
University of Nevada, Reno

Facilitating Data Driven Research Through a

Hardware- and Software-Based

Cyberinfrastructure Architecture

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Brianna Blain-Castelli

Dr. Frederick C. Harris Jr., Co-Advisor
Dr. Sergiu M. Dascalu. Co-Advisor

May, 2022

© by Brianna Blain-Castelli
All Rights Reserved

THE GRADUATE SCHOOL

We recommend that the thesis

prepared under our supervision by

Brianna M. Blain-Castelli

Entitled

Facilitating Data Driven Research Through a Hardware- and Software-Based

Cyberinfrastructure Architecture
be accepted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Co-Advisor

Dr. Sergiu M. Dascalu, Co-Advisor

Dr. Scotty Strachan, Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

May, 2022

i

Abstract

Cyberinfrastructure is the backbone of research and modern industry. As such, to

have an environment conducive to research advancements, cyberinfrastructure must

be well maintained and accessible by all researchers. Presented in this thesis is a

method of centralizing aspects of cyberinfrastructure to allow for ease of collaboration

and data management by researchers without requiring these researchers to manage

the involved systems themselves. This centralized architecture includes dedicated

machines for data transfers, a cluster designed to run microservices surrounding the

method, a dashboard for performance and health monitoring, and network telemetry

collection. As system administrators are responsible for maintaining the systems in

place, a user study was conducted to assess the functionality of the dashboard they

would utilize to receive alerts from and utilize to quickly gauge the status of involved

hardware. This thesis aims to provide a template for deploying centralized data

transfer cyberinfrastructure and a manual for utilizing these systems to support data

driven research.

ii

Dedication

I dedicate this thesis to my family, whose love and support was invaluable on this

journey.

iii

Acknowledgments

I would like to thank my committee Dr. Harris, Dr. Dascalu, and Dr. Strachan

for their invaluable guidance throughout my graduate studies. They have all been

incredible mentors who have helped me grow as a professional.

I would also like to thank NSHE Systems Computing Services and NevadaNet

personnel, including Tom Fishel and James Hayes for their support. Next, I want to

thank the University of Nevada, Reno’s CIO Steve Smith and David W. Zeh from

the Graduate School for helping support my Graduate Research Assistant position

in the Cyberinfrastructure group. This has been an incredible opportunity to work

within the Office of Information Technology that I hope continues moving forward

for other Graduate students. I would also like to thank members of the Office of

Information Technology, including Zachary Newell, Cole Griggs, and Brice Berman,

for their guidance and assistance. I sincerely thank you for your hand in aiding me

to become a better professional and student while developing new skills on the job.

Finally, I would like to thank Sebastian Smith, who provided further professional

development opportunities.

I would also like to thank my colleagues Chase Carthen, for his invaluable as-

sistance throughout the development process as well as Vinh Le, Connor Scully-

Allison, and Andrew Muñoz for their guidance. Additionally, I would like to thank

my boyfriend, Mitchell Martinez, both for his encouragement and his aid in soft-

ware development. Finally, I’d like to thank my family and my dog, Kovu, for their

emotional support throughout my Masters degree.

This material is based in part upon work supported by the National Science

Foundation under grant number(s) IIA-1301726, OAC-1827186, OAC-2019164. Any

opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures ix

1 Introduction 1

2 Background and Related Work 4

2.1 Science DMZ . 4
2.2 Data Transfer and GridFTP . 7
2.3 Data Transfer Nodes . 9
2.4 High Performance Computing . 10

2.5 Cluster Computing . 14

2.6 Cloud Computing . 16

2.7 Containerization . 17
2.8 Containerized Clusters for the Cloud 18
2.9 File systems . 19

2.9.1 ext4 . 19
2.9.2 ZFS . 20
2.9.3 CephFS . 21

2.10 Technologies Utilized . 23

2.10.1 Globus . 23
2.10.2 Python . 25

2.10.3 Docker . 25
2.10.4 Kubernetes . 26
2.10.5 Prometheus . 27
2.10.6 Grafana . 29
2.10.7 Flask . 29
2.10.8 PerfSONAR . 30
2.10.9 Cassandra . 31
2.10.10 Postgres . 31

v

2.10.11 TimescaleDB . 31
2.10.12 Bash Shell Script . 32

2.10.13 Linux Service . 32
2.10.14 Cron . 32
2.10.15 Ansible . 33
2.10.16 YAML . 33

3 Problem Statement and Proposed Solution 34

3.1 Problem Statement . 34
3.2 Proposed Solution . 35

4 Hardware Solution Implementation 37

4.1 Network Overview . 37
4.2 Science DMZ DTNs . 42
4.3 Research Computing Systems . 43

4.4 Network Telemetry Mesh . 44

5 Software Design 46

5.1 Requirements . 46

5.1.1 Functional Requirements . 46

5.1.2 Nonfunctional Requirements 48

5.2 Use Case Modeling . 49

5.3 Architecture . 52
5.3.1 High Level Design . 52

5.3.2 Prometheus Exporters . 56

5.3.3 Application Design - Log Exporters 57

5.3.4 Database Schema . 64
5.4 Workflow . 65

5.4.1 User Transfer Workflow . 66
5.4.2 User On-boarding Workflow 68

6 Applications in Action 70

6.1 Globus . 70
6.2 Prometheus UI . 77
6.3 MaDDash . 78
6.4 DDRIS Dashboard . 81

6.4.1 User Interface . 82
6.4.2 Data Visualization . 87

7 User Study 92

7.1 Introduction . 92
7.2 Participants . 93

7.3 Apparatus . 94

7.4 Procedure . 96
7.5 Design . 98

vi

7.6 Tasks . 100

8 Results and Data Analysis 103

8.1 Results from the Entry Questionnaire 103

8.2 Results from Tasks . 104
8.2.1 Part One . 106
8.2.2 Part Two . 113

8.3 Results from the Exit Questionnaire 123

8.4 Dashboard Effectiveness Analysis . 127

8.5 Transfer Speeds . 129

9 Conclusion and Future Work 133
9.1 Conclusions . 133
9.2 Future Work . 134

References 137

Appendices 145

A UNR IRB Application Cover Sheet 145

B UNR IRB Social Behavioral Educational Research Protocol 151

C UNR IRB Consent Information Sheet 155

D UNR IRB Pre-Test Survey 157

E UNR IRB Post-Test Survey 160

F UNR IRB Participant Recruitment Email 163

vii

List of Tables

2.1 Description of controllers native to the Kubernetes Controller Manager. 28

5.1 List of functional requirements required by the dashboard. 47

5.2 List of nonfunctional requirements required by the dashboard. 49

5.3 Class descriptions for classes featured in the Science DMZ version of
the log exporter. 59

5.4 A description of the class ”DBConnection”. This class is specific to
the RC subnet version of the exporter. 61

5.5 Description of tables included in the Kubernetes table-based Metadata
Storage. 65

7.1 Overview of variables measured in Part One of the user study. 99

7.2 Overview of variables measured in Part Two of the user study. 100

7.3 Overview of tasks participants were asked to perform in Part One of
the user study. 101

7.4 Overview of tasks participants were asked to perform in Part Two of
the user study. 102

8.1 Overview of time taken to complete each task on the DDRIS dashboard
in Part One of the user study. 107

8.2 Overview of time taken to complete each task on the Globus dashboard
in Part One of the user study. 108

8.3 Overview of ∆Task Completion Time, where ∆ represents the differ-
ence between the DDRIS dashboard value and the Globus dashboard
value and statistically significant differences are denoted by a boldfaced
mean value. 109

8.4 Overview of left mouse clicks to complete each task on the DDRIS
dashboard in Part One of the user study. 110

8.5 Overview of left mouse clicks to complete each task on the Globus
dashboard in Part One of the user study. 112

8.6 Overview of the difference in left mouse clicks between DDRIS dash-
board usage and Globus dashboard usage. 113

8.7 Overview of time taken to complete each task on the DDRIS dashboard
Part Two of the user study. 115

8.8 Overview of time taken to complete each task through Linux command
line Part Two of the user study where failure to complete the task in
the allotted amount of time is marked “X”. 117

viii

8.9 Overview of the difference in Task Completion Time between DDRIS
dashboard usage and Command Line Interface (CLI) usage. 118

8.10 Overview of left mouse clicks to complete each task on the DDRIS
dashboard in Part Two of the user study. 119

8.11 Overview of left mouse clicks to complete each task through the Linux
command line in Part Two of the user study. 121

8.12 Overview of the difference in left mouse clicks between DDRIS dash-
board usage and Command Line Interface (CLI) usage. 121

8.13 Overview of the number of websites visited by participants when par-
ticipants were asked to complete tasks using command line during Part
Two of the study. 124

8.14 Participant responses when asked how difficult tasks were to complete
using DDRIS, Globus, and Linux command line where WAVG refers
to the weighted average of responses. 126

8.15 Results from baseline single file disk-to-disk testing with file integrity. 130

8.16 Results of single file testing inside Globus without file integrity checks. 130

8.17 Results from edge case testing inside Globus without integrity checks. 130

8.18 Results from final transfer results after tuning. 132

ix

List of Figures

2.1 A dual firewall implementation of a DMZ separates external facing
systems from the LAN through a second firewall, creating a network
traffic pipeline. 5

2.2 A simple overview of the ideal Science DMZ implementation where
red represents campus access to Science DMZ systems and the Science
DMZ data flow to the WAN is shown in green, from ESNet [26]. . . . 6

2.3 An overview of traditional FTP communication establishment built on
TCP. 8

2.4 Intel’s Sandy Bridge Architecture, showing memory connections across
a system, from [27]. 11

2.5 The Cray-1, released in 1976, was among the first supercomputers and
the first computer to allow parallelization [38]. 12

2.6 A Beowulf cluster developed at Lockheed Martin Space Operations [92]. 13

2.7 An overview of Master/Worker architecture used in cluster environments. 15

2.8 This is a high-level comparison between Containerization and Virtual-
ization, showing the higher overhead of virtual machines on a system. 17

2.9 An overview of how devices are pooled with ZFS [91]. 21

2.10 A comparison between RAID-5 and RAID-6, the basis for software-
based RAID levels included with ZFS where parity blocks are denoted
by “P”. 22

2.11 A high-level representation of the Globus workflow for researchers [84]. 24

2.12 The Kubernetes architecture featuring multiple master nodes with co-
located Control-Plane and Etcd [3]. 27

2.13 The Prometheus architecture including ecosystem components [60]. . 29

4.1 A network diagram showing the components of Nevada Net and how
University campuses in Nevada connect to the outside internet [54]. . 38

4.2 A network diagram showing the Northern ring of Nevada Net [34]. . . 39

4.3 A network diagram showing on campus hardware systems involved
in DDRIS. Dashed lines indicate a simplified connection to provide a
general network location of a device. 41

5.1 Use Case Diagram of DDRIS. 51

5.2 High Level Design of DDRIS software communications. 53

x

5.3 High Level Design of DDRIS software communications for PerfSONAR.
Each of the members of the PerfSONAR mesh are denoted by My

where y indicates the count. Each mesh member has DDRIS network
telemetry connections identical to M1. The Prometheus Server inserts
data into the Relational Database identified in Figure 5.2. 55

5.4 High Level Design of the Globus Speed Exporter for Prometheus. . . 57

5.5 Class Diagram showing the relationship between critical classes in the
Globus data exporter for Science DMZ systems. Hollow diamonds in-
dicate aggregation between two classes. Lines without arrows represent
association. 1s and 0s show cardinality such that 1 indicates exactly
one, 0 indicated exactly zero, 1..* is one or more, and 0..* is zero or
more. This notation is consistent with UML standards [76]. 58

5.6 Class Diagram showing the relationship between critical classes in the
Globus data exporter for NCAR-DA-9 and other future systems off of
the Science DMZ. 62

5.7 Activity diagram showing the general application workflow and differ-
ences between the Science DMZ and RC versions of the exporter. . . 63

5.8 Entity Relationship Diagram of the Kubernetes table-based Metadata
Storage. 64

5.9 Activity Diagram showing the workflow for users utilizing the central-
ized data transfer solutions. 67

6.1 The Globus login client prompting a user to select their organization.
As a member of the University of Nevada, Reno, this has been selected
as this user’s organization. 71

6.2 The Globus File Manager after logging in on Globus. 72

6.3 The Globus Collection discovery shows all available Collections to
transfer against. 73

6.4 The Globus Online Endpoint List Page allows users to view all end-
points they have access to. 73

6.5 The Globus File Manager ready to start a transfer between collections
CyberinfrastructureSpin and CyberinfrastructureFlash. 74

6.6 Globus Collection Roles for CyberinfrastructureFlash. 75

6.7 Adding a new role to a Collection. 75

6.8 Adding new permissions to a Collection. 76

6.9 Globus Activity Monitoring shows Bytes transferred, effective speeds,
task id, source, destination, and other transfer metadata for recent or
current transfers by a user. 77

6.10 The Globus Management Console shows transfer metadata for recent
or current transfers on all collections accessible by a user. 78

6.11 An overview of the Prometheus User Interface for DDRIS DTNs. . . 79
6.12 The selection menu for Prometheus metrics. 79
6.13 MaDDash heatmap visualization showing traceroute results for the

campus mesh group. 80

6.14 MaDDash visualization of ping test results as heatmaps for the field
group. 80

6.15 MaDDash visualization of network tests from NCAR-DA-11 to Roamer-
Perf. 81

xi

6.16 A screenshot of the Login page for the DDRIS dashboard, created and
managed by Grafana. 83

6.17 The “Home” page for the Grafana dashboard shows recent dashboards
and provides access to navigation. 83

6.18 The “Profile” page of the Grafana dashboard where users may change
or view their user profile information. 84

6.19 The alert page shows all alerts on the DDRIS dashboard. 84

6.20 A screenshot of the DTN Health tab of the DDRIS dashboard, showing
seven data visualizations belonging to DTN-S under the collapsible
menu, “DTN Health”. 85

6.21 A screenshot of further DTN Health on the DDRIS dashboard, show-
ing two additional data visualizations belonging to DTN-S under the
collapsible menu, “DTN Health”. 85

6.22 A screenshot of the “Data Transfer” tab on the DDRIS dashboard. . 86
6.23 An overview of the “Kubernetes Metadata Dashboard”. 87
6.24 DTN health visualizations for resource usage in a gauge format. . . . 87

6.25 Information regarding the DTN’s file system capacity displayed in a
graph format of percentage used versus time. 88

6.26 Information regarding the DTN’s hardware temperature overtime sep-
arated by chip and sensor. 89

6.27 DTN power consumption over time in Watts. 89

6.28 Bandwidth Usage overtime displayed as a graph. 90

6.29 Information regarding data transfer performance overtime and meta-
data surrounding these transfers. 91

6.30 A geographical display of where data transfer are occurring. On the
left is a time filterable map capable of providing additional metadata
regarding specific transfers while the right display is a heatmap showing
frequency of transfers in a specific location. 91

7.1 A screenshot of a Brave browser window, showing the layout of the
browser. 95

7.2 A single session open on MobaXterm, showing the terminal interface
that was be available to participants. 95

7.3 A screenshot of the Mousotron Interface. 96

8.1 Bar chart displaying participant ages. 104

8.2 Bar chart displaying participant familiarity with dashboards. 105

8.3 Bar chart displaying participant familiarity with using Linux command
line. 105

8.4 A Box and Whisker Plot showing data analysis for task time completion
utilizing DDRIS. 107

8.5 A Box and Whisker Plot showing data analysis for task time completion
utilizing Globus. 108

8.6 A Box and Whisker Plot showing data analysis for left mouse clicks
per task utilizing DDRIS. 111

8.7 A Box and Whisker Plot showing data analysis for left mouse clicks
per task utilizing Globus. 112

xii

8.8 A Box and Whisker Plot showing data analysis for right mouse clicks
per task utilizing DDRIS. 114

8.9 A Box and Whisker Plot showing data analysis for right mouse clicks
per task utilizing Globus. 114

8.10 A Box and Whisker Plot showing data analysis for task completion
times using DDRIS during Part Two of the user study. 116

8.11 Task completion time in seconds using Linux command line. 118

8.12 Graphical representation of left mouse clicks to complete tasks on
DDRIS in Part Two of the user study. 120

8.13 Left mouse clicks used to complete tasks through Linux command line. 120

8.14 Right mouse clicks used by participants to complete tasks on DDRIS
during Part Two of the user study. 122

8.15 Right mouse clicks from participants to complete tasks through Linux
command line. 123

8.16 User responses when asked to rate the helpfulness of the current iter-
ation of the DDRIS dashboard. 125

8.17 User feedback on DDRIS ease of navigation. 125

8.18 Participant satisfaction with the DDRIS dashboard. 126

8.19 Initial results of memory-to-memory testing on the DTNs in Gb/s at
intervals of 10 seconds and 60 seconds. 131

8.20 Final results of memory-to-memory testing on the DTNs in Gb/s at
intervals of 10 seconds and 60 seconds. 132

1

Chapter 1

Introduction

In modern history, humanity is more connected than ever before because of the in-

ternet. As of January 2022 there are 4.95 billion internet users worldwide, equating

to roughly 62% of the global population represented online, and this number is only

growing [40]. This connection is both to one another and to data as supported by the

internet traffic of users. The top three most visited sites on the internet are Google,

YouTube, and Facebook [74], and out of the top 10 most visited sites of 2021, eight

are categorized as either social media or a search engine. And, while YouTube itself

is neither social media or a search engine, it hosts both educational content and has

a social component in the form of stream chats that allow views to communicate

with content creators live. People are seeking both information and social platforms

to connect with one another. This trend is also present for academic research. Vir-

tual libraries are available to quickly find and share information from institutions

and organizations. Journal and conference papers are available and easily searched

for relevant fields. This has resulted in a growing opportunity for collaboration in

research across regions.

At the same time, the field of big data has grown exponentially in recent years as

more information can be readily collected. The field of big data refers to the collection,

analysis, and extraction of useful data in increasingly large and complicated data sets.

It is estimated that the average person generates roughly 1.7 MB of data a second

and internet users as a whole generate 2500 PB of data every day between phone,

computer, and internet of things usage [73]. This data then needs to be parsed and

2

filtered so only useful data is collected. Similar explosive data growth is occurring

broadly across fields of scientific and engineering research.

Technology in the research space, known as cyberinfrastructure [66, 78], needs

to adapt to support collaboration across institutional and organization campuses

while adjusting for the scale of data [36]. For example, many researchers will share

data by attaching files to emails or through a collaborative space, such as Google

Drive [31]. However, this option is not viable in the longterm in part due to growing

file sizes and security. Large numbers of files sent will be lost or unorganized, and

file sizes that are too large are not attachable. In these cases, few alternative options

are utilized. Of these options, fewer have a minimal learning curve, set-up time,

and universal application—required features for technology adoption due to observed

researcher hesitancy to dedicate time towards learning new tools [42]. For example,

Rsync [69], a popular data transfer solution for Linux, has a simple setup, but requires

researchers to learn Linux commands and the process of transferring data between

Linux machines and other operating systems is convoluted. This time to learn and

deploy a data transfer solution is better spent on further research. Instead, solutions

must be intuitive or highly facilitated by technology professionals [52]. Additionally,

these platforms need to be available and maintained as reliable institutional-scale

infrastructure for general use by the research population.

To address these issues, this thesis proposes the Data Driven Research Infrastruc-

ture Systems (DDRIS) as an architecture for centrally deployed and maintained data

transfer solutions for researchers developed within the University of Nevada, Reno,

Cyberinfrastructure Department. This collection of systems hosts a combination of

software solutions for data transfer, defined further in Chapter 2 and Chapter 6, and

tools for monitoring system health and performance. Health and performance data

is then visualized for system administrators responsible for the performance of these

transfer solutions. The current deployed version of DDRIS functions as a proof of

concept that will be built upon in further iterations as outlined in future work. An

overview of DDRIS can be read in Chapter 3.

3

The rest of this thesis is structured as follows: Chapter 2 provides background

knowledge integral to understanding the material of this work. It includes an intro-

duction to research computing concepts, including the Science DMZ, data transfers,

and data transfer nodes. A brief history of high performance computing and its

evolution into cluster computing is then provided. This is followed by a description

of cloud computing, containerization and the combination of the two. Information

is then presented on file systems and technologies utilized in the solution proposed

in this thesis. Chapter 3 provides a more in-depth analysis of the problem and the

solution covered in this thesis. Chapter 4 describes the hardware involved in the

final model. This includes their initialization, changes for performance, and unique

configuration requirements. Chapter 5 provides a deeper look at the design and im-

plementation of software, including specifications and design. Chapter 6 presents

the front-end applications vital to DDRIS, including a manual on utilizing Globus

for data transfers, Prometheus visualizations, MaDDash with PerfSONAR, and the

DDRIS cyberinfrastructue dashboard. Chapter 7 includes the details of a user study

to determine the effectiveness of DDRIS. Chapter 8. Finally conclusions as well as

future work are contained in Chapter 9.

4

Chapter 2

Background and Related Work

In this Chapter, background knowledge is provided on the concepts surrounding the

problem and solution proposed in this thesis. First, an overview of the Science DMZ

and its place in Research Cyberinfrastructure is discussed in Section 2.1. Data trans-

fer and the hardware necessary to achieve high-speed performance is outlined in Sec-

tion 2.2 and Section 2.3 respectively. A brief history of High Performance Computing

is provided in Section 2.4 (this method of computing resulted in clusters and cloud

computing). Section 2.5 and Section 2.6 then provides more detail on these approaches

to computing. Next, the concept of containerization is introduced in Section 2.7.

Section 2.8 provides information on the practical application of containerization in

clusters and the cloud. The basics of file systems, including their advantages and

disadvantages are discussed in Section 2.9. Finally, a list and brief description of

technologies used in our solution implementation is provided in Section 2.10.

2.1 Science DMZ

A Science DMZ is a section of a university’s network dedicated to high-performance

research applications as opposed to enterprise systems. The network model was de-

veloped by the Energy Sciences Network for handling the transfer of Big Data based

on the existing implementations of a “demilitarized zone” (DMZ) [19] and is continu-

ing to evolve from the perspectives of security, routing, access, and real-time parallel

inspection with the development of new technologies around software automation and

5

infrastructure. A traditional DMZ is implemented to increase security for an organi-

zation by separating external facing systems, including web servers and mail servers,

from the internal local area network (LAN) behind a stateful firewall.

There are two types of traditional DMZs, single and dual firewall. In a single

firewall environment, the DMZ and institutional LAN share an internal firewall but

remain separate through routing. This has higher performance than the dual firewall

implementation shown in Figure 2.1. In this model, external traffic is first policed by

a border firewall. If traffic is not blocked by the firewall, it then has access to the

DMZ. However, a second, internal firewall blocks this traffic from reaching the LAN.

Internal traffic must traverse this internal firewall and the border firewall to reach

the external wide area network (WAN). This approach has higher security than the

single firewall implementation.

Figure 2.1: A dual firewall implementation of a DMZ separates external facing systems
from the LAN through a second firewall, creating a network traffic pipeline.

The Science DMZ takes the DMZ design one step further. As opposed to a

traditional DMZ, by design, the Science DMZ does not feature a stateful firewall,

which would negatively impact throughput. This subnet is implemented at or near

the edge of the university’s campus network to reduce the number of network devices

between Science DMZ systems and the WAN [19]. Ideally, the Science DMZ router is

connected directly to the border router as reflected in Figure 2.2. In this model, the

border router connects directly to the WAN and routes traffic to and from campus.

If this traffic requires connection to the campus LAN, traffic is routed through the

campus border firewall. However, if this network activity only involves communica-

6

tion with Science DMZ systems, it is routed through a high-performance, dedicated

Science DMZ switch without being processed by the border firewall. Communica-

tions between the Science DMZ and campus LAN are routed through the border

firewall, border router, and Science DMZ switch. Through this architecture, traffic

is not shared between the Science DMZ and the campus local area network (LAN)

thus improving network performance on the Science DMZ. Additionally, the number

of connections between Science DMZ systems and the WAN are extremely limited to

reduce the risk of dropping TCP packets, which would negatively impact performance.

Figure 2.2: A simple overview of the ideal Science DMZ implementation where red
represents campus access to Science DMZ systems and the Science DMZ data flow to
the WAN is shown in green, from ESNet [26].

The issue of security is raised without a stateful firewall protecting Science DMZ

systems. To address this concern, there are a number of recommendations by ESnet

to increase security [22]. It is recommended that router access control lists (ACL) are

utilized on the Science DMZ switch. Additionally, port control should be managed on

the machines native to the Science DMZ through software such as IPTables. Third,

network intrusion detection systems and host intrusion detection systems should be

7

configured for the Science DMZ. Lastly, the Science DMZ is to remain as isolated as

possible from campus LAN systems.

2.2 Data Transfer and GridFTP

Data transfer is the primary usage of the system outlined in this thesis. As such, it is

paramount to define research data transfer in this context. In general, data transfer

is the movement of large files or numerous files between systems or organizations.

The first solution, File Transfer Protocol (FTP), was developed by M.I.T. in 1971

based on the Network Control Program and was updated to run using Transmission

Control Protocol (TCP) in later iterations [59]. A brief overview of how FTP works is

displayed in Figure 2.3. There are three primary pieces to FTP transfers. First, a TCP

3-way handshake is utilized to establish communication between the client and server.

In this example, the Workstation serves as the client. Following communication

establishment, the user is authenticated against the server machine’s users. This

step may be skipped to allow anonymous connection if the server is configured to

allow this form of connection. Finally, the connection is fully established and data

is freely transferred. While this method has been in use several years, at the base

level FTP has several limitations. FTP was designed as an insecure solution to data

transfer with all data, including usernames and passwords sent as clear-text without

encryption. This makes data sent over FTP vulnerable to the most basic attacks.

Additionally, the connection can be slow to establish, and due to the security settings

of FTP, firewalls can have a difficult time handling FTP traffic. Because FTP is built

upon TCP, FTP is also subject to all of the limitations of TCP.

In more recent years, there has been a shift in approaches to data transfer with

browsers, including Firefox and Google Chrome removing support for FTP transfers

in general [32, 53]. This is in part due to a shift toward HTTP as the primary

method of data transfer because this protocol addresses several of the limitations of

FTP. However, as a long standing solution, FTP has not fully disappeared but been

built upon. Several derivatives of FTP have been developed to address some of the

8

Figure 2.3: An overview of traditional FTP communication establishment built on
TCP.

limitations of FTP, including sFTP, the secure evolution of FTP. Another popular

development is GridFTP.

GridFTP is an extension to FTP to support failure detection and transfers from

multiple data sources while increasing security [4]. It was developed by the Univer-

sity of Chicago with an emphasis on supporting data striping. This allows for data

transfers across storage pools that are used in a highly parallel cluster environment.

Tested against other existing FTP servers, GridFTP performs faster both in striped

and single-process environments [5]. This framework is the platform that Globus, an

open source data transfer application defined further in Subsection 2.10.1, is built

upon. Despite FTP losing popularity, GridFTP remains highly used among universi-

ties and organizations through Globus. However, GridFTP still requires installation

on both ends of a task to facilitate the transfer. Managing a server for transfers is

time consuming for researchers when they could be focused on their individual re-

search. Instead, a dedicated, campus-wide data transfer node can be configured for

9

data staging and transfer using GridFTP.

2.3 Data Transfer Nodes

A data transfer node (DTN) is a dedicated Linux server for transferring data on a

WAN, and the typical use case for the Science DMZ. The full end-to-end path from

a laboratory within an institution to a laboratory at a different institution has too

many limitations across the various networks and subnets that data crosses, which will

eventually cause a large transfer to fail. Instead, researchers stage data by performing

a transfer from a laboratory deep within an institution’s LAN to a DTN at the edge of

the campus network. The DTN is then capable of making expedient, large transfers

to another DTN across the internet, from where the collaborator can transfer data

to their local machine according to the limitations and security policies of their own

network.

