
University of Nevada, Reno

Evolving GPU-Accelerated Capsule Networks

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Daniel Anthony Lopez

Dr. Frederick C. Harris, Jr., Thesis Advisor

August, 2018

c© by Daniel Anthony Lopez 2018
All Rights Reserved

We recommend that the thesis

prepared under our supervision by

DANIEL ANTHONY LOPEZ

Entitled

Evolving Gpu-Accelerated Capsule Networks

be accepted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Frederick C. Harris, Jr., Ph.D., Advisor

Nancy Latourrette, Committee Member

Jeff Mortensen, Ph.D., Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

August, 2018

THE GRADUATE SCHOOL

i

Abstract

Capsule Networks exploit a new, vector-based perceptron model, providing fea-

ture instantiation parameters on top of feature existence probabilities. With these

vectors, simple scalar operations are elaborated to vector-matrix multiplication and

multi-vector weighted reduction. Capsule Networks include convolutional layers which

take the initial input and help it become a tensor. A novel data abstraction maps the

individual values of this tensor to one-dimensional arrays but is conceptualized as a

2D grids of multi-dimensional elements. Moreover, loss function thresholds and archi-

tectural dimensions were arbitrarily set during the introduction of Capsule Networks.

While current machine learning libraries provide abstractions for convolutional layers,

a TensorFlow optimization requires structural overhead for a full Capsule Network

implementation. They lack simple optimizations specifically for Capsule Network

data allocation. This thesis presents a scalable GPU optimization for the training

and evaluation of Capsule Networks. Furthermore, hyperparameters are adjusted

with the help of a multi-objective evolutionary algorithm (MOEA) to minimize the

loss function while maximizing accuracy.

ii

Dedication

I dedicate this thesis to the people in my life who told me I probably couldn’t finish

this masters when I said I would; you’ve been a great source of motivation.

You know who you are.

Eat your heart out.

iii

Acknowledgments

First, I would like to thank my committee members, Nancy Latourette, and Dr.

Jeffrey Mortensen for their consideration and suggestions. Academically, I would

also like to thank Dr. Sushil Louis for teaching me about genetic algorithms, Dr.

George Bebis, who’s Pattern Recognition class I took many semesters ago inspired

me to focus my career path towards machine learning, and Dr. Jason Altieri for

reminding to never sacrifice soul for precision. I’d also like to thank my career friend

Harpreet Singh for invaluable insights support about genetic algorithms and neural

networks, and simply being a friend to bounce ideas from. My mentor and advisor,

Dr. Frederick C. Harris Jr. also deserves my deepest gratitude for kicking me in the

rear during his brutal introductory data structures class, where I first got acquainted

with him. His casual life lessons and anecdotes helped solidify my ambition for never

ending self improvement, even in the little things. He also taught me how to program.

And well.

I’d also like to thank my family members for their support. My dad instilled in

me a passion for computers and clever thinking from early on in my life; it’s something

that I’m proud to port as part of my personality. My mother traumatized me with

the discipline in looking over small details in everything I ever do. To my surprise,

my sister never fails to put up with me. Above all, I could not have done this without

the warmth and support of mi grandma who strive to always give the best to her

children and grandchildren despite socio-political and inter-family calamities. Her

underappreciated love for her family is what helped her become a shoulder to cry on

when things got rough and the warmest welcoming hug whenever days were long.

This work was not supported by any grants, but donations through Bitcoin or

Venmo are welcome. Seatbelts save lives. The white zone has always been for loading

and unloading. No portion of this thesis, including its sound track, may be reproduced

in any manner without consent or I won’t be your friend anymore.

At the end, thanks to you, reader; if you are reading this line after all the others,

you’ve at least read one page of my thesis.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures vii

List of Algorithms ix

1 Introduction 1

2 Background and Related Work 4

2.1 Genetic Algorithms . 4

2.2 Neural Networks . 9
2.2.1 Multi-layer Perceptrons . 9

2.2.2 Convolutional Networks . 11
2.3 Capsule Networks . 12

2.3.1 Dynamic Routing . 13

2.3.2 Computational Walk through 14

2.4 Genetic Acceleration of Neural Networks 17
2.5 TensorFlow and GPU Accelerated Libraries 18
2.6 Libraries and Frameworks . 19

3 Methodology 21

3.1 GPU Data Manipulation . 21

3.2 Algorithmic Definitions . 23

3.3 MOEA . 25
3.3.1 Chromosome Definition . 25
3.3.2 NSGA-II Algorithm . 26

3.4 Use Case Modeling . 27

3.4.1 Application Use Cases . 29

3.4.2 API Use Cases . 30

v

4 Implementation 34

4.1 Capsule Network API and Example 34

4.1.1 Sequential Neural Networks 35

4.1.2 Parallel Capsule Network . 38

4.1.3 Custom CUDA Kernels . 40
4.2 NSGA-II Implementation . 43

5 Results 46
5.1 Architectural Results . 46

5.1.1 Single Capsule Network Results 46

5.1.2 MOEA Results . 48
5.2 Parallel Capsule Network Results . 48

5.2.1 Speedup . 52

5.2.2 Throughput . 53

6 Conclusions and Future Work 55
6.1 Conclusions . 55
6.2 Future Work . 56

6.2.1 Preexisting Tools . 56

6.2.2 Extra Evolutional Parameters 56
6.2.3 Concurrency . 57

6.2.4 Multi-GPU Implementations 57

Bibliography 59

vi

List of Tables

3.1 The hyper parameters of capsule networks are encoded in GA bit
strings, where each set of bits corresponds to a point in a given range.
The last four have a different step size, and they are as precise as
double precision allows. 25

vii

List of Figures

2.1 The plot of an example problem shown here delineates the Pareto front
of the minimization of two functions [4]. The Utopia point at the origin,
while infeasible, is the direction towards which previous solutions inch
towards from the darkened region of obtained solutions. 7

2.2 Traditional neurons and capsule share similar architecture in taking
weighted reductions of the previous layer. Capsules, however, have
their vectors undergo an extra dimensionality transformation, spe-
cific to the relationships between lower-level and higher-level features.
These W matrices learn relational information between features while
c is dynamically evaluated per forward pass. 13

3.1 The dl+1 × dl transformation matrices, shown in the left most ten-
sor, are multiplied element wise with the dl dimensional outputs from
the lower level capsules. These outputs are stored column-wise in the
middle tensor, but are duplicated by column-wise for each higher-level
capsule. The Hadamard product of these tensor produces dl+1 sized
vector inputs to the higher level capsules in the right most tensor. . . 22

3.2 The output of the convolutional layer is reshaped from individual
scalars to vectors, depth-wise. For this to happen, the number of fil-
ters in the convolutional layer must be a factor of the dimension of the
vectors. This specific vector mapping is important to preserve; during
back propagation, the list of vectors is converted back to a set of scalars. 23

3.3 The main loop of the NSGA sorts Pt and Qt by Paredo fronts and
put as many as it can into Pt+1. The odd front out is sorted by a
distance-based crowding operator [4]. 26

3.4 The terminal interface provides options for running a single Capsule
Network or the entire genetic algorithm. It also allows configuration
settings for the user. 30

3.5 The API provides high level abstractions for simple construction and
training of Capsule Networks. 31

4.1 The sequential implementation of Capsule Networks and other neural
network primitives, following OOP standards 36

4.2 The parallel implementation of CUCapsuleNetworks and other GPU
accelerated neural network primitives, following Struct-Of-Array Con-
ventions. The bottom object is not an entity, but a list of unique
kernels (wrappers). They are given the CUUnifiedBlob instances as
reference parameters. 39

viii

4.3 The NSGA-II implementation is simple; aggregating individuals into
populations, and shorthanding populations into Paredo Fronts. A
Paredo Front is abstracted as a pointer array for easily sorting for
individual updating. The CapsNetDAO helps speedup Individual eval-
uation by creating SQL queries and checking for duplicate networks to
prevent wasteful duplicate evaluation. 44

4.4 This PostgreSQL entity uses the individual bitstring as the primary key
and contains decoded hyperparameters and Capsule Network metrics
as other row attributes . 45

5.1 The Accuracy for the NSGA-II configuration outperforms the original
architecture, despite both having a small dip just before 200 iterations,
due to local minima in W space. 47

5.2 The Loss of the NSGA-II configuration starts out at a smaller pace,
but after finding a local minima, starts to rise again at 200 iterations. 47

5.3 The minimum, average, and maximum accuracies of the population of
the MOEA after 100 epochs (top) and after 300 epochs (bottom). . . 49

5.4 The minimum, average, and maximum loss values of the population of
the MOEA after 100 epochs (top) and after 300 epochs (bottom). . . 50

5.5 Forward propagation takes less time than back propagation in the se-
quential version of these methods since there is no data movement (de-
spite the inner loop found in Dynamic Routing [25].) These methods
are not multi-threaded and are compiled without compiler optimization
flags. 51

5.6 Back propagation is clearly faster than forward propagation due to
lack of communication overhead in data movement. Note the scale as
compared to Figure 5.5. 52

5.7 Speedup of these methods start to slow down between 10-15 tensor
channels (360-540 lower level capsules) as these methods increase due
to Amdahl’s law. Note that back propagation, which only communi-
cates resulting vj errors back to the host, a constant k × dl+1 = 160
values, has higher speedup than forward propagation, which requires
the movement of a 28× 28 sized image from the MNIST dataset. [21]. 53

5.8 The throughput is measured by a factor the number of floating points
required to compute (not the operations) at the variable layer divided
by the amount of time taken to complete the meta-operation. These
floating points are the ones for the interim layer only. 54

ix

List of Algorithms

3.1 Forward Propagation . 24
3.2 Back Propagation . 25
3.3 Fast Non-Dominating Sort . 28
3.4 Crowding-Distance Assignment . 29

1

Chapter 1

Introduction

Given a low resolution image of a sloppily written digit, humans would be able to

recognize what type of digit is written within milliseconds. However, such an ex-

ample transforms from comically trivial to dauntingly difficult when prompted to a

computer. This is due to the advanced biological infrastructure which allows us to

assign abstract labels, such as digit classes, to complicated inputs, such as images.

Inspired by these neurological processes found in nature, neural networks are a su-

pervised machine learning technique which learn high-level relationships between sets

of inputs and outputs presented. However, these relationships are non-linear and are

thus rendered as difficult quantitative processes [5, 12, 18]. Nevertheless, these may

be found through the mathematical advent of discriminatory learning [5].

