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Abstract

Often times as an environmental research project grows, technical aspects such as

system scalability, data exposure, and third-party application support are overlooked.

This is largely due to researchers not possessing the necessary resources and techni-

cal knowledge to implement a distributed system that supports that growth. This

thesis presents a system, the Microservice-based Envirosensing Support Applications

(MESA), stylized off a microservice-based architecture that provides a scalable envi-

ronment and data infrastructure solutions for the NSF-funded Solar Energy-Water-

Environment Nexus Project. MESA can be broken into three major parts. The first

part showcases the overall system flow and the suite of microservices developed to

provide complex software solutions and infrastructure. The second part details the

service discovery, which plays the role of overseer and tester for the other microser-

vices. Finally, the third part gives a deeper look into the application support that

this system actively provides.
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Chapter 1

Introduction

In the last ten years, there has been a substantial push for autonomous high volume

data collection in the earth sciences. This push was driven by the need to answer

crucial questions that are affecting current and future generations; global warming,

water management, and energy. However, with each step forward and advancements

made in an environmental project, technical knowledge finds its way as burdens for

researchers and scales up to levels beyond the scope of the Earth sciences.

1.1 Problem Statement

When it comes to environmental research projects, one of the most difficult subject

to broach is the handling of data once it has been gathered. A common approach to

data storage in the earth sciences is spinning up a monolithic system consisting of one

or more databases, interwoven code, and a small suite of sensors streaming in data

at specific intervals. This approach has its merits in smaller projects when the data

gathered is not overly immense and still easily manageable by technicians. However,

as data begins to accumulate and more sensors are deployed as the project begins to

grow, new problems emerge.

The querying of data becomes increasingly more difficult due the size of accu-

mulated data entries. Additionally, once the data amount reaches a point where it

becomes viable for meaningful analytics or quality checks, the lack of a scalable in-

frastructure forces researchers to seek aid from expensive third-party applications.
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Finally, as the monolithic system meets more usage from researchers, more failures

will occur and each time they do, the entire system will be forced to reset.

Addressing these concerns naturally suggest the reconstruction of the existing

system, but this would cause an enormous investment in time and development.

However, the greatest risk of all would be the suspension of research within an en-

vironmental project. With that in mind, if the system in question contains vital

functionality to continuing research, could environmental research projects afford the

time to shut the system down to rebuild and calibrate it?

1.2 Solution

Usually, the choice to restructure an existing monolithic system into a more modular

and scalable setup requires a significant amount of time and money. This is due to

the sheer amount of technical knowledge and time needed to unravel and rebuild the

system. This approach is especially not viable for smaller and growing environmen-

tal projects. To address these, and many more problems, this thesis presents the

Microservice-based Envirosensing Support Applications (MESA), a distributed sup-

port system based off of the Microservice Architecture style that is tailored for the use

in environmental research projects. MESA utilizes a suite of independent services,

dubbed “microservices”, that provides infrastructure and complex software solutions

to support an existing system, all without having to tear down an existing monolith.

Through the Microservice Architecture style, MESA is designed to be scalable

and can provide the development platform that would enable technicians or other

developers within a project to easily create their own tools. MESA’s microservices

are all independent of one another and the original system, so should a functionality

fail, the entire system would retain operational status. In fact, MESA is designed so

that should a service fail suddenly, an identical one would be be easily brought back

up with minimal effort. Finally, MESA provides a means for technicians to monitor

the system and apply autonomous tests through a Consul service discovery hub.

In order to ensure that the MESA system best meets the functional requirements
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set down by stakeholders, the features of this system were compared against other

existing microservice architectures. Specifically, the systems that were referenced

were: OceanTEA, the Public Environmental Information System (PEIS), and the

DIMMER Smart City Platform. These systems were chosen because, like MESA,

each of the microservice architectures were designed around the purpose of being an

applications platform for their respective projects.

Through this feature comparison, it was established that MESA provided more

functionality than both OceanTEA and the DIMMER Smart City Platform. However,

MESA was shown to be slightly deficient when compared to the Public Environmental

Information System due to the fact that PEIS has support for Machine Learning and

High Performance Computing solutions. We address these deficiencies by indicating

that these are key areas of future work.

The rest of this thesis is structured as follows: a detailed background into the

NRDC, the original monolithic system, an overview of microservice architectures, and

the libraries used are presented in Chapter 2. Chapter 3 goes into depth over related

works inside and outside the Earth sciences. Chapter 4 provides a deeper look at

the software solution in the form of specifications and design. Chapter 5 showcases

the implementation of the microservices alongside the application support it provides

with other affiliated projects. Chapter 6 discusses how MESA compares with similar

systems. Finally, the paper wraps up in Chapters 7 with a discussion of the future

work and the conclusion.
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Chapter 2

Background

In this chapter, the thesis starts off in Sections 2.1 and 2.2 with a brief overview on

web technologies, with an emphasis on web services. Next, the concept of a mono-

lithic architecture is discussed alongside the Nevada Research Data Center (NRDC),

the monolithic data system MESA was designed to interface with, in Section 2.3.

Following up after is Sections 2.4 and 2.5, where it provides a technical look at a Mi-

croservice Architecture and the role it plays in MESA. This includes the decision of

using the architecture, the benefits, and potential detriments. Moving on, Section 2.6

briefly goes over key information that is vital for the project domain that MESA

is designed for. Finally, Section 2.7 covers a detailed listing of the components and

libraries that enabled MESA to provide the necessary support that it does.

2.1 Web Services

Before getting started with the thesis, it would best serve to start off with a bit of

some light introduction into the world of web development. With the dawn of the

current digital age, technology shifted towards the exchanging of data and the in-

tegration of the internet into just about everything. One major innovation was the

idea in which communication between software was no longer determined by phys-

ical hardware connection, but through transfers of data across a network, or the

internet in this case. These transfers were conducted through intermediaries, known

as web services, originating from the Remote Procedure Call (RPC) component of
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the Distributed Computing Environment (DCE), which was a framework for soft-

ware development [29]. RPC was developed for DCE in order to conduct distributed

computing on a single system around the early 1990s, however Microsoft actually

retooled this component into the Microsoft RPC (MSRPC) in order to handle inter-

process communication across separate systems. It is through this ironic twist that

the first foundations of web services were laid. Eventually this technology would find

its way into virtually all forms of frameworks at the time such as Java SE/EE and

Microsoft’s own DotNet. In the end, this process evolved further into the beginnings

of the XML-RPC protocol, which is used even today [3, 29]. Web services have slowly

established themselves to be the most common and reliable form of data transfer and

middleware connection between remote software systems. Even now, web services are

involved in many fields regarding the handling of data, such as Machine Learning,

High Performance Computing, and Virtual Reality [5, 53, 55].

Although an interesting history lesson, that does not really explain what a web

service is. To understand what a web service is, the most important task is to first

understand what a service is. A service by technical definition refers to a software

Figure 2.1: This is a representation of the interaction between web service and
client [25].
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function that executes and accomplishes a business task, also called a business re-

quirement in certain disciplines [16]. A business task is the smallest identifiable and

essential job within a component of the overarching project. A web service differs

from a normal service in that it seeks to connect whole separate systems and exposes

reusable business functions over HyperText Transfer Protocol, or HTTP [6]. Essen-

tially, web services bind complex software functionalities on actual URL endpoints

and by calling these URLs, the web service would invoke a software function and

relay the result back to a client. An example of this is seen in Figure 2.1. Now

that a web service is properly defined, it is worth noting that web services do come

in two different flavors of communication protocol. These communication protocols,

Simple Object Access Protocol (SOAP) and Representational State Transfer (REST)

determine the ways in which a web service are invoked.

2.1.1 SOAP

SOAP was originally developed by Microsoft 1998 and is a legacy protocol that uti-

lizes very strict and structured XMLs in order to invoke functionality within a web

service [18]. SOAP consists of three major nodes: SOAP Sender, Receiver, and In-

termediary. The SOAP sender functionality generates and transmit SOAP messages.

The SOAP Receiver retrieves messages and processes them, and it may optionally

generate a SOAP response. The SOAP Intermediary can serve as both SOAP Re-

ceiver and Sender, where it receives the headers from incoming messages and forwards

it to the receiver. It is through these three nodes that SOAP operates. However, when

data is passed through the entire protocol of SOAP, a side effect is that the data is

over-inflated due to the standards set by SOAP [32]. Because of this and many other

performance related issues, SOAP has long since fallen out of favor of current trending

technology practices in favor of REST and now is used almost exclusively in legacy

systems [46]. A comparison is shown in Figure 2.2
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Figure 2.2: This is a comparison between rest and soap when it comes to data trans-
fer [32].

2.1.2 REST and RESTFUL

REST was originally conceived by Roy Fielding at the University of California, Irvine

in 2000 for his Ph.D dissertation. This architectural style was designed to be applied

with the recently developed HTTP and Uniform Resource Identifier (URI) [11, 52].

The idea of REST is to provide interoperability between any form of software system

connected via the internet and this is done through web service instances that utilize

the REST architecture, dubbed “RESTFUL Services”. Systems will then be able
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to query these RESTFUL services through appropriate requests, the main form of

interfacing with HTTP, and invoke the intended functionality. With REST, services

can now operate with resources other than XML, such as HTML and Javascript

Object Notation (JSON), which is the most common form of file format to transfer

data today. REST requests are also unique in that each request utilizes a method,

which itself is derived from verbs that describe actions to be done on the resource.

These methods are: GET, which signifies data retrieval; POST, which signifies data

upload; PUT, which signifies the altering of existing data; and DELETE, which

signifies the deletion or removal of existing data. Finally, REST provides response

back after each request that provides both a status code that shows the current

state of the request and a more detailed feedback in plain text. This combination of

features allow REST to create a more intuitive style of web service and makes it so

that RESTFUL services are considered industry standard even today.

2.2 Modern Web Services

In today’s development climate, web services, especially RESTFUL ones, are com-

monly used for all sorts of backend, middleware, and applications development. Some

of the largest tech companies out there today, such as Google, Twitter, Netflix, and

Amazon all support RESTFUL APIs for most of their publicized features. Interest-

ingly enough, none of these APIs, despite being advertised as RESTFUL, are not

actually RESTFUL. Although accurate, a better phrasing would be that the idea of

REST has evolved over the years since it’s coining in 2000 [11, 33].

Originally, REST was developed with a handful exceedingly strict rules such

as services requiring actual representations of a data instance and that an incom-

ing resource must be absolutely self-describing without any outside context. These

rigid pillars of REST quickly fell out of favor as today’s technological climate shifted

towards an applications and standalone software packages. In fact, very few web

services developed by large tech companies even follow the canonically accurate ide-

als set down by Roy Fielding, one such example being Netflix’s API. REST quickly
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Figure 2.3: The modern approach of rest, aiming towards applications develop-
ment [26].

became associated with the idea of resources and functionality made accessible by

URI endpoints on the internet. Ironically enough, this revolutionary concept made

in 2000 would actually be a detriment to our modern web development and through

it’s bastardization, an architecture style more conducive was born. Figure 2.3 shows

the common and modern approach at RESTful APIs.

2.3 Monolithic Architecture

A monolithic architecture revolves around the idea of “End-to-end”, where the sys-

tem’s functional aspects are thoroughly interwoven [51]. By being interwoven, this

meant the vital components that makes up the system’s functionalities are tightly-

coupled to each other and requires each others’ presence to operate. To give a good

example, imagine the idea of the inputs and outputs of a system being closely tied

to both the error handling and the user interface. Should one of these functionalities

fail, the entire interwoven structure would collapse alongside it. A sample of a mono-
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lithic system can be seen in Figure 2.4. Now, this approach is not necessarily bad

as it works very well when designing systems based around monetary management.

Should something fail during a money transaction, then the entire process would as

well. This would be preferable then accidentally being charged for the transaction

despite failing. Despite being acceptable for monetary transactions, a monolithic ar-

chitecture is not the best choice for a growing environmental data collection system.

Figure 2.4: This is a representation of a typical monolithic system. The interwoven
nature of this monolithic system is shown through the venn diagram encompassing
the main functionalities [25].

An example of a monolithic architecture is the Nevada Research Data Center.
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The NRDC is the central data hub of the Solar Energy-Water-Environmental Nexus

project, where environmental sensor data from various research teams is collected and

stored [10, 43]. Unfortunately, the NRDC is the descendant of an older monolithic

system and inherited its predecessor’s interwoven approach [8]. Due to its interwoven

nature, the NRDC system has great trouble even maintaining itself. In order to con-

duct maintenance on the system, the monolithic nature forces the system to suspend

the data collection services. During this time, the NRDC could miss several dozen

data entries, which is especially disconcerting for the scientists who are expected to

conduct research on the data. The monolithic NRDC had virtually no form of ac-

tively monitoring its services’ health which made it hard for to tell if a functionality

was even online. Finally, the NRDC had no form of supporting the development of

tools or application without a base-level modification to the entire system.

Fortunately, this thesis was not the first time this problem was recognized, and

there was prior work on proposing a more distributed reformation of the NRDC [38].