DTNs feature local storage for data staging purposes in which users can post data

temporarily in a compressed and archived format that will be pulled by a collaborator

from a remote location. Some additionally feature integration with external storage

resources to manage transfers from multiple locations in a single location. For security

reasons, DTNs are not permitted to run any general-purpose tasks such as mail

servers [27].

Achieving fast data transfer speeds requires DTN tuning, a process in which

the DTN receives a series of system modifications to increase performance at the

frame, packet, or disk input/output levels. These system modifications are dependent

upon the network on which the device belongs as well as the device itself, not a

specific set of specifications that apply regardless of the environment. However, as

the engineers behind the architecture of the DTN, the general guidelines provided by

the Energy Sciences Network provide a general overview of possible changes to be

made to maximize data transfer speeds for a DTN [27]. To understand a DTN is to

then understand the components belonging to this hardware so as to make proper

decisions regarding modification.

10

Arguably, the most important components to understand regarding a DTN are

the Network interface controller (NIC), Peripheral Component Interconnect Express

(PCI-e), and vendor-specific items, such as the Intel QuickPath Interconnect (QPI).

The NIC, also known as a network adapter, is responsible for system connection with

the network, wired or wireless, and setting the MAC address of the machine. It is a

data link layer and physical layer device. A modern network adapter also provides

advanced settings for administrators, including interrupts and direct memory access.

While connection to the internet is important, the NIC on its own cannot perform

a network transfer on a DTN, so other hardware also contributes to this process.

Communication between these hardware components on the motherboard is handled

by the PCI-e bus. After a request moves from the NIC to the PCI-e, it must then

be handled by one of the system’s cores. However, depending on the core chosen,

there may not be a direct connection between the PCI-e and that core. An excellent

example of this can be viewed in Figure 2.4, which shows the Intel Sandy Bridge

architecture, including core sockets, PCI-e connections, and the QPI bus. The QPI

has been the standard for Intel microprocessor architecture since 2008 to provide

high-speed, scalable communication between processors [39]. While often referred to

as a bus, the QPI more closely represents point-to-point interconnections. As opposed

to a standard front-side bus, the QPI is narrow, resulting in a small but fast platform.

According to this architecture, only one cpu socket has a direct connection with the

NIC while the other must communicate over the QPI to reach it. The result is a

bottleneck between sockets for network communications. This will negatively impact

DTN data streaming performance, and requires specific mitigation steps that will be

addressed in Chapter 4 of this thesis.

2.4 High Performance Computing

While DTN systems can handle data transfers effectively in manually-controlled and

managed environments, new demands of management scaling, automation, and soft-

ware integration are emerging as cyberinfrastructure systems evolve towards inter-

11

Figure 2.4: Intel’s Sandy Bridge Architecture, showing memory connections across a
system, from [27].

operability and regional federation. Therefore, it is important to have methods in

place to monitor deployments to ensure availability and performance. The system

outlined in this thesis that is responsible for monitoring other systems incorporates

Cloud Computing, defined in Section 2.6, which finds its roots in High Performance

Computing (HPC).

HPC is commonly considered as the practice of aggregating compute power to

process data and perform complex calculations faster than a traditional computer.

While the concept of HPC has stayed the same, the method through which this has

been achieved historically has changed over the years. HPC was originally known for

the development of supercomputers before taking a cluster approach. Today, HPC

typically follows a hybrid model of powerful computers in a cluster environment.

Historically, the CDC 6600 is generally recognized as the first supercomputer and

the beginning of HPC. The CDC 6600 was created by Seymour Cray and the Control

Data Corporation (CDC) in the early 1960’s. It featured 400,000 transistors, more

than 100 miles of wiring, and reached a top speed of 40 Mhz [88]. Cray eventually left

the CDC and founded a new company, Cray Research, where he released the Cray-1.

The Cray-1, shown in Figure 2.5, was a new form of supercomputer that allowed for

12

limited parallelism [70]. This supercomputer pulled 115 kW of power in exchange

for an 80 Mhz processing speed, and was the top supercomputer on the market from

when it was released in 1976 to 1982 [18], only to be replaced with the Cray X-MP.

The Cray X-MP was among the first computers capable of multiprocessing and was

capable of 105 Mhz [8]. This period of time in HPC was known as the era of Clay

architecture.

Figure 2.5: The Cray-1, released in 1976, was among the first supercomputers and
the first computer to allow parallelization [38].

While each of these machines are historically important and were incredible de-

velopments for their time, they all had the same disadvantages. Cray architecture

was expensive, with the Cray-1 costing up to $10M in 1977, or upwards of $44M

today when adjusted for inflation. Additionally, the computers were large with the

Cray X-MP at 2.62 m (8.6 ft) x 1.96 m (6.4 ft). Lastly, there is a limit to scaling up,

as explained by Moore’s law. Moore’s law states that the number of transistors on a

microchip will be doubled every two years while the cost of computers is halved [71].

However, Moore’s law has become synonymous with the physical, upward bound of

transistors and computation. While many are confident in the ability of ingenuity

to continue to test these bounds, it requires creativity. Vector supercomputers, like

13

those developed by Cray, have a theoretical maximum performance. The solution

proposed by HPC professionals is clustering.

Clusters are a single system of connected computers that communicate with one

another to share computations. In the early 1980s clusters of killer micros began

to challenge the performance and scalability of vector supercomputers for a fraction

of the cost, and companies began to develop methods to improve communication

between microprocessors [9]. It wasn’t until 1995 that clusters began to be economical

though and HPC took a drastic turn. This was the introduction of the Beowulf,

showcased in Figure 2.6, a computing cluster developed by NASA where engineers

were challenged with creating a cluster capable of 1 Gflops for less than $50,000.

The resulting cluster was built on the Pile-of-PCs model, the concept of combining

multiple, separate personal computers across a private network [67]. This new Beowulf

model emphasized the use of no custom components, replicability, scalability, and

providing the design and any improvements to the community [77]. While Beowulf

clusters are still utilized, there are disadvantages to this model. All machines in the

cluster are homogeneous, and code ran on the cluster must be written to make use of

parallelization. Otherwise, it does not take advantage of the benefits of the cluster.

Figure 2.6: A Beowulf cluster developed at Lockheed Martin Space Operations [92].

HPC in recent years has taken a hybrid model approach, known as hybrid clus-

ters, with an emphasis on the cloud and services provided over the internet. Hybrid

14

clusters combine the usage of more powerful nodes with a distributed approach to

computing. The servers added to a cluster are chosen based on a number of cores

rather than individual processing speed. By providing these assets through the cloud,

these compute resources are then available publicly or within an institution. Consid-

erations for modern HPC solutions using hybrid clusters include interconnect speed,

shared memory access, and performance, which vary based on implementation as these

are specific architectures in the host systems and their connecting internal network

interfaces within the cluster environment, not LAN.

2.5 Cluster Computing

Cluster computing typically refers to utilizing multiple identical computers that are

either tightly or loosely coupled to shared computational tasks. While HPC was

the beginning of clusterization, clusters have expanded to include the three following

types:

• High Performance Computing

• Load Balancing

• High Availability

Where HPC clusters are designed to improve multi-node parallel processing perfor-

mance, load balancing clusters are utilized to distribute a workload across multiple

machines that may not be dedicated to the cluster. A machine may be a cluster

member while maintaining its ability to be utilized individually. In this instance,

resources on the machine may already be heavily utilized and a load balancer would

be utilized to ensure traffic is not sent to a machine that is already inundated with

requests when another machine is receiving less traffic [12]. High availability clusters

are dedicated to maintaining reliability and job status. In practice, most clusters

combine all three concepts and all feature a cluster resource management system

(CRM), such as Slurm, YARN, or Kubernetes.

15

The CRM is a distributed computing framework that maintains the cluster state

and manages computing job assignments across the cluster. Most CRMs organize the

cluster based on master/worker architecture, also known as master/compute archi-

tecture, presented in Figure 2.7. Individual computers and virtual machines are split

into cluster nodes known as masters and workers. In this model, the master nodes are

primarily responsible for maintaining communication with nodes and job scheduling.

Rarely is this node responsible for computation on the cluster in addition to this role.

While the most simple clusters feature a single master, it is recommended that a clus-

ter have multiple master nodes to have high availability and fault tolerance. Worker

nodes are responsible for executing scheduled jobs. In most instances, the status of

a job is not sent back to the master. Instead, to address the possibility of scheduling

a job on an unavailable node, most CRM feature a heartbeat between masters and

workers as utilized by YARN [89]. The heartbeat is a regular ping of each worker

node by master nodes. A response from the worker signals to the master that the

worker node is online. In the event no response is received, the master will attempt

to schedule a job on a different node.

Figure 2.7: An overview of Master/Worker architecture used in cluster environments.

Kubernetes features specific terminology important to understanding how a clus-

16

ter is managed. This CRM will be discussed in more detail in Subsection 2.10.4.

While this approach is helpful for maintaining a service and providing fast compu-

tation, there are two remaining issues when applying this model to provide campus-

scale cyberinfrastructure. First, because clusters are homogeneous in nature, this

would require the institution to maintain identical hardware across the institution

to support this. Second, this would result in downtime for scheduled maintenance

if the hardware was upgraded for the cluster. To provide data transfer solutions,

the underlying cyberinfrastructure should not be subject to extended maintenance

periods.

2.6 Cloud Computing

Cloud computing refers to delivering a hosted service over the internet. While no

standard definition exists, it is generally agreed that cloud computing has five charac-

teristics as defined by the National Institute of Standards and Technology, consisting

of on-demand self service, broad network access, resource pooling, rapid elasticity,

and measured service [49]. There are three primary service models when it comes to

defining cloud computing. These are offering access to an application as a service over

the internet, known as Software as a Service (SaaS), hardware and software in data

centers utilized to support these applications, known as Infrastructure as a Service

(IaaS), and Platform as a Service (PaaS) [7]. All three belong to one of two cate-

gories. If the application, platform, or infrastructure is available across the general

internet, then it is a public cloud. If instead these resources are available only within

an organization, institution, business, or other entity, it is a private cloud.

No matter the service model and deployment, the motivation behind becoming a

cloud user or cloud provider is to reduce costs while improving performance. Instead

of requiring several machines dedicated to a single project, a project can be hosted

on the cloud, where a project can be maintained alongside other projects across the

same servers with minimal management by users. Cost of entry into compute-heavy

research or business models is lowered, allows for immediate access to hardware, and

17

aids in scaling [48]. This allows smaller organizations to gain access to computational

resources without personnel to manage these resources, and larger institutions to

organize their services.

2.7 Containerization

Containerization is the packaging of software applications such that these applica-

tions run within isolated environments called containers, which all share the host

operating system (OS). The primary benefit of this is to run several, small jobs that

are portable, contain all software dependencies, and are isolated from the hardware

environment. As shown in Figure 2.8, containers are traditionally more lightweight

to deploy on a system than a whole virtual machine due to their lack of a Guest OS,

a dedicated operating system installed only within the virtual environment [21, 50].

This difference is the result of having a Container Engine as opposed to a Hypervisor.

Figure 2.8: This is a high-level comparison between Containerization and Virtualiza-
tion, showing the higher overhead of virtual machines on a system.

Virtualization works by utilizing software to crate an abstraction layer over the

18

hardware components of a computer. This allows hardware resources of a single

machine to be divided among several virtual machines, effectively creating several

machines on one computer. In the case of traditional OS virtualization, this is soft-

ware is called the Hypervisor. Virtual machines were designed with this architecture

to maintain full isolation[30]. However, when multiple applications are running with

the same operating system, the resulting bloat on the host system slows performance.

By comparison, Containers abstract the operating system of the host machine to run

applications through the Container Engine, resulting in a virtual environment that

is more lightweight than a virtual machine. In avoiding running multiple virtual ma-

chines simultaneously, hardware resource usage is less impacted by operating systems,

resulting in faster processing within the containers and deployment time [72]. How-

ever, while this provides a layer of abstraction, it should be noted that all processes

within containers still share the same kernel.

Despite being slower, virtual machines still have several use cases where contain-

ers may not be the more effective choice, including when applications need to run

together, or in the case of monolithic architecture. However, containers are typically

a better choice for microservices, DevOps, web applications, and the cloud through

cluster orchestration [57].

2.8 Containerized Clusters for the Cloud

A private cloud environment can be deployed by combining clusters and container-

ization. Private and public cloud environments are the current primary use case of

container orchestration technologies, such as Kubernetes or Docker Swarm, but this

is further expanded in Subsection 2.10.4. The architecture of this cloud environment

is the same as standard cluster computing where a master node controls workers,

however, all jobs and control features are individual containers within nodes apart

from a load balancer for master nodes. For example, the scheduler for a master node

is a container managed by the container orchestration technology that is limited to

running on a master node. This scheduler then assigns jobs with a load balancer to

19

manage job assignment across workers. The external load balancer is only present in

clusters where there are multiple master nodes. This external load balancer manages

which master assigns jobs.

The idea of scheduling jobs as containers on a cluster comes from the combined

ideas of scalability, and high availability previously discussed in clusters as well as iso-

lation and portability from containers. In other words, by deploying jobs as isolated

containers, an application can be deployed on heterogeneous systems to maintain

up-time without requiring extra dedicated development. This has resulted in appli-

cations being split into microservices that can be easily managed within containerized

environments across a variety of systems. The process of isolating these applications

is referred to by the Cloud Native Computing Foundation as cloud native application

development [17]. Further results of cloud native application development include

faster release times due to their inherent support of DevOps practices, ease of man-

agement, and reduced costs without the need for dedicated systems to a singular

application.

2.9 File systems

A file system is how an operating system organizes data. There is no best file system

for all situations, which has resulted in many file system solutions being developed.

Each file system has a different method for organizing data and metadata, resulting

in differences in performance, and some file systems provide additional features for

increased scalability or security. In this section, the file systems involved in DDRIS,

ext4, ZFS and CephFS, are discussed, including their advantages and disadvantages.

2.9.1 ext4

The embedded file system present on Linux devices is ext4, the fourth version of the

extended file system. The ext series of file systems started in 1992 with each iter-

ation building on previous versions. As the most recent version, ext4 has increased

reliability against fragmentation, performance and capacity [15]. While ext4 is not

20

the highest rated file system in terms of performance or ease of use, it is considered

a good choice for servers where a volume manager is not necessary with comparable

performance to other similar solutions [2]. Because it is the default Linux file sys-

tem, most users and system administrators understand how to configure ext4. This

results in better maintainability as system administrators handover responsibility of

the systems to incoming professionals.

2.9.2 ZFS

ZFS is a scalable file system that combines volume managers with traditional file

systems, allowing for distribution across multiple drives or a storage pool [68]. Mem-

ory across drives is pooled into a single cache to be utilized in the file system where

ZFS handles partitioning for an administrator. This is done by combining physical

drives into virtual devices (VDEV) that are combined into a ZFS storage pool. The

number of VDEVs present within a pool is dependent upon system configuration.

Figure 2.9 shows how pooling devices is achieved for ZFS with six drives are divided

into two VDEVs. One application of splitting these disks is to support two separate

RAID arrays in a single file system. More memory can be added to the pool and

automatically incorporated into ZFS. This comes with a number of benefits, namely

the ability to scale up on a system. However, ZFS lacks the ability to scale outward

efficiently with data redundancy being for whole disks, not objects, and once a disk

is added to the ZFS pool, the disk cannot be removed.

ZFS includes different levels of software-based RAID, known as RAID-Z. There

are three levels of RAID-Z including, RAID-Z1, RAID-Z2, and RAID-Z3. RAID-Z1

is the original level provided and is similar to RAID-5 but with a variable stripe

width [35]. The expansion of RAID-Z saw RAID-Z2, a software-based RAID-6.

RAID-Z2 has two parity blocks as opposed to the single parity block of RAID-Z1,

making it more fault tolerant [64] but slower in performance due to parity block write

times [1]. RAID-Z3 includes triple parity. A comparison of RAID-5 and RAID-6 lev-

els can be seen in Figure 2.10, showing differences in handling parity and minimum

21

Figure 2.9: An overview of how devices are pooled with ZFS [91].

number of disks. The advantages of using software-based RAID are that these RAID

levels do not require the hardware component of a RAID controller and an added level

of control over what RAID level is being utilized. A hardware controller cannot be

changed to include a level that has not been included by the manufacturer. However,

software can emulate RAID without the need for a controller and the software can

be chosen based on what levels are supported. The primary disadvantage of using

software-based RAID is that it is slower than hardware-based RAID as it utilizes

some of the processing power of the computer in order to emulate hardware RAID.

2.9.3 CephFS

CephFS is a POSIX-compliant file system built on the distributed object store pro-

vided by Ceph [16]. It provides object, block, and file system storage. The three

primary components of the Ceph file system are clients, the object storage cluster

(OSD), and metadata servers (MDS) [90]. Clients perform I/O operations directly

with OSDs, which store all data and metadata. The MDS manages the namespace,

including filenames and directories. After metadata operations have been completed,

metadata is journaled by MDS to the OSD.

Ceph, as a distributed file system, combines all available storage into a single

22

Figure 2.10: A comparison between RAID-5 and RAID-6, the basis for software-based
RAID levels included with ZFS where parity blocks are denoted by “P”.

23

storage pool by decoupling the software-based file system from the storage hardware,

including across a cluster. However, unlike ZFS, Ceph will automatically rebalance

clusters if new nodes are added or removed. This ability to effectively scale outward

makes Ceph more appropriate in a cluster environment where nodes may be added,

removed, or replaced than ZFS. However, on a single machine, Ceph is outperformed

by ZFS. Ceph also does not provide software-based RAID. Instead it provides data

redundancy through replication and erasure coding.

2.10 Technologies Utilized

The implementation of DDRIS required a multitude of technologies to promote quick

future deployments and reliable data handling. Many tools were chosen due to their

preexisting usage on other University systems in order to promote standard tool

usage at a campus scale. In this section, a brief overview will be given for many

of the different tools utilized in the formation of DDRIS components. It should be

noted that other modern frameworks and software can be utilized in replacement of

many of these technologies in deployments similar to DDRIS to fit existing standard

practices at an institution. A high-level representation of DDRIS architecture, where

these technologies have been applied, is available in Chapter 5.

2.10.1 Globus

Globus is a non-profit, “software as a service” solution to data transfer management

developed by the University of Chicago [86]. It is designed to make data transfer

and collaboration easy through a visual, Dropbox-like application. The model has

automatic fault recovery and network tuning. A high-level representation of data

workflow for Globus as illustrated in Figure 2.11. Users submit a data transfer request

to Globus Online. Globus handles networking handshakes and authentication to

transfer between a source and destination. After the transfer is completed, the user

who requested the transfer is notified by Globus of the transfer’s completion or any

errors that may have occured. This model allows a “fire and forget” workflow where

24

Figure 2.11: A high-level representation of the Globus workflow for researchers [84].

researchers do not need to watch the data transfer. The Globus data management

solution has two major components, Globus Online and Globus Connect.

Globus Online is a web portal for researchers that allows for data transfer, dele-

tion, and sharing without local application installation [28]. Instead, it connects with

remote locations to allow users to manage their data without accessing the machine

directly. Researchers also have the ability to manage data access through this user

interface. The learning curve for Globus is shorter than full command line, which

allows researchers to spend more time researching and less learning software com-

munication methods. Information on how to use Globus Online will be discussed in

Chapter 6.

Globus Connect consists of two types, Globus Connect Server and Globus Con-

nect Personal (GCP). Both are designed as a GridFTP server that communicates

with Globus systems [6]. GCP is meant to be easily installed on a local machine,

such as a lab computer or laptop, without necessary configuration. Globus Connect

Server is a larger application meant to be installed on a managed server for multiple

users to connect with.

This data transfer solution has its own limitations. Due to overhead in authenti-

cation with GridFTP, numerous small files transfer significantly slower that one large

25

file [46]. This will result in a need for effective data transfer workflows within the

institution, and data needs to be archived prior to staging.

Globus is utilized as the primary software behind data transfers utilizing DDRIS.

This is due to the easy-to-use front-end interface provided through Globus’s online

web portal and support across common operating systems. Many other data transfer

services require knowledge of command line interfaces or are operating system depen-

dant. The primary advantage of having a GUI is in limiting the amount of time that

must be dedicated to learning or remembering how to utilize the software, and as a

cross-platform tool, data transfer methodology can be standardized while supporting

the needs of individual researchers with different research apparatuses. Another pri-

mary advantage is the ease of installing GCP. GCP does not require extensive setting

configuration. This allows researchers to begin transfers quickly without concern for

deployment time.

2.10.2 Python

Python is an interpreted, general purpose programming language developed under an

open source library [63]. As a popular language for back-end system development,

Python has an active community of content creators that have lead to several avail-

able frameworks for development. Python benefits from the simplicity of its syntax,

making code easy to read and comprehend when an application is inherited by a

new developer. Globus allows connection to their services through the use of an offi-

cially supported Python software development toolkit (SDK). Due to these reasons,

Python was chosen as the primary development language for all DDRIS back-end

services, including log exporters, micro web framework deployment, and Prometheus

exporters.

2.10.3 Docker

Docker is a containerization platform for developing and running applications [20]. It

also provides tools to manage container lifecycles. Docker was chosen for DDRIS due

26

to its active development community and support. This platform benefits from this

community as members often publishe modules and container images for public use

and review. Between the community and easy to learn nature of Docker, it is often

chosen by DevOps teams for deployment. Docker also works well with Kubernetes,

the central framework involved in DDRIS.

2.10.4 Kubernetes

Kubernetes is an open source solution to managing and deploying containerized appli-

cations originally designed by Google [80]. This is ideal for cloud-native applications,

which increases the scalability of deployments. It provides a platform to implement

and rely on containers in production. A simplified overview of one option for Ku-

bernetes architecture can be seen in Figure 2.12. This architecture is similar to that

used by DDRIS. Kubernetes creates a cluster of nodes where a node is a physical

or virtual machine. As referenced in Section 2.5, these nodes consist of Master and

Worker nodes. Master nodes contain the Kubernetes control plane that controls

and schedules jobs as well as monitors the cluster’s state. The control plane has four

components when simplified, the API server, controller manager, scheduler, and etcd.

The API server is responsible for communication across cluster components and is the

method through which users access pieces of the cluster [14]. Second, is the Controller

Manager. The Controller Manager consists of four controllers, the node controller,

replication controller, endpoints controller, and service account & token controller.

A brief overview of each controller can be seen in Table 2.1. Third, the Scheduler

orchestrates jobs based on resources required by an application, resources available

on a node, and if a job has a node preference set in its configuration. Finally, etcd is

the data store for the cluster. It saves metadata relating to very object created within

the cluster. The Master nodes utilize a Load Balancer, to balance job orchestration

amongst all Master nodes on the cluster. These jobs are not containers themselves,

but pods. Because Kubernetes supports several container types, it instead manages a

wrapper around the container called a pod. Each pod belongs to a namespace, used

27

Figure 2.12: The Kubernetes architecture featuring multiple master nodes with co-
located Control-Plane and Etcd [3].

to organize pods based on project and limit user activity to specific projects relevant

to those users.

Kubernetes is used in DDRIS to run containerized administrative jobs. Prometheus

data, measurement archives, log data, and visualization services run through Kuber-

netes. Kubernetes was chosen for DDRIS due to the portable nature of containerized

applications and scalability as the array of DDRIS services continues to expand along-

side other centralized services.

2.10.5 Prometheus

Prometheus is a community driven, open source metric collection and reporting

software utilized in system administration and cyberinfrastructure for time-series

data [61]. The primary components to the Prometheus architecture can be seen in

28

Table 2.1: Description of controllers native to the Kubernetes Controller Manager.

Controller Description

Node Controller Monitors for nodes that are down and responds
accordingly.

Replication Controller Manages pods so that the correct number of pods
are always active if pod replication is specified.

Endpoints Controller Joins services and pods
Service Account & Token
Controller

Create accounts and access tokens for new names-
paces

Figure 2.13 where the four main components include the Prometheus server, Alert-

manager, Pushgateway, and Prometheus web UI. The Prometheus server is responsi-

ble for periodically scraping data from Prometheus targets, jobs, and exporters, and

the server discovers new targets through service discovery. The pulled data is then

manipulated through a set of rules to be formatted as time-series data and checked

against alerts. This data is saved in a targeted time-series database to be queried by

the Prometheus web UI or other data visualization tools. If the data is flagged by the

Alertmanager, notifications are sent through supported plugins, such as Pagerduty or

an email server. The exception to this workflow is when a Pushgateway is utilized.

Where Prometheus is usually a pull-based architecture, metrics can be lost for short-

lived jobs that exist within the scrape interval. The Pushgateway allows metrics to

be pushed to the Prometheus server to be stored and analyzed.

DDRIS utilizes the Prometheus server to scrape data off of Prometheus targets,

web servers that host exported information to be pulled by Prometheus over HTTP,

and the Prometheus web UI as part of its data visualization solution. All metric

reporting for DDRIS is completed through the pull model over HTTP as opposed

to push over UDP, so no Pushgateways are present in DDRIS. Additionally, alerts

are not handled through Prometheus. While Prometheus is an important tool, it

is limited by its ability to only collect numerical data. Prometheus is not suited to

handle extracting information such as user data.

29

Figure 2.13: The Prometheus architecture including ecosystem components [60].

2.10.6 Grafana

Grafana is an opensource analytics web application written in Typescript and Go [33].

It is capable of pulling from several databases to automatically create interactive data

visualizations specified by the user through database queries. These data visualiza-

tions allow users to add annotations, and alert management with specified thresholds

and integration with communication software, including Discord and Slack, to pub-

lish alerts. Grafana is a popular analytics tool utilized in research cyberinfrastructure

that allows for expansion through plug-in support developed by the active Grafana

community. It can be installed locally to create a private dashboard or served through

the public cloud. For use in DDRIS, Grafana is being privately hosted on Kubernetes.

2.10.7 Flask

Flask is a python-based Web Server Gateway Interface (WSGI) microframework [58].

As a microframework, the core of Flask only controls how a webserver connects to web

applications. Flask does not have a built in database, data abstraction layer, or form

30

validation. Instead, Flask is highly customizable. It supports extensions and libraries

that perform these functionalities and more, such as network calls, leaving their im-

plementation at the discretion of the developer. This makes the core of Flask very

lightweight but easily scalable for large projects. Flask supports ssl context specifi-

cation when declaring Flask environment variables. This allows the application to be

run over HTTPS instead of the default HTTP. Due to the use of demilitarized zones

throughout DDRIS, this is important to add a level of security to communications.

2.10.8 PerfSONAR

The performance service-oriented network monitoring architecture, known as Perf-

SONAR, is an open-souce toolkit for network telemetry to discover realistic end-to-

end performance expectations [25, 81]. PerfSONAR allows for automatic, scheduled

testing within and beyond the boundaries of a network. Through the use of Perf-

SONAR meshes, a single testing configuration can be shared across multiple nodes

to provide a detailed map of network performance. Mesh configuration is hosted on

a webserver and pulled by mesh members to be stored locally. The results of network

tests are stored within a PerfSONAR Measurement Archive for query and display.

The Measurement Archive utilizes Esmond [23], a system for gathering, storing, visu-

alizing, and analyzing data, to turn transfer results into time-series data for storage.

Areas of low performance are flagged to be investigated based on location and time of

day. This toolkit promotes more efficient network troubleshooting and faster internet

access to users. DDRIS includes a local, campus PerfSONAR mesh to provide de-

tailed network telemetry, including long-term storage and historical data visualization

to ensure users are able to transfer their data quickly through network oversight. The

head of the DDRIS mesh is available for inclusion on external PerfSONAR meshes to

provide insight on connections past the university borders for collaboration.

31

2.10.9 Cassandra

Apache Cassandra is an open-source distributed NoSQL database [79]. It is utilized

by DDRIS to store PerfSONAR test results to be visualized. Cassandra was chosen

due to it being the default storage for PerfSONAR. Where NoSQL databases are

typically not suited for complex queries, Cassandra provides a query model similar to

SQL, referred to as Cassandra Query Language (CQL). However, Cassandra is not

supported by Grafana at this time, making data visualization more difficult as it will

have to pass through a supported platform before being visualized.

