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Abstract

Academia has always sought to ride the line between established thought and new

developments. No much more so than in the terms of technology. Universities seek to

teach using a known and proven method and resource but also stay relevant with new

technologies to provide students the knowledge they will need to be competitive in the

work place or graduate field. This thesis will explore how the University of Nevada

Reno approaches this problem with its Real Time Operating system course. Namely

on how using the established Micro cOS II Real time Operating System with the new

builder phenomena the Raspberry Pi we can overcome the challenge of updating a

tried and true lesson plan updated to use technology relevant and interesting to the

students of today.
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Chapter 1

Introduction

All Computer Science and Computer Engineering disciples have encountered the “real

time” catchphrase at least once in their career. Whether that experience equates to a

simple buzz word or a fundamental understanding is beyond the scope of this article

but none the less the concept has a claim to key concepts in the computing world.

As technology has advanced and computers become faster and more efficient they

allow us more room to error in our programming and still produce acceptable response

times. Even the most observant user will be unable to distinguish the difference of ex-

ecution time measured in a few clock cycles. However, as students continue to develop

their programming chops they will encounter problems were devices are stripped to

bare essentials to keep costs down but still expect timely program execution. This is

the realm of the Real Time Operating System course at UNR.

Students during the semester are introduced to the basic fundamentals of Real

Time computing and how a real time operating system operates within those funda-

mentals. To facilitate the process the Micro cOS II Operating system is used for its

scalability, availability and robust functionality. Miciruium also provides text books

written by the designer of the Micro cOS II Operating System which are used by

the students. Included with the text books are example programs written by Jean

Jacques displaying the functionality and features of his Operating System. It is using

these examples that UNR students begin to understand the underlying mechanisms

that go into a real time operating system.

But as time heals all wounds it also destroys all circuitry. For many years stu-
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dents in the Real Time Operating Systems course would use the 8051 micro-controller

as the development platform for their course work. No one will dispute the 8051’s

place in computer development history but it’s practicality of use has begun to wane

significantly. Students today need a board more in line with the products that todays

software development companies are utilizing and the Raspberry Pi was a develop-

ment platform identified to address this issue. Utilizing the Pi hardware which is

more in line with today’s architecture but still maintaining the ease of use offered by

the 8051 lead to the process of modifying the code operating the 8051 and moving

it, also known as “porting”, to the Raspberry Pi. This port will enable students to

run the same simple real time operating examples provided by Jean Jacques but on

a board that will stay pace with them their academic careers.

To best convey this process from idea to working project, this thesis will be broken

out as follows: Chapter 2 will cover background concepts and other related work to

establish a firm foundation and understanding of the topic. Chapter 3 will cover

the hardware utilized and provide a high level view of specific critical components.

Chapter 4 will shift focus from hardware to software and the actually porting of the

Micro cOS II Operating system utilizing a starting code base provided from GitHub

[7], and Chapter 5 will provide a summary of lead into future work.
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Chapter 2

Background and Related Work

2.1 Operating Systems

At first glance, when the term Operating System is used it triggers a response of

Windows or Mac. Its an option clicked on websites for downloads, or to spark debates

on INTERNET forums. To the programmer or computer enthusiast an Operating

System is a much more fascinating and complicated creature.

Looking back at the first computers there was no operating system outside of the

user. Early computers were of a simple design in regards to their use. A computer

required a program and input. In this program the user needed to include how the

program was going to interact with the hardware of computer, i.e. how to interpret

if a switch had been pulled or how to turn on a bulb. These instructions to interface

with the physical computer had to be included in every program. In addition to

having to include interface code a user had to wait until all jobs in the queue before

him were completed before any sort of inputting could be started[15].

2.1.1 Kernel

As time went on and as new innovations took place the need for an automated system

to handle the routine tasks required of all programs led to the development of the

Operating System. While still a far cry from the systems in place today, the earliest

operating systems served as the go between an application or program and the hard-

ware [16]. With the development of the kernel which contained support programs
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that applications could use to interact with displays and input devices. Programs use

the kernel to interact with every component of a computer, most important of which

would be the CPU. By allowing the computer programmer the ability to focus solely

on the program at hand without the burden of also writing compiling and testing

code to interface with the hardware proved to be invaluable. By using established

working code, development time was significantly reduced and errors within hardware

modules became virtually nonexistent. With this bridge crossed the next problem to

be tackled was multitasking.

As useful as the support programs or libraries were it was still an inconvenience

to only run one program at a time. Without the ability to run multiple programs

there can become dead times as jobs that take only 3 minutes to run must wait for

a job that runs for 6 hours to complete leading to an incredible amount of work

time lost. It was then at this time a scheduler was developed. The scheduler is the

component of the operating system that selects what jobs are run and when. Though

there are many different methods of scheduling the main concept is that each job is

given a certain amount of time to run before it is paused and a new job is allowed to

run, this is known as context switching.

2.1.2 Context Switching

Context Switching, simply put, is when the OS places the current job on hold and

proceeds to work on another job before switching back [8]. This requires a few key

steps to be accomplished without error however. First the current job whether it be

thread or process must be saved in its current state in order to be restarted from that

exact spot. This requirement for returning to the same execution state is critical,

any deviation or skipped steps from the prior execution could lead to corrupt data or

an error in execution resulting in a failed job state. To prevent this catastrophe key

elements of the current process must be stored such as the Program Counter, memory

mappings, etc. It is important to note however that while the overall notion of a

context switch is the same between different operating systems the exact procedures
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and cost (computational time, recourses saved) may vary.

2.1.3 Scheduler

With the ability to context switch between tasks it is the scheduler that informs the

CPU which job to run. It also falls upon the scheduler to decide when to switch

between jobs. While a fundamental reaction might be to divide computation time up

evenly between the tasks until all jobs are complete. This type of procedure, known

as a scheduling algorithm, is the Round Robin Scheduling algorithm. However this

type of scheduling is in most cases highly inefficient as it requires heavy overhead

to constantly perform a context switch. For this reason the development of other

algorithms became a necessity.

Scheduling algorithms

It is important to clarify that there is no best algorithm. Each algorithm presented

may or may not be the best approach for a given system. The burden of selecting

an algorithm to yield maximum performance lies upon the programmer after analyz-

ing the tasks needed to run, how these tasks are implemented, and how complex a

scheduler that can be supported. As we saw in the previous section the algorithm

that works on each task for a set time before switching to another task is the Round

Robin algorithm [1].

This algorithm performs well as no process must wait on another to complete

but as the number of tasks running simultaneousness increases so does the wait time

between each process. In contrast to the round robins even distribution of work

there is the most basic scheduler algorithm, the First In First Out algorithm. This

scheduler mimics the early computer method of working of jobs in the order they

are received and only switching once the current task has completed. Though simple

this algorithm offers no benefit of prioritizing tasks as high priority tasks must still

wait for every task in the queue before it to complete. This also presents a problem

of starvation, a task that is unable to complete due to denial to a resource, as if
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a task never completes no other task will be granted access to the CPU. Another

algorithm used for scheduling is the Earliest Deadline First algorithm. With this

form of scheduling whenever a scheduling event occurs, such as a task completes, a

new task enters, etc. The scheduler will then scan all the current tasks and switch to

the task whose deadline is closest to finishing. Keep in mind the priority of the task

at this point is still irrelevant, but this algorithm ensures that the most critical task in

regards to time is receiving the most attention from the CPU. There are many other

algorithms that can be employed to schedule tasks, each with its pros and cons. The

last algorithm we will discuss in this paper is the Fixed priority preemptive scheduler.