Different optimizations have been introduced such as recurrent neural networks,

long-short term memory networks, and convolutional neural networks, which intro-

duce ideas such as cyclical inputs, in-place memory, and shared weights, respectively,

in an effort to increase the robustness in estimations [18, 23]. The sudden rise in

popularity in recent years has been brought has been propelled by advancements in

computational hardware. With more robust computation power, convolutional neural

networks have become synonymous with deep learning [23]. A recent novel optimiza-

tion challenges the current perceptron model to perform operations on vectors rather

than scalars. In this model, groups of neurons are called capsules, inputting and out-

putting mathematical vectors [25]. These vectors encode the probability of a higher

level feature existing in their length, and estimated pose parameters as its orienta-

2

tion. Moreover, relationships between features detected in lower level and higher level

capsules must be qualified [13, 25]. Nevertheless, simple iterative methods such as

dynamic routing between capsule layers exist, enabling the network to become more

robust to subtle variations in the input data [25].

When it comes to hardware, Graphical Processing Units (GPUs) have become

more popular to accelerate the training and evaluation steps in these networks [2, 19,

26]. Data and task parallelism approaches have been introduced to scale these net-

works to multiple GPUs in accelerations for those. To take advantage of these, hetero-

geneous machine learning libraries such as TensorFlow or Keras provide a framework

for fast experimentation of these models on distributed systems [1]. Nevertheless,

overhead is introduced with inefficient memory transformations and data allocations.

This thesis eliminates this overhead with efficient memory sequencing and optimized

techniques, such as shared memory reduction, in hopes to provide a new technique

specific to capsule networks. For example, convolutional neural networks may be im-

plemented in GPUs using altered fully-connected layer tools. However, a later work

optimized them, transforming two dimensional filters into redundant one dimensional

weight arrays, thus introducing a new set of deep learning primitives, now found in

TensorFlow [1, 2].

Moreover, certain hyper parameters in these networks are arbitrarily set and

could be fine tuned. Genetic/Evolutionary Algorithms (GAs) could be the solution

for this [8].

GAs emulate another aspect of nature, evolution, by allowing a population of

potential solutions to evolve using operators analogous to natural selection and cross

breeding [8]. Moreover, these solutions are binary string chromosomes that encode

higher level parameters. These operators are proportional based selection, crossover

and mutation, and effectively allow genes of information to proliferate throughout

successive populations. Individuals are rated after their decoding is run through ob-

jective fitness functions, and their performance directly influences their prevalence in

the GA. Multi-objective evolutionary algorithms (MOEAs) take this one step further

3

by having multiple functions help determine the fitness of an individual [4].

The capsule network hyper parameters are encoded as chromosomes, evolved by

GAs. Thus, an individual represents a hyper-parameter configuration from which

a capsule network is constructed. The accuracy in digit prediction and the margin

loss of the network become two objective functions in the GA. Each capsule network

is constructed in a pure CUDA implementation, with no external libraries such as

cuDNN. Novel low level memory allocation and sequencing will enable this capsule

network implementation to outperform a potential TensorFlow equivalent.

The rest of this thesis is structured as follows: a little background into capsule

networks and their architectures, and MOEAs and their effectiveness over canonical

GAs is presented in Chapter 2. Chapter 3 goes over the methodology of the network

data abstractions and the cluster setup, as well as MOEA parameters. Chapter 4

introduces the high-level software class diagrams and requirements for implementa-

tion. Chapter 5 provides parallel based results such as speed up, and the fine tuned

parameters for the GA. Finally, the paper wraps up in Chapter 6 with a discussion

of the future work and the conclusion.

4

Chapter 2

Background and Related Work

This work is largely built off of the architecture and work on Capsule Networks [25].

Due to the size of data processing required, an efficient GPU implementation thereof

requires careful data allocation and sequencing. Moreover, there exist hyper parame-

ters that may be fine tuned with the help of genetic algorithms which exploit diversity

from multiple solutions and literally cross breed higher performing solutions. Because

neural networks deal with accuracy of its classification, as well as overall loss (how

“badly” was something misclassified), the genetic algorithm must aim to optimize

both of these objective functions.

2.1 Genetic Algorithms

In nature, the process of evolution exploits strands of DNA as a method to encode

genes. These genes then dictate the existence of attributes in an individual which

have a direct impact on the survival capabilities of the individual.

Genetic Algorithms (GAs), or evolutionary algorithms (EAs) are analogous to

this schema by encoding potential solutions and then evaluating the performance of

the solution (or fitness of the individual) through an objective fitness function [8].

The individuals in these algorithms are inputs to a problem, highly abstracted and

encoded as bit strings. As part of a population of other solutions, each individual has

their “fitness” measured through an objective fitness function, which decodes the bit

strings back to the input format of the problem at hand. To produce new population

5

of solutions, they undergo three different operations to produce a child operation.

These operations are: selection, a method of systematically choosing individuals

based on their fitness function performance; crossover, swapping bits between chro-

mosomes in an effort to “share” information; and mutation, randomly flipping bits

in this chromosome. The latter two operators are performed with some probability

in the algorithm; crossover is typically done with 20%-80% probability, whereas mu-

tation is performed with .001%-.1% probability [8]. With the proliferation of GAs,

varieties of each operator have been developed and created. For example, elitist se-

lection schemes favor higher performing solutions in the previous population when

creating the new population, or when selecting individuals for crossover.

Given large populations and high probabilities of crossover and mutation, genetic

algorithms are very adept at optimizing solutions in a very large space. Moreover,

the high-level abstraction of these inputs as bit strings enable certain “genes” to be

shared among other members in the population through crossover. This enables the

GA to find a balance between exploiting performance bearing genes and exploring

new possibilities which introduces randomness into the searching space. However,

the proliferation of GAs as solution finders and optimizers does not directly imply

their use as function optimizers [14]. Depending on the problem, highly performing

solutions may be in an opposite direction from where “slopes” of better performance

in the solution space. Nevertheless, GAs are shown to still be fundamentally great

multi-peak optimization finders and routines when the size of the populations and the

number of trials are repeated to ensure flukes or coincidental pitfalls do not hinder

the performance of the genetic algorithm [8, 17].

NSGA-II

Some of these fitness functions may produce more than one value, if more than one

attribute of the fitness of the individual is slated to being optimized. For these, a

specialized type of GA, a multi-objective evolutionary algorithm (MOEA), is used

which attempts to find the balance between multiple solution spaces [4, 8]. These

6

algorithms tend to have slightly more overhead, since they have to consider potentially

countering objective solutions. NSGA-II is such an algorithm which also lower amount

of computational complexity. NSGA-II addresses issues from NSGA-I, its predecessor:

faster nondominated sorting (a subphase of the algorithm) and elitism [4].

Pareto Fronts

In single objective fitness function based GAs, the validity and the evolution of the

individuals may be detailed by charting the best, average and/or worse individu-

als throughout each generation. These graphs will logarithmically, yet stochastically

approach higher possible values until they eventually plateau. This is due to the

highly varied “gene-swapping” caused from cross-over and selection operators. Since

selection based operations allocate higher chances of selection to higher performing in-

dividuals, the higher-performing “genes” are more likely to get duplicated throughout

the population [8, 10].

In MOEAs, however, validation is graphed by the placement of Pareto fronts [8].

These fronts represent the set of individuals that best attempt to maximize mul-

tiple objective functions while minimizing compromises between them, as seen in

Figure 2.1. In each iteration of the genetic algorithm, these fronts inch towards the

utopia point, the best possible (yet almost always unattainable) combined output

from both objective functions. In NSGA-II, these fronts are explicitly found as so-

lutions for which there does not exist another solution with a higher value for both

values. In other words, to say that an individual is from Pareto Front, Fi, is to say

this individual dominates all other solutions from Fi+1. The fronts are used for the

operations in NSGA-II [4].

Operations

First, to create the population of individuals used for an iteration, t, of the GA, the

current population and one created from the last iteration are unioned, Rt = Pt∪Qt.

From here, the individuals are ranked by a nondominating sort; a stable sorting

7

Figure 2.1: The plot of an example problem shown here delineates the Pareto front of
the minimization of two functions [4]. The Utopia point at the origin, while infeasible,
is the direction towards which previous solutions inch towards from the darkened
region of obtained solutions.

8

algorithm based on whether or not an individual dominates another. A side effect of

this sorting is that the individuals are now ranked into Pareto fronts.

A new population, Pt+1, is generated by incrementally adding these Pareto fronts,

while the size of the population would exceed N by adding a front, |Pt+1|+ |Fi| ≤ N .

For the last Pareto front that does not evenly fit, the individuals are assigned

a “crowding-distance” parameter which encodes the individuals distance from being

an extreme solutions. An extreme solution is considered as an individual which has

optimized one objective function, but has not considered the others, and is thus on the

ends of a Pareto Front. The individuals here are sorted by this distance parameter,

which favors those towards the center of the Pareto front. Only those needed to

complete the population up to N are used, Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)].

Crowding Distance Parameter

The parameter needs to help ensure individuals with similar consideration for all

objective functions being considered have higher values than those that do not. The

process by which this parameter is updated is thus done per objective function in

the equation. For each objective, m, the individuals are sorted by their respective

output for this function. The first and last individual are then given a distance

parameter of∞, acting as an upper bound. Every other individual then has its value

incremented by a factor of the difference in output of its surrounding individuals

divided by the range of the function. More explicitly, if fm(F) represents the output

of this individual through objective function m, then the distance parameter for the

intermediate solutions is incremented as

F [i]distance = F [i]distance +
fm(F [i− 1])− fm(F [i+ 1])

fmax
m − fmin

m

(2.1)

In this paper, multiple neural networks are generated with distinct hyper param-

eters. Each set of hyper parameters are encoded into binary strings, found by an

NSGA-II architecture MOEA. The objective functions used will be the accuracy and

the overall loss of a trained network, after a fixed amount of iterations. These hyper

9

parameters help to fine tune the overall performance of the neural network by chang-

ing dimensionalities and other arbitrary parameters set. For example, when evolving

convolutional networks, it had been assumed that adding more layers would auto-

matically increase the overall accuracy of the network. In fact, however, there exists

a threshold past which adding more layers does not necessarily improve performance,

but rather, hinders it.

2.2 Neural Networks

In another biological analogue, neural networks are constructed as a model of synapses

found in human brains [18]. As a machine learning model, these may be used for pat-

tern classification using discriminatory learning, the advent being able to detect fea-

tures in an input that differentiate elements from different classes during training [18,

24]. Using supervised training, images are assigned a label for the class they belong

to, and neural networks will find high dimensional associations between these [18].

All neural networked based variation works off of a layered structure. Each layer

consists of nodes which receive weighted inputs from nodes of the previous input; the

first layer being the input image and the last output layer being the estimated label for

that input image, evaluated through forward propagation. During back propagation,

these estimations are “corrected” through the help of a loss function. The gradient

of the loss functions (as well as the partial derivatives of other non-linear activation

functions throughout the insides of the network) help push internal weights for node

activations [12].