2.10.10 Postgres

Postgres is an open-source relational database system [82] and is used for DDRIS

table data, and local storage of the PerfSONAR mesh configuration. It is considered

to be one of the most popular databases in use today with an active user community.

Postgres uses a modified version of SQL known as PostgreSQL that provides the same

features as SQL as well as custom datatype and function declaration. These user

defined functions can be written in any procedural programming language, including

Python. Postgres was chosen as the primary database system for DDRIS due to its

status as a well-established, open-source solution.

2.10.11 TimescaleDB

TimescaleDB is an open source, relational, time-series database built on Postgres [83].

This solution offers the scalability of a NoSQL database with high performance. It

is the only open-source time-series database with native SQL support. Due to this

exclusivity, TimescaleDB is utilized in DDRIS for time-series data storage outside of

PerfSONAR results. Prometheus is set to export all data collected by the server to

TimescaleDB. This is then queried for display on the DDRIS dashboard in the same

method as Postgres data.

32

2.10.12 Bash Shell Script

bash is the default Unix shell and command language for Linux systems. When

several bash commands are written together in a single text file, it is considered a

shell script [41]. Bash is frequently used by Linux administrators to perform tasks on

a Linux system. These tasks include checking system health. While DDRIS allows

this task to be performed by users through the dashboard interface, it is important

to note that shell scripts were utilized through the deployment process of DDRIS. All

system administrative tasks to improve performance were completed through bash,

including but not limited to interrupt binding, and Maximum Transmission Unit

(MTU) changes.

2.10.13 Linux Service

A Linux service, also known as a daemon, is a system application that runs in the

background or is waiting to be used [43]. All daemons on a Linux system are man-

aged through systemd, a software suite that controls other processes started after

boot. Services are used commonly in System Administration to allow for easy control

and supervision of processes and parallel job execution. This is particularly use-

ful for deploying background processes and scheduling complex tasks. By creating

.service files to handle deployment, redeployment of DDRIS requires less manual

configuration. Instead, system files can be imported with Ansible, defined futher in

Subsection 2.10.15, and enabled on boot. Additionally, several processes can be more

easily maintained on DDRIS.

2.10.14 Cron

cron is a time-based scheduler available on Linux distributions [45]. Tasks deployed

using crontab, known as jobs, are capable of setting reoccurring events on a system by

time, date, or interval. cron jobs are utilized throughout DDRIS to schedule events.

Through the use of this tool, services, including Flask, are not required to run at all

times and hurt performance. Instead, Flask and services pulling information from

33

Flask are scheduled to run within time periods that experience low system usage.

2.10.15 Ansible

Ansible is an open source tool utilized by DevOps engineers to automate information

technology work in the deployment of new systems, including software package in-

stallation, application deployment and server configuration, according to the practices

of infrastructure as code [65]. This solution utilizes push-based configuration—which

features no monitoring agents on remote hosts and results in less overhead on deployed

systems after configuration when compared to pull-based configuration software, such

as Puppet [62]. Management scripts, called playbooks, are built on top of “yet an-

other markup language” (YAML), further defined in Subsection 2.10.16, to be easily

readable. Ansible converts these playbooks to Python scripts and uses the Secure

Shell Protocol (SSH) to push these changes to remote hosts in parallel [37]. Ansible

is utilized in the deployment of DDRIS DTNs and PerfSONAR nodes. This configu-

ration management tool was chosen because it would not be installed on these devices

and frequent redeployment is a possibility with systems on Science DMZ’s.

2.10.16 YAML

YAML is a data serialization language popular for use as configuration files [10]. It

takes inspiration from datatypes present in popular programming languages such as

Python and Javascript. This allows for the use of dictionaries and lists within configu-

ration files. YAML is utilized in DDRIS as the primary language for all configuration

files for production code. This is due to its ability to specify complex configura-

tions and settings simply in an easily readable format. This simplicity but robust

capabilities aids in the quick deployment of new systems on DDRIS by allowing for

configuration with no modification to production code. DDRIS also utilizes YAML

in Ansible playbook formation.

34

Chapter 3

Problem Statement and Proposed
Solution

This chapter describes the problem in detail and outlines the solution proposed. Sec-

tion 3.1 provides an in depth analysis of the current classic university campus model

for handling data driven research, including the challenges unique to this model. Sec-

tion 3.2 describes an alternative model to address these issues. This includes an

overview of the users affected and their needs as well as the primary components of

this architecture solution. Each of these primary components are designed to meet

the specifications required by users. Additionally, a brief description of the results of

this architecture in action is addressed.

3.1 Problem Statement

A common campus model for data transfer relies heavily on the individual researcher

or department to configure machines for use. This model dictates that cyberin-

frastructure is to be decentralized. A lab or department is responsible for buying,

deploying, and updating technology as needed. This includes servers, technologies,

and storage. Some cyberinfrastructure services are traditionally provided centrally,

for example HPC or general purpose data storage (at UNR, these are the Pronghorn

HPC cluster and the Rosalind data storage system). However, handling movement of

data in or out of these centralized systems is still the responsibility of the researcher.

While this approach has its merits, it makes collaboration between departments and

35

institutions more difficult.

Key downsides of technology de-centralization include uniformity of infrastruc-

ture, access and security standards, duplication of management effort, and reliability,

to name a few. With this comes the issue of interoperability, connectivity, and per-

formance across systems. Researchers need to share and manage data with other

departments and organizations. Some of these data may be local to a lab server, per-

sonal endpoint, or on a campus centralized system. Solutions for better data transfer

management need to be explore, due to the lack of available systems, guidelines,

or services across the UNR campus. Lab or department level solutions require an

amount of computer knowledge that should not be expected of all individuals and

may involve a learning curve. This time, exploring options and learning solutions can

otherwise be spent by a researcher on their own research and actively collaborating,

and increases the risk of constant ”reinventing the wheel” across campus.

This issue is exacerbated by moderns trends associated with data sizes, formats,

volumes, and velocities [44]. Most data transfer solutions require personnel to monitor

transfers actively for errors or maintain an open terminal. For smaller transfers, these

may finish within a day, but for larger transfers a researcher may feel uncomfortable

leaving the transfer unattended overnight.

3.2 Proposed Solution

To address these issues, this thesis presents the Data Driven Research Infrastructure

Systems (DDRIS), a collection of hardware- and software-based cyberinfrastructure

architecture solutions developed for the University of Nevada, Reno, but conceptually

applicable to all similarly-sized research institutions. DDRIS is designed at a campus

scale with modular deployments available for smaller scale usage, including within a

lab, to connect to the overarching infrastructure centered around a Kubernetes cluster

to promote high availability of DDRIS.

There are two main user groups of DDRIS to consider: the researchers, and the

administrative professionals responsible for the upkeep of these systems. First, the

36

researcher’s needs are to be considered. A researcher requires a fast, easy to learn

solution that requires little oversight. Data is to reach its destination and main-

tain integrity, and the researcher should have access to basic statistics regarding the

transfer. These statistics include the following: transfer speeds, amount transferred,

warnings and errors in transfers, and a notice of success. Next, the needs of adminis-

trative professionals need to be considered. Systems require simple initialization and

maintenance. Problems should be quickly recognizable through historical metadata.

There should be user accountability in place to protect systems.

The three core user-facing components of DDRIS are designed to handle each

of these aspects. These include the following: DTNs configured with Globus as

Managed Endpoints to handle data transfers, an on-campus PerfSONAR mesh to

handle network telemetry, and a dashboard to display historical data clearly and

concisely. To address the requirement that researchers need a fast solution, each DTN

was modified to increase performance. Compared to baseline data transfers, there has

been a significant increase in performance that will be further explored in Chapter 8.

Support for transfer speeds are also provided through network telemetry by allowing

for a more proactive response to bandwidth congestion and errors. All of this is to be

displayed on the dashboard alongside DTN health and transfer metadata to further

proactive responses. The DTNs also provide an easy to learn solution through utilizing

Globus Online, a data transfer application developed at the University of Chicago.

This software supplies a simple Graphical User Interface to make transfers and access

management easy for campus researchers. This software is described in Chapter 6

as a training manual to be utilized within the architectural model. Each of these

three core components include sub-components that handle data flow, storage, and

standardization.

37

Chapter 4

Hardware Solution Implementation

This chapter presents an overview of all hardware configured as a part of DDRIS.

Section 4.1 discusses the network at a high level and includes a high level network

diagram to contextualize hardware pieces and their interactions. Section 4.2 provides

an in depth summary of the Science DMZ DTNs. Section 4.3 describes the details of

the DTN currently configured on the Research Computing subnet and the Kubernetes

environment. Finally, Section 4.4 provides information on the PerfSONAR Network

Telemetry Mesh.

4.1 Network Overview

The University of Nevada, Reno has connectivity through the Nevada System of

Higher Education (NSHE) System Computing Services (SCS). SCS runs NevadaNet,

shown in Figure 4.1, the Wide-Area Network through which NSHE organizations con-

nect to the greater internet. NevadaNet primarily consists of fiber lines but includes

leased connections as well. NevadaNet consists of two Dense Wavelength Division

Multiplexing rings, North Ring and South Ring. These rings serve as a solution to

increasing fiber-optics performance and reliability where the University of Nevada

Reno, where DDRIS is hosted, is a spur off of the North Ring. The distribution of

leased lines and fiber lines owned by SCS can be seen in Figure 4.2. In the context of

DDRIS, once data reaches NevadaNet it is considered to be on the external internet

and is beyond the scope of this thesis.

38

Figure 4.1: A network diagram showing the components of Nevada Net and how
University campuses in Nevada connect to the outside internet [54].

39

Figure 4.2: A network diagram showing the Northern ring of Nevada Net [34].

DDRIS exists on the University of Nevada, Reno internal campus network. An

overview of the configured hardware in relation to the campus network can be seen

in Figure 4.3. This shows the relationship and connection between network pieces

and systems outlined in this section without security zones. It should be noted that

this current UNR campus network topology, and the various locations of research-

facing equipment in security space is still not ideal for research workflows, and further

40

development of the campus network for research remains necessary. A high-level,

scalable systems model will be provided further in Chapter 5.

The network includes four primary zones involved in DDRIS: the Science DMZ, a

Research Computing (RC) subnet, the Field network, and a simplified network region

labeled “Campus LAN”. The Science DMZ serves as a fast, easy to access collection

of machines dedicated to performance capable of achieving higher-performance by

limiting the use of firewalls as defined in Section 2.1. Implementation of DDRIS

was completed within fixed networking parameters where security zones were defined

through virtual local area networks (VLAN). This means, the Science DMZ uses ports

on the “RCDC CS Router” where the firewall is not enabled. However, this speed

is traded off with less security hardware. Without the campus border firewall to

protect these machines, they need to maintain strict, local rules and are to remain

isolated from the rest of the campus network. The only way for researchers to interact

with these devices will be through the use of Globus. Machines on the Science DMZ

include two DTNs (DTN-S and DTN-F) and a single dedicated PerfSONAR box.

The RC subnet trades performance for increased security and connectivity with

the rest of campus. Because the machines belonging to the RC subnet exist behind

the campus border firewall, they are permitted direct connection with the Campus

subnet. This will allow for network mounting of other university machines. However,

Globus will perform significantly slower on machines available on this subnet. DDRIS

utilizes three machines on this subnet. One is a DTN, named NCAR-DA-9, and the

other two machines belong to a Kubernetes cluster. Additionally, NCAR-DA-9 has

network mounts from the campus High-Performance Computing cluster, Pronghorn,

which belongs on the RC subnet, and Rosalind, the campus Isilon storage solution.

The Field network is entirely separate from the RC subnet. Overlap between

these subnets is expressed to showcase the use of one PerfSONAR testpoint shared

between the RC subnet and Field. Field is utilized for in situ research. Within the

context of DDRIS, PerfSONAR testpoints have been deployed in this area of the

network to monitor network connectivity back to campus. The testpoint shared with

41

Figure 4.3: A network diagram showing on campus hardware systems involved in
DDRIS. Dashed lines indicate a simplified connection to provide a general network
location of a device.

42

the RC subnet, defined further in Section 4.4, serves as the destination for these

network tests.

Lastly, the “Campus LAN” refers to any campus machines logically on campus

that are utilized by end users directly, including lab spaces and storage systems.

These systems are reliable but slow.

4.2 Science DMZ DTNs

Two DTNs were set-up on the campus Science DMZ. These DTNs are DTN-Flash

(DTN-F) and DTN-Spin (DTN-S). Both of these campus border DTNs are designed

around performance. Their purpose is to serve as a connection between researchers on

campus and other institutions. These DTNs do not feature permanent local storage

as they will only be utilized for data staging.

DTN-F features 15.36TB of flash memory. DTN-S features 112TB of spinning

disk storage. DTN Settings for DTN-F do not include any form of Caching. Initial

settings for DTN-S used a 4TB SSD as a cache, configured through ZFS. However, due

to boot errors, this cache was later removed from DTN-S with an effect in performance

that will be outlined in Chapter 8.

Both DTNs are configured with ZFS to provide a modern solution to data storage

that easily scales as more drives are added. DTN Settings include software based

RAID 6 emulation, RAID-Z2. This RAID level is typically reserved for read intensive

disks above the size of 1TB. File compression is disabled on these systems.

Initially, jumbo frames were disabled on both DTNs; however, the Juniper switch

had jumbo frames enabled. Because this can affect transfer speeds, both servers were

later configured with jumbo frames enabled.

The PCI slot for the 40Gbps NIC in both servers is only connected to one CPU

socket. This forces communication between sockets along the QuickPath Interconnect

(QPI) bus in order to access the NIC from the other socket. Effective interrupt binding

ensures that cores utilized in Globus transfers are connected to the correct socket.

This safeguards against large performance penalties caused by bottle-necking along

43

the QPI bus [24]. For both DTNs, the Linux network interface enp94s0 is connected

to socket 0 and cores 0-11. A bash script was written to force all processes for enp94s0

to run on cores 0-11. To avoid errors and reduce future maintenance for the DTNs, the

irqbalancer was left enabled. Instead, all irqs for i40e-enp94s0-RxTx-slice are banned

interrupts from the irqbalancer, and cores 0-11 have been established as banned CPUs.

This will allow the irqbalancer to continue to affect all other interrupts, but assign

them to cores 12-23 across the QPI bus.

These DTNs are connected directly to a Juniper 10002 Research router with a

40Gbe fiber line. Their next hop is at the Border Router for campus at 100Gbe.

For the security of other University systems, the Science DMZ is isolated from the

rest of the network. Due to this, direct communication between these DTNs and

the Kubernetes environment require other tools, including Prometheus, that will be

addressed in Chapter 5.

4.3 Research Computing Systems

One DTN, NCAR-DA-9, was also established on the Research Computing (RC) sub-

net. It acts as a campus internal access point for users to view and manage their

data. NCAR-DA-9 also allows internal collaboration within lab spaces. NCAR-DA-9

has 18TB of local storage and will have network mount points through NFS to other

University systems, such as the HPC cluster, Pronghorn, and centralized campus data

storage in its final iteration.

NCAR-DA-9 features hardware-based RAID 5 to maximize temporary storage.

The decision was made to increase local storage at the cost of the extra protection

of RAID 6 because this DTN is mostly meant to feature network mount points with

nonessential local storage. This solution allows more storage to users as the system

scales upwards, but essential data will be protected by remaining off machine.

Because hardware RAID is being utilized as opposed to software based RAID

emulation, NCAR-DA-9 is configured with ext4 as opposed to ZFS. The primary

appeal of ZFS is the raid emulation, which makes it unnecessary for the NCAR-DA-9

44

device. Instead ext4 was utilized because it is friendly to data recovery with decent

performance speeds balanced by its reliability and preexisting affinity for ext4 within

the University’s Office of Information Technology. Additionally, more information is

widely available for tuning DTNs with ext4.

NCAR-DA-9 is only accessible to campus users and is protected by campus fire-

walls. Due to this extra security, it is able to freely communicate with university

systems and can be utilized for a mount point for other data locations. However,

because it is behind campus security systems, it has significantly slower performance

than either Science DMZ system.

The Kubernetes environment also exists on the RC subnet alongside NCAR-DA-

9. It acts as a server to host a Postgres database, the Grafana dashboard, and listeners

for Prometheus, the log exporter, and the PerfSONAR central measurement archive.

Because this cluster belongs on the RC subnet, it is capable of direct communication

with NCAR-DA-9, but it is isolated from Science DMZ systems.

The cluster is configured over two machines with three master nodes with five

workers each. They communicate with one another through a single load balancer.

The first machine has 16TB of storage and the second has 8TB. This solution was used

due to scalability and availability of the environment. The entire cluster is utilizing

CephFS. This is due to the scalability of CephFS and its reliability as a distributed

filesystem.

4.4 Network Telemetry Mesh

The network behind a data transfer is as important as the DTNs involved, and as such,

maintaining a healthy network is critical for data transfers. To collect diagnostic data

on the health of the campus network, PerfSONAR was utilized to create a network

telemetry mesh. Mesh operations are handled by the Measurement Archive, hosted

on Kubernetes, and the mesh head, a mesh member responsible for hosting the mesh

configuration and dashboard. The Measurement Archive hosts two databases. The

Cassandra database hosted on the Measurement Archive holds network test results

45

for the MadDash dashboard. The second hosted database is a Postgres database to

hold mesh configuration metadata.

The mesh consists of five dedicated members and a single workstation as a proof

of concept. The proof-of-concept mesh members include: SciDMZ-Perf, SCS-Perf,

Roamer-Perf, NCAR-DA-11, Cavehill, and a campus workstation. SciDMZ-Perf is

a dedicated PerfSONAR node on the Science DMZ near the DTNs and serves as

the mesh head. SCS-Perf is a dedicated node in a SCS datacenter within the UNR

network. Roamer-Perf is a portable Flash I/O Network Appliance designed to be

moved around campus to run diagnostic tests within a lab as necessary. NCAR-

DA-11 serves as a testpoint between field deployments and the campus network, and

Cavehill is a field deployment.

All mesh members are initialized through Ansible and automatically updated

with new mesh configurations when a member is added.

46

Chapter 5

Software Design

In this chapter, the software design specifications of subsystems involved in DDRIS

will be discussed in detail. Section 5.1 will cover requirements. This includes technical

requirements that describe system features and the nonfunctional requirements that

describe system complaints. Section 5.2 details the use cases of the DDRIS dashboard

with a diagram and a brief overview. Section 5.3 describes the architectural design

of these systems. This entails high-level diagrams to describe the systems that are

in place, system component diagrams, and application activity diagrams. Section 5.4

describes the intended workflow for researchers on this new infrastructure and on-

boarding procedures through activity diagrams.

5.1 Requirements

Dashboard support was designed with three types of requirements in mind. These in-

clude base functionality requirements, extended functionality, and constraints. Base

and extended functionality are discussed as the system’s functional requirements. Sys-

tem constraints are addressed as the nonfunctional requirements. Both are discussed

in this section.

5.1.1 Functional Requirements

Each system involved needed to fit a number of parameters. These parameters depend

on the intended interaction and where they belong within the data pipeline. All data

47

in this section relates to the dashboard and exporters that control the data pipeline

to the dashboard. It will only be viewed and analyzed by system administration

professionals and will not be visible to end users.

Because the dashboard is only accessible by system administration staff within

the University, it will hold more sensitive information that would otherwise not be

shared with a general user. For example, the dashboard should show the files update

by each user and what transfer they belong to. This should not be available to every-

one because collection information should otherwise only be visible to members of the

collection. Additionally, system information, such as temperature, is not necessary

to people outside professionals responsible for the health of the DTNs.

All functional requirements of DDRIS are listed in Table 5.1 and belong to one

of three tiers. Tier one requirements are needed for basic functionality. All tier one

requirements are completed. Tier two requirements include those that are considered

desirable but were unnecessary at a base level for the dashboard to be completed.

And, tier three requirements include stretch goals, including future development ideas

to be implemented at a later time.

Table 5.1: List of functional requirements required by the dashboard.

Requirement ID Level Description

FR1 1 The dashboard will show historical transfer speed
data

FR2 1 The dashboard will allow the user to filter time-
series data based on transfer

FR3 1 The dashboard will allow the user to filter based
on time and date

FR4 1 The dashboard will allow the user the zoom in on
transfer speeds

FR5 1 The dashboard will have password authentication
FR6 1 The dashboard will limit editing functionality only

to admin accounts
FR7 1 The dashboard will allow the user to view what

files were affected
FR8 1 The dashboard will allow the user to view what

endpoint was interfaced with
Continued on next page

48

Table 5.1 – continued from previous page
Requirement ID Level Description
FR9 1 The dashboard will allow the user to download

data as a CSV
FR10 1 The dashboard will allow the user to view inter-

facing IPs on a map
FR11 1 The dashboard will allow the user the identity that

initiated the transfer
FR12 1 The dashboard will allow the user the local user

account used to read/write
FR13 1 The dashboard will allow administrators to view

all users with access
FR14 1 The dashboard will only be accessible through the

University’s network
FR15 1 The dashboard will display usage of the database
FR16 1 The dashboard will alert the administrator if file

system usage meets or exceeds 80%
FR17 1 The dashboard will alert the administrator if

database usage reaches 80% of capacity
FR18 1 The dashboard will alert the administrator if CPU

temperature meets or exceeds 50 degrees Celsius
FR19 2 The dashboard will allow the user to view system

health for campus DTNs
FR20 2 The dashboard will allow the user to view campus

network telemetry
FR21 2 The dashboard will allow the user to view histori-

cal network health
FR22 3 Kubernetes will automatically archive older histor-

ical data on a storage database
FR23 3 The dashboard will provide users the option to

browse archived data

5.1.2 Nonfunctional Requirements

In addition to these functional requirements, there are a number of constraints to

DDRIS. These nonfunctional requirements total to fewer than half of the previous

functional requirements. Each of the eight constraints are displayed in Table 5.2.

The first requirement states that the UI of the application will be written through

queries in PostgreSQL and PromQL. The second requirement constrains the system

to only exporting log table data once a night as a scheduled job on each machine.

49

The third requirement indicates that the Globus Transfer API will be utilized to

provide extra information regarding transfers. Requirement four indicates that the log

exporter will be written using the Python programming language. Requirement five

asserts that the custom Prometheus exporter will also be written using the Python

coding language. The sixth requirement states that all timeseries data, including

transfer speeds and system health, will be exported using the Prometheus service. The

seventh requirement indicates that the dashboard will be created utilizing Grafana.

The eighth requirement states that the Postgres database, Grafana dashboard, and

Prometheus server will exist on the Kubernetes environment. This means extensive

containerization will be utilized as all Kubernetes platforms will use Docker.

Table 5.2: List of nonfunctional requirements required by the dashboard.

Requirement ID Description

NFR1 Dashboard queries will be written in PostgreSQL and
PromQL

NFR2 Table data will be exported using a nightly cron-job
NFR3 Table data will be supplemented using the Globus Transfer

API
NFR4 Log data collection will be written in Python
NFR5 Timeseries data will be exported using Python
NFR6 Timeseries data will be exported through Prometheus
NFR7 The dashboard user interface will be created using Grafana
NFR8 The Postgres database, Grafana dashboard, and Prometheus

server will exist on the Kubernetes environment
NFR9 The dashboard will update in near real-time
NFR10 Science DMZ data will only be accessible through secret keys
NFR11 Science DMZ DTNs will host their table data using a flask

application

5.2 Use Case Modeling

In this section, use case modeling for DDRIS is covered and the following descriptions

are presented in Figure 5.1. In this context, the use cases presented are divided among

three actors and discussed briefly.

The first actor is the Sysadmin, or System Administrator. This role includes

50

any personnel responsible for maintaining and onboarding researchers on DDRIS. An

administrator has the ability to monitor traffic through two methods. First, they

can view recent transfers through the Globus Online GUI and their current or final

average transfer speed. They also have the ability to view historical data graphed,

including instantaneous transfer speeds through the dashboard interface. This dash-

board also provides more detailed transfer metadata, including the IP address the

transfer was initiated from, who requested the transfer, what endpoints and col-

lections the transfer was between, what files were modified, and what local user is

reported as having modified the files. The Sysadmin also has the ability to monitor

system health. Records can be accessed on the machine through command line, but

important, historical data is also routinely reported through the dashboard for a more

efficient visualization of changes in system health. A system administrator also has

the ability to create new collections on a DTN to onboard more users. For testing

purposes and in the event administrators have data to transfer, administrators may

have their own departmental collections through the same onboarding proceedures

researchers have. These system administrators then have the ability to perform their

own transfer requests. The next use case for system administrators dictates that they

have the ability to cancel transfer requests. This includes any transfer performed on a

DTN, but this ability is only to be utilized in specific situations, including if notified

of an unauthorized transfer. The Sysadmin also has the ability to manage members

on a collection. They are provided the highest collection role of Administrator on

every collection on DDRIS.

The second actor is the Quality Control Service, which consists of a series of

services on Kubernetes. Like the Sysadmin, the Quality Control Service is capable

of monitoring traffic and system health. Unlike the Sysadmin this is an automated

process to collect data for the dashboard and compare against thresholds. Another

use case for the Quality Control Service is to send alerts through email if a threshold

is exceeded. The Quality Control Service also communicates directly with Globus.

This is exemplified through its other two use cases. First, it is able to query Globus

51

Figure 5.1: Use Case Diagram of DDRIS.

for user data when a user transfers with a monitored system. Lastly, the service

queries traffic data from Globus to provide more detailed information about transfers

on the machines.

The final actor is the Researcher or campus research lab. A researcher has the

ability to transfer to move their data utilizing DDRIS. This means they have the

ability to initiate transfer requests on collections they are provided access to and

manage these transfers through the ability to cancel their own requests. They should

only have the ability to cancel transfer requests to or from collections they own.

These users are also able to manage access to their collections through the Globus

52

Online web interface. Researchers have the ability to add students or members of

other organizations to their existing collections with role privileges including, Access

Manager, Activity Monitor, Read-Write access, or Read only access. These roles

provided through Globus are covered in more detail in Chapter 6.

5.3 Architecture

In this section, the main architecture of DDRIS is discussed in three main segments.

The first segment, covered in Subsection 5.3.1, describes DDRIS at a high level with

an aiding diagram. This serves as a brief overview of the systems involved to aid

in contextualizing each piece of the system. The second segment, Subsection 5.3.2

describes the Prometheus exporters utilized by DDRIS. The third segment, Subsec-

tion 5.3.3, provides a more detailed overview of the application design. This includes

a brief explanation of log exporter versions, component diagrams and activity di-

agrams. The fourth segment, Subsection 5.3.4, provides an in depth view of the

databases designed for historical metadata storage. This segment is supplemented by

an entity relationship diagram to show the layout of these databases.

5.3.1 High Level Design

DDRIS consists of nine primary components. These components are split into two

contexts for readability, DDRIS Transfer and DDRIS Networking, but both contexts

interact and serve the purpose of aiding data driven research. First, the components

of DDRIS Transfer will be discussed. This will be followed by an overview of DDRIS

Networking.

A high level representation of the components and primary subcomponents be-

longing to DDRIS Transfer is shown in Figure 5.2. At the center of DDRIS is the

Kubernetes environment. Kubernetes is responsible for DDRIS health monitoring,

reporting, and alerting. It has four subcomponents to achieve these goals, includ-

ing the Prometheus Speed Exporter, Prometheus Server, Log Receiver, and Grafana.

The Prometheus Speed Exporter is described in Subsection 5.3.2. The Prometheus

53

Figure 5.2: High Level Design of DDRIS software communications.

54

Server pulls records from Flash, Spin, and Internal every six hours to monitor the

system health of each component. Records are pulled from the Prometheus Speed

Exporter every 15 seconds to provide accurate historical data for data transfers. The

Log Receiver queries log data from the Science DMZ components nightly at 03:00.

