in the background which doesn’t require a lot of system

resource and can handle more users.

41

Chapter 5

Application Walkthrough

The Submit’s user interface for all users is designed very simply and easy to use and

understand. It removes the repetitive navigation from one page to another and has

more interfaces to access each function. The interface is basically designed for all four

types of users: instructor, student, admin, and grader. Mainly there are two different

views in this interface: one for students and the other for instructors. The student

view is the default view for the application when a new user is logged in. This chapter

will serve as a walkthrough of the Submit application, by showing the app’s interface

and describing its functionality for different roles: instructor, student and grader.

42

5.1 Instructor Walkthrough

5.1.1 Login

When a user browses the application, it shows the login screen as shown in Fig-

ure 5.1. The user can login to the Submit application with the University’s NetID

and password. The database verifies the credentials and then allows users to access

the account. Since it is linked with NetID, the user’s details such first name, last

name, and email id are available in the database. Only the admin can edit the user

information. The student role is the default role assigned. Only the admin can assign

the role of an instructor. The instructor or admin can assign the grader role.

Figure 5.1: Submit Log In Page

43

5.1.2 Instructor Home Page

Figure 5.2 is the view of the instructor home page. The instructor can create a new

course and view all the courses that the instructor is teaching for that term. The

course table shows the course name, term, and year. By clicking on each page, user

can go to the instructor actions page of that course.

Figure 5.2: The Instructor Home Page

44

5.1.3 Create New Course

The instructors are able to create new courses. Figure 5.3 is the view of creating

a new course. For the new class, the instructor can add course name, details and

description, term, year, and specify whether the course is open for students or not.

The instructors are able to edit or delete the course. There will be a unique enrollment

token generated with each new course. The instructor sends this token to students

who want to join the class. Students with this token are allowed to join the class.

Figure 5.3: The New Course page

45

5.1.4 Instructor Actions

The instructor actions page has features such as manage enrolled students, edit course,

delete the course, view all the student grades, create new assignments, and the as-

signments associated with the course. The join token for the course is also visible on

this page. Figure 5.4 shows the view of the Instructor Actions page.

Figure 5.4: Instructor Action Page

46

5.1.5 Manage Enrolled Students

The instructors can manage all the enrolled students for that class. Figure 5.5 is the

view of the enrolled student’s page. The table contains student details such as first

name, last name, email id and the roles the students have. There is an option for the

instructor to remove a student from the course. The table can be sorted by student’s

first name, last name, email id, or role.

Figure 5.5: View of Manage Enrolled Students page

5.1.6 Create New Assignment

The instructors are able to create assignments associated with the course. Figure 5.6

shows the view of creating new assignment. While creating a new assignment, the

instructor can add assignment name, description, available date, due date and time,

and maximum score. This page is very user-friendly. There is a built in calendar for

selecting the available date and due date. The instructors are able to edit or delete

assignments.

47

Figure 5.6: View of creating new assignment

48

5.1.7 Instructor Actions for Assignment

The instructor has an actions page for managing assignments. Here the instructor can

edit test cases, test all student submissions, view all grades, unsubmitted all student

assignments, and view each student’s submission and grade. Figure 5.7 shows the

view of Instructor Actions page for managing assignments.

Figure 5.7: Instructor Actions Page for managing assignments

5.1.8 Create Test Cases

One of the main features of the Submit application is automatic grading of program-

ming assignments. The instructor creates the assignment which contains a number

of test cases that specify how to run the program. To create the test cases for the

49

assignment, the instructor uploads the program files that generate the correct output.

After that, the instructor defines the run method and inputs to generate output. The

run constraints, max CPU time and max core dump size are also specified to prevent

infinite loops and avoid the system from storing large files. Figure 5.8 shown below

is the instructor view of the test case page.

Figure 5.8: View of Test Case page where instructor uploads program, creates run
methods, adds inputs and sets program parameters

50

Create Run Method

The run method defines the command line call to run the program. To create the

run method, the instructor has to specify run name, run command, and can include

a description about how to run the program. Figure 5.9 shown below is the view of

creating a run method for the assignment.

Figure 5.9: View of creating run methods

51

Create Inputs

The instructor specifies inputs to create expected output. The input object has

name, description, and data. The instructor can add as many inputs as he wants.

The outputs are obtained from the inputs within the run method. Figure 5.10 shown

below is the view of the input created by the instructor.