2.2.1 Multi-layer Perceptrons

Nodes in multi-layer perceptrons are as simple as possible, a weighted reduction of

the single scalar activation outputs from the previous nodes undergoes a non-linear

activation function, such as a sigmoid function [12, 18]. The non-linearity of these

functions normalizes the input from (−∞,∞) down to (−1, 1), to prevent large values

from dominating, and thus misrepresenting, the influence of layer from one layer to

10

the next. Conventionally, a sigmoid activation is used as the non-linear function:

σ(x) =
1

1 + exp−x
(2.2)

At the end of forward propagation, where an input vector is passed from each

layer to the last layer, the error of the network at that point is the euclidean distance

between the output vector and the true desired output vector. This desired output

vector is all zero, except for the element with the index corresponding to the class

the image belongs to.

For example, if using a 28 × 28 pixel image of a handwritten digit from the

MNIST data set, the image will be considered a single 784 dimensional vector [21].

This vector is then dotted with a weight vector, where each element corresponds the

weight between the higher level node it belongs to and every lower level input node.

Finally, this scalar product is undergoes the non-linear activation function to become

the output for that weight. At the last layer, there is one node for every class, and

strength of the output at each node should indicate the strength with which the

network believe this input belongs with this class [23].

During back propagation, an error vector is calculated, and in the reverse of

back propagation, this error is propagated from layer to layer. In the process, at each

layer, since the input originally goes through a non-linear function, the error must go

through the derivative of the same non linear function.

In our example, the error of the last layer is defined by

δxi = (σ(xi)(1− σ(xi))) ∗ (xi − yi). (2.3)

However, in any other layer l, the error is the weighted accumulation of the error from

higher level, gone through the derivative of the non-linear activation function:

δxli =
∑
j

σ(δxl+1
j)(1− σ(δxl+1

j)) (2.4)

Moreover, although the error gradient indicates the direction towards which the

outputs are inched, the different in the weight between the node in x and the node

11

in y, wl
ij is computed as the product of the original input and the error, xlδxl+1.

Overtime, these changes are accumulated, but not applied onto the actual weights

themselves for a while for mini-batch processing.

2.2.2 Convolutional Networks

The artificial intelligence community shifted its attention to image processing with

2D inputs, and Convolutional Networks, based largely on other biological features

(such as visual cortex processing) were more popular [19, 20, 23]. This was especially

true since the computational power required to process large batches of data became

more readily available with hardware advances [18]. The novelty and effectiveness of

the convolutional and pooling layers in these networks were enough to make them a

highly attractive commodity for large businesses in the tech industry. Convolutional

Networks has become synonymous with Deep learning in recent years thanks to the

“AlexNet” and “GoogLeNet” architectures that came shortly thereafter [19, 29].

Convolutional Networks make use of two main layers, along with a highly sim-

plified activation function (which happens to be mostly linear this time): Convolu-

tional Layers, which introduce depth into cubes of data, and Pooling Layers, which

significantly lower computational effort by consequently losing information. The con-

volutional layer is comprised of a user-specified number of “filters”, the same depth,1

but potentially smaller height and width of the original input image. The filter is

then “dotted” with a portion of the input, to produce a scalar output specific to that

filter, for that image. Here, the filter values may be considered weights which are

shared among multiple input nodes in a very specific fashion. It is this shared weight

property of convolutional layers which enable invariance: the novel principle allowing

a feature to be detected anywhere in the image [21, 25].

The output of a convolutional layer is an array of feature maps, one for every

filter in the convolutional array, creating a three dimensional cube of data, which

1input may either be a potentially 1 (greyscale) or 3 (RGB) channel image, or the output of
another layer

12

significantly increases the amount of processing to be done by other layers down the

pipeline. To help with this problem, pooling layers reduce the height and width of the

images by, in a similar striding method, will look only a single value in this window,

and output that. This single value is either the maximum value, or the average of

all the values from that location in the image. In the case of max-pooling, this layer

effectively operates equivalently to a convolutional layer, with a large window and

small striding step (resulting in a feature map with a significantly lower height or

width) consisting of filters with only a 1 in the filter location for the highest value in

only that window for that specific moment, per channel.

Finally, after each convolutional layer, each value passes through its activation

function, known in its most basic form as a Rectified Linear Unit (ReLU), x+ =

max(0, x). This ReLU activation truncates all negative values to zero, in an effort to

quick calculation, although several other benefits come from it, and its variations, such

as Leaky ReLU: hidden nodes that are activated are sparser for a newly initialized

network, and it helps the vanishing gradient problem.2

2.3 Capsule Networks

Despite the proliferation and versatility of convolutional networks, a new architecture

of networks was introduced by [25] in which groups of nodes work together in a

“capsule”, effectively dealing with vectors of information for inputs and outputs rather

than scalars in all other classical methods. Now, the neuron model has been expanded

from single scalars to vectors, where input and output vector cardinalities need not

be the same, as seen in Figure 2.2. In this model, the values of the output vector

correspond to specific instantiation parameters of an object detected in an input, and

the length of the vector encodes the probability of the feature (for that capsule) being

present in the input.

Analogously to a conventional neural network, the capsule outputs from one layer

2During back propagation (and potentially during simulated annealing techniques), the derivative
of a non-linear activation gradient makes small error gradient values propagate as even smaller values,
until eventually vanishing before it has been able to make in impact on lower layers [7].

13

Figure 2.2: Traditional neurons and capsule share similar architecture in taking
weighted reductions of the previous layer. Capsules, however, have their vectors
undergo an extra dimensionality transformation, specific to the relationships between
lower-level and higher-level features. These W matrices learn relational information
between features while c is dynamically evaluated per forward pass.

(after undergoing some dimensionality transformation via transformation matrices)

to the next are compiled via some weighted sum-reduction algorithm. The weights for

this algorithm are computing by a routing-by-agreement algorithm which, similarly

to K-means [16], grants a higher weight to vectors whose outputs tend to cluster to-

gether, thus exploiting the rareness of “agreeing” vectors in higher dimensions found

in discriminatory learning [5]. Although the authors of [25] present this straightfor-

ward method, they also stress that there are many different ways to produce a similar

output.

2.3.1 Dynamic Routing

The presented CapsNet architecture in [25] features a convolutional layer, followed

by two capsule layers, the latter of which contains a capsule for each feature class

defined. The dynamic routing algorithm occurs between two capsule layers in a

network, where the initial “output” vectors of the first capsule layer are composed of

the same pixel value from many filter outputs from the previous convolutional layer.

14

In machine learning libraries, such as TensorFlow, individual tasks are distributively

organized to accommodate many different devices and easy scaling from a single

machine to a distributed system [1]. However, when implementing Capsule Networks,

memory resources are wasted when the tensor representing the cube output from the

convolutional layer is transformed via these tasks to a set of 8D vectors. Moreover,

during reconstruction error generation, although tasks are modeled alongside their

dependencies in a graph-based representation in an effort hide latency, redundant or

unnecessary tasks may accidentally execute. This GPU acceleration method does not

compute the reconstruction error.

2.3.2 Computational Walk through

The CapsNet Architecture is defined as a convolutional layer (PrimaryCaps), followed

by a capsule layer, which reinterprets the output of the convolutional layer as its

own output, followed by a smaller capsule layer (DigitCaps). The principle novel

computation in capsule networks lies in the operations between capsule layers during

the forward propagation stage. Here, lower-level, lower-dimensional capsules undergo

dimensional transformation and a dynamically weighted reduction to become the

output of a higher-level, higher-dimensional capsule network. This transformation is

analogous to multiplying individual scalars by weights in feed-forward, fully-connected

layers.

The lower-dimensional capsules has “outputs” by the feature map output of a

convolutional layer with ReLU activation. In PrimaryCaps, the number of filters must

be divisible by the lower dimension to reshape the feature map outputs as vector maps.

For referential integrity, the lower dimension, dl, will be 8, and the higher dimension,

dl+1 will be 16. Therefore, depth wise, dl sized increments may be considered a vector

map, and the number of lower level capsules is dl times the number of vector channels.

The number of vector maps (and consequently, the number of lower-level capsules) are

varied in this paper to study the speed up effectiveness. Furthermore, these methods

will use the MNIST data set of hand written digits of 28× 28 pixels.

15

Forward Propagation

First, the lower level capsules, j, produce an output vector, ûj|i, for each higher level

capsule, i, once for each possible output class, estimating the parameters of their

output vector, vi, which is transformed to the dimensional space of the higher layer

by an evolved transformation matrix, W, such that ûj|i = Wijui. Each higher level

capsule then computes a dynamic weighted sum of these vectors as their output, vj.

For a vector to calculate its output, the weighted sum result, sj, undergoes a

vector squishing activation function,

squash(sj) =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(2.5)

This is analogous to the sigmoid activation functions usually applied onto the weighted

sums in traditional capsule networks.

Dynamic Routing

The dynamic weights, ci, are updated by computing the log prior probabilities, bi,

which are iteratively updated. During each iteration, the probabilities, bi are incre-

mented by the scalar product of the activated weighted sum,

vj = squash(sj), sj =
∑
i

cijûj‖i (2.6)

and the vector in question, ûj‖i.

The final capsule vectors outputted encode the probability of the existence of

that feature in the length of the vector, while encoding the instantiation parameters

of the pose of that feature in the orientation of the vector. The orientation parameters

are heavily determined by the transformation matrix, which are optimized using µ

momentum, instead of the Adam optimizer. The network will classify an image as

being part of class i from k classes with the maximum length, ‖vi‖.

Back Propagation

The loss function for Capsule Networks takes into account the length of the vector,

not unlike the magnitude of the scalar value found in normal neural networks. The

16

loss function may be described as

Lk = Tk max(0,m+ − ‖vk‖)2 + λ(1− Tk) max(0, ‖vk‖ −m−)2 (2.7)

where m+ = 0.9, m− = 0.1, and λ = 0.5. Its corresponding derivative taken with

respect to this length is a piece-wise function since it must consider the max functions

d

d‖vk‖
[Lk] =


−2Tk(m+ − ‖vk‖) ‖vk‖ < m+, ‖vk‖ ≤ m−

2λ(Tk − 1)(m− − ‖vk‖) ‖vk‖ ≥ m+, ‖vk‖ > m−

2(λ(Tk − 1)(m− − ‖vk‖) + Tk(‖vk‖ −m+)) ‖vk‖ < m+, ‖vk‖ > m−

(2.8)

In back propagation, a corresponding error value is computed as a factor of the

length of the vectors. This error value is the combination of the gradient of the loss

function, multiplied by the derivative of the vector squashing activation function,

effectively representing the error gradient towards which the free W values scattered

throughout the network collectively inch towards. The derivative of the activation

function is simply

∂

∂‖sj‖
[squash] =

2‖sj‖
(‖sj‖2 + 1)2

sj
‖sj‖

(2.9)

These are weighted by their respective c values to produce the error gradients,

δuj|i, for all i output capsule vectors.