This data is then stored in the Relational Database, another primary component that

will be covered in Subsection 5.3.4. The Grafana dashboard queries the Relational

Database, visualizes the response, and sends alerts when data thresholds are crossed.

The third primary component is the Internal Cluster on the Research Subnet. The

Internal Cluster is a hypothetical scalable model built on the current implementation

of NCAR-DA-9 and is responsible for internal data transfers. The use of clusters

in a more scalable final model is recommended by Foster et al. (2011) [29] due to

the native Globus load balancer. Fourth and fifth components are the Flash Cluster

and Spin Cluster respectively. These clusters make up the Science DMZ components.

Flash and Spin, like the Internal Cluster, are hypothetical models built on the cur-

rent implementations of DTN-S and DTN-F to allow for more onboarded researchers.

The Science DMZ is responsible for external data transfers. Sixth is External Ser-

vices. This consists of two parts that are both accesible through API calls. These

components are Globus Services, and an open source IP to geolocation API.

DDRIS Networking is responsible for network telemetry and the health of sys-

tems responsible for collecting this data. A high level diagram of the components in

DDRIS Networking is showing in Figure 5.3. As the center of DDRIS, Kubernetes

is also at the center of DDRIS Networking for health monitoring, reporting, and

alerting. As the central archive for PerfSONAR, Esmond receives test results and

stores them in the seventh component, the Relational Results Database. Kubernetes

also holds a copy of the mesh configuration in the Mesh Database. The Kubernetes

Prometheus server and Grafana are the same across both diagrams, showing the role

of both subcomponents in both contexts. While Prometheus is responsible for DTN

monitoring, Prometheus also monitors the health of the Kubernetes environment it-

self, the PerfSONAR Mesh Host, and all mesh members. This data is inserted into the

55

Figure 5.3: High Level Design of DDRIS software communications for PerfSONAR.
Each of the members of the PerfSONAR mesh are denoted by My where y indicates
the count. Each mesh member has DDRIS network telemetry connections identical
to M1. The Prometheus Server inserts data into the Relational Database identified
in Figure 5.2.

56

same Relational Database as that defined previously. Grafana, in addition to pulling

transfer and health statistics, pulls historical network telemetry results from the Rela-

tional Results Database for display. The eighth component is the PerfSONAR Mesh.

This is responsible for running network telemetry tests as specified by the mesh con-

figuration. This configuration information is stored in a local database. The ninth

component is the PerfSONAR Mesh Host. While responsible for running tests like a

mesh member, the host is also responsible for publishing the mesh configuration and

displaying real-time data in MadDash.

5.3.2 Prometheus Exporters

Two classifications of Prometheus exporters exist within DDRIS, node exporters and

transfer exporters. Node exporters exist on every DTN within DDRIS and are respon-

sible for collecting system health information. This class of exporter was developed

by Prometheus with an official release. The transfer exporter only has one instance.

It runs on the Kubernetes environment and is responsible for timeseries metadata re-

garding Globus transfers. This class of exporter has been custom created for DDRIS.

The system surrounding the custom Prometheus exporter for Globus transfer

speeds contains four primary components. A high-level representation of these sys-

tems is shown in Figure 5.4. The Prometheus Server orchestrates data exchange

through pull-based reporting. This Server queries data from the exporter every 15

seconds for transfer speed metrics. The next piece is the Prometheus Exporter. Ex-

porters are responsible for data collection and formatting data into appropriate metric

types. This data collection is achieved through querying the third component, Globus

Services, through the Globus Transfer API. This third component exists outside

DDRIS as an official service provided by Globus and is the only component accessed

through an external internet connection. It responds to the Prometheus Exporter

with a Transfer Object that is processed by the Exporter. When the Prometheus

Server receives this processed data, it connects to the fourth component, Postgres

with TimescaleDB. The data is stored in this database to be queried by the DDRIS

57

Figure 5.4: High Level Design of the Globus Speed Exporter for Prometheus.

dashboard later.

5.3.3 Application Design - Log Exporters

Due to existing networking standards, different pieces of hardware utilize different

code versions and workflows dependent upon their subnet and security. First, the

Science DMZ version of the transfer exporter will be discussed in detail. Then the

version utilized on the Research Computing subnet by NCAR-DA-9 will briefly be

covered with an emphasis on pieces that do not overlap with the Science DMZ version.

The workflow of both versions will then be compared with one another.

The Science DMZ version of this application and its critical classes can be

seen in Figure 5.5. The log exporter has six main components. These consist

of the classes GlobusApp, APIData, SubmissionData, LogData, LocationData, and

FlaskHost. More details of these components can be viewed in Table 5.3.

This version features no database connections on the DTN’s side. Due to the

isolated nature of Science DMZ systems, DTN-F and DTN-S are not permitted a

58

Figure 5.5: Class Diagram showing the relationship between critical classes in the
Globus data exporter for Science DMZ systems. Hollow diamonds indicate aggrega-
tion between two classes. Lines without arrows represent association. 1s and 0s show
cardinality such that 1 indicates exactly one, 0 indicated exactly zero, 1..* is one or
more, and 0..* is zero or more. This notation is consistent with UML standards [76].

59

direct connection with the Kubernetes environment. An alternative workflow was

implemented using a Flask server. Where, ideally, the application would connect

directly to the database and push data, this version instead hosts all matched data

on the local network. API, log, and geolocation data are matched first with no checks

to the database to determine if the entries already exist. This operation is instead

performed on the client side after pulling the data from the hosted web service.

Exported data is posted as a JSON for ease of readability on the client side. To

protect the security of the DTNs, the port the web service is running on is locked

to only allow traffic from the Kubernetes environment and requires a certificate to

connect.

This Flask solution is not ideal due to the overhead in running a Flask server

on the machines but is required to maintain isolation from other systems. They will

divert computation and throttle network connections on the machines. To address

these problems, the time at which the Flask server is running is very limited. The

application exists as a service on the machine that has been stopped. A local cronjob

starts the service at 03:00 and stops the service at 04:00. This way only a single

hour that is expected to have slower traffic is impacted by the exporter. By running

the application for a full hour, multiple attempts to connect can be supported in the

event of failure or potential local time differences.

Table 5.3: Class descriptions for classes featured in the Science DMZ version of the
log exporter.

Description

API Data This class handles extracting and formatting data from
the GlobusAPI.

getData() This function pulls a list of transfers from the
GlobusAPI that were preformed on a single, designated
endpoint. It then organizes this data into individual
transfer instances.

GlobusAPP This class handles connecting to and authenticating
with the GlobusAPI.

Continued on next page

60

Table 5.3 – continued from previous page
Description

loadTokens() This function loads authentication tokens from a local
file.

saveTokens() This function saves tokens to a local file on its first run
on a new system

refreshTokens() This function refreshes local tokens whenever a new
authentication session starts.

nativeAuth() This function handles authentication for native Globus
applications. This is useful during testing and is to
be utilized until CILogon can be integrated with the
application.

confidentialAuth() This function handles authentication for non-native
Globus applications. This will be utilized when CIL-
ogon can be integrated with the application for in-
creased security of the application

FlaskHost This class handles posting data to the web service and
its security

configureConnection() This function runs the flask application, specifying
port, ip, and security

logs() Hosts a JSON containing an encrypted version of the
data to export

LocationData This class handles pulling data from an online resource
to map an ip address to a physical location

getLocation() This function gets the location data from host api

splitArg() This function splits the location data to keep only the
necessary pieces

LogData This class handles extracting data from the local
gridftp logs.

parseLog() This function pulls all data from the local machine’s
gridftp logs. This data is then organized into individ-
ual transfer instances

splitArg() This function is responsible for pulling important data
out of the transfer instances for communication with
other classes

SubmissionData This class organizes data from all three sources into a
single object.

matchData() Uses unique data in each class to match API, location,
and log data to a single transfer

61

Hardware belonging to the RC subnet is protected by the University border fire-

wall. For this reason, RC subnet systems are not isolated from the rest of the network.

This allows for a more direct connection between exporters and the Kubernetes envi-

ronment. This direct connection was utilized on NCAR-DA-9 to avoid the overhead

that would be introduced by Flask.

Critical classes involved in the exporter are included in Figure 5.6. As opposed

to the Science DMZ version, this features the DBConnection class instead of the

FlaskHost class. This class is responsible for connection initialization and commits

to the Postgres database. It is initialized utilizing an INI file to avoid locally storing

authorization information and to create a more modular system. In the event that

the database changes locations, the INI is to be updated instead of the code.

The details of this class can be seen in Table 5.4. This includes details of the

functions defined.

Table 5.4: A description of the class ”DBConnection”. This class is specific to the
RC subnet version of the exporter.

Class: DBConnection Description: This class handles all database connec-
tions. This includes configuring the connection based
on the configuration file, handling SQL statements, and
closing connections.

configureConnection() This function parses the INI file for relavent DB con-
nection information. To avoid the use of plaintext pass-
word storage, it also handles decoding the password for
authentication.

insertData() This function temporarily opens a connection to the
database and performs a SQL insert. It then closes the
connection again. This is to avoid connections remain-
ing open.

In addition to this change, comparisons with data already present in the database

can occur within the application. This allows for only data that does not exist already

to be handled prior to matching the data and limits the number of API calls from

LocationData.

Both versions of the application follow a similar workflow. This workflow, shown

62

Figure 5.6: Class Diagram showing the relationship between critical classes in the
Globus data exporter for NCAR-DA-9 and other future systems off of the Science
DMZ.

in Figure 5.7, starts at 03:00 through a cron job. At this start time, a bash script

is set to start a Linux service. The service starts the exporter that pulls data from

the Globus Transfer API. Local log data is then pulled and parsed into transfer

instances. This data serves to supplement API data. The first difference in the code

then comes when handling this log data. Because the Science DMZ version cannot

directly communicate with the database, it continues with all log data. By contrast,

the RC version repeatedly queries the database. All entries already entered in the

63

database are excluded from the list, leaving only new entries. Both versions then

query location data and all three data sources are combined into a single object. The

second difference is how the collection handles this data. As previously stated, the

RC version pushes this data to the database. The Science DMZ version instead hosts

this data and continues this workflow until the service is stopped. The service is set

to stop at 04:00 through a second cron job.

Figure 5.7: Activity diagram showing the general application workflow and differences
between the Science DMZ and RC versions of the exporter.

64

5.3.4 Database Schema

The data collected by the log exporter and displayed on the dashboard is stored to

maintain historical records. This database uses Postgres. As shown in Figure 5.8,

the database is separated into eight tables: i) TBL GlobusUser, ii) TBL LocalUser,

iii) TBL Location, iv) TBL TransferData, v) TBL Endpoint, vi) TBL Collection,

vii) transfercollectionbridge, and viii) subcollection. An explanation of each

table can be seen in Table 5.5. These tables are currently being implemented to

increase scalability and performance of the systems.

Figure 5.8: Entity Relationship Diagram of the Kubernetes table-based Metadata
Storage.

A second database for DDRIS is dedicated to timeseries data. This data is

everything collected by the Prometheus exporter, including system health information

65

Table 5.5: Description of tables included in the Kubernetes table-based Metadata
Storage.

Table Description

TBL GlobusUser Holds data about the Globus user who initiated
the transfer

TBL LocalUser Holds the local user of each DTN endpoint
TBL Location Holds the location data of an endpoint
TBL TransferData Contains metadata about an individual transfer
TBL Endpoint Contains information regarding a DTN
TBL Collection Holds data about a Globus collection on a DTN
transfercollectionbridge A bridge table that addresses the many-to-

many relationship between TBL TransferData

and TBL Collection. This table holds whether
the endpoint is the source or destination as well as
what local user is reported to have accessed data
on the collection.

subcollection A bridge table to hold a list of collections within
a collection

and data transfer speeds. The second database utilizes TimescaleDB with Postgres.

It includes two tables. The first table is metric labels. This table is an indexed list

of all Prometheus metrics. It directly relates to a second table, metric values. The

metric values table holds all timeseries data of each Prometheus metric.

5.4 Workflow

Because DDRIS is new to our campus, a workflow needed to be established for proper

utilization and the onboarding process. The user transfer workflow provides a stan-

dard for DTN usage. This will serve to aid researchers in utilizing the DTN that best

suits their specific transfer. The onboarding workflow will streamline the process of

adding more researchers to the DTNs to maximize the amount of time that they can

spend collaborating. These are discussed in this section.

66

5.4.1 User Transfer Workflow

Previously, the workflow on campus for research data transfers was ad-hoc. Solutions

still vary drastically between departments and labs with no standard, which is not

conducive to collaboration, researcher’s time, or repeatability. There would be dif-

ferences in solutions, management, and infrastructure. This new workflow is meant

to combine managed infrastructure into an easier, single-interface solution for data

transfers, and made available to researchers across campus. It also allows the Office

of Information Technology professionals to support and facilitate transfers.

Each DTN utilizes Globus Connect Server (GCS), which handles transfers for

researchers with built in alerts. Globus also provides a simple user interface (UI) to

view data and start transfers. An overview of the entire workflow can be shown in

Figure 5.9.

Transfers internal to the institution have the following workflow:

• A PI accesses the Globus Online web portal

• The PI searches for NCAR-DA-9 and adds collaborators to their dedicated

local scratch space. Collaborators are not to be provided access to the entire

collection.

• If data is not immediately accessible through NCAR-DA-9, such as if the data

is stored on their laptop, they will install Globus Connect Personal (GCP) on

their lab machine.

• The PI stages data from storage or Pronghorn on NCAR-DA-9.

• A collaborator will login on the Globus website and locate NCAR-DA-9 under

collections.

• The collaborating researcher selects the data they wish to copy and clicks start.

• The collaborating researcher posts data to the collection of the PI on NCAR-

DA-9 to share data with the PI

67

Figure 5.9: Activity Diagram showing the workflow for users utilizing the centralized
data transfer solutions.

68

• The PI pulls data from the scratch space to a more permanent location, such

as PH for processing or a local lab computer

In the event that the collaborator is not part of the University or the transfer

is to an external machine, such as in the case of remote work, the workflow changes

very little. If the transfer is over 1TB, the user will search for DTN-S on the Globus

Online web portal. Their secondary endpoint will be where their data currently exists.

This can be a lab machine, laptop, a machine connected to NCAR-DA-9, or another

workstation. They will then initiate a transfer from this data location to DTN-S. The

data staged on DTN-S will then be pulled from the machine to its desired location.

Transfers under 1TB will instead utilize DTN-F. This DTN is designed to be the

fastest option of the three but has the smallest amount of available space for data

staging.

Researchers may use DTN-S or DTN-F for internal transfers as well; however, it

is not recommended if the data is connected to NCAR-DA-9. It will create a slower

overall transfer process.

5.4.2 User On-boarding Workflow

As of early 2022, user on-boarding for DTN systems is in its initial phase. At this

time a user is to contact the Cyberinfrastructure group in OIT requesting DTN access.

OIT personnel are then to provide instructions detailing the User Transfer Workflow

Outlined in Subsection 5.4.1 and access to documentation on the Globus support

page. This details installing GCP on a lab machine as well as use of the Globus

online website.

On each DTN, a directory is to be created using the university NetID of the PI.

This will serve as the home directory for a shared Globus collection. On DTN-S, DTN-

F, and NCAR-DA-9, this collection is to be created as a directory at /data/gateway/,

the mount point for the filesystem dedicated to Globus. The folder’s data group is to

be set to globusdata.

From here all changes are to be made through the Globus website for DTN-S and

69

DTN-F. Using the globusdata user, each DTN is to be accessed through its designated

mapped collection. A new shared guest collection is to be created using the name of

the PI. This collection’s details are to be set to the endpoint on which this collection

exists. The default directory is then to be set to the directory created in the previous

step.

Unlike DTN-S and DTN-F, collection creation is completed through the com-

mand line on NCAR-DA-9. Because NCAR-DA-9 has identity mapping features

that connect the DTN to a local user on campus, mapped collections must be uti-

lized to handle local users as opposed to guest collections. To create a new col-

lection, “globus-connect-server collection create” must be run utilizing the

“--no-allow-guest-collections” option. This allows only users local to UNR

that can be mapped to the collection. This collection will be based out of the PI

directory set in the previous step.

Local permissions are to be changed within the new collection. The group

“unr.edu Globus Admins” is to be added as administrators on the new collection.

The PI is then added to the new collection as an Access Manager. This will give them

the necessary permission to add collaborators and lab members to their collection.

In the next phase, direct contact with the cyberinfrastructure group is to be

replaced. Instead of sending an email directly to team members, a form will be added

to the University’s Office of Information Technology website that is to be filled out and

submitted as an access request. This will help streamline the process and contribute

to better organization.

70

Chapter 6

Applications in Action

In this Chapter, the User Interface components for DDRIS will be discussed in detail,

including their iterations. First, Globus Online will be discussed in Section 6.1. While

Globus was not developed as a part of DDRIS, its incorporation requires training ma-

terials for on-boarding new users. This section provides descriptions of how to use

Globus Online with accompanying figures. Second, the original DDRIS dashboard,

hosted on the Prometheus server, will be discussed in Section 6.2. This original dash-

board was automatically generated by Prometheus and continues to run on DDRIS

to provide additional information not available in the primary DDRIS Dashboard.

Next, Section 6.3 provides information on the data visualization aspect of network

telemetry collection. Finally, Section 6.4 provides an in-depth overview of the finalized

DDRIS Dashboard, including the organization and the available data visualization

charts included in the dashboard.

6.1 Globus

While not developed as a part of this thesis, it is important to understand how to

use Globus Online. This section serves as a brief manual for using Globus at the

University of Nevada, Reno and is to be utilized in the onboarding process. This

section does not include Globus Connect Server (GCS). Installation steps for GCS

can be found in the Globus documentation [85].

To begin, users must Login on Globus Online by clicking the “Log in” button

71

Figure 6.1: The Globus login client prompting a user to select their organization. As
a member of the University of Nevada, Reno, this has been selected as this user’s
organization.

in the top right corner of the screen. The user is then redirected to a page that

allows them to search for an organization, shown in Figure 6.1. As a member of

the University of Nevada, Reno, faculty, students, and staff have access to the UNR

Globus Subscription. After choosing the University of Nevada, Reno, the user will be

prompted to login using their NetID through CILogon.

After being logged on, the user is redirected to the Globus File Manager, as

shown in Figure 6.2. The File Manager is the main page of Globus. Here the user

can select a collection, specify file paths, and manage files in a Collection.

72

Figure 6.2: The Globus File Manager after logging in on Globus.

To select a collection, the user has two options. First, a user can click on the

collection search bar and find their preferred endpoint as shown in Figure 6.3. Users

have the option to choose from their recently used collections, collections owned by

the user, collections shared with the user, and bookmarked locations. A user can also

type the name of an endpoint that is listed publicly to view or request access to a

collection on that endpoint.

The second option to select a collection is to navigate to the “Endpoints” page

shown in Figure 6.4. Like the first option, users have the ability to view and select

recently used collections, collections owned by the user, and collections shared with

the user. Users do not have the ability to view bookmarks on this page; however a

user can see what collections are in use and which collections are administered by the

user. A user can also search for endpoints.

After a collection has been selected from one of these two locations, the user is

redirected back to the File Manager. If the user is transferring a file, they will change

the File Manager panel view to two pane and select a second collection. The user

then selects a file and clicks start to begin a data transfer. The File Manager ready

to transfer a file can be seen in Figure 6.5.

73

Figure 6.3: The Globus Collection discovery shows all available Collections to transfer
against.

Figure 6.4: The Globus Online Endpoint List Page allows users to view all endpoints
they have access to.

74

Figure 6.5: The Globus File Manager ready to start a transfer between collections
CyberinfrastructureSpin and CyberinfrastructureFlash.

A user also has the ability to upload, download, or delete files from a collection

in this view. All of these options are accessible through the middle console.

In addition to transferring data, researchers are responsible for managing access

to their data. Globus separates access rules into two types: roles, and permissions.

Roles refer to the delegation of collection management capabilities while permissions

include read and write access.

To change roles and permissions, users navigate to the Endpoint page and select

the collection that is being updated. From here, the user navigates to the Roles tab,

shown in Figure 6.6, or the Permissions tab. Then the researcher clicks on “Assign

New Role” or “Assign New Permissions” respectively.

When adding new roles, the user specifies who the role will be assigned to. This

can be a user or a group. To locate the user or group, the researcher will utilize the

global search feature. If the user is associated with UNR, the researcher can search for

the user’s Network Identification (NetID) to locate the user quickly. The researcher

then chooses a role to assign this user or group. This process is shown in Figure 6.7.

The four roles provided as options to the user include Administrator, Access

Manager, Activity Manager, and Activity Monitor. The role of Administrator is

75

Figure 6.6: Globus Collection Roles for CyberinfrastructureFlash.

Figure 6.7: Adding a new role to a Collection.

76

reserved for personnel responsible for maintaining the endpoint and will not be acces-

sible by researchers. Access Manager has the ability to view, add, and delete access

rules. By assigning the role of Access Manager to a group or user, that group or user

is automatically provided read and write permissions across the collection. Activity

Managers can control tasks performed on the endpoint. Activity Monitors can view

tasks performed on the endpoint. Activity Managers and Activity Monitors do not

automatically have read and write permissions.

Permissions can be specified for specific file paths within a collection or the root

directory. If permissions are granted for a parent directory, those permissions are

included for all child directories. Permissions can be added for users, groups, all

Globus users, or be made public to everyone. By adding permissions, the specified

users are immediately provided read access, and write access can be specified. Adding

new permissions can be seen in Figure 6.8.

Figure 6.8: Adding new permissions to a Collection.

Regardless of roles, users have the ability to view transfers they submitted

through the Activity Monitoring page, shown in Figure 6.9. From here, users can

select a transfer to view transfer metadata, including start time, transfer settings,

source, destination, owner, bytes transferred, transfer speed, and condition. Users

77

also have the ability to transfer their own tasks or view events surrounding a task.

Figure 6.9: Globus Activity Monitoring shows Bytes transferred, effective speeds, task
id, source, destination, and other transfer metadata for recent or current transfers by
a user.

Users with the Activity Manager role have access to the Globus Management

Console in Figure 6.10. The Management Console, allows Activity Managers to view,

pause, or cancel any tasks performed on collections they hold this role for. This view

also allows for a more detailed view of the transfer, providing the same information

at the Activity Monitoring page.

6.2 Prometheus UI

The dashboard UI was originally limited to that provided by Prometheus reporting

by default, as shown in Figure 6.11. This allowed users to view transfer speeds with

limited interact-ability. While this method worked well during initial deployment,

more information was pertinent towards the transfers than information output by

Prometheus. Unfortunately, Prometheus reporting also did not allow for automatic

refreshing or metrics that do not have counts. This meant that audit-trail data

including user responsible for the transfer, IP address of the transfer, and more would

not be able to be collected through this method. Additionally, data from the DTNs

and Kubernetes were collected by different, dedicated Prometheus servers, so two

78

Figure 6.10: The Globus Management Console shows transfer metadata for recent or
current transfers on all collections accessible by a user.

different addresses would need to be accessed to view all of the data. As a solution, the

transfer speeds graph was output to a Postgres database for more permanent storage

and queried using PostgreSQL through the Grafana platform. This also allowed for

more metrics to be reported at one time and customization of visualizations and will

be covered in detail in Section 6.4. However, all Prometheus web pages continue to

run to provide information on changes to system health because a detailed version of

all data would not be manageable on the single Grafana interface.

All data collected through Prometheus is available in the drop-down menu under

the Graph page, shown in Figure 6.12. After selecting selecting an option, the user

clicks on “Execute” to pull records. All data pertaining to that query is then graphed

on a line graph where the user may filter by time and metric name. Prometheus also

offers a console view, which displays this data in a two column table.

6.3 MaDDash

MaDDash is part of the PerfSONAR package, designed as a tool for visualizing net-

work telemetry data. As previously shown in Figure 5.3, this platform was deployed

on SciDMZ-Perf, the head of the PerfSONAR mesh. The primary GUI for MaD-

79

Figure 6.11: An overview of the Prometheus User Interface for DDRIS DTNs.

Figure 6.12: The selection menu for Prometheus metrics.

80

Dash is a collection of heatmaps corresponding with individual tests and groups, as

shown in Figure 6.13. These heatmaps feature testpoints on the Y-axis that repre-

sent test source and X-axis that represent test destination as well as associated colors

for each test. Colors correspond with stoplights to show good, acceptable, and poor

connectivity results with an additional orange and blue for missing data.

Figure 6.13: MaDDash heatmap visualization showing traceroute results for the cam-
pus mesh group.

Each group in a mesh has its own set of heatmaps for each network test. These

include, latency, ping, traceroute, and throughput tests that have been individually

specified in the mesh configuration. In its current iteration, DDRIS has two groups:

campus, illustrated in Figure 6.13, and field, shown in Figure 6.14. The campus

group includes machines internal to the campus network while the field group refers

Figure 6.14: MaDDash visualization of ping test results as heatmaps for the field
group.

81

to edge devices deployed as a part of in situ research projects. As the mesh is further

expanded, the field group will be separated based on project.

Further visualizations include a historical representation of result metrics, exem-

plified in Figure 6.15. This view is accessed by selecting a point on the heatmap to

specify source and destination. Throughput, ping, and latency share this historical

representation of telemetry results with filterable options along the top legend to limit

results to one or more test or metric types. Furthermore, the mouse can be utilized

to hover over the line graphs to receive exact point information.

Traceroute has its own visualization type as a table. This table, and its search

functionality, was developed at the University of Wisconsin, Madison. It allows users

to view individual network hops taken to connect from the source to the destination

node, including IP and delay time.

Figure 6.15: MaDDash visualization of network tests from NCAR-DA-11 to Roamer-
Perf.

6.4 DDRIS Dashboard

The DDRIS dashboard is the primary GUI for system administrators tasked with

maintaining the health of DDRIS and troubleshooting performance related concerns

for users. Built utilizing Grafana, the dashboard is meant to be simple but pro-

82

vide long-term historical records to detect trends and anomalies. Subsection 6.4.1

provides an overview of the pages available to dashboard users. Details of the data

visualizations provided by the DDRIS dashboard are available in Subsection 6.4.2.

6.4.1 User Interface

The DDRIS custom dashboard was created to provide supplemental information to

system administrators for troubleshooting, documentation, and alerts. It was built

with simplicity in mind to support the key concepts of Human Computer Interaction,

including keeping the dashboard easy to use and easy to learn. To promote this,

few pages are used to organize the data and further organization relies on accordion-

style menus to filter visualizations. The pages available to a viewer include the login

page, dashboard home, user profile, alert rules, the Cyberinfrastructure Data Transfer

Dashboard, and the Kubernetes Metadata Dashboard.

When a user navigates to the DDRIS Dashboard, the first page to load will be

the login page, created and managed by Grafana as presented in Figure 6.16. The

user will be prompted for user credentials that are managed within Grafana and

can belong to one of three user types: admin, editor, and user. Each has access

to different permissions within the dashboard. User management is specific to the

DDRIS Grafana instance and is handled within Grafana.

Following login, the user is redirected to the Grafana home page showcased in

Figure 6.17. This page is also managed by Grafana and shows recently viewed dash-

boards and new announcements from the Grafana developers. There are also links

available to receive help or access documentation and tutorials regarding Grafana.

The primary purpose of the home page is to provide access to further navigation.

From the “Home” page, users may then access their user profile. This allows a

user to update their contact information for alerts or modify their password. This

page is also fully managed by the Grafana software. The “Profile” page can be seen

in Figure 6.18.

Any alert rules and their current statuses are listed on the “Alerts” page as

83

Figure 6.16: A screenshot of the Login page for the DDRIS dashboard, created and
managed by Grafana.