This algorithm assigns each task a priority ranking from highest to lowest. For each

priority there exists a corresponding queue where tasks of that priority will wait for

access to the CPU. The rules of the queue are that tasks are taking from the highest

queue first and once complete will then service the lower priority queues. However if

a low priority task is running and a new higher level task enters a queue. The lower

level task must pause and allow the higher level task access to the CPU. This method

ensures that the most critical task is allowed access to CPU in contrast to the task

with the fastest approaching deadline [12].

2.1.4 Multitasking

We have explored how a system can switch tasks through context switching and how

the scheduler can be implemented to perform these context switches these merely

make up the bigger picture of multitasking. Multitasking is the ability to run multiple

tasks at the same time which was the goal in the development of the scheduler.

Though so far all multitasking has been done by the operating system. These types

of systems are referred to as Preemptive multitasking systems.

Preemptive Multitasking

In a preemptive multitasking system the scheduler is the key figure in deciding which

tasks run, for how long, and if they will be interrupted [10]. Most Operating systems
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today use the preemptive multitasking scheme as it provides a higher guarantee that

high priority tasks will be given CPU access and providing a seamless flow of multiple

tasks as those tasks that may be waiting for resources are not hogging the CPU in

an idle state.

Cooperative Multitasking

The other method of multi-tasking in that of Cooperative multitasking. In this scheme

the scheduler is demoted to merely a module who starts tasks. All context switching

is controlled by the tasks themselves. In order to accomplish this each task that is

run in a cooperative schema may only perform a context switch if the current task

allows it. For example a task may require keyboard input to proceed so a mechanism

is included that allows the task to give up its CPU to another task until it receives the

data it needs to proceed [2]. It becomes readily apparent however that this method

can be prone to CPU hogging if a task is poorly written or if a task included no

mechanism to perform a context switch! As such, cooperative multitasking while still

used is reserved for operating systems specifically tasked for this type of operation

none of which would be found in a off the shelf computer store.

2.2 Real-Time Computing

All computer scientists and programmers have at some point to deal with the concept

of time. When developing new code the best programmers strive to limit the amount

of time and resources used by the computer. It is at this time the analysis of algo-

rithms takes place and the discussion of limits and big-O notation arise. Speed can

always be increased with the addition or upgrading of hardware. More memory and

a faster processor can accelerate the production of output. Many professional gamers

and industry professionals who require mass amounts of data to be processed quickly

are ever on the look out for the latest hardware. Its apparent that through top tier

hardware and efficient code we can process data fast but is it considered real time?

The answer is: it depends. This response is what leads to most of the confusion what
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comprises a real-time system.

For a system to be classified as real-time it must follow a simple rule: Any task

must be completed and correct before its deadline is hit. It seems that if this is

all that is required that almost every computer is running in real-time. Everyday

users open their email, play video games, and run other applications without issue or

users walking away in frustration as they never complete the task but the fact is that

there is no guarantee that any of these tasks will complete in a set time constraint.

Browsers may take time to load waiting for resources to become available, a system

with many other applications may not prioritize the latest task resulting in longer

compute times. This lack of a guaranteed result in a set time prevents system from

being considered real-time. Perhaps the best example of a real-time system is the

pacemaker. One of the methods a pacemaker may use to regulate heart rate is that

of Bi-ventricular Pacing to treat Congestive Heart Failure. In a healthy heart the

left ventricle will receive an electrical pulse to compress the chamber, and the right

ventricle will receive a pulse as well in order to contract in unison. In a patient

suffering from Congestive Heart Failure however the right ventricle either receives a

delayed or absent pulse preventing the heart from pumping in unison. When the

ventricles fail to pump in unison the rate of blood flow becomes compromised leaving

the patient at risk of death or disability. With the use of a pacemaker configured to

use Bi-ventricular pacing an embedded device will detect the pulse in the left ventricle

and then within milliseconds send a pulse to the right ventricle to cause it to contract.

In this system there is essentially one task: When a pulse is detected send a pulse.

The deadline for this task is configured by the doctors assessing the patient but it

will be under second in time. Its readily apparent that this is a real time system as

the pacemaker will always send a pulse, completing the task, before the deadline is

approached. If it does not the consequences are catastrophic.

While other systems may have fast hard-drives, large amounts of memory, over-

clocked processors capable of performing billions of calculations a second we may

call them high-performance systems, but the amount of work a system can do is not
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relevant to an real-time system. Real-time systems can only be called real-time if it

can guarantee that all tasks run on the system will be completed and correct before

a deadline has elapsed [3].

2.2.1 Real-Time Operating Systems

With a base understanding of an operating system and the concepts of real-time

computing we can discuss what a real-time operating system is and does. A real-time

system must complete a task within a set time guideline. A programmer can write

code that is constrained to run in so many machine cycles (Obviously this becomes

more difficult with more complex programs as big O complexity increases) but how

to ensure the Operating System will not schedule another task or more causing our

real-time task to fail its deadline? It is for this purpose there are real-time operating

systems.

A real-time operating system servers as a facilitator for real-time applications by

using an advanced scheduler that ensures the most important task is giving priority

in execution time. There are different methods in how this scheduler approaches

executions of tasks.

Scheduling algorithms

A few of the most prevalent types of scheduling algorithms found in a RTOS are

cooperative scheduling, preemptive scheduling, and earliest deadline first scheduling.

Despite the algorithm that is implemented an RTOS requires that this scheduler not

run into a situation where it can become starved for jobs or resource hogging. As a

result most scheduling algorithms in real time systems are highly advanced and are

key components of the system.

Hard vs Soft Time Operating Systems

Depending on the scheduling algorithm and the tasks being performed it becomes

apparent that situations may arise where a task is not completed by its deadline.

Based on our earlier definition of a real time operating system this would be an
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unacceptable situation. However a system may perform close enough to this standard

that it is still considered a real time system. We classify this discrepancy by describing

the system as a hard or soft real time system [11].

In a hard real time system the deadline is absolute. All tasks that are run on

the system must return the correct outcome by the deadline. If a single task is not

completed by its deadline the system has failed. We call a system with this ability

to always produce the correct output for every input a deterministic system. Of

all the real time classifications hard is the most strict and therefore the hardest to

implement. Few systems exist that qualify as a hard real time system though those

that do usually have simple tasks. The pace maker example from earlier would qualify

as a hard real time system as a single missed pulse could cause series consequences

for the patient.

In contrast a soft real time system allows for frequent missed deadlines as long as

the task can be completed reasonably quickly. The outcome of the task must also still

retain some value even after the deadline. An example of this type of system would be

a weather system. This weather system may be analyzing multiple components such

as humidity, temperature, and wind speed each of which would require a separate task

to process. In this system if a task does not meet the deadline but perhaps completes

a second afterwards we can still use the data as it still relevant. However the longer

the delay from deadline to completion the usefulness of this data will degrade.

While the line that separates a hard real time system from a soft system is abso-

lute there exists a third classification that one could argue IS the line of separation.