However, the development team could not just suddenly scrap the NRDC system

and suddenly create a new one. The NRDC was already involved in the recording

of research data every minute and many teams depended on this data to continue

their research. Therefore, a support system was needed to handle the brunt of the

new developments while the NRDC could make careful and deliberate approaches at

a sustainable pace to rectify the oversights originating from the legacy system.

2.4 Microservices

The term “Microservice” was traced back to a Microsoft Service Edge Conference

presentation in 2005 by Dr. Peter Rodgers. Dr. Rogers referred to the concept

of granular web services that remained independent of each other as “Micro-Web-

Services” [49]. These granular web services could then be mapped to a specific func-

tionality and the inter-switching of them created a new option for modularity within

application. An example of this can be seen in Figure 2.5. This term eventually

would evolve and emerge around 2011-2013 in multiple conferences and workshops
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Figure 2.5: High-level look at microservices [13].

around the world. The idea of Microservices generally referred to web services that

had singular simple roles that remained independent of each other. By having the

web services all independent and granular, each microservice could have varying code

bases and differing databases. This would allow each development team in charge

of a service to choose the best language or database for the job. Even though the

code base and database could be different, each service still communicates through a

REST API so there is very little change among the microservices. In addition, often

associated with Microservices was the concept of having an overseer service called

the Service Discovery which had the role of registering, monitoring, and sometimes

testing the health of each microservice.

However, the microservice architecture has its own failing in the form of it being

incredibly difficult to implement at first. The microservice architecture style currently

does not have any associated frameworks or libraries that enables the fast and easy

deployments of its implementations. This is due it’s nature as a technology-agnostic

architecture so pretty much any programming language with web capabilities can
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construct microservices [44]. In order to deploy a microservice-based implementation,

it would require the actual construction of such a system by using the concepts as a

guideline. This would make it incredibly inefficient to implement for smaller systems

but generally very effective in larger and growing ones such as a system handling

social media content or an entire state’s worth of environmental data.

2.5 A Distributed Approach for the NRDC

Combating the severe limitations placed on the NRDC by its monolithic legacy and its

own rapid growth required a distributed approach instead of an interwoven one. There

needed to be a way in which the NRDC could have persisting cyberinfrastructure

(shortened to CI) options for the Nexus Project even during maintenance. At the

same time, many research teams look to the NRDC for their CI support and each

team had requirements unique to their own field. There had to be a way so that

the NRDC could scale to the needs of it’s own members. These concerns were well

addressed in the past and plans were made to move forward with a service-oriented

approach [38]. Finally, the NRDC simply could not make the time to unravel an old

legacy monolith while research groups were still using the stored data. It is because of

these reasons that the decision was made to create an external support system based

on the Microservice Architecture. The Microservice Architecture was chosen because

it’s unique ability to separate a monolithic structure into independent components

based on business requirements. A comparison diagram of a monolithic system versus

a microservice-based on can be seen in Figure 2.6. In this section, a technical overview

of a microservices-based system is discussed, as well as the benefits and detriments

that this approach brings.

2.5.1 Technical Overview

With the choice made for a microservice-based system to handle NRDC’s monolithic

problem, what exactly goes into a system like this? Interestingly enough, microser-

vices are so recent and steeped in theory that there is not even a concrete framework
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or set of rules that a system utilizing them has to follow. In common practice, de-

velopment teams assigned to a microservice are often given full reign to the complete

development of their service. This means that each service could be entirely different

codebases or libraries, as long as they have an exposed HTTP API. The nature of

their HTTP API approach allows intense flexibility, but this freedom often comes at

the price of standardization. Simply put, no one has ever agreed on a recipe for a

good microservice-based system. Fortunately, among the many industry practitioners

and researchers, there are common guidelines that are composed of popular practices

used by industry. Bear in mind that the following practices are of a smaller set that

are deemed significant and relevant to understanding the architecture.

Generally, a good practice for developing a microservice-based system is to actu-

ally remain mindful of the decoupling concept. Microservices are designed to combat

the rigidness of the monolithic interwoven structure. This implies that when design-

ing microservices, each microservice should remain independent of its other services.

By remaining independent, the microservice would not drag down the system when

Figure 2.6: This is a visual comparison of a microservice system versus a monolithic
one. Should a microservice fail, it would not compromise the overall system [56].
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it eventually fails. However, the independence of the microservices make it difficult

to manage without a way to locate and monitor them. Often coupled with this prac-

tice is the concept of a service discovery. A service discovery is another microservice

whose task is to monitor certain ports that are registered on it. Without interfering

with the other microservices, a service discovery pings and record the results of all

services registered to it. Additionally, service discoveries are often used by industry to

set specialized autonomous tests to further check the health of their microservices. A

common example of this would be the Consul Service Discovery, a third-party service

developed by HashiCorp [19]. A high level diagram of a microservice-based system

with a service discovery is shown in Figure 2.7.

Figure 2.7: This is a common and simplified design of a microservice-based system.
The diagram does not cover the database integration but instead focuses on the
relationship of the microservices with the service discovery and a client [19].

Continuing on, a good practice for microservices is the separation of critical and

secondary functionalities. To elaborate, when designing a microservice-based system,

developers should identify the core functions that are essential to its operation. Once

identified, these core functions should each be encompassed by a set of microser-
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vices and left alone. The separation of these functions give development teams more

breathing room to operate without fear of shutting down any portion of the grander

system. Before moving on to the benefits, a final good practice would be clarifying

the responsibility of your microservice. A microservice by its very nature is the rep-

resentation of a singular business requirement. That means the microservice being

developed should not overstretch its scope and fit in anything else.

2.5.2 Benefits

Often times, the NRDC staff is contacted by the various other groups within it’s

parent project, the Solar Energy-Water-Environment Nexus, for software support in

the form of quality control, data analytics, or some manner of visualization. Usually,

these requests are met with strained commitment due to the NRDC system not having

the capacity to adapt without severe base-level modifications. However, the addition

of a distributed support system can alleviate the burden of these requests by providing

the following features.

Microservices provide the means to separate business requirements imposed on

the NRDC by distributing them to an individual microservice. The very nature of

distributing business requirements to independent entities within the system brings

the benefit of scalability, should the business requirements change or increase in the

future. Each microservice is independent of each other and can be specialized to han-

dle the software needs that a Nexus component may require, such as refined searching

of data entries, the uploading of files, or even the security access of certain data. Addi-

tionally, these microservices are exposed over the internet through HTTP endpoints

and lessens the need for technical coding expertise among scientists. More impor-

tantly though, these microservices can be combined together to create more complex

software solutions and are compatible with all forms of programming languages. With

this system, Nexus CI developers can now create tools to curate incoming or stored

data, design applications to support Nexus fieldwork, or even generate customizable

data visualizations without needing to deeply modify the greater NRDC system. Fi-
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nally, this system was designed with failure in mind, so a Nexus CI developer or

technician can simply restart a microservice without fear of compromising any other

microservice or the entire system.

2.5.3 Detriments

As one may expect, the implementation of a microservice-based system like MESA

comes with it’s own set of drawbacks that could deter some environmental projects,

namely smaller ones, from adopting this approach. The first hurdle of the microser-

vice approach comes along with its lack of standardization. This means that the

development of a microservice-based system is incredibly hard because there is virtu-

ally no support and only a sparse amount of documentation to work off of. The next

hurdle, when creating the system, it also requires a significant amount of technical

knowledge that exists well beyond the realm of most environmental scientists. For

smaller environmental projects without a major CI component, this approach would

be extremely detrimental because the burden of establishing the system would then

fall to the researchers. Finally, another hurdle is the sheer amount of time that is

required for designing this system. Before implementing a system like MESA, it re-

quires a great deal of planning, knowing that each requirement can be broken into

a microservice. Each service must be designed so that there is no dependencies on

other microservices. This could be especially disadvantageous to smaller environ-

mental groups because this process would literally take manpower away from actual

research.

2.6 Additional Information

Although not having much to do with the development of a microservice-based sys-

tem, there is a bit of sub-domain specific information that holds critical importance

to understanding MESA and the data it handles. There will be many mentions of

a research site within this thesis, however the idea of a research site can vary from

discipline to discipline. To be more specific, a research site in regards to environ-



18

mental sciences refers to the autonomous sites deployed throughout a region, Nevada

being the case for this project. These research sites are configured with numerous

third-party sensor equipment that are situated around a centralized relay tower to

monitor the area immediately around it. An example of a Nexus research site can

be seen in Figure 2.8. These sensors are then configured to broadcast measurement

reading every set interval by using the tower as a medium. The tower then sends

these readings to specific repositories to be read in and interpreted by environmental

scientists. This process is called In-situ Environmental Monitoring, where the in-situ

portion implies the research site measures only the immediate area around it instead

of the region itself. This leads to more refined time-series analysis under ambient

conditions, but would require more technical expertise as a trade-off. This is where

Cyberinfrastructure and the NRDC comes in!

2.7 Technology Utilized

Developing MESA as a microservice-based system was quite the challenge due to the

architecture being technology agnostic and not having explicit support from any lan-

guage or libraries. The architecture cares only for HTTP calls through a RESTful

API so the development of a microservice is language-agnostic in nature. With that

in mind, the construction of the MESA system used common and modern web tech-

nologies compatible with the database manager utilized by the NRDC. It should be

noted that even though this section lists several programming languages and frame-

works, a system like MESA can be executed by virtually any RESTful web service

development platform.

2.7.1 C# Programming Language

The C# programming language is a powerful and modern choice for web development

and has great compatibility with Microsoft products [54]. C# provides access to

robust, industry-level software, such as the entity framework for object-relational

mapping and the .NET framework for applications development. Much like Java,
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Figure 2.8: This is an example of a research site installed by Nexus Project technicians
and environmental researchers. This photo showcases one of the multiple research
sites located in Snake Range over at White Pine County, Nevada [42].

C# is both an object-oriented language and generates an intermediate language code

after compilation. MESA utilized C# as the codebase for the majority of its data

and infrastructure-based microservices due to it’s reputation as a dependable web

development language, it’s massive amount of support libraries, and it’s convenient

interfacing with the NRDC’s Database Management System: Microsoft SQL Server.

2.7.2 Python Programming Language

Although not as popular as C#, the Python programming language is still a strong

contender in industry as a web development and backend server codebase [12]. Python,

unlike C#, is actually an interpreted language, where code is compiled line by line

instead of being done after the entire code is collected. Additionally, Python enjoys
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the benefits of having a very popular user-generated content community, leading to

an abundance of modules and frameworks available for download. Due to the highly

readable and straightforward nature of Python’s syntax, it is often chosen by scien-

tists and technicians as their choice of scripting language. MESA utilized Python

to develop several microservices designed around supporting Nexus environmental

fieldwork. The choice to use Python for MESA’s microservices was due to it’s many

modern web technology modules and that it is a development language that scientists

or technicians would feel familiar with.

2.7.3 Windows Communication Foundation

Windows Communication Foundation (WCF) is a toolset developed in the .NET

Framework that specializes in implementing and deploying service-oriented architec-

tures (SOA) [37]. This is especially useful since the Microservice Architecture is a

variant of SOA and benefits greatly from it’s features. This approach differs from the

common .NET Web API, a newer and lighter web api framework, in that WCF uses

safer protocols and is geared more towards backend development. WCF provides

the necessary components for a developer to deploy a web service while making it

discoverable via HTTP. Originally, WCF was designed with SOAP in mind, but in

2007, WCF added the JSON support needed for REST implementations. MESA uses

WCF alongside C# to deploy microservices that provide advanced data infrastructure

solutions to other Nexus CI developments.

2.7.4 Flask

Flask is a python-based microframework that supports the development of web ser-

vices [1]. By microframework, this means Flask does not require any tools to install

it, and does not provide any form validation, database abstraction, or any compo-

nents for that matter. Flask by itself only provides the bare-bones structure of service

creation, however Flask is very modular in that it can be combined with various other

Python modules to generate a RESTful service. Several microservices tailored for ap-
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plications were developed by using various Python modules alongside Flask, such as

the JSON module to handle JSON serialization, the PYODBC module for database

connection and abstraction, and the Requests module to handle HTTP calls. How-

ever, a major drawback from this approach is that the state of the service depends

entirely on whether these modules are kept up to date. Should a module lose support

from its developers, it can potentially cause severe issues for the microservice in the

future.

2.7.5 Microsoft SQL Server

Microsoft SQL Server (MSSQL) is the main Database Management System for the

NRDC and as a product, it’s primary function is to store data inside a relational

database and retrieve it when necessary [36]. MSSQL is considered to be one of the

most popular database systems in the market today and boasts an excellent reputa-

tion when it comes to communication across other software applications. As noted

from the name, MSSQL is a relational database, but uses an altered SQL querying

language, called Transact SQL (TSQL). TSQL not only provides MSSQL with the

same features as regular SQL but expands SQL further by allowing transaction con-

trol, error handling, row processing, and the creation of declared variables. MSSQL

as a Microsoft product shows incredible compatibility with other Microsoft products,

making it an excellent choice when deploying WCF microservices from the Windows

operating system. The choice of using MSSQL was determined based off of the hard-

ware that was purchased or allocated at the start of the project.

