
University of Nevada
Reno

On the Crossing Number of Complete Graphs:
Growing Minimal Kn From Minimal Kn−1

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Judith R. Fredrickson

Dr. Frederick C. Harris, Jr./Dissertation Advisor

May, 2006

i

Acknowledgments

Many individuals have supported me through the process of completing this project.

Without their help, support, and encouragement the entire process would not have

been so enjoyable.

First I would like to thank my advisor, Dr. Frederick C. Harris, Jr, for his

inspiring and encouraging guidance, and his invaluable discussions over the last several

years. Without his foray into graph theory I doubt this dissertation topic would have

presented itself. I can only hope to show my future students the constant positive

attitude and encouragement he has always shown me.

I am also grateful to my other committee members: Dr. Yaakov L. Varol, Dr.

Dwight Egbert, Dr. Robert Davis and Dr. Indira Chatterjee. Each contributed to

this experience in numerous ways.

Two individuals who dedicated a great deal of their time helping with the im-

plementation of many of my ideas, modified often out of curiosity, are Bei Yuan and

Linda Humphrey. Their help and discussions were invaluable.

Thanks also to Cindy Harris for her meticulous reading of my work, both through

the eyes of an editor and through those of someone who knows the topic well.

I must thank my dear friend and colleague Nancy Latourette. Her almost daily

questions, discussion, and support kept me going when excited and also when won-

dering if things would ever come together. Her willingness to always have an open

door for an extended “hello” was greatly appreciated and her diversions into other

life conversations were presented when I needed them most.

The Department of Computer Science and Engineering has been most supportive

in providing a good working environment and supporting me with a lecture position

within the department.

Finally, I thank my husband, Joel, and my two daughters, Kelci and Kirsha.

Their love and support throughout this entire process is what ultimately made it

possible. I dedicate my work to them.

April 25, 2006

ii

Abstract

This dissertation addresses the generation of minimal complete graphs. A com-

plete graph, denoted Kn, is a graph in which each vertex is connected to every other

vertex of the graph with an edge. A minimal graph is a representation of a graph

that exhibits its crossing number. The crossing number of a graph is the smallest

number of edge crossings over all planar representations of the graph.

Presented is a constructive framework for iteratively generating minimal Kn from

minimal Kn−1. The process described allows for complete enumeration of all minimal

Kn derivable from minimal Kn−1, including those graphs that are only locally minimal.

A graph is locally minimal if it reflects the smallest number of crossings possible for

a given region placement of vertex n in minimal Kn−1. All graphs are classified into

isomorphic families, allowing for efficient iteration to the next set of complete graphs

of order n+1 due to needing only one representative from each Kn isomorphic family

for complete results.

In addition to determining the crossing number for Kn generated by Kn−1, all

minimal graphs are available for exploration of their underlying structure. This al-

lows for substructure isomorphic analysis and localized region neighborhood analysis,

both of which will lead to yet more efficient iteration of Kn for increasing n. Informa-

tion culled from these graphs may also shed light on new or improved lower bound

estimation techniques.

A seven-step process is presented that allows for iterative growth. The main

module in the process, Star Analysis, takes a global view of growing minimal Kn by

focusing on optimizing the enumeration of all star graphs, K1,n−1, centered at vertex

n placed into initial minimal Kn−1 at all possible different region locations.

This research introduces new conjectures and opens some new questions for ex-

ploring the structure of minimal Kn. Though this work focuses on minimal complete

graphs, the process appears to be applicable to an assortment of other graph families.

An example is presented of its application to complete bipartite graphs.

iii

Contents

Abstract ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Background 5

2.1 Basic Definitions . 5
2.2 Background and Related Literature 14

2.2.1 The Crossing Number of Complete Graphs 15

2.2.2 Rectilinear and Other Crossing Numbers 20

2.2.3 Graph Isomorphism . 22

2.3 Exhaustive Search Algorithm . 23

2.3.1 Edmonds’ Rotational Embedding Scheme 23

2.3.2 The Exhaustive Search Algorithm 25

3 Progression toward an Effective Algorithm 28

3.1 Parallel Load Balancing . 31

3.2 Parallel Implementation Overview . 33

3.3 Search Space Reduction . 36

3.3.1 Order of Edge Placement . 37

3.3.2 Region Restriction . 38

3.3.3 Radical Region Restriction . 43

3.4 Star Analysis . 46

3.4.1 Distance Trees and Path Lists 47
3.4.2 Graph Descriptions from Path Lists 53

4 Construction of Minimal Complete Graphs 56

4.1 Isomorphic Families of Minimal Kn 56

4.2 Growing Minimal Kn from Minimal Kn−1 57

5 Summary and Open Questions 65

iv

5.1 A Synopsis of New Developments Presented and Conclusions Drawn . 66

5.2 Future Work and Open Questions . 75

Bibliography 79

v

List of Figures

2.1 Example Graphs . 6

2.2 Isomorphic and Nonisomorphic Graphs 7

2.3 A Complete Graph and Two Subgraphs 7

2.4 A Bipartite Graph . 8

2.5 The Bisection Width of a Graph . 9

2.6 The Cutwidth of a Graph . 10

2.7 A Planar and Plane Graph . 11

2.8 The Regions of K4 and Their Boundaries 12

2.9 Illegal Edges for a Good Graph . 13

2.10 A Planar Embedding of a Graph . 24

2.11 Planar Portion of K5 . 26

2.12 Laying Down an Edge for K5 . 27

3.1 A Minimal K9 with Minimal and Non-minimal K8 Subgraphs 29

3.2 Minimal and Non-minimal K8 Subgraphs of Minimal K9 29

3.3 Unbalanced Work Load . 32
3.4 Parallel Work Queue . 34

3.5 Minimal K6 Prepared as the Root of the Search Tree 35

3.6 Stepping toward K7 from Minimal K6 35

3.7 K6 Constructed from K5 with 1 Crossing Vertex 37

3.8 Good Drawings for Placement of Edge uv 39

3.9 Subpath Replacement . 40

3.10 Two Possible Paths for Laying down Edge uv 40

3.11 Initial Edge Segments from Vertex u to Other Nonadjacent Vertices . 41

3.12 Region Restriction Execution Time for K8 on P Processors 43

3.13 Placement of Edge uv . 44

3.14 K6 and its Region Graph Used for Breadth-First Search 48

3.15 Beginning Distance Tree for One Minimal K6 49

3.16 Distance Tree for One Minimal K6 50

3.17 Outward Expanding Region Neighborhoods 51

3.18 Path List for Minimal K7 . 52

3.19 Minimal K7 from Minimal K6 . 54

vi

3.20 A Hypothetical Path List Conflict . 55

3.21 Two Different Non-conflicting Placement of Paths 55

4.1 K4 and its Region List Representation 58

4.2 K4 with Vertex 5 Placement and Edges to Add 59

4.3 Star Analysis: K4 (with Vertex 5 in Region 1) to K5 59

4.4 A Minimal K7 . 61

4.5 Path Lists with Locally Minimal K8 61

4.6 K5 Region List and Associated Adjacency Matrix 62

4.7 Isomorphic Test Results on K5 . 63

4.8 Iterative Process to Grow Minimal Kn 64

5.1 Star Graph Overlays on Minimal K6 to Construct Minimal K7 68

5.2 One Drawing of a Minimal K10 . 72

5.3 One Drawing of a Minimal K11 . 72

5.4 K2,3 with Three Crossings, and Minimal with Zero Crossings 73

5.5 Minimal K2,3 Region List and Edges to Add for Minimal K3,3 and K2,4 73

5.6 Minimal K3,3 Distance Tree and Path List 74

5.7 Four Isomorphic Minimal K3,3 Constructed from Minimal K2,3 74

5.8 Minimal K2,4 Constructed from Minimal K2,3 75

vii

List of Tables

2.1 Conjectured Crossing Numbers in 1963 16

2.2 Rectilinear Crossing Numbers up to n = 17 21

3.1 Region Restricted versus Good Graph Jobs Processed 42

3.2 Radical versus Region Restriction Timing 45

4.1 Isomorphic Families of Minimal Kn 57

5.1 Regions of Kn Generating Minimal Kn+1 70

1

Chapter 1

Introduction

Determining how to draw a graph in the plane with the minimum number of edge

crossings is referred to as the crossing number problem. It is generally acknowledged

that the birth of the crossing number came about due to an experience of Paul

Turán while in a labor camp at a brick factory near Budapest, Hungary in 1944. His

story [30] is as follows:

Our work was to bring out bricks from the ovens where they were

made and carry them on small vehicles which run on rails in some of

several open stores which happened to be empty. Since one could never

be sure which store would be available, each oven was connected by rail

with each store. Since we had to settle a fixed amount of loaded cars daily

it was our interest to finish it as soon as possible. After being loaded in the

(rather warm) ovens the vehicles run smoothly with not much effort; the

only trouble arose at the crossing of two rails. Here the cars jumped out,

the bricks fell down; a lot of extra work and loss of time arose. Having

this experience a number of times it occurred to me why on earth did

they build the rail system so uneconomically; minimizing the number of

crossings the production could be made much more economical.[sic.]