This is appropriately termed a firm real time system. In a firm real time operating

system we are allowed to miss deadlines, though quite infrequently, but if a deadline

is missed the value of the task has no value and the task should be discarded. An

example of this system would be the playing of audio. If the system misses the occa-

sional sound byte it will likely go unnoticed by the user. However there is no benefit

in playing the missed byte at a later time hence its value is zero.
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2.2.2 MicroC/OS-II

The main real time operating system that this paper will focus on is the MicroC/OS-

II The Real Time Kernel. While it has been replaced commercially by a new version

MicroC/OS-III version II still remains a main stay choice. Part of this viability is

no doubt due to its free licensing for personal or educational use, but MicroC/OS-II

has other key features that appeal to hobbyists and large developers alike. First of

these features is the scalability of the OS, by scalability it means that the developer

can choose what features to build into the kernel and leave out unused modules

keeping the kernel size as small as possible. This is also known as avoiding bloat

or space dedicated to programs that are never used. For scheduling MicroC/OS-II

uses a preemptive scheduler so all context switching is performed by the OS itself. In

addition to being preemptive it is also deterministic ensuring that all tasks will be

completed on time and correctly [9].

2.3 Related Work

The concept of running a Real Time Operating System on the Raspberry Pi has been

milling around on many INTERNET forums since the Raspberry Pi was released.

The project of porting an RTOS to the Raspberry Pi had been discussed though most

users found that through virtualization of the RTOS that the performance was within

the threshold needed for the hobbyist. Most predominate of these virtualizations was

FreeRTOS. FreeRTOS is a real time operating system offered as an open source and

free RTOS solution for a multitude of processors. Built as a collaboration effort from

leading chip companies and possessing a small foot print, the OS has found wide

spread use through out the industry, with a significant presence in the micro-controller

market. For this reason alone it makes sense that this would be an entry point for

having a RTOS running on the Raspberry Pi and to date is the most complete ported

RTOS available for the Raspberry Pi [6].
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Chapter 3

Hardware

3.1 Target System: Raspberry Pi

While Real Time Operating systems differ greatly from their bigger more well known

counter parts the hardware used is essentially the same. The main component that

will be the focus of this project is the CPU. The CPU or Central Processing Unit is

the brains of the computer. Though all CPUs essentially perform the same function

their construction is unique form manufacturer to manufacturer. It is at this point

it becomes essential to port the operating system to this hardware. Porting software

is simply the task of writing the interface code that will allow the software to use

the hardware. In cases of embedded systems this file is sometimes referred to as the

board support package file or BSP file.

While computer enthusiasts have been readily abundant since the first do it

yourself computers were released in the early 70s, the initial cost was ever on the rise.

It become a considerable investment to build a computer even if one only desired low

end components. In response to this absence of a low cost all in one computer the

Raspberry Pi was developed. Developed in the United Kingdom by the Raspberry Pi

foundation, the main goal of the Pi was to create a cost effective platform to teach

children Computer Science. By providing an all in one board which only requires a SD

card, monitor, input device to run it was a practical and affordable device. Another

appeal of the Pi is that it is almost unbrickable or it is unable to be programmed in

such a way that it will never run correctly again. The Pi was built with a key feature in
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mind that students and hobbyists and even professional programmers make mistakes

in the programs they write, by having no Read Only Memory this prevents the user

from flashing firmware that might turn the Pi into an inoperable board. Another

appealing factor is the small power draw from the device as it can be powered by a

usb port from another computer or from a small 5v charger [5].

3.2 ARM Processor

The Raspberry Pi employs the use of an ARM 11 computer organized chip. Namely

the Broadcom BCM2835. When we say ”computer organization” we are specifying

the way a CPU was designed to handle a instruction set. In the simplest of terms

it is the road map of how all the parts that make up a CPU talk to one another to

perform the CPU task. Each chip manufacture has an established chip organization

which is usually how one can identify the type of CPU. In our case the ARM 11 is

named for its manufacturer, ARM Holdings.

3.2.1 Instruction Set

To no great surprise the Instruction Set contains instructions. However it is important

to classify these instructions and how they are implemented. When discussing an

instruction set in computing we are referring to the instructions that the software

will give the hardware to execute.

Complex Instruction Set

The first set of instructions we will discuss are the Complex Instruction Set. These

aptly named instructions provide the operator a array of instructions that provide

more than one simple task per instruction. For example, a complex instruction may

load a value from memory, perform an arithmetic function and then store the resultant

value in another location.

The ability to perform multiple steps in one instruction provides obvious advan-

tages. Namely the reduction of instructions needed being the most apparent. An
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additional benefit is the standardization of simple tasks that would exist as subrou-

tines in other instruction set formats. Additionally by combining multiple actions

into a single instruction program footprints are smaller saving the amount of memory

and disk storage needed [13].

Reduced Instruction Set

In contrast to the Complex Instruction Set, the umbrella term Reduced Instruction

Set was created. At it’s root, the reduced instruction set is architecture in which

instructions have very finite and specific tasks. The example provided in the complex

instruction set was that of a instruction pulling a value from memory, performing a

arithmetic function and then storing the resulting value. In a reduced instruction set

the same process would be replicated in three separate instructions: One to pull the

value from memory, one to perform a arithmetic function and lastly one to store the

value. While at face value this seems like a step backwards as the program must now

specify each step of a process there are several benefits of the reduced instruction set

[4].

Firstly is the power provided to the architect. By having explicit control over

every part of the process the programmer has absolute control over the machine cy-

cles being used to perform functions. In skilled hands a program written in a more

efficient way than being forced to use memory cycles not needed from a complex

instruction set. Secondly, in smaller scale applications such as microcontrollers, the

need for robust instructions in minimized, and by using a subset of reduced instruc-

tions producing a lean deployment package for development. Lastly, by removing

the load/store memory calls from instructions other than those explicitly designed

to access memory provides the opportunity for faster processes and more efficient

pipelining.

Ultimately as both schools of thought have advanced it has become unclear which

architecture is superior as super computers from all era’s have utilized some form of

either architecture.
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3.2.2 Base Board

While there are many components that constitute the entire aspect of the Raspberry

Pi, to address each in detail would be verbose and unnecessary as from the project

stand point we will address all components except for the CPU as generic devices. The

reason for this is two fold. First, by using generic handlers we are able to increase the

portability of the project as new versions of the Raspberry Pi are released. Second,

it keeps the code simple allowing students to focus on the real time aspects of the

project and not get lost in peripheral devices.

3.3 Whole package approach

If the devil is in the details than why not remove them? It definately would seem

that we are ignoring the subtle aspects of the Rasperry Pi but it’s just a different

approach to the same problem. This approach allows to look to the Pi as more of a

integrated circuit rather than a complex controller. We are simply concerned about

power, ground, inputs and outputs. With the drivers handled and such a low level

they are essentially transparent pass through objects that we need not concern ourself

and the students with.
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Chapter 4

Implementation

4.1 Tool chain

Before we can delve into the workings of the Raspberry Pi and Micro/UCOS-II we

need to be able to convert our source files into a language that the Raspberry Pi can

use. This is accomplished through the use of a tool chain. A tool chain, like it’s

namesake, is a group of tools, in our case programs, that when linked or grouped

together create a software program. One of the most prevalent examples tool chain

use is the Integrated Development Environment or IDE. Most IDEs like Microsoft’s

Visual Studio provide the ability to edit code, compile and link objects. The more

advanced of these toolchains build “hooks” into the developers programs that allow

on the fly debugging. It is worth to note however that not all IDEs provide all these

features and may only provide subsets of the previous mentioned capabilities.

Many developers use IDEs for their powerful abilities, convenience and features.

To all of our dismay, IDE’s are not usually bundled with computer systems and need

to be acquired and installed by the end user. Most of the advanced IDE’s on the

market today are not free and can be cost prohibitive per license. IDE’s also require

substantial system requirements to support the capabilities provided and can add

additional size or “bloat” to the executables they create.