Figure 5.10: View of input page

52

Create Outputs

The instructors are able to create outputs associated with each input. By clicking on

‘Create Output’ button, the application send request to create output. Figure 5.11

shown below is the view of creating outputs.

Figure 5.11: Create Outputs

53

5.2 Student Walkthrough: Part1

This section is discussing about the students point of view of this application. This

part includes student’s enrollment, view assignment, submit solution for the assign-

ment, test assignment and submit assignment.

5.2.1 Student Home Page

Figure 5.12 is the home page for the students. All students must enroll into the course

to access the assignments associated with the course. There is a unique enrollment

token for each course. The instructor sends this token to students who want to join

the class. Students can enroll in the course with this token. Figure 5.13 shows the

enrollment into the course. The home page shows all the courses that the student is

enrolled in. The course table shows the course name, term, and year. Student can

navigate to each course page by clicking on course name.

Figure 5.12: View of the Student page of Submit

54

Figure 5.13: View of Student enrolling into a course

55

5.2.2 View Assignments

The student who is enrolled in the class can see all the assignments created for that

class. This page specifies the start date and due date for the assignment. The students

can access each assignment by clicking on it. Then they can view the assignment and

submit the solution for the assignment. The students are also able to test their

assignment with the public test cases created by the instructor before submitting it.

Figure 5.14 shown below is the view of assignments page.

Figure 5.14: The Assignment page

56

5.2.3 Assignment Submission and Testing

The students are able to access the assignment and upload the program files for the

assignment. The assignment can be tested against the test cases by clicking the ‘Run

Tests’ button. The ’Run test’ compiles and runs the program automatically and

compares the output with the expected output created by the instructor. The user

will get instant feedback for the test such as whether the test is passed or not, what

output was expected, and the difference. This is another feature of Submit. Submit

figures out the difference between the student’s outputs and instructor’s output and

then generates a formatted output for the user to find the correct and incorrect

results. Some of the results are set as invisible for students which are only visible

to instructors and graders. If the student is satisfied with the output, then they can

’Submit and lock’ the assignment. Once the student submits the assignment then it

cannot be edited or run by the student. Figure 5.15 is the view of submitting solution

for assignment and Figure 5.16 shows the view of the program output with correct

and incorrect results. The input data, output, expected output, and difference are

shown in the figure. The incorrect output will be shown in a red box.

57

Figure 5.15: The view of student uploading solution for the assignment

58

Figure 5.16: The output view for running program

59

5.3 Grader Walkthrough

This section will discuss the grading of students assignment. This part includes

grader’s enrollment into the class, view assignment, test assignment, comment on

students code, and grade assignment.

5.3.1 Grader Home Page

Figure 5.17 is the home page for the grader. All graders must enroll into the course

to access the assignments associated with the course. There is a unique enrollment

token for each course. Grader can enroll in the course with this token. The home

page shows all the courses that the grader is enrolled in. The course table shows the

course name, term, and year. Grader can navigate to each course page by clicking on

course name to view all the submitted assignments.

Figure 5.17: View of the Grader home page of Submit

60

5.3.2 Grader Actions Page

The grader has an actions page for managing and grading assignments. Here the

grader can edit test cases, test all student submissions, view all grades, unsubmitted

all student assignments, and view each student’s submission and grade. Figure 5.18

shows the view of Grader Actions page for managing assignments.

Figure 5.18: Grader Actions Page for managing assignments

5.3.3 View and Grade Assignment

The grader is able to view and grade each student assignment. This page shows the

submitted program files and whether the submissions are on time or late. The grader

can test the submission by clicking ‘Run Tests’ button. The grader will get instant

61

feedback for the test. It generates a formatted output for the user to find the correct

and incorrect results. In this page, the grader can comment on students code and

create the grade file based on the test. Figure 5.19 shows the view of test result

generated by the grader.

Figure 5.19: View and Grade Assignment

62

5.3.4 Comments

One of the other major features of the Submit application is built-in online text

editor, Ace [2]. It is a high-performance code editor. Its built in features make the

code editing easy. All users have access to it. This adds more support to students

and graders. A student is able to make a minor change to their code in order to fix

the error. This will eliminate the need to upload new code for fixing minor errors.

The instructors and graders are able to add comments on each line of the student

code. These comments can be viewed by students. This will make grading easy and

students will get instant feedback. Figure 5.20 shown below is an example of text

editor along with comments added to it.