Turán’s brick factory problem asks the question of whether the minimum number

of edge crossings of a complete bipartite graph of order n can be determined. (Refer

to Section 2.1 for a complete listing of all related definitions as needed.) This problem

2

proved to be extremely difficult and, over the years, in addition to work on bipartite

graphs, researchers explored minimizing crossings of general graphs as well as many

other graph families.

The crossing number problem has a number of applications. In addition to

possible application in logistical situations like that encountered by Turán, two main

areas of direct application are information display and circuit design.

As Battista et al. state [8], the visualization of complex conceptual structures is

a key component of support tools for many applications in science and engineering.

Graphs are abstract structures used to model information; thus many information

visualization systems require graphs to be drawn so they are easy to read and un-

derstand. Minimizing the crossings of the edges of these graphs makes them easier

to read as well as more esthetically pleasing. Those interested in exploring graph

visualization are referred to [7] and [8].

The crossing number problem has also found application in the area of Very Large

Scale Integration (VLSI) circuit technology. Leighton [38, 39] shows the relevance of

crossing numbers to the problem of reducing chip layout area and minimizing chip

size. Area and size reduction lower production costs and allow for more reliable

performance of larger chips. He showed the close relationship between the crossing

number and the bisection width of a graph. Both bisection width and the crossing

number are important properties of graphs that affect minimum layout area for VLSI

design.

Finding the exact value for crossing numbers is not an easy task. It is a hard

combinatorial problem, examples of which can be found in [12] and [31]. The difficult

nature of determining the exact value of the crossing number of a complete graph of

order n, denoted ν(Kn), even for small values of n is illustrated by the small amount

of literature from the early 1960s to date, for example see [19, 23, 29, 30, 31, 33,

34, 52, 53, 61]. However, this is not a reason to leave the problem for estimates

only. Being able to determine the exact crossing number of a graph and having

access to graphs with this number of crossings will allow researchers to thoroughly

3

investigate the nature of these graphs. Information may lie within the structure

of these minimal graphs that will bring new insight into minimal graphs in general.

Work by Aichholzer et al. [1, 3, 4, 5] is a good example of computational experiments,

performed with care and in combination with a theoretical basis, helping shed light

on difficult combinatorial problems.

This dissertation addresses the crossing number problem as related to complete

graphs. The contribution to the crossing number problem is the creation of an ef-

fective constructive technique for building minimal complete graphs of order n from

minimal complete graphs of order n−1. This technique allows for the construction

of all representative graphs of minimal Kn grown from minimal Kn−1. In addition to

globally minimal Kn, locally minimal Kn (given specific region placement of vertex n

into Kn−1) are available for construction. All isomorphic families available from this

growth pattern will be available for enumeration and drawing as well as topological,

spectral, and other desired analysis. Also presented are results leading to several

new open questions to explore related to complete graphs and other graphs families.

Example images of minimal K10 and K11 with 60 and 100 crossings, respectively, are

included.

The technique introduced, though applied to complete graphs in this paper, has

direct application to other graph families with no modification of the process needed.

An example of its application to the complete bipartite graph of order m, n is shown

in Chapter 5.

The remainder of this dissertation is structured as follows: Chapter 2 presents

basic definitions and background information on graphs, including a survey of the

related literature. Description of the algorithm from which this work begins, along

with its shortfalls are addressed. Chapter 3 presents the new contributions that lead

to an effective algorithm for functional calculation of minimal Kn from minimal Kn−1.

Improvements achieved, due to search space restrictions and a new technique, Star

Analysis, are included in Chapter 3. Chapter 4 discusses the iterative framework

developed for growing minimal complete graphs. Conclusions and a look at open

4

problems that have presented themselves, including new conjectures related to mini-

mal Kn, appear in Chapter 5.

5

Chapter 2

Background

In this chapter the basic definitions needed for reading this dissertation are presented.

All background definitions are collected in Section 2.1. Section 2.2 covers the history

and related work on crossing numbers with the main focus on the crossing number of

complete graphs. A brief overview of graph isomorphism, as it relates to this work,

is given in Section 2.2.3. Finally, Section 2.3 describes in detail the exhaustive search

algorithm from which this new research initiated. This background allows for clear

understanding as progress is made toward growing minimal Kn from minimal Kn−1.

2.1 Basic Definitions

There are several books available on graph theory. [13] and [57] are two that each

have a small section dedicated to crossing numbers. The basis for the definitions in

this chapter come from [13].

Definition 1 A simple graph G is a finite nonempty set of objects called vertices

together with a set of unordered pairs of distinct vertices of G called edges.

The vertex set of G is denoted V(G) and the edge set is denoted E(G). Through-

out this dissertation, all graphs are simple unless otherwise noted.

Given two vertices, u and v, of graph G, the edge e = (u,v) joins u and v. Common

notation for the edge e = (u,v) is uv. This more convenient notation is used when

possible. If e = uv is an edge of G, then u and v are called adjacent vertices, u and

6

e are incident as are v and e. If e1 and e2 are distinct edges of G with a common

vertex, it is said that e1 and e2 are adjacent edges.

Definition 2 The order of graph G is the cardinality of the vertex set of G, com-

monly denoted n(G) or n.

Definition 3 The size of graph G is the cardinality of the edge set of G, commonly

denoted m(G) or m.

Definition 4 The degree of a vertex v is the number of edges incident with v, com-

monly denoted deg v.

In figure 2.1 the above terms are illustrated for two graphs. The graph in (a) has

order n = 4 and size m = 4. Vertices 1 and 2 each have degree 2, vertex 3 has degree

3, and vertex 4 has degree 1. Graph (b) has order n = 5, size m = 10, and all five

vertices have degree 4.

1 2

3

4

2
1

3 4

5

(a) (b)

Figure 2.1: Example Graphs

Definition 5 A graph G is isomorphic to graph H if there exists a one-to-one

mapping φ, called an isomorphism, from V(G) onto V(H) such that φ preserves

adjacency; i.e. uv ∈ E(G) if and only if φ(u) φ(v) ∈ E(H).

7

3

4

21

3

1

42

3

4 2

1

(a) (b) (c)

Figure 2.2: Isomorphic and Nonisomorphic Graphs

The two graphs in Figure 2.2(a) and (b) are isomorphic, but graph (c) is not

isomorphic to either (a) or (b).

Definition 6 A graph G is a subgraph of graph H if V(G) ⊆ V(H) and E(G) ⊆

E(H).

Definition 7 A graph G is complete if every two of its vertices are adjacent. The

notation for the complete graph of order n is Kn.

In Figure 2.3, graph (a) is a complete graph of order six. Graph (b) is a complete

graph of order 5, and graph (c) is not complete. Graphs (b) and (c) are both subgraphs

of graph (a).

(a) (b) (c)

Figure 2.3: A Complete Graph and Two Subgraphs

8

Definition 8 A graph G is k-partite, k ≥ 1, if it is possible to partition V(G) into

k subsets, V1,V2,...,Vk, called partite sets, such that every element of E(G) joins a

vertex of Vi to a vertex of Vj, i 6= j.

Definition 9 A complete k-partite graph G is a k-partite graph with partite sets

V1,V2,...,Vk having the additional property that if u ∈ Vi and v ∈ Vj, i 6= j, the uv ∈

E(G).

The complete bipartite graph consisting of two partite sets of order m and n is

denoted K(n,m) or Kn,m . The graph K1,n is called a star.

