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Abstract

Wildfires can cause severe amounts of damage to wildlife habitat as well as com-

mercial and residential properties. They put at risk the well-being of the environment

and the firefighters who combat them to minimize damage and ensure the safety of

the public. A fire simulator that is accurate, real-time, and convenient to use can be

of great assistance in developing the most efficient and safest plan to stop a wildfire’s

spread. This thesis presents an advanced wildfire simulator. The application has

two components: a web-based application and a 3D virtual reality application. The

web-based application offers portability, speed, and ease of use. This has the added

advantage in supporting many different platforms and devices. The 3D virtual reality

application provides a real-time on the ground scene perspective. Using a GPGPU

framework we can calculate faster than real-time results of an entire wildfire simula-

tion employing the fire model developed by Richard C. Rothermel. This is one of the

most widely used fire spread models among wildfire simulators. Taking advantage

of GPU’s massively parallel computational power the simulator can compute a large

wildfire simulation in a matter of seconds. The wildfire simulator has been advanced

with features such as dynamic wind, moisture, and vegetation fuel which allow users

to input changes to the environment that can include rain, water drops by helicopter

and or plane, curing or saturation of vegetation, firebreaks created by bulldozers or

firefighters, and even controlled burns. On top of those features the ability to enable

spotting fire effects due to crown fires has been implemented as well as moving a ma-

jority of the sequential preprocessing necessary for the fire simulator onto the GPU

thus decreasing overall run time.
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Chapter 1

Introduction

Wildfires can cause serious problems for populations and the environment if not con-

trolled. In 1963, a series of wildfires burned 183,148 acres woodland, destroyed 186

homes, 197 outbuildings, and seven people died in the disaster [33]. There are ad-

vanced technologies that help firefighters and their suppression efforts as well as keep-

ing them safe. Technologies such as fire shelters, a last line of defense if a wildfire

surrounds any firefighter in the field they can deploy this material around themselves

and hopefully survive an oncoming fire. Improved wind models help firefighter’s de-

termine how to safely combat a fire because fire reacts so strongly with wind variables

this can help avoid the situation where a firefighter needs to deploy a fire shelter and

help determine where a fire may divert to and how quickly [43]. Even with these

advance technologies wildfires can still be a challenge today. On May 3rd, 2016, the

wildfire in Fort McMurray, Canada consumed around 2,400 buildings and homes. It

forced the biggest wildfire evacuation in Alberta’s History [31].

An accurate and real-time wildland fire simulator with a visually appealing in-

terface is a significant area of research [3]. Firefighters can use these tools to estimate

how long the wildfire will burn and how it will spread across the given terrain. If this

information is provided, suppression efforts and resources can be employed to exe-

cute the most efficient, swift and safe plan of action. Educators can use the tools as

well to teach their communities about wildfire danger and prevention. For example,

a teacher or community leader can simulate wildfires in certain geological relevant

locations and provide where to evacuate and how much time they may have before
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the wildfire reaches certain areas based on the simulation.

In order to simulate wildfires, fire scientists have developed fuel models and

equations to estimate the propagation of fire [4, 32, 36]. The spread of a wildfire

is affected by the properties of the environment. Such properties include, but are

not limited to: fuel load, fuel type, wind, live moisture, dead moisture, precipitation,

canopy cover, crown height, and wind. Incorporating these and other variables into a

wildfire simulator can allow for an accurate prediction of where a fire will burn to and

how quickly it will arrive there. Research into developing fuel and moisture models

is an active field, and these models provide the basis for the properties on which this

simulator is based. The ability to realistically simulate wildland fires is desirable to

provide fire experts the ability to more accurately predict the impact of their fire-

fighting decisions [24, 27]. User imposed manipulations to the wildfire environment

include adjusting moisture content to simulate a water drop, adjusting fuel loads

where a simulated bulldozed tree line could exist, or reverse spread testing in which a

fire is started by firefighters in order to burn the fuel away from the advancing wildfire.

Unfortunately, the amount of data required for realistic fire simulations requires a

large amount of computation time to produce an accurate simulation [3]. The more

accurate and fine-grained the simulation, the longer it takes to process the data. A

forest fire is a dynamic entity, therefore a simulators ability to run in real time or even

more pertinent to run in faster than real-time is necessary for it to be an effective

tool. The more complex and functional a wildfire simulator is, the more useful it is

to fire scientists, firefighters, and at risk communities. There are multiple aspects to

accurately model the spread of a wildfire. The main four properties which influence

the spread of a fire are: base fires, crown fires, fire acceleration, and spotting [29].

Base fire spread is the foundation for all fire spread simulations that occurs along

the floor of a forest. Crown fires occur when the forest fire spreads into the tops of

the trees. A crown fire may be passive or active. An active crown fire is one which

contributes to the overall spread of the fire. A passive crown fire will burn in the

tops of the trees but is not hot enough to contribute to the overall spread of the
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fire. Fire acceleration is the phenomena that accounts for the dynamic speed of a

fire. A forest fire will not automatically spread at the maximum rate for which it

has the potential. Depending on the properties previously mentioned, such as the

moisture within certain types of foliage, the acceleration can build gradually (due

to high moisture content) or quickly (due to low moisture content). Spotting is the

phenomena of fire embers being blown forward ahead of the fire to ignite new fires in

zones isolated from the main body of the fire. The implementation of these four main

aspects that are natural occurrences in all fires corresponds to a state of the art fire

simulator. However, constructing such a simulator that is real-time and accurate has

to calculate an enormous amount of data; therefore GPGPU computing is a necessity.

Utilizing the GPU as a general purpose computing device is now ubiquitous

among software applications, particularly on problems requiring a large amounts of

data processing. The GPU is ideally suited to high volume data processing ap-

plications through its ability to processes millions of inputs simultaneously and in

appropriate conditions asynchronously. In comparison, a CPU may process only one

or a few at a time [35] even if its core clock speed on threads is significantly higher,

the sheer number of single instruction, multiple data processors or SIMD contained

in a GPU can outperform for certain tasks. This thesis builds upon the work done

by Roger Hoang creator of vFire [22] and Jessica Smith creator of vFireLib [39].

There are many wildfire simulation and visualization tools. However, most of

them do not offer the tool as a service, which means the performance depends on the

user’s machine. Our tool uses server-client architecture and offers the simulation as

a service. Therefore, as long as the user’s device supports our client application (a

browser window or a Unity application), they can construct wildfire simulations and

visualize the results. Because we use the GPU to do most of the calculations, a fast

simulation is guaranteed. All the calculations are done on the server, so there is no

need for the user’s device to have a GPU.

The remainder of this thesis is structured as follows. Chapter 2 provides back-

ground and a review of the literature. Chapter 3 focuses on software engineering,
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examining functional and non-functional requirements. Chapter 4 details the simula-

tor’s implementation. Chapter 5 provides test cases and instructs how the simulator

is run. Chapter 6 presents conclusions and future work.
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Chapter 2

Background and Related Work

In 1972 Richard C. Rothermel published “A Mathematical Model for Predicting Fire

Spread in Wildland fuels” as a research paper with the United States Department of

Agriculture Forest Service [32]. This is the cornerstone for nearly all fire simulators to

date. In 1976 Albini published this paper [1] that elaborated upon the 11 fuel models

Rothermel had created and added two of his own fuel models in the mix. These fuel

models are considered the original 13 and are still in use today when dealing with and

creating a wildfire simulator. The rest of this chapter will elaborate on the fire science

equations used to predict wildfire behavior, where to find such datasets needed for

an accurate simulation, an overview of past and present fire simulators, and will give

insight on GPU computing and data interpretation.

2.1 Fire Science

Creating an accurate real-time wildfire simulator has been researched heavily for

decades [5, 9, 18, 32]. However it has only been achieved fairly recently; within the

last 30-40 years, a few have been developed. Most of all the developed fire simulators

all follow certain fire science principles. For this thesis we followed Rothermel’s fire

spread representation of an elliptical pattern [2, 12]. An elliptical fire burn shape

seems to be a reliable phenomenon in nature as represented by [2, 12].
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2.1.1 Taxonomy of Fire Models

The fire model this thesis incorporates is considered semi-empirical. The reason for

this is that it is a mixture of theoretical and empirical fire modeling. Theoretical

is used for research only and includes physical principals; this model alone is not

sufficient enough to base an entirely accurate fire simulator upon. On the other

hand, the empirical model is done in tightly controlled labs lacking any physical

principle and purely statistical. Empirical models being so constrained does not

support the variability of nature and cannot be used alone. Therefore, combining

the two will give our fire model the best advantages of both and provide an accurate

and adaptable fire simulator [39]. The decision to make this fire simulator semi-

empirical provides enormous value when simulating actual events in real-time. This is

necessary if fire suppression efforts are to trust the simulator in its accuracy to deploy

resources effectively. Using this semi-empirical approach allows for the fire simulation

to be as accurate as possible to a natural phenomenon that can be mathematically

modeled [32]. It also provides the possibility to validate the fire simulators accuracy

by modeling historical fires if the datasets exist or can be procured.

2.1.2 Fire Shape

In order to build a wildfire simulator, wildland specific data must be integrated.

Rothermel developed the first eleven fuel models that are still used to this day [32].