2.7.6 Consul

The Consul Service Discovery was developed by HashiCorp to provide the DevOps

and applications development communities an out of the box solution when it comes

to managing web services [19]. Consul comes fully loaded with a host of features,

such detecting and registering services on a network, applying customized health

tests on service autonomously, and displaying relevant maintenance information on a
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Figure 2.9: This is an example of an interface generated by Consul [19]. On this web
page, users can view the current state and health of a service, as well as set up various
settings.

generated web interface, as shown in Figure 2.9. This third-party software is free and

available for use as soon as it is downloaded without any major installations. MESA

decided on Consul as a service discovery option due to it’s free nature and it’s ability

to administer autonomous tests. The decision to use Consul against creating a service

discovery was made based on the amount of additional technical knowledge needed

to complete a comparable solution. Simply put, it would have expended too much

time and effort to create anything exceptional, while Consul is free and robust.
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Chapter 3

Related Work

Present in this chapter is an overview of similar distributed systems existing in and out

of the Earth sciences. To be specific, the systems presented are distributed systems

that enable support for applications, visualizations, or any form of development work.

Additionally, due to the strict criteria of covering microservice-based architectures for

environmental research, this chapter will instead focus on any form of microservice-

based system offering support to applications. Section 3.1 covers several systems that

fit the criteria previously mentioned, but a technical comparison between MESA and

this selection will be covered in Chapter 6. Section 3.2 provides three similar systems

implemented outside the domain of environmental research. Microservices being used

for application development has been a hot topic for close to a decade now, so a limit

on related work will be placed in this section.

3.1 Similar Work in the Earth Sciences

This section covers similar systems to MESA that were also developed for environ-

mental research. Specifically, each of these systems were created with the idea of

providing a platform for additional software development in mind. For each of these

systems, a brief overview of the similarities and differences to the proposed MESA

solution is presented. As mentioned, this section contains several selections that are

covered in further technical detail and compared in Chapter 6.
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3.1.1 WC-WAVE Hydrological Model Framework

A framework to visualize hydrological models was developed for the WC-WAVE

Project, an environmental collaborative project across three states: Idaho, New Mex-

ico, and Nevada [20]. WC-WAVE is a research project that falls under the same EP-

SCoR umbrella as the Nexus Project and are often collaborators on certain research

ventures. This system used a microservice architecture to generate models based off

of standards set by the research domain. The system then returns the models back

through HTTP and disseminates them on their client web application. The modeling

framework utilizes a suite of microservices to provide security, retrieve information,

generate models, and send models to a web application designed to visualize them.

Currently, the web application is the only client that utilizes this architecture.

This system bears a striking similarity to MESA because it is also a platform

for the development of additional software solutions for an environmental research

project. MESA supports a wide number of microservices that share similar function-

alities, such as security, data management, and data visualization. However, as much

as this system holds similarities with MESA, it also holds distinct differences. The

WC-WAVE Modeling Framework focuses primarily on allowing users to execute and

store experimental models in a contained environment, while MESA focuses primarily

on providing a platform for software solutions. The Modeling Framework appears to

be designed with the idea of supporting only one application client in mind, unlike

MESA. In addition, MESA provides data infrastructure solutions that this system

does not. Finally, this system show any indication of possessing a means to discover

and register microservices in order to monitor health.

3.1.2 Generic Service Infrastructure for PEIS

A team of researchers at the Karlsruhe Institute of Technology developed a microservice-

based architecture based around a massive nation-wide research project whose pur-

pose is to study environmental information [4]. This system, dubbed Public Envi-

ronmental Information System (PEIS), uses microservices to provide infrastructure
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and application support to various client applications, such as sensor networks, web

applications, and mobile devices. PEIS is a redesign of an original monolithic archi-

tecture and inherits an established network of sensors that span the entire southwest

region of Germany. PEIS focuses on four main microservices that covers time-series

operations, asset management, data analytics, and a centralized service called mas-

ter. Additionally, this system uses both containerization and service discoveries to

better manage the independent web services. Finally, PEIS’s data analytic features

are centered around computing cluster that was made part of their project.

The PEIS system is remarkably similar to MESA in that it uses an approach that

was also considered by the Nexus Project and it falls under the umbrella of a larger

environmental project. The approach adopted by PEIS involved the complete refac-

toring and rebuilding of a sensor collection system. Ultimately though, the Nexus

project sought to avoid the rebuilding a system that actively collected data every few

minutes in fear of losing a sizable amount of research. Additionally, the PEIS system

provides much of the functionality that is provided by MESA, including a service dis-

covery and excellent support for current and future applications. A major difference

between the two system is the amount of microservices being employed by PEIS is

significantly less than MESA. It is not clear as to whether PEIS does not require

that much business logic or that the web services are somewhat interwoven. Regard-

less, PEIS represents an excellently constructed and well designed microservice-based

development platform for applications.

3.1.3 OceanTEA: Exploring Ocean-Derived Climate Data

OceanTEA is a support system designed to aid researchers with processing data from

a ocean monitoring system designed by the University of Kiel in Germany [28]. The

ocean monitoring system deployed by the University of Kiel consists of more than 3000

floating sensors that concurrently stream time-series data at regular intervals each day.

The collection of time-series data has created a surge that negatively impacted the

management of data within their systems. This support system uses microservices to
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structurize the data presented to researchers based on specified criteria. OceanTEA

then presents this information through an intuitive and responsive web interface. The

system utilizes a handful of microservices that handle four major jobs: authentication,

time series conversion, spatial analysis, and time series pattern discovery. Each of

these microservices are encompassed in a docker container and feature a different

codebase. Finally, these microservices are made available through unspecified cloud

technologies or as a desktop application.

OceanTEA greatly resembles MESA in both the motive of why the system was

developed and portions of the execution. Both MESA and OceanTEA were designed

as a relief to the monolithic system that gathers the actively streaming sensor data

from associated areas of research. These two systems also share similarities in that

they leverages application support, through microservices, to tools designed to ease

the burdens of their project’s researchers.

Despite the similarities shared by these two systems, there is an abundance of

differences between MESA and OceanTEA. First, the design of OceanTEA gives off

the impression that the system is tailored only towards to the structuring and pre-

senting of data to researchers, rather than providing the groundwork for other future

tool development. Next, several of the microservices designed for OceanTEA seem

dependent on the functionalities of other microservices. This breaks the independent

nature of the microservices and opts towards a interwoven relationship. Finally, the

OceanTEA system does not utilize a service discovery in order to register services,

apply tests, or monitor health.

3.2 External Work

This section provides a look into systems that are similar to MESA in their application

support, but differ in the domain of research. It is important to consider that there

has been significant development in the last decade regarding Microservice-based

Architectures and the applications supported by them. In light of this consideration,

this system selection presented has been limited to relatively recent works. Much like



27

the previous section, choice systems from this selection are given a technical overview

and comparison in a later chapter.

3.2.1 DIMMER Smart City Platform

The DIMMER Smart City Platform is the initial case study in which members of

the European DIMMER Smart City Project applied a microservice architecture to

provide support to various sensor networks placed around affiliated cities [31]. Ad-

ditionally, the DIMMER platform was also designed to interface with smart city

applications that in theory would be used by city officials for administrative work. In

order to achieve this, around a dozen microservices were developed between two major

subgroups: Middleware for data management and Smart City for applications. Mid-

dleware microservices include functionalities such as the management of sensor data,

active clients, and the service discovery. It should be noted here that it is unclear

as to whether the service discovery encompasses just the Middleware microservices

or the entire system. The Smart City microservices provide application support that

varies based on the many applications that each microservice is tethered to. These

microservices include functionalities that provide energy simulations, create energy

optimization strategies, and expose data models of geography, buildings, or systems.

The DIMMER platform shares similar features to the proposed MESA system

despite not being part of the environmental research domain. Both systems offer data

infrastructure solutions and application support through microservice REST APIs.

Additionally, MESA and DIMMER provide a service discovery element to better

track the state of their microservices, however it is still unknown as to whether this

feature is extended to DIMMER’s IoT application microservices. In regards to the

differences between the two systems, DIMMER collects the data of the sensor network

unlike MESA who relies on the NRDC’s system to autonomously collect sensor data

from its various research sites. Another difference that follows DIMMER’s one system

approach is that the autonomous collection of data from DIMMER’s sensor network

and the support of the IoT applications creates intense network overhead that affects
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the quality of life for researchers. MESA does not share this disadvantage because the

NRDC system curates data in time-series batches instead of the real-time approach

that DIMMER uses. This creates fewer times in which applications or sensors queue

for the attention of the central repository.

3.2.2 Open IoT Framework based on Microservices

An IoT platform created by using microservices and the Jolie programming language

was presented by a software team from the Innopolis University in Russia. This

platform was designed to provide concurrent support to IoT devices and an advance

sensor network placed inside a smart building as part of a Human-Building Interaction

study [30]. The Jolie programming language is presented as the main component of

establishing this microservice-based platform and is described as a language that is

designed entirely to develop service-oriented architectures. In this platform, several

microservices are written for each connected device as a data abstraction layer, but

this amount is not covered in their work. This is possibly due to the sheer amount of

devices present within a smart building. Jolie extracts data from connected devices

by executing contained Java code to interface with the IoT devices. Alongside each

sensor and application, a raspberry pi is connected in order to serve as a reliable way

to connect to the main microservice system through their network.

In terms of similarities, this IoT platform provides dedicated application sup-

port, much like MESA. Each application connected to the IoT platform and MESA is

provided a dedicated data abstraction layer among other feature support. Addition-

ally, both MESA and this IoT platform were developed with powerful programming

languages that specialized in web technologies. This IoT approach however, shares

far more differences with MESA than similarities despite being a microservice-based

platform. A major difference between MESA and this IoT platform is that MESA

provides more features in its execution than just data abstraction layers between a

tethered device and the main system. Additionally, this IoT platform does not make

mention of a service discovery portion, which makes the tracking of system health
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and applying tests difficult. Another difference is that the IoT platform collects the

data from its sensor network unlike MESA who relies on the NRDC system to collect

data. Finally, the IoT is highly reliant on using raspberry pis as relays between the

microservices and the IoT devices.

3.2.3 Danske Bank Migration

A microservice-based architecture was developed for the migration of a monolithic

banking system out of Danske Bank in Denmark [9]. Danske Bank is the largest

bank in Denmark and one of the largest financial institutions based out of Northern

Europe. Over the years, the main system of the bank has had troubles in scalability,

the interwovenness of their features, and riddled with indecipherable business logic.

The system, dubbed FXCore, reinvents the old monolith of Danske Bank into a dis-

tributed microservice architecture with the latest technologies. FXCore reinvents the

old interwoven services into independent microservices and registers each in a service

discovery that monitors the health of the system. The banking system is now fully

equiped with automated continous integration and delivery pipeline that is hosted

on their internal server. Each of the services are fully containerized with Docker and

loaded into Docker Swarm’s Orchestration to handle both the service discovery and

the load balancing. With these new improvements in technology, FXCore provides

Danske Bank with a scalable future that it desperately wanted.

MESA and FXCore shares many similarities in that both systems were designed

around the idea that changes were needed in order to handle the limitations of scal-

ability within their respective domains. Both systems separate their respective busi-

ness requirements and encompasses each one in an independent microservice to be

monitored by the service discovery. However, there is a vast difference between the

two systems. FXCore provides Danske Bank’s systems with the latest and greatest

technological advancements in microservice technology, while MESA serves as a ap-

plication support platform for the NRDC system. FXCore rewrote and replaced the

original monolith created by Danske Bank, while MESA preserves some of the critical
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systems that the NRDC original implemented. Interestingly enough, this approach

actually may not be the best for FXCore. Although an excellent means to enable

scalability, microservices do not provide the system critical support that a banking

system necessarily needs. Monoliths in fact are often used by banking systems be-

cause when a portion of the transaction fails, the entire process fails. This allows

banks to narrow the actions caused by transactions to either a full success or a full

failure. Anything in between can be disastrous for banking business requirements.



31

Chapter 4

Software Design

In this chapter, an overview of the software design specifications that defines the oper-

ational details of MESA is covered. Section 4.1 of this chapter provides a deeper look

into the requirements placed on this system. This entails the functional requirements

that describes the required system features, and the non-functional requirements that

describes the constraints on the system. Section 4.2 covers the use cases of the MESA

system in the form of a diagram and a brief overview. After which, Section 4.3 covers

the sequence of invoking one of the microservices. Finally, the Section 4.4 covers the

architectural design of the MESA system. This will entail a high-level diagram of the

microservices, component and activity diagrams of affiliated tools developed with the

microservices, as well as an entity relationship diagram for the NRDC database that

MESA interfaces with. To have a further look at a sample microservice, source code

is shown in Appendix A.

4.1 Requirements

MESA was developed with several key requirements in mind, and among these re-

quirements, each were separated into three major types: base level functionalities,

secondary functionalities, and constraints. In this section, an in-depth look at the

requirements is presented in two parts. The first part covers the functional require-

ments, which consists of the base level functionalities and the secondary or future

functionalities. The second part details the non-functional requirements whom rep-
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resent the hardware and software constraints placed on the MESA system.