The error gradients are then transformed into the dimension of the lower level

capsules, by being multiplied by the transpose of the original transformation matrix,

WT
ij. Before then, however, a matrix product of these error gradients, and the original

inputs to the network become part of the ∆Wij. The output of the lower level cap-

sules, however, are in truth, the rearranging of the output of the earlier convolutional

layer. Back propagation occurs in this layer as normal.

Mini-Batch vs. Sequential Updating

Given the time it takes to train a network, and the potential bias the ordering of the

training examples gives to the network, different techniques were created in order to

17

speed up processing and reduce potential bias and equalize the change all training

examples provide. The latter is important to greatly increase the chances the network

will converge to a more global optima. Mini-batching is one such technique.

Although there have been advances in high performance computer for large

amounts of data, accumulating and periodically applying weight changes waiting to

apply the changes in these weights to the weights themselves is still a widely adopted

practice, as it will minimize bias on the network from external sources.

In mini-batching, a batch of input images are provided to the network, where

forward, and subsequently, back propagation are computed in parallel to one another.

Afterwards, the resulting ∆W’s are reduced from all these “layers” to provide one

main error, by which the network is updated. This paradigm is used in machine

learning frameworks such as TensorFlow.

All matrices and vectors used in these computations are allocated as 1D arrays

and indexed very precariously in the proposed method. Traditional mini-batching

compilations of images would include higher complexities in these indexing. Moreover,

the reduction of these ∆W’s from multiple devices would increase the communication

needed between the host and all potential devices, thereby reducing potential scaling

benefits. Therefore, this method does not use this technique, but rather computes

forward and back propagation for each image sequentially, accumulating the error in

W and then applying it to W at the end.

2.4 Genetic Acceleration of Neural Networks

This project is not the first to use a genetic algorithm to update structural param-

eters of a neural networks. Due to the exploitative abilities of a genetic algorithm,

architectural and non-intuitive, programmatic insights about neural networks have

been discovered [9, 15]. These niche hyper-parameter discoveries validate using an

MOEA for evolving a novel type of neural networks[9].

In other neural network procedures, genetic algorithms have been shown to help

optimize back propagation [15]. Learning-rate-optimizing genetic back propagation

18

(LOG-BP) helped evolve the neural network weights and the solver. LOG-BP helped

choose scheduling learning rates, which were a problem for increasingly elaborate neu-

ral network architectures despite GPU acceleration, such as GoogLeNet [29]. Helping

evolve the learning rate throughout training would help with other known side effects

such as the vanishing gradient problem found in stochastic gradient [7, 22, 24].

2.5 TensorFlow and GPU Accelerated Libraries

Given the embarrassingly parallel nature of some of the filter operations, operations

on the convolutional layer may be facilitated with previous abstractions of multidi-

mensional data. Such abstractions allow input and output to be distributed in nature

for multiple GPUs [2, 3, 19]. Moreover, although other linear algebra optimizations

exist, they are used for every individual step. A specialized library of operations with

access to the memory allocation itself include bigger-picture optimizations.

TensorFlow provides an API to a model-loss centric framework; a model is defined

as a directed acyclic graph of tasks that eventually lead to a loss function which is

minimized through a solver [1]. This generalization allows it to attempt to complete

tasks that are independent of one another in parallel, as well as distributing a task

across many nodes and potential multi-core devices. Generalized as it may be, this has

serious pitfalls, as resources may be wasted on needless tasks, simply because a later

dependent task decides not to used based on other input. The framework seizes the

control flow and may even waste computational power on values that are thrown away.

However, the solvers in this framework still enable a Tensorflow implementation to

reach around 90% accuracy within hours sequentially, and within minutes with GPU

computation. Therefore, TensorFlow implementations of capsule networks have room

for efficiency and speed up optimizations.

Much like how convolutional layers can be abstracted at a high-level to built-in

CUDA functions, capsule layers can be reffered to as a collection of low-level functions

that handle data and its manipulation [1, 2, 3]. Similar the n-dimensional tensor data

structure required in TensorFlow, data is grid-wise allocated, each cell potentially

19

containing multi-dimensional elements. To reduce data structure allocation, one-

dimensional arrays are maintained for each individual data transformation mentioned

in the procedures above. The work presented in this thesis hopes to lead to the

development of low level CUDA kernels, specific for capsule layer abstractions.

2.6 Libraries and Frameworks

Different parts of the methods presented depend on multiple libraries and frameworks.

These include integrated development environments (IDEs), services for database

networking, and specialized hardware with multiprocessing capabilities.

The genetic algorithms and the capsule networks they produce will all be imple-

mented and handled in C++/CUDA. C++ is an object oriented language, juxtapos-

ing the ability of low level data management and high level class encapsulations for

full control of the data being shifted while retaining an understandable, abstract view.

Although not highly revered in its networking capabilities, it provides great speed for

CPU (host) sided code. Nevertheless, its age and prevalence in programming have

garnered a vast standard templated library (STL), maintained on the open source

community [28].

For PostgreSQL database accessing, the standard C++ library PQXX is used.

For linear algebra calculations and data structures, Armadillo is used [27]. Finally, for

GPU side processing and access, NVIDIA’s CUDA library and language is used [26].

PostgreSQL is a simple relational structured query language (SQL) database.

Although it has capabilities for heavy load and quick fetching, its use in this project

is for caching configurations for previous networks in a genetic algorithm; a sort of

duplicate checking for optimization. This was chosen for its ease of setup, formidable

network configurations, and its accompanying multitude APIs for a variety of lan-

guages.

For an IDE, CLion by Jetbrains was chosen for its intuitive design and navigation.

Moreover, CLion make extensive use of CMake for its library and package manage-

ment for deploying programs, necessary for all aforementioned external libraries used.

20

The use of CMake enables this IDE to provide error checking, completion, import

optimization and automation, and version control software integration, rendering it

invaluable for larger projects such as this one.

21

Chapter 3

Methodology

This project has three parts associated to it: a CPU-based MOEA, a GPU enabled

Capsule network, and, for convenience, a database for chromosome result caching.

The latter is done for help speeding up the execution of the genetic algorithm. For the

execution of the Capsule networks themselves, the data sequencing may be abstracted

as a two-dimensional grid of elements. These high level elements may even be matrices

themselves, and such, they must be indexed with precariously.

The network is trained with several forward and back propagation passes for

images from a training data set with periodic weight updates. To go through all data

points is an epoch, and several epochs are performed in an effort to minimize the

overall network loss, and conversely, maximize accuracy. Network accuracy evaluation

is done after training, where a different testing data set is used to eliminate biased

estimations.

3.1 GPU Data Manipulation

Due to the architecture of CUDA, software design patterns are favorable if they are

built around object-oriented structures (or structs, for short) of arrays rather than

arrays structs [26]. All data structures are allocated using Unified memory, where data

movement is optimized by the device scheduler [26]. Since everything is allocated with

1D arrays, memory management and organizing is highly significant, and this method

presents one way to arrange the data.

22

Figure 3.1: The dl+1 × dl transformation matrices, shown in the left most tensor, are
multiplied element wise with the dl dimensional outputs from the lower level capsules.
These outputs are stored column-wise in the middle tensor, but are duplicated by
column-wise for each higher-level capsule. The Hadamard product of these tensor
produces dl+1 sized vector inputs to the higher level capsules in the right most tensor.

Data may be thought of as a k× t grid of potentially multi-dimensional elements

in row-major ordering, where an element i, j corresponds to class i and lower level

capsule j. An example of the data layout may be found in Fig. 3.1, where û is being

created for each higher-level capsule column-wise, from each lower-level capsule row-

wise. The lower level capsule outputs, ui,j, are represented in the middle tensor, and

are duplicated along each column. Although this is potential memory storage waste

during forward propagation, the extra storage will be used to save appropriate δui,j

during back propagation.

For the capsule layer interface operations, there are a total of two 1D element

grids, b and c, three vector-element grids, u, û, and v, (v has a height of 1 but

otherwise shares the dimensionality of û) and three matrix-element grids, W, ∆W,

and Wvelocity, the latter two of which are used for updating.

The preceding convolutional layer, however, requires simpler, sequentially in-

dexed (channel, then depth if applicable, then height, then width) of 3 and 4 dimen-

sional arrays. These are required for the input, x, the output, x̂, and the filters of

the arrays. Much like the W in the capsule layer, the filters have two other equally

sized companion arrays, to hold the errors, and the velocities required in momentum

updating.

23

Figure 3.2: The output of the convolutional layer is reshaped from individual scalars
to vectors, depth-wise. For this to happen, the number of filters in the convolutional
layer must be a factor of the dimension of the vectors. This specific vector mapping is
important to preserve; during back propagation, the list of vectors is converted back
to a set of scalars.

3.2 Algorithmic Definitions

In Algorithm 3.1, forward propagation is given the image as a vector, x, and requires

the use of the dynamic routing procedure defined in [25].

First, the output of the convolutional layer must be transformed into a set of

vectors [25]. The output is three dimensional, where each filter detected feature map

corresponds to a depth-wise layer [5, 11]. From one dimensional scalars to dl dimen-

sional vectors, this tensor reshaping generates the interim, pre-activation vectors of

the lower capsule layer, as seen on Figure 3.2. The original convolutional output

shape has a memory allocation dependent on the library used; some optimizations

include redundant ordering of filter layers to produce row-wise ordering output ten-

sors [3]. Assuming a straightforward, width, height, then depth ordering, output from

the convolutional layer, x, the vectors are rearranged in a list to become u, taken

care of by the Rearrange method.

These vectors are then undergo the vector squash activation function, the non-

linear function which facilitates discriminatory learning by scaling vector lengths close

to zero and long vectors closer to one. Afterwards, as is illustrated the middle tensor

24

shown in Figure 3.1, these vectors are duplicated along the “columns”, represent-

ing each of the DigitCaps classes. Element-wise matrix-vector multiplications then

produces distinct ûi,j used in dynamic routing.

Algorithm 3.1 Forward Propagation

1: procedure FP(x)
2: x̂← PrimaryCaps.FP (x)
3: u← Duplicate(Activate(Rearrange(x̂)))
4: û←W ⊗ u . Element-wise matrix-vector multiplication
5: return Routing(û, 3, 2) . This is defined in [25]
6: end procedure

On the other hand, during back propagation, the corresponding label to the

vector, yx, is provided to calculate the error functions. This is performed by the

DerivativeActivationAndLoss kernel, shown in Algorithm 3.2.

From there, the δû vectors are generated by giving a weighted portion of the

δv set. These weights are the same c value set during forward propagation. For the

dimensionality transformation step to produce δu vectors, another round of matrix

multiplication between δû and WT is done.

Given that the same data structures from forward propagation will be used for the

sake of memory, this step must happen after the ∆W calculations are made. These

are found by the matrix product of the previous input uT and the error gradient for

the output, δv.

After δu has been calculated for all j along the columns, they are reduced to the

left, to compile all the error gradients proposed by each higher level capsule, before

having each undergo another “unsquashing”. This inverse activation is performed

to match the initial activated squashing done during forward propagation. Finally,

these vectors are rearranged and handed back to the convolutional layer for tradition

convolutional back propagation.