Figure 5.20: The Online Text Editor in Submit

5.3.5 Grade File

Submit will create a pdf report based on the student’s grades and other details as-

sociated with testing. After testing the code, the instructor/grader can add grades

and comments for the assignment. Once the grader uploads the grade file, it is also

visible to students. The grade file includes students name, grades, comments, the list

of inputs, and indicates whether the test is passed or not. Submit will create a pdf

report based on the student’s grades and other details associated with testing.

63

5.3.6 View All Grades

The instructor/grader is able to view and download grades of all student. The file

shows the student name grade and comments for the submission. Figure 5.21 shown

below is the grade file for all students. The downloading file will be in Exel format.

Figure 5.21: Sample View Grade file

64

5.4 Student Walkthrough: Part2

This section is discussing about how student can view grades and comments for the

submission after grading.

View Comments and Grade

The studets are able to view the comments and grade for the submission after grading.

They can access this from the manage submission page. By clicking on the source

file, the student can view the comments for their code and by clicking on the grade

file they can view the pdf grade file uploaded by the grader. Figure 5.22 shown below

is the view of comments and grade Page for the student.

Figure 5.22: Sample View of Comments and Grade Page

65

View Comments

Figure 5.23 shown below is the student’s view of comments for their code. It shows

the comment for each line with line number.

Figure 5.23: Sample View of Comments for the student code

View Grade

The student can view the grade file when the grader upload it. The grade file includes

students name, grades, comments, the list of inputs, and indicates whether the test

is passed or not. A sample grade file is shown in Figure 5.24.

66

Figure 5.24: Sample Grade file

67

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents a web based application for automatic evaluation of programming

assignments for computer science classes which enables simple code submission and

quick assignment grading. Submit has been built with Ruby on Rails and Flask and

can utilize the features of both frameworks. This makes the application faster and

efficiently handles multiple users. Rails has built-in security features and protect user

data from outside and internal attack. Rails also offer simple integration with MySQL

database, Jquery, Ajax, and JavaScript. The application design is simple and easy to

use for instructors, graders, and students. This application allows instructors to create

courses, manage courses, create assignments, and automatically grade assignments.

The students are able to enroll in courses, submit their assignments, and test their

programs against the public test case. The user will get instant feedback for their

testing such as whether the test is passed or not, what output was expected, and the

difference. This application reduces the effort and time needed to grade assignments.

The Submit has an efficient and easy way to submit and grade assignment.

The software size and complexity has a great impact on the effectiveness of an

application development. The software complexity depends on different interfaces

used in the application, complex requirements, maintainability of the code, SQL

complexity, use of frameworks, data communication and algorithms. This application

is developed on two frameworks: Ruby on Rails and Flask. Rails provide a simple

68

and easy platform for web application development. The extensive libraries of the

Flask reduce the size of code and reduce the complexity of the application. MySQL

database is used to store all data and file in the application. JavaScript and AJAX

are used for reloading and automatic updating page. HTML/CSS is used for creating

web pages. It offers simple integration with MySQL database, Jquery, Ajax, and

JavaScript, and HTML/CSS.

Software size measurement evaluates the application at the source code level

and it helps to understand the size of the critical systems. A reliable software size

measurement helps to implement a better managing programming practices. This

application is designed with a Model-View-Controller architecture. There are thirteen

controllers is used to develop this application. Also, thirteen model associated with

the controller to manipulate data and communicate to the database. There is a view

associated with each action. There are about five thousand lines of code is used to

develop the application which includes model design, controller design, view design,

integration of database, page updations, RESTful services, Flask App development,

and integration of Celery and RabbitMQ with the application. Since the system is

developed with two different frameworks and has many inputs, outputs, logic files,

inquiries, interfaces, and data communication, the system can be considered as an

average complex application.

6.2 Future Work

The Submit application is an efficient way to evaluate student programming assign-

ments. But there are many more features and enhancements that can be added to

provide the best system for automating assignment grading.

Plagiarism Checker

Plagiarism checking is the process of detecting the occurrence of plagiarism within the

source code or documents [36]. In the case of assignment submission, the students may

have copied the source code from the internet or from their peers, so it is necessary

69

to spot the plagiarism. This can be done by checking whether the submitted code

matches with other submitted codes for the same assignment. Adding a plagiarism

checker will make the application more efficient.