As the Raspberry Pi is a minimalist computer which is marketed as a cost effective

tinker/development platform, it makes sense to use a minimalist approach to develop

our software. As such for the toolkit used in this project we will be using readily
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available freeware. Just because we are going free does not mean we have to sacrifice

usability and convenience. Earlier I mentioned that a toolchain needs to build, link

and compile our executable and while we could scour the INTERNET finding the

best tools for each step we would then run into another issue: Interconnectivity. It

should surprise no one that not all tools operate the exact same way and when we

are building our own toolchain it can become a task of itself to just get the parts in

the toolchain to work together. Another fun fact for trivia night is that not all tools

produce the correct files for the CPU architecture in use so we also have to make sure

the tools we are assembling even work for our board! Worry not dear reader as for

this project we are going to skip that and use a free toolchain that does all the steps

and works on the processor we need it to. That toolchain is called Yagarto.

The Yagarto Toolchain was developed in 2006 to allow hobbyists and other in-

dividuals a free way to compile and deploy ARM based programs. Until Yagarto

was developed there were very few Windows applications that could compile ARM

based programs without either being very expensive or so difficult to work with that

development was hindered. To address this issue Yagarto was created and considered

feature compete five years later. Since it’s development new toolchains and IDE’s

have been developed to deploy ARM programs however the simplicity of use and

proven track record keep Yagarto a stable of ARM hobbyists [17].

Now that I have sold you on the Yagarto as our front runner toolchain it is now

time to disclose an inconvenient truth. While the Yagarto toolchain is monetarily

free we will pay in the lack of a very specific feature: Integrated Development. For

those who have only written code in Visual Studio you may need to brace yourselves

for in this project we need to make the use of “make” files and a text editor to build

our project. But “Wait!” you say, ”I thought Yagarto did all of the work for us!” And

it does, just the work that we can’t see. You and I still need to write the code that

Yagarto will turn into an actual executable file and to do that we need a program

that allows us to type and a way to tell Yagarto what files we want built and how to

build them.
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4.1.1 Make files

Imagine you are a carpenter who owns a wood shop and makes custom built to order

tables. What would you need to make these tables? First obviously you need tools;

saws, rulers, sanders, etc. You also probably should know how to use these tools

or else you wouldn’t be a very good carpenter. We would also need wood but I’ll

get to that later, but for now we have a carpenter, his tools and the ability to use

them in order to make things. This should sound very similar to our Toolchain as

basically they are one and the same. Tools that allow us to make things. Now about

the wood, can’t make tables with out it, but since they are really a resource used

to make tables we don’t include them in our “toolchain”. In our project the wood

is our C++ and Header files. Not part of the toolchain, but obviously necessary to

project completion. With our tools(toolchain) we can now turn wood(C++/h files)

into tables(executables)! Among the more astute reading this, you may have noticed

the assumption being made and at this point we are unable to make tables, we have

no instructions on how to build the tables! For our build to order table business to

do anything we need input from the user on how the table should be built, not in

the aspect of how to put nails in boards, but in the sense of should it be rectangle?

or a circle? Should it sit 4 or 12? By specifying this in our build order we provide

the necessary information to allow the Carpenter to turn wood into the table we

want and not just random planks of board glued together. This is no different in

our toolchain, without the base instructions, or what we will call a make file, our

toolchain has no ability to build anything. This is a very simplified version of the

capabilities of makefiles but for this project you would not be wrong to say that the

make file is simply telling our toolchain what files to use as resources, in what way

we want them built, how we want them linked, and finally how to package them into

our final executable.
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4.1.2 Text Editors

Without the ability to directly edit our code in Yagarto, we will need to utilize

a text editor to modify the C++/h files needed to build our program. For this

program Notepad++ was used, however this I will leave up to the reader and personal

preference. My only word of warning is that you ensure you are using a text editor that

does not insert “invisible” characters into your code. Wordpad and Microsoft Word

and prime examples of text editors you DO NOT want to use unless you really know

what you are doing. By using editors such as these you will spend countless hours

wondering why your compiler is reporting “illegal character” errors and “Unexpected

End Of Line” warnings. So while I suggest you stick with what you know, if you have

no experience then look into Notepad++, Vim, or just plain Notepad.

4.2 Making the Kernel

As discussed earlier in this paper, for anything to work in any meaningful fashion we

are going to need a Kernel. And not just any kernel will do, we need a kernel that

runs an ARM architecture and the Yagarto toolchain provides the ability to do this

with their arm-eabi-gcc compiler.

4.2.1 Compiling with GCC

The Yagarto toolchain uses the GCC compiler, basically allowing us to use C++,

to build and link objects which are then packaged into a Kernel image based on the

ARM architecture specified in our make file. While Yagarto will provide us that ARM

kernel shell, without the specific operating system code it is not enough to run the

processor much less a full board. To actually allow the target board, in our case the

Pi, to run we need to provide the operating system itself.

Micro c/OS-II, while aged, was still written with the concept that operating

systems should not have specific hardware dependencies. As such we are able to

use the source code as is from the developer Micurium. This is a huge boon as any
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changes made to the Micro c/OS-II code would prompt significant testing changes to

ensure we didn’t accidentally alter functionality. However, we are simply not able to

simply drop in the code and hit run. There are two other key components that we

need to address to bridge the cap from our high level source code to the low level

assembly that drives the hardware. Specifically the board support package or bsp

and the port of the OS CPU file. It is these two parts that will allow our software

the knowledge it needs about the hardware to fully utilize the device. However, we

need to eat this elephant one bite at a time and the board support package and cpu

port will be discussed once we are further along in the process.

4.2.2 Early Goals

Before bumping into the unknown blindly I set out to see if any Pi Enthusiasts or

those in Academia had dabbled with the MicroC/OS-II system and could provide any

ground work to build off of. During this research I found two projects that would

benefit me greatly. The first was a bare metal programming of the Raspberry Pi to run

simple tasks written by a developer named Dave Welch[14]. The term bare metal has

many meanings to many people so I should clarify that in this context it is the most

simple programing of a device we can do; very reminiscent of the old paper programs

where we need to tell the device how to everything from storing data to turning LEDs

on and off. Mr Welch’s simple programs however were critical in my development as

it provided the memory map that would allow me to access the hardware components

on the Pi. Remember the Board Support Package I mentioned earlier? The memory

addresses provided by Mr Welch were essential in building the BSP as they provided

all the memory address and simple calls that could be used to access the hardware

on the Raspberry Pi. The second project was found on GitHub developed by Weng

Kai which allowed a basic port of the Micro C/OS-II operating system to the original

Raspberry Pi[7]. With his port I was able to see how he structured the build in order

to utilize the Yagarto toolchain in a user friendly manner and also create a build

directory that wouldn’t confuse entry level programmers. It also provided me with a
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safe starting point for my build. This is critical as experience in industry has taught

me that when one is working over many files in many locations it is quite easy to lose

hours of work because you don’t know what change may have “broke” your code. By

having a working model and then building in slow steps from it you can allows quickly

revert to a working program and analyze why your change is causing problems.

The first step to build my working prototype was simply to ensure an SD Card

with the Micro C/OS-II image would boot and begin execution of Mr Kai’s simple

program. This step could best be described as merely merging two projects into one,

as the memory map provided from Dave Welch’s Bare Metal programming as was

able to create the start up sequence that would boot the Pi and then simply point

to the task switching program written by Mr Kai. As all things go, this turned out

to be slightly more difficult than expected. The first issue to arise was that the code

provided by Mr Kai, wasn’t complete. The main working parts were there but upon

the first attempt to build the amount of declaration errors was significant. This of

course required the tedious task of ensuring all C++ and header files were linking

appropriately and also modernizing some of the data types used through out the

program. All understandable as this original code was written in 2005. With this

complete we can move to the next step: addressing the issue of creating a CPU port.