4.1.1 Functional Requirements

The functional requirements in the context of software systems are the set of technical

functionalities provided by the described system. In the case of MESA, the functional

requirements are split between three levels. The first level denotes the functionalities

that are considered basic and vital to the very operation of MESA. The second level

of the functional requirements are functionalities that are not vital to the operation of

MESA and provide an additional feature to the system. The third level are function-

alities that are considered low-priority or unfinished, and are often associated with

future work. In fact, these level three requirements and further plans are discussed

later on in Chapter 7. A table showing the functional requirements of all levels is

shown in Table 4.1. In the following text, the requirements of each level will be given

a detailed overview.

In regards to the level one functional requirements, there are a total of ten that

make up the core features of MESA. The first requirement establishes that MESA

provides applications with the standard features found within a database without

having to tether directly to it. The second requirement ensures that the data retrieved

from the data source is not a massive pull, but rather a curated batch that follows

the standards set by the application. The third requirements enables MESA to be

language-agnostic by setting communications to HTTP protocols only. The fourth

requirement combats the interwoven nature of monoliths by having the microservices

remain independent of each other. The fifth requirement involves the registering of

each microservice inside a service discovery service. The sixth requirement entails the

tracking of each microservice through regular heath checks via the service discovery.

The seventh requirement is the automated and custom testing of the microservices

through scripts written in Bash and Python. The eighth requirement involves the

system remaining operational even if a microservice fails. The ninth requirement is

the detection of conflicts within requests issued by multiple applications. The tenth
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requirement established that MESA provides more than just simple data operations

and these capabilities include automated testing, data curation, photo operations,

and data visualization. More on this is covered in Chapter 5 .

Unlike the level one functional requirements, there are only two level two re-

quirements that serve as additional features outside the base level ones. Both of

these level two requirements involve a specific type of data gathered by research sites:

high definition photos captured by station cameras. The first requirement covers the

functionality of storing and retrieval photos. This is significant because the photos

are not stored as actual images and are instead encoded as byte arrays before storing

then decoded once retrieved. The second requirement covers a more unique feature

involving cropping or compressing a high definition image as a preview on an appli-

cation. This was created in order to address the massive amount of data involved

in loading a high definition picture. Instead of loading all images at once, a smaller

Name Level Description

FR1 1
The system will handle the data abstraction processes
between application and data source

FR2 1
The system will structure retrieved data based
on the needs of the application

FR3 1 The system will handle all communication via HTTP protocols
FR4 1 The system microservices will remain independent of each other
FR5 1 The system will register each of the microservices
FR6 1 The system will track the state of each of the microservices
FR7 1 The system will test each of the microservices autonomously

FR8 1
The system will remain operational even when
a microservice is offline

FR9 1 The system will detect conflicts in the submission of data

FR10 1
The system will provide complex software solutions to
applications

FR11 2
The system will handle the storage and retrieval
of high-definition images

FR12 2
The system will provide compressed or cropped versions
of present images

FR13 3 The system will utilize Continuous Integration
FR14 3 The system will utilize Cloud Technologies

Table 4.1: Functional Requirements
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preview is set as the main display, but if the user wants to expand further, it would

load a high definition image.

Much the like the level two requirements, the level three requirements consists

of only two features that represent work considered to be low-priority or unfinished.

The two requirements presented cover the work usually practiced in microservice-

based systems found in industry. The first requirement covers the usage of continuous

Integration. This feature is not present within MESA and involves using devops tools

such as Jenkins [21] to automate the process of merging working developer copies into

a shared mainline. This feature, although critical in most engineer teams in modern

companies, was not added to this thesis implementation due to it possessing only one

developer and was created as a proof of concept. The second requirement proposes

the idea of utilizing cloud technologies such as Amazon AWS and Microsoft Azure to

host microservices instead of running them on the NRDC physical servers. This was

not implemented because the servers at the NRDC are not currently in any risk of

running out of memory. Additionally, the implementation of cloud technologies from

third party owners cost a set amount of money each month that would not outweigh

the costs of maintaining it on the physical servers. This will be discussed further in

Chapter 7.

4.1.2 Non-functional Requirements

While the functional requirements are quite numerous, the non-functional require-

ments number under half of the former. Each of the six non-functional requirements

serve as constraints that are placed on the MESA system, as shown in Table 4.2. It

should be noted that even though these constraints specify certain frameworks and

languages, a microservice-based system can be written in any language and it’s ap-

propriate web framework. The first requirement states that MESA was developed

with the C# and Python programming language. Alongside the first, the second

requirement describes the frameworks, Flask and WCF, that were mainly used in

development of the microservices. The third requirement explains that MESA was
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developed with a combination of both Linux and Windows. The fourth requirement

covers the type of database management system, SQL Server 2012 specifically, in

which the MESA system interfaces with. The fifth requirement describes the third-

party software used to implement the service discovery. The sixth and final require-

ment explains on how the MESA system was deployed, one portion with IIS and the

other through NGINX reverse proxy.

Name Description
NFR1 The system will use the C# and Python programming languages

NFR2
The system will use the Flask Microframework and
the WCF Toolset

NFR3 The system will operate on both Linux and Windows
NFR4 The system will communicate with a SQL Server 2012 database
NFR5 The system will use Consul 1.2.1 as a service registry
NFR6 The system will deploy via IIS or NGINX reverse proxy

Table 4.2: Non-Functional Requirements

4.2 Use Case Modeling

In this section, the use case modeling is covered for the MESA system and the follow-

ing descriptions are presented as a use case diagram in Figure 4.1. In the following

text, the use cases for the MESA system are broken up between it’s two actors and

are briefly discussed.

The first actor is the Application Developer, or development team depending on

the project and various logistical elements. As an application developer, they are

able to perform a GET request on a MESA microservice to invoke it’s data retrieval

operations. The developer is also able to perform a POST or PUT request on the

MESA microservice to make new changes or update older entries, respectively, on

the database. Additionally, POST requests are also the central way for developers

to invoke functionality outside that of database accessing. The next use case is

the ability for Developers to invoke a DELETE request on the MESA microservice

to remove a data entry or setting, depending on the feature that the microservice
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Figure 4.1: Use Case Diagram of the MESA system.

governs. The next use case for the developer is to log-in into the MESA system with

an authorized username and password by interfacing with the Login Microservice.

Finally, the last use case for developer is also one shared by it’s other actor, the

Consul Service Discovery, and that use case is the ability to check the health of a

microservice by querying a specific URI set by the MESA system.
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As mentioned, the other actor for the MESA system is the Consul Service Dis-

covery and aside from the one shared with the Application Developer, it only has two

use cases. The first use case involves the service discovery using the system’s ability

to set autonomous tests that are configurable by user-made scripts. The second and

last use case is the ability to register a microservice under the service discovery and

apply the appropriate settings by sending a detailed JSON to the MESA system.

4.3 Sequence of Microservice Invocation

In this section, the invocation of a microservice is covered in detail, with a POST

request to the Site Network microservice serving as the primary example. A sequence

diagram is also provided, shown in Figure 4.2, to illustrate the flow of events within

the microservice. The following text briefly describes the sequence from the start of

a client request to response made by the microservice.

Figure 4.2: Sequence Diagram of a generic POST request to a microservice.

Starting first with the client, a developer’s client constructs a JSON payload and
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sends a HTTP POST request with the JSON attached to appropriate POST URI.

Then the payload is stored as a SiteNetworkType entity and the Post functionality of

the SiteNetwork microservice is called. Once called, the GetConnString function of

the Connection Helper class is activated to retrieve the proper connection string. The

connection string is then used by the Connect functionality of the GIDMISContainer

class in order to retrieve an iterator to navigate the database. With this iterator, the

system queries whether or not an entry matching the SiteNetworkType entity exists.

If it does not exist inside the database, the iterator is used to create a new entry

instance and calls the JSONConverter function of the Converter class. This function

then translates the string based values of the SiteNetworkType entity into the proper

data types and sets them to the newly made entry instance. Once this is complete, it

returns back to scope of the new instance and then attempts to save the changes made

to the database with the SaveChanges function of the database iterator. Once saved,

the SiteNetwork microservice sends back an appropriate success or fail response to

the client.

4.4 Architecture

In this section, the architecture of MESA is presented through three main segments.

The first segment will showcase the high-level design of MESA with help from a

design diagram. This provides a generic overview of MESA and relations it shares

with various supported applications. The second segment will give a deeper look

into MESA’s microservices and some ways in which they are utilized for associated

applications. This will entail the component-based diagrams and activity charts of

two applications to serve as a proof of concept. The last segment will cover the NRDC

Database which stores both the Metadata and the data retrieved from the research

sites. A set of entity-relationship diagrams will follow this segment and show the

overall layout of the NRDC Database.
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Figure 4.3: High Level Design of the MESA system. Each of the microservices are
denoted by a label in the format of MSx−y where x indicates the generic application
it services and y being a count that totals up to n.
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4.4.1 High-Level Design

MESA as a system has four major components, and a high-level representation of this

is provided in Figure 4.3. At the center of MESA is the Service Discovery, which serves

as a both registry and monitor for all of the microservices. The Service Discovery does

not actively entangle itself with any services, aside from scheduled tests, and provides

necessary metadata regarding location and health. The next and most crucial portion

of MESA is the microservices. The microservices are all independent and represent

the main features of the MESA system. The microservices are often shuffled into

servers associated with development on specific applications. It is here where the

microservices expose their functionalities to the application through it’s HTTP API.

This is shown on the diagram where microservices are labeled in the format, MSx−y,

to indicate the generic setups between microservice and application. Additionally,

microservices are occasionally tethered to a database table to serve as an abstraction

layer, however some provide other complex software functionalities and this is denoted

in the figure. Moving on to the next component, the tables of the database are

not only utilized as a general data abstraction between client applications. Tables,

such as those containing the sensor measurements of NRDC sites, are called and

utilized in certain microservices to perform complex calculations or data management

operations. Finally, the last component are the multiple applications that utilize

MESA as their support. The applications in mind are not limited to web applications,

but also include phone applications and actual separate systems. These applications

all share one aspect and that is the sending of RESTful requests to the exposed APIs

of MESA in order to activate it’s many features.

4.4.2 Application Design

The cluster of microservices that are allocated towards an application end up serving

as the entire server backend of the client application. Simply put, each microservice

represents a major operation that performs on the more powerful server machine in

order to fulfill a feature provided by the client. To show off an example of this setup,
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the architecture of the NRDC QA Application, an application designed to support

Nexus technicians, is shown. More on this application is described in the next chapter.

In the NRDC QA Application, the client was created using the Model-View-Controller

(MVC) architectural pattern, as seen in Figure 4.4. While the view portion handles

the formal frontend website and the controller deals with event handling, the model

ties in the the server backend. Through the model, request JSONs are crafted and

then sent through HTTP to invoke the functionality of the microservices. This can

be anywhere from storing or retrieving data to handling conflicts. The microservices

performs the appropriate action based on the URI invoked by the HTTP request and

the result is sent back to the client as a response. This data can then be used by the

client’s controller and view to affect the overall interface.

So far, the role of the microservices in a client application is discussed, but

acting as a server backend contains more than just free-floating microservices. The

microservices leveraged for a client application are designed much like other systems

with relationships across the other components. The only difference in this situation,

is that the microservices are loosely coupled and do not critically depend on one

another to stay online. An example of this loosely coupled setup of microservices is the

backend that provides support to the NRAQC system, as seen in Figure 4.5. NRAQC

is a system that handles the automated quality control operations on the sensor data,

and is also described in the next chapter. NRAQC in this instance shows that there

are not only free-floating microservices such as the Flag Handler and the DataVis

Handler, but microservices whom are designed to support other microservices. An

example of this would be the Data Manager microservice, where it’s job is to be

a communication/transfer hub between the datasource, the Configuration Manager,

and the Testing/Flagging Service.

4.4.3 NRDC Database

The data utilized by MESA’s affiliated applications are drawn from a database that is

replicated regularly from the main NRDC data stores. The database utilizes Microsoft
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Figure 4.4: Component Diagram of the NRDC QA Application.
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Figure 4.5: Component Diagram of the NRAQC System.

SQL Server 2012 and houses both the metadata gathered by Nexus technicians and the

streamed sensor data from the research sites around Nevada. The NRDC’s collection

of metadata, shown in Figure 4.6, is separated into eight tables: People, Site Network,

Site, System, Deployment, Component, Service Entry, and Document. The first six

tables are considered infrastructure and are connected to one another through a one-

to-many relationship. This creates a hierarchy of data access and is used to help

narrow navigation through the large quantities of data. The last two tables, Document

and Service Entry, exists as foreign key tables to most of the other infrastructure

tables. They provide necessary information regarding each time a tower is serviced,

as well as store documentation on any part of the research equipment.

Differing from the metadata tables, the sensor data is situated around a central

Data Streams table, shown in Figure 4.7. The Data Streams table has a foreign key

relationship with the Deployment infrastructure table. From the Data Streams table,

four tables are referenced through foreign keys to determine units of measurement,

categories of data, data types, and the properties of the data. Additionally, the Data

Streams table shares a one-to-many relationship with the Measurements table. It

is this table where all of the data from the research sites are stored. Finally, the



44

Figure 4.6: Entity-Relationship Diagram of the NRDC’s Metadata Storage.

Measurements table also references two tables that hold information about quality

control flags, but this section is optional and made entirely to support the NRAQC

system.