A complete bipartite graph illustrating Turán’s brick factory problem is seen

in Figure 2.4. To visualize the brick factory layout, let vertices 1 and 2 represent

the brick ovens (one partite set), vertices 3, 4, and 5 represent the storage areas (the

second partite set), and the edges of the graph represent the rails connecting all ovens

to all storage locations.

1 2

543

Figure 2.4: A Bipartite Graph

Definition 10 The cartesian product graph F = G × H has V(F) = V(G) ×

V(H), and two vertices (u1, u2) and (v1, v2) are adjacent iff either u1 = v1 and u2v2 ∈

E(H), or u2 = v2 and u1v1 ∈ E(G).

Definition 11 A u-v walk of graph G is a finite, alternating sequence

u = u0, e1, u1, e2..., uk−1, ek, uk = v

9

of vertices and edges, beginning with vertex u and ending with vertex v, such that

ei = ui−1ui for i=1, 2, ..., k. The length of the walk is denoted by k.

A u-v path is a u-v walk in which no vertex is repeated.

Definition 12 A vertex u is connected to vertex v in graph G if there exists a u-v

path in G. A graph G is connected if every two of its vertices are connected.

It should be obvious that every complete graph, Kn, is connected.

Definition 13 The bisection width of a graph is the minimum number of edges

that must be removed from the graph in order to disconnect it into two equal-sized

pieces. Two pieces are equal-sized if the number of vertices in each differs by no more

than one. Bisection width is denoted bw(G).

Figure 2.5 shows a graph with the dashed lines indicating the edges that need

to be deleted to disconnect it into two equal-sized pieces. The bisection width of the

graph is 3.

Figure 2.5: The Bisection Width of a Graph

Definition 14 The cutwidth of a graph G with vertex set V,edge set E, and injection

φ : V ← {1,2,3,...,|V |} is defined as

cw(G) = min
φ

max
i
|{uv ∈ E : φ(u) ≤ i < φ(v)}|

.

10

The cutwidth problem is one of arranging vertices in a line so that the maximum

number of edges crossing the ith place, for all i, is minimized. The illustrations in

Figure 2.6 aid in understanding the cutwidth definition. Graph (a) is shown as a linear

embedding in (b). The horizontal dashed line crosses the region between vertices 2

and 4 three times, so the region between 2 and 4 has a cut of 3 indicated by the three

edges intersected. The cutwidth of the graph is the minimum of all possible maximum

cuts over all possible linear embeddings. The cutwidth of graph (a) is three.

1

5

43

2

12 345

(a) (b)

Figure 2.6: The Cutwidth of a Graph

Definition 15 A graph G with order n and size m is realizable or embeddable on

a surface S if it is possible to distinguish a collection of m curves, pairwise disjoint

except possibly for endpoints, on S that correspond to the edges of G such that if a

curve A corresponds to the edge e = uv, then only the endpoints of A correspond to

vertices of G, namely u and v.

Definition 16 A graph is planar if it can be embedded in the plane.

Embedding a graph in the plane is equivalent to embedding it on the sphere.

Definition 17 A planar graph that is embedded in the plane is called a plane graph.

Figure 2.7 graph (a) is a planar graph, though as drawn it is not plane. The

illustration in (b) is its plane representation.

11

1 2

543

(a)

5

4

3
21

(b)

Figure 2.7: A Planar and Plane Graph

Definition 18 Given a plane graph G, a region of G is a maximal portion of the

plane for which any two points may be joined by a curve A such that each point of A

neither corresponds to a vertex of G nor lies on any curve corresponding to an edge

of G.

The regions of G can be thought of as the disjoint portions of the plane remaining

after all the edges and vertices have been removed.

Definition 19 The boundary of a region R of a plane graph G consists of all points

x corresponding to vertices and edges of G having the property that x can be joined

to a point of R by a curve, all of whose points that differ from x belong to R.

For illustration, Figure 2.8 shows the regions of K4 along with their boundaries.

Region R1 is bounded by vertex 1, edge (1,2), vertex 2, edge (2,4), vertex 4 and edge

(4,1). The other region boundaries can be determined similarly. Notice that there is

an exterior region, R4. It is bounded by vertex 1, edge (1,3), vertex 3, edge (3,2),

vertex 2, and edge (2,1). For the discussion in this dissertation it is said that a vertex

or edge on the boundary of a region is adjacent to that region.

The order, size, and number of regions of any connected plane graph are related

by Euler’s Formula, stated in Theorem 1.

12

1

4

2

3

R1

R2
R3

R4

Figure 2.8: The Regions of K4 and Their Boundaries

Theorem 1 [Euler’s Formula] If G is a connected plane graph with n vertices, m

edges and r regions, then

n−m + r = 2.

It follows from Theorem 1 that every two embeddings of a connected planar graph

in the plane result in plane graphs with the same number of regions. This allows for

discussion of the number of regions of a connected planar graph.

Nonplanar graphs cannot be drawn in the plane; some edges must cross. This

leads to the definition of the crossing number of a graph, a standard measure of graph

nonplanarity, as well as to the definition of a good drawing.

Definition 20 The crossing number ν(G) of a graph G is the minimum number

of edge crossings among the drawings of G in the plane.

Definition 21 A good drawing of a graph G satisfies the following:

• adjacent edges never cross,

• two nonadjacent edges cross at most once,

• no more than two edges cross at a point of the plane, and

• no edge passes through a vertex of the graph G.

13

Figure 2.9 illustrates the four edge relationships listed in Definition 21 that are

not allowed in good graph drawings.

edge ab

a

b

Adjacent edges
crossing

Nonadjacent edges
crossing more than once

More than 2 edges
crossing at 1 point

An edge passing
through a vertex

Figure 2.9: Illegal Edges for a Good Graph

Definition 22 A minimal graph G is a graph with the minimum number of edge

crossings among the drawings of G.

Definition 23 The rectilinear crossing number of a graph G, denoted ν̄(G), is

the minimum number of edge crossings among all drawings of G in the plane in which

each edge is a straight line segment.

Fáry [21] is known for the earliest result concerning the drawing of a graph in

the plane. He showed that every planar graph can be embedded in the plane so that

every edge is a straight line segment. In terms of crossing numbers this implies that

if ν(G) = 0 then ν̄(G) = 0.

The following definitions are relevant to the discussion in Section 2.3.1 of Ed-

monds’ Rotational Embedding Scheme. A compact orientable 2-manifold is a surface

that can be thought of as a sphere with attached handles. The number of handles is

referred to as the genus of the surface.

14

Definition 24 The genus of a graph G is the smallest genus of all surfaces on which

G can be embedded. The genus of a graph is denoted gen(G).

Since, as mentioned, the embeddings of graphs on planes or spheres is equivalent,

the graphs of genus 0 are exactly planar graphs. This dissertation is concerned only

with graphs of genus 0.

Definition 25 A region of a graph G is 2-cell if any simple closed curve in that

region can be continuously deformed or contracted in that region to a single point.

Every region of a connected graph embedded on the sphere is 2-cell. However

this may not be the case for connected graphs embedded on surfaces of positive genus.

Definition 26 If all the regions of a graph G embedded on a surface S are 2-cell, the

embedding is called a 2-cell embedding.

Via an extension of Euler’s Formula (Theorem 1), it is noted that every embed-

ding of a connected graph G on a surface of genus gen(G) results in the same number

of regions.

2.2 Background and Related Literature

This section discusses the background of crossing numbers and provides a brief sur-

vey of the relevant literature. The main focus is on the crossing number of complete

graphs. The crossing number problem, so difficult to attack in general, has followed

many splintered paths as individuals have attempted to make progress on the prob-

lem from different perspectives. There are many results with not a great deal of

generalization evident. Bits and pieces have been proven over a wide variety of graph

families and different types of edge crossings. An overview of the crossing number of

complete graphs is presented in Section 2.2.1. Section 2.2.2 briefly looks at the work

being done on other types of crossing numbers and other graph families. Section 2.2.3

concludes with an overview of graph isomorphism as it relates to this body of work.

15

2.2.1 The Crossing Number of Complete Graphs

As mentioned in the Chapter 1, Turán’s brick factory problem asks the question of

finding the crossing number of a complete bipartite graph. Zarankiewicz [62] proposed

a solution to the problem in 1953. Guy [30] points out an error in Zarankiewicz’s

proof that was discovered in 1965 by Kainen and Ringel and shared with Guy via

private communication. The error was the assumption that among the m graphs Km,1

that compose Km,n it is always possible to find two which do not contain a crossing.