4.2.3 CPU Port

The CPU port itself is relatively simple in relation to our goals as we are mainly

concerned with two things, the Stack and the Registers. These two components are

essentially the life blood of the project and are needed to perform any form of context

switching. While a true port of a CPU would be a massive en-devour encompassing

all aspects of the CPU our port only requires from us the where and how to do the

context switching. This all takes place over two files. One file is a C++ file that is

simply providing the memory location for the Stack. The memory locations used are

the same ones provided by all ARM ports used by Micerium. The other file is an

assembler source file and requires us to actually think as it is a hair more difficult.
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We now must tell the CPU how to to perform the context switching tasks using the

stack we specified in our C file. We will take solace in the fact that we really only

need to handle five aspects: 1) Storing the current working registers 2) Save our state

3) Handle an interrupt 4) Load a new state 5) Load new working registers

Utilizing other ports provided by Micerium we can see that each port essentially

performs the same functions in context switching, it’s just a matter of syntax. It’s

essentially just a matter of ensuring your compiler understands the assembly language

you are using. For example, if a function’s intent it to put this value in register 2,

we simply need to write the corresponding assembly for our compiler to take a value

and place it in register 2.

With what essentially amounted to code house keeping complete I was able to

build a kernel that would boot from the microSD card and start Micro c/OS II with

two tasks. These tasks would simply write “Task 1” and “Task 2” back and forth

as each interrupt was triggered but again the goal here was to have something that

worked and I could go back to when it stopped working. Now my goal was to move

from two simple tasks interrupting one another to examples provided to the UNR

students.

4.3 Micro cOS-II examples

The textbook used by the University of Nevada Reno’s real time operating class is

Micro cOS II, the Real Time Kernel by Jean Lebrasse. In this book are five examples

that display the more predominant features of the Micro cOS II operating system. The

University of Nevada Reno students will compile and run these samples with minor

modifications to understand the basics of the OS. However as previously stated in

this paper, the programs were meant to be compiled with a Borland 4.5 compiler and

run on a system executing the DOS operating system, both of which are hard to come

by in 2018.

To port these examples the following objectives were identified: Remove DOS

entry and return protocols, remove and replace Borland specific functionality with
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gcc functionality and remove screen video display with serial port communications.

As I’m a big supporter of one stone bird removal methodology, the removal of

DOS from the programs is trivial as in the previous steps we created a bootable image

which loads uCOS II directly. We simply have no need for the DOS system and none

of the calls used in the examples affect the real time system. The calls are simply to

preserve the state of the DOS stack and relinquish control of the CPU so we are free

to simply remove these lines of code out right.

Our stone is currently two for two and in our next step of removing Borland

dependencies it’s going to put up a strong argument for going three for three. Aside

from one one function call, every Borland command we encounter is used to write our

Graphical User Interface to the DOS shell. As an interesting note, the way this was

accomplished was done by creating an artificial frame buffer that was then loaded

to the terminal window like a GPU would load to a display. Since we are not using

DOS there is no need to write to a DOS window, so these Borland calls aren’t needed

and can simply be removed. At this point of the operation we can compile the code

and set it running. The only downside is that we removed all graphical attributes of

the program so we could only go by faith that are program is executing correctly. As

any undergraduate can attest, faith based programming does not credit bestow so we

must implement our last identified objective of moving all output to the serial port.

The challenge of this step is to switch from writing to the display buffer used

by Borland and writing the data to the serial port in the same matter. Why are

we simply unable to to simply reuse this code? We do have access to the video

memory after all since our bare bones implementation provides us direct access. The

first reason is that I was instructed to use the serial port, but the more practical

reason is that the Borland frame buffer functions much differently than a true frame

buffer. In our Pi and most bare bones applications we have access to the physical

frame buffer but at this level it is individual pixel access. In the Borland DOS

window a character map was utilized providing the needed fonts and line positioning.

This slight difference may sound trivial but lets look at why the difference is actually
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staggering. Let’s say we want to write the letter ‘A’ to the screen on the fifth line, four

spaces indented. In the Borland system we simply call the write character function

with three arguments provided: The character to write, the ‘x’ position and the ‘y’

position, so DispChar(A,5,4), and we are done! In the bare bones implementation we

have to write to each individual pixel, so we have two options. We could calculate

the position of each pixel in the letter in the x/y plane, and then write a color value

to each pixel. But we must then also keep track of every spot and spacing. Or we

could precalculate all this information through building a font type that we could

call upon but this would also require a controller to maintain all the running data

of each character. Ultimately though both approaches are resource intensive, time

consuming and outside of the scope of this paper. By utilizing the serial port we can

simply pass strings to the host terminal and let the terminal window handle all the

graphical work. Another benefit is all of the data we need to display is already in

a string format so the only work required from us is to transmit this data using the

standard serial communication protocol.

Despite all of this tinkering in the code the key gaol is still met. The original

uCOS-II calls remain unchanged and the RTOS functionality is unaffected leaving

us with a clean port of the operating system. This was critical to the project as it

provides the students with the same code referenced in the Micro cOS II text book

and provided source code.

4.4 Running Micro cOS-II on the Pi

With the examples modified to remove all DOS references, Borland dependencies

and information being passed through the serial port we are now able to move the

software into our kernel image. The easiest way to create our bootable SD card with

our kernel is to inject our kernel into a prebuilt bootable SD card. Confused? Don’t

worry it’s super simple. In our project we will keep things easy and use a Raspberry

Pi bootable SD Card. The Raspberry Pi usually comes with a preloaded SD Card

with the Raspian OS loaded. However we will assume that we need to build one. To
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do this we need to download the Raspbian OS from the Raspberrypi Organization

website[5]. With OS in hand we can utilize a SD writing tool to burn the Raspbian

OS to the SD card. As always one should test this SD card to ensure a successful

imaging of the SD card. Once verified it is now possible to insert our kernel image.

After we make it of course.

To build the kernel we need to run our make file. As there are millions of ways to

create a makefile we won’t attempt to cover any of them in this paper and the make

file provided will perform all of the necessary functions to take the code and package

it into a kernel file. This kernel file requires no other modification and is ready to

drop into SD card. This operation requires nothing other than opening our SD card

on our development PC and replacing the kernel on the SD card with our new kernel.

With the kernel in place we now have a complete OS and as a sense of poetic

irony the fanfare of running is as subtle as the OS itself. As the Pi has no native

display we will rely on a host PC to run the Putty Serial application so we can see our

tasks executing. Using a serial to GPIO cable attached to both the Pi and our host

PC we need only to apply power to the Pi and let the program run. By observing

the Putty terminal we will shortly see the application begin to populate the terminal

window with a graphical output and run the loaded project.

As stated this is just the starting point for the UNR students. This project

is only providing the code needed to execute the programs as provided from the

textbook. From here students will be tasked with reverse engineering the code in

order to understand its capabilities and design changes in order to affect the tasks

priorities and outputs. However, those who plan ahead and keep a working copy on

hand as they implement their changes will as always have an easier go of it.
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Chapter 5

Conclusions

5.1 Future Work

During the development of this project the Raspberry Pi foundation certainly did

not rest on its laurels. With the growth of the home brew programming niche and

with increasing demand for better boards new versions of the Raspberry Pi were

released every few months. Foremost of these was the Pi Zero, a compact and cheap

reproduction of the original Pi but with built in Wifi. With no significant changes

to the CPU no changes were required to run the current port of the Micro cOS II

RTOS. For cost purposes and sheer novelty of the power to size ratio, the Pi Zero

will most likely be the candidate for UNR students to utilize during the Real Time

Operating Systems Course.