The method by which these eleven fuel models were created is the basis for the devel-

opment of all modern fuel models. The fuel model contains information on properties

of the wildland in a particular region. The topography is broken up into cells which

creates a certain granularity aspect; known also as resolution. Each cell contains

properties which are in comparison with the appropriate fuel models, moisture levels,

wind speed and direction at the given moment in time or season. The cell’s resolution

can be fine grain which adds more cells to the computation time and load resulting

in a more accurate fire spread. An example of cell size is such that a cell can be a

30x30 meter grid containing mostly shrub fuel type models, therefore that cell will
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offer the fuel and moisture of a 30x30 meter dense region of shrubbery to be burned

and calculated as such. Opposed to a fine grain simulation where that same 30x30

meter area can be split into 9 cells comprised of 10x10 meter grids and some will be

classified as shrub fuel type models but possibly due to the higher resolution a cell

or two may be described as grass fuel type models which will offer a more accurate

simulation. The finer grain may not even provide a difference in fuel, but because of

increased detail fire spread accuracy and timing will be increased. This simulator is

confined to the resolution of the data; therefore the accuracy of both the fire model

computation and real-world prediction is limited to the available datasets granular-

ity. Most terrain, fuel, wind, and moisture data is default to 30x30 meter cells and

can be found here [42]. LANDFIRE is a program established by the United States

Department of the Interior and maintained by the United States Geological Survey

or USGS department. More detail on how to extract the data needed for the wildfire

simulator will be detailed in the fuel model section of this chapter.

Almost all of the previous forest fire simulators implement Rothermel’s fire spread

equations [32]. This thesis works off the same fire science to implement all three

burn methods. The burn method for cells catching fire and checking their neighbors

conditions differ, but the calculations are all the same in terms based on Rothermel’s

Equation 2.1 providing a rate of spread for fire, which is based on fuel models, terrain,

weather, and suppression efforts.

R =
(Ip)o(1 + φw + φs)

ρbεQig

(2.1)

Where

(R) = is the rate of spread.

(Ip)o = is the no-wind propagating flux.

φw = is the additional propagating flux introduced by wind.

φs = is the additional propagating flux introduced by slope.

ρb and ε = is the effective bulk density.

Qig = is the heat of pre-ignition.
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The values can be found in the cells describing fuel model or can be calculated

depending on the simulation’s conditions. Certain values such as ρb, ε, and Qig

describe certain variables that do compel more detail. ρb and ε are considered to

represent Effective Bulk Density. Effective Bulk Density is the amount of fuel per

unit volume of the fuel bed raised to ignition ahead of the advancing fire. Qig represent

the heat of pre-ignition; defined as the heat required to bring a unit weight of fuel to

ignition.

Using the rate of spread equation provided, the basic output of the fire simulator

is a time of arrival map or known as TOA for short. This map is the time that the

fire will have spread to the cell in its respective location. Once the fire has arrived to

a cell, use of one of the three burn methods presented in this thesis are implemented

to determine where the fire will spread, and how fast it will spread. Essentially each

cell has a finite fuel determined by the fuel model that is represented in the cell. Once

this fuel is burned all the way through the cell no longer contributes to the fire line

intensity or spread and has either been suppressed or the fire has moved forward.

There are other factors that affect the TOA map and those variables are explained

in the subsequent sections. These sections are labeled manipulative, because the user

can superimpose changes to these variables in order to create a more accurate and

precise simulation in context of when and where a fire may be engaged.

Wind Manipulation

The ability to change wind in the middle of an ongoing simulation is a very important

feature to consider. Firefighting suppression efforts can change with weather changes

in an instant. Wildfires can even create their own wind effects which can have an

overall effect on the fires behavior [25]. There is also the possibility that abrupt

wind changes can create dangerous and even deadly conditions for firefighters and

civilians. Wind can affect the spread of a fire in many ways other than just increasing

its speed. Wind speed can affect fire phenomenon such as whether a crown fire is

passive or active, an active crown fire can induce an extreme change to the spread
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of a wildfire. Wind is also a variable in spotting effects when embers are released

from active crown fires that can set fires ahead of the initial, main fire line. Wind in

this thesis was implemented on a 2D scale that can be toggled on or off for testing

and research purposes. Toggled on, the simulator will include an X and Y vector

containing the wind speed in the corresponding direction in terms of mile per hour.

These vectors are used in Rothermel’s equation which can increase or decrease the

spread of the fire. There is an X and Y wind speed value for each cell along with

the fuel model data. To manipulate the wind data a user can change the file directly,

which is slow and inconvenient, or use the web-service provided by this thesis to

simply click and drag a box around the corresponding area on a map of the terrain.

The user selected cells can then be changed accordingly. This will be sent to the

simulator and elicit an immediate effect upon the spread of the fire. More detail on

the web-service will be provided in later chapters.

Vegetation Manipulation

Change in vegetation is another important feature a fire simulator should possess in

order to see how fire suppression efforts can change the spread of a wildfire. examples

of such changes in vegetation due to suppression efforts can include controlled burns,

bull-dozing, and or cut lines. Controlled burns are essentially small fires started

by firefighters ahead of the main fire line in an attempt to burn fuel ahead of the

oncoming flames to starve it out and render the spread to peter out. When bull-

dozing firefighters will use large machinery to sweep away fuel from the path of a

wildfire. Cut lines do exactly what bull-dozing does, but it is completed by pure man

power, picks, shovels, and axes. These are just a few examples of how vegetation can

change and therefore the simulator presented in this work allows the user to change

the vegetation at any time the same way wind is manipulated. The only difference

is that the fuel model number will be changed to rock for all three of the above

examples. Rock is the best representation of fuel for these situations essential due

to the fact that rock as a fuel is unburnable. If the bulldozer, control burn, and or
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cut line is enacted, then essentially there is no fuel for the wildfire to consume in

that area and would burnout. Significant vegetation change can happen naturally

due to seasonal conditions. If the user wanted to change the simulation to this degree

the manipulation option offered by this thesis’s web-service may be inefficient at

completing this task. LANDFIRE’s resources do offer seasonal vegetation in TIFF

file format which the simulator application can read based on latitude and longitude.

Moisture Manipulation

Much like the necessity for wind and vegetation manipulation, moisture changes are

just as important. Moisture changes can happen due to natural and artificial phe-

nomena. Natural moisture change is due to curing of fuels which is when humidity,

sunlight, and temperature can dry out various fuels and can add to the rate of fire

spread [18, 21]. Another natural moisture change is precipitation, if rain were to

occur during a wildfire, depending on where the rain is being dropped, can reduce

the threat and rate of spread. Artificial changes to moisture include water drop by

helicopter or plane in suppression efforts. These changes in moisture are abrupt, un-

like precipitation which is gradual. Moisture changes the values held within a fuel

model, and as mentioned in Rothermel’s equation, these values are what directly af-

fect the rate of spread. Therefore changing moisture in pertinent to the fire simulator

presented. The user can, once again, change it the same way wind and vegetation

are changed with simply a click and drag on the web-service. How moisture changes

the rate of spread will be discussed in later chapters; for now it is simply enough

to understand how and why moisture change is a significant implementation in an

accurate fire simulator.

2.1.3 Surface Fire

Now that the various elements that can affect the spread of a fire have been dis-

cussed the different approaches to calculating the propagation of a fire is necessary.

The propagation method also determines the method used to calculate the dynamic
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Figure 2.1: Fire Propagation Methods [22]

timestep of the simulation. This timestep is used to iterate through the simulation

and is equivalent to approximately 100 seconds time in the real world scenario of a

wildfire event. This thesis present three ways to calculate the time of arrival map.

These are illustrated in Figure 2.1. All three burn propagation methods utilize a

dynamic time step for race conditions that arose from attempting static time steps;

this will be looked at later for clarification.

Burn Distances

This propagation method is intuitive in the sense of how fire spreads and burns

throughout the sim. The simulation is broken into cells which represent a 30x30

meter grid of a certain fuel model. The use of these cells calculate the fire spread

using the time it takes for the fire to burn completely across the cell to the next.

The distance is dynamic in the sense that it is appropriated to the cell’s type of fuel

model and the cell size read from file. The fire burns through this distance and checks

which of the cell’s neighbors burn from the center cell outwards; this is represented

in Figure 2.1. The Burn Distance method is based on previous work done at the

University of Reno Nevada by Roger Hoang’s vFire [22].

Minimal Time

This propagation method is determining the smallest or shortest time of arrival value

a cell with have. This is achieved on every time step a cell checks if it is on fire. If
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it is on fire then nothing is calculated, this saves computation time ensuring there

is no redundancy. If the cell is not on fire it will check its neighbors to see if they

are on fire. The cell then compares the current time with the time of arrival in its

neighboring cells to see if they are smaller, the fire arrives faster, and will store the

faster time within it. Essentially the cell that is not lit is checking its neighbors for

the fastest time of arrival being computed based of Rothermel’s fire spread equation.

The method on how the cell checks can be seen in Figure 2.1 as well. In previous

work done by Sousa, dos Reis, and Pereira this method was the most time intensive

of their three methods [41].

Iterative Minimal Time

Propagating cellular fire with this method was first done by the same Sousa, dos Reis,

and Pereira paper mentioned in Minimal Time. Each cell calculates its own time of

arrival ignition value every time step. However, the cell does not stop doing this

until its ignite time and the difference of one of its neighbors ignite times surpasses a

certain threshold. Figure 2.1 shows how the cell accesses its neighbors ignite times.

The threshold is found through experimentation, and produced the fastest simulation

computation speed in the work of Sousa, dos Reis, and Pereira.