To date, Zarankiewicz’s conjecture has not been proven or disproven and stands as

an upper bound.

Theorem 2 [Zarankiewicz] The crossing number of the complete bipartite graph Km,n

satisfies the inequality

ν(Km,n) ≤
⌊

m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1

2

⌋
.

Conjecture 1 [Zarankiewicz] The crossing number of the complete bipartite graph

Km,n satisfies the equality

ν(Km,n) =
⌊

m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1

2

⌋
.

In 1960, Guy [29] popularized the search for the crossing number of a complete

graph with the introduction of an upper bound, confirmed by Blazek and Koman [11].

Guy mentioned that Erdös had been looking at the problem for at least twenty years

prior. No improved upper bound has been published to date.

Theorem 3 [Guy] The crossing number of the complete graph Kn satisfies the in-

equality

ν(Kn) ≤ 1
4

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
.

Another representation of the inequality in Theorem 3 is:

ν(Kn) ≤ 1
64

n(n− 2)2(n− 4), for n even.

ν(Kn) ≤ 1
64

n(n− 1)2(n− 3)2, for n odd.

16

It is interesting to note that if equality holds for Theorem 3 for n odd, then by a

straightforward induction proof it can be shown to hold for the next value of n (even).

The inductive step from even to odd cannot be made. As Guy says, “We are trying

to walk, using only one leg.” This same one-legged induction holds for the inequality

in Theorem 2 [31].

It has been conjectured [29, 33] that equality holds in Theorem 3 for all n. This

conjecture, made in the early 1960s, has not been proven or disproven to date.

Conjecture 2 [Guy [29], Harary and Hill [33]] The crossing number of the complete

graph Kn satisfies the equality

ν(Kn) = 1
4

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
.

In 1963, Harary and Hill mention the rectilinear crossing number, denoted ν̄(Kn)

for complete graphs with n vertices, and illustrate examples of conjectured differences

via drawings of ν(K8) and ν̄(K8). They composed Table 2.1 of conjectured values for

ν(Kn) and ν̄(Kn). It is included here as a historical fact and as a reflection on the

slow advances in the crossing number problem. Table 2.1 as related to ν(Kn) has seen

no modification since its inception. For the current status of ν̄(Kn), see Section 2.2.2.

n 2 3 4 5 6 7 8 9 10
ν(Kn) 0 0 0 1 3 9 18 36 60
ν̄(Kn) 0 0 0 1 3 9 19 36 63

Table 2.1: Conjectured Crossing Numbers in 1963

In the same discussion, by Harary and Hill, Conjecture 3 was proposed.

Conjecture 3 [Harary and Hill] For complete graphs, the rectilinear crossing num-

ber, ν̄(Kn), exceeds the crossing number, ν(Kn), for n = 8 and all n ≥ 10.

In 1971, Singer [50] verified Harary and Hill’s conjecture that ν(Kn) 6= ν̄(Kn) for

n = 8 and n = 10. He proved that ν̄(K8) = 19 and 60 < ν̄(K10) < 63.

Guy supplied us with Theorem 4 in 1972. The reader is encouraged to refer to

[31] for proofs establishing equality of Theorem 3 for n ≤ 10.

17

Theorem 4 [Guy] For the complete graph Kn, for n ≤ 10, it is the case that

ν(Kn) = 1
4

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
.

In addition to proofs for n ≤ 10, [19] and [31] supply a plethora of informa-

tion, some of which is briefly described now. The introduction of the responsibility

argument, which is later used [12] in a proof that ν̄(K10) = 62, is presented. The

responsibility of a vertex is defined as the total number of crossings on all edges in-

cident to that vertex. Theorem 5 from [19, 31] supplies information on the parity of

Kn, and Theorem 6 addresses the crossing number of sub-drawings.

Theorem 5 [Guy,Eggleton] The parity of the number of crossings in all good draw-

ings of Kn is the same for n odd.

Theorem 6 [Guy] Given any drawing of Kn with c crossings, there exists at least

one sub-drawing Kn−1 with at most, and one with at least,
⌊

n
n−4

c
⌋

crossings.

Guy also conjectured a solution to the rectilinear crossing number problem. See

Section 2.2.2 for details. Eggleton [19] and Harbo et al. [28] supply work on generating

all nonequivalent complete graphs for n ≤ 6 as well as for some other graph families.

Garey and Johnson helped explain why advancement in solving the crossing

number problem was so trying. They proved the crossing number problem to be

NP-complete [25] as Theorem 7 states.

Theorem 7 [Garey and Johnson] Given a graph G and an integer K, the question

of if ν(G) ≤ K is NP-complete.

After this discovery, much research turned away from the crossing number prob-

lem to other related problems, although it was not abandoned completely. Research

mainly focused on lower bound tightening, and the quest for exact values fell off.

For the reader interested in NP-completeness, refer to [24]. The rectilinear crossing

number problem has been found to be NP-hard [9]. Pach and Toth [44] show that the

18

odd crossing number problem is NP-complete and that the pairwise crossing number

problem is NP-hard.

Harris and Harris [34] proposed an exhaustive search algorithm for calculating the

crossing number of a graph. This algorithm was implemented in parallel by Tadjiev

and Harris [52, 53]. The test family of graphs was the complete graph family. Needed

improvements, a dynamic work queue and graph theoretic reductions of the search

space, became evident from this initial parallel implementation. This algorithm is

explained in more detail in Section 2.3 since it is the algorithm from which this

dissertation grew.

While there are a few infinite classes of graphs for which tight bounds are

known [10, 40], efficient lower bound methods for estimating the crossing number

of a variety of graphs are lacking. One of the methods seeing a lot of use in the lower

bound search is the bisection method. It has proven to be one of the most powerful.

In Leighton’s article [39] discussing the use of the crossing number to estimate the

required chip area for VLSI circuit layout of graph, he proved a general lower bound

for ν(Kn) using the relationship between the crossing number and the bisection width.

This lower bound was also found independently by Ajtai et al. [6]. Many extensions

of this lower bound have been discovered [38, 39, 43, 51]. The best of these bounds

combines Leighton’s bound with the constant 1
33.75

by Pach et al. [46], producing

Theorem 8.

Theorem 8 [Leighton, Ajtai et al., Pach et al.] Let G be a graph with n vertices and

e edges with e ≥ 7.5n. Then

ν(G) ≥ 1
33.75

e3

n2 .

A similar inequality holds for the odd crossing number, see [44], with a crossing

constant of 1
64

.

Another technique, using the cutwidth of a graph, was spawned from this exten-

sion of Leighton’s lower bound. An improvement of that bound was discovered [16] by

replacing the bisection width with the cutwidth of the graph. In using the cutwidth

19

of a graph, Djidjev and Vrt’o were also able to find an upper bound on pathwidth of

G in terms of its crossing number.

Pach et al. [46] prove the conjecture by Erdös and Guy [20] that K (n, e)n2

e3 tends

to a positive constant as n approaches infinity and n << e << n2 to produce The-

orem 9. K(n, e) is defined to be the minimum of ν(G) taken over all graphs with n

vertices and at least e edges.

Theorem 9 [Pach et al.] Given a graph G, with n vertices and at least e edges, if

n << e << n2,

lim
n→∞

K (n, e)
n2

e3
= C > 0

where K(n,e) is the minimum of ν(G) taken over all graphs with n vertices and at

least e edges.

They also reported on some new bounds for graphs with monotone properties.

Specifically, given a graph G with n vertices, e ≥ 4n edges without a cycle of length

4, then its crossing number is at least ce4

n3 where c > 0 is a suitable constant. A graph

without a cycle of length 6 results in a crossing number of at least ce5

n4 . The bisection

width and crossing number [38] aided in these results.