While the new Raspberry Pi Zero provides a cost efficient board with full capa-

bilities to meet the requirements for the Real Time Operating Course at UNR, there

is still work that could be accomplished. The Pi 3 provides a 64 bit processor and

even more ram than the Pi or Pi 2. However, of interesting note is that the Pi 3 does

not natively run in a 64 bit environment even though it utilizes a 64 bit processor.

Work has already begun amongst tinkerers in the community to fix this issue and I

do believe that it would prove a challenge for another graduate student to see what

performance enhancements could be gained by running uCOS-II natively in a 64 bit

environment.

Another limitation found during the development of this project was the direct
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writing to the frame buffer pixels. With the development of “hats” - small boards that

attach directly to the pi, usually with LCD displays - it would be a great enhancement

to develop a graphics library and BSP to replace the serial communications and allow

the Pi to operate completely independently. In addition to the video port, many

of the other internal hardware components were not added to the bsp as they were

not needed. Future projects could implement these devices and allow the uCOS-II

tasks to operate them and build real applications for academia or industry. The

functionality of the Raspberry Pi was barely tapped in this project, and as a working

base the sky is truly the limit for future projects to build upon. .

5.2 Summary

This thesis provided a look into how the fine line between academia and practical

application can become more of a haze than a defined line. By exposing students to

new hardware but teaching thoroughly tested and reviewed software methodology we

can both educate and motivate hand in hand.

We started by assembling all the components necessary to build our program.

Preliminary research assisted us with the establishment of a simple working prototype.

From there we assembled the tools needed to build a bootable kernel that could be

used in the Raspberry Pi. Key to all of this was keeping University students and their

needs in mind. Aside from the board itself nothing in this project had to be purchased.

Starting with simple freeware programs we were able to construct a toolchain that

would build a working kernel. Under the education license we could access all the

components of the uCOS-II software for use. Finally with a few modifications this

build could be converted to work in the Linux operating environment.

With the tools assembled we then focused on modifying our code to work with

the Raspberry Pi hardware and CPU. Utilizing other ports as a guide, the build of

the stack was complete and our program had access to the hardware components

needed to run a simple program. From a working simple program we then added the

working examples provided from Micrium.
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Finally, with ported software we were able to assemble a bootable SD card that

would run a Raspberry Pi that would provide a host PC running a Putty terminal our

graphical interface that mirrored the DOS version identically. With the port complete

the hope is to allow University students to build their knowledge and understanding of

Real Time Operating systems on a system that will grow with them as they progress

through their undergraduate careers.
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Appendix A

Raspberry Pi Zero How To

A.1 Introduction and Set Up

At this point of the paper we will skip theory and process in favor of implementing

Micro cOS-II on the Pi Zero. In the appendix that follows all steps will be laid out in

order to allow a student with the required materials to build their own development

station for the Raspberry Pi Zero.

The most critical part of this process is ensuring that all the required materials

and software are accounted for before we even begin to load any images or compile

any code. For this project you will need the following physical devices:

• Host PC (Desktop or Laptop) with USB ports

• Raspberry Pi Zero W with breadboard and pins

• Adafruit USB to Serial adapter

• MicroSD Card

With the hardware acquired we can now download the required software tools we

will need to build our kernel. This list is not absolute as all developers may choose

different tools to perform the same task, but as of this writing the tools below are

readily available, free, and will work with this project.

• UnetBootin
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Figure A.1: Required Hardware sans PC

• Yagarto Toolchain

• Notepad++

• Putty

To set up our development environment first we will start with the Pi Zero and

then move to the PC. The Pi Zero may have shipped with a preloaded MicroSD card

with Raspbian already loaded. If so great! Step one done. However if you did not

receive a preloaded MicroSD Card please do the following:

• Download UnetBootin from SourceForge and save it to your Host PC

• Download Raspbian from https://www.raspberrypi.org/downloads/raspbian/

• Open UnetBootin and select the Disk Image radio button.

• Insert the MicroSD card into the Host PC

• In image, select the unzipped Rasbian image file
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• For Type select USB drive and select the Micro SD Card drive letter

• Leave all other options alone and press OK

The process will take some time so be patient as the SD card is formatted and

loaded with the Raspbian image. It’s essential that this process complete without

errors as it is building the bootable image we need to run our kernel.

With the Pi handled we now turn our attention to the Host PC. Our first order

of business will be to download and install our text editing software. As stated before

any text editor will do as long as you the operator are comfortable with how it handles

cpp and header files. For this project NotePad++ was used as a easy to find free text

editor that has wide spread use across the world.

Our next piece of software used to be preinstalled on Windows machines so there

is a chance that the host PC might already have the application PuTTY installed. If

not, the folks at https://www.putty.org/ still maintain a vigil for the SSH terminal

loved by all, overlooked by many. It is a stand alone application so after downloading

the executable to our desktop for easy access we are done.

Lastly we need to install our toolchain software. There are two methods of do-

ing this. First we could download all the source and build the compiler ourselves,

or we can trust the installer from SourceForge. There are certainly pros and cons

to each approach but as the first method requires a significant knowledge of pack-

age building and compiler options specific to your PC the risk of error is phenom-

enal. So for this project download the installer executable from SourceForge here:

https://sourceforge.net/projects/yagarto/ and give it a good once over with the an-

tivirus before installing.

The other perk of this installer is that is also providing us all the gcc libraries

required to compile on ALL ARM architecture, not a specific chip as seen with other

tool chains. Once the installer has finished there is an additional step we can utilize

to simplify our life. All computers have a path variable which stores “shortcuts” to

executable files allowing the user to access that executable even if they are not working
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in that executable’s directory. Task Manager is an example of this. In our make files

when we build the kernel we will be performing multiple calls to the toolchain. In

order to save ourselves some pain we will add the path of the bin folder located in

the Yagarto2012 directory. (The one you just installed)

A.2 Development Environment

With all our tools in place we can know build our testbed or development environment.

From this project you will be provided the a directory with the following directory

structure:

The project can be found here: https://github.com/samj3sus/Real-Pi

• BSP (Board Support Package)

• Build (Holds the object files once created)

• H (Header files reside here)

• Init (Initialization files are stored here, such as startup.s)

• Lib (Library files reside here)

• Port (Holds the ported CPU files)

• usrApp (Holds the example programs you will modify)

• uCos (Empty Folder)

No there is no typo on the last item. Due to distribution rites I am unable

to provide you a copy of the uCOS-II Software. However, as required the textbook

required by the course is the official Micro cOS-II textbook, it contains a CD with

the uCOS-II files needed to populate the folder in our project. Simply copy the files

directly into the uCos folder in the project directory (Do not add any subdirectories)

and our development environment is complete.
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A.3 Building the Kernel

With the makefile provided there is no need to make any modifications unless a

different compiler was installed or the toolchain directory was not added to the PATH

variable. With all MAKE files ours has a clean function and it’s always a good practice

to start with a clean run. To clean and build our kernel open a terminal window and

navigate the project base directory. Once there we will type the following commands.