Monitor Job Queue

Currently, Submit has a job scheduling queue for creating outputs and testing sub-

missions. In the future, the administrator should be able to view the tasks in the

queue and manage them individually.

Peer Review

In the future, students shall be able to review the code anonymously and comment

on other students code to give feedback and suggestions.

Upload zip file

In Submit currently, the user can upload their file one by one. In the future, users

should be able to upload zip files for assignment submissions.

User Study

To study the effectiveness of the application, we are planning to conduct a user study

in future. The first step to evaluate the application is to upload the website in the

University domain, so all users can access the website. As part of the experimental

user study, the response from participants is checked both quantitatively and qual-

itatively. For the user study, the users are divided into two categories: instructors,

graders, and students and each group consist of 10 members. We prefer users with

prior experience in teaching and grading in computer programming course. As part

of testing, there will be a testing questionnaire and application testing session and

receive feedback and suggestions from the users.

Prior to the experiment, each participant will complete a pretest questionnaire

which includes demographic data as well as their familiarity with the computer pro-

gramming assignments and their experience as an instructor, grader or a student for

70

computer programming courses. The experimenter explained about the application

and demonstrate different use cases. After providing the instructions, the user will

start the actual experiment. The users will be asked to do the assignment creation,

submission, and grading with the newly developed assignment submission and auto-

matic evaluation platform.

The users as instructors will ask to create a new course, create new assignments

and test cases for the assignments. The user study for the student role has two parts.

For the first part, the users as students will be asked to enroll into the new course and

submit the solution for the assignment and test the assignment. If they are satisfied

with test result against the public test cases, ask them to submit the assignment.

If they want to edit the submission, ask them to open the code in a built-in editor

for minor corrections. When they are satisfied with the result, ask them to submit.

The users as graders will ask to enroll into the course with the join token. They can

view all the student submission and grade. For grading, they will be asked to test

the assignment with all visible and invisible test cases. Based on the result, they will

be asked to comment on the student’s code and upload grade for the assignment.

For student testing second part, the users will be asked login and check the grade

and comments for their submission. Finally, each participant will complete a post

test questionnaire which includes usefulness of the application, the accuracy of the

application, easiness to use the application and their suggestions and feedback. This

user study will be helpful to check the usability of the application and robustness of

the application in different conditions.

71

Bibliography

[1] Abraham Polishchuk. Building a restful api in a rails application. url: https:
//www.airpair.com/ruby-on-rails/posts/building-a-restful-api-in-

a-rails-application. [Accessed on 17 August 2017].

[2] AlloyUI. Tutorial-ace editor. url: http://alloyui.com/tutorials/ace-
editor/. [Accessed on 17 August 2017].

[3] Celery. Celery: distributed task queue. url: http://www.celeryproject.

org/. [Accessed on 17 August 2017].

[4] Codecademy. url: https://www.codecademy.com. [Accessed on 17 August
2017].

[5] David Aragon. Introduction to database design on rails. url: https://quickleft.
com/blog/introduction-to-database-design-on-rails/. [Accessed on 17
August 2017].

[6] Stephen H. Edwards. Teaching software testing: automatic grading meets test-
first coding. In Companion of the 18th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’03, pages 318–319, Anaheim, CA, USA. ACM, 2003. isbn: 1-58113-751-6. doi:
10.1145/949344.949431. url: http://doi.acm.org/10.1145/949344.
949431. [Accessed on 17 August 2017].

[7] Eriksson U. Functional and non-functional requirements. url: http://reqtest.
com/requirements-blog/functional-vs-non-functional-requirements/.
[Accessed on 17 August 2017].

[8] Flask. Welcome — flask (a python microframework). url: http://flask.

pocoo.org/. [Accessed on 17 August 2017].

[9] Flask Snippets. Per-request after-request callbacks. url: http://flask.pocoo.
org/snippets/53/. [Accessed on 17 August 2017].

[10] Instructure Inc. Instructure inc. url: http://www.instructure.com/. [Ac-
cessed on 17 August 2017].