In the search for an improved lower bound for ν(K7,n), de Klerk et al. [15], using

quadratic optimization techniques, discovered improved bounds for Kn. They present

their results in terms of asymptotic ratios as follows. Let G(Kn) be the conjectured

crossing number for the complete graph of order n as stated in Conjecture 2, then

lim
n→∞

ν(Kn)

G(Kn)
≥ 0.83

Asymptotic ratios are an eloquent way to appreciate how close research is to Guy’s

conjectured result. The limit above, call it C, was described and shown to exist [48]

along with A and B as follows:

A = lim
n→∞

ν(Km,n)

Z(Km,n)
and B = lim

n→∞

ν(Kn,n)

Z(Kn,n)

20

where Z(Km,n) is Zarankiewicz’s Conjecture 1, and it is shown that C ≥ B. These

results allowed de Klerk et al. to arrive at their new lower bound for ν(Kn) as

an extension of the following bipartite lower bounds they found, also reported as

asymptotic ratios:

lim
n→∞

ν(Km,n)

Z(Km,n)
≥ 0.83

m

m− 1
and lim

n→∞

ν(Kn,n)

Z(Kn,n)
≥ 0.83

Richter and Thomassen [48] have a good overview of ν(Kn) and ν(Km,m) in addition

to the above mentioned asymptotic ratios.

Grohe has recently shown [27] that the crossing number problem is fixed param-

eter tractable.

Definition 27 A problem is fixed parameter-tractable if there is a constant c ≥ 1

such that for every fixed k the problem can be solved in time O(nc).

He showed that for every fixed k there is a quadratic time algorithm that decides

if a graph G has crossing number at most k. This result has only theoretical interest

as the run time is O(f(k)n2) where f is at least doubly exponential. Yet, as Grohe

states, knowing that the crossing number problem is fixed parameter-tractable may

help researchers find algorithms that have practical application for small values of k.

For a fairly complete and up to date list of papers related to crossing numbers

see [56]. Liebers’ work [40] has a section on crossing numbers along with several

references to crossing number work related to the hypercube of dimension n, Cartesian

product graphs, and others. Section 2.2.2 mentions other crossing number references.

Additionally, Pach and Toth [44] discuss several problems on crossing numbers. Their

paper includes several open questions along with a list of references.

2.2.2 Rectilinear and Other Crossing Numbers

The crossing number is the minimum number of crossings with which it is possible to

draw graph G in the plane. The result is the same whether G is drawn in the plane

or on the surface of a sphere. This is not the same number obtained by drawing G on

21

a sphere with the edges as arcs of great circles, the rectilinear crossing number [33].

Rectilinear research restricts edges to geodesics, i.e. straight lines in the plane or

to great circle arcs on the sphere. The rectilinear problem has a geometric nature

that can be exploited, the convex hull, making it more accessible than the standard

crossing number to researchers hoping to find exact values. For this reason, rectilinear

crossing numbers have seen extensively more research than crossing numbers.

Guy conjectured that the upper bound for the rectilinear crossing number, given

in Theorem 10, and presented in [19, 36], was an equality. The conjecture has been

disproven (see [4, 12, 50, 54]), but the upper bound still stands.

Theorem 10 [Guy] The rectilinear crossing number of the complete graph Kn satis-

fies the inequality

ν̄(Kn) ≤ b
(7n4−56n3+128n2+48nb (n−7)

3
c+108)

432
c.

The search for the exact value of the rectilinear crossing number problem has seen

advancement recently. These advances were accomplished via exhaustive search tech-

niques. The exact value of ν̄(Kn) for n ≤ 9 has been known for some time [20]. That

ν̄(K10) = 61 or 62 was found by Singer in 1971 in an unpublished manuscript [50].

This long standing question was answered, ν̄(K10) = 62, by an intricate combinato-

rial proof presented by Brodsky et al. [12], in 2000. This result was confirmed by

Aichholzer et al. [4] via exhaustive enumeration of all combinatorially inequivalent

sets of points (order types). See [2, 5] for a description of this enumeration method.

Aichholzer et al. [1, 2] have determined ν̄(Kn) for up to n = 17. Table 2.2 illustrates

the rectilinear crossing number results to date.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ν̄(Kn) 0 0 0 1 3 9 19 36 62 102 153 229 324 447 603 798

Table 2.2: Rectilinear Crossing Numbers up to n = 17

Guy et al. [32] introduced the idea of the toroidal crossing number, cr1(Kn), with

some preliminary results for n ≤ 10. The examination of the torus was a step toward

22

looking at crossing numbers on orientable surfaces of higher genus. They also make a

reference (unpublished) to Ringel as introducing the idea of a local crossing number.

Pach and Toth [44, 45] define pairwise crossing number, pair-cr(G), and odd

crossing number, odd-cr(G), and examine the relationship between them and the

crossing number and ask if it is true that, for every graph G

odd-cr(G) = pair-cr(G) = ν(G).

Just recently, Pelsmajer et al. [47] claim to have shown that odd− cr(G) 6= ν(G)

using weighted maps on the annulus, a disk with a hole in the center.

Conjecture 1 for the crossing number of Km,n has been verified for min(m, n) ≤ 6

by Kleitman [37] and also by Woodall [58] for the cases 7 ≤ m ≤ 8 and 7 ≤ n ≤ 10.

It is unknown for all other values. For discussion on the best known lower bounds for

differing cases of ν(Km,n), see [15]. These bounds were achieved using combinatorics

in conjunction with quadratic optimization techniques. Shahrokhi et al. [49] looked

at a lower bound argument for bipartite graphs based on Menger’s Theorem which

relates the bipartite crossing number of a graph to the edge connectivity properties

of the graph. They also make use of spectral graph theory.

One graph family for which there has been success in finding exact values is the

Cartesian products of cycles Cm × Cn. Glebsky and Salazar [26] have proven for all

but finitely many n, and for each m the long standing conjecture that ν(Cm×Cn) =

(m− 2)n for all m, n such that n ≥ m ≥ 3.

2.2.3 Graph Isomorphism

An overview of the state of the graph isomorphism problem through 1996 is presented

in [22]. Solving the graph isomorphism problem is generally done using one of two

distinct approaches. Both usually involve one or many vertex invariants to improve

efficiency. The first approach finds isomorphism between two given graphs by directly

finding the mapping between their vertices. The technique can employ approxima-

tion or exact methods. This brute force graph matching has applications in several

contexts related to computer vision and pattern recognition contexts.

23

The second approach involves canonical labeling of the graphs in question. A

function that produces a canonical label C(G) for a given graph G is defined. Canon-

ical labeling works due to the fact that C(G) = C(H) if and only if graphs G and H

are isomorphic. The most widely used canonical labeling algorithm is nauty [42].

nauty, standing for “No AUTomorphisms, Yes?”, is considered to be one of the

most powerful and practical methods available for solving graph isomorphism prob-

lems and has been labeled as the “world’s fastest isomorphism testing program” [42].

Refer to Section 4.1 for an overview of nauty’s application to this dissertation.

2.3 Exhaustive Search Algorithm

As noted, this research originated with an exhaustive-search branch-and-bound

algorithm proposed by [34]. An overview of it is presented to allow for understanding

of the new work presented in Chapter 3. This algorithm makes use of Edmonds’

Rotation Embedding Scheme, so discussion of that approach begins the review.

2.3.1 Edmonds’ Rotational Embedding Scheme

Edmonds’ Rotational Embedding Scheme was first formally introduced by Ed-

monds [18] in 1960 and then discussed in detail by Youngs [59] a few years later. The

following is the formal statement of the Rotational Embedding Scheme as presented

in [13] on pages 196-197.

Let G be a nontrivial connected graph with V (G) = {v1, v2, . . . , vn}. For

each 2-cell embedding of G on a surface there exists a unique n-tuple

(π1, π2, . . . , πn), where for i = 1, 2, . . . , n, πi : V (i) → V (i) is a cyclic

permutation that describes the subscripts of the vertices adjacent to vi.

Conversely, for each such n-tuple (π1, π2, . . . , πn), there exists a 2-cell em-

bedding of G on some surface such that for i = 1, 2, . . . , n the subscripts

adjacent to vi and in the counterclockwise order about vi are given by πi.

24

For example, consider Figure 2.10 which gives a planar embedding of a graph.

From this graph, the following are counterclockwise permutations associated with

each vertex:

π1 = (6, 4, 2) π2 = (1, 4, 3)
π3 = (2, 4) π4 = (3, 2, 1, 5)
π5 = (4, 6) π6 = (5, 1)

4

2

5

3

1

6

Figure 2.10: A Planar Embedding of a Graph

From these permutations the edges of the graph and the number of regions of

the graph are determined. For instance, this graph has 4 regions. The edges for one

of these regions can be traced as follows:

1) Start with edge (1,2).

2) Refer to permutation π2 to determine which vertex follows 1. It is 4;

therefore the second edge is (2,4).