Figure 6.17: The “Home” page for the Grafana dashboard shows recent dashboards
and provides access to navigation.

presented in Figure 6.19. Alerts are only linked to graph-type data visualizations in

Grafana and are created by specifying bounds to expected values. When a query is

created on a graph, it is then automatically reflected on the “Alerts” page by Grafana.

These alerts can then be modified and alert channels are specifiable, including email,

Slack [75], or PagerDuty [56].

84

Figure 6.18: The “Profile” page of the Grafana dashboard where users may change
or view their user profile information.

Figure 6.19: The alert page shows all alerts on the DDRIS dashboard.

Finally, the user has access to the dashboards created through Grafana. The Cy-

berinfrastructure Data Transfer Dashboard is responsible for displaying information

specifically regarding DTNs and their performance. Timeseries data regarding the

health of the DTNs is tracked through Prometheus and displayed on this dashboard

under an accordion menu dedicated to DTN health as illustrated in Figure 6.20 and

Figure 6.21. This data is navigable utilizing the DTN variable above the menu. This

85

variable allows the data to be filtered according to a single DTN.

Figure 6.20: A screenshot of the DTN Health tab of the DDRIS dashboard, showing
seven data visualizations belonging to DTN-S under the collapsible menu, “DTN
Health”.

Figure 6.21: A screenshot of further DTN Health on the DDRIS dashboard, showing
two additional data visualizations belonging to DTN-S under the collapsible menu,
“DTN Health”.

Another tab in the menu is “Data Transfer”. This tab, shown in Figure 6.22,

displays metadata regarding data transfers utilizing the DTNs on campus. Visualiza-

tions include maps of transfers, a graph of transfer speeds over time, and a table of

86

Figure 6.22: A screenshot of the “Data Transfer” tab on the DDRIS dashboard.

transfer metadata. More information regarding these visualizations will be covered

in Subsection 6.4.2.

The remaining tab on the “Cyberinfrastructure Data Transfer Dashboard” is the

“Related Dashboards Quicklist”. This tab provides direct links to dashboards per-

taining to Kubernetes in an organized fashion, allowing for quick navigation between

these dashboards without the use of an intermediate page, such as the dashboard

search. By limiting the number of pages needed to navigate the dashboards, the ease

of use and rate of errors are decreased accordingly.

One relevant dashboard is the “Kubernetes Metadata Dashboard”, showcased in

Figure 6.23, which provides important metadata describing the health of Kubernetes

elements necessary for proper dashboard display and data collection. These graphs

show memory usage across multiple pods, including the Postgres database for data

transfer and DTN health information, elasticsearch, and the Postgres and Cassandra

databases for network telemetry collection. If these databases reach their maximum

allocated capacity, then data collection will halt. For this reason, alerts are configured

to notify administrators when usage has reached 80% of the maximum capacity.

87

Figure 6.23: An overview of the “Kubernetes Metadata Dashboard”.

6.4.2 Data Visualization

All data visualizations hosted on the DDRIS dashboard are updated in near-real

time with options available for filtering historical records based on time. This allows

users to view current data as well as filter through time to find expected values

and trends. Eight visualizations belong to the Cyberinfrastructure Data Transfer

Dashboard previously defined in Subsection 6.4.1. The first visualization is dedicated

to resource usage as percentages, as reflected by Figure 6.24. Total CPU, file system,

and RAM usage are all calculated as a percentage and displayed in a gauge format

with a Blue, Yellow, Red color scheme. These colors were chosen for color-blind

accessibility and additionally have a bar gauge to support alternative methods of

conceptualizing the usage percentage. Yellow and Red correspond with threshold

values of 80% and 90% respectively.

Figure 6.24: DTN health visualizations for resource usage in a gauge format.

88

The second visualization is a graph of file system usage versus time for each file

system mount shown in Figure 6.25. One advantage of displaying this information

as a graph is the ability to set alerts on graph-type visualizations in Grafana. File

systems are separated by mount point and displayed as the percentage used of each

mount point over time. The visualization is filterable by selecting a mount point in

the legend and by selecting a time period.

Figure 6.25: Information regarding the DTN’s file system capacity displayed in a
graph format of percentage used versus time.

Visualization three, presented in Figure 6.26, is hardware temperature over time.

Like other graph-type visualizations in Grafana, hardware temperature is filterable

by selecting entries within the legend corresponding to the graph. Data is collected

for chips platform coretemp 0 and platform coretemp 1 over multiple sensors. As

some sensors are shared between chips and are inconsistent across DTNs, the most

meaningful legend display was decided to include both sensor and chip data with all

values displayed at once. Data is then filterable by chip and sensor combination as

opposed to by chip or by sensor. By displaying chip and sensor as a pair, both are

also displayed in alerts, making messages more illustrative of the concerns present at

the time of an alert. Insufficient cooling of the device can result in hardware damage,

making this graph vital to proactive troubleshooting.

Next is the Power Consumption visualization showcased in Figure 6.27. Power

89

Figure 6.26: Information regarding the DTN’s hardware temperature overtime sepa-
rated by chip and sensor.

Figure 6.27: DTN power consumption over time in Watts.

Consumption is another graph-type visualization built in Grafana and features a

legend for filtering like other graphs. This legend displays the chip information re-

sponsible for drawing power. Data is displayed in Watts over the specified time range

shared with other visualizations. Power consumption serves as a method of viewing

potential power surges and potential malfunctioning behavior from power supplies.

The final “DTN Health” visualization on the Cyberinfrastructure Data Transfer

Dashboard is bandwidth usage by the machine overtime, reflected in Figure 6.28.

This visualization dynamically filters the data so as to display only the network in-

terface that is active for data transfers on the DTN. At this time, this is the only

90

network interface on each DTN capable of connecting to the internet. Bandwidth

usage is imperative for system administrators to view unexpected behavior unrelated

to transfers and monitor performance reported by the device during a transfer com-

pared to the reported transfer speed to determine which DTN may be experiencing

poor performance.

Figure 6.28: Bandwidth Usage overtime displayed as a graph.

Next, the Cyberinfrastructure Data Transfer Dashboard’s “Data Transfer” tab

has two data visualizations both shown in Figure 6.29. These visualizations show

historical data transfer speeds in a graph and transfer metadata in a table. These

visualizations display data for all DTNs over a specified range of time together with

filter options in the table to filter by DTN, users, or transfer owners. The table

provides the UUID of a transfer that can then be utilized to filter the graph through

the legend filter options of graph-type visualizations in Grafana.

Finally, further metadata is displayed in a Geomap visualization, a geographi-

cal display of data that is dependent upon location. This Geomap is showcased in

Figure 6.30 and consists of two parts. The left display, known as “IP Connections

Data” utilizes an open street map that provides street names, national parks, and

important geographical landmark data for a more detailed description of where trans-

fers are occurring. This street map display was chosen because the left display also

provides specific transfer information when a location is hovered over with the cursor,

including latitude, longitude, city, and zip code. “IP Connections Data” limits trans-

91

Figure 6.29: Information regarding data transfer performance overtime and metadata
surrounding these transfers.

Figure 6.30: A geographical display of where data transfer are occurring. On the left
is a time filterable map capable of providing additional metadata regarding specific
transfers while the right display is a heatmap showing frequency of transfers in a
specific location.

fers displayed according to the same time field as the data transfer table and graph

previously defined. On the right is the “IP Connections Heatmap”, which groups

transfers according to location. This Geomap provides a less detailed display, using

the Grafana default map, due to the aggregated nature of the data. Data displayed

on the heatmap is historical and does not filter by time. By providing all data, it is

possible to map where the University is collaborating with or spot unusual traffic.

92

Chapter 7

User Study

This Chapter outlines the user study performed to assess the DDRIS Grafana dash-

board. Section 7.1 provides insight on the background of the study, including its

importance and the approval process for conducting the study. Next, Section 7.2

summarizes the participants included in the study, including study participant demo-

graphics. The hardware and software applications that were utilized in running the

study are briefly discussed in Section 7.3. Fourth, Section 7.4 describes the procedure

of running the designed user study in detail. Section 7.5 presents the independent

and dependent variables collected and assessed as a part of the study to determine

effectiveness of the dashboard. Finally, all tasks performed by the users are listed in

Section 7.6.

7.1 Introduction

Research with a Human Computer Interaction component is to include a measure

of usefulness for an application. In this context, usefulness is a combination of util-

ity, relating to an application having the tools necessary for a user to utilize the

application, and usability [55]. Usability extends beyond ease of use to encompass

effectiveness, efficiency, ease of learning, error tolerance, and engagement. Software

should be designed with all five of these goals for usability in mind. To measure this

usefulness requires experimentation with the intended users and assessment to deter-

mine appropriate changes to further achieve these goals. The basis for running such

93

an experiment has been outlined by I. Scott MacKenzie in his book “Human-computer

interaction: An empirical research perspective” [47], which has been utilized in the

design of this user study. This study aims to assess the usefulness of the DDRIS

dashboard in respect to these principles, and evaluate future development ideas to

improve upon the implemented iteration.

Before a user study may be conducted, the experiment must be approved by the

Institutional Review Board (IRB) to ensure the experiment is ethical in nature. First,

all instructors participating in conducting the user study must be certified through

the Collaborative Institutional Training Initiative (CITI) to train instructors on how

user studies involving humans are to be conducted and the rights of any participants.

Certification for this user study was acquired through the “CITI Group 1: Social

Behavioral Research Investigators and Key Personnel Group” [87] training course.

This user study was then sent to the IRB for approval with a form package created

of documents found in the Appendices. This package includes the IRB Application

Cover Sheet found in Appendix A, the Social Behavioral Educational Research Pro-

tocol in Appendix B, the Consent Form found in Appendix C, and the questionnaires

and recruitment email found in Appendices D-F.

7.2 Participants

Participants that took part in the user study consisted of current and former Univer-

sity of Nevada, Reno students with experience in the field of computer science. This

experience includes computer science degrees, some computer science classes, and

vocational experience with system administration. Participant sampling was based

on convenience. The participants were contacted utilizing the recruitment email re-

flected in Appendix F. A total of 13 participants between the ages of 20 and 50 years

old engaged in the study. While all participants were familiar with computer science,

the level of experience with system administration and data transfers varied between

participants to receive responses from a larger range of users. This variation served to

properly reflect the differences in levels of experience and domain specific knowledge

94

between potential students and staff that will be responsible for maintaining DDRIS.

7.3 Apparatus

The study was conducted on a Sager Notebook running Windows 10 Home Edition

with a 9th Generation i7 64-bit processor and 16 GB of RAM. Due to the Covid-19

pandemic, the study was performed in person with a remote option through Zoom for

participants who were unable or uncomfortable meeting in person. The software tools

utilized in running this user study include Brave web browser [13], MobaXterm [51],

Mousotron [11], and Grafana. Two websites were included in this user study, the

DDRIS dashboard and Globus Management Console. The DTN NCAR-DA-9 was

used for the command line section of this user study.

All web browsing was conducted on the Brave browser, shown in Figure 7.1. The

Brave browser is a fast and secure web browser built on Chromium that serves as

the department standard. The DDRIS dashboard, Globus Management Console, and

one tab with the Google search engine were open for the user prior to starting the

user study. Google was chosen as the search engine available to participants due to

its popularity, so most participants would have experience utilizing the search engine.

A search engine was provided to the users to more closely represent a typical work

environment where questions could be answered through the internet. If a user is

unfamiliar with how to complete a task, they then can search for how to complete the

task within the task time limit. To compare performance against the Linux command

line, a single SSH session was loaded on MobaXterm prior to the user starting the user

study. MobaXterm opens a terminal environment for participants to use as shown in

Figure 7.2.

Mousotron and Brave are used to aid in collecting accurate qualitative data.

Mousotron was set prior to starting the first task. After each task, the output was

recorded and the software was reset. The Mousotron interface can be seen in Fig-

ure 7.3 Brave’s element inspector allows for performance data to be collected with

persistence. These logs will be reviewed after a participant has finished the port-usage

95

Figure 7.1: A screenshot of a Brave browser window, showing the layout of the
browser.

Figure 7.2: A single session open on MobaXterm, showing the terminal interface that
was be available to participants.

96

Figure 7.3: A screenshot of the Mousotron Interface.

questionnaire before being removed again to view page load times.

7.4 Procedure

The procedure began with recruitment, where potential users were sent an email

asking the participant if they would like to participate in the study. There were two

versions of this email, shown in Appendix F, based on if the participant was already

familiar with the instructor. After a user agreed to participate, a meeting time was

scheduled for in person or on Zoom, based on participant preference. In person

sessions were completed in Edmund J. Cain Hall (EJCH) room 272C located on the

UNR campus. Participants were met in the open lobby area of EJCH and led to

97

the office in which the study was conducted. Upon starting the study, the instructor

outlined the goals of the study and what would be expected of participants. It was

established for participants that they were allowed to leave at any time and end their

performance in the study if they no longer wanted to participate. Participants were

then required to complete the consent forms attached in Appendix C to continue in

the study.

Following the completion of the consent form, participants were to complete the

entrance questionnaire outlined in Appendix D. This questionnaire was designed to

collect general demographic information about participants, including age, gender,

and education. Additionally, the survey provided insight on familiarity with Linux

command line, data transfer solutions, data visualization, and web browsing, all con-

cepts present in the study. After completing the survey, the instructor provided access

to their laptop to complete the working session of the study on a controlled platform.

In the working session of this study, participants were asked to complete a series

of tasks on three platforms to evaluate the effectiveness of the DDRIS dashboard

design. The study consisted of this single working session with two parts. In part

one, users performed tasks on the DDRIS dashboard and the native Globus console to

evaluate effectiveness in locating data transfer metadata. Both web pages were loaded

in different browser windows prior to beginning the study. Users were to perform all

tasks on the Globus console prior to viewing the DDRIS dashboard with only one task

provided at a time. After all tasks were completed, participants were asked to perform

the tasks again on the DDRIS dashboard. Participants were provided four minutes

and 30 seconds to complete each task on either platform before the task is considered

failed. When a task is failed, users were asked to continue to the next task without

completing the previous task. This ensured that too much time was not dedicated to

a single task, and to aid in addressing user frustration in the event they were stuck.

Participants were instructed to pause between tasks to log each task’s completion data

using Mousotron. In part two, users performed tasks on the DDRIS dashboard as

well as Linux command line to evaluate speed and accuracy of finding system health

98

information for DDRIS systems. Users were led to the MobaXterm console where

access to a machine was already established without sudo or root privileges. It was

expressed to users they have access to one browser tab to utilize the Google search

engine to find correct methodologies and were given information on the operating

system to aid in finding the correct commands. Starting on Linux command line,

participants were presented a single task at a time until all tasks were completed, like

in part one. After each task was presented, users were asked if they already know

how to complete the task and reminded to use Google if they did not. Participants

were provided only two minutes and 30 seconds before the task was considered failed.

When all tasks were completed on command line for part two, the tasks were to be

completed on the DDRIS dashboard. As was the case in part one, participants were

once again instructed to pause between tasks on command line and the dashboard to

output Mousotron metrics.

Once part one and part two were both completed, participants were to complete

the exist survey outlined in Appendix E. The post-test survey was designed to aid in

assessing the user experience and determine the usefulness of the dashboard through

both quantitative and qualitative data. The first six questions of the survey were

quantitative where data is collected on a 1-5 Likert scale. On this scale, a 1 rep-

resented a strong negative and a 5 represented a strong positive. These questions

addressed both the utility and usability of the dashboard by asking the helpfulness

of the dashboard in terms of effective data display and ease of navigation and task

completion across platforms. The remaining three questions were designed to collect

more qualitative data through short answer. These questions allowed for user feed-

back to determine a future direction for research and development by determining

what was lacking from the dashboard.

7.5 Design

Measurements were taken during the experiment as participants completed tasks.

First, the variables for Part One of the study will be discussed. Then an overview

99

of the variables for Part Two of the study will be outlined. Lastly, qualitative data

belonging only to the DDRIS dashboard will be discussed. For both parts of the

study, the within-subjects method defined by MacKenzie [47] was utilized such that

test conditions were repeated for all participants as opposed to the between-subjects

method where participants would be exposed to only one interface.

Part One of the study contained five dependent variables as shown in Table 7.1.

The first dependent variable is the amount of time a participant takes to complete a

task measured to the seconds. The second and third measurements are the integer

values of left and right mouse clicks respectively. Fourth, task completion status is a

boolean value determined by whether or not the participant is capable of completing

the task within the four minute time limit. If the participant has not completed

the task within four minutes, then the task is considered failed, denoted by a 1.

Lastly, the comparative difficulty scores will be assessed. These results are gathered

through the Exit Questionnaire and are on a Likert scale of 1-5. Part One had only

one independent variable. This was the interface at two levels, the Globus Online

Graphical User Interface and the DDRIS Dashboard.

Table 7.1: Overview of variables measured in Part One of the user study.

User Study Variables Part One
Measurement Number Description

1 Time to complete the task
2 Number of left mouse clicks
3 Number of right mouse clicks
4 Task completion status
5 Difficulty scores

Part Two of the study had six dependent variables as shown in Table 7.2 where

measurements 1-4 are the same as in Part One. Measurement five, task completion

status, has an updated threshold of only two minutes and thirty seconds, so users have

less time to complete each task before it is considered failed. The difficulty scores are

from the Exit Questionnaire like in Part One where they are from a 1-5 Likert scale.

Lastly, the number of questions asked by the participant on how to complete a task

100

Table 7.2: Overview of variables measured in Part Two of the user study.

User Study Variables Part Two
Measurement Number Description

1 Time to complete the task
2 Number of left mouse clicks
3 Number of right mouse clicks
4 Task completion status
5 Difficulty scores
6 Number of questions asked

and websites visited will be recorded. These questions include both to the moderator

and number of Google searches.

There were two independent variables associated with Part Two of the study.

One independent variable is the interface at two levels, Linux (Ubuntu) Command

Line Interface (CLI) and the DDRIS Dashboard. The second is preexisting familiarity

with the CLI at three levels, not familiar, moderately familiar and very familiar.

7.6 Tasks

As mentioned previously, the study was broken into two parts. Part One of the study

compared effectiveness of the DDRIS Dashboard to the Globus Transfer Management

Console to obtain transfer records. Part two compared effectiveness of the DDRIS

Dashboard to Linux Command Line to obtain system status information. First, the

tasks associated with Part One will be discussed in detail. This will be followed by

the tasks in Part Two.

Part One of the user study involved four tasks as shown in Table 7.3. The

participant was to find the transfer speed of one transfer on DTN-F on both platforms.

Because the Globus Management Console does not display historical records, this

data needed to be within a month of the user study. Participants were allowed to

pick any transfer on this date, but it had to involve DTN-F as the transfer source

or destination. After finding the transfer speed of this transfer, the participant was

to state the local user on the source and destination recorded as being responsible

101

Table 7.3: Overview of tasks participants were asked to perform in Part One of the
user study.

User Study Tasks Part One
Task Number Name Description

1 Find Transfer Speed
Find the ending transfer speed for one
transfer that completed on any DTN

2 Transfer User
Find the local users responsible for a
transfer’s read and write operations on
the source and destination machines

3 Transfer Owner
Find the Globus user that initiated the
latest transfer

4 Current Transfers
Find how many transfers are currently
running

for the transfer. This is the user on the machine responsible for the read and write

operations involved in the transfer. From here, the user had to navigate back to the

current date to find the Globus user who initiated the latest transfer. This differs

from the local user in that this corresponds with a Globus username, not a local

account on the machine. For the final task, the participant was to count how many

tasks were currently running. Each task for Part One was limited to four minutes

before the task would be considered failed.

Part Two of the study involved the three tasks shown in Table 7.4. All tasks

completed in Part Two were to be completed for NCAR-DA-9, where participants

would have an ssh terminal to run Linux commands. For the first task, users were

told that Globus Collections used the block device “sdb” and were instructed to find

how much of the filesystem was left available for Globus Collections. This could be

completed several ways, but the recommended method was through the command

df -h to display filesystem information in a human readable format. This was not

provided by the instructor to test knowledge, but if asked, the instructor would rec-

ommend the man page for this command. For the second task, users were to find the

current temperature of any on-board component. Through command line, this could

be completed by running the sensors command. Like in the previous task, this was

not provided to participants. For this task, instructors would encourage participants

102

Table 7.4: Overview of tasks participants were asked to perform in Part Two of the
user study.

User Study Tasks Part Two
Task Number Name Description

1
Find Available File Sys-
tem Space

Find how much of the file system is
available for Globus Collections

2 Find Temperature
Find the current temperature of on-
board components

3 Find Memory Usage
Find how much memory is currently in
use

to search for the answer on Google. For the final task, the participant was to find

how much memory was currently in use. This could by completed through the com-

mand htop but was once again not provided to participants. All tasks in Part Two

were limited to two minutes and 30 seconds before being considered failed to provide

sufficient time to complete tasks without forcing participants to remain on the task

until completion.

103

Chapter 8

Results and Data Analysis

The results of the user study and tuning the DTNs are detailed in this Chapter. First,

the results from the pre-usage survey will be discussed in Section 8.1. Performance

on tasks during he user study are then outlined in Section 8.2. Next, Section 8.3

reviews results from the post-usage questionnaire. A discussion of these results is

then provided in Section 8.4. Finally, a detailed comparison of initial transfer speeds

and final transfer speeds as a result of DTN tuning are detailed in Section 8.5.

8.1 Results from the Entry Questionnaire

Participants ranged from age 22 to age 50 with the majority of participants in their

mid-20s to early-30s. Figure 8.1 shows participant responses when asked their age.

Other demographic information collected indicated that the majority of participants

held a Bachelor’s or Master’s degree as their highest form of education with one

user currently pursuing their Bachelor’s. All participants currently attend or have

graduated from the University of Nevada, Reno. The majority of participants identify

as male with only two participants identifying as female.

After demographic data was collected, participants were asked to rank their fa-

miliarity with various concepts present in the user study. All participants indicated

a familiarity with web browsing with 10 participants indicating that they were very

familiar, and two participants indicating some familiarity. Specificity increased follow-

ing this question by asking participants how familiar they were with web dashboards.

104

Figure 8.1: Bar chart displaying participant ages.

As shown in Figure 8.2, out of the 13 participants, 11 reported significant familiarity

with dashboards. Two participants indicate some familiarity without confidence in

the subject. Participants were then asked how often they utilized data visualization.

10 participants indicate frequent usage. One participant responded that they never

use data visualization. This was followed by asking participants their familiarity with

data transfer solutions. The majority answered they were not familiar with data

transfer solutions while those with familiarity mostly responded with knowledge of

FTP and SFTP. Finally, participants were asked their familiarity with using Linux

Command Line, as presented in Figure 8.3. The majority of participants registered a

basic familiarity of command line with one participant indicating a lack of familiarity.

8.2 Results from Tasks

As defined in Chapter 7, following completion of the pre-usage questionnaire, par-

ticipants were instructed to perform two sets of tasks. In Part One, participants

performed the same tasks on the DDRIS dashboard and Globus native dashboard.

The results of this section of the study are provided in Subsection 8.2.1. Part Two

of the study saw participants performing tasks on the DDRIS dashboard and using a

105

Figure 8.2: Bar chart displaying participant familiarity with dashboards.

Figure 8.3: Bar chart displaying participant familiarity with using Linux command
line.

Linux terminal. These results are shown in Subsection 8.2.2. For both sections of the

study, after data collection, results were aggregated and graphed to show skewedness,

variance and outliers. The difference in results was then calculated and statistical

analysis was performed to determine if the differences were significant.

106

8.2.1 Part One

During Part One of the user study, participants were asked to perform four tasks on

the native Globus dashboard followed by repeating the tasks on the DDRIS dash-

board. To maintain consistency between sections, DDRIS measurement results are

listed first such that ∆ = DDRIS − Globus. All measurement results are discussed

separately before evaluating the difference in performance between platforms. The

statistical significance to determine a difference in the results between using DDRIS

and using Globus to complete tasks was performed utilizing a two-tailed paired t-test

with DDRIS as the first data group.

Participant task completion time, listed in seconds, for each task on the DDRIS

dashboard is listed in Table 8.1. All participants successfully completed every task

in the allotted amount of time. The mean and sample standard deviation (SD) are

provided as the last two rows of the table to provide a data summary. Out of the

four tasks, the most participants struggled most with Task 2, showing a mean of

83.54 seconds and standard deviation of 61.48 seconds. By contrast, Task 3 had the

fastest performance with a mean of 13.31 seconds and standard deviation of 5.88

seconds. Figure 8.4 supplements these results by visualizing this performance data

as a Box and Whisker Plot, showing distribution and upper quartiles, median, and

lower quartiles for each task. According to this data summary, Task 1 has a large

right skew due to a single outlier present on the upper bound. Task 2 and Task 3 have

a moderate positive skew towards a higher number of seconds required to complete

the task. Task 4 also has a moderate right skewness of 0.73.

In contrast, participant task completion time utilizing Globus is visible in Ta-

ble 8.2. Due to errors in the data, participant 12’s Task 1 has been removed from

all calculations in Part One. The results show users struggled the most completing

Task 1 with a mean of 119.75 seconds with a wide difference in completion time

as supported by the standard deviation of 52.49 seconds. By contrast, participants

tended to quickly complete Task 2 and Task 3. According to Figure 8.5, Task 1 shows

107

Table 8.1: Overview of time taken to complete each task on the DDRIS dashboard
in Part One of the user study.

Task Completion Time (in seconds) using DDRIS
Participant Number Task 1 Task 2 Task 3 Task 4

1 32 225 22 26
2 45 107 6 42
3 71 17 8 26
4 88 118 18 88
5 5 144 8 25
6 110 101 8 25
7 20 76 26 15
8 22 18 13 34
9 60 130 12 93
10 82 35 11 87
11 35 28 15 49
12 110 38 11 32
13 235 49 15 73

mean 70.31 83.54 13.31 47.31
SD 60.03 61.48 5.88 27.94

Figure 8.4: A Box and Whisker Plot showing data analysis for task time completion
utilizing DDRIS.

the lowest, moderate right skew (0.71). Task 1 also shows the highest variance and

highest completion times compared to other tasks. Task 2 and Task 4 are heavily

skewed to the right, with Task 4 having two outliers on the upper bound. Task 3 is

108

moderately skewed to the right.

Table 8.2: Overview of time taken to complete each task on the Globus dashboard in
Part One of the user study.

Task Completion Time (in seconds) using Globus
Participant Number Task 1 Task 2 Task 3 Task 4

1 111 45 39 30
2 227 35 21 32
3 182 16 10 21
4 105 23 12 48
5 114 28 18 19
6 167 14 14 111
7 49 27 19 30
8 66 24 11 18
9 92 31 16 127
10 69 14 25 44
11 106 16 35 19
12 x 54 12 23
13 149 19 30 39

mean 119.75 26.62 20.153 43.15
SD 52.42 12.25 9.48 35.17

Figure 8.5: A Box and Whisker Plot showing data analysis for task time completion
utilizing Globus.

Comparing the results, without Participant 12’s Task 1, on average participants

109

were able to complete tasks using DDRIS faster than the Globus native dashboard

on two out of four tasks as shown in Table 8.3. Results from Task 1 on DDRIS and

Globus indicate that there is a significant statistical difference between the results and

that users were capable of completing tasks faster on the DDRIS platform, t(11) =

−2.7, p = .02. Additionally, results from Task 3 on DDRIS and Globus indicate

users were also capable of completing this task significantly faster utilizing DDIRS,

t(12) = −2.74, p = .02. However, Task 2’s results with DDRIS and Globus show

participants’ ability to complete tasks faster using the Globus native dashboard are

statistically significant, t(12) = 3.58, p = .004. Lastly, the results of Task 4 show

no statistical difference in participant completion times between DDRIS and Globus,

t(12) = 0.43, p = .67.

Table 8.3: Overview of ∆Task Completion Time, where ∆ represents the difference
between the DDRIS dashboard value and the Globus dashboard value and statistically
significant differences are denoted by a boldfaced mean value.