• make clean (Let this run to completion, should be quick)

• make (Will run considerably longer)

Figure A.2: A successful build output

If we navigate back to our base directory we will now see a new file called ker-

nel.img and no awards for guessing that this is our new kernel file for the SD card.

A.4 Running the Kernel

To run our project on the Pi we need to open the SD card loaded with Raspbian that

we created earlier and see it’s base directory. In the directory we can see there are

two kernel files, kernel and kernel7. We need only replace the file kernel with our new

kernel.img as the kernel7 applies to the Raspberry Pi 2 which is very much a horse

of a different color. With the file replaced we can eject the SD Card and load it into
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the Raspberry Pi Zero. If we simply turned on the Pi now, it would run! However

we want to see what it is doing so we turn back to the Host PC to run a shell for the

Pi to output to.

On our host PC we need to run the PuTTY SSH application. Upon loading we

will get a configuration screen that is asking for a few pieces of information before we

can run.

Figure A.3: Sample Putty Configuration

• Speed - Set to 115200 Baud (It works don’t ask questions)
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• Connection Type - Serial (We need the ANSI escape sequences)

• (What are the escape sequences? Ask Dr Egbert)

• Serial Line - Set this to the COM your Pi is using (Check Device Manager)

Once you have loaded your information click ‘Open’ and a terminal window will

appear.

With PuTTY running we can now start our Pi and behold the glory of tasks!

Following the pinout of our Pi we will connect our USB Serial cable to our PC. Keep

flipping the cable USB connector 180 degrees until it is firmly secured in the host

PC. Now connect the pins to the Pi Zero as seen in Figure A.4. Once the power pins

have been connected the PuTTY terminal screen will now start running the uCOS

example loaded in the usrApp files. If all the steps were completed correctly the image

in Figure A.5 should appear on your PuTTY terminal. With this you now have a

complete working environment in which to modify the usrApp code and develop your

own uCOS-II applications!
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Figure A.4: Pin connections
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Figure A.5: Running Example
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Appendix B

Raspberry Pi 1 How To

B.1 Introduction and Set Up

In the appendix that follows all steps will be laid out in order to allow a student with

the required materials to build their own development station for the Raspberry Pi

1.

The most critical part of this process is ensuring that all the required materials

and software are accounted for before we even begin to load any images or compile

any code. For this project you will need the following physical devices:

• Host PC (Desktop or Laptop) with USB ports

• Raspberry Pi

• Adafruit USB to Serial adapter

• MicroSD Card

With the hardware acquired we can now download the required software tools we

will need to build our kernel. This list is not absolute as all developers may choose

different tools to perform the same task, but as of this writing the tools below are

readily available, free, and will work with this project.

• UnetBootin

• Yagarto Toolchain
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• Notepad++

• Putty

To set up our development environment first we will start with the Pi and then

move to the PC. The Pi may have shipped with a preloaded SD card with Raspbian

already loaded. If so great! Step one done. However if you did not receive a preloaded

SD Card please do the following:

• Download UnetBootin from SourceForge and save it to your Host PC

• Download Raspbian from https://www.raspberrypi.org/downloads/raspbian/

• Open UnetBootin and select the Disk Image radio button.

• Insert the SD card into the Host PC

• In image, select the unzipped Rasbian image file

• For Type select USB drive and select the Micro SD Card drive letter

• Leave all other options alone and press OK

The process will take some time so be patient as the SD card is formatted and

loaded with the Raspbian image. It’s essential that this process complete without

errors as it is building the bootable image we need to run our kernel.

With the Pi handled we now turn our attention to the Host PC. Our first order

of business will be to download and install our text editing software. As stated before

any text editor will do as long as you the operator are comfortable with how it handles

cpp and header files. For this project NotePad++ was used as a easy to find free text

editor that has wide spread use across the world.

Our next piece of software used to be preinstalled on Windows machines so there

is a chance that the host PC might already have the application PuTTY installed. If

not, the folks at https://www.putty.org/ still maintain a vigil for the SSH terminal
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loved by all, overlooked by many. It is a stand alone application so after downloading

the executable to our desktop for easy access we are done.

Lastly we need to install our toolchain software. There are two methods of do-

ing this. First we could download all the source and build the compiler ourselves,

or we can trust the installer from SourceForge. There are certainly pros and cons

to each approach but as the first method requires a significant knowledge of pack-

age building and compiler options specific to your PC the risk of error is phenom-

enal. So for this project download the installer executable from SourceForge here:

https://sourceforge.net/projects/yagarto/ and give it a good once over with the an-

tivirus before installing.

The other perk of this installer is that is also providing us all the gcc libraries

required to compile on ALL ARM architecture, not a specific chip as seen with other

tool chains. Once the installer has finished there is an additional step we can utilize

to simplify our life. All computers have a path variable which stores “shortcuts” to

executable files allowing the user to access that executable even if they are not working

in that executable’s directory. Task Manager is an example of this. In our make files

when we build the kernel we will be performing multiple calls to the toolchain. In

order to save ourselves some pain we will add the path of the bin folder located in

the Yagarto2012 directory. (The one you just installed)

B.2 Development Environment

With all our tools in place we can know build our testbed or development environment.

From this project you will be provided the a directory with the following directory

structure:

The project can be found here: https://github.com/samj3sus/Real-Pi

• BSP (Board Support Package)

• Build (Holds the object files once created)

• H (Header files reside here)
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• Init (Initialization files are stored here, such as startup.s)

• Lib (Library files reside here)

• Port (Holds the ported CPU files)

• usrApp (Holds the example programs you will modify)

• uCos (Empty Folder)

No there is no typo on the last item. Due to distribution rites I am unable

to provide you a copy of the uCOS-II Software. However, as required the textbook

required by the course is the official Micro cOS-II textbook, it contains a CD with

the uCOS-II files needed to populate the folder in our project. Simply copy the files

directly into the uCos folder in the project directory (Do not add any subdirectories)

and our development environment is complete.

B.3 Building the Kernel

With the makefile provided there is no need to make any modifications unless a

different compiler was installed or the toolchain directory was not added to the PATH

variable. With all MAKE files ours has a clean function and it’s always a good practice

to start with a clean run. To clean and build our kernel open a terminal window and

navigate the project base directory. Once there we will type the following commands.

• make clean (Let this run to completion, should be quick)

• make (Will run considerably longer)

If we navigate back to our base directory we will now see a new file called ker-

nel.img and no awards for guessing that this is our new kernel file for the SD card.
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B.4 Running the Kernel

To run our project on the Pi we need to open the SD card loaded with Raspbian that

we created earlier and see it’s base directory. In the directory we can see there are

two kernel files, kernel and kernel7. We need only replace the file kernel with our new

kernel.img as the kernel7 applies to the Raspberry Pi 2 and 3 which is very much a

horse of a different color. With the file replaced we can eject the SD Card and load

it into the Raspberry Pi. If we simply turned on the Pi now, it would run! However

we want to see what it is doing so we turn back to the Host PC to run a shell for the

Pi to output to.

On our host PC we need to run the PuTTY SSH application. Upon loading we

will get a configuration screen that is asking for a few pieces of information before we

can run.

• Speed - Set to 115200 Baud (It works don’t ask questions)

• Connection Type - Serial (We need the ANSI escape sequences)

• (What are the escape sequences? Ask Dr Egbert)

• Serial Line - Set this to the COM your Pi is using (Check Device Manager)

Once you have loaded your information click ‘Open’ and a terminal window will

appear.

With PuTTY running we can now start our Pi and behold the glory of tasks!