3) Refer to permutation π4 to determine which vertex follows 2. It is 1;

therefore the third edge is (4,1).

4) Refer to permutation π1 to determine which vertex follows 4. It is 2, which

corresponds to the original edge (1,2), so the trace is finished.

The region traced is bounded by the edges (1,2), (2,4), and (4,1). The other regions

and edges can be found in a similar manner.

The important thing to note at this point is the converse portion of the Rota-

tional Embedding Scheme: every collection of vertex permutations corresponds to an

25

embedding on some surface. Given a set of permutations, the edges can be traced

and the genus of the surface determined.

2.3.2 The Exhaustive Search Algorithm

The algorithm presented in [34] maps the solution space of the crossing number

problem onto a tree. The tree is then searched for the crossing number with a branch-

and-bound depth-first search (DFS). A DFS searches more deeply into the tree for a

solution whenever possible. Once a path is found from the root to a leaf representing

a solution, the search backtracks to explore the nearest unsearched portion of the

tree. This process continues until the entire tree has been traversed. The branch-

and-bound approach changes one small part of the DFS algorithm. When the cost to

get to a vertex v exceeds the current optimal solution, the DFS algorithm does not

traverse the subtree having vertex v as its root. This modification saves having to

cover a section of the search space that is guaranteed to cost more than the current

optimal solution. The branch-and-bound DFS algorithm is as follows:

Begin with the vertex set for the graph in question, and start to add edges. After

each edge is added, determine, using the Rotational Embedding Scheme, whether the

partial graph is still planar. Once no more edges can be added while keeping the

partial graph planar, the mapping to the tree is performed.

At this stage a partial graph is the root of the tree. The first option is the many

different ways to draw this graph. The root of the tree has a branch for each possible

planar embedding. Now, select the first embedding, and begin to build the rest of its

tree. Do this by considering laying down the next edge (which will go from vertex i

to vertex j). The first option is through which one of the k regions to which vertex

i is adjacent this edge should leave. These regions represent the next layer of the

tree. Once a region is selected, the next option is to select which of the l edges of

that region the edge will cross. Making this decision creates a cross vertex (degree

4), places an edge from vertex i to the cross vertex, and tries to lay the edge from the

26

cross vertex to vertex j. This may be possible directly, or it may require more cross

vertices.

Lay down the remaining edges in a similar manner, and, when they are all laid

down, a leaf in the tree is reached. At this point a cost for the current solution,

which is the number of cross vertices, is known. This number of crossings becomes

the new bound. Continue by backing up and trying other branches in the tree using

this bound as a stopping criterion. Proceed in this fashion until the entire solution

space is traversed.

In order to understand this approach, a walk through the algorithm is now pre-

sented with K5 as an example. Figure 2.11 shows the vertex set for the graph with

all the edges that can be added to the graph without making it nonplanar.

j

i

2

R1

R2

R3

Figure 2.11: Planar Portion of K5

At this stage the algorithm states that an attempt be made to take all remaining

edges and lay them down one at a time. This is fairly simple in this case since there

is only one edge left to be added, the one from vertex i to vertex j. Now three choices

arise, and these are the three regions to which vertex i is adjacent (R1, R2, and

R3). Selecting R1, which has 3 edges, leads to the conclusion that there is only one

way to lay down edge ij since it cannot legally cross 2 of the edges because they are

incident with i. The algorithm then calls for placing a cross vertex on this edge and

27

connecting an edge from i to the cross vertex as shown in Figure 2.12(a). The next

step is determining if the edge from the cross vertex to j can be drawn while keeping

the graph planar. In this case it can, and this edge, having one crossing, is complete.

This solution is shown in Figure 2.12(b). The algorithm then backtracks and tries the

other regions to which i is adjacent and finds that there are multiple ways to draw

K5 with one crossing. This exhaustive search algorithm is the foundation for the new

work which is presented in Chapter 3.

j

i

R1

R2

R3

j

i

R1

R2

R3

(a) (b)

Figure 2.12: Laying Down an Edge for K5

28

Chapter 3

Progression toward an Effective
Algorithm

Work in the direction of growing minimal Kn from minimal Kn−1 starts with the

exhaustive search algorithm, presented in Section 2.3, modified such that the root of

the search tree is minimal Kn−1. Guy [31] states that if Conjecture 2 is true, then it

is false to conjecture that a minimal Kn always contains a minimal Kn−1 for n odd

and n ≥ 9. If Conjecture 2 is true, it can be demonstrated that minimal Kn always

contains a minimal Kn−1 for n even, but no demonstration is available for n odd,

specifically for n = 9 and probably for larger odd n. A formal proof showing minimal

Kn does not contain minimal Kn−1 for n odd has not been found in the literature nor

has an example of a minimal K9 that does not contain a minimal K8 been located.

In personal correspondence, Guy indicated that at one time there was a census of the

minimal drawings of K9. In the attempt to recover these graphs for evaluation it was

learned that they have been lost over the years. It is also noted that the definition

of isomorphism used for the missing census of minimal K9 is different from the one

employed for this body of work. These differences and the fact that Conjecture 2 is

a conjecture leaves the door open for the exploration presented.

Although no example of a minimal K9 that does not contain minimal K8 has pre-

sented itself at this time, it is evident via mathematical evaluation that the possibility

that such a drawing may theoretically exist cannot be disregarded. It is easily verified

that removal of any vertex from minimal K9 does not always produce a minimal K8;

29

however, this does not show irrefutably that minimal K9 does not contain a mini-

mal K8. Figure 3.1 illustrates a minimal K9 having both minimal and non-minimal

K8 subgraphs. Figure 3.2(a) shows a minimal K8 subgraph with 18 crossings, and

Figure 3.2(b) shows a non-minimal K8 subgraph with 22 crossings.

Figure 3.1: A Minimal K9 with Minimal and Non-minimal K8 Subgraphs

(a) (b)

Figure 3.2: Minimal and Non-minimal K8 Subgraphs of Minimal K9

Recall that the responsibility of a vertex is defined by Guy [31] as the total

number of crossings on all edges incident to that vertex. Given that each crossing

30

is the responsibility of four vertices, the total responsibility of a graph is 4c, where

c is the number of crossings. Start by considering a minimal K7. A drawing of

minimal K7 contains a vertex with responsibility at least
⌈

4c
7

⌉
= 6. This is the

average responsibility of all vertices in the graph. Removal of this vertex and all

edges incident to it leaves a drawing of K6 with at most c−
⌈

4c
7

⌉
=

⌊
3c
7

⌋
= 3 crossings.

All vertices of minimal K7 must have responsibility 6. If there existed one with larger

responsibility, its removal would leave a K6 with fewer than 3 crossings which is not

possible. Thus removal of any vertex from minimal K7 will leave a minimal K6. A

similar argument exists regarding minimal K8 containing minimal K7 subgraphs.

In the case of minimal K9 with K8 subgraphs, we would get a similar result if

minimal K9 contained 34 crossings, but it does not. Minimal K9 has 36 crossings and

by the responsibility argument, the average responsibility of its nine vertices is 16.

Removal of a vertex with responsibility 16 will leave a K8 with 20 crossings, which

is nonminimal. Thus removal of any vertex from a minimal K9 does not guarantee a

minimal K8 subgraph. Keep in mind that the vertex removed has the average respon-

sibility of all vertices in the minimal K9. Given that minimal K8 has 18 crossings, it

may be the case that all minimal K9 have at least one vertex with responsibility 18.

Removal of this one vertex would result in a minimal K8 subgraph.

The question becomes: does there exist a minimal K9 such that each of its nine

K8 subgraphs is not minimal? Specifically, the question is posed: does there exist

a K8 with 19 crossings that can generate a minimal K9 with a maximum vertex

responsibility of 17? All vertices of this minimal K9 cannot have responsibility 16,

or minimal K9 would have 34 crossings, and removal of any vertex would result in

nonminimal K8 with 20 crossings. There would have to be at least 1 vertex with

responsibility of 17. Removal of this vertex would result in a K8 with 19 crossings.

This would have to be the maximum responsibility since if a vertex with responsibility

18 existed in the graph, its removal would present a minimal K8 subgraph and, of

course, responsibility larger than 18 cannot exist or the crossings in minimal K8 would

be fewer than the 18 crossings of minimal K8. Until this question is answered, it is

31

not confirmed whether every minimal K9 contains a minimal K8 or not. It is the case

for all n < 9 that removal of any vertex from minimal Kn does leave a minimal Kn−1

subgraph.