2.1.4 Crown Fire

According to [21], Forest fire simulators resort to using a theoretical concept to un-

derstand and calculate the natural phenomenon of crown fires. Crown fires are when

a fire spreads from the ground and trunk area of a tree and spread upwards to the

higher branches and foliage. The theoretical concept is known as Crown Fraction

Burned or CFB for short. This value is implemented as a threshold and determines

if the crown fire is of active or passive in behavior. A passive crown fire is when a

surface fire is capable of igniting a single tree or a group of tree crowns, but wind

speed is insufficient in strength to allow propagation to other trees in the vicinity.

This does not contribute to the overall spread of the fire as a whole. On the other side
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of spectrum is the CFB threshold is surpassed the crown fire is classified as active in

status. An active crown fire can greatly increase the surface fires overall intensity and

spread rate. This also suggests that the wind speed is aggressive enough to spread

the fire not only through grounded means but can travel treetop to treetop. This

thesis bases the calculations for this type of fire effect on the previous fire simulator

vFire [22], which is heavily reliant on the sequential fire simulator FARSITE [18],

which worked off publication by Van Wagner [45, 46] and Rothermel [34].

2.1.5 Spotting

Spotting fire behavior is a very dynamic and complex phenomenon that requires many

factors to implement accurately; and even then it is at best probabilistic in nature.

Spotting occurs when an active crown fire emerges and is intense enough to create

upward pressure lofting fire embers from within to be carried by the wind and possibly

ignite fires ahead of the main fire. There are three main parts to evaluate and mimic

spotting fire [21], the first is to take into consideration the starting position of the

ember or embers, the size of them, and quantity. The second factor is calculating the

distance the ember(s) can travel downwind and land. The third and final is where

probability takes place in determining under various conditions is the ember(s) will

ignite or not at their new location. A visual example of spotting and the three factors

can be seen in Figure 2.2.

Sousa, dos Reis, and Pereira also used the GPU to improve their running times

and ported fireLib to the GPU [41], and were the first to use the parallel program-

ming language CUDA [26]. They implemented three kernels in which they explored

three different propagation types. This paper based two of the spread methods (Min-

imal Time and Iterative Minimal Time) on the work done by Sousa, dos Reis, and

Pereira. Their work will be covered in more detail further in the Fire Propagation

Models section of the paper. The third propagation method implemented in this

paper was based on work found in vFire [22, 23]. Investigations into using GPU

computation for optimizing fire simulation have been explored by several researchers,
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Figure 2.2: Spotting Fire Phenomenon [21]

including a paper by Arcaa, Ghisub, and Trunfioc [6]. Their implementation used

GPU computation to optimize fuel treatments across a landscape. Their focus was

not on using the GPU to calculate base propagation, rather the influence of fire

breaks. The work by Baranovskiy explores the usage of GPU computing to enhance

the performance of theoretical-based propagation models [8]. While the work is useful

for exploring the usage of theoretical models, this work implements a semi-empirical

approach, and therefore the direct results are not comparable.

2.2 Fire Simulators Past and Present

Using Rothermel’s fire spread model published in 1972 [32] many fire simulators

were developed in order to aid the fight against wildfires and for purely research

experimentation.
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Since Rothermel’s paper was published in 1972, several fire spread simulators

have been developed. Every major forest fire simulator has used his spread equations

as the basis for their simulation. While there have been new models developed for the

spread of fire [29, 37], the existing forest fire simulators use Rothermel’s because it is

an approximation of the spread of fire accurate and simple enough to be calculated in

the time allowed for simulations. The first major fire spread simulator was developed

in 1986 called BEHAVE [5]. BEHAVE had two main functions to the application.

The first function allowed users to load in fuel models from Rothermel’s paper, but

also to develop and save new fuel models. The simulator then had the ability to

integrate the newly developed fuel models in its simulations. The second function

of the application would run a simulation and burn prediction on the desired fuel

model. The output of this simulator appeared in a table which represented the times

of arrival for each cell in the simulation. There was no visualization method available

for this simulator. The simulation was meant to be used as a training tool rather

than a real-time tool to be used to fight wildfires.

2.2.1 BEHAVE

In 1986, BEHAVE [5] was developed more as a training tool rather than an actual

real-time application to assist personnel on the ground. BEHAVE is able to use

Rothermel’s fuel models as well as create and store new ones. Once a fuel model has

been loaded or created, the system calculates the burn time and behavior of the fire.

The output is simply a table of the estimated times of arrival for a cell to be on fire.

A cell is simply a portion of an area, such as a 10x10 meter grid, that contains the

properties of the surrounding area. The properties can be, for instance in a forest,

a 10x10 grid of coniferous trees and the corresponding fuel model. BEHAVE is still

being used to this day and is a very resourceful tool for fire researchers to develop

new and up to date fuel models.
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2.2.2 fireLib

Following the development of BEHAVE, in 1996 fireLib used BEHAVE as the foun-

dation to create a revitalized fire simulator in the C programming language. FireLib

runs faster than BEHAVE and outputs the burn time of arrivals in an array format.

Considering BEHAVE was a single application where only an instance of a fire was

computed; fireLib allows the user to modify and create new fire propagation tech-

niques and includes a time parameter in order to simulate fire in a dynamic time

scale. In addition, fireLib is an open source library rather than an application.

2.2.3 FARSITE

FARSITE was created in 2004 [18]. It has been supported and upgraded since and

is to this day in use. It is arguably the most advanced and accurate forest fire

simulator developed. However, it is completely sequential and not very fast making

real-time results not possible. It offers more fire effect variables and phenomenon

beyond the ability to calculate fire spread, crown fires, surface fires, fire acceleration,

and spotting. This thesis used much of the fire spread implementation from a forest

fire simulator called vFire [22, 23]. vFire was based on hFire, and both are cellular

based spread models. They run faster than FARSITE, but do not have the same level

of precision [30]. vFire implements dynamic time stepping to burn distances between

cells to determine an accurate time of arrival for the fire spread. The important

feature that vFire accomplished was porting the computation of the fire spread to

the GPU using OpenGL shaders [38]. Because the computation was ported to the

GPU, it accomplished a very high speedup over its sequential implementation. vFire

provided the outline for the data processing portion of this work as the code was

available to this project.

2.2.4 vFire

vFire builds upon all of the above; it is also the fire simulator our fire library was

built upon. vFire implements cellular fire spread models. It also boasts an increased
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computation speedup over FARSITE, however it does not carry the same degree

of accuracy. vFire is unique due to its implementation of the fire spread calculation

through the use of the GPU rather than the CPU. vFire incorporates the visualization

and fire spread calculations simultaneously through what was at the time of devel-

opment the only programming language capable of communicating with the GPU,

OpenGL Shader Language. Using GLSL vFire had taken advantage of the massively

parallel instructional multi-cores within a GPU, this inherently made the computa-

tions conducted in parallel rather than sequential, speeding up the fire simulation

capable of real-time results. vFire is unique due to its implementation of the fire

spread calculation through the use of the GPU rather than the CPU. vFire incorpo-

rates the visualization and fire spread calculations simultaneously through what was

at the time of development the only programming language capable of communicating

with the GPU, OpenGL Shader Language. Using GLSL vFire had taken advantage

of the massively parallel instructional multi-cores within a GPU, this inherently made

the computations conducted in parallel rather than sequential, speeding up the fire

simulation capable of real-time results.

2.2.5 vFireLib

vFirelib was developed to reproduce vFire’s simulation results. However, there are

very specific functions that are implemented differently in order to create a more ver-

satile and efficient fire simulator. As previously stated, vFire was written in GLSL,

which inherently takes advantage of the GPU’s parallel computational structure, but

this also means the simulation and visualization are dependent on one another and

cannot be run autonomously. This is the crux of differences between vFire and

vFirelib. Our new library incorporates NVIDIA’s Compute Unified Device Archi-

tecture known as CUDA, and we have completely separated the computation from

the visualization. CUDA allows developers control of the hundreds and thousands of

cores within a GPU or within many GPUs. This allows for a much greater number

of instructions a CPU would be capable of processing in the same amount of time.
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The speed advantage is now obvious to using CUDA, but there is the added advan-

tage that we can now run the visualization component and simulation component

independently of one another. This is useful in order to run many simulations with

different factors that can affect a wildfire, such as differing fuel loads, weather condi-

tions, and man-made firebreaks in suppression efforts; all of these can be simulated

and visualized with dynamic time stepping. vFirelib is a library created to incor-

porate all the advantages mentioned above, it is written in C++/CUDA. The fire

simulation is mapped to the GPU and not the CPU due to the enormous number of

cells within each time step of the fire simulation. In every time step for each cell the

fires spread, acceleration, crowning, and spotting all need to be calculated and when

this is mapped to a GPU hundreds of thousands of cells can be calculated in parallel.

vFirelib offers speed, efficiency, and versatility improvements over the previous work

of vFire.

2.3 Fuel Models

Fire simulators need to be able to load and compute clearly defined fuel models. As

stated above Rothermel created the first eleven original fuel models. These Eleven

were expanded upon and even two more were added by Anderson in 1982 [4]. In June

2005 forty more models were added to these thirteen by Scott and Burgan [36]. This

work is capable of utilizing all 53 fuel models. Fuel models are essential data collected

upon certain shrubs, grasses, timber, trees and foliage in general. There are different

burn rates, fuelbed depth, fire line maximum intensity values and more for each of

these individual plants and debris. There are burnable and nonburnable elements,

such as rocks, buildings, and water. This thesis simply lumps all unburnable models

into a single one for simplicity sake. Among the fuel models there are many factors

and classifications that can have a great effect on the spread of a fire. Moisture

values within fuel models can be defined as low, moderate, and high. These moisture

values correlate with the fuel models Heat per Unit Area value. Fuel models can be

static or dynamic; static fuel models simply have their values read from a file and
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are considered the default standard of how these fuels would react with fire under

average weather and seasonal conditions. Static fuel models are inflexible due to

this reason and therefore, this thesis incorporated dynamic models to be possible.