∆ Task Completion Time (in seconds)
Participant Number Task 1 Task 2 Task 3 Task 4

1 −79 180 −17 −4
2 −182 72 −15 10
3 −111 1 −2 5
4 −17 95 6 40
5 −109 116 −10 6
6 −57 87 −6 −86
7 −29 49 7 −15
8 −44 −6 2 16
9 −32 99 −4 −34
10 13 21 −14 43
11 −71 12 −20 30
12 x −16 −1 9
13 86 30 −15 34

mean −52.67 56.92 −6.85 4.15

The next metric, was a measurement of the number of left mouse clicks from

participants when completing a task. Results for users on the DDRIS dashboard can

be viewed in Table 8.4, and show a higher number of clicks for Task 1 and Task 2

with an average of 12.54 and 12.46 clicks respectively. This appears to correlate with

110

Table 8.4: Overview of left mouse clicks to complete each task on the DDRIS dash-
board in Part One of the user study.

Left Mouse Clicks using DDRIS
Participant Number Task 1 Task 2 Task 3 Task 4

1 8 38 6 4
2 5 16 2 8
3 35 1 1 4
4 8 20 4 5
5 0 8 0 0
6 10 24 0 0
7 4 18 0 6
8 4 8 2 10
9 6 10 3 14
10 10 3 3 13
11 8 3 4 10
12 24 5 4 3
13 41 8 3 12

mean 12.54 12.46 2.46 6.85
SD 12.66 10.48 1.85 4.71

time taken for a task where Task 1 and Task 2 also featured the highest values. The

result plot, provided in Figure 8.6, also shows the high spread for both of these tasks.

While Task 1 is approximately symmetric (skewness = 0.3), Task 1 also features one

outlier on the upper bound of 41 clicks. Task 2 has a moderate right skew. Task 3

shows a right skew with a smaller standard deviation and better average performance

than the previous tasks. Task 4 has a larger variance and mean than Task 3 while

maintaining lower values than the first two tasks, correlating with task completion

time.

Globus features low performance for Task 1 and high performance for the re-

maining three tasks as provided by Table 8.5. The number of clicks for participant 12

in Task 1 has been removed again due to data collection errors. Utilizing the remain-

ing data, it can be seen that Task 1 had the highest number of clicks with a mean

of 24.70 clicks until task completion. Further information, illustrated in Figure 8.7,

show a large spread in left mouse clicks for Task 1 with no outliers and a moderate,

left skew. Tasks 2, 3, and 4 feature little variation in results with a moderate, right

111

Figure 8.6: A Box and Whisker Plot showing data analysis for left mouse clicks per
task utilizing DDRIS.

skewness for Task 2 and near symmetrical distribution for Task 3. Neither Task 2 or

Task 3 feature outliers. Task 4 has a moderate, left skew with two outliers on the

upper bound and one outlier on the lower bound.

Differences in the results for each task can be viewed in Table 8.6 where it appears

participants utilized fewer clicks on DDRIS for Task 1 and Task 3, and participants

performed more left clicks on DDRIS for Task 2 and Task 4 when compared to Globus.

However, statistical analysis shows that the difference between DDRIS and Globus for

Task 1 is not statistically significant, t(11) = −1.68, p > .05. As such, no conclusion

can be drawn regarding the number of left clicks for Task 1. Similarly, Task 3 shows

no statistically significant difference in results, t(12) = −0.10, p > .05, nor does Task

4, t(12) = 0.92, p > .05. Task 2 shows a statistically significant difference in the

number of left mouse clicks used between DDRIS and Globus, supporting that fewer

left clicks were utilized to complete Task 2 on Globus, t(12) = 3.37, p = .006.

Right clicks are a method of viewing error rate, however most participants did

not utilize right clicks to navigate the dashboard and would instead choose to navigate

through mistakes or left click on the back button in the browser. As such, results for

112

Table 8.5: Overview of left mouse clicks to complete each task on the Globus dash-
board in Part One of the user study.

Left Mouse Clicks using Globus
Participant Number Task 1 Task 2 Task 3 Task 4

1 48 9 7 6
2 54 4 2 4
3 35 0 0 5
4 13 0 1 5
5 1 1 0 0
6 21 2 3 9
7 15 8 4 5
8 22 3 3 4
9 12 5 3 13
10 6 4 4 6
11 39 3 3 6
12 x 4 5 5
13 38 3 3 6

mean 24.70 3.48 2.85 5.50
SD 17.08 2.70 1.93 2.95

Figure 8.7: A Box and Whisker Plot showing data analysis for left mouse clicks per
task utilizing Globus.

113

Table 8.6: Overview of the difference in left mouse clicks between DDRIS dashboard
usage and Globus dashboard usage.

∆Left Mouse Clicks
Participant Number Task 1 Task 2 Task 3 Task 4

1 −40 29 −1 −2
2 −49 12 0 4
3 0 1 1 −1
4 −5 20 3 0
5 −1 7 0 0
6 −11 22 −3 −9
7 −11 10 −4 1
8 −18 5 −1 6
9 −6 5 0 1
10 4 -1 −1 7
11 −31 0 1 4
12 x 1 −1 −2
13 3 5 0 6

mean −13.75 8.92 −0.46 1.15

right clicks were low across all tasks. Task 1 and Task 4 are the only two tasks that

resulted in right click navigation with a mean of 0.38 clicks for Task 1 and 0.15 clicks

during Task 4. The Box Plot, visible in Figure 8.8, for this measurement shows that

all data points outside of 0 clicks are an outlier. As such, there are two outliers for

Task 1 on the upper bound and two outliers for Task 4 on the upper bound.

Similar to when using DDRIS, participants rarely utilized right clicks to navigate

the Globus dashboard. Right clicks were used in Task 1 and Task 4, however, as

illustrated by the associated Box Plot in Figure 8.9, once again all values other than

0 were outliers. Task 1 and Task 4 both feature two outliers on the upper bound. As

such, the difference in values between DDRIS and Globus usage can be assumed to

be 0 clicks.

8.2.2 Part Two

Part Two of the study had participants perform three tasks on the DDRIS dashboard

followed by the same three tasks using Linux’s Command Line Interface. Results for

DDRIS measurements are listed prior to the corresponding Linux CLI measurement

114

Figure 8.8: A Box and Whisker Plot showing data analysis for right mouse clicks per
task utilizing DDRIS.

Figure 8.9: A Box and Whisker Plot showing data analysis for right mouse clicks per
task utilizing Globus.

such that ∆ = DDRIS − CLI. The difference in results is then analyzed, except in

the case when no comparative analysis is present. If a task was failed by the partic-

ipant, the resulting data is not included in calculations and the corresponding task

completion measurement on the opposing platform is not included in the statistical

115

analysis.

The first measurement collected in Part Two was time to complete a given task

by a participant, displayed in Table 8.7 for DDRIS. Participants performed best on

Task 3 with an average completion time of 20.08 seconds and worst on Task 1 with

an average completion time of 33.54 seconds. This is supported by the corresponding

Box Plot available in Figure 8.10, which shows decreasing amounts of time taken to

complete each task. Task 1 has a slight positive skew with no outliers. Task 2 has a

slight right skew with one outlier on the upward bound of 48 seconds to complete the

task. This task features the smallest variation in measurement results. Task 3 also

has a positive skew and has two outliers on the upward bound. This task featured

the highest deviation in completion times.

Table 8.7: Overview of time taken to complete each task on the DDRIS dashboard
Part Two of the user study.

Task Completion Time (in Seconds) using DDRIS
Participant Number Task 1 Task 2 Task 3

1 39 28 18
2 25 11 11
3 20 26 52
4 33 48 64
5 43 25 9
6 65 30 11
7 33 33 12
8 13 20 9
9 45 16 13
10 13 24 13
11 21 25 12
12 63 28 14
13 23 22 23

mean 33.54 25.85 20.08
SD 17.02 8.85 17.41

The amount of time to complete each of the three tasks can be viewed in Table 8.8.

All instances where participants were unable to complete a task in the two minutes

and thirty seconds allotted for completion have been removed from calculations. Task

1 and Task 2 both had one instance of failure and as such have 12 data points. Two

116

Figure 8.10: A Box and Whisker Plot showing data analysis for task completion times
using DDRIS during Part Two of the user study.

participants were unable to complete Task 3 in the allowed time frame, so Task 3 has

11 associated data points. These removed points are removed for each metric. Viewing

the remaining data, participants completed Task 3 fastest on average at 65.73 seconds

and Task 2 the slowest with an average of 99.75 seconds. Most participants visited

multiple sites to find the commands for Task 2 and Task 3. Task 3 saw a large number

of participants copy commands from the internet without reading the command or

information surrounding it. As a result, several participants first answered with the

total amount of memory on the machine before realizing the metric they found was

not the metric asked for. These participants were asked to continue looking for the

correct answer. This likely contributed to the larger failure rate for Task 3. Task 3

also saw the highest number of participants able to complete the task without the

use of the internet, which likely is why the average time taken is the lowest when

instances of task failure are removed.

Only successful instances of tasks were graphed in Figure 8.11 as completion of

the task is required by this metric. Viewing this Box Plot, Task 1 appears to be

approximately symmetric and has no outliers. With failed instances removed, this

117

Table 8.8: Overview of time taken to complete each task through Linux command
line Part Two of the user study where failure to complete the task in the allotted
amount of time is marked “X”.

Task Completion Time (in Seconds) using Command Line
Participant Number Task 1 Task 2 Task 3

1 69 147 45
2 57 X 69
3 124 150 42
4 X 118 43
5 57 144 140
6 76 86 78
7 45 70 36
8 66 46 57
9 94 121 X
10 94 103 120
11 91 45 76
12 105 68 17
13 110 99 X

mean 82.33 99.75 65.73
SD 24.35 37.51 36.84

task has the lowest variance in response times. Task 2 has the highest variance in

responses but no outliers and a normal distribution. This likely correlates with how

much time was spent on the internet searching for commands to complete this task.

Task 3 has one outlier on the upper bound of 140 seconds to complete the task and

a moderate right skew.

Compared task completion times are available in Table 8.9. Comparisons are

only present for instances where the task was successful. If a task was failed on

command line during a session, the associated results on DDRIS were removed from

the associated T-test for that task. The difference is statistically significant for Task

1, t(11) = −5.42, p < 0.001. Significantly better performance was also displayed

during Task 2 with high confidence, t(11) = −6.68, p < 0.001. Lastly, participants

took significantly less time to complete tasks on DDRIS compared to command line

for Task 3, t(10) = −3.19, p = 0.01. This indicates that participants were capable of

performing all three tasks faster on DDRIS than using command line.

118

Figure 8.11: Task completion time in seconds using Linux command line.

Table 8.9: Overview of the difference in Task Completion Time between DDRIS
dashboard usage and Command Line Interface (CLI) usage.

∆Task Completion Time (in seconds)
Participant Number Task 1 Task 2 Task 3

1 −30 −119 −27
2 −32 X −58
3 −104 −124 10
4 X −70 21
5 −14 −119 −131
6 −11 −56 −67
7 −12 −37 −24
8 −53 −26 −48
9 −49 −105 X
10 −81 −79 −107
11 −70 −20 −64
12 −42 −40 −3
13 −87 −77 X

mean −48.75 −72.67 −45.27

The second measurement collected was left mouse clicks required to complete

each task. Results utilizing DDRIS are displayed in Table 8.10 and show participants

used the most left mouse clicks to complete Task 1 when compared to other tasks.

Task 1 also had the highest variation in results. This is likely due to there being two

119

Table 8.10: Overview of left mouse clicks to complete each task on the DDRIS dash-
board in Part Two of the user study.

Left Mouse Clicks using DDRIS
Participant Number Task 1 Task 2 Task 3

1 6 5 4
2 4 2 2
3 2 2 8
4 5 4 4
5 12 4 4
6 3 3 4
7 10 12 4
8 3 3 3
9 5 3 3
10 3 3 3
11 3 3 3
12 3 3 3
13 3 3 6

mean 4.77 3.85 4.15
SD 3.00 2.58 1.63

methods of completing the task. Some participants utilized the gauge visualization

while others utilized the graph display and performed mental math to reach the

answer. The corresponding Box Plot, available in Figure 8.12, shows a high positive

skew for Task 1 due to two outliers on the upper bound of 10 and 12 clicks. Task 2

has the highest skewness of all three tasks with one outlier of 12 clicks on the upper

bound. Task 3 also features high positive skewness in the results. This task has no

outliers.

Results using Linux command line can be seen in Table 8.11 and show the fewest

clicks for Task 1. This reflects the observation that participants visited the fewest

websites to complete this task. Task 2 and Task 3 have similar averages; however,

Task 3 features a higher standard deviation. This is supported by Figure 8.13, which

shows Task 3 to have the highest variance. According to this plot, Task 1 has a

moderate left skewness. Task 2 has the highest skewness (skewness = 3.03) when

compared to other tasks. This positive skewness is due to the single outlier on the

upper bound. Due to this, it can be assumed that with more data points, this skew

120

Figure 8.12: Graphical representation of left mouse clicks to complete tasks on DDRIS
in Part Two of the user study.

Figure 8.13: Left mouse clicks used to complete tasks through Linux command line.

would be more moderate. Task 3 also has highly skewed data towards the right due

to an outlier.

When the results are compared, DDRIS outperforms command line for each task,

as shown in Table 8.12. Task 1 had significantly fewer left mouse clicks by participants

utilizing DDRIS when compared to command line, t(11) = −4.37, p = .001. This was

121

Table 8.11: Overview of left mouse clicks to complete each task through the Linux
command line in Part Two of the user study.

Left Mouse Clicks using Command Line
Participant Number Task 1 Task 2 Task 3

1 14 33 31
2 8 X 10
3 12 9 6
4 X 10 4
5 12 7 3
6 9 8 14
7 6 13 10
8 14 7 13
9 10 11 X
10 9 12 14
11 13 10 19
12 10 9 4
13 6 11 X

mean 10.25 11.67 11.64
SD 2.80 6.97 8.19

Table 8.12: Overview of the difference in left mouse clicks between DDRIS dashboard
usage and Command Line Interface (CLI) usage.

∆Left Mouse Clicks
Participant Number Task 1 Task 2 Task 3

1 −8 −28 −27
2 −4 X −8
3 −10 −7 2
4 X −6 0
5 0 −3 1
6 −6 −5 −10
7 4 −1 −6
8 −11 −4 −10
9 −5 −8 X
10 −6 −9 −11
11 −10 −7 −16
12 −7 −6 −1
13 −3 −8 X

mean −5.5 −7.67 −7.82

also true for Task 2, t(11) = −3.91, p = .002, and Task 3, t(10) = −3.02, p = 0.01.

Similar to Part One, Participants tended to utilize the back button in the web

122

browser rather than right click to correct errors. However, right clicks are also how

to paste a command into MobaXTerm. As such, it was hypothesized there would be

more fewer clicks using DDRIS than using the CLI. Figure 8.14 presents the results

from DDRIS and shows all values other than zero clicks are outliers. This observation

extends to command line, as displayed in Figure 8.15. As such, there is no observable

difference in right mouse clicks between DDRIS and command line across any task.

Figure 8.14: Right mouse clicks used by participants to complete tasks on DDRIS
during Part Two of the user study.

During this part of the study, participants were allowed access to a single tab of

Google to aid in finding information through command line. The number of websites

visited have been aggregated across tasks into Table 8.13. A website refers to both new

Google searches and links clicked from Google. This is to account for page previews

provided by the search engine often having answers in them if thoroughly read by

participants. This is to both reflect a job environment where participants would have

access to the internet to find commands and provide participants a method of finding

answers if they did not have them memorized prior to the study. It was expected

that users would not know all commands as participants were meant to reflect an

average student with enough experience to maintain systems who would be acting in

123

Figure 8.15: Right mouse clicks from participants to complete tasks through Linux
command line.

a Junior Systems Administrator role. As reflected by the results, this was necessary

as all participants utilized Google at least once to find commands. On average,

participants visited 6.23 websites to complete all three tasks. This exemplifies the

learning curve of utilizing command line and showcases the need for a platform to aid

new administrators in quickly assessing system health while learning. After gaining

experience, the dashboard still aids through alert rules by providing relevant system

information in the event of a critical event, such as overheating or a full file system,

through an alert channel without the administrator to first needing to diagnose a

system issue.

8.3 Results from the Exit Questionnaire

Following the completion of all tasks, participants were asked to complete and exit

questionnaire to collect qualitative data regarding perceived easy of use, effectiveness,

and satisfaction with the dashboard. The first part of the exit survey required par-

ticipants to respond on a 1-5 Likert scale where a 1 represented a strong negative

response, such as that the dashboard was very difficult to navigate or tasks were very

124

Table 8.13: Overview of the number of websites visited by participants when par-
ticipants were asked to complete tasks using command line during Part Two of the
study.

Number of questions per participant
Participant Number Websites visited/Questions asked

1 10
2 9
3 4
4 3
5 7
6 4
7 7
8 6
9 6
10 6
11 5
12 4
13 10

mean 6.23
SD 2.31

difficult to complete, and a 5 represented a strong positive response in favor of the

platform, such as that tasks were very easy to complete.

Participants were first asked how helpful they found the DDRIS dashboard in

its current state. Results, represented by Figure 8.16, indicate the majority of par-

ticipants found the dashboard effective with 12 responses of either a 4 or 5. One

participant responded with a 3, conveying that this participant found the dashboard

somewhat unhelpful. The weighted average for this question was a rating of 4.31,

demonstrating users found DDRIS helpful overall.

Ease of navigation was addressed in the second question, as shown in Figure 8.17.

Participants indicated that the DDRIS dashboard was also easy to navigate with 6

responses that the dashboard was easy to navigate and 5 responses that the dash-

board was very easy to navigate. Two participants indicated that the dashboard was

somewhat difficult to navigate. Results show a weighted average rating of 4.23 in

favor of the DDRIS dashboard being easy to navigate.

125

Figure 8.16: User responses when asked to rate the helpfulness of the current iteration
of the DDRIS dashboard.

Figure 8.17: User feedback on DDRIS ease of navigation.

The design of the dashboard interface was then critiqued by participants. As

illustrated by Figure 8.18, the majority of participants found the dashboard to be well

designed. 12 participants responded with either a 4 or a 5, meaning well designed

and very well designed respectively, and only one participant responded with a 3,

indicating the dashboard was somewhat not well designed. The weighted average

rating of 4.23 shows participants found the dashboard well designed overall.

126

Figure 8.18: Participant satisfaction with the DDRIS dashboard.

The next three questions asked how difficult users found tasks on each of the

three platforms. Result data for these three questions have been aggregated into

Table 8.14 to directly compare responses. Out of the three platforms, DDRIS had

the highest responses with 1 neutral and 11 positive responses of either a 4 or a 5,

and a weighted average of 4.42. The Linux terminal had the seconds highest response

with 1 participant finding tasks very difficult to complete and 6 participants having

responded neutrally. The remaining 6 participants found the command line tasks to

be easy with an overall weighted average response of 3.46. Globus had the highest

number of negative responses with 6 participants indicating that tasks were difficult on

the platform. 3 participants responded neutrally, and only 4 participants responded

with either a 4 or a 5. The weighted average for Globus was a response of 2.92.

Table 8.14: Participant responses when asked how difficult tasks were to complete
using DDRIS, Globus, and Linux command line where WAVG refers to the weighted
average of responses.

Weighted Average of Task Questions
Platform Very Difficult Difficult Neutral Easy Very Easy WAVG

DDRIS 0 0 1 5 6 4.42
Globus 0 6 3 3 1 2.92

Terminal 1 0 6 4 2 3.46

127

The remaining three questions in the exit questionnaire were short answer ques-

tions. These questions were designed to allow participants an unguided opportunity

to express their feelings regarding DDRIS design. This feedback can then be utilized

in future iterations to improve design effectiveness. Results from the show answer

questions will be discussed in Section 8.4.

8.4 Dashboard Effectiveness Analysis

From the results, it appears most participants preferred the navigation of DDRIS

to Globus. This is interesting when comparing performance results against survey

responses for, while participants found tasks more difficult on Globus, as shown in

Table 8.14, participants were able to complete Task 2 significantly faster on Globus,

shown in Table 8.3, with less user input, exemplified in Table 8.6. In addition, Task 4

was completed without a statistically significant difference between platforms across

metrics. Participants were able to complete Task 1 and Task 3 significantly faster

on DDRIS than Globus; however, there was no significant difference in user input

for left mouse clicks, right mouse clicks, or mouse wheel scrolls for these tasks. This

implies that the subject satisfaction in favor of DDRIS is higher among participants

than Globus, as varying response times and input required to complete tasks is not

reflected in the exit questionnaire results.

This is further supported by participant comments in the short answer section of

the exit questionnaire. One participants noted that Globus was “hard to navigate”

and had “ambiguous wording” that led to a difficulty understanding how to navigate

or find data. The same participant commented that DDRIS was “user friendly” with

data entries “appropriately named and convenient” to access. Participants tended to

become frustrated that Globus terminology was not consistent between pages. For

example, some pages referred to a transfer as a task while others still used the term

transfer, resulting in confusion from participants. Several participants also expressed

that they preferred the dark background. While it is unlikely this affected response

times, this further supports participant subjective satisfaction in favor of DDRIS.

128

Use of DDRIS outperformed the use of the command line across all tasks for

task completion times, represented in Table 8.9, and left mouse clicks, shown in Ta-

ble 8.12. When using the command line, there were also 4 instances of task failure

across all tasks and participants while no instances of failure were present for DDRIS.

This is further represented by difficulty scores reported by participants for both plat-

forms. Participants perceived tasks to be more difficult using the terminal than using

DDRIS 8.14. It should be noted that participants represent an incoming graduate

student or junior system administrator. As a result, this time difference is expected

to become less significant with increased experience. However, DDRIS still contin-

ues to offer additional functionality through alert rules. These allow DDRIS to send

messages to Slack channels and emails when a critical event occurs and for proactive

responses. For example, if the file system reaches 80% of its capacity, an alert will be

sent out to address this issue before users are unable to write data.

When comparing Globus and DDRIS as well as command line and DDRIS, more

participants would aid in assessing further metrics. Right mouse clicks comparatively

do not show a statistical difference in usage between platforms. Additional partici-

pants would be beneficial towards assessing whether this difference is due to browsing

methods or truly was not different between platforms.

To improve DDRIS independently of other platforms, participants were asked

what changes could be made to increase the ease of use and improve the experience

of a system administrator. Participants responded with functionality that is already

present within the dashboard but was not used during the user study, including the

ability to change colors for visualizations and alerts in the event of overheating. This

conveys that this functionality should be better labeled or made more intuitive for

users. Additionally, participants responded that the ability to zoom or filter was not

intuitively present. To improve this, one participant suggested the use of symbols

on either side of the X-axis of graphs, such as a plus-sign and minus-sign to indicate

functionality. The addition of a help page could also list this functionality. Lastly, one

participant suggested adding a transfer duration column to the table view of transfer

129

metadata.

8.5 Transfer Speeds

To assess tuning of the DTN-S and DTN-F, a series of tests were run between DTNs

and between campus machines. Because the NCAR-DA-9 DTN only has a 10 Gb

connection, and due to its primary use case of connecting to other locations on campus

that are not optimized, the performance of NCAR-DA-9 was not tuned at this time.

For this reason, NCAR-DA-9 was only used as a testpoint for DTN-S and DTN-F.

Instead of changes in speeds, this section provides a baseline expected performance for

NCAR-DA-9. Future work for NCAR-DA-9 includes tuning and changes in hardware

as mentioned in Chapter 9.

Initial Disk-to-Disk testing was performed utilizing GridFTP through Globus.

Tests of a single file with file integrity checks featured four file sizes, 1.64 TB, 409.21

GB, 100.37 GB, and 53.68 GB to compare transfer rates of different file sizes. The final

average speed and time elapsed until transfer completion were recorded. End-points

SomeMachine and AMachine are two workstations in EJCH. Endpoint 056255hvlf8y1l

is a workstation located in the University of Nevada, Reno’s Scrugham Engineering

and Mines (SEM). The results of these tests can be seen in Table 8.15. All tests

featured similar behavior where the Average Speed suddenly declined at the end of

the test. This is due to the file integrity checksum at the end of the transfer.

Further testing was completed to determine the performance change due to file

integrity. While this setting should be left implemented in practice, it was important

to determine the impact of the checksum on transfer performance to determine the-

oretical maximum performance opposed to expected behavior. Additionally, due to

the negative impact of the border firewall on transfer speeds, these tests were only

performed between DTN-S and -F. Tests featured files of size 53.68 GB and only

included single file transfers. As shown in Table 8.16, transfer speeds theoretically

double without checksums.

To test edge cases, one million files were then tested to simulate an extreme case

130

Table 8.15: Results from baseline single file disk-to-disk testing with file integrity.

Source Dest File Size Average Speed Duration
SomeMachine DTN-F 1.64 TB 58.97 MB/s 7h44m30s

AMachine DTN-S 409.21 GB 21.28 MB/s 4h09m58s
DTN-F DTN-S 409.21 GB 172.33 MB/s 0h39m35s
DTN-S DTN-F 409.21 GB 93.71 MB/s 1h12m47s

056255hvlf8y1l DTN-F 100.37 GB 53.02 MB/s 0h31m25s
DTN-F 056255hvlf8y1l 100.37 GB 51.02 MB/s 0h32m39s

AMachine DTN-S 100.37 GB 28.80 MB/s 0h57m52s
DTN-F DTN-S 100.37 GB 360.51 MB/s 0h04m38s
DTN-S DTN-F 100.37 GB 592.99 MB/s 0h02m48s

AMachine DTN-F 53.68 GB 23.04 MB/s 0h38m49s

Table 8.16: Results of single file testing inside Globus without file integrity checks.

Source Dest File Size Average Speed Duration
DTN-S DTN-F 53.68 GB 1.12 GB/s 0h00m48s
DTN-S DTN-F 53.68 GB 1.32 GB/s 0h00m40s
DTN-F DTN-S 53.68 GB 874.35 MB/s 0h01m02s
DTN-F DTN-S 53.68 GB 1.20 GB/s 0h00m45s

of improper preparations for a data transfer where many files are transferred without

being archived. Files ranged from 1 B to 7 B, but the overall size of the transfer

was 4 MB in both cases. Minimal tests were performed solely between DTN-S and

-F as the aim of running these tests are to gather a basic understanding of how

unarchived data affects performance. Tests were performed without file integrity to

obtain the maximum theoretical output. As shown in Table 8.17, having several small

files greatly impacts performance with a drop of more than 0.557 GB in performance.

Initial memory-to-memory testing was also conducted between the DTNs. Tests

were performed using iperf with 10 tests at a 10-second interval and 10 tests at a

60-second interval. Results from these initial memory-to-memory tests are displayed

Table 8.17: Results from edge case testing inside Globus without integrity checks.

Source Dest File Size Number of
files

Average
Speed

Duration

DTN-S DTN-F 1-7 B 1 mil 2.03 KB/s 0h56m31s
DTN-F DTN-S 1-7 B 1 mil 2.02 KB/s 0h56m45s

131

in Figure 8.19. The average of the 10-second interval trials was a transfer size of

34.78 GB at 29.89 Gb/s with little result variance and no outliers. Transfer speeds

over a 60-second interval were significantly slower with an average of 26.72 Gb/s,

t(9) = 2.52, p < .05. The average amount transferred over 60 seconds was 186.6 GB

with no outliers in speed of transfer size.

Figure 8.19: Initial results of memory-to-memory testing on the DTNs in Gb/s at
intervals of 10 seconds and 60 seconds.

After DTN tuning, initial end results were collected to compare to these baseline

tests. Tests were performed using 3 files of size 30GiB each. While these tests were

performed both with and without file integrity, they only ocurred between DTN-s and

DTN-F. The results from the final tests can be seen in Table 8.18. When compared to

initial tests, for similarly sized files of 50GiB and 100GiB, these tests show a 146.4%

increase with file integrity enabled. Without checksums, tests also show a 157.8%

increase compared to these baseline tests.