Originally, the database schema did not account for the refined data querying and

massive batches of data were the medium in which data was transferred. Through

these tables, applications can now structure the querying of data to their client in-

terface. Additionally, each of the tables are related to one another by using only

one-to-many relationships. This choice allows each table to easier support the mi-

croservice that utilizes it. By using one-to-many relationships, the tables themselves



45

Figure 4.7: Entity-Relationship Diagram of the NRDC’s Sensor Data Storage.

still contain foreign keys to reference other tables, and not require a join table to be

referenced. This allows microservices to bring the referencing of tables down to a

minimum.
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Chapter 5

Implementation

In this chapter, a detailed walk-through of the MESA system is covered. As previ-

ously mentioned at the beginning of the thesis, the solution that MESA provides can

be split into three major parts. The first part, covered in Section 5.1, is the current

roster of Microservices developed as part of MESA. Sixteen microservices make up

MESA, and each of the microservices are mapped to a specific application or devel-

opment with some room for reuse. The second part, covered in Section 5.2, of MESA

is the Service Discovery and Registry portion of the system that serves as the main

management and testing hub. This section will cover the features provided by Consul

and a brief overview of the customized tests. The third part, covered in Section 5.3,

of MESA is the application support that is provided to other projects affiliated with

the NEXUS Project. The applications mentioned are the NRDC Quality Assurance

Application, the Near Real-time Autonomous Quality Control Application, and the

SEPHAS Lysimeter Visualization. This section specifically will cover the microser-

vices’ place within the application’s workflow. Wrapping up the chapter will be

Section 5.4 describing software practices that were utilized but are not part of the

core functionality of the system.
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5.1 Microservices

The first major part of MESA is the collection of microservices that comprise the

modular parts of the system. Each of the microservices presented in this section are

only accessible via HTTP REST protocols, such as GET or POST. Additionally, the

microservices present within MESA were developed with an agnostic view towards

coding languages in mind. This means that the certain batches of microservices differ

in terms of frameworks and actual programming languages. This was done in order to

match effective tools and libraries with powerful languages without being tied down

by a specific codebase.

There are a total of sixteen microservices that each represent a feature of an appli-

cation or some form of development supported by MESA. The first eight microservices

were developed to serve as curators of metadata gathered by Nexus technicians. These

microservices not only provide the typical create, read, update, and delete (CRUD)

functionalities, but further refines the data searching options of the NRDC by en-

forcing a hierarchical structure of accessing data. The ninth microservice manages

images captured by Nexus technicians during routine maintenance. The tenth mi-

croservice formats and feeds data into web-based environmental data visualizations.

The eleventh microservice handles conflicts from concurrent data entries. The last

five microservices provide differing functionalities but center around an autonomous

quality control application developed for sanitizing environmental sensor data. These

microservices provide support to the various features offered by the quality control

application, such as handling of erroneous data, managing incoming data, formatting

data sources, configuring the output, and displaying the corrected values.

5.1.1 Metadata Infrastructure

The eight Metadata Infrastructure Microservices revolve around a specific Nexus ap-

plication designed to alleviate the troubles faced by Nexus technicians during their

routine maintenance of research equipment at the remote research sites. Each of the



48

microservices are mapped to the eight categories of metadata in which the techni-

cians monitor for: People, Site Networks, Sites, Systems, Deployments, Components,

Service Entries, and Documents. These metadata categories govern an aspect of the

research site and it’s maintenance, such as when it was created, how many sensors

are on it, or when was the last time it was serviced. More on the metadata specif-

ically is referenced further in the chapter as part of the detailing of the application.

The microservices fit into this metadata management scenario by providing CRUD

functionalities to each of the metadata categories.

By calling specific REST protocols (GET, POST, PUT, DELETE), applications

can store and retrieve metadata from the NRDC infrastructure database. It should

be noted here that the data stored inside the NRDC was converted upon entry to

generic formats in order to ensure consistency. This means that each of the microser-

vices autonomously converts all of the data, including date time and geographical

coordinates, to standardized formats when used. Through a GET request, the mi-

croservices will retrieve an unaltered list of the entries or a singular entry within that

metadata category. By issuing a POST request, the microservices will attempt to

send a specified JSON object to the database and add the data inside the JSON as

a new entry to the database. A similar action is conducted when issuing a PUT

requests, but instead of adding a new entry, an existing one will be altered using the

data from the JSON. Finally, the DELETE request identifies an existing entry and

attempts to remove the entry from the database. Each response from the microser-

vices are retrieved and displayed as an object containing both the status code and

the appropriate text.

However, merely retrieving entire batches of data will easily flood the application

with unnecessary clutter since metadata gathered regularly by multiple technicians

tends to accumulate quickly. To combat this, each of the microservices has function-

ality that pertains to a hierarchy. This hierarchy is described as a tree-like structure

based around one-to-many relationships of the metadata categories. An example of

this type of relationship can be how Site Networks may contain many sites, while each
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Figure 5.1: This figure showcases the hierarchy of both the metadata and the sensor
data that exists in the NRDC.

site may contain many systems. This relationship can then be followed down further

until reaching a specific component or even the sensor data, as seen in Figure 5.1.

By narrowing searches down to a hierarchy, applications can have more fine-grained
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control as to what data is displayed at a given time. Instead of having a list of a

hundred components, the application can receive just the components that are as-

sociated with a specific deployment. To implement this on the microservices, each

were given a functionality to peer into the foreign keys of their entries and display

the associated IDs of the entries within the category that immediate follows them in

the hierarchy. By alternating between this hierarchy function and the other CRUD

functions, a hierarchical search pattern can be implemented.

5.1.2 Imagery

The Imagery microservice was constructed to handle the uploading, downloading, and

searching of images associated with the metadata stored on the NRDC. The images

in questions are not to be confused with the high definition image repository that

the NRDC active populates every couple minutes from research sites. These images

are instead those taken by Nexus technicians of physical components or installations

during their maintenance of the research sites. Originally, the NRDC did not have

the capability to support the spontaneous uploading of user-generated imagery. The

Imagery microservice was developed to address that oversight and create an overall

quality-of-life improvement for Nexus technicians.

To enable the Imagery microservice, an application needs to only send a JSON

object containing a unique identifier to the two exposed URIs bound to the service.

The first URI, Photosearch, invokes two different functionalities depending on the

suffix appended to the end of the URI. The second URI activates without a suffix by

merely receiving the JSON directly to the Preview URI. For Photosearch, should the

“/Post“ suffix be activated, the microservice will convert an active image into a UTF-8

byte string and store it on the database. However, when activating the ”/Get” suffix,

this would prompt the microservice to retrieve an image with an ID matching the one

on the JSON after searching through each of the metadata tables. The located image

would then be decoded and converted back to an arbitrary image format, such as PNG

or JPG. The other URI, Preview, replicates the exact functionalities of Photosearch’s
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Figure 5.2: This figure showcases the Photosearch’s preview functionality on the
NRDC QA Application, shown in the bottom left.

“/Get“ suffix, but instead, formats the converted image’s height while preserving

the ratio it shares with the width. The final cropped photo is then returned in the

response JSON as a preview of the original image, shown in Figure 5.2. These two

features are especially useful to mitigate the usage of memory inside an application,

by first giving users a thumbnail then the option to download the full resolution

photo.
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5.1.3 Data Visualization

The Data Visualization microservice was constructed to aid in the visualization of

environmental data gathered over several years at the SEPHAS Facility located in Las

Vegas. The data provided by SEPHAS consists of three major measurements: solar

radiation, air temperature, and liquid precipitation. The objective of this microservice

was to separate the three measurements and format the data so that it can fed into

three responsive graphs. When a user zooms into a region, the data must also be

updated appropriately to match their current view.

To activate the Data Visualization microservice, the application must make a

post request that consists of a JSON containing sample rates and a datetime range.

This would prompt the microservice to draw from the data source and separate it

into three data structures. This step is ignored after the first request call, as the

data is temporarily loaded in memory. Then, the data is cloned to a final three

data structures based off of the sample rate and the datetime range. By having an

appropriate sample rate, the amount of data returned will be less and retain the

appropriate shape for the visualization. If a datetime range is also specified, then the

amount of data returned will potentially be less as well. Once fully configured, the

data is packaged into a JSON and sent back as a response to the application. The

frontend will then process this data and load it into the visualization, as shown in

Figure 5.3. This entire process is repeated constantly and made faster as the user

navigates through the data.

5.1.4 Conflict Management

The Conflict Management microservice was created to resolve conflicts that result

from multiple users enacting change on a database with an application. Conflict

Management was developed largely for the metadata application uploading multiple

entries at one time. The main process operates in a similar manner as most version

control software. When the submission of a data entry whose modification date

is earlier than what is listed inside the database, a conflict is flagged. Much like
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Figure 5.3: This figure showcases the data visualization functionality on the Lysimeter
Data Display.

version control software, the user is given the option to continue with their flagged

copy or merge their version with the current canon. Once a selection is chosen, the

microservices locates the database table in which the data resides and overwrites the

entry with the selection made. This is then repeated for each of the multiple entries

being uploaded by the application during that one transaction.

Calling the Conflict Management microservice involves sending a POST request

consisting of a list of entries to submit to the database. Also inside the JSON, de-

scriptive information is given to locate the entry’s associated database table. The

microservice then goes through each of the submissions and compare the modifica-

tion dates. Should a conflicting modification date be found, the microservice appends

that entry to a flagged list. Meanwhile, the passing submissions are added to their

respective database tables via the appropriate microservices. At this point, the mi-

croservice will return a response detailing specific information about the conflict, and

a copy of both what was sent and what currently exists within the database. The re-

sponse returned provides the necessary information for a front end to create a conflict

resolution interface 5.4. Once a finalized choice has been made, a POST request to
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another URI within the microservice allows for the overwriting or updating of what

currently exists within that database entry.

Figure 5.4: This figure showcases the conflict management functionality on the NRDC
QA Application.
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5.1.5 Quality Control

The Quality Control (QC) portion of MESA are comprised of five microservices that

provides functionalities to the Near Real-time Autonomous Quality Control Applica-

tion (NRAQC). NRAQC is a QC system that provides the NRDC with the means

to transform raw sensor data into a quality data product [50]. The purpose of these

microservices is to provide all of the necessary feature support that NRAQC requires,

such as flagging incoming data, formatting data sources, visualizing data, and ex-

porting data.

The first QC microservice is the Data Manager service. The Data Manager pro-

vides all functionality of retrieving, formatting, disseminating and writing measure-

ment data, flag data and related metadata. This service provides a flexible interface

to the data source that can be reconfigured to accommodate an API data source or

a flat file system. It requires the implementation of two other interfaces: one which

allows it to transfer data between itself and the Testing/Flagging Service compo-

nent and another which allows it to receive data from the Configuration Manager

component.

The second QC microservice is the Testing/Flagging service. The Testing/Flag-

ging Service provides the core processing functionality of NRAQC by testing and

flagging data. It runs autonomously and requires no direct interaction from the user

at any time. It provides one interface allowing the Data Manager to send measure-

ments to it for testing and retrieve flagged measurements from it for writing to the

data source. It requires the implementation of one interface from the Configuration

Manager to allow the upload and modification of tests from the client.

The third QC microservice is the Flag Handler service. The Flag Handler pro-

vides an interface between the client and server. Its primary role is to handle the

client’s JavaScript code which queries for flagged data. It will filter, format and bun-

dle flags so that they may be quickly rendered upon being downloaded by the client.

Formally, it implements an interface to connect to the data source.
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The fourth QC microservice is the DataVis Handler service. The DataVis Han-

dler implements an interface to connect with the data source component and retrieve

desired information. This microservice handles all requests from the data visual-

ization component of the UI and performs necessary formatting and organization

to ensure that the Web page can focus on rendering data points instead of wasting

power processing them. This service also provides functionality to classify flagged

data points as distinct from normal data points so they will be rendered differently

by the data visualization component.

The fifth QC microservice is the Configuration Manager service. The Configu-

ration Manager interfaces with the web client – and user – by receiving user config-

uration requests and sending down stored user configuration info. Additionally, the

Configuration Manager implements interfaces to distribute configuration objects to

the Data Manager component and the Testing/Flagging Service. It can also notify

the two services of a change to the configuration and request a temporary cease of

the automated flagging cycle while re-configuration occurs.

5.2 Consul Service Discovery

The Consul Service Discovery is the second major part of the MESA system and is

actually another independent service much like the microservices. In fact, it is often

called the service discovery service by industry developers. The purpose of Consul in

regards to MESA is be the service registry and discovery for each of the developed

microservices. Consul’s primary job is to register the independent microservices based

on the IP and port in which they were deployed on. It’s secondary job is to then regu-

larly monitor the state of the microservice, determining if the service is functioning or

not. This is done with autonomous checks that are configured during a microservice’s

first register. Another role that Consul plays in MESA is that of an autonomous

testing platform. Through the configuration options of Consul, a developer can have

a customized testing script, written in any language, run at set intervals and record

the results appropriately.
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Currently, the MESA system has an instance of the Consul Service Discovery

active on the SENSOR domain where it monitors the microservices deployed. The

instance used by MESA accepts two forms of communication with it, one through

its HTTP API and one through it’s generated web interface. The web interface is

useful to show statistics of activity and status, but is weaker compared to the HTTP

API. The HTTP API however, gives developers access to all Consul commands, such

as retrieving connection information about a specific microservice, viewing all active

microservices, or even the health history of a microservice. To view statuses and

health information, this would only require a GET request to the correct URI. To

register a service with Consul, a developer would only need to send a PUT request

alongside a detailed JSON object to the appropriate URI endpoint. The detailed

JSON would require information such as location, port, name, description. It is here

where the autonomous options can be configured.