Dynamic fuel models are when the simulator can take into consideration moisture

changes due to season, time, or suppression efforts and then calculate the correct

spread rate accordingly. Moisture among fuel models is divided into two categories,

live herbaceous and dead fuel moisture. Dynamic fuel models have a proportional

fuel load transfer when dealing with moisture change from live to dead or vice versa;

this will be divulged into further in chapter 4. Fuel models are literally that which

the fire spread rate, direction, and intensity calculations are based upon. There are

many variables for each fuel model and can be seen in Figure 2.3.

2.4 GPGPU Computing and Architecture

This work is dealing with host and device programming techniques. Compute Unified

Device Architecture or CUDA with C++ is used to manage memory and computa-

tions between the CPU and GPU. The CPU known as the host is used for file data

input and output. The host is needed for file I/O and also helps with the prepro-

cessing of certain data that cannot be done on a GPU for the moment. It is also

necessary to utilize the Geospatial Data Abstraction Library known as GDAL to im-

port the detailed terrain that is needed for an accurate fire simulation. The bulk of

the computation for all the cells and the entirety of the fire simulation is done on the

GPU or known as the device.

GPU’s used to be strictly specialized fixed function pipeline programming. They

were used discretely as graphics accelerators. This made using a GPU for general

purpose computing almost impossible unless it was incorporated with a visualization

library as well. An example of this is vFire described above. However, as stated

having such a dependency on a visualization library meant that the visualization

and computation of the problem could not be separated and limited its functionality.

Nvidia released CUDA in 2006, this allowed the GPGPU computing experience today
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Figure 2.3: The Standard 40 Fuel Models [18]
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where there is no need for a co-dependent visualization software. Using a GPU to

calculate makes since in the fact that a CPU has on average 4 to 8 cores that can

process calculations at an amazing speed, but a GPU has thousands of processors that

can operate simultaneously albeit a slower clock speed. The quantity of processors

located in a GPU more than make up for the slower computation power and increase

throughput possible for a large data driven problem. This is very well suited for a fire

simulation when there are literally millions of cells all with varying data that need

the same calculation and checks done on them every time step. Code is written in

kernels and each kernel’s code runs on each thread within a GPU. GPU architecture

starts with symmetric multiprocessors (SM). Each SM has cores and software threads

are run on the cores. The NVIDIA 1080 GTX has 28 SM(s) and each SM has 128

cores for a total of 3,584 cores each of which can compute at the same time. To get

a visual of what this might look like please reference Figure 2.4 This architecture

can be accessed through CUDA and begins at the grid level. Block level follows

then thread; this can be seen in Figure 2.5. Each thread has its own ID, this ID is

unique to the block it is in. Blocks usually contain 1024 threads and a grid contains

many blocks. Instructions can be assigned to the thousands of threads across multiple

blocks essentially computing data in parallel chunks at a time.
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Figure 2.4: GPU SM CUDA Programming [35]



23

Figure 2.5: GPU Architecture [35]

2.5 GDAL

Geospatial data is extremely important to building a real-time accurate wildfire sim-

ulator. Terrain plays a huge role in where a fire can spread and affect the rate at

which the fire spreads. GDAL is a Geospatial Data Abstraction Library used in this

work to obtain terrain data such as slope and integrate it into the fire simulator.

During the preprocessing phase, there are several data files which need to be read
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and interpolated among the simulator dimensions. The fuel data and slope data are

stored in files containing interpolated data such as size of cell, width, and height of

the data grid. GDAL [19] is used to interpolate the data from the terrain and fuel files

into the desired size of simulation. The library allows our library to easily read and

manage TIFF formatted files; this was chosen in respect to the fact that LANDFIRE

offers not only terrain data, but vegetation data as well in TIFF format which can

be used in this work in order to simulate fires in various geological locations.
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Chapter 3

Software Engineering

3.1 Overview

vFireLib.v2 is simply an optimized and functionally advanced library initiated and

presented by Jessica Smith [39] which was based on the work of Roger V. Hoang [22].

There are clear differences between the two vFireLib library versions, vFireLib.v2

contains more functionality, better utilization of data, and is compatible with more

than one platform not previously provided. However, there will be function that were

not changed in name but were either optimized and or restructured in order to better

the simulator. This version of the library’s built in functions are still to utilize the

fire data given, process the data, calculate the spread of the fire, implement certain

fire effects such as spotting, moisture change, and many others and then provide

visualization and data back to the user. At any point the user shall have the ability to

impose changes to the fire simulation and create an infinite number of simulated fires

with different constraints and effects in order to experiment and or fit the simulation

to a desired context for increased accuracy.

3.2 Fire Simulation Requirements

In [40] technical requirements for a program are broken down into functional and

non-functional requirements. The functional and non-functional requirements for

vFireLib.v2 are presented in this section.
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3.2.1 Functional Requirements

The functional requirements of the new advanced vFireLib.v2 can be found in Ta-

ble 3.1. These functional requirements were designed in respect to provide a user

using either the web service or unity game engine platforms the ability to modify

and run fire simulations. These behaviors were a necessity to build an accurate and

practical fire simulator.

Table 3.1: The functional requirements of vFireLib.v2

Number Description
FR01 The library shall read in fuel model, moisture model, and terrain data.
FR02 The library shall read in canopy height, canopy bulk density, and

canopy cover data.
FR03 The library shall define the resolution of simulation size.
FR04 The library shall initialize all data members for CPU and GPU chosen

simulations.
FR05 The library shall calculate the maximum spread rate of every cell.
FR06 The library shall be able to process simulations using one of the three

spread methods: BD, MT, and IMT.
FR07 The library shall be able to allow for moisture manipulation.
FR08 The library shall be able to allow for vegetation manipulation.
FR09 The library shall be able to allow for wind manipulation.
FR10 The library shall be able to allow for crowning fires to be toggled on

and off.
FR11 The library shall be able to allow for spotting effects to be toggled on

and off.
FR12 The library shall be able to provide feedback if data is missing or

incorrect.
FR13 The library shall be able to pause the fire spread at a certain time

tick.
FR14 The library shall be able to resume the fire spread at a certain time

tick.
FR15 The library shall store all needed data for accurate pause and resume

of fire spread.
FR16 The library shall allow for changes to the fire simulation through the

web service.
FR15 The library shall allow for visualization of the fire spread through

Unity Game Engine.
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3.2.2 Non-functional Requirements

The non-functional requirements of the new advanced vFireLib.v2 can be found in

Table 3.2. These requirements are based on the tasks and communication necessary

for GPGPU computing. For example, the communication and data transfer between

the host and device; as well as the preprocessing done by the host to allow for optimal

device calculations and output.

Table 3.2: The Non-functional requirements of vFireLib.v2

Number Description
NFR01 The library shall be written in C++ and CUDA.
NFR02 The library must use CUDA version 6.0 or higher.
NFR03 The librarys sequential implementation must be a direct reflection of

its parallel implementation.
NFR04 To run the parallel version of the code, an NVIDIA GPU with CUDA

Compute Capability 2.0 or higher is needed.
NFR05 This library must be used on the Linux platform.
NFR06 The library must use GDAL version 1.10.1.
NFR07 The library must be compiled with CMake Version 2.8 or higher.

3.3 Use Case Modeling

Sommerville also presents a standard software engineering diagram known as a Use

Case Diagram [40]. It defines how different actors can interact with the system. The

use case diagram for vFireLib.v2 is shown in Figure 3.1 and descriptions of these use

cases follow.
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Figure 3.1: Use Case Diagram

Initialize Simulation Data: This is done entirely on the host serially. The data

is read in from files necessary for the fire simulation. The data for terrain, moisture,

wind, fuel, crown base heights, crown bulk density, and canopy height are all processed

and stored in CUDA vector types [15]. This requires the host after reading in the data

to then determine the granularity and correct resolution per cell data. Calculating

for granularity and resolution based on cell size is done using GDAL [19]. The above
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is all for a default fire simulation, if the fire simulation is paused and resumed by

the user or calculated in tick intervals then additional data needs to be dealt with.

This additional data includes the current rate of the fire spread, where the fire has

burned and will burn to, as well as any modified data the user changed such as wind,

vegetation, fuel, and moisture. This was done to accommodate for fire suppression

effects that include water drops, changing weather, firebreaks such as bulldozing,

controlled burns, and firefighter cut trenches clearing fuel for an advancing fire in

order to contain it.

Copy To Device: All of the data for a default and paused or resumed fire simula-

tion is then transferred from the host to the device. This configuration will transfer

all necessary data to the device and will provide error feedback if essential data is

missing and or corrupt.

Configure Initial Setup: This configuration was implemented on the host in the

previous version of vFirelib, however, this was re-implemented on the device as the

initial kernel for vFireLib.v2. It calculates the Rothermel values for each cell which

include the max spread rate of the individual cell, ellipse eccentricity, spread direction,

and the spread modifier. These are based on moisture, wind, slope, and fuel type

characteristics.

Configure Spread Update: This kernel is calculating for every cell and its neigh-

bor the maximum spread rate the fire can reach in a certain direction using all of the

four above Rothermel values as well as the 16 angles the neighbors are located. This

is done once per simulation, and will be called every time a pause resume occurs to

account for any user imposed changes in moisture, fuel, wind, etc.