Final memory-to-memory testing included 10 tests at a 10 second interval and

10 tests at a 60-second interval. Results show no significant difference between the

10-second and 60-second intervals, t(9) = 0.66, p > .05. As displayed in Figure 8.20,

neither set of tests featured outliers. Test results from the 10-second interval show an

average transfer rate of 35.78Gb/s and transfer size of 41.67GB. Transfer rates for

132

Table 8.18: Results from final transfer results after tuning.

Source Dest File Size Average
Speed

Duration Checksum
Status

DTN-S DTN-F 96.63 GB 1.05 GB/s 0h01m31s With Integrity
DTN-F DTN-S 96.63 GB 1.30 GB/s 0h01m14s With Integrity
DTN-S DTN-F 96.63 GB 2.91 GB/s 0h00m34s Without

Integrity

Figure 8.20: Final results of memory-to-memory testing on the DTNs in Gb/s at
intervals of 10 seconds and 60 seconds.

the 10-second are significantly faster than the initial rates, t(9) = −4.69, p = .001.

Results were also significantly faster at the 60-second interval compared to initial

results such with an average transfer rate of 34.86Gb/s, t(9) = −3.92, p = .003.

Both intervals show transfers are capable of reaching speeds significantly closer to the

theoretical limit of 40Gb/s despite the onboard clock speed of less than 3.0GHz.

These results show promise for DTN tuning for DTN-S and DTN-F. However,

further stress testing would be preferable to ensure proper behavior and performance

prior to and following production release. These future tests are outlined in Chap-

ter 9.

133

Chapter 9

Conclusion and Future Work

9.1 Conclusions

The architecture discussed in this thesis, Data Driven Research Infrastructure Sys-

tems, is a collection of subsystems designed to centralize cyberinfrastructure for re-

searchers across fields of study. The central idea across the subsystems is to provide

a single solution to data management and data transfer with further infrastructure

to ensure functionality of these systems. DDRIS can be defined by two core com-

ponents: the underlying hardware, and the applications developed. We proposed

specifications for underlying hardware and provided detailed tuning information for

this hardware to increase system performance. The engineering behind the appli-

cations involved in DDRIS was then explained. These applications of data transfer

management, network telemetry collection, and metadata visualization were then de-

scribed. Data transfers are handled utilizing Globus, software written to provide a

simple GUI for data transfers using GridFTP. Network telemetry is collected using

PerfSONAR. Finally, metadata visualization is handled with Grafana with underly-

ing systems written primarily in Python to handle data collection. This dashboard

was designed to provide a platform with consistent terminology to hold historical

data for an indefinite period of time when Globus deletes old metadata as well as

assess system health across data transfer nodes and the Kubernetes cluster on which

systems are running.

To assess the effectiveness of the metadata dashboard, a user study was conducted

134

to compare the solution against existing applications, including the Globus native

dashboard and utilizing the Linux command line. Participants were asked to complete

four tasks on both the Globus dashboard and DDRIS followed by three tasks on both

the DDRIS dashboard and using command line. During each task, the amount of

time elapsed, left mouse clicks used to navigate, and number of right mouse clicks

were recorded. Results showed little statistical difference for task completion between

Globus and DDRIS, but user responses indicated a subject preference for DDRIS.

However, a significant difference between DDRIS and command line in favor of using

DDRIS.

This project exposed us to critical skills in research computing and DevOps. The

experiences gained in developing and maintaining this system have shown great value

to researchers at UNR which we believe would be beneficial to other institutions.

Any such institution seeking to collaborate with other entities would benefit from a

structure such as this as it would meet the needs of multiple levels of research from

small labs to large departments while still being centrally managed and maintained.

It is recommended to use security zones defined through hardware as opposed to

software for ease of deployment and documentation within an institution. To begin

setting up an architecture such as this the general suggestion of the development team

is to have a Director of Cyberinfrastructure to oversee the project. They would keep

the project within scope and adapt the project according to the needs of individual

researchers.

9.2 Future Work

DDRIS has many points for potential future development across elements of the

system. Based on feedback from the user study, quality of life changes to address

intuitiveness need to be implemented to make the dashboard more effective. This

includes adding indicators to graph visualizations and labelling the color selection

options. However, this functionality is not provided by Grafana. As a result, a new

dashboard should be written in an easily maintainable language, such as Angular,

135

to provide more customization from developers. This dashboard will need to include

a new page dedicated to historical PerfSONAR measurements. Maddash provides

historical measurements with few customization options; however, it is more beneficial

to have all DDRIS measurements available from the same website.

This new dashboard page would require micro-services to handle PerfSONAR

measurements. The Grafana community has developed a plug-in to allow queries

against Cassandra databases of version 3.0 or newer. However, this plug-in does not

provide backwards compatibility for Apache Cassandra versions prior to 3.0, which

is necessary for Esmond, the data collection point for PerfSONAR. Esmond relies on

the legacy Thrift API, which was replaced by Cassandra Query Language (CQL3) in

Cassandra version 3.0. Either a plug-in would need to be written using Go to utilize

the legacy API, or a series of micro-services will need to be written to handle results

and store them in a supported database, such as Postgres. This solution features a

Flask application deployed using Waitress to serve as a measurement archive location

in parallel with Esmond. Waitress provides a deployment method more appropriate

for production environments, including multi-threading. While Esmond continues to

collect data for Maddash, this service is to be dedicated to store data quickly in a

staging table within Postgres. A micro-service would then migrate results from the

staging location into a more organized database schema. Another benefit of providing

an archive solution other than Esmond is that data stored in Cassandra using Esmond

is overwritten overtime. One of the key aspects of DDRIS is access to historical data

as such, this data should be properly stored indefinitely.

A version of this micro-service should also be developed for Prometheus data,

or Promscale should be added to the technology stack. Promscale is a database

solution built on Timescale and Postgres to store Prometheus metrics in a more

organized format rather than split into a single table of values and table of labels. By

organizing the Prometheus metrics, DTN health queries can be improved to provide

better performance.

Further services could be written for all databases belonging to DDRIS to address

136

long-term deployment. Overtime, databases will be filled with timeseries and meta-

data records for transfers, health, and network telemetry. A rolling archive could be

implemented to remove data past specified ages that can be unpacked when requested

within the dashboard. This microservice would theoretically run as a cronjob twice

a year.

DTN stress observation in production would be beneficial in addition to response

tuning. This observation would require a large number of users requesting transfers

simultaneously to determine when speeds would be throttled. As such, this test

requires the production deployment of the machines to gather real user data. Obser-

vation data can then be utilized to determine further tuning parameters and increase

performance during peak hours.

137

References

[1] A comparison of software raid types. url: https://alephnull.com/benchmarks/
sata2009/raidtype.html (visited on 10/04/2021).

[2] Mohd Bazli Ab Karim, Jing-Yuan Luke, Ming-Tat Wong, Pek-Yin Sian, and
Ong Hong. Ext4, XFS, BtrFS and ZFS Linux file systems on RADOS Block
Devices (RBD): I/O performance, flexibility and ease of use comparisons. In
2016 IEEE Conference on Open Systems (ICOS), pages 18–23, 2016. doi: 10.
1109/ICOS.2016.7881982.

[3] Rancher Admin. Introduction to kubernetes architecture — suse communities,
2019. url: https://rancher.com/learning- paths/introduction- to-

kubernetes-architecture/ (visited on 10/12/2021).

[4] A. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke.
GridFTP: Protocol Extensions to FTP for the Grid. In 2001. url: https:

//www.ogf.org/documents/Drafts/old/GridFTP%20Protocol%20RFC%

20Draft2.pdf.

[5] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link, Catalin
Dumitrescu, Ioan Raicu, and Ian Foster. The Globus Striped GridFTP Frame-
work and Server. In Proceedings of the 2005 ACM/IEEE Conference on Su-
percomputing, SC ’05, page 54, USA. IEEE Computer Society, 2005. isbn:
1595930612. doi: 10.1109/SC.2005.72. url: https://doi.org/10.1109/SC.
2005.72.

[6] Bryce Allen, John Bresnahan, Lisa Childers, Ian Foster, Gopi Kandaswamy, Raj
Kettimuthu, Jack Kordas, Mike Link, Stuart Martin, Karl Pickett, and Steven
Tuecke. Globus online: radical simplification of data movement via saas, 2011.
url: https://www.globus.org/sites/default/files/globus-online-
radical-simplification-of-data-movement-via-saas.pdf.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58,
April 2010. issn: 0001-0782. doi: 10.1145/1721654.1721672. url: https:
//doi.org/10.1145/1721654.1721672.

[8] Melvin C. August, Gerald M. Brost, Christopher C. Hsiung, and Alan J. Schif-
fleger. Cray X-MP: the birth of a supercomputer. Computer, 22(1):45–52, 1989.
doi: 10.1109/2.19822.

https://alephnull.com/benchmarks/sata2009/raidtype.html
https://alephnull.com/benchmarks/sata2009/raidtype.html
https://doi.org/10.1109/ICOS.2016.7881982
https://doi.org/10.1109/ICOS.2016.7881982
https://rancher.com/learning-paths/introduction-to-kubernetes-architecture/
https://rancher.com/learning-paths/introduction-to-kubernetes-architecture/
https://www.ogf.org/documents/Drafts/old/GridFTP%20Protocol%20RFC%20Draft2.pdf
https://www.ogf.org/documents/Drafts/old/GridFTP%20Protocol%20RFC%20Draft2.pdf
https://www.ogf.org/documents/Drafts/old/GridFTP%20Protocol%20RFC%20Draft2.pdf
https://doi.org/10.1109/SC.2005.72
https://doi.org/10.1109/SC.2005.72
https://doi.org/10.1109/SC.2005.72
https://www.globus.org/sites/default/files/globus-online-radical-simplification-of-data-movement-via-saas.pdf
https://www.globus.org/sites/default/files/globus-online-radical-simplification-of-data-movement-via-saas.pdf
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/2.19822

138

[9] Gordon Bell and Jim Gray. What’s next in high-performance computing? Com-
mun. ACM, 45(2):91–95, February 2002. issn: 0001-0782. doi: 10.1145/503124.
503129. url: https://doi.org/10.1145/503124.503129.

[10] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML ain’t markup language
(yaml™) version 1.1, 2005. url: https://yaml.org/spec/1.1/.

[11] Blacksun Software. Mousotron: Mouse and keyboard usage counter. url: http:
//www.blacksunsoftware.com/mousotron.html (visited on 09/29/2021).

[12] Tony Bourke. Server load balancing. O’Reilly Media, Inc., 2001. isbn: 978-
0596000509.

[13] Brave Software, Inc. Secure, Fast & Private Web Browser with Adblocker —
Brave Browser. url: https://brave.com/ (visited on 09/23/2021).

[14] Brendan Burns and Craig Tracey. Managing Kubernetes: operating Kubernetes
clusters in the real world. OReilly, 2019. isbn: 978-1492033912. url: https://
www.oreilly.com/library/view/managing-kubernetes/9781492033905/.

[15] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. Ext4: the next generation
of ext2/3 filesystem. In LSF, 2007. url: https://www.usenix.org/legacy/
event/lsf07/tech/cao_m.pdf.

[16] Ceph authors and contributors. Ceph file system – ceph documentation. url:
https://docs.ceph.com/en/pacific/cephfs/ (visited on 10/06/2021).

[17] Cloud Native Computing Foundation. CNCF cloud native definition v1.0. url:
https://github.com/cncf/toc/blob/main/DEFINITION.md (visited on
11/09/2021).

[18] Computer History Museum. The Cray-1 supercomputer. url: https://www.
computerhistory.org/revolution/supercomputers/10/7 (visited on 10/08/2021).

[19] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. The
science dmz: a network design pattern for data-intensive science. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, Denver, Colorado, SC ’13, New York, NY, USA. Asso-
ciation for Computing Machinery, 2013. isbn: 9781450323789. doi: 10.1145/
2503210.2503245. url: https://doi.org/10.1145/2503210.2503245.

[20] Docker, Inc. Docker overview — docker documentation, September 2021. url:
https://docs.docker.com/get-started/overview/ (visited on 09/14/2021).

[21] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. Virtualization vs con-
tainerization to support paas. In Proceedings of the 2014 IEEE International
Conference on Cloud Engineering, IC2E ’14, 610–614, USA. IEEE Computer
Society, 2014. isbn: 9781479937660. doi: 10.1109/IC2E.2014.41. url: https:
//doi.org/10.1109/IC2E.2014.41.

[22] ESnet: Energy Sciences Network. Best practices for science DMZ security. url:
https://fasterdata.es.net/science-dmz/science-dmz-security/best-

practices-for-science-dmz-security/ (visited on 11/12/2021).

https://doi.org/10.1145/503124.503129
https://doi.org/10.1145/503124.503129
https://doi.org/10.1145/503124.503129
https://yaml.org/spec/1.1/
http://www.blacksunsoftware.com/mousotron.html
http://www.blacksunsoftware.com/mousotron.html
https://brave.com/
https://www.oreilly.com/library/view/managing-kubernetes/9781492033905/
https://www.oreilly.com/library/view/managing-kubernetes/9781492033905/
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://docs.ceph.com/en/pacific/cephfs/
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://www.computerhistory.org/revolution/supercomputers/10/7
https://www.computerhistory.org/revolution/supercomputers/10/7
https://doi.org/10.1145/2503210.2503245
https://doi.org/10.1145/2503210.2503245
https://doi.org/10.1145/2503210.2503245
https://docs.docker.com/get-started/overview/
https://doi.org/10.1109/IC2E.2014.41
https://doi.org/10.1109/IC2E.2014.41
https://doi.org/10.1109/IC2E.2014.41
https://fasterdata.es.net/science-dmz/science-dmz-security/best-practices-for-science-dmz-security/
https://fasterdata.es.net/science-dmz/science-dmz-security/best-practices-for-science-dmz-security/

139

[23] ESnet: Energy Sciences Network. Esmond: esnet monitoring daemon. url:
https://github.com/perfsonar/esmond#:~:text=ESnet%20Monitoring%

20Daemon-,At%20this%20time%20esmond%20is%20only%20supported%20as%

20part%20of,to%20a%20much%20wider%20audience. (visited on 04/13/2022).

[24] ESnet: Energy Sciences Network. Interrupt Binding. url: https://fasterdata.
es.net/host-tuning/linux/100g-tuning/interrupt-binding/ (visited on
11/30/2021).

[25] ESnet: Energy Sciences Network. Network performance and troubleshooting
(perfsonar). url: https://www.es.net/network- r- and- d/perfsonar/

(visited on 09/29/2021).

[26] ESnet: Energy Sciences Network. Science DMZ architecture. url: https://
fasterdata.es.net/science-dmz/science-dmz-architecture/ (visited on
11/12/2021).

[27] ESnet: Energy Sciences Network. Science DMZ: Data Transfer Nodes. url:
https://fasterdata.es.net/science-dmz/DTN/ (visited on 11/30/2021).

[28] Ian Foster. Globus online: accelerating and democratizing science through cloud-
based services. IEEE Internet Computing, 15(3):70–73, 2011. doi: 10.1109/
MIC.2011.64.

[29] Ian T Foster, Josh Boverhof, Ann Chervenak, Lisa Childers, Annette DeSchoen,
Gabriele Garzoglio, Dan Gunter, Burt Holzman, Gopi Kandaswamy, Raj Ket-
timuthu, Jack Kordas, Miron Livny, Stuart Martin, Parag Mhashilkar, Taghrid
Samak Miller Zachary Samak, Mei-Hui Su, Steven Tuecke, Vanamala Venkataswamy,
Craig Ward, and Cathrin Weiss. Reliable high-performance data transfer via
globus online. url: https://www.mcs.anl.gov/papers/P1904.pdf.

[30] Robert P. Goldberg. Survey of virtual machine research. Computer, 7(6):34–45,
1974. doi: 10.1109/MC.1974.6323581.

[31] Google Inc. Personal cloud storage & file sharing platform - google. url: https:
//www.google.com/drive/ (visited on 01/31/2022).

[32] Google Inc. Remove ftp support - chrome platform status. url: https://

chromestatus.com/feature/6246151319715840 (visited on 10/21/2021).

[33] Grafana Labs. Grafana® features — grafana labs. url: https://grafana.
com/grafana/ (visited on 09/27/2021).

[34] Frederick C. Harris. Networking and computing infrastructure in nevada: cur-
rent status and future development. Nevada NSF EPSCoR Climate Change
Conference, 2010. url: https://digitalscholarship.unlv.edu/epscor/
2010/feb02/33/.

[35] Dominique A Heger. Workload dependent performance evaluation of the btrfs
and zfs filesystems. In Int. CMG Conference, 2009. url: https://picture.
iczhiku.com/resource/paper/shIdkpUhfRUjHbcx.pdf.

https://github.com/perfsonar/esmond#:~:text=ESnet%20Monitoring%20Daemon-,At%20this%20time%20esmond%20is%20only%20supported%20as%20part%20of,to%20a%20much%20wider%20audience.
https://github.com/perfsonar/esmond#:~:text=ESnet%20Monitoring%20Daemon-,At%20this%20time%20esmond%20is%20only%20supported%20as%20part%20of,to%20a%20much%20wider%20audience.
https://github.com/perfsonar/esmond#:~:text=ESnet%20Monitoring%20Daemon-,At%20this%20time%20esmond%20is%20only%20supported%20as%20part%20of,to%20a%20much%20wider%20audience.
https://fasterdata.es.net/host-tuning/linux/100g-tuning/interrupt-binding/
https://fasterdata.es.net/host-tuning/linux/100g-tuning/interrupt-binding/
https://www.es.net/network-r-and-d/perfsonar/
https://fasterdata.es.net/science-dmz/science-dmz-architecture/
https://fasterdata.es.net/science-dmz/science-dmz-architecture/
https://fasterdata.es.net/science-dmz/DTN/
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://www.mcs.anl.gov/papers/P1904.pdf
https://doi.org/10.1109/MC.1974.6323581
https://www.google.com/drive/
https://www.google.com/drive/
https://chromestatus.com/feature/6246151319715840
https://chromestatus.com/feature/6246151319715840
https://grafana.com/grafana/
https://grafana.com/grafana/
https://digitalscholarship.unlv.edu/epscor/2010/feb02/33/
https://digitalscholarship.unlv.edu/epscor/2010/feb02/33/
https://picture.iczhiku.com/resource/paper/shIdkpUhfRUjHbcx.pdf
https://picture.iczhiku.com/resource/paper/shIdkpUhfRUjHbcx.pdf

140

[36] Tony Hey and Anne E. Trefethen. Cyberinfrastructure for e-science. Science,
308(5723):817–821, 2005. doi: 10.1126/science.1110410. eprint: https:

//www.science.org/doi/pdf/10.1126/science.1110410. url: https:

//www.science.org/doi/abs/10.1126/science.1110410.

[37] Lorin Hochstein and Rene Moser. Ansible: Up and Running: Automating config-
uration management and deployment the easy way. O’Reilly Media, Inc., 2017.
isbn: 978-1491979808. url: https://www.oreilly.com/library/view/

ansible-up-and/9781491979792/.

[38] William L. Hosch. Supercomputer. In Encyclopedia Britanica. url: https://
www.britannica.com/technology/supercomputer (visited on 10/08/2021).

[39] Intel Corporation. An introduction to the intel® quickpath interconnect. url:
https://www.intel.com/content/www/us/en/io/quickpath-technology/

quick-path-interconnect-introduction-paper.html (visited on 11/30/2021).

[40] Kepios. Digital around the world — datareportal – global digital insights.
url: https://datareportal.com/global-digital-overview#:~:text=
Internet \ %20use \ %20around \ %20the \ %20world , 500 \ %2C000 \ %20new \

%20users\%20each\%20day. (visited on 01/31/2022).

[41] Brian W. Kernighan and Rob Pike. The UNIX programming environment.
Prentice-Hall Software Series. Prentice-Hall, 1st edition, 1984. isbn: 978-0139376818.

[42] Youngseek Kim and Kevin Crowston. Technology adoption and use theory re-
view for studying scientists’ continued use of cyber-infrastructure. Proceedings
of the American Society for Information Science and Technology, 48(1):1–10,
2011. doi: https://doi.org/10.1002/meet.2011.14504801197. eprint:
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.

2011.14504801197. url: https://asistdl.onlinelibrary.wiley.com/

doi/abs/10.1002/meet.2011.14504801197.

[43] Sinny Kumari. Linux shell scripting essentials: Learn shell scripting to solve
complex shell-related problems and efficiently automate your day-to-day tasks.
Packt Publishing, 2015. isbn: 978-1785284441.

[44] Yong-Hong Kuo and Andrew Kusiak. From data to big data in production
research: the past and future trends. International Journal of Production Re-
search, 57(15-16):4828–4853, 2019. doi: 10.1080/00207543.2018.1443230.
eprint: https://doi.org/10.1080/00207543.2018.1443230. url: https:
//doi.org/10.1080/00207543.2018.1443230.

[45] Jay LaCroix. Linux Mint essentials: a practical guide to Linux Mint for the
novice to the professional. Packt Publishing, 2014. isbn: 978-1782168157.

https://doi.org/10.1126/science.1110410
https://www.science.org/doi/pdf/10.1126/science.1110410
https://www.science.org/doi/pdf/10.1126/science.1110410
https://www.science.org/doi/abs/10.1126/science.1110410
https://www.science.org/doi/abs/10.1126/science.1110410
https://www.oreilly.com/library/view/ansible-up-and/9781491979792/
https://www.oreilly.com/library/view/ansible-up-and/9781491979792/
https://www.britannica.com/technology/supercomputer
https://www.britannica.com/technology/supercomputer
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://datareportal.com/global-digital-overview#:~:text=Internet\%20use\%20around\%20the\%20world,500\%2C000\%20new\%20users\%20each\%20day.
https://datareportal.com/global-digital-overview#:~:text=Internet\%20use\%20around\%20the\%20world,500\%2C000\%20new\%20users\%20each\%20day.
https://datareportal.com/global-digital-overview#:~:text=Internet\%20use\%20around\%20the\%20world,500\%2C000\%20new\%20users\%20each\%20day.
https://doi.org/https://doi.org/10.1002/meet.2011.14504801197
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.2011.14504801197
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.2011.14504801197
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/meet.2011.14504801197
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/meet.2011.14504801197
https://doi.org/10.1080/00207543.2018.1443230
https://doi.org/10.1080/00207543.2018.1443230
https://doi.org/10.1080/00207543.2018.1443230
https://doi.org/10.1080/00207543.2018.1443230

141

[46] Zhengchun Liu, Prasanna Balaprakash, Rajkumar Kettimuthu, and Ian Fos-
ter. Explaining wide area data transfer performance. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Com-
puting, Washington, DC, USA, HPDC ’17, 167–178, New York, NY, USA. As-
sociation for Computing Machinery, 2017. isbn: 9781450346993. doi: 10.1145/
3078597.3078605. url: https://doi.org/10.1145/3078597.3078605.

[47] I. Scott MacKenzie. Human-Computer Interaction: An Empirical Research Per-
spective. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edi-
tion, 2013. isbn: 978-0124058655.

[48] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand
Ghalsasi. Cloud computing — the business perspective. Decision Support Sys-
tems, 51(1):176–189, 2011. issn: 0167-9236. doi: https://doi.org/10.1016/
j.dss.2010.12.006. url: https://www.sciencedirect.com/science/

article/pii/S0167923610002393.

[49] Peter Mell and Tim Grance. The NIST definition of cloud computing: Recom-
mendations of the National Institute of Standards and Technology. Technical
report NIST Special Publication 800-145, Gaithersburg, MD 20899-8930, 2011.
url: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
145.pdf.

[50] Dirk Merkel. Docker: lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239), May 2014. issn: 1075-3583. url:
https://www.linuxjournal.com/content/docker-lightweight-linux-

containers-consistent-development-and-deployment.

[51] Mobatek. MobaXterm free Xserver and tabbed SSH client for Windows. url:
https://mobaxterm.mobatek.net/ (visited on 09/23/2021).

[52] Henry Neeman, Aaron Bergstrom, Dana Brunson, Carrie Ganote, Zane Gray,
Brian Guilfoos, Robert Kalescky, Evan Lemley, Brian G. Moore, Sai Kumar Ra-
madugu, Alana Romanella, Johnathan Rush, Andrew H. Sherman, Brian Sten-
gel, and Dan Voss. The advanced cyberinfrastructure research and education
facilitators virtual residency: toward a national cyberinfrastructure workforce,
miami, usa. In Proceedings of the XSEDE16 Conference on Diversity, Big Data,
and Science at Scale, XSEDE16, New York, NY, USA. Association for Comput-
ing Machinery, 2016. isbn: 9781450347556. doi: 10.1145/2949550.2949584.
url: https://doi.org/10.1145/2949550.2949584.

[53] Caitlin Neiman. Built-in FTP implementation to be removed in Firefox 90 —
mozilla add-ons community blog, 2021. url: https://blog.mozilla.org/
addons/2021/04/15/built-in-ftp-implementation-to-be-removed-in-

firefox-90/ (visited on 10/21/2021).

[54] Nevada System of Higher Education, System Computing Services. Nevadanet
backbone. personal communication, September 2021.

https://doi.org/10.1145/3078597.3078605
https://doi.org/10.1145/3078597.3078605
https://doi.org/10.1145/3078597.3078605
https://doi.org/https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/https://doi.org/10.1016/j.dss.2010.12.006
https://www.sciencedirect.com/science/article/pii/S0167923610002393
https://www.sciencedirect.com/science/article/pii/S0167923610002393
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://mobaxterm.mobatek.net/
https://doi.org/10.1145/2949550.2949584
https://doi.org/10.1145/2949550.2949584
https://blog.mozilla.org/addons/2021/04/15/built-in-ftp-implementation-to-be-removed-in-firefox-90/
https://blog.mozilla.org/addons/2021/04/15/built-in-ftp-implementation-to-be-removed-in-firefox-90/
https://blog.mozilla.org/addons/2021/04/15/built-in-ftp-implementation-to-be-removed-in-firefox-90/

142

[55] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1994. isbn: 978-0080520292.

[56] PagerDuty, Inc. Pagerduty — real-time operations — incident response — on-
call — pagerduty. url: https://www.pagerduty.com/ (visited on 01/12/2022).

[57] Claus Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2(3):24–31, 2015. doi: 10.1109/MCC.2015.51.

[58] Pallets. Welcome to Flask – Flask documentation (2.0.x). url: https://flask.
palletsprojects.com/en/2.0.x/ (visited on 09/27/2021).

[59] Jon Postel and Joyce Reynolds. File transfer protocol, 1985.

[60] Prometheus Authors. Overview: prometheus. url: https://prometheus.io/
docs/introduction/overview/ (visited on 09/13/2021).

[61] Prometheus Authors. Prometheus - monitoring system & time series database.
url: https://prometheus.io/ (visited on 09/27/2021).

[62] Puppet. Powerful infrastructure automation and delivery — puppet. url: https:
//puppet.com/ (visited on 05/02/2022).

[63] Python Software Foundation. Welcome to Python.org. url: https://www.

python.org/ (visited on 09/14/2021).

[64] Zhi Qiao, Jacob Hochstetler, Shuwen Liang, Song Fu, Hsing-bung Chen, and
Bradley Settlemyer. Incorporate proactive data protection in zfs towards reliable
storage systems. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and
Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing,
4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress(DASC/PiCom/DataCom/CyberSciTech), pages 904–911,
2018. doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00-10.

[65] Red Hat, Inc. Ansible is Simple IT Automation. url: https://www.ansible.
com/ (visited on 09/11/2021).

[66] David Ribes and Charlotte P Lee. Sociotechnical studies of cyberinfrastructure
and e-research: current themes and future trajectories. Computer Supported
Cooperative Work (CSCW), 19(3):231–244, 2010.