25

Algorithm 3.2 Back Propagation

1: procedure BP(yx)
2: δv← DerivativeActivationAndLoss(v, y)
3: δûij ← cijδvj

4: δuij ←WT
ijδûij

5: ∆Wij ← ∆Wij + δvju
T
ij

6: δx̂← DerivativeActivation(ColReduction(δu))
7: return PrimaryCaps.BP (δx̂)
8: end procedure

3.3 MOEA

3.3.1 Chromosome Definition

Each capsule network is constructed from a configuration structure that holds loss

function hyper parameters and dimensionality transformations. These parameters

will be decoded from a binary string determined by the individuals of the GA, and

they are detailed in Table 3.1.

Note the number of filters in the convolutional layer is the product of the lower

level capsule dimensions and the number of vector maps. Therefore, only the factors

will be included in the chromosome.

Moreover, although m+ and m− were implied to sum to 1, they will be included

as two separate parameters in this chromosome. This facilitates the GA in exploring

other potential threshold combinations; potentially yielding values that do not sum

Table 3.1: The hyper parameters of capsule networks are encoded in GA bit strings,
where each set of bits corresponds to a point in a given range. The last four have a
different step size, and they are as precise as double precision allows.

Variable Name Range Bits
cnInnerDim [2-33] 5
cnOuterDim [2-33] 5
cnNumTensorChannels [1-32] 5
batchSize [20-640], step 20 5
m plus [0.8, 1.0), step 1

32
5

m minus (0, 0.2], step 1
32

5
lambda [0.4, 0.6), step 1

32
5

26

to 1, implying the significance of error when the desired class exists.

3.3.2 NSGA-II Algorithm

An initial random population of individuals, P0, generates an auxiliary population,

Q0 using traditional binary tournament selection, single point crossover, and muta-

tion. The two populations are combined to create R0, and partitioned into separate

Paredo fronts, F . Consequently, all individuals in Fi dominate all individuals in

Fi+1. From here, the first Paredo fronts that comfortably fit into N go into P1. For

the solutions in the Paredo front needed to fill N , the individuals are sorted using a

novel crowding-comparison operator, �n which helps favor solutions that compromise

between multiple objective functions. This main loop continues to generate Pt from

Pt−1 but the binary tournament selection used thereon uses the crowding-comparison

operator instead of rank alone [4]. This algorithm is illustrated in Figure 3.3.

Figure 3.3: The main loop of the NSGA sorts Pt and Qt by Paredo fronts and put as
many as it can into Pt+1. The odd front out is sorted by a distance-based crowding
operator [4].

27

Fast Non-Dominating Sort

To sort a population to their Paredo fronts, each individual is compared to all others,

making sure to keep track of how many individuals it dominates and the individuals

that dominate it. All dominating solutions go into the first front and removed from

the initial population, and the process is repeated until the original population is

exhausted. Although this algorithm, detailed in Procedure 3.3, is O(|P |), it is still

considered fast because of programmer-determined population size.

Crowding-Distance Assignment

To promote a sparser assortment, the distance parameter of an individual is incre-

mented by the average distance to its neighboring individuals. This is done for all

separate objective functions, M, sorting a given population by their fitness function

outputs each time. Individuals at extremes ranges for each fitness functions are given

infinite or near-infinite values to favor high-density, utopian-bound solutions. This

distance parameter, updating in Algorithm 3.4 is the second part of the crowded-

comparison operator mentioned earlier.

Crowded Comparison Operator

During all but the first GA generation, binary tournament selection uses the crowded

comparison operator rather than rank. This helps promote diversity within Paredo

fronts while preserving elitism from closer fronts. The operator �n can be defined as:

i �n j if (irank < jrank) or

((irank = jrank) and (idistance < jdistance))

3.4 Use Case Modeling

The use cases of this software will be focused from two perspectives: a user-configurable,

terminal-run application, or a lightweight developer API. Users with no interest to

upload input images can run an user-specified MOEA with GPU-accelerated capsule

28

Algorithm 3.3 Fast Non-Dominating Sort

1: procedure paredo-sort(P)
2: for all p ∈ P do . Determining the first front, F1

3: Sp ← ∅ . Individuals dominated by p
4: np ← 0 . Individuals that dominate p
5: for all q ∈ P do
6: if p � q then
7: Sp ← Sp ∪ {q} . Add q to the solutions dominated by P
8: else if q � p then
9: np = np + 1 . Increment domination counter for q
10: end if
11: end for
12: if np = 0 then
13: prank = 1
14: F1 ← F1 ∪ {p}
15: end if
16: end for
17: i = 1
18: while Fi 6= ∅ do
19: Q = ∅ . Helper population for the next front
20: for all p ∈ Fi do
21: for all q ∈ Sp do
22: nq = nq − 1 . Decrement the domination counter for q
23: if nq = 0 then
24: qrank = i+ 1
25: Q = Q ∪ {q} . This belongs in the next front
26: end if
27: end for
28: end for
29: i+ = 1
30: Fi = Q
31: end while
32: end procedure

29

Algorithm 3.4 Crowding-Distance Assignment

1: procedure crowding-distance-update(I)
2: l = |I|
3: for i = 0 to l do
4: I[i]distance ← 0
5: end for
6: for all m ∈M do . Updated from perspective of all objective functions
7: I ← sort(I,m)
8: I[1]distance = inf . Set the extremes to inf
9: I[l]distance = inf
10: for i = 2 to (l − 1) do . Distance incremented by average distance

11: I[i]distance = I[i]distance + fm(I[i+1])−fm(I[i−1])
fmax
m −fmin

m

12: end for
13: end for
14: end procedure

network evaluation. The application can also construct and train single capsule net-

works with user-defined architecture. The developer API holds simple, homemade

primitives allocated with CUDA Unified Memory. Alongside it, a library of CUDA

kernels specific for Capsule Network, with an example usage of a GPU capsule net-

work and the object-oriented, sequential counterpart.

Section 3.4.1 defines the use cases for the Linux program command line interface

(CLI); in Section 3.4.2, the use cases for a development based API.

3.4.1 Application Use Cases

A use case diagram describing the high level operations permitted from the terminal

are detailed in Figure 3.4.

Show Options: This will show the options on how to set parameters and run.

There will be two modes, a single capsule network mode, and a genetic algorithm

mode.

Set Capsule Network Parameters: This will parse user command line input to

configuration parameters used for a single Capsule Network. These include: lower

30

Figure 3.4: The terminal interface provides options for running a single Capsule
Network or the entire genetic algorithm. It also allows configuration settings for the
user.

level dimension, higher level dim, m plus, m minus, lambda, batch-size, and number

of tensor channels.

Set Genetic Algorithm Parameters: This will parse user command line input

to configuration parameters used for a genetic algorithm. These include: population

size, number of generations, probability of mutation, probability of crossover, and

database hostname.

Run Capsule Network and Display Progress: This will construct a single

capsule network and train it with 300 generations with the MNIST image set [21]. A

terminal progress-bar will display progress.

Run Genetic Algorithm and Display Progress: This will run the NSGA-II al-

gorithm for capsule networks and display the parent chromosomes in each generation.

3.4.2 API Use Cases

A detailed use case diagram of the API-based functionalities of this project may be

found in Figure 3.5.

31

Figure 3.5: The API provides high level abstractions for simple construction and
training of Capsule Networks.

32

Read MNIST Image Data: This will parse and hold MNIST images with their

respective labels. This may also translate the data into arrays of doubles.

Construct a Multi-Layer Perceptron from Configuration: This API will con-

struct a multi-layer perceptron (MLP) given just the input layer size, output layer

size, and hidden layer size(s).

Construct a Multi-Layer Perceptron from a file: Given a file with trained

weights from a given, construct a MLP with the same architecture with those weights.

Construct a Convolutional Network: This will create a convolutional network

(CNN) made up of convolutional and pooling layers and an MLP, with set parameters.

Construct a Sequential Capsule Network: This will create an OOP Capsule

Network made from an array of capsules; a collection of matrices and vectors spe-

cific for capsule feature computation, with set parameters. This holds weights for a

sequential convolutional layer followed by two capsule layers and optional reconstruc-

tion MLP layer. This will back propagate both margin loss error and reconstruction

error.

Construct a Parallel Capsule Network: This will create a SOA Capsule Net-

work made from Unified Memory arrays called Blobs. This holds weights for a SOA

convolutional layer followed by two capsule layers.

Forward Propagate Input : Given an image index or a raw input as a vector of

doubles for a network, return and/or display the output.

Back Propagate Error: Given an raw error as a vector of doubles for a network,

back propagate towards the input layer while holding and not applying error deltas.

Return the new error gradient from the input (in case this network is used as an

addition to another model).

33

Update Weights: This will apply the delta weights for a given network using

momentum learning [5, 22].

Train Network Model: This will autonomously input a MNIST image for forward

propagation, compute Euclidean distance error gradient, back propagate the error,

and periodically update the weights.

Set Input: This will allow an array of doubles to be set as input for any of the

network models.

Get Output: This allows the developer to get the perceptron of the given network.

34

Chapter 4

Implementation

4.1 Capsule Network API and Example

This project focuses on the parallel speed up of Capsule Network and the role it

plays in making time-infeasible heuristics feasible. Thus, an object-oriented, sequen-

tial approach and a pure CUDA implementation are needed for comparison. The

lack of CUDA libraries or neural network primitives grant privileges on low-level

memory management and architecture otherwise accompanied by overhead. A small

implementation of primitives such as multi-layer perceptrons and convolutional lay-

ers were created while following object-oriented programming principles (OOP) for

sequential-implementation realism. In this sequential implementation, linear algebra

is accelerated using a single-threaded, light weight yet optimized CPU library: Ar-

madillo. [27] The OOP Capsule Network class in this project contains an array of

“Capsule” class instances for the DigitCaps layer. Each “Capsule” produces feature

detection as vectors, a factor of W matrices and a remapped tensor cube from a

sequential convolutional layer.

From a data allocation acceleration point of view, an unabstracted view of the

data managed follows the Struct-of-Arrays principle instead of the Array-of-Structs

principle. For human imaginative capabilities, a 2D grid of potentially multidimen-

sional values allocated in a single grid best fit this model. This does not create any

data redundancy created by other CUDA library accelerations. Each array exists for

specific roles for the individual capsules and each kernel for every major mathemat-

35

ical operation. For the convolutional layer, simple, unoptimized kernels forward and

back propagation algorithms were implemented; back propagation algorithms even

use CUDA atomic operators.

4.1.1 Sequential Neural Networks

In Figure 4.1, the class diagram features a dispersed design pattern concentrates

on interfaces for future improvements. All sub classes and implementations of the

Network class seen in Figure 4.1 for maximizing future development and modularity,

key components of object oriented programming. Although the Multi-Layer Percep-

tron network uses the näıve perceptron model rather than the much faster linear

algebra based approach, this scales nicely when multithreaded.