Find Max Spread Rate: This kernel is a max reduce to find the maximum possible

spread rate among all the cells in the simulation. This is used to calculate a dynamic

time step for the simulation which was needed in order to inhibit fire spreading to
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the same cell causing a race condition and extra computation. Similar to the Initial

Setup and Update Spread configurations this is done once for every simulation and

or pause resume case.

Configure Burn Distance: In brief if this propagation method is chosen by the

user this configuration implements the burn distance spread method in which the

distance for the fire to travel within a cell is calculated and then checked to see if

that distance has been reached igniting any of its neighboring cells not on fire. This

is done every time tick in order for the wildland fire to be calculated accurately.

Configure Minimal Time: This propagation method configuration implements

the work done by Sousa, Dos Reis, and Pereira’s paper [41]. At each time tick all

cells are checked if they are on fire or not and whether they are a neighbor of a lit

cell. If the cell is on fire the spread is calculated outwards. If the cell’s neighbors

are already on fire they are ignored if they are not on fire the time of arrival for

them will be calculated. However, the cells TOA can be overwritten if a faster TOA

is calculated due to another cell that is closer and is lit; this is possible with the

dynamic timestep.

Configure Iterative Minimal Time: The last choice a user can decide to im-

plement for propagation methods is IMT. This configuration is similar to MT, but

instead of checking if it’s neighbors are lit or not outwards its neighbors check in-

wards. Race conditions are avoided by using input and output vectors avoiding the

use of atomic configurations. IMT also calculates the TOA of cells independently of

others and uses convergence to determine when the correct TOA has been computed.

Configure Crown Rate: There are technically two implementations of this con-

figuration. One is to include spotting if the user desires and the second one is to

exclude spotting. This was done for experimental purposes, the configuration’s main

utility is the same for both. This checks cells if a crown threshold has been reached.
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If the crown is passive it does not add to the spread rate of the fire. If the threshold is

surpassed then the resulting active crown will change the maximum spread rate of the

cell, thus effecting the overall spread. This is where the one form of this configuration

will then commence the initial calculations for spotting effects due to an active crown

fire. The initial computation for spotting in this configuration is using an ember map

to track which cells are active crown fires, and therefore release embers in the air.

The embers travel, height, and fall speed are set here and marked on the ember map

for the spotting configuration. The ember properties are updated every time tick.

Configure Spotting: This configuration checks the ember map. If the ember map

indicates that an ember is there it checks if the ember has touched the ground. The

ember is then decided to whether or not to set that cell in which it has landed on to

ignite updating the cells time of arrival to the current time tick. Determining whether

the ember ignites is based on probability and the amount of moisture that is in the

fuel for that particular cell. If the cell fuel type contains more moisture then a fire is

unlikely and vice versa.

TOA Update: This is used in support of the spotting configuration and will update

all the time of arrivals that have been changed due to an ember prematurely setting

it off.

Accelerate: After the current time tick This checks all cell spread rates and max

spread rates to determine the new spread rate of the cells in the simulation.

Copy From Device: This provides all time of arrivals in an array format saved to

a CSV file is the simulation was simply run from start to end. If the simulation was

paused then this would write not only the TOA but the current rate of spread and all

cell information at the tick paused. This is necessary to resume the simulation at the

exact same spot with all pertinent information in order to simulate the fire spread

with changes accurately.
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Write to File: This configuration writes specific data to the appropriate file with

correct granularity and resolution. These files are either then used for visualization

and or resumption of the simulation with user changes.
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Chapter 4

Implementation

4.1 Overview

Since the goal of this thesis was to illustrate the difference between a parallel and

sequential fire simulator implementation two programs were developed and written.

The sequential implementation was instructed on a CPU with no multi-threading,

this could be a comparison for a future topic of research. The parallel instruction was

written for GPGPU computing with CUDA and therefore requires an Nvidia graphics

card. Unlike the former vFireLib library developed by Jessica Smith at the University

of Reno Nevada, vFireLib.v2 separated all possible pre-processing computation from

the HOST and ported it all to the DEVICE. The timings discussed in chapter 5 will

reflect this change. The main reason this change was done is to cut down on the entire

program compute time and to paint a better picture of the difference in throughput

and speed between a sequential and parallel fire simulator. To note as well the pre-

processing was not taken into consideration for total compute time but needs to occur

every time a simulation is run. However, because in vFireLib.v1 the pre-processing

was the exact same for both programs the compute time was dependent solely on

the calculations for the fire propagation and therefore not considered. vFireLib.v2

needs to take the pre-processing into consideration due to the significant changes in

the parallel implementation. The simulations outline is still consistent between the

sequential and parallel implementations and can be seen below in Algorithm 4.1.
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Algorithm 4.1 Simulation Progression

1: InitializeSimulation();
2: while Simulation !Complete do
3: RunSimulation();
4: end while
5: GenerateOutput();

This outline will be referred to throughout the rest of the chapter. The first half

will be detailing and examining the sequential implementation of the fire simulator.

The second half will go over the parallel implementation.

4.2 Fire Propagation Models and Their Sequential

Implementations

The InitializeSimulation() for the sequential fire propagation involves quite a

bit of calculations in order to setup the Rothermel values for every cell within the

simulation. This is also where GDAL and file IO is handled. Since all data needed

for the simulation comes from LANDFIRE TIFF files or user manipulated CSV files

the values must be extracted and then placed in vectors. CUDA has developed vector

types which can be used ubiquitously on HOST and DEVICE [15]. Once inside the

CUDA vectors the HOST in this case can access the values for every cell such as

fuel model, moisture content, wind, etc. to calculate the Roth data. If there is any

change in the fire simulation all of the pre-processing must be done again. A wildfire

is a dynamic entity that can change due to weather or man-made events and thus is

the main reason why a sequential implementation is not suitable for a real-time fire

simulator. In reality running a single simulation may be done in a reasonable amount

of time but running multiple simulation to accommodate the constant changes that

can occur in most wildfires can be problematic when making time critical decisions

in the use of resources and positioning of personnel in or out of harms way.

Once the pre-processing is complete the actual fire propagation method takes

place and is calculated to predict the rate of spread and direction. This is the Run-
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Simulation() section of the simulator’s outline displayed in Algorithm 4.1 As men-

tioned previously in the thesis, there are three methods to achieving a fire simulation

prediction. There have been a few comparisons among fire simulators and their dif-

ferent propagation methods [27, 28, 37]. To provide an encompassing fire simulator

the user of the software will be able to choose which method of propagation they wish

to incorporate. They are all based upon Rothermel’s equations and that is a constant

among all three. The biggest difference in implementation between the methods is

how each interacts with its neighboring cells. All three methods will produce results

stored in files only accessible to a software developer interested. However, for non

technical users the results can be seen through the web service visually. The results

are stored in a cell by cell mapped value format, such as the time of arrivals, moisture

content, current rate of spread, max rate of spread, and threshold values for crowning

and spotting. Based on the work done by Sousa, dos Reis, and Pereira [41], Minimal

time and Iterative Minimal times were mirrored in implementation. The third fire

propagation method was a reproduction of vFire [23]. All three methods were studied

and written in CUDA and C++ to increase the performance of them and to compare

GPGPU computing throughput verse CPU throughput.

The rate of spread or propagation of the fire for this thesis was all completed

in the previous work in vFireLib by [39]. In this work denoted as vFireLib.v2, the

simulator was advanced greatly beyond a simple fire spread under no wind, and

uniform terrain and fuel model conditions. vFireLib.v2 also implements advanced

user manipulation to the fire simulations, as well as providing a web service [48]

that communicates with the CUBIX [13] server and helps visualize the scientific data

and fire spread on a given terrain. The fire propagation equation used for all three

methods is Rothermel’s Equation 4.1.

r(Θ) = Rmax
1.0− ε

1.0− εcos(φ−Θ)
(4.1)

Where

Rmax = is the maximum fire rate of spread.
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ε = is the eccentricity given through slope and wind.

φ = is the fire’s orientation angle.

Θ = is the fire spreads direction.

Qig is the heat of pre-ignition.

In the previous version of vFireLib Rmax, ε, and φ were determined before fire

propagation was calculated. This is still the case for the sequential version as there is

no front end platform for the user to manipulate the fire simulators variables available

in the parallel implementation. For the sequential version nothing was changed in

terms of how the preprocessing and burn methods were calculated. One last mention

for clarification is that Θ is set as the direction angle value of neighboring cells.

4.2.1 Burn Distance Model

The burn distance model (BD) is the most intuitive in terms of how one would think

fire burns and spread through nature. All the cells in a simulation have a set dis-

tance or area that the fire needs to burn through before igniting another neighboring

cell. The set distance makes sense considering all the cell in the simulation will be

determined by the resolution of the data files. All data in these files are extracted

and then interpolated across the simulation to ensure accuracy. The distance the

fire burns is constant, what changes is the speed or rate at which it travels. This is

dependent on factors such as the fuel model contained within the cell, the moisture,

wind, and terrain. The distance the fire has burned across the cell is tracked every

timestep. The timestep for all three methods is dynamic, because if a static timestep

is implemented race conditions will overwrite time of arrivals and produce incorrect

results. The race condition occurs when the timestep is too large causing the fire from

one cell to propagate to another cell before it should have. The dynamic timestep

keeps this from happening guaranteeing that the timestep will accommodate what-

ever simulation dimensions arise. This timestep is found by simply calculating the

max spread rate of every cell, find the greatest rate, and dividing it by the cell size;

this creates a timestep that is never too large for a race condition to occur.
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The cells in a BD simulation spread fire through distance burned. Once the

distance across a cell has burned completely it will spread the fire to a neighboring

cell. The distance the fire has traveled is tracked every timestep found by calculating

the following Equation 4.2.

d = d− r∆t (4.2)

Where

d = is the distance left to burn.

r = is the distance decreased each timestep through the rate of spread.