[11] JSON. Introducing json. url: http://http://www.json.org/. [Accessed on
17 August 2017].

https://www.airpair.com/ruby-on-rails/posts/building-a-restful-api-in-a-rails-application
https://www.airpair.com/ruby-on-rails/posts/building-a-restful-api-in-a-rails-application
https://www.airpair.com/ruby-on-rails/posts/building-a-restful-api-in-a-rails-application
http://alloyui.com/tutorials/ace-editor/
http://alloyui.com/tutorials/ace-editor/
http://www.celeryproject.org/
http://www.celeryproject.org/
https://www.codecademy.com
https://quickleft.com/blog/introduction-to-database-design-on-rails/
https://quickleft.com/blog/introduction-to-database-design-on-rails/
https://doi.org/10.1145/949344.949431
http://doi.acm.org/10.1145/949344.949431
http://doi.acm.org/10.1145/949344.949431
http://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
http://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/snippets/53/
http://flask.pocoo.org/snippets/53/
http://www.instructure.com/
http://http://www.json.org/

72

[12] Kalid Azad. Intermediate rails: understanding models, views and controllers.
url: http : / / betterexplained . com / articles / intermediate - rails -

understanding-models-views-and-controllers/. [Accessed on 17 August
2017].

[13] Shivprasad Koirala and Marla Sukesh. Learn mvc (model view controller) step
by step in 7 days day 1. url: http://www.codeproject.com/Articles/
207797/Learn-MVC-Model-View-Controller-step-by-step-in. [Accessed
on17 August 2017].

[14] Larry Hardesty, MIT News Office. Automatically grading programming home-
work. url: http://news.mit.edu/2013/automatically-grading-programming-
homework-0603. [Accessed on 17 August 2017].

[15] Miguel. Using celery with flask. url: https://blog.miguelgrinberg.com/
post/using-celery-with-flask. [Accessed on 17 August 2017].

[16] MySQL. Documentation. url: https://dev.mysql.com/doc/refman/5.7/
en/entering-queries.html. [Accessed on 17 August 2017].

[17] Nascenia. Ruby on rails - controller. url: //http://www.nascenia.com/ruby-
on-rails-development-principles/. [Accessed on 17 August 2017].

[18] Nolan Burfield, Sergiu M. Dascalu, Hardy Thrower, Brandon Worl, Freder-
ick C. Harris, Jr. Submit: an online submission platform for computer science
courses. In 2015 INTERNATIONAL CONFERENCE ON COMPUTER AP-
PLICATIONS IN INDUSTRY AND ENGINEERING, CAINE 2015, pages 89
–95, San Diego, California, USA, 2015. url: http://searchdl.org/index.
php/conference/view/1003. [Accessed on 17 August 2017].

[19] Oracle. Mysql 8.0 reference manual. url: http : / / dev . mysql . com / doc /

refman/8.0/en/introduction.html. [Accessed on 17 August 2017].

[20] Pavel Pevzner. Smart teaching solutions. url: https://stepik.org. [Accessed
on 17 August 2017].

[21] Python Software Foundation[US]. Python 3.6.2rc2 documentation. url: https:
//docs.python.org/3/. [Accessed on 17 August 2017].

[22] RabbitMQ. Using rabbitmq. url: http://docs.celeryproject.org/en/

latest/getting-started/brokers/rabbitmq.html. [Accessed on 17 August
2017].

[23] Ruby. Documentaion. url: https://www.ruby-lang.org/en/documentation/.
[Accessed on 17 August 2017].

[24] Ruby on Rails. Ruby on rails. url: http://rubyonrails.org/. [Accessed on
17 August 2017].

http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
http://www.codeproject.com/Articles/207797/Learn-MVC-Model-View-Controller-step-by-step-in
http://www.codeproject.com/Articles/207797/Learn-MVC-Model-View-Controller-step-by-step-in
http://news.mit.edu/2013/automatically-grading-programming-homework-0603
http://news.mit.edu/2013/automatically-grading-programming-homework-0603
https://blog.miguelgrinberg.com/post/using-celery-with-flask
https://blog.miguelgrinberg.com/post/using-celery-with-flask
https://dev.mysql.com/doc/refman/5.7/en/entering-queries.html
https://dev.mysql.com/doc/refman/5.7/en/entering-queries.html
//http://www.nascenia.com/ruby-on-rails-development-principles/
//http://www.nascenia.com/ruby-on-rails-development-principles/
http://searchdl.org/index.php/conference/view/1003
http://searchdl.org/index.php/conference/view/1003
http://dev.mysql.com/doc/refman/8.0/en/introduction.html
http://dev.mysql.com/doc/refman/8.0/en/introduction.html
https://stepik.org
https://docs.python.org/3/
https://docs.python.org/3/
http://docs.celeryproject.org/en/latest/getting-started/brokers/rabbitmq.html
http://docs.celeryproject.org/en/latest/getting-started/brokers/rabbitmq.html
https://www.ruby-lang.org/en/documentation/
http://rubyonrails.org/