For absolute speed-up fairness, mentioned in Chapter 5, sequential code has min-

imal memory movement; accomplished by things constant-reference parameters. The

object-oriented based code includes the reconstruction multi-layer perceptron in the

Capsule Network implementation. This is omitted in the parallel implementation for

Capsule Layer speed up scrutiny. In the CUDA implementation, eighteen kernels were

made for individual mathematical operations, each taking shared memory reduction

and combining kernels optimizing steps where applicable.

Since deep-learning primitives in the API are expected to have the same opera-

tions, Java-style interfaces play a vital role in standardizing class functions. Neither

interfaces, nor explicit abstract parent classes are natively supported in C++; there-

fore, this implementation uses simple class definitions. This enables future program-

mers from deriving their own unique models with the same functionality. The internal

structure of the Capsule class include Armadillo primitives: vector and matrix [23,

27]1. The ILayer and Network compound interfaces aggregate these and become

key templates for the existing networks: MultiLayer Perceptron, Convolutional

Network, and Capsule Network2.

1The Fileable Interface, for time reasons, was not implemented for all Capsule Networks
2The Network interface is not explicitly declared in the code

36

Figure 4.1: The sequential implementation of Capsule Networks and other neural
network primitives, following OOP standards

37

Forward and back propagation operations on the Capsule Network differ from

the other scalar based networks. In the Multi-Layer Perceptron and the Convolu-

tional Layer, activation function inputs are scalars, computed by weight reductions

of other scalars. Since the Capsule layer uses vectors, mapping a cube output from a

convolution layer to vector list is vital. The Capsule Network then passes this list to

each Capsule, which hold a specific matrix weight W, softmax weight b, and scalar

vector weight, c for each list vector. An individualized routing algorithm, as discussed

in Algorithm 3.1, continuously updates these softmax weights, and then passes the

weighted reduction of these vectors to the vector activation function, concluding the

capsule forward pass. The activated outputs are compiled by the Capsule Network

for back propagation. The Capsule Network then gives each capsule their output

back, transformed via an error gradient calculation detailed in Equation 2.7. The

Capsule is faced with two tasks: computing a formatted error gradient for each origi-

nal input given, and use the given error to calculate the weight delta for its matrices.

Multiplying the original c value, with the transform of the weight matrix and the

error produce a single vector in the input-sized vector list created. Since this project

does not use mini-batching, using c values explain why back propagation must be

computed immediately after each forward pass for an image. The Capsule Network

aggregates this list from all higher-level Capsule and remaps it to a feature map cube.

This is given back to the Convolutional Layer for normal back propagation process-

ing. When multithreading, each forward and back propagation is performed for each

independent Capsule. The number of higher-level Capsules is stable; it is the number

of classes, k. A bottleneck arises in sequential back propagation is the vector-list

aggregation of error due to its sequential addition.

Each weight in a network adds a dimension of complexity in solving finding a

hyper-plane valley maximizing accuracy and minimizing loss. Given the momentum

solver, all declarations with modifiable weights are accompanied with two same-sized

variables. The adjustments keep track of the weight delta found through back propa-

gation and the acceleration variables direct the weights with short term memory. Tra-

38

ditionally, in stochastic gradient descent, the weights are updated by the raw deltas,

scaled down by a learning rate. In momentum learning, the acceleration weights help

keep the network from being stuck in a local optima. If loss is consistently high, for

example, the acceleration matrices will gradually increase. This will user the network

towards a better solution, and in case local optimum is found along the way, the

network will speed over it.

4.1.2 Parallel Capsule Network

An array of doubles was created for easy value assigning and printing using Unified

Memory: CUUnifiedBlob. Unified Memory does not require explicit pushing and

retrieving from the device. Instead, the GPU scheduler takes care of this. The

master grids used for this Capsule Network implementation use these dynamic data

structures.

The CUCapsuleNetwork class, implicitly implementing the Network Interface,

manages the arrays inside itself, and its convolutional layer accompaniment, the

CUConvolutionalLayer class. The latter focuses on forward and backward convolu-

tional passes, holding solver-necessitated caches for its filters. Moreover, it focuses

on remapping its activated and duplicated output to the u grid; the reverse mapping

passes the error through back propagation.

Eighteen kernels are declared in the block at the bottom of Figure 4.2, and defined

individually in Section 4.1.3. They take in these arrays as reference parameters,

and call the similarly named CUDA kernel. The size of each call is different than

one another, depending on the projection that helps shared memory reduction. For

example, in the kernel multiVectorReduction, the u array is prepared for tensor-

mapping by adding all vectors left wards. This project necessitates a block called per

the lower-level capsule axis, per dimension, and one thread per each class allocated.

In the weightedReduceVectors kernel, a block is allocated per class, per dimension,

and one thread per each lower-level capsule axis. The convolutional kernels set up

a block per input-filter configuration and a thread for each overlapping cell. In fact,

39

Figure 4.2: The parallel implementation of CUCapsuleNetworks and other GPU ac-
celerated neural network primitives, following Struct-Of-Array Conventions. The
bottom object is not an entity, but a list of unique kernels (wrappers). They are
given the CUUnifiedBlob instances as reference parameters.

40

the convolutional back propagation kernels even use atomic CUDA calls.

4.1.3 Custom CUDA Kernels

Each kernel has different block and thread dimensions, depending on the projection

that best leverages shared memory reduction. Whenever there are more values that

need to be reduced (typically along the lower level capsule axis) than the maximum

number of threads allowed per block (1024 for CUDA 7 and above [26]), threads will

“wrap around” and stride by 1024 for all values. They are individually detailed below:

• matrixVectorMultiplication - This function performs individual matrix vec-

tor multiplication between u and u to produce û This function allocates a block

per lower-level capsule, per class. Each block has one thread for every cell in

the higher-level vector

• vectorVectorSoftmax - This updates scalar values c from those in b. There

is one block per class, and a thread for every value.

• weightReduceVectors - Given a scalar weight, c, for every vector in û, this

function will reduce them vertically and populate v. There is one block per

class and dimension, one thread per lower-level capsule.

• vectorSquash - Sequentially annexed vectors will be scaled according to the

vector activation function, detailed in Eq. 2.5. There is one block per vector,

and one thread per dimension.

• vectorVectorScalarProduct - The significance values in b are incremented

by the scalar output after dotting û and v. There is one block per lower-level

capsule, per class, and one thread per dimension.

• vectorLossFunction - This performs the margin loss formula detailed in Eq. 2.7,

producing δv A vector with respective T values for each k is also provided.

There is one block per class, one thread per dimension.

41

• scaledDecompositionOfError - This distributes the error from δv down to

δû using the forward propagation weights, c. There is one block per class, per

lower-level capsule, and one thread per higher-level dimension.

• weightedTransMatrixVecMult - The error from a pre-weighted δû is passed

to its δu through the inverse, element-wise multiplication of u. There is one

block per class, per lower-level capsule, and one thread per lower-level dimen-

sion.

• vectorVectorMatrixProductAndSum - This will compute the matrix prod-

uct of the previous input to the capsule layer, û and the error, δv. There is one

block per class, per lower-level capsule, and one thread per cell in the matrix

(dl × dl+1).

• multiVectorReduction - This will reduce all the vectors from each class in

δu to the left-most column. There is one block per lower-level capsule, and one

thread per lower-level dimension.

• elementWiseErrorUpdate - During updating, this will perform momentum

solving for W and clear out its filter cache, ∆W. There is one block, one thread

per element.

• vectorSquashDerivative - Much like the inverse of “vectorSquash”, this will

scale the vectors by the operations defined in Eq. 2.9. This kernel is custom

and assumes these vectors will be in the left-most column of an array used as

δu. There is one block per lower-level capsule, with one thread per dimension.

• convolutionalDotProduct - This provides the convolutional forward propa-

gation operation for the convolutional layer. There is one block allocated for

each output cell; one per filter, output feature map height, and output feature

map width. For each block, there is a thread for each filter projection onto

its portion of the input map; one for the input (and filter) depth, filter height,

42

and filter width. This is generalized for potentially three dimensional outputs,

provided from similar convolutional layers or RGB images.

• tensorFlatteningAndActivatedRemapping - This kernel projects the out-

put of a convolutional layer to the initial u grid. At the same time, it squashes

the vectors according to Eq. 2.5. There is one block per virtual output vec-

tor, and one thread per each dimension; the grid x dimension and the block x

dimension effectively cover all feature maps in the cube.

• reconstructingTensorFromError - As the inverse function of “tensorFlat-

teningAndActivatedRemapping”, this function remaps the compiled error from

u back to a tensor cube for convolutional back propagation. However, it does

not scale the vectors back through a deactivation formula. Much like its coun-

terpart, there is one block per virtual output vector and one thread per each

dimension.

• convolutionalBackPropFromError - This kernel is for the back propagation

step of a convolutional layer. As mentioned, the atomic function is required for a

näıve implementation, given that a particular input cell affects multiple output

cell through different filter and filter strides. The atomic function was explicitly

created since double atomic functions were not supported3. Like the forward

propagation kernel, there is one block per output of the convolution, and one

thread per input-filter pairing for that block.

• getSquaredLength - This kernel simply goes through v and computes the

length (to another vector) for easy debugging.

• getVectorLoss - This kernel computes the overall loss of an image from the

guess v using solely Eq. 2.7.

3CUDA 8.0 and above supports atomic functions on other primitives, such as longs, doubles,
and shorts. However, the explicit functionality was written for backwards compatibility; to older
architectural GPU cards that cannot support the newer framework.

43

4.2 NSGA-II Implementation

The individuals from first generations of a GA have genetic diversity from the ran-

dom initialization. As genes start to spread through each generation, duplicates arise

and eventually dominate the population. Individual chromosome evaluation becomes

infeasible for duplicates, given the time it takes to construct and train a neural net-

work. The PostgreSQL database usage in this project offers speed up in the overall

structure; an uncommon yet useful feature for MOEAs.

The C++ implementation of NSGA-II used in this project, however, is simple.

The “Individual class is a child of a standard vector4 of boolean values, and it decodes

its bit-string to a specific capsule network configuration. A Population class, a

child of a standard vector of Individuals, extracts statistics from its data, used by

a higher-level GA class. The accompanying ParedoFront class is a small wrapper,

using a pointer-only interface for faster sorting and crowding-distance calculations.

The GA class sorts and produces generations of these populations through NSGA-II

operations. This architecture is illustrated in Figure 4.3

NSGA-II requires the sorting of the solutions per their performance to each objec-

tive function, individually. This sorting updates crowding distance parameters, and

thus is optimizable. The ParedoFront class abstracts a population as an array of

pointers; they are more lightweight and easy to move. Each ParedoFront refers to a

subset or the entire population. Moreover, a static function, sortFastNonDominated

returns an array of these fronts, order by their dominance.