Consul allows for the loading of specialized scripts written in virtually any script-

ing language to be loaded into the configuration settings. Once a file is designated,

the developer can then specify the execution details of the script and the re-occurring

times it is executed, by altering the configuration JSON. As of now, each of the

microservices are configured with customized testing scripts written in Python that

routinely test all of the features. The scripts developed for the microservices are

all unique to the individual service, but essentially involves sending a sequence of

requests while monitoring the response codes. These results are then compiled on

Consul and made viewable by the HTTP API or the web interface.

5.3 Application Support

The third and last major part of the MESA system is the Application Support that

it provides to affiliated Nexus applications. This section will show off three projects

developed with the microservices provided by MESA. The first project is the NRDC

Quality Assurance Application, which was commonly referred to in this chapter as

the metadata application. The second project is the SEPHAS Lysimeter Visual-
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ization, which was a data visualization of compiled data provided by the SEPHAS

Facility in Las Vegas. The third project is the Near Real-time Autonomous Quality

Control Application, or NRAQC. This section will not cover the intricacies of each

project. Instead, it will provide a brief overview while describing the role which the

microservices play.

5.3.1 NRDC Quality Assurance Application

The NRDC Quality Assurance (QA) Application, or QA App for short, is an ap-

plication developed by the Cyberinfrastructure component of the Nexus project to

handle metadata [39]. Previously in this chapter, there were mentions of Nexus tech-

nicians going out to research sites for maintenance, installations, and other forms

of configurations. Albeit accurate, a significant issue was not brought up, which is

the fact that there is no form of internet access in the areas that house the research

sites. Technicians would have to manually write down entries on a notebook and then

transcribe those notes into a database sometime after. The QA App was developed

for the express reason of alleviating the troubles faced by Nexus technicians. The

application narrows down metadata on research sites specific to the user and allows

them to alter entries or add new ones right at the tower. A visual representation is

shown in Figure 5.5. Since there is limited internet access however, this application

stores the changes locally and syncs them to the database when appropriate internet

connection is made available.

The microservices play a vital role as server backend for the QA application. The

QA application upon initial activation calls upon each of the eight microservices to

store a local copy of the relevant data entries within the metadata database. It is

here where the microservices converts data from the NRDC and presents it to the

QA application. When changes are made in the application and the sync button

is pressed, the application then uses the eight microservices alongside the Conflict

Management microservice to verify and submit the changes to the database. Should

the Conflict Management microservice return a merge issue, the response from the
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Figure 5.5: This figure showcases the NRDC QA Application navigating through a
site entry.

microservice is parsed and then used to generate a merging interface. Additionally,

the Imagery microservice is called when an entry features an image and handles the

storage and retrieval of that image into the database. The Imagery microservice is

also called when the a entry is viewed by the user, where it retrieves a preview image

instead of the original.
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5.3.2 SEPHAS Lysimeter Visualization

The SEPHAS Lysimeter Visualization is a data visualization developed to better visu-

alize the environmental data gathered over the span of several years by the SEPHAS

facility in Las Vegas [27]. The main page is shown in Figure 5.6. The Lysimeter Visu-

alization was given a strict set of requirements that were determined by the SEPHAS

team. The first requirement was that the Lysimeter Visualization had to parse a

flat file and this process had to be generic so that these files can be interchanged by

a non-technical staff member. The second requirement was that the data must be

separated into three categories, one for each instrument, and fed into three web-based

visualizations. The third requirement was that the visualizations were interactive and

when affecting one, the other visualizations will share that same change. This is done

so that researchers may view the environmental effects concurrently.

Figure 5.6: The SEPHAS Lysimeter Data Visualization webpage.

The microservice played a non-vital but very significant role in the visualization

of the lysimeter data. By using powerful frontend visualization libraries such as D3.js,

the data file could merely be loaded and visualized [2]. However, this would cause an

almost unbearable lag times between actions issued by the user on the visualization.

Even zooming further into the graph would cause several minutes of delay. Although

the visualization can operate without the need for a microservice, the usage of a

microservice in this case was able to cut down virtually all of the lag time between

the user actions and the visualization library. The Data Visualization microservice

was utilized to handle all of the data loading and transformation operation, so the
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web client only needed query the microservice for all of its needs. Once the client

contacted the microservice, the service would then return limited amounts of data to

only preserve the shape of the visualization. However, once the user explored further

into visualization, the microservice would then alter the range and the amount of

data presented to match what the user viewed. This allowed the client to levy all of

its intensive actions onto the server and provide an accurate, responsive, and swift

visualization.

5.3.3 Near Real-time Autonomous Quality Control

Occasionally, sensor readings received by the NRDC from the remote research sites

show signs of erroneous data. This can be missing values, values outside possible

bounds, or even repeats of past values. To address these problems, the Near Real-time

Autonomous Quality Control (NRAQC) System was developed for the NRDC [50].

NRAQC tests incoming data points logged autonomously at a research site to see

if they meet the criteria of an invalid measurement. The system, with aid of user

specified configurations, flags all invalid measurements with metadata that specifies

the nature of the invalidity. The service provided by NRAQC is necessary for the

production and distribution of a quality data product. A visual of NRAQC’s main

menu and data visualization page are shown in Figures 5.8 and 5.7.

Much like the QA Application, the microservices play the vital role of server

backend for the NRAQC system. NRAQC utilizes an intuitive web interface as the

main client, but splits its main features into microservices that support it. These fea-

tures includes the handling of differing data sources, enable autonomous flagging of

measurements, interfacing with the client, enabling a data visualization, and format-

ting the results based on the user specifications. While the microservices deal with

the computationally and memory intensive portions of NRAQC, it does not govern

the entire system itself. The NRAQC client presents a number of features to the

user and when the user selects a task, the NRAQC client then communicates to the

microservices via HTTP.
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Figure 5.7: The main menu of the NRAQC system.

Figure 5.8: The main visualization component of the NRAQC system.

5.4 Containerization & Continuous Integration

Although originally designed as prototype, MESA does utilize two major industry

practices: containerization and continuous integration. Containerization is creating
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a virtual environment that ensures the software running on it operates as intended.

Continuous Integration is tied to the idea of software development teams and con-

structing code among multiple developers. Essentially, continuous integration is the

practice of merging all developer code copies into one mainline multiple times a day.

To execute the containerization of microservices, the Docker Containerization

software was used. A diagram showing Docker’s generic use is shown in Figure 5.9.

Docker is the premier brand of containerization software that is used in industry soft-

ware today, with famous consumers including General Electric, Lyft, and BBC News.

Docker primarily operates on Linux environments, but their Windows equivalents do

exist although utilized less. Currently, the microservices deployed in the Linux envi-

ronment are containerized with Docker, but aside from the basic setup, no additional

Figure 5.9: This figure shows off the generic use of Docker [22].
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development was made. The containerization of the microservice, although very sig-

nificant, were not made a core functional requirement for this iteration of the MESA

system.

In regards to the continuous integration, the Travis C.I. software was the third-

party software used to enable the merging of a mainline [15]. Travis C.I. links to

a Github repository and must be configured to match the compilation of the linked

software [24]. An example of this integration is show in Figure 5.10. Once properly

configured, the software will activate on each successful commit to the code repository.

In this case, Travis C.I, has been configured to test python code for the microservices

supporting the NRAQC system. The addition of continuous integration to MESA was

made to show that continuous integration is possible, but was not fully implemented

due to this portion not being a core functional requirement.

Figure 5.10: This figure shows off the integration of Github with testing frameworks
through TravisCI [15].
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Chapter 6

Discussion and Validation

So far in this thesis, a background of the organizations behind MESA has been dis-

cussed, as well as similar works inside and outside the field of environmental research.

On top of this, the details behind the software design has been covered, and the im-

plementation has also been showcased. The next step is to understand the novelty in

which this solution brings to the world of Environmental Research and Microservice

Architectures. In this chapter, three systems are discussed in Sections 6.1, 6.2, and 6.3

from the six covered in Chapter 3. The selected three are given a more in-depth look

at the technical set up of each system. After which, a discussion is presented in Sec-

tion 6.4 to review the contributions brought by MESA. To wrap this chapter up, a

feature-based comparison table is made using the technical traits of the three systems

covered and MESA itself.

6.1 Generic Service Infrastructure for PEIS

The new microservice architecture for PEIS, described in Chapter 3, is a very modern

approach at developing a distributed system and supports the latest technologies. The

project in which PEIS originates from involves funding on a national level and would

be considered a very large environmental project. PEIS itself covers an entire portion

of Germany so this system is vastly larger and more well maintained comparably to

MESA whom draws funding from NSF resources. Starting from the bottom, the PEIS

system be broken down into five major parts, a diagram of this structure can be seen
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in Figure 6.1. These parts are: Hardware, OS & Cluster Management, Big Data &

Base-level Software Infrastructure, Services, and Applications.

Figure 6.1: The new microservice architecture for PEIS [4].

For the first part, Hardware, PEIS utilizes it’s own computing cluster, which

in this case is a network of tightly connected CPUs and Storages. This is partic-

ularly interesting, because a computing cluster is a very expensive investment that

ranges in the thousands of dollars to own and maintain. For the second part, OS &

Cluster Management, PEIS utilizes Linux-based operating systems and uses a dis-

tributed cluster computing system. These cluster computing systems can be popular

third-party solutions, such as Mesos, Marathon, or Zookeeper. For third part, Big

Data & Base-level Software Infrastructure, PEIS allows for the usage of virtually any

database, be it relation or non-relational, and some examples of supported databases

can include MongoDB, HBASE, MySQL, or Cassandra. Additionally, the third part

also mentions the usage of third-party big data analysis tools, such as Apache Spark,

Apache Storm, Elastic Search, or Hadoop. For the fourth part, Services, PEIS uses
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three major services: a Master Data Service, a Time-series Data Service, and an Asset

Service. Any additional services developed are encompassed under a category called

Data Analytics & Operational Services. Finally, for the last part, Applications, PEIS

lends support to Mobile Applications, Web Applications, Crowd Sourcing Data Gath-

ering, and Sensor Networks. Two examples of the applications that PEIS supports

are the ”Umweltnavigator Bayern” web application that dissemninates environmental

data and the ”Building Energy Dashboard” data visualization that displays measure-

ment readings from components within a building.

In addition to the five parts, there are also features of the PEIS system that exist

outside of the provided diagram. PEIS supports service discovery and registry, con-

tinuous integration, continuous deployment, containerization, and diagnostic tools.

For a system managing data from such a massive project, it would only be natural

to borrow the same practices that large industries use for managing microservices.

6.2 OceanTEA: Exploring Ocean-Derived Climate

Data

OceanTEA utilizes a microservice architecture to support a web application that

disseminates the oceanographic measurement data gathered by the University of Kiel.

This data is collected from multiple remote sensors placed on over three thousand

specially designed floats. The purpose of the OceanTEA systems is to create an

accessible interface where users can navigate high-dimensional data in real-time. The

microservice architecture the makes up OceanTEA involves only five microservices

and one support service handling the user authentication. There is no form of Service

Discovery or additional industry software practices, such as continuous integration

and delivery. A diagram depicting OceanTEA’s architecture is shown in Figure 6.2.

The five microservices that make up the OceanTEA system are as follows: a

Time-series Conversion microservice, a Univariate Time-series Management microser-

vice, a Multivariate Time-series Management microservice, a Spatial Analysis mi-

croservice, and a Time-series Pattern Discovery microservice. The Time-series Con-
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Figure 6.2: The microservice architecture for OceanTEA [28].

version microservice is the main form of handling time-series manipulation by the

two management microservices. This service was written in Javascript with Node.js

as its primary framework. The Univariate Time-series Management microservice is

the service which handles scalar observations recorded sequentially over equal time

increments. This service is also written in Javascript with Node.js as the primary

framework. The Multivariate Time-series Management microservice is very similar

to the Univariate one in that it also handles observations made over time, but the

difference is that Multivariate can handle multiple observations at a given time. This

microservice was written in Python with the Pickle and NumPY Array module for

data storage. The Spatial Analysis microservice is OceanTEA’s primary mode of

conducting numerical operations on the spatial data gathered. This microservice was

written in Javascript with Node.js, but executes code in the R programming language

to do numerical analysis. The last microservice, Time-series Pattern Discovery, uses

the Python programming language and the Netflix Atlas module to perform auto-

matic pattern recognition on time-series data.
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6.3 DIMMER Smart City Platform

The DIMMER Smart City Platform uses a microservice architecture to provide sup-

port to various IOT devices within a city. DIMMER is not a research project based

around environmental science like the other two, but was chosen regardless because

of DIMMER’s multiple application support. Furthermore, it is an example of mi-

croservice usage outside the Earth sciences. DIMMER is designed to be an approach

at large-scale IOT city management, where it increases the quality of the services

offered to citizens, while reducing the costs of public administration. The DIMMER

system’s microservices are separated into two main categories: Middleware Services

and Smart City Services. A diagram of the DIMMER architecture is shown in Figure

6.3 alongside associated components.