Given the possibility that not every minimal K9 can be derived from minimal K8,

and that no proof to the contrary has presented itself, it is agreed, at this point, that

some minimal Kn may be lost, specifically those created from nonminimal Kn−1, for

n odd and n ≥ 9 by using minimal Kn−1 as the root of the search tree. It is assumed,

for now, that it is possible that branches are pruned off the search tree that do not

step through a minimal Kn−1 on a path leading to minimal Kn. Refer to Chapter 5

for future work to further explore this topic. Given this concession, from this point

forward, the discussion is based on using minimal Kn−1 as the root graph of the search

tree.

This chapter presents the new ideas that mold the exhaustive search algorithm,

outlined in Section 2.3, into the foundation for an effective algorithm that can be

used in growing minimal Kn from minimal Kn−1. Section 3.1 addresses parallel load

balancing issues in the Tadjiev and Harris [52, 53] implementation. An overview

of the new parallel implementation developed is presented in Section 3.2 for clear

understanding of the three new search space reductions using this parallel scheme

that are addressed in Section 3.3. The chapter concludes with a new technique,

Star Analysis, discussed in Section 3.4 that steps away from the job-based parallel

implementation of Section 3.2.

3.1 Parallel Load Balancing

In the initial parallel implementation of the exhaustive search algorithm overviewed

in Section 2.3, Tadjiev and Harris [52, 53] implemented a basic static partitioning

of the search tree across the processors used. Static partitioning is most beneficial

when the problems being addressed have data sets that are completely defined prior

to run-time and that are often divided among the processors, each computing its own

results from its individual data set. A drawback of static partitioning is that when

32

one processor finishes working it must wait idly while the other processors complete

their task. The work load is not evenly distributed across the processors. There is

unrealized concurrent execution of the data in this case [61]. Tadjiev and Harris note

this problem with the initial implementation they produced. Figure 3.3 illustrates

one way an unbalanced search tree may be allocated to processors. Processors P2

and P3 will finish their allocated load and sit idle while P1 processes its larger load

without the ability to share it.

P1

P2

P3

Figure 3.3: Unbalanced Work Load

One solution to the unbalanced load problem is dynamic load balancing. A work

queue is one method of implementing dynamic load balancing and thereby ensuring

a work load that is evenly distributed across many processors. This balancing can

be centralized, residing with a master process, or decentralized, controlled by each

slave, or a unified system that may be used combines the two . The work queue is

especially useful in load balancing when dealing with irregular data structures such

as unbalanced search trees.

In centralized load balancing, the tasks to be performed are held by the master

and distributed to the slaves as they finish other tasks and become idle. Efficiency

is maximized as slave idle time is minimized. One disadvantage of centralized load

balancing is the possibility of a master task distribution bottleneck. A bottleneck

33

occurs when many slaves request tasks simultaneously but the master can issue only

one task at a time. In decentralized load balancing, local processors keep their own

work pools. This strategy has the benefit of avoiding a master task distribution bot-

tleneck. Decentralized load balancing is similar to static partitioning in its apparent

problems. In a unified system, the slaves may request work from each other or from

a centralized master queue.

To alleviate the balancing problems noted by Tadjiev and Harris, a dynamic

queuing system was created with a unified system employing both a master queue

and individual slave queues. The slaves request work from a central queue and also

maintain their own individual queue. The implementation, illustrated in Figure 3.4,

has the master creating the first m jobs and placing them on the central queue

(managed by the master). The master then sends one job to each slave processor.

Each processor will create more jobs while processing. These jobs are kept in a local

work queue managed by each individual slave. When a slave’s local work queue

reaches a user-defined limit indicating a large queue size, it sends the extra jobs to

the master for placement in the central queue. If a slave depletes its local queue,

it requests a new job from the master to supply its queue again so it may continue

processing. If the master queue is empty and a slave requests a job to process, the

master will request jobs from the other working slaves. The entire process terminates

when all slaves are idle and the central queue is empty. Refer to [41], [60], and [61]

for more details on this unified queuing system implementation.

3.2 Parallel Implementation Overview

As stated at the beginning of Chapter 3, a minimal Kn−1 is the root of each search

tree examined in the search for minimal Kn. A brief overview of how the parallel

implementation works is presented now to facilitate clarity of the remaining sections

of this chapter.

Figure 3.5 illustrates a minimal K6 graph at the root of the search tree to be

examined in a branch-and-bound depth-first search method in pursuit of minimal

34

Master

Slave 1 Slave 2 Slave n

Distributed / Local
Queue

Central Queue

Work Request

Slave Work Msg

Figure 3.4: Parallel Work Queue

K7. For this discussion, the terminology native vertex is introduced to represent a

true vertex of a graph, not a crossing. A crossing vertex is introduced to planarize

the graph each time an edge segment is placed unless it is to a native vertex on the

boundary of a current region. An edge segment will terminate at a native vertex only

if the vertex is the destination of the original edge. Crossing vertices are indexed

starting one greater than the native vertex, indexed n, being added to the graph.

In Figure 3.5 the native vertices of the graph K6 are numbered 1 through 6, while

the crossing vertices are numbered 8, 9 and 10. The index 7 is reserved for the new

vertex being placed into the graph to generate K7. A preprocessing step adds any

direct connections from the new vertex n to any native vertices on the boundary of

the region in which the new vertex is placed. Each region of the root graph is used as

a possible location for the new vertex placement. Notice in Figure 3.5 that because

vertex 7 was randomly placed in the region defined by vertices 2 and 4 and cross

vertex 10, the edges (7,2) and (7,4) do not appear in the list of edges to add.

In generating minimal Kn, there is more than one minimal Kn−1 root graph for

n ≥ 7. Refer to Chapter 4 for more details on how these root graphs are derived.

The parallel implementation makes use of one master (the manager) and several

35

3

6

5

1

2

9

108

4

7 1

7 3

7 5

7 6

Edges to Add 7

Figure 3.5: Minimal K6 Prepared as the Root of the Search Tree

slave processors. When initiated, the program reads in each of the minimal Kn−1 root

graphs along with the edges that need to be added to each graph to generate Kn and

begins the process by laying down one edge segment to each nonadjacent edge through

each possible initial region for each new graph construction. Each edge segment laid

down creates a new graph with a modified list of edges to add (less the newly laid

down edge segment). Figure 3.6 illustrates the result of this process as applied to the

K6 in Figure 3.5, given that vertex 7 is placed in the region shown. Three possible

segments can be laid down from vertex 7, thus three graphs are constructed. The

edge segment laid down introduces a new crossing to the graph, cross vertex 11.

1

2

3 4

5

6

7

8

9

10

Edges to
Add

11 1

7 3

7 5

7 6

1

2

3 4

5

6

7

8

9

10

Edges to
Add

11 1

7 3

7 5

7 6

1

2

3 4

5

6

7

8

9

10

Edges to
Add

11 1

7 3

7 5

7 6

11

11

11

Figure 3.6: Stepping toward K7 from Minimal K6

The new graph, with its updated list of edges to add, is enqueued as a job in the

master queue. Each slave processor requests an initial job, and the master sends a job

36

to each requesting slave. As the slaves create new jobs, they add them to their local

queues. The master monitors requests from the slaves for more work and transfers

jobs from slaves that have jobs enqueued locally to those in need of jobs to process.

Each graph in any job is treated as planar. As mentioned, a crossing vertex is

introduced to planarize a graph after each edge segment is placed. If the number

of crossing vertices exceeds the current minimum number of crossings found from

previously examined graphs or Guy’s conjectured solution, Conjecture 3, then the

job is disposed of. Otherwise it is packaged, with the updated list of edges to add, as

a new job and enqueued, and the search algorithm is employed again with this planar

graph as the root of its own subtree.

When the list of edges to add is empty, minimal Kn has been constructed. The

crossing vertices are eliminated, and crossings are reintroduced in their place. Fig-

ure 3.7 illustrates this process. The graph at the center top is minimal K5 with the

following preparatory additions: the one crossing is replaced with crossing vertex 7,

vertex 6 is placed in one region, and direct connections are made to vertices 1, 2 and

5. The remaining edges to add are (6,3) and (6,4). Two new crossings are introduced

while generating minimal K6 and are labeled as crossing vertices 8 and 9, as illus-

trated in the lower left figure. The image in the lower right is the final minimal K6

with the crossing vertices removed and replaced with crossings. The final product is

a minimal K6 with 3 crossings.