When a new individual is encountered, a Capsule Network (sequential or parallel)

is constructed and trained for 100 and 300 epochs. Its results are stored in the

database, with its bitstring serving as the primary key. Figure 4.4 shows the one

entity ERD implemented in the PostgreSQL database for these individuals. When

an evaluated individual is encountered, its statistics are retrieved from the database

and applied to the instance.

4The vector class comes from the C++ standard templated library (STL)

44

Figure 4.3: The NSGA-II implementation is simple; aggregating individuals into
populations, and shorthanding populations into Paredo Fronts. A Paredo Front is
abstracted as a pointer array for easily sorting for individual updating. The Cap-
sNetDAO helps speedup Individual evaluation by creating SQL queries and checking
for duplicate networks to prevent wasteful duplicate evaluation.

45

Figure 4.4: This PostgreSQL entity uses the individual bitstring as the primary key
and contains decoded hyperparameters and Capsule Network metrics as other row
attributes

46

Chapter 5

Results

5.1 Architectural Results

5.1.1 Single Capsule Network Results

Statistical-based learning models are trained using thousands of Epochs of a training

set, and then tested on a separate test set. The second test set contains images

the network has not seen, and only forward propagation is performed during testing

to validate the progress of the training session. Such models are then evaluated

using forward-propagation performance with the testing session, sometimes called

a validation set. The performance of the neural network is measured through the

total loss and the accuracy measured at each iteration. Figure 5.1 and Figure 5.2

shows the performance of two such Capsule Networks; a faithful recreation of the

source Capsule Network theory paper, and the best chromosome from the MOEA.

The source Capsule Network has an inner dimension of 8, an outer dimension of 16,

batch size of 250, 32 tensor channels, λ = 0.5,m+ = 0.9,m− = 0.1. The Capsule

Network yielded by the MOEA had an inner dimension of 22, an outer dimension of

2, batch size of 160, 2 tensor channels, λ = 0.44375,m+ = 0.8125,m− = 0.18125.

Although the evolved configuration outperformed the original architecture in

terms of early accuracy, the loss calculations appear to be worse. In the evolved

network, the loss starts at a much lower point, and drops but then slowly arises.

Towards 200 iterations, however, a downwards parabolic shape emerges, but there are

nevertheless not enough points to make the claim that loss appears to go downwards

47

Figure 5.1: The Accuracy for the NSGA-II configuration outperforms the original
architecture, despite both having a small dip just before 200 iterations, due to local
minima in W space.

Figure 5.2: The Loss of the NSGA-II configuration starts out at a smaller pace, but
after finding a local minima, starts to rise again at 200 iterations.

48

after a while. It is important to note both accuracy and loss were considered equally

significant in the MOEA.

5.1.2 MOEA Results

The genetic algorithm was run with a population of 30 and ran for 50 iterations.

Typically, to track the progress of a genetic algorithm, the maximum or average

fitness of each populations is plotted against each iterations.

The performances of the MOEA are detailed in the following photos. Figure 5.3

shows the accuracy statistics. Within the first few iterations, the accuracy after 300

iterations are, on average, higher. However, they decrease to stabilize to roughly 3%

lower (about 300 training images)

The generation of the child population is elitist due to the binary tournament

selection and the non-dominating sorting. Due to this elitist nature, the graphs

will converge sooner than a canonical genetic algorithm. To counter this behavior,

crossover and mutation probabilities are set high, 0.5 and 0.01.

5.2 Parallel Capsule Network Results

The number of filters in the preceding convolutional layer must change accordingly.

For example, for two tensor channels and an inner dimension of eight, the convolu-

tional layer must have 16 filters; for forty tensor channels, 320 filters. This strongly

influences the computation required by the entire network, justifying it as the in-

dependent variable. Varying the number of channels in the tensor also helps better

profile the program better through its throughput measurements. Reported below

are the time taken to perform forward propagation, backward propagation and epoch

timings, along with the equivalent speed up and throughput calculations. All timings

seen in Figure 5.5 and Figure 5.6 are an average 30 statistical runs, after removing

the highest and lowest outliers. To ensure sequential optimization, the sequential

version uses the Armadillo library for linear algebra operations (matrix-vector multi-

plication) [27].

49

Figure 5.3: The minimum, average, and maximum accuracies of the population of
the MOEA after 100 epochs (top) and after 300 epochs (bottom).

50

Figure 5.4: The minimum, average, and maximum loss values of the population of
the MOEA after 100 epochs (top) and after 300 epochs (bottom).

51

Figure 5.5: Forward propagation takes less time than back propagation in the se-
quential version of these methods since there is no data movement (despite the inner
loop found in Dynamic Routing [25].) These methods are not multi-threaded and are
compiled without compiler optimization flags.

In Figure 5.5, back propagation is shown to have a higher percentage of data

computation rather than data movement, since data movement is not a hindering

factor on CPU-based operations. Parallel timings in Figure 5.6 further illustrate

the GPU bottleneck since back propagation is faster than forward propagation. The

single image trend lines show the computation time of processing an entire image,

combining forward and back propagation.

The gap between forward propagation and back propagation steadily increases

over larger capsule layer sizes, despite the transferred data amount being the same.

This indicates the back propagation problem scales better to GPUs than forward

propagation. However, forward propagation also adds to this difference since it in-

cludes the time taken to copy the original photo information over to the GPU itself,

an extra overhead not found in the sequential version.

52

Figure 5.6: Back propagation is clearly faster than forward propagation due to lack of
communication overhead in data movement. Note the scale as compared to Figure 5.5.

5.2.1 Speedup

The speedup of a program compares the sequential and parallel methodologies in high

performance computing and performance validation.

Speedup is the proportion of the sequential time over the parallel time, Ts

Tn
, where

n corresponds to the number of processors used. However, n represents a variance of

input size rather than processors, due to GPU hardware architecture. Nevertheless,

theoretical limitations observed in CPU parallelism still apply. According to Amdahls

Law, an asymptotic upper bound on the speedup improvement of any given parallel

algorithm exists [30]. It hinges on the given overhead of the size of p, the parallelizable

fraction of the application program. Speed up, S, is defined as

S =
N

(p ∗ n) + (1− p)
(5.1)

To measure the speedup, capsule networks were generated with varying numbers

of vector channels. This changes the lower level capsule layer size, dependent on the

convolutional layer height and width, both set to 6 for the sake of referential integrity.

53

Figure 5.7: Speedup of these methods start to slow down between 10-15 tensor chan-
nels (360-540 lower level capsules) as these methods increase due to Amdahl’s law.
Note that back propagation, which only communicates resulting vj errors back to the
host, a constant k×dl+1 = 160 values, has higher speedup than forward propagation,
which requires the movement of a 28× 28 sized image from the MNIST dataset. [21].

Thus, the number of rows in the u grid (and other grids) is based off the height (6),

the width (6), and the tensor channel size.

For the equal tensor channel values found in [25], forward propagation obtained

32x speedup and back propagation obtained 116x speedup. These methods were able

to obtain up to 33x speed up for forward propagation and 130x speed up for back

propagation procedures alone.

5.2.2 Throughput

Traditionally, efficiency is calculated in multi-CPU application to measure resource

and memory exploitation in distributed algorithms. However, GPU speedup is ac-

companied with throughput; how many floating point operations (FLOPS) are com-

puted in a given amount of time. For GPUs, throughput focuses on the bandwidth

54

Figure 5.8: The throughput is measured by a factor the number of floating points
required to compute (not the operations) at the variable layer divided by the amount
of time taken to complete the meta-operation. These floating points are the ones for
the interim layer only.

of the data flow rather than hardware architecture; an more appropriate, important

distributed algorithm metric. For the graph seen in Figure 5.8, throughput was com-

puted solely on the amount of computation used during the variable layer, the con-

volutional output to tensor, for easy comparison. In forward and back propagation,

this equates to a 6 ∗ 6 grid, multiplied by the appropriate number of depth channels,

divided by the processing time in seconds. This is similar for single image processing,

where throughput is obviously slower due to the concatenation of these two opera-

tions. The warp-based valleys found during the speed up of the program also make an

impact here; computation is less efficient when hardware resource allocation is not op-

timized. There is no surprise that back propagation can produce a higher throughput

than forward propagation, even when the hidden layers are increased. Contributing

to this advantage are lack of required CPU-to-GPU data communications and no

iterative dynamic routing necessary.

55

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The methods described in this thesis focus on providing a memory allocation map

helping network evaluation feasible enough for practical use. The idea of this demon-

stration is to abstract forward and backward propagation operations to be used as

a potential future CUDA library. Genetic Algorithms are an example of a meta-

heuristic rendered infeasible without this device optimization. The entire project was

written in vanilla C++ and CUDA code, with little to no third party libraries used,

to showcase its effectiveness and standalone speedup. Although mostly a back-end

project for use in more complicated machine learning libraries, a terminal-based ap-

plication helps demonstrate these two domains while being verbose and displaying

progress and results.

The advent of high performance computing, thanks to hardware development in

the past few decades, accelerates the testing and validation of theoretical neural net-

works and other machine learning paradigms. Although they enable fast modeling and

implementations for researchers coming up with new techniques, the machine learning

libraries stress for being generalized introduces structural overhead. It is expected

when researchers are especially looking towards challenging primitive data structures.

This explains the proliferation of such deep learning techniques, not present during

the infancy of artificial intelligence research. This project addresses such a problem

for a newly-discovered, yet continuously evolving field of neuron grouping techniques;

56

Capsule Networks are only the stepping stone for multi-dimensional perceptron mod-

els.

6.2 Future Work

6.2.1 Preexisting Tools

This clean CUDA implementation of capsule networks and the surrounding MOEA

model placed a majority of focus on low level memory management. Preexisting

tools and libraries for CUDA, as well as other established techniques and models for

MOEAs were ignored for the sake of integrity to this goal. The first convolutional

layer found in a capsule architecture was implemented naively, effectively hindering

overall performance with atomic functions, for example. In a future work, using

existing primitives for these layers may greatly increase speedup.

Another possible improvement using less external CUDA libraries would be to

use built-in vectors. Accompanying the Unified Memory acceleration found in CUDA

7 and above, host and device vectors mimic standard sequential vectors. With this

method, simple assignment and other memory allocation subroutines can be opti-

mized instead of being implemented from scratch.

6.2.2 Extra Evolutional Parameters

For the sake of referential intergrity, the height and width of the tensor cube output

from the convolutional layer was fixed to 6. These values seemed arbitrary from the

original paper, and could be included in the chromosome for systematic evolution.

Limiting the lower capsule layer to a large filters (or small filters with large stride)

from the convolutional layer might inhibit significant feature detection from the input.