[67] D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: harnessing the power
of parallelism in a pile-of-pcs. In 1997 IEEE Aerospace Conference, volume 2,
79–91 vol.2, 1997. doi: 10.1109/AERO.1997.577619.

[68] O. Rodeh and A. Teperman. Zfs - a scalable distributed file system using object
disks. In 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems
and Technologies, 2003. (MSST 2003). Proceedings. Pages 207–218, 2003. doi:
10.1109/MASS.2003.1194858.

[69] Rsync(1) - linux man page. url: https://linux.die.net/man/1/rsync

(visited on 01/31/2022).

https://www.pagerduty.com/
https://doi.org/10.1109/MCC.2015.51
https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/
https://puppet.com/
https://puppet.com/
https://www.python.org/
https://www.python.org/
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00-10
https://www.ansible.com/
https://www.ansible.com/
https://doi.org/10.1109/AERO.1997.577619
https://doi.org/10.1109/MASS.2003.1194858
https://linux.die.net/man/1/rsync

143

[70] Richard M. Russell. The CRAY-1 computer system. Commun. ACM, 21(1):63–72,
January 1978. issn: 0001-0782. doi: 10.1145/359327.359336. url: https:
//doi.org/10.1145/359327.359336.

[71] R.R. Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–
59, 1997. doi: 10.1109/6.591665.

[72] Mathijs Jeroen Scheepers. Virtualization and containerization of application
infrastructure: a comparison. In 21st Twente student conference on IT, vol-
ume 21, 2014. url: http://faculty.washington.edu/wlloyd/courses/
tcss562/papers/Spring2017/team3_containers/Virtualization%20and%

20Containerization%20of%20Application%20Infrastructure-%20A%20Comparison.

pdf.

[73] Kesha Shah. How much data is created every day in 2020?, 2020. url: https:
//www.linkedin.com/pulse/how-much-data-created-every-day-2020-

kesha-shah/ (visited on 01/31/2022).

[74] Similarweb LTD. Most visited websites - top websites ranking for january 2022
— similarweb. url: https://www.similarweb.com/top-websites/ (visited
on 01/31/2022).

[75] Slack Technologies, LLC. Slack is where the future works. url: https://slack.
com/ (visited on 01/12/2022).

[76] Ian Sommerville. Software engineering. Pearson, 10th edition, 2016. isbn: 978-
0133943030.

[77] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband, Udaya
A. Ranawake, and Charles V. Packer. Beowulf: a parallel workstation for sci-
entific computation. In In Proceedings of the 24th International Conference on
Parallel Processing, pages 11–14. CRC Press, 1995. url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.53.8824&rep=rep1&type=

pdf.

[78] Craig A. Stewart, Stephen Simms, Beth Plale, Matthew Link, David Y. Han-
cock, and Geoffrey C. Fox. What is cyberinfrastructure, norfolk, virginia, usa.
In Proceedings of the 38th Annual ACM SIGUCCS Fall Conference: Naviga-
tion and Discovery, SIGUCCS ’10, 37–44, New York, NY, USA. Association for
Computing Machinery, 2010. isbn: 9781450300032. doi: 10.1145/1878335.
1878347. url: https://doi.org/10.1145/1878335.1878347.

[79] The Apache Software Foundation. Apache cassandra. url: https://cassandra.
apache.org/_/index.html (visited on 09/29/2021).

[80] The Kubernetes Authors. Kubernetes: production-grade container orchestra-
tion. url: https://kubernetes.io/ (visited on 09/13/2021).

[81] The perfSONAR Project and contributors. perfSONAR. url: https://www.
perfsonar.net/index.html (visited on 09/29/2021).

https://doi.org/10.1145/359327.359336
https://doi.org/10.1145/359327.359336
https://doi.org/10.1145/359327.359336
https://doi.org/10.1109/6.591665
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/Spring2017/team3_containers/Virtualization%20and%20Containerization%20of%20Application%20Infrastructure-%20A%20Comparison.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/Spring2017/team3_containers/Virtualization%20and%20Containerization%20of%20Application%20Infrastructure-%20A%20Comparison.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/Spring2017/team3_containers/Virtualization%20and%20Containerization%20of%20Application%20Infrastructure-%20A%20Comparison.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/Spring2017/team3_containers/Virtualization%20and%20Containerization%20of%20Application%20Infrastructure-%20A%20Comparison.pdf
https://www.linkedin.com/pulse/how-much-data-created-every-day-2020-kesha-shah/
https://www.linkedin.com/pulse/how-much-data-created-every-day-2020-kesha-shah/
https://www.linkedin.com/pulse/how-much-data-created-every-day-2020-kesha-shah/
https://www.similarweb.com/top-websites/
https://slack.com/
https://slack.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.8824&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.8824&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.8824&rep=rep1&type=pdf
https://doi.org/10.1145/1878335.1878347
https://doi.org/10.1145/1878335.1878347
https://doi.org/10.1145/1878335.1878347
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://kubernetes.io/
https://www.perfsonar.net/index.html
https://www.perfsonar.net/index.html

144

[82] The PostgreSQL Global Development Group. PostgreSQL: The World’s most
Advanced Open Source Relational Database. url: https://www.postgresql.
org/ (visited on 09/24/2021).

[83] Timescale, Inc. Time-series data simplified — Timescale. url: https://www.
timescale.com/ (visited on 09/23/2021).

[84] University of Chicago, Argonne National Laboratory. Data transfer with globus
— globus. url: https : / / www . globus . org / data - transfer (visited on
10/06/2021).

[85] University of Chicago, Argonne National Laboratory. Globus Connect Server
v5 Installation Guide. url: https://docs.globus.org/globus-connect-
server/v5/ (visited on 09/29/2021).

[86] University of Chicago, Argonne National Laboratory. Globus: what we do. url:
https://www.globus.org/what-we-do (visited on 10/06/2021).

[87] University of Nevada, Reno. Research Integrity - Training. url: https://www.
unr.edu/research-integrity/training (visited on 11/23/2021).

[88] Steven Vaughan-Nichols. A super-fast history of supercomputers: From the
CDC 6600 to the Sunway TaihuLight, November 2017. url: https://www.hpe.
com/us/en/insights/articles/a-super-fast-history-of-supercomputers-

from-the-cdc-6600-to-the-sunway-taihulight-1711.html (visited on
10/08/2021).

[89] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Ben-
jamin Reed, and Eric Baldeschwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, Santa Clara, California. Association for Computing Ma-
chinery, 2013. isbn: 9781450324281. doi: 10.1145/2523616.2523633. url:
https://doi.org/10.1145/2523616.2523633.

[90] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Car-
los Maltzahn. Ceph: a scalable, high-performance distributed file system. In
Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, Seattle, Washington, OSDI ’06, 307–320, USA. USENIX Association,
2006. isbn: 1931971471.

[91] John Paul Wohlscheid. What is ZFS? Why people use ZFS? [explained for
beginners], 2021. url: https://itsfoss.com/what- is- zfs/ (visited on
10/04/2021).

[92] Judy L Woods, Jeff S West, and Peter R Sulyma. Construction and Utilization
of a Beowulf Computing Cluster: A User’s Perspective. Technical report TM-
2000-210691, NASA, 2000.

https://www.postgresql.org/
https://www.postgresql.org/
https://www.timescale.com/
https://www.timescale.com/
https://www.globus.org/data-transfer
https://docs.globus.org/globus-connect-server/v5/
https://docs.globus.org/globus-connect-server/v5/
https://www.globus.org/what-we-do
https://www.unr.edu/research-integrity/training
https://www.unr.edu/research-integrity/training
https://www.hpe.com/us/en/insights/articles/a-super-fast-history-of-supercomputers-from-the-cdc-6600-to-the-sunway-taihulight-1711.html
https://www.hpe.com/us/en/insights/articles/a-super-fast-history-of-supercomputers-from-the-cdc-6600-to-the-sunway-taihulight-1711.html
https://www.hpe.com/us/en/insights/articles/a-super-fast-history-of-supercomputers-from-the-cdc-6600-to-the-sunway-taihulight-1711.html
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
https://itsfoss.com/what-is-zfs/

145

Appendix A

UNR IRB Application Cover Sheet

 University of Nevada, Reno
 Institutional Review Board

 Part I, Cover Sheet

Last edited by: Brianna Blain-Castelli

Last edited on: September 21, 2021

[click for checklist]

[1815780-1] Near Real-Time and Historical Cyberinfrastructure Data Dashboard

Answer all questions on this form completely, include attachments and obtain signatures of Principal
Investigator and the Responsible official prior to final submission on IRBNet.

I. Principal Investigator

Name: Sergiu Dascalu, PhD

Institution:

Department: College of Engineering

Telephone: (775) 636-5060 Email: dascalus@cse.unr.edu

Address: 1664 N Virginia St, Reno, NV 89557

COI Disclosure: Any financial interests related to this study?
 Yes

 No

 If yes, COI Disclosure Explanation:

Could any external entity benefit financially from the results of this study?
 Yes

 No

II. Co-Investigator(s) or Research Team Member(s) N/A

Name:

Department:

Institution:

Telephone: Email:

COI Disclosure: Any financial interests related to this study?
 Yes

 No

 If yes, COI Disclosure Explanation:

- 1 - Generated on IRBNet

146

III. Student Investigator(s) N/A

Name: Brianna Blain-Castelli

Institution:

Telephone: 9167599502 Email: bblaincastelli@unr.edu

COI Disclosure: Any financial interests related to this study?
 Yes

 No

 If yes, COI Disclosure Explanation:

IV. Project Information

 Research Type:
 Biomedical

 Social Behavioral/Educational

 Photographing or Video Recording:
 Yes

Upload the Photo Release form.

 No

 Identifiable Information from Education Records:
Note that accessing education records for research purposes invokes FERPA regulations. In the
protocol, address how records are accessed, whether researchers will access directory information
only, and how written permission will be collected from students or parents for minor students. For
more information on FERPA, see IRB Policy 76.

 Yes

 No

 Research Location:
 VA Sierra Nevada Healthcare System

 Saint Mary's Regional Medical Center

 Renown Health

 UNR Campus

 Other -

 International Research:
 Yes

For international research, reference IRB Policy 575 for details to address in the protocol.

 No

 If yes, specify the countries:

 Renown Health Research Locations:

 Renown Regional Renown Pharmacy

- 2 - Generated on IRBNet

147

 Renown South Meadows Renown Emergency Room

 Renown Pregnancy Center Renown Skilled Nursing

 Renown Outpatient Clinic Renown Hospice Care

 Renown Urgent Care Renown Home Health

 Renown Imaging Renown Rehabilitation

 Renown Lab

Requested Review Path:
 Expedited IRB Review

Complete Protocol - Social Behavioral Educational Research and Records Research or Protocol
- Biomedical Research

 Full Board Review
Complete Protocol - Social Behavioral Educational Research and Records Research or Protocol
- Biomedical Research

 Exempt Review
Complete Protocol - Social Behavioral Educational Research and Records Research

 Requesting a determination about whether a project is human research
Complete Request for Human Research Determination

 Requesting authorization to use an external IRB
Complete Request to Use an External IRB

 Reporting emergency use of an FDA-regulated drug or device
Complete Emergency Use Investigational Drug or Device

 Review of a Humanitarian Use Device
Complete Protocol - Humanitarian Use Device for Treatment or Diagnosis

 Research involving existing records or specimens
Complete Protocol - Social Behavioral Educational Research and Records Research

Risk Level:
 Minimal risk

 Greater than minimal risk (requires full board review)

 No known risk

Involvement of Vulnerable Populations:
 N/A, research will not involve vulnerable populations

 Pregnant women and fetuses
For research with pregnant women and fetuses, reference IRB Policy 210 and 211 for details to
address in the protocol.

 Prisoners
Complete Research with Prisoners

 Children (persons under 18 years of age)
For research with children, reference IRB Policy 230 for details to address in the protocol.

 Adults with impaired decision-making capacity
For research with adults with impaired decision-making capacity, reference IRB Policy 240 for
details to address in the protocol.

 People who do not speak English

- 3 - Generated on IRBNet

148

For research with people who do not speak English, reference IRB Policy 250 for details to
address in the protocol.

V. Funding Information N/A

Sponsor Type:
 Federal Government Other Government (State/Local)

 Industry Sponsor Other Private Funds

 Departmental Subcontract

 Other:

Sponsor Name:

Grant/Contract Title and Number:

VI. Federal Agencies with Additional Requirements to Protect Human Participants

Please see the "Instructions to Researchers" section at the end of this form for a list of required
supplemental forms and relevant policies.

 DoD

 DoE

 DoEd

 DoJ or NIJ

 EPA

 NSF

 VA

 N/A

VII. FDA-Regulated Research

 N/A, research does not involve drugs or devices

 Drug research

 Trade Name Generic Name

 Device research

 Name of Device Device Manufacturer

VIII.External Committee Approvals

 Thesis or Dissertation Committee

 Radiation Safety Committee

- 4 - Generated on IRBNet

149

 Biosafety Committee

 Other:

 N/A

INSTRUCTIONS TO RESEARCHERS
 [top]

You have completed Part I of the application process. Preview Part I and correct if needed. Print the last
page so you have the list of the researcher forms and additional regulatory requirements expected for this
research. Click Save and Exit. Add the remaining required documents (listed below or referenced in the
researcher forms/applications), address the necessary regulatory and policy requirements in the protocol
and other project documents, and then the PI should electronically Sign and Submit the project. Make
sure to upload training documentation for all researchers listed on this form.
If you have any questions, refer to the IRBNet pages of the Research Integrity website.

Additional required researcher forms and policies/regulations:

• Complete Protocol - Social Behavioral Educational Research and Records Research

- 5 - Generated on IRBNet

150

151

Appendix B

UNR IRB Social Behavioral
Educational Research Protocol

Protocol – SBER and Records 080921
UNR Research Integrity

Page 1 of 3

Research Integrity
Tel: (775) 327-2368

Web: unr.edu/research-integrity

Protocol – Social Behavioral Educational Research and Record Research
Project ID: [1815780-1]

Title: Near Real-Time and Historical Cyberinfrastructure Data Visualization

Principal Investigator: Sergiu Dascalu, PhD

Co-Investigators / Study Contact: Brianna Blain-Castelli

Please delete the instructions and sample text after you complete each section. Do not delete the section

headings; if the heading does not relate to your research insert N/A.

Background:
Campus centralized tools for data management are essential to collaboration for data driven research. Having
standardized workflows and available resources allows researchers to easily share data across departments
and aids in sharing across universities. However, moving toward this model requires support for the new
infrastructure.

The project that this study is based on involves setting up and maintaining hardware- and software-based
cyberinfrastructure to support data driven research. To aid in overseeing the health and status of these
systems, a dashboard has been created to visualize system data and manage alerts. Data visualization is an
important tool as data expands in size to assist in quick data analysis and proactive management.

The main goal of this study is to determine the effectiveness, ease of use, and subjective satisfaction of the
design of the dashboard that has been created. This newly developed dashboard, referred to as the Data
Driven Research Infrastructure Systems (DDRIS) Dashboard through this study, will be compared against
existing solutions for gathering pertinent system data to aid in evaluating the success of the DDRIS
Dashboard’s design.

Study Aims/Objectives:
This study aims to compare a dashboard developed by the research team to visualize system health, transfer
speeds, and network telemetry against current solutions within the context of Human Computer Interaction.
The current dashboard will be evaluated in this study to determine its effectiveness, ease of use, and
subjective satisfaction through user-verified review.

Study Population:
Participants will be between the ages of 20 and 50 of mixed gender and ethnic background. Participants
include current or former University of Nevada, Reno students with a background in computers.

Vulnerable Populations:
N/A

Sample Size:
There will be between 16-24 participants involved in this study with the possibility of more based-on
recruitment. This sample size was chosen due to standards in the field of Computer Science paired with
expectations of how many responses there will be to the recruitment email.

152

Protocol – SBER and Records 080921
UNR Research Integrity

Page 2 of 3

Recruitment Process:
Potential participants will be chosen from the following: Computer Science labs, former lab members, and
people within the university known and recommended to participate by other participants. Recruitment will be
conducted through email. The template of the recruitment email has been attached to this application.

Screening Procedures:
Participants will be recruited through Computer Science labs, former lab members, and people recommended
to the study by other participants. Participants recruited through the first two means will not be screened as
they will meet the minimum requirements to be involved in the study. Those recommended by participants will
be screened by asking them if they have a background in computers prior to scheduling a time to complete the
study.

Informed Consent Process:
Participants will be fully informed of the nature of the research and what data will be collected. They will be
reassured that no personal data that could potentially be linked back to them will be collected through the
study. Participants will be given the consent form attached prior to beginning the study. The participant is to
review, sign, and date the form.

Data Collection Procedures:
Participants will be recruited through email and schedule a date and time they are available to participate in the
study. Participants will meet the instructor in EJCH or be provided a Zoom meeting to complete the study
based on participant preference. Zoom meetings will not be recorded. The participant will be asked to review
and sign the consent form attached to this study. First, participants will complete a pre-usage/entrance
questionnaire to assess existing knowledge and participant demographics through Google Forms. No personal
information will be recorded, including name. Second, the participant will complete the Part 1 tasks provided in
the application. Through parts one and two, Mousotron will be utilized to capture data such as mouse clicks,
mouse scrolls, keys typed, and amount of time taken to complete a task. Third, participants will complete the
Part 2 tasks provided in the application. Finally, participants will complete a post-usage/exit questionnaire to
provide qualitative data on the thoughts participants had on the dashboard.

Study Duration/ Study Timeline:
The study will be conducted in a single 30-45 minute session.

Study Locations:
Researchers will conduct the study in EJCH room 272C as it already serves as a dedicated lab space for the
researchers. The option to complete the study remotely through Zoom will be provided.

International Research:
N/A

Participant Compensation:
N/A

Risk to Participants:
There are no risks associated with this study. N/A

Benefits to Participants:
This research does not present any direct benefit to the participants. However, the research provides an
opportunity to gain a better understanding of web browsing and Linux command line.

153

Protocol – SBER and Records 080921
UNR Research Integrity

Page 3 of 3

Privacy of Participants:
Recruitment will begin with lab members known personally by the research team. Participants recommended
by previous participants will be required to approach the research team to be included in the study as the
research team will not collect any information from the previous participant or ask if they know of any potential
participants. Instead, a participant, after completing the study, can approach a colleague and recommend
participation to them. This will not be asked of participants.
No sensitive data will be collected regarding the participant. Participants will be interacting with the researcher
in a lab environment. Other lab members may be present in the lab when the study is being conducted;
however, the participant will be separated from the rest of the lab by participating in a separate cubicle. The
additional option to complete the study remotely will not involve recording the user in any way and will allow for
the participant to complete tasks privately if they are unable to attend in person or are uncomfortable.
Headphones will be utilized by the instructor when conducting the study remotely, so other lab members will be
unable to hear participant responses.
If a participant no longer wishes to participate in the study, they may leave at any time, and the data collected
will not be utilized in the final analysis and will be destroyed.

Data Management and Confidentiality:
All data will be stored on a password protected computer owned by a member of the research team. Only the
research team will have access to this data. No sensitive information about participants will be recorded.

Approach to Analysis:
The effectiveness, ease of use, and subjective satisfaction of the dashboard will be evaluated. Listed below are
the variables considered in this study. Values will be compared across independent variables to determine
comparatively if the dashboard is more effective than current solutions.

Independent variables include the following:

• Interface at 3 levels:
▪ Globus online GUI
▪ DDRIS Dashboard
▪ Linux (Ubuntu) Command Line Interface (CLI)

• Familiarity with CLI at 3 levels:
o Not familiar
o Moderately familiar
o Very familiar

Dependent variables include the following:

• Time to complete task

• Number of clicks

• Number of mouse-wheel scrolls

• If the task is completed

• Number of questions asked to the moderator or available search engine

• Preexisting knowledge of how to complete a specific given task

• Subjective satisfaction

• Difficulty score provided by the participant in the exit questionnaire

References:

154

155

Appendix C

UNR IRB Consent Information
Sheet

Consent Information Script or Sheet

We are conducting a research study to learn the ease of use, efficiency, and design of a web dashboard.

If you volunteer to be in this study, you will be asked to complete a pre and post usage questionnaire at
the beginning and end of the experiment along with tasks to assess the usability and efficiency of the
dashboard. No identifying information will be collected over the course of the study, including
recordings, images, or names.

Your participation should take about 45 minutes of your time.

This study is considered to be minimal risk of harm. This means the risks of your participation in the
research are similar in type or intensity to what you encounter during your daily activities.

Benefits of doing research are not definite; but we hope to learn the effectiveness of the dashboard
developed in comparison to existing solutions. There are no direct benefits to you in this study activity.

The researchers and the University of Nevada, Reno will treat your identity and the information
collected about you with professional standards of confidentiality and protect it to the extent allowed
by law. You will not be personally identified in any reports or publications that may result from this
study. The US Department of Health and Human Services, the University of Nevada, Reno Research
Integrity Office, and the Institutional Review Board may look at your study records.

You may ask questions of the researcher at any time by calling Sergiu Dascalu at (775) 636-5060 and/or
Brianna Blain-Castelli at (916) 759-9502 or by sending an email to Brianna Blain-Castelli at
bblaincastelli@unr.edu.

Your participation in this study is completely voluntary. You may stop at any time. Declining to
participate or stopping your participation will not have any negative effects on you

You may ask about your rights as a research participant. If you have questions, concerns, or complaints
about this research, you may report them (anonymously if you so choose) by calling the University of
Nevada, Reno Research Integrity Office at 775.327.2368.

Thank you for your participation in this study!

156

157

Appendix D

UNR IRB Pre-Test Survey

University of Nevada, Reno

Social Behavior Research

Title of Study: Near Real-Time and Historical Cyberinfrastructure Data Visualization
Principle Investigator: Sergiu Dascalu, Ph.D.
Co-Investigators: Brianna Blain-Castelli
Study ID Number: 1815780-1
Sponsor: N/A

Pre-Usage Questionnaire

Participant ID#: _______________

Please Enter your age: ____________________

What is your gender?

A. Male

B. Female

C. Other

D. Prefer not to disclose

What is your highest level of completed education? ________________

Please rate how familiar you are with dashboards

(1 - Not Familiar, 5 - Very Familiar)

Not
Familiar

1 2 3 4 5 Very Familiar

Please rate how familiar you are with Linux command line

(1 - Not Familiar, 5 - Very Familiar)

Not
Familiar

1 2 3 4 5 Very Familiar

158

Please rate your familiarity with data transfer solutions

(1 - Not Familiar, 5 - Very Familiar)

Not
Familiar

1 2 3 4 5 Very Familiar

What data transfer solution are you familiar with (mention one or more, or leave blank if you

are not familiar with any data transfer solutions)?

__

__

__

How often do you use data visualization?

(1 - Not Familiar, 5 - Very Familiar)

Not
Familiar

1 2 3 4 5 Very Familiar

How familiar are you with web applications/web browsing?

(1 - Not Familiar, 5 - Very Familiar)

Not
Familiar

1 2 3 4 5 Very Familiar

159

160

Appendix E

UNR IRB Post-Test Survey

University of Nevada, Reno

Social Behavior Research

Title of Study: Near Real-Time and Historical Cyberinfrastructure Data Visualization
Principle Investigator: Sergiu Dascalu, Ph.D.
Co-Investigators: Brianna Blain-Castelli
Study ID Number: 1815780-1
Sponsor: N/A

Post-Usage Questionnaire

How helpful/effective do you find the DDRIS dashboard in its current state?

(1 - Not Helpful, 5 - Very Helpful)

Not
Helpful

1 2 3 4 5 Very Helpful

How easy do you feel the DDRIS dashboard is to navigate?

(1 – Very Difficult, 5 - Very Easy)

Very
Difficult

1 2 3 4 5 Very Easy

How well designed do you find the DDRIS dashboard interface in its current state?

(1 - Not Well Designed, 5 - Very Well Designed)

Not Well
Designed

1 2 3 4 5 Very Well
Designed

How difficult was it to complete the tasks assigned on the DDRIS dashboard?

(1 – Very Difficult, 5 - Very Easy)

Very
Difficult

1 2 3 4 5 Very Easy

161

How difficult was it to complete the tasks assigned on the Linux command line?

(1 – Very Difficult, 5 - Very Easy)

Very
Difficult

1 2 3 4 5 Very Easy

How difficult was it to complete the assigned tasks on the Globus management console?

(1 – Very Difficult, 5 - Very Easy)

Very
Difficult

1 2 3 4 5 Very Easy

What changes could be made to make the dashboard easier to use?

__

__

__

If applicable, how can this dashboard be modified to improve your experience with system

administration?

__

__

__

Any other comments or suggestions for improvements?

__

__

__

162

163

Appendix F

UNR IRB Participant Recruitment
Email

Recruitment Email Script

General Recruitment Email:

Good [morning, afternoon, etc.],

 I am conducting a user study to assess the usability, visual appeal, and effectiveness of a

dashboard. I am currently looking for 16-24 participants to be a part of this user study and further this

research. Participants of this survey will be asked to browse two websites, utilize Linux command line,

and perform between 3 and 4 tasks on each interface. The study should take between 30 and 45

minutes of your time. Prior advanced knowledge of Linux command line is not necessary; however, basic

knowledge is preferred. The study will be completed in EJCH but can be completed virtually through

Zoom. If you are interested in participating in this user study, please email Brianna Blain-Castelli at

bblaincastelli@unr.edu to schedule a time to complete the study.

Sincerely,

Brianna Blain-Castelli

Personal Recruitment Email:

Dear [participant],

 I am conducting a user study to assess the usability, visual appeal, and effectiveness of a

dashboard. I am currently looking for 16-24 participants to be a part of this user study and further this

research. Participants of this survey will be asked to browse two websites, utilize Linux command line,

and perform between 3 and 4 tasks on each interface. The study should take between 30 and 45

minutes of your time. Prior advanced knowledge of Linux command line is not necessary; however, basic

knowledge is preferred. The study will be completed in EJCH but can be completed virtually through

Zoom. If you are interested, please contact me with your availability to complete this user study.

Sincerely,

Brianna Blain-Castelli

164

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background and Related Work
	Science DMZ
	Data Transfer and GridFTP
	Data Transfer Nodes
	High Performance Computing
	Cluster Computing
	Cloud Computing
	Containerization
	Containerized Clusters for the Cloud
	File systems
	ext4
	ZFS
	CephFS

	Technologies Utilized
	Globus
	Python
	Docker
	Kubernetes
	Prometheus
	Grafana
	Flask
	PerfSONAR
	Cassandra
	Postgres
	TimescaleDB
	Bash Shell Script
	Linux Service
	Cron
	Ansible
	YAML

	Problem Statement and Proposed Solution
	Problem Statement
	Proposed Solution

	Hardware Solution Implementation
	Network Overview
	Science DMZ DTNs
	Research Computing Systems
	Network Telemetry Mesh

	Software Design
	Requirements
	Functional Requirements
	Nonfunctional Requirements

	Use Case Modeling
	Architecture
	High Level Design
	Prometheus Exporters
	Application Design - Log Exporters
	Database Schema

	Workflow
	User Transfer Workflow
	User On-boarding Workflow

	Applications in Action
	Globus
	Prometheus UI
	MaDDash
	DDRIS Dashboard
	User Interface
	Data Visualization

	User Study
	Introduction
	Participants
	Apparatus
	Procedure
	Design
	Tasks

	Results and Data Analysis
	Results from the Entry Questionnaire
	Results from Tasks
	Part One
	Part Two

	Results from the Exit Questionnaire
	Dashboard Effectiveness Analysis
	Transfer Speeds

	Conclusion and Future Work
	Conclusions
	Future Work

	References
	Appendices
	UNR IRB Application Cover Sheet
	UNR IRB Social Behavioral Educational Research Protocol
	UNR IRB Consent Information Sheet
	UNR IRB Pre-Test Survey
	UNR IRB Post-Test Survey
	UNR IRB Participant Recruitment Email