73

[25] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K. Hollingsworth,
and Nelson Padua-Perez. Experiences with marmoset: designing and using an
advanced submission and testing system for programming courses. In Proceed-
ings of the 11th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, ITICSE ’06, pages 13–17, Bologna, Italy. ACM,
2006. isbn: 1-59593-055-8. doi: 10.1145/1140124.1140131. url: http://
doi.acm.org/10.1145/1140124.1140131. [Accessed on 17 August 2017].

[26] The marmoset project . url: http://marmoset.cs.umd.edu/. [Accessed on
17 August 2017].

[27] Tutorials point. Ruby on rails development principles, explained. url: https:
//www.tutorialspoint.com/ruby- on- rails/rails- controllers.htm.
[Accessed on 17 August 2017].

[28] W3Schools. Css introduction. url: http://www.w3schools.com/css/css_
intro.asp. [Accessed on 17 August 2017].

[29] W3Schools. Html introduction. url: http://www.w3schools.com/html/html_
intro.asp. [Accessed on 17 August 2017].

[30] W3Schools. Javascript introduction. url: http://www.w3schools.com/js/
js_intro.asp. [Accessed on 17 August 2017].

[31] W3Schools. Json introduction. url: https://www.w3schools.com/js/js_
json_intro.asp. [Accessed on 17 August 2017].

[32] Web-cat home page. url: http://web-cat.org/home. [Accessed on 17 August
2017].

[33] wikipedia. Flask (web framework). url: https://en.wikipedia.org/wiki/
Flask_(web_framework). [Accessed on 17 August 2017].

[34] Wikipedia. Functional requirements. url: https://en.wikipedia.org/wiki/
Functional_requirement. [Accessed on 17 August 2017].

[35] Wikipedia. Non-functional requirements. url: https://en.wikipedia.org/
wiki/Non-functional_requirement. [Accessed on 17 August 2017].

[36] Wikipedia. Plagiarism detection. url: https://en.wikipedia.org/wiki/
Plagiarism_detection. [Accessed on 17 August 2017].

[37] wikipedia. Ruby on rails. url: https://en.wikipedia.org/wiki/Ruby_on_
Rails. [Accessed on 17 August 2017].

[38] Wikipedia. Use-case. url: https://en.wikipedia.org/wiki/Use_case.
[Accessed on 17 August 2017].

https://doi.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1140124.1140131
http://marmoset.cs.umd.edu/
https://www.tutorialspoint.com/ruby-on-rails/rails-controllers.htm
https://www.tutorialspoint.com/ruby-on-rails/rails-controllers.htm
http://www.w3schools.com/css/css_intro.asp
http://www.w3schools.com/css/css_intro.asp
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/js/js_intro.asp
http://www.w3schools.com/js/js_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
http://web-cat.org/home
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Plagiarism_detection
https://en.wikipedia.org/wiki/Plagiarism_detection
https://en.wikipedia.org/wiki/Ruby_on_Rails
https://en.wikipedia.org/wiki/Ruby_on_Rails
https://en.wikipedia.org/wiki/Use_case

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background and Related Work
	Overview
	Related Work
	Libraries and Frameworks

	Design
	Overview
	Requirements Specification
	Functional Requirements
	Non-Functional Requirements

	Use Case Modeling
	Database
	Architecture

	Implementation
	Submit web application
	Overview
	View Implementation
	Model Implementation
	Controller Implementation

	RESTful API
	Flask App
	Requests
	Request Queue

	Application Walkthrough
	Instructor Walkthrough
	Login
	Instructor Home Page
	Create New Course
	Instructor Actions
	Manage Enrolled Students
	Create New Assignment
	Instructor Actions for Assignment
	Create Test Cases

	Student Walkthrough: Part1
	Student Home Page
	View Assignments
	Assignment Submission and Testing

	Grader Walkthrough
	Grader Home Page
	Grader Actions Page
	View and Grade Assignment
	Comments
	Grade File
	View All Grades

	Student Walkthrough: Part2

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