∆ t = is the timestep size to avoid overburn due to a static timestep.

The time of arrival for the fire to reach a cell is denoted exactly when the complete

distance has been burned. The equation to calculate the TOA of the cell the fire has

reached is found in Equation 4.3.

TOA = tnow +
dover
r

(4.3)

Where

TOA = is the TOA.

tnow = is the current timestep.

dover = is the distance threshold needed for the fire to spread.

r = is the cell’s calculated rate of spread.

The BD model approach is laid out step by step in the following Algorithm 4.2.

The BD spread method can be seen previously in Chapter 2 shown in Figure 2.1.
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Algorithm 4.2 Burn Distances Algorithm

for cell = 0 to numCells do
// Check to see not on fire
if ignT ime[cell] == INF then
Skip

end if
// Check Neighbors for fire propagation
for n = 0 to 7 do

if ignT ime[neighborCell] < INF then
Skip

end if
ROS = Compute ROS according to Equation 4.1
burnDistance(totDist[neighborCell], ROS, timeStep)
if distance is burnt then
ignT ime[neighborCell] = timeNow

end if
end for

end for

4.2.2 Minimal Time Model

The MT propagation model checks every cell per timestep to determine whether it

has been ignited or not. If the cell has been ignited, then its neighbors must be looked

at. The spread method from neighbor to neighbor checking can be seen in Figure 2.1.

Ignited neighbors are ignored in order to not waste computation time. A cell in the

current timestep can be checked to see if a earlier TOA is available. If the cell is not

on fire the TOA for that cell is calculated using the Equation 4.1 mentioned above.

This method starts and increments with a dynamically calculated timestep in order to

avoid waiting through possible time steps in which no cell is ignited. The timestep is

based on the occurrence of a new cell being ignited, which means a TOA is calculated

for that cell. This new TOA is stored in a ‘timeNext’ value and is compared to the

current ‘timeNext’ value. If the new value is less than the current TOA then we need

to adjust our timestep for the smaller TOA to avoid the race condition. The MT

propagation model’s logic is displayed step by step in the following Algorithm 4.3.
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Algorithm 4.3 Minimal Time Algorithm

1: for cell = 0 to numCells do
2: if timeNext > ignT ime[cell] AND ignT ime[cell] > timeNow then
3: timeNext = ignT ime[cell]
4: else if ignT ime[cell] == timeNow then
5: // Propagate Fire
6: for n = 0 to 15 do
7: //If neighbor is unburned
8: if ignT ime[neighborCell] > timeNow then
9: ROS = Compute ROS according to Equation 4.1
10: ignT imeNew = timeNow + Ln/ROS
11: if ignT imeNew < ignT ime[neighborCell] then
12: igntime[neighborCell] = ignT imeNew
13: end if
14: if ignT imeNew < timeNext then
15: timeNext = ignT imeNew
16: end if
17: end if
18: end for
19: end if
20: end for

4.2.3 Iterative Minimal Time Model

The IMT propagation model is used to calculate the time of arrival for a cell inde-

pendent of neighboring cell data. Each cell determines its own TOA based purely on

spread rates. The cell will calculate the correct TOA when a convergence threshold

is reached in between the steps k and k + 1. The difference between the minimal

time vales for the two steps must be lower than the convergence threshold in order

to be marked as complete and notify the cell it has the correct TOA. According to

Sousa, dos Reis, and Pereira [41] the threshold value is found through trial and error

experimentation. The Iterative Minimal Time approach can be seen in Algorithm 4.4

and the cell check method can be found in Figure 2.1.
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Algorithm 4.4 Iterative Minimal Time Algorithm

1: for cell = 0 to numCells do
2: // Check for simulation completion:
3: if |ignT ime[cell]− ignT imeNext[cell]| < thresh then
4: //Mark as converged
5: end if
6: if ignT ime[cell] > 0 then
7: ignT imeMin = INF
8: //Propagate Fire
9: for n = 0 to 15 do
10: ROS = Compute ROS according to Equation 4.1
11: ignT imeNew = timeNow + Ln/ROS
12: ignT imeMin = MIN(ignT imeNew, ignT imeMin)
13: end for
14: end if
15: end for

4.3 Parallel Implementation

Unlike the sequential implementation the bulk of the pre-processing was moved from

the CPU or HOST and ported to the GPU or DEVICE for computation speedup.

The only pre-processing that does not take place in the parallel implementation is

essentially the file I/O. File read in and out is not a capability in GPGPU at this

time. As mentioned before CUDA is the programming language made available and

developed by Nvidia [26]. This does not limit the access to running the fire simulator

if one does not have an Nvidia capable device. The construction of the web-service

platform allows any user with internet access can run a fire simulation. The web-

service will be discussed later on but in short it communicates with the CUBIX [13]

server to run the kernels on Nvidia capable GPU’s. Kernels are instructions written

for the GPU’s Single Instruction Multiple Data processors (SIMD). These kernels

execute the propagation logic on thousands of these processors, each containing thou-

sands of threads that can execute the code with their own data. The data is the fire

simulation cells divided optimally on the threads. Threads each get data to compute,

because idle threads is a waste of possible computation power. The simulation run on

the GPU is outlined in Algorithm 4.5 which displays how the kernels are launched.
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Algorithm 4.5 Simulation Composition

while Simulation !Complete do
computeKernel<<< Blocks, Threads >>>(inputs)
terminateKernel<<< Blocks, Threads >>>(inputs)

end while

Algorithm 4.5 displays the blocks and threads variables for the kernel calls. This

is interactive before each simulation is run. They can be changed to optimize the

speed of the simulation, however these values do change in the context of where the

fire simulation is geographically located, the size of the terrain, total number of cells,

cell size, and resolution or granularity of the fuel model data. This simply implies

that optimizing these values for the given context is important and at the moment

is only available to the UI developer and should be considered future work to make

autonomous or at the very least interactive. Multiple kernels have to be implemented

to allow for block-wise synchronization. Once a kernel is done blocks are synced and

the data is preserved. The sequential version simply loops through to mimic this

effect.

4.3.1 Minimal Time

Due to the sequential implementation logic being almost exact to the parallel im-

plementation, as it should, the algorithm is not displayed. The minor changes are

effectively due to GPGPU compute architecture. Kernels code is executed on every

thread and there are thousands of threads active at the same time. This creates the

balancing act of data synchronization. During the fire simulation every cell is being

handled by a single thread. However, all the threads must access the TOA mapped

values in order to read and write back. This sets up the issue of race conditions again

in a parallel sense. If a thread writes back a time of arrival value before a thread

that needed the read the previous value stored the fire simulation will become com-

promised and the accuracy will fail. Atomic operations which are unique to CUDA

are the only way to read and write to a shared memory location safely and avoid

the race condition [35]. In order to circumvent the overwriting of a smaller time of
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arrival this thesis used the built in AtomicMin() function to guarantee that which

ever thread at the current time is accessing that value location is locked. This means

that no other thread can read or write to this location while it is being processed by

another. This solves the race condition problem. There is a disadvantage to using

atomic operations and it is the issue of speed. Since only a single thread can access

this location other threads have to wait in order to ensure accuracy. At the moment

there is no way around this but possibly can be optimized or avoided in the future

due to developing software and or hardware.

Minimal Time’s method of dynamic time stepping also posed its own issue. In

GPGPU computation architecture threads are not designated in any order, therefore

there is no way to determine when all threads are done processing their data. For

example, thread ID 0 could be the thread to finish its computation last and thread ID

500 finishes first [35]. The solution as seen in Algorithm 4.5 is the termination kernel.

Having a second kernel is more overhead, but it saves the program from read and

writing data back and forth between the HOST and DEVICE which creates even more

overhead. Once the first kernel is done this guarantees a block-wise synchronization

which also implies that all threads are done processing. The second kernel then assigns

the old timeNext variable to the new timeNext and sets the old to INF. This kernel

is a single operation on a single thread. This is possibly the worst use of GPGPU

computing, however it is the most optimal solution at the moment with the least

amount of overhead and will have to be looked at in future work.

4.3.2 Iterative Minimal Time

The parallel IMT propagation method is once again very similar to the sequential

and therefore will not have pseudocode presented. Also, since IMT is very similar

to MT in cell neighbor check logic it has the same synchronization issue present in

the MT method. Fortunately, for this method we do not need to essentially force an

undesirable kernel with a single thread operation as in the MT method. Using two

in and out vectors respectively is a simple solution with minimal if any downside.
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The race condition is the same for this method where a TOA value is overwritten

before another thread was able to access the previous information that it needed to

be correctly processed. Using the two vectors we always have a old value stored and a

place for the new value to go without overwriting the preexisting one. If it is unclear

as to why this is not a solution for MT it is because of the data context. MT’s issue

was with its dynamic time stepping necessary for an accurate fire simulation and the

fact that all the threads needed to be synchronized before the next loop could even

begin. In IMT the data has to do with the old and newly calculated time of arrivals

for each cell. This does not need to wait for the threads to be synchronized to keep

processing the fire simulations cells and therefore a more efficient solution to allow

asynchronous data access. Once the kernel is done, the next kernel will copy the old

TOA map vector with the new TOA mapped vector and repeat every time step. This

avoids the possibility of the read and write errors that will arise from using a single

time of arrival vector.