Figure 6.3: The microservice architecture for DIMMER [31].

Starting with the Middleware Services, this grouping of microservices are com-

posed of five services that govern data abstraction and service/device discovery. The
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first service in this group is the Service Catalog which discovers and registers all mi-

croservices present within the system. This is essentially the service discovery under

a different name. The next service is the Resource Catalog, which is a form of de-

vice discovery that discovers and registers all physical IOT devices connected to the

system. The third service is Message Broker service, and this microservice handles

the publishing and subscribing of the sensor data. The fourth service is the Histori-

cal Datastore service that is used to query for or store time-series sensor data. The

last service is the Semantic Datastore service that uses semantic web technologies to

provide higher level abstractions of the connected devices in relation to other entities.

The next and last grouping of microservices are the Smart City Services, which

are built off of the Middleware services and provide the core functionality of the plat-

form. There are six microservices and each are mapped to an IOT device present

within the city. Three of the services are centered around Geographical Information

Systems (GIS), Building Information Models (BIM), and System Information Models

(SIM). The GIS, BIM, and SIM microservices provide the appropriate models when

invoked by the application. The fourth microservice is the Energy Data Simulator,

which generates a simulation for the gathered sensor data when called upon by other

microservices. The fifth microservice is the Energy Efficiency Engine, and this service

provides optimization solutions for energy consumption. The sixth and final microser-

vice is the context awareness framework which handles the modeling for real-world

situations by defining a set of context properties.

6.4 Novelty Discussion

Throughout this chapter, it is abundantly clear that the research of microservices

inside and outside of the earth sciences has advanced significantly. However, these

approaches bring along with them certain noticeable trends. In the environmental

field, microservice architecture is often used to bring about solutions in the form

of singular applications. Multiple microservices are usually developed and used to

create web-based support for a singular application, such as the ones described in
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OceanTEA. For research outside the earth sciences, the microservice architecture is

often used as platform for providing an abstract data layer between an application

and the data source of the project, as shown with the DIMMER Smart City Plat-

form. Interestingly enough, both research inside and outside the Earth sciences share

a common trend of refactoring systems into microservice architectures when the prob-

lem involves an existing monolith. This approach usually involves the decomposition

of a monolith into requirements that are mapped to microservices in the hopes of

enabling scalability. This conversion can especially be seen in the PEIS system de-

scribed above. To sum up the trends shown by both research inside and outside the

Earth sciences, microservices are usually used to either provide application support

or shift an aging monolith to a distributed system.

While both of the described trends showcase two valid and intended use cases

of the Microservice Architecture, the complete refactoring of a system from mono-

lithic to microservice-based brings about serious concerns. In environmental research

projects, especially projects ranging from a single university to an entire state, mono-

lithic system designs are common due to unexpected growth in a project or from a

sheer lack in pooled technical knowledge. Many of these projects simply do not have

the resources or people to simply halt progress and perform an entire system overhaul.

Additionally, many environmental projects often autonomously collect data from sen-

sor networks and shutting down these systems, even briefly, can cause detrimental

effects on the research produced by the overall project.

It is through these concerns that brings to light the novelty of MESA as a

microservice-based system. MESA is designed as a scalable application development

platform to support critical systems, especially monoliths, without having the need

to tear down the existing system. MESA connects to a regularly updated replication

of the main NRDC database that houses copies of the incoming data, so it does not

interfere with the monolith whom autonomously gathers data at set intervals. To

clarify, this approach does not eliminate the option of full system migration, and

provides the means to lessen the burden of the demands placed on developers until
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a solution is decided upon and implemented. Should a full migration be decided,

MESA can be utilized to shoulder the burdens of inactive systems and can eventu-

ally become decommissioned once the migration is complete. To sum up, the MESA

system provides an alternative approach to providing scalable options to monolithic

systems without having to tear down the monolith itself. This solution can serve a

full system solution or simply as a temporary until a development team rebuilds the

monolith from the ground up.

In addition to the novelty as a microservice-based system, MESA also brings a

unique contribution to the field of environmental research. Usually, the option of

supporting multiple applications with a service-based platform is common for indus-

try, but uncommon for environmental research projects with modest funding. This

is mainly due to the lack of manpower and technical skill within a modest sized

environmental project to fully rebuild a system to support a suite of microservices.

However, MESA does not require any retooling other than a connection to a database.

In this regard, MESA provides a less technically-intensive option for environmental

scientists to customize and develop multiple tools, instead of providing support to

a singular application. As a platform, MESA seeks to address the infrastructure

needs of an entire project and the potentially multiple scientific teams within it. In

short, the novelty of MESA to the environmental research field specifically, is that the

MESA support system bridges the gap between modern development practices and

the cyberinfrastructure needs of environmental researchers without enforcing any of

overhead.

To properly know where the MESA system stands with fellow microservice-based

systems, a feature comparison table is provided in Figure 6.1. Through this compar-

ison, it is shown that MESA brings forward a unique contribution to Environmental

Research in the form of it not requiring a complete system refactoring in order to be

used. Additionally, the MESA system carries with it many of the modern features

and industry practices that are present in microservice development. It is through

these features that MESA is able to offer more functionality than two similar sys-
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Feature Description MESA DIMMER OceanTEA PEIS
Requires refactoring entire system x x x
Support multiple applications x x x
Oriented toward environmental
research

x x x

Technology-agnostic x x x x
Service Discovery features x x x
Supports multiple databases x x x
Uses Containerization x x x
Uses Continuous Integration x x
Capable of High Performance
Computing solutions

x x

Machine Learning Capabilities x

Table 6.1: Feature-based Comparison Table

tems: OceanTEA and DIMMER. OceanTEA, although a very effective system in

environmental data gathering, does not offer platform support, a service discovery, or

the continuous integration features that MESA does. Similarly so with DIMMER, it

does not provide as much features as MESA, lacking in areas like supporting multiple

databases, containerization, and continuous integration features. Despite performing

comparably to other environmental systems that also use microservices, MESA still

is outperformed by microservice systems used by the larger environmental projects,

like PEIS who is able to support advance features such as HPC or Machine Learning.

Overall, MESA’s abundance of features makes it a solid and modern alternative to a

development platform for small to medium scale environmental projects.
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Chapter 7

Conclusions and Future Work

In this final chapter, a concluding piece wrapping up the thesis is presented in Sec-

tion 7.1. This section briefly goes over what was showcased during the extent of this

thesis. Finally, Section 7.2 of this chapter is the future work. This section covers

samples of additional work and approaches as potential extensions for the MESA

system further down the line.

7.1 Conclusions

The system described in this thesis, the Microservice-based Envirosensing Support

Architecture, focuses on creating an alternative approach to cyberinfrastructure for

environmental research projects without enforcing a costly system refactoring. The

central idea of this system is to create an applications platform centralized around a

regularly replicated data source without having to tear down a monolith. The option

to completely refactor a system and break apart an active monolith is expensive and

requires a massive amount of technical knowledge and time to execute. This applica-

tion platform was created by using a series of microservices that break up the business

requirements into individual and independent web services. The microservices answer

to a central service discovery and are generally mapped to a feature within a client

application. The whole system was developed in Python and C# and revolves around

a MSSQL database. The features provided by MESA encompass a wide range of func-

tionalities, from merely fetching data from a database to automating tests to sanitize
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data points within a data stream.

MESA is a very relevant and beneficial system to environmental research projects

due to it’s ability to provide platform support to a field that is often limited by the

technical aspects of software development. While the idea of switching to a dis-

tributed architecture, like microservices, can be attractive to growing environmental

projects, the reality of the matter comes down to whether the project has the time to

halt progress while development is made and if there are adequate resources available

to achieve this result. So oftentimes, environmental scientists are forced to choose

between two extremities: a limited older system or an expensive new system. MESA

brings to the Earth sciences, a third choice that can bridge the gap between the two

while providing industrial practices, such as containerization and continuous integra-

tion.

7.2 Future Work

The MESA system is still undergoing development and requires much more enhance-

ments in order to provide the best possible development platform for the environ-

mental scientists at it’s affiliated research projects. MESA was created in order to

address the need for application development within it’s projects and to highlight a

new approach in distributed systems. In the rush to achieve this main functionality of

this system, many planned secondary non-vital features were pushed back into future

developments. Each of the following sections covers one of the features that has been

evaluated in-depth and is considered to be a significant enhancement to the MESA

system.

7.2.1 Security

As MESA was developed to show a proof of concept, the steps to ensure the security

of the microservices and to prevent the interception of data was overlooked. Cur-

rently, the microservices have minimal security with all of it’s services placed in a

domain with SSL and a singular login service handling it’s encryption with SHA-256.
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Unfortunately, with the advancements in GPUs, the encryption algorithms like SHA-

256 are often cracked through brute force annually. In this case, SHA-256 has quickly

fallen out of favor with most web developers and alternatives such as SCRYPT and

BCRYPT are preferred [48, 34, 35, 47]. This is due to their nature as slow hashing

algorithms and are limited when attempting to parallelize the cracking of a password.

To prevent the interception of data and verify that the client has clearance to

interact with data, most modern RESTful-based software practices token-based au-

thentication. This is the passing of a server generated token to the client and used

as a verification component to ensure that the client does in fact have clearance to

access the server’s data. Once the server recognizes the token after comparing it to

the stored list, the server then performs the action requested by the client. Unfortu-

nately, MESA does not utilize this industry-standard practice as of yet. Currently,

the services perform this actions without verification and are highly susceptible to

being intercepted. Again, this is due to MESA being a prototype to show a proof of

concept and security additions are considered secondary features.

In the future, a major enhancement to the MESA system would be the application

of modern security practices. Each of the described solutions above would be a vital

standard feature within the next iteration of the MESA system. However, it must be

noted that these practices are based off of recent advancements in cyber-security, but

procedures change almost annually and must be updated as such.

7.2.2 More Containerization

As mentioned, MESA uses containerization technology in the form of Docker to ensure

that software will run the same, regardless of environment [22]. Currently, MESA

has Docker containers operating on approximately a third of the active microservices.

This is due to the compatibility of deploying containers on a Linux environment.

Docker has commonly been used for Linux environments and while it does have

Windows versions, it requires the deft hand of a system administrator and much

configuration. During the development of MESA’s Windows-based microservices,
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this task was deemed secondary due to it’s non-vital nature. However, there has been

recent talks within the development team at the Nexus project regarding steering

towards the containerization of the entire Windows virtual servers. This decision will

be made with careful consideration and extensive research at a much later date. One

thing is for sure though, any future iterations of the MESA system will have full

containerization of each and every microservice. It is most likely that Docker will

continue to be used by MESA, as well as it’s derivative software, Docker Swarm.

7.2.3 More Applications

Currently, MESA support three applications officially for the environmental research

projects that it is affiliated with. However, there are much more tools and applications

have been requested by environmental scientists and are scheduled for completion.

The following text showcases the various application that are scheduled to join the

covered applications from this thesis at a later date.

Dr. Bob Boehm, a distinguished professor at the University of Nevada, Las

Vegas, also doubles as the Director at the Center for Energy Research (also in Las

Vegas) [41]. Dr. Boehm and his team are fellow members of the Nexus project and

are solar energy researchers that have stored up a significant amount of solar data.

Much like the Lysimeter Visualization, Dr. Boehm’s data is scheduled to be a part of

an advance data visualization with a server backend. This application will contain the

same visualization approach as the Lysimeter Visualization by emphasizing on the

handling of large data sets and simultaneous comparisons with other provided data.

The server backend will be a singular microservice that will handle any conversions

of time-series data, as well as handling the navigation aspect of the client. This will

involve the constant passing of data ranges, sample rate, and the altered data to be

displayed. Additional features will be added according the specification elicited by

Dr. Bob Boehm and his team, and this can range from tying in a google earth display

to adding in various data models.

A project was proposed by Dr. Scotty Strachan of UNR to leverage the use of data
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visualization software developed by a fellow NSF environmental research group. The

software mentioned is the Cloud-Hosted Real-time Data Services for the Geosciences

(CHORDS) system developed by the EarthCube project [7, 14]. This software pro-

vides a free alternative to data visualizations for environmental scientists by creating

a powerful, fast, automatic, and cost-less visualization solution. This software is quite

significant in that there is very few data visualization solution for such a specific sub-

domain like environmental research. However, this software as a standalone does not

contain any of the necessary components pre-built within it to interface the NRDC.

It is here where a connection package was created for the NRDC to interface with a

CHORDS instance. The original package was developed as a part of a year-long se-

nior project consisting of undergraduates. As such, the software is not fully deployed

and many features were ignored to construct a proof of concept. This software would

be considered preliminary work and a future goal would be to break this software

into it’s base requirements and appropriately map them to a microservice for both

preservation and usability.