Following the pinout of our Pi we will connect our USB Serial cable to our PC. Keep

flipping the cable USB connector 180 degrees until it is firmly secured in the host

PC. Now connect the pins to the Pi as seen in Figure A.4. Once the power pins

have been connected the PuTTY terminal screen will now start running the uCOS

example loaded in the usrApp files. If all the steps were completed correctly the image

in Figure A.5 should appear on your PuTTY terminal. With this you now have a

complete working environment in which to modify the usrApp code and develop your

own uCOS-II applications!
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Figure B.1: Required Hardware sans PC- Pi 1
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Figure B.2: A successful build output
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Figure B.3: Sample Putty Configuration
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Figure B.4: Pin connections
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Figure B.5: Running Example
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Appendix C

Raspberry Pi 2 and 3 How To

C.1 Introduction and Set Up

At this point of the paper we will skip theory and process in favor of implementing

Micro cOS-II on the Pi3. (If using the Pi2 follow all the same instructions as the

project has been configured to run on both boards) In the appendix that follows all

steps will be laid out in order to allow a student with the required materials to build

their own development station for the Raspberry Pi 3.

The most critical part of this process is ensuring that all the required materials

and software are accounted for before we even begin to load any images or compile

any code. For this project you will need the following physical devices:

• Host PC (Desktop or Laptop) with USB ports

• Raspberry Pi 3

• Adafruit USB to Serial adapter

• MicroSD Card

With the hardware acquired we can now download the required software tools we

will need to build our kernel. This list is not absolute as all developers may choose

different tools to perform the same task, but as of this writing the tools below are

readily available, free, and will work with this project.

• UnetBootin



51

• Yagarto Toolchain

• Notepad++

• Putty

• Latest GNU Embedded ARM Tools (Needed for the Pi 3’s Cortex A53 proces-

sor)

To set up our development environment first we will start with the Pi 3 and then

move to the PC. The Pi 3 may have shipped with a preloaded MicroSD card with

Raspbian already loaded. If so great! Step one done. However if you did not receive

a preloaded MicroSD Card please do the following:

• Download UnetBootin from SourceForge and save it to your Host PC

• Download Raspbian from https://www.raspberrypi.org/downloads/raspbian/

• Open UnetBootin and select the Disk Image radio button.

• Insert the MicroSD card into the Host PC

• In image, select the unzipped Rasbian image file

• For Type select USB drive and select the Micro SD Card drive letter

• Leave all other options alone and press OK

The process will take some time so be patient as the SD card is formatted and

loaded with the Raspbian image. It’s essential that this process complete without

errors as it is building the bootable image we need to run our kernel.

With the Pi handled we now turn our attention to the Host PC. Our first order

of business will be to download and install our text editing software. As stated before

any text editor will do as long as you the operator are comfortable with how it handles

cpp and header files. For this project NotePad++ was used as a easy to find free text

editor that has wide spread use across the world.
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Our next piece of software used to be preinstalled on Windows machines so there

is a chance that the host PC might already have the application PuTTY installed. If

not, the folks at https://www.putty.org/ still maintain a vigil for the SSH terminal

loved by all, overlooked by many. It is a stand alone application so after downloading

the executable to our desktop for easy access we are done.

Lastly we need to install our toolchain software. There are two methods of do-

ing this. First we could download all the source and build the compiler ourselves,

or we can trust the installer from SourceForge. There are certainly pros and cons

to each approach but as the first method requires a significant knowledge of pack-

age building and compiler options specific to your PC the risk of error is phenom-

enal. So for this project download the installer executable from SourceForge here:

https://sourceforge.net/projects/yagarto/ and give it a good once over with the an-

tivirus before installing.

In addition to the Yagarto toolchain we will need to update the Yagarto tool

with the latest GNU Embedded tools found here: https://developer.arm.com/open-

source/gnu-toolchain/gnu-rm/downloads/. Once the installer has finished we can

then move these new gcc compilers into our Yagarto directory replaceing the execu-

atables in place. There is an additional step we can utilize to simplify our life. All

computers have a path variable which stores “shortcuts” to executable files allowing

the user to access that executable even if they are not working in that executable’s

directory. Task Manager is an example of this. In our make files when we build the

kernel we will be performing multiple calls to the toolchain. In order to save ourselves

some pain we will add the path of the bin folder located in the Yagarto2012 directory.

(The one you just installed)

C.2 Development Environment

With all our tools in place we can know build our testbed or development environment.

From this project you will be provided the a directory with the following directory

structure:
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The project can be found here: https://github.com/samj3sus/Real-Pi

• BSP (Board Support Package)

• Build (Holds the object files once created)

• H (Header files reside here)

• Init (Initialization files are stored here, such as startup.s)

• Lib (Library files reside here)

• Port (Holds the ported CPU files)

• usrApp (Holds the example programs you will modify)

• uCos (Empty Folder)

No there is no typo on the last item. Due to distribution rites I am unable

to provide you a copy of the uCOS-II Software. However, as required the textbook

required by the course is the official Micro cOS-II textbook, it contains a CD with

the uCOS-II files needed to populate the folder in our project. Simply copy the files

directly into the uCos folder in the project directory (Do not add any subdirectories)

and our development environment is complete.

C.3 Building the Kernel

With the makefile provided there is no need to make any modifications unless a

different compiler was installed or the toolchain directory was not added to the PATH

variable. With all MAKE files ours has a clean function and it’s always a good practice

to start with a clean run. To clean and build our kernel open a terminal window and

navigate the project base directory. Once there we will type the following commands.

• make clean (Let this run to completion, should be quick)

• make (Will run considerably longer)
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If we navigate back to our base directory we will now see a new file called ker-

nel.img and no awards for guessing that this is our new kernel file for the SD card.

C.4 Running the Kernel

To run our project on the Pi 3 we need to open the SD card loaded with Raspbian

that we created earlier and see it’s base directory. In the directory we can see there

are two kernel files, kernel and kernel7. We need only replace the file kernel7 with our

new kernel7.img as the kernel applies to the Raspberry Pi 1 and zero. With the file

replaced we can eject the SD Card and load it into the Raspberry Pi 3. If we simply

turned on the Pi now, it would run! However we want to see what it is doing so we

turn back to the Host PC to run a shell for the Pi to output to.

On our host PC we need to run the PuTTY SSH application. Upon loading we

will get a configuration screen that is asking for a few pieces of information before we

can run.

• Speed - Set to 115200 Baud (It works don’t ask questions)

• Connection Type - Serial (We need the ANSI escape sequences)

• (What are the escape sequences? Ask Dr Egbert)

• Serial Line - Set this to the COM your Pi is using (Check Device Manager)

Once you have loaded your information click ‘Open’ and a terminal window will

appear.

With PuTTY running we can now start our Pi and behold the glory of tasks!

Following the pinout of our Pi we will connect our USB Serial cable to our PC. Keep

flipping the cable USB connector 180 degrees until it is firmly secured in the host

PC. Now connect the pins to the Pi as seen in Figure A.4. Once the power pins

have been connected the PuTTY terminal screen will now start running the uCOS

example loaded in the usrApp files. If all the steps were completed correctly the image
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in Figure A.5 should appear on your PuTTY terminal. With this you now have a

complete working environment in which to modify the usrApp code and develop your

own uCOS-II applications!
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Figure C.1: Required Hardware sans PC- Pi 3



57

Figure C.2: A successful build output
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Figure C.3: Sample Putty Configuration
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Figure C.4: Pin connections
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Figure C.5: Running Example
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