4.3.3 Burn Distances

The burn distance propagation method is very similar to the sequential implemen-

tation and has the same race condition as the iterative minimal time propagation

method. Pseudocode can be referred to Algorithm 4.2 and the same solution for IMT

was used.

4.4 Other Features

This thesis presents an advanced vFireLib.v2. The advancements in functionality

and user interaction include wind, moisture, and vegetation manipulation. Crowning

fire calculations were optimized and the user of the fire simulator now has the option

to toggle crown fires with spotting fire effects, or without. In the previous work

presented by [39] crowning was incomplete without spotting and spotting computation

was discussed but not implemented. vFireLib.v2 changes the pre-processing for the

parallel implementation immensely compared to the previous vFireLib.v1 [39]. This
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allowed the time step calculations to no longer be dependent on the HOST; this also

includes: calculating the roth data, and finding the maximum spread rate for a given

wildfire simulation. This was able to allow implementation for all the added features

with insignificant increase to total run time. This will be discussed more so in the

next chapter with the timings and results.

4.4.1 Spotting

Spotting fire effects was the next big change to the simulator. This calculates based

off crown fires reaching a threshold intensity great enough to produce fire embers.

These fire embers can be created by any cell in which the crown fire threshold has

been reached. Once the cell sets off an ember it is tracked. The ember is affected by

wind and gravity to determine where it lands in the simulation and whether or not it

is within the bounds of the simulation. Once the ember has landed probability under

certain moisture and fuel model variables play a role in the chances of the ember

igniting a fire ahead of the main fire line. This happens regularly in severe wild land

fires; the probability of ignition is demonstrated in Figure 4.1.
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Figure 4.1: Probability of Ignition [21]

4.4.2 Pause and Resume

A number of advancements were made to allow user manipulation possible as well.

This thesis provides a fire simulator where the user can change in real-time moisture,
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wind, and vegetation. The user can then see the immediate effects of this change to

the fire’s spread rate, direction, and intensity. To allow for this to be possible this

work had to make one more change to the program; a pause and resume function

had to be implemented. This is intuitive for a simulator to be able to do, but the

variables needed were extensive. To be able to pause the simulation the development

of saving the state for every cell up to a certain timestep was crucial. This included

cell values such as the current maximum rate of spread, current rate of spread, which

cells are on fire, not on fire, where embers are in the simulation, what the crowning

thresholds are currently, etc. To resume the simulation just as much data was needed.

Resume needed to know what changes were made to wind, moisture, or vegetation

from user manipulation. This was to mimic the possible changes in weather or to

gauge how a suppression effort event would affect the overall spread of the fire. An

example of these changes could be a simply as rain or an increase or decrease in wind,

it could demonstrate the effect a bull dozed area of vegetation would retard the fire or

even an aerial water drop. Upon resumption the simulator would need to recalculate

the roth data as well, find the new maximum rate of spread, and redetermine the

appropriate timestep; these reasons alone was enough to port these computations to

the DEVICE/GPU instead of leaving them to the serial HOST/CPU. vFireLib.v2

provides the user with more functionality and there is still more to add for future

work; these will be discussed in the last chapter.

4.4.3 Moisture, wind, and Vegetation Manipulation

Manipulation of moisture, wind, and vegetation was one of the primary objectives to

include within this fire simulator. Wind manipulation consisted of adding an x and

y vector that holds the value for each individual cell in the simulation. This value

can be changed through file editing or through our web-service interface which is

described more in the next chapter. Vegetation manipulation can also be changed for

each cell individually much the same way as wind. The biggest concern was change

in moisture. Moisture can be affected by water drops in wildfire suppression efforts,
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precipitation, and even certain fuel models have a dynamic moisture content [21]. A

dynamic fuel models moisture content transfer from live herbaceous to dead fuel is

represented by Figure 4.2.

Figure 4.2: Dynamic Fuel Load Transfer Table [21]
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Chapter 5

Results

5.1 Results

5.1.1 Overview

All timings for the sequential and parallel version were run on the same desktop for

consistency. The results include the pre-processing computation. For the sequential

this changes nothing, except for the addition of necessary data for the included fea-

tures. This simply implies that the pre-processing for the sequential is all the same as

vFireLib.v1 but has to manages more data. This did not seem to cause too much of a

delay in the timings. For the parallel implementation the pre-processing was dramat-

ically changed. In vFireLib.v1 the Rothermel values and all the data necessary for

their computation was done on the CPU. As well as calculating the maximum spread

rates for the entire simulation, finding the maximum of the max spread rates which is

used to calculate the dynamic time step needed for all three burn methods. This was

all moved to the DEVICE in order to take advantage of GPGPU computing. The

timings for all was done with Kyle Canyon in Las Vegas, Nevada. The terrain was

extracted in TIFF format, the wind is set uniformly to no speed, moisture is default

and respective of the fuel models found in the areas type of vegetation. All of this

data can be found at LANDFIRE [42]. The results can be found in the following

sections.
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Hardware

The hardware was an Intel i7-3770 with a base clock rate of 3.40 GHz and a maximum

clock rate of 3.90 GHz, 4 cores with 2 threads per core, and a 8 MB Cache. The RAM

available was approximated at a little over 20 GB and the Graphics Processing Unit

was an Nvidia GeForce GTX 1080 TI. The GPU specs are 3,584 cores and 11 GB

GDDR5X on card memory.

Timings

The tests for the timings ranged on a cell by cell area starting as small as 64x64 to

906x642. The values in between were kept to the powers of two and were square.

The final cell by cell area that is not a power of 2 is actually the size of Kyle Canyon

and can be seen in Figure 5.1. This was done to show a real-time use of the fire

simulation. These timings were done with spotting fire effects enabled, because in

vFireLib.v1 it was mentioned that crowning fire effects did not significantly change

the run time of the simulation. To show the significant change in run time spotting

Figure 5.1: Timings in seconds for all the implementations with spotting.
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imposed upon the simulation.

Table 5.1 shows the run times of both the parallel and sequential without spot-

ting. Table 5.2 displays the run times of both sequential and parallel with spotting.

The sequential run times with and without spotting did not change significantly. This

is most likely due to the fact that the spotting effect computation isn’t the issue in

regards to complexity and computational burden. It more has to do with the fact

that the sequential implementation does not need to pass large amounts of data back

and forth through PCIE slots. GPGPU computing requires data to be passed from

the HOST to the DEVICE, compute the simulation, then pass back all pertinent data

back. The pass back from the GPU is usually less. Spotting, wind, and moisture ma-

nipulation added large amounts of data to be passed from the HOST to the DEVICE.

This is likely the cause in the significant change in run time for the parallel version.

Table 5.1: Execution times without Spotting

Sequential (seconds) Parallel (seconds)
cells MT IMT BD MT IMT BD
64 0.482 0.467 0.310 0.230 0.251 0.246
128 1.230 1.345 0.770 0.224 0.238 0.227
256 4.322 4.642 2.493 0.333 0.329 0.316
512 16.837 18.450 9.166 0.505 0.691 0.561
KC 36.561 40.750 20.078 0.917 1.029 0.925

Table 5.2: Execution times with Spotting

Sequential (seconds) Parallel (seconds)
cells MT IMT BD MT IMT BD
64 0.405 0.506 0.322 0.213 0.236 0.228
128 1.216 1.289 0.744 0.271 0.256 0.295
256 4.350 4.843 2.503 0.371 0.429 0.521
512 18.245 18.891 9.406 0.688 0.825 1.424
KC 40.007 42.864 20.697 1.101 1.177 2.738
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Speedup, which is the sequential run time divided by the parallel run times, can

be seen in Figure 5.2. This is scaled in seconds and shows the vast difference between

the parallel and sequential run times. The second speedup graph is on a logarithmic

scale and is shown in Figure 5.3. In vFireLib.v1 the sequential usually beat out the

parallel implementation in the smaller cell by cell ranges. However, due to hardware

differences and advancements, this has changed.

Fire simulation on large terrains allow GPGPU computing to show that it has a

high capability to compute such large data dependent problems. Regarding the Kyle

Canyon timings, it is important to note that with or without spotting the entire fire

can be simulated within seconds. The quick computation added feature of a pause

and resume function makes the parallel implementation even more suited for real time

results.

Figure 5.2: Speedup graph found by dividing CPU/GPU running times.
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Figure 5.3: Log2 based graph of the speedup.

5.1.2 Web Service Architecture

To make it easier to use vFireLib, we have designed and implemented a wrapper for

the library. Any other applications can submit fire simulation request and obtain the

simulation outputs through RESTful apis. REST is short for representational state

transfer and is an architectural style of application programming interfaces, which is

defined in Roy Thomas Fielding PhD dissertation [22].

By using a RESTful api, the client side does not need to know details about

the server side and the client side can finish operations with GET, POST, PUT, and

DELETE requests. In this paper, we present two example systems (a web-based

visualization application and a 3D unity visualization application) to demonstrate

how to use the library through the RESTful api.

Our system architecture is displayed in Figure 5.4. We created a wrapper on top

of vFireLib to make it available to other applications. This means all the simulations

are done in vFireLib and the inputs and results are stored in the wrapper. Other
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applications only need to get and post data using RESTful apis offered by the web

service segment. Here are some RESTful api examples:

• /upload scenario (POST): The application can post a scenario (zip file) to

the server as an input.

• /upload files (POST): The application can use this api to post four input

files to the server. The files are fuel model, on-fire cells, x wind, and y wind.