Last on this list of immediate applications to finish and integrate into MESA, is

the NRAQC system that was previously covered. Although significant progress has

been made into the development of NRAQC, the system is not fully operational and

still requires additional development work. The base system which discovers, gathers,

and manages flagged data is complete, but many of the additional subsystems that

allow it’s various primary requirements are yet to be addressed. The system still needs

to add the component of allowing concurrent processes to be made in the testing of the

flagged data. Additionally, the interface in which allows environmental scientists to

affect the outputs of the system non-programmatically is not yet complete. Finally,

the ability to generate a powerful, dynamic, and responsive data visualization is

not yet implemented for the NRAQC system. As a part of future developments,

addressing these features and finalizing NRAQC for use by environmental scientists

would be placed very high in the list of priorities.
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7.2.4 High Performance Computing

Taking much inspiration from the PEIS system proposed by Braun et. al., a potential

enhancement for the MESA system is to provide High Performance Computing (HPC)

solutions to environmental scientists. This can perhaps take the form of generating

data models through the use of multiple GPUs as part of a computing cluster. Another

use could be in the form of data imputation where missing values are then filled by

a combination of machine learning and HPC. The usage of GPUs is often a standard

when it comes to complex calculations on server machines and has been a fairly

common approach even in environmental science.

As great as it is to use GPU-based solutions for environmental research, there

is a significant start-up cost to even set up the capability to do HPC. Starting up

an appropriately sized computing cluster alone can take upwards of several tens of

thousands of dollars. The upkeep of a computing cluster will require a significant

amount of money, as well as dedicated technicians to maintain the hardware. Once

the hardware is set up, the cluster will also require the attention of specialized system

administrative staff to run. Overall, this approach would require significant invest-

ment to make this solution viable.

MESA currently does not have any access to any computing clusters, so this

would require collaboration with existing clusters. A potential candidate would be

the computing cluster provided by the University of Nevada, Reno. Another would

be the computing cluster created and maintained in the University of Nevada, Las

Vegas. Regardless, this would be a very fascinating addition to the MESA system

and would be interesting approach further along into the future.

7.2.5 Automatic Code Generation

Automatic code generation, or commonly known as Automatic Programming, is the

concept of feeding a high-level abstraction into some sort of software to produce a

working program or code portion [40]. The study of Automatic Programming has been

traced to the 1940s with the automation of paper tape [45] and is still a modern topic
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of research in the field of Computer Science. There have been notable advancement

in automatic code generation, such as Eclipse where it can generate textual languages

with it’s own proprietary modeling software [23].

To understand the process behind automatic code generation, a key concept to

know is the idea of an ontology. An ontology is the explicit formal specifications of

the terms in the domain and relations among them [17]. Basically, this means that

an ontology, in Computer Science at least, is essentially a schematic of everything

that composes a computer program, such as variables, relationships, and entities.

The general idea behind the generation of code is that a programming tool such as a

template processor uses an ontological model to load in all of the information about

the program. Then, the programming tools use the mapping provided by the ontology

to map the given information to equivalent source code. This process is very similar

to a compiler, whom uses specified rules to map one coding language to it’s machine

code equivalent.

The way that Automatic Programming ties into MESA as a future development,

would be as a potential feature where environmental scientists may generate their

own microservices by providing an ontological model. To implement this, a stan-

dard must be set for the ontological models that MESA will accept. Additionally,

there must be developed a unique programming tool that converts the standardized

ontological model into a Python or C microservice. This task will be especially chal-

lenging since this would essentially entail the development of a pseudo-compiler. This

development would be a significant addition to the MESA system in that would allow

environmental scientist to create new programmatic features by just submitting a

high-level abstraction.
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Appendix A

Microservice Code Sample

using Newtonsoft.Json;

using NRDC.Models.GIDMIS;

using NRDC_Infrastructure.Core_Assets;

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.ServiceModel.Web;

namespace NRDC_Infrastructure.Service_Contracts

{

public class Systems : ISystems

{

// Convert Strings back

public void JsonConversion(NRDC.Models.GIDMIS.Systems Instance,

↪→ SystemType Entry, NRDC.Models.GIDMIS.GIDMISContainer db

↪→ )

{

// Retrieve Foreign Key

var SiteRow = (from x in db.Sites where x.Unique_Identifier

↪→ .ToString() == Entry.Site_ID select x).FirstOrDefault

↪→ ();

Instance.Site = SiteRow.Site;

// Retrieve Foreign Key

var PeopleRow = (from x in db.People where x.

↪→ Unique_Identifier.ToString() == Entry.Manager_ID

↪→ select x).FirstOrDefault();

Instance.Manager = PeopleRow.Person;
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Instance.Unique_Identifier = new Guid(Entry.

↪→ Unique_Identifier);

Instance.Name = Entry.Name;

Instance.Details = Entry.Details;

Instance.Power = Entry.Power;

Instance.Installation_Location = Entry.

↪→ Installation_Location;

Instance.Modification_Date = Convert.ToDateTime(Entry.

↪→ Modification_Date);

Instance.Creation_Date = Convert.ToDateTime(Entry.

↪→ Creation_Date);

Instance.Photo = Entry.Photo;

}

// Get All

public Stream GetData()

{

try

{

// Initialize Return List

List<SystemType> Results = new List<SystemType>();

// Connection Helper

ConnectionHelper Conn = new ConnectionHelper();

String ConnStr;

ConnStr = Conn.getConnectionString("ProtoNRDC");

// LINQ Retrieve

using (var db = new GIDMISContainer(ConnStr))

{

var table = (db.Systems.Any()) ? (from x in db.

↪→ Systems select x) : null;

if(table != null)

{

foreach (var row in table)

{

var Entry = new SystemType(row, db);

Results.Add(Entry);

}

}

}
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// Serialize JSON

string JSON = JsonConvert.SerializeObject(Results);

WebOperationContext.Current.OutgoingResponse.

↪→ ContentType = "application/json; charset=utf-8";

return new MemoryStream(System.Text.Encoding.UTF8.

↪→ GetBytes(JSON));

}

catch (Exception e)

{

Console.WriteLine("An error occurred: ’{0}’", e);

throw e;

}

}

// Get Singular

public Stream GetSingular(string ID)

{

try

{

// Initialize Result

SystemType Result;

// Connection Helper

ConnectionHelper Conn = new ConnectionHelper();

String ConnStr;

ConnStr = Conn.getConnectionString("ProtoNRDC");

// LINQ Retrieve

using (var db = new GIDMISContainer(ConnStr))

{

var Row = (from x in db.Systems where x.

↪→ Unique_Identifier.ToString() == ID select x).

↪→ FirstOrDefault();

Result = new SystemType(Row,db);

}

// Serialize JSON

string JSON = JsonConvert.SerializeObject(Result);

WebOperationContext.Current.OutgoingResponse.

↪→ ContentType = "application/json; charset=utf-8";

return new MemoryStream(System.Text.Encoding.UTF8.

↪→ GetBytes(JSON));
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}

catch (Exception e)

{

Console.WriteLine("An error occurred: ’{0}’", e);

throw e;

}

}

// Post

public string Post(SystemType Entry)

{

try

{

// Connection Helper

ConnectionHelper Conn = new ConnectionHelper();

String ConnStr;

ConnStr = Conn.getConnectionString("ProtoNRDC");

// LINQ Delete, Update, or Create

using (var db = new GIDMISContainer(ConnStr))

{

// Check if Entry exists

var Exist = db.Systems.Any(x => x.Unique_Identifier.

↪→ ToString() == Entry.Unique_Identifier);

// Delete if Delete is present

if (Exist && Entry.Delete == true)

{

var Row = (from x in db.Systems where x.

↪→ Unique_Identifier.ToString() == Entry.

↪→ Unique_Identifier select x).FirstOrDefault

↪→ ();

db.Systems.Remove(Row);

db.SaveChanges();

}

// Otherwise Update if exists

else if (Exist)

{

var Row = (from x in db.Systems where x.

↪→ Unique_Identifier.ToString() == Entry.

↪→ Unique_Identifier select x).FirstOrDefault
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↪→ ();

JsonConversion(Row, Entry, db);

db.SaveChanges();

}

// Else Add if it doesn’t

else

{

NRDC.Models.GIDMIS.Systems Instance = new NRDC.

↪→ Models.GIDMIS.Systems();

JsonConversion(Instance, Entry, db);

db.Systems.Add(Instance);

db.SaveChanges();

}

}

return "Success";

}

catch (Exception e)

{

Console.WriteLine("An error occurred: ’{0}’", e);

return e.ToString();

}

}

// Find Associated Deployments

public Stream Deployments(SearchType Entry)

{

try

{

// Initialize Return List

List<DeploymentType> Results = new List<DeploymentType

↪→ >();

// Connection Helper

ConnectionHelper Conn = new ConnectionHelper();

String ConnStr;

ConnStr = Conn.getConnectionString("ProtoNRDC");

// LINQ Delete, Update, or Create

using (var db = new GIDMISContainer(ConnStr))

{
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// Check if Entry exists

var Exist = db.Systems.Any(x => x.Unique_Identifier.

↪→ ToString() == Entry.Unique_Identifier);

if (Exist)

{

var Rows = (from x in db.Deployments where x.

↪→ Systems.Unique_Identifier.ToString() ==

↪→ Entry.Unique_Identifier select x);

foreach (var Row in Rows)

{

DeploymentType Instance = new DeploymentType(

↪→ Row, db);

Results.Add(Instance);

}

}

}

// Serialize JSON

string JSON = JsonConvert.SerializeObject(Results);

WebOperationContext.Current.OutgoingResponse.

↪→ ContentType = "application/json; charset=utf-8";

return new MemoryStream(System.Text.Encoding.UTF8.

↪→ GetBytes(JSON));

}

catch (Exception e)

{

Console.WriteLine("An error occurred: ’{0}’", e);

throw e;

}

}

// Find Associated Service Entries

public Stream ServiceEntries(SearchType Entry)

{

try

{

// Initialize Return List

List<ServiceEntryType> Results = new List<

↪→ ServiceEntryType>();

// Connection Helper

ConnectionHelper Conn = new ConnectionHelper();

String ConnStr;
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ConnStr = Conn.getConnectionString("ProtoNRDC");

// LINQ Delete, Update, or Create

using (var db = new GIDMISContainer(ConnStr))

{

// Check if Entry exists

var Exist = db.Systems.Any(x => x.Unique_Identifier.

↪→ ToString() == Entry.Unique_Identifier);

if (Exist)

{

var Rows = (from x in db.Service_Entries where x

↪→ .Systems.Unique_Identifier.ToString() ==

↪→ Entry.Unique_Identifier select x);

foreach (var Row in Rows)

{

ServiceEntryType Instance = new

↪→ ServiceEntryType(Row, db);

Results.Add(Instance);

}

}

}

// Serialize JSON

string JSON = JsonConvert.SerializeObject(Results);

WebOperationContext.Current.OutgoingResponse.

↪→ ContentType = "application/json; charset=utf-8";

return new MemoryStream(System.Text.Encoding.UTF8.

↪→ GetBytes(JSON));

}

catch (Exception e)

{

Console.WriteLine("An error occurred: ’{0}’", e);

throw e;

}

}

// Find Associated Documents

public Stream Documents(SearchType Entry)

{

try

{

// Initialize Return List

List<DocumentType> Results = new List<DocumentType>();
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// Connection Helper

ConnectionHelper Conn = new ConnectionHelper();

String ConnStr;

ConnStr = Conn.getConnectionString("ProtoNRDC");

// LINQ Delete, Update, or Create

using (var db = new GIDMISContainer(ConnStr))

{

// Check if Entry exists

var Exist = db.Systems.Any(x => x.Unique_Identifier.

↪→ ToString() == Entry.Unique_Identifier);

if (Exist)

{

var Rows = (from x in db.Documents where x.

↪→ Systems.Unique_Identifier.ToString() ==

↪→ Entry.Unique_Identifier select x);

foreach (var Row in Rows)

{

DocumentType Instance = new DocumentType(Row,

↪→ db);

Results.Add(Instance);

}

}

}

// Serialize JSON

string JSON = JsonConvert.SerializeObject(Results);

WebOperationContext.Current.OutgoingResponse.

↪→ ContentType = "application/json; charset=utf-8";

return new MemoryStream(System.Text.Encoding.UTF8.

↪→ GetBytes(JSON));

}

catch (Exception e)

{

Console.WriteLine("An error occurred: ’{0}’", e);

throw e;

}

}

}

}
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// Connection Helper Class

public class ConnectionHelper

{

//Members

public string storedConnString { get; set; }

public string SQLConnString { get; set; }

public string EntityClientConnString { get; set; }

public string getConnectionString(string DBName)

{

//get a sql connection string matching DBName

return String.Format(ConfigurationManager.ConnectionStrings

↪→ ["GIDMISContainer"].ConnectionString, DBName);

}

public string getManagementConnectionString(string DBName)

{

//get a sql connection string matching DBName

return String.Format(ConfigurationManager.ConnectionStrings

↪→ ["ProjectManagementContainer"].ConnectionString,

↪→ DBName);

}

public HttpResponseMessage BuildJsonResponse(string JSON)

{

HttpResponseMessage Response = new HttpResponseMessage(

↪→ System.Net.HttpStatusCode.OK);

Response.Content = new StringContent(JSON, System.Text.

↪→ Encoding.UTF8, "application/json");

return Response;

}

}
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