Moreover, the architecture of capsule networks could be evolved. The current

implementation in this paper evolved a fixed architecture; a convolutional layer, and

two capsule layers. Additional capsule layers could be appended for more indepth fea-

ture detection. Nonintuitive architectural updates have been discovered with genetic

57

algorithms [15].

6.2.3 Concurrency

Currently all kernels run in CUDA are called sequentially, with host blocking code.

This introduces kernel call overhead being fully expanded; including allocation of

blocks, stack frames, and thread warps. Moreover, this does not let small enough

kernels with mutually exclusive data from being called concurrently, thus taking less

time. Kernel call optimization and methodical multi-threading could increase speed

up.

6.2.4 Multi-GPU Implementations

There are two approaches that may be considered when distributing these mem-

ory methods between multiple devices: a näıve, per image computation, or a mini-

batched, grid-dividing approach. Any attempt at multi-GPU distribution, however,

must take into account the interdimensional dependencies of the presented grid for-

mats and potential bottleneck latency from inter-device communication.

First, the näıve implementation is very simple but would maintain some re-

dundant memory information amongst all devices in question. Every device would

contain its own δW cache, updated during back propagation. However, each weight

updating step must then involve a computationally-blocking, trans-device reduction

step. This step collects all cache, reduces them, and then rebroadcasts the new val-

ues to everyone to continue computation. This satisfies inter-grid value dependencies

found during soft-max and reduction operations. Even with mini batching techniques

(adding depth to the memory grids), input based device independence would have

communication overhead, despite optimized communication techniques.

A grid-dividing approach, on the other hand, would still have to face these two

problems. If one divides along the higher-level capsule axis, there are memory syn-

chronization requirements in two different scenarios. During forward propagation, the

convolutional output (assuming to also be distributed with a pre-existing technique,

58

a problem in itself) would have to be broadcasted to all devices for mapping to u vec-

tors. In the same spot during back propagation, vectors from all δuj must be reduced

to δu to give to the convolutional layer. Forward propagation is a much simpler task

due to the repetitive nature of the vectors for each higher-level technique. However,

both scenarios introduce potential communication latency.

If one devices along the lower-level capsule axis, then the problem is shifted to two

different operations, soft-max of b to c and weighted vector reduction, vj =
∑

i cijûij.

It is the readerś responsibility to visualize the needed communication for this step.

59

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: large-scale machine learning on
heterogeneous distributed systems. CoRR, abs/1603.04467, 2016. arXiv: 1603.
04467. url: http://arxiv.org/abs/1603.04467 (visited on 08/12/2018).

[2] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. Cudnn: efficient primitives for
deep learning. CoRR, abs/1410.0759, 2014. arXiv: 1410 . 0759. url: http :

//arxiv.org/abs/1410.0759 (visited on 08/12/2018).

[3] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng, and Bryan
Catanzaro. Deep learning with cots hpc systems. In Proceedings of the 30th
International Conference on International Conference on Machine Learning -
Volume 28, ICML’13, pages III–1337–III–1345, Atlanta, GA, USA. JMLR.org,
2013. url: http://dl.acm.org/citation.cfm?id=3042817.3043086 (visited
on 08/12/2018).

[4] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: nsga-ii. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197, 2002. issn: 1089-778X. doi: 10.1109/
4235.996017.

[5] Wei Di, Anurag Bhardwaj, and Jianing Wei. Deep learning essentials: your
hands-on guide to the fundamentals of deep learning and neural network mod-
eling. English. Packt Publishing, Birmingham, UK, 1st edition, 2018. isbn:
9781785887772;1785887777;

[6] Korry Douglas and Susan Douglas. PostgreSQL. New Riders Publishing, Thou-
sand Oaks, CA, USA, 2003. isbn: 0735712573. (Visited on 08/12/2018).

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://dl.acm.org/citation.cfm?id=3042817.3043086
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017

60

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neu-
ral networks. In Geoffrey Gordon, David Dunson, and Miroslav Dudk, edi-
tors, Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics, volume 15 of Proceedings of Machine Learning Re-
search, pages 315–323, Fort Lauderdale, FL, USA. PMLR, 2011. url: http:
//proceedings.mlr.press/v15/glorot11a.html (visited on 08/12/2018).

[8] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1989. isbn: 0201157675.

[9] David E. Goldberg. Genetic algorithms in search optimization and machine
learning. AI Magazine, 12:102–103, 1989.

[10] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. In GREGORY J.E. RAWLINS, editor.
Volume 1, Foundations of Genetic Algorithms, pages 69 –93. Elsevier, 1991.
doi: https://doi.org/10.1016/B978-0-08-050684-5.50008-2. url: http:
//www.sciencedirect.com/science/article/pii/B9780080506845500082

(visited on 08/12/2018).

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[12] Robert Hecht-Neilsen. Iii.3 - theory of the backpropagation neural network*. In
Harry Wechsler, editor, Neural Networks for Perception, pages 65 –93. Academic
Press, 1992. isbn: 978-0-12-741252-8. doi: https://doi.org/10.1016/B978-
0-12-741252-8.50010-8. url: https://www.sciencedirect.com/science/
article/pii/B9780127412528500108 (visited on 08/12/2018).

[13] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM
routing. In International Conference on Learning Representations, 2018. url:
https://openreview.net/forum?id=HJWLfGWRb (visited on 08/12/2018).

[14] Kenneth A. De Jong. Genetic algorithms are not function optimizers. In L. Dar-
rell Whitley, editor, Foundations of Genetic Algorithms. Volume 2, Foundations
of Genetic Algorithms, pages 5 –17. Elsevier, 1993. doi: https://doi.org/
10.1016/B978-0-08-094832-4.50006-4. url: http://www.sciencedirect.
com/science/article/pii/B9780080948324500064 (visited on 08/12/2018).

[15] Yasusi Kanada. Optimizing neural-network learning rate by using a genetic
algorithm with per-epoch mutations, July 2016.

[16] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko,
Ruth Silverman, and Angela Wu. An efficient k-means clustering algorithm:
analysis and implementation. English. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):881–892, 2002.

http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/https://doi.org/10.1016/B978-0-08-050684-5.50008-2
http://www.sciencedirect.com/science/article/pii/B9780080506845500082
http://www.sciencedirect.com/science/article/pii/B9780080506845500082
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/B978-0-12-741252-8.50010-8
https://doi.org/https://doi.org/10.1016/B978-0-12-741252-8.50010-8
https://www.sciencedirect.com/science/article/pii/B9780127412528500108
https://www.sciencedirect.com/science/article/pii/B9780127412528500108
https://openreview.net/forum?id=HJWLfGWRb
https://doi.org/https://doi.org/10.1016/B978-0-08-094832-4.50006-4
https://doi.org/https://doi.org/10.1016/B978-0-08-094832-4.50006-4
http://www.sciencedirect.com/science/article/pii/B9780080948324500064
http://www.sciencedirect.com/science/article/pii/B9780080948324500064

61

[17] Andy J. Keane. Genetic algorithm optimization of multi-peak problems: studies
in convergence and robustness. Artificial Intelligence in Engineering, 9(2):75 –
83, 1995. issn: 0954-1810. doi: https://doi.org/10.1016/0954-1810(95)
95751-Q. url: http://www.sciencedirect.com/science/article/pii/
095418109595751Q (visited on 08/12/2018).

[18] Christof Koch and Idan Segev, editors. Methods in Neuronal Modeling: From
Ions to Networks. MIT Press, Cambridge, MA, USA, 2nd edition, 1998. isbn:
0262112310.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012. url:
http://papers.nips.cc/paper/4824-imagenet-classification-with-

deep-convolutional-neural-networks.pdf (visited on 08/12/2018).

[20] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. issn: 0018-9219. doi: 10.1109/5.726791.

[21] Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010.
url: http://yann.lecun.com/exdb/mnist/ (visited on 08/12/2018).

[22] Ali Minai. Acceleration of backpropagation through learning rate and momen-
tum adaptation. Proceedings of the International Joint Conference on Neural
Networks :676–679, 1990. url: https://ci.nii.ac.jp/naid/10008947031/
en/ (visited on 08/12/2018).

[23] Michael Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[24] Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Mark E. Oxley, and
Bruce W. Suter. The multilayer perceptron as an approximation to a bayes op-
timal discriminant function. IEEE Transactions on Neural Networks, 1(4):296–
298, 1990. issn: 1045-9227. doi: 10.1109/72.80266.

[25] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between
capsules. CoRR, abs/1710.09829, 2017. arXiv: 1710 . 09829. url: http : / /

arxiv.org/abs/1710.09829 (visited on 08/12/2018).

[26] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional, 1st edition,
2010. isbn: 0131387685, 9780131387683.

[27] Conrad Sanderson. Armadillo c++ linear algebra library, June 2016. doi: 10.
5281/zenodo.55251. url: https://doi.org/10.5281/zenodo.55251 (visited
on 08/12/2018).

[28] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Profes-
sional, 4th edition, 2013. isbn: 0321563840, 9780321563842.

https://doi.org/https://doi.org/10.1016/0954-1810(95)95751-Q
https://doi.org/https://doi.org/10.1016/0954-1810(95)95751-Q
http://www.sciencedirect.com/science/article/pii/095418109595751Q
http://www.sciencedirect.com/science/article/pii/095418109595751Q
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/
https://ci.nii.ac.jp/naid/10008947031/en/
https://ci.nii.ac.jp/naid/10008947031/en/
https://doi.org/10.1109/72.80266
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
https://doi.org/10.5281/zenodo.55251
https://doi.org/10.5281/zenodo.55251
https://doi.org/10.5281/zenodo.55251

62

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. In Computer Vision and Pattern Recognition
(CVPR), 2015. url: http://arxiv.org/abs/1409.4842 (visited on 08/12/2018).

[30] Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers (2Nd Edi-
tion). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004. isbn: 0131405632.

http://arxiv.org/abs/1409.4842

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Background and Related Work
	Genetic Algorithms
	Neural Networks
	Multi-layer Perceptrons
	Convolutional Networks

	Capsule Networks
	Dynamic Routing
	Computational Walk through

	Genetic Acceleration of Neural Networks
	TensorFlow and GPU Accelerated Libraries
	Libraries and Frameworks

	Methodology
	GPU Data Manipulation
	Algorithmic Definitions
	MOEA
	Chromosome Definition
	NSGA-II Algorithm

	Use Case Modeling
	Application Use Cases
	API Use Cases

	Implementation
	Capsule Network API and Example
	Sequential Neural Networks
	Parallel Capsule Network
	Custom CUDA Kernels

	NSGA-II Implementation

	Results
	Architectural Results
	Single Capsule Network Results
	MOEA Results

	Parallel Capsule Network Results
	Speedup
	Throughput

	Conclusions and Future Work
	Conclusions
	Future Work
	Preexisting Tools
	Extra Evolutional Parameters
	Concurrency
	Multi-GPU Implementations

	Bibliography