• /api/scenario zip (GET): This api returns current simulation scenario as a

zip file. It contains current fuel model, on-fire cells, and wind information.

• /api/get final results (GET): This api returns a CSV (comma separated

values) file containing the simulation results.

• /api/get log (GET): This api returns the vFireLib simulation log, such as

the execution time and fire spread method.

• /api/get err log (GET): This api returns the vFireLib simulation error log.

The common errors are the input files are supported (wrong format) and some

input values are invalid. If the simulation does not have any errors, this api will

return an empty file.

By using this architecture, the client side only needs to process and visualize the

result files and the simulation procedure performance is guaranteed by the hardware

on the server.

5.2 Web-Based Visualization Application

5.2.1 Overview

This section introduces the web-based client of our system. The web-based client is

very easy to use and convenient. The user can modify vegetation, wind, and choose

different places to start a fire. There are three methods to input data into the server

side for the simulation: (1) upload the four input files (fuel model, on fire cells, x-axis
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Figure 5.4: System Structure (Blue Rectangles–Server; Green Rectangles–Client)

wind file, y-axis wind file); (2) choose available datasets stored in the server; or (3)

upload a scenario zip file. This component is built on our previous work [48].

Figure 5.5 shows a web-based client screenshot. The user can start the simulation

by clicking the play icon. Then the system will display how the fire will spread with

transparent red. The user is able to select different places to set a fire. All they

need to do is to click and drag on the 2D grid map and release the mouse button

(the chosen cells are marked with bright red), check the You want to choose on fire

cells? checkbox, and click the play icon button. Then the client sends a request

with the on-fire cells information to the server. The server reruns the simulation and

returns the results back to the client. During the procedure, the play icon button is

unclickable and shows loading..., which keeps the user from sending multiple requests

to the server.

vFireLib supports eight vegetation types (more details can be found in Section

3). The user can modify vegetation coverage (fuel model) as Figure 5.6 displays.

First, the user needs to choose a vegetation type from the radio buttons. Each radio

button has a color square, which is used to represent specific type vegetation in
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Figure 5.5: Web-based Client Screenshot, the red color means a cell is burning, the
black color means a cell is unburnable, and other colors stand for different vegetation
types. The user can start/stop the simulation and also choose cells to set on fire.
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Figure 5.6: Vegetation Modification Bar. The user can change the vegetation on the
2D grid map by using the bar. When the cursor hovers over the button, detailed
information will pop up (this can be seen in the white text on black background).
The current version supports eight types of vegetation.

the 2D grid map. The number in the radio button is the vegetation index. When

user’s mouse cursor hovers over the radio button, the brief vegetation introduction

will show up. Figure 5.7 shows an example where two fire barriers (bare ground -

probably bulldozed) are set up in the middle of the 2D grid. The fire spread results

show that the fire is blocked by the barriers and spreads faster on vegetation type

6 (Dormant brush, hardwood slash) than other vegetation types such as vegetation

type 142 (Moderate Load Dry Climate Shrub). This part of work is inspired by the

application introduced in [48].

Wind is another very important factor for the fire simulation. The web-based

client presents the 2D wind with vectors as shown in Figure 5.8. The web-based client

allows the user to modify the wind globally (all the cells) or choose different areas to

change. Global wind modification is easy and simple. The user only needs to input

x-axis wind value and y-axis wind value and click Confirm button. To change wind

of a certain area, the user needs to choose the cells by clicking mouse left button,

drag along a direction, and release the button. The chosen areas will be marked

with yellow. After clicking Confirm button, the wind information of the chosen cells

is replaced with the input x-axis wind and y-axis wind speeds. By repeating these

steps, the user can modify different places with different wind vectors.

We know it may be hard for some users to collect data by themselves. Therefore,

we have prepared some datasets on our server. The users can choose and study

this data. After they modify the datasets at their will, the users can download the

modified datasets as a scenario zip file. The users can also upload scenario zip files
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Figure 5.7: Vegetation Modification Map. This is an example that some cells (in the
middle of the figure) are changed into unburnable. It is clear that these cells stop the
fire spreading.

Figure 5.8: Wind Modification of Chosen Area. The user can change the 2D wind
vectors in each cell. These vectors are represented by arrows. Longer arrows are used
to represented more forceful wind and the arrow direction is the same as the cell wind
direction.
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to the server. In the future, we plan to allow users to automatically obtain data from

some repositories, WindPower [47] and Global Index of Vegetation-Plot Database [7].

5.3 3D Visualization

5.3.1 Overview

The need to study the wildfire spread across terrain can be properly visualized by the

web tool in a 2D view, but to be fully immersed in the data a 3D visualization gives a

better understanding of the landscape. This is useful since fires can occur in difficult

to get to areas and the fire tool is able to view the spread of the fire across the terrain

in a virtual environment. The 3D visualization tool was built in the Unity Game

Engine [44]. This visualization is built on top of an existing project that works with

watershed science data. In the 3D world tools are available to the users to interact

with the data displayed on the terrain.

The 3D visualization offers more features to the user than the web-based client.

These features are all part of the need to make the fire spread more realistic and to

give the user the perspective of a real world scene. Features such as being able to

change the wind in a two dimensional format can be made to the fire simulation and

then displayed in 3D to see the interaction between it and the fire’s behavior.

5.3.2 Fire Integration

The Unity application communicates with the fire web service to get the data that

relates to when an area catches on fire. The application uses the Unity Networking

library in order to communicate with the RESTful service. The returned data is

parsed to pull out some meta-data on the fire and the values for each cell of the

grid of terrain the fire spread was conducted on. The grid designed data has the

value when the certain grid point catches on fire. This data must be translated into

temporal data so it can be presented to the user in the application.

The fire component will generate each individual time of arrival which is then
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Figure 5.9: The Unity application where the white edges show where the fire edge is
at this point in the simulation and the yellow to black coloring of the terrain shows
the early to late time of arrival of the fire at that point.

viewed on the terrain. The terrain is generated from a digital elevation map (DEM).

The DEM has geospatial data, therefore the fire data is spatially correct when viewed

on the terrain. To texture the terrain in the virtual world the DEM geospatial data

is used to pull satellite data from a free web service. The terrain, satellite texture,

and the fire spread data can be seen running in the application in Figure 5.9.

Features

The Unity application offers many features that were built to handle environment

data. These tools include a time slider across the bottom that will allow you to move

through temporal data, a configuration panel to adjust the presentation of data, a

terrain slicer, and a data point graph. These tools were catered toward the initial

data that was being researched which dealt specifically with snow pack modeling, but

they work with the fire data as well.

The time slider bar is similar to video players, allowing the play/pause, speed of

viewing, and scrubbing of the temporal data. The time slider is the controller of the

data that is viewed on the 3D terrain. The time slider will show a preview of the
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data in a small box that is the exact representation of the data placed on the terrain.

In relation to the fire data, it is loaded into the data set and the time slider will play

through the spread of the fire across the terrain.

The configuration panel is the main controls of the way the data is presented to

the user and viewed on the terrain. There are preset color patterns that will represent

the values associated to each point of the data. These colors can be adjusted to

represent a greater range of values, which is useful when attempting to pinpoint a

specific time frame the fire has started. Another feature of the panel allows for the

data representation as a point or bi-linear interpolation. The point will color each

cell of the grid to the proper color value, and the bi-linear will interpolate the colors

of the cells around to give a more blended image. The panel also offers the option for

the user to export the current image being viewed.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis describes the implementation of a working fire simulator using the GPU

enhanced library vFirelib.v2. Our fire simulator can calculate a fire spread in three

different propagation methods known as Minimal Time, Iterative Minimal Time, and

Burn Distances. The parallel implementations of these fire propagation methods when

compared to the sequentially implemented algorithms produced significant speedups

in every spread method. The results presented in this thesis show clearly that a forest

fire simulator can be implemented using the GPU as the main processing workhorse.

Using the GPU, a real-time simulator has now been created, and it is a vast improve-

ment over what was the current state-of-the-art. The work presented in this thesis

is a comprehensive forest fire library with the ability to calculate fire effects such as:

active and passive crown fires, fire spotting occurrences, 2 single dimensional wind

vectors that create a modifiable X and Y wind field and cell to cell vegetation ma-

nipulation, as well as moisture manipulation and the ability to simulate a wild land

fire in user specified time ranges. vFireLib.v2 is available as a service and can be

run through a web application or through a Unity3D game application.

6.2 Future Work

For future work there are areas that can be improved upon to incorporate the GPUs

strength in its ability to conduct asynchronous data transfers. The ability to transfer
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partially complete data back to the visualization system would increase the versatility

of the simulator. For example, we would be able to process calculations simultaneously

while portions of the simulation are being viewed by the user or audience. However,

the kernels will need to be adjusted to account for the asynchronous data transfers.

Currently our vFirelib.v2 does all or none with regards to data transfers, the first

call after the pre-processing step to transfer data from the CPU to the GPU and the

second call once the kernels have finished calculating the entire simulation back to

the CPU from the GPU.

Other potential functionality is to expand the role of GDAL in the fire simulator

to give the user the choice to choose any location through a given latitude and lon-

gitude value and be able to pull or create the appropriate terrain data files in order

to run a customized fire simulation at any location in the real world. This would

be accompanied by the development to pull the correct data for the corresponding

vegetation and wind data for the terrain region chosen. The last addition to the fire

simulator is to implement and produce fire and smoke effects within the unity ap-

plication; as well as tree placement according to satellite imagery. These additional

features would create an even more in depth and accurate fire simulator and provide

a more immersive 3D experience for the Unity application.
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