3.3 Search Space Reduction

A unified queuing system, as discussed in Section 3.1, was incorporated into a parallel

implementation of the exhaustive search algorithm of Section 3.2. Exhaustive search

algorithms are not efficient, and the search trees built become huge quickly. Lengthy

runtime problems arise while creating complete graphs of order 8. Techniques for

search space reduction are critical in achieving solutions for larger n. Three search

space reduction techniques applied to the unified queuing parallel implementation are

presented in Sections 3.3.1 through 3.3.3.

37

3

6

5 1

2

43

6

5 1

2

47

98

5 1

2

43 7

6

Figure 3.7: K6 Constructed from K5 with 1 Crossing Vertex

3.3.1 Order of Edge Placement

Given that the initial graph used in generating Kn is a complete graph of order n−1,

the process of generating Kn is essentially that of placing a star graph K1,n−1 centered

at vertex n upon Kn−1 with vertex n in a region of Kn−1. This leads to the following

theorem.

Theorem 11 In the process of generating graph descriptions of Kn from Kn−1, it

does not matter in which order the edges incident to a new vertex n are laid down.

Proof: Let G be a minimal Kn−1. Let n be the vertex being placed into any one

region of G. To create Kn, n− 1 edges must be placed, each one connecting n to one

of the n − 1 vertices of Kn−1. All n − 1 edges being added to G are adjacent edges

since they are all incident with vertex n. By the definition of a good graph these

edges cannot cross each other or meet at any point other than vertex n. Thus each

edge is independent of every other. The placement of any one does not affect the

placement of any other. Therefore, the order in which the edges are placed does not

matter. ./

38

The ability to disregard order of edge placement leads to a significant computa-

tional savings as compared to having to examine all permutations of edge placement.

3.3.2 Region Restriction

In generating graph descriptions for minimal Kn, the unified queue parallel imple-

mentation that adheres to the definition of a good drawing is inefficient because an

edge path may visit an unnecessary region or return to an already visited region of

the graph, sometimes repeatedly. This observation leads to the next search space

reduction: Region Restriction.

Figure 3.8 illustrates four of many possibilities of a u-v path with the first edge

segment crossing through region R1. Each of the drawings is a good drawing based

on Definition 21. R1 has five edges, three of which are legal for uv to cross. Recall

that each edge adjacent to R1 and not incident to vertex u will be used in generating

all valid uv paths, so it is assured that all edge placements shown in Figure 3.8 will

be generated. Figures 3.8(a) and (b) both illustrate placement of edge uv with one

crossing, and Figures 3.8(c) and (d) have two and four crossings, respectively. Note

that the new edge in both (c) and (d) exits R1 on the same edge and enters R3 on

the same edge, but the edge in Figure 3.8(d) travels less efficiently by entering R4

twice, creating more crossings than the drawing shown in (c). Thus the drawing in

Figure 3.8(d), though a good drawing, will not aid in producing a complete graph

with a minimum number of crossings because the drawing in (c) has fewer crossings.

This observation leads to Lemma 1.

Lemma 1 Given a simple connected graph G with nonadjacent vertices u and v and

at least two regions, restricting the edge uv from reentry into an already visited region

of G does not eliminate any possible minimal graphs from being generated.

Proof: Let R be a region of graph G on whose boundary u lies. By definition of a

region, exactly two edges of R are adjacent to u, and any region of G has at least three

edges. When applying the rules for a good drawing, at least three non-adjacent edges

39

R1

R5R4

R3

R2
R6

R1

R5R4

R3

R2
R6

(a) (b)

R1

R5R4

R3

R2
R6

(c)

R1

R5R4

R3

R2
R6

(d)

u
v

u
v v

u
v

u

Figure 3.8: Good Drawings for Placement of Edge uv

(nae) are needed to exit, enter, and reenter a region. Thus, we need only consider

regions with five or more edges.

Examining the case of the u-v path exiting, reenter, and reexiting R, let f : u =

u0, i1, p1, e1, ...ej, p2, i2, p3, em...en = v represent the u-v path where:

• p1 is the cross vertex created as the path exits R,

• p2 is the cross vertex created as the path reenters R,

• p3 is the cross vertex created as the path reexits R,

• i1 and i2 are the edges of the path internal to R,

• and e1, ...ej and em, ...en are the portions of the path external to R.

The subpath i1, p1, e1, ...ej, p2, i2, p3 can be replaced with a single edge, i3, thus short-

ening the path and reducing the number of crossings by at least two (represented by

cross vertices p1 and p2). Figure 3.9 illustrates this substitution. Thus, restricting

region reentry will eliminate only those graphs with nonminimal crossings.

The argument is the same for any region of G, (not just those on whose boundary

u lies), encountered on the u-v path as well as for more reentries and reexits of any

40

particular region.

./

u

p3

p2

p1

e1, … ej

em, … en

u

p3

em, … en

i1

i2

i3

The simplest case At least 2 crossing eliminated

Figure 3.9: Subpath Replacement

A second observation is illustrated in Figure 3.10. It illustrates two u-v paths

in graph G, both of which visit region R2. Figure 3.10 (b) generates more crossings

than (a) in its path through region R2.

u
v

R1

R2
u

v
R1

R2

(a) (b)

Figure 3.10: Two Possible Paths for Laying down Edge uv

Figure 3.11 shows the laying down of the six possible initial edge segments at

the start of the uv path. After laying down the initial edge segment, any other edge

segments on the uv path are restricted from entering regions R1, R2, and R3. With

each additional edge segment placed, the relevant regions will join the list of restricted

regions for any given edge.

41

u
R1

R2

R3

Figure 3.11: Initial Edge Segments from Vertex u to Other Nonadjacent Vertices

For the following lemma, define a neighboring region to be any region which

shares a common edge with the region of focus.

Lemma 2 Given a simple connected graph G with nonadjacent vertices u and v and

at least two regions, restricting the edge uv from entering the neighboring regions of a

region it crosses does not eliminate any possible minimal graphs from being generated.

Proof: Let R1, ..., Ri be the regions of G on whose boundaries lie vertex u. We

consider only the case in which vertex v does not lie on the boundary of R1, ..., Ri

(otherwise an edge with no crossings could connect u and v). Let pn be the last

vertex in the u-v path that lies on the boundary of one of R1, R2, ..., Ri. That is,

the u-v path can be written f : u = u0, e1, p1, e2, p2, ...en, pn, ...v where p1, p2, ...pn are

all cross vertices created by the u-v path. The segment of the path from u to pn

can be replaced with one edge thus shortening the path and removing the crossings

represented by p1, p2, ...pn. Thus, restricting an edge path from entering neighboring

regions of a region it crosses eliminates only nonminimal graphs. ./

These two lemmas lead us to a new definition that places a tighter bound on the

definition of a good drawing of a graph.

Definition 28 Let

f : u = u0, e1, u1, e2..., uk−1, ek, uk = v

42

denote the u-v path laid down in graph G where ei is an edge segment through one

region of G. Let H = G + f . The graph H is a region restricted good graph if

every region of H has at most two vertices of f on its boundary.

Definition 28 in conjunction with Lemmas 1 and 2 allows for the statement of

the following theorem.

Theorem 12 Employing the definition of a region restricted good drawing of a graph

while creating minimal Kn from minimal Kn−1 does not eliminate any possible minimal

graphs from being generated.

Modification to the graph generation algorithm in order to apply Region Restric-

tion is minimal. Whenever an edge segment is laid down, its initiating vertex is used

to add to, or create, a list of restricted regions for that edge. Region Restriction per-

formed well when generating K8, yet encountered runtime difficulties when generating

K9.

Table 3.1 shows a comparison of the number of partial edges laid down when

building Kn for 5 ≤ n ≤ 8 with and without Region Restriction. Results in this

table were generated running on six parallel processors. For all n in the table, Region

Restriction generated the same graphs with the minimum number of crossings as the

non-restricted test results.

Vertices ν(Kn) Good Graph Restricted
(n) Good Graph
5 1 3 3
6 3 203 71
7 9 1,498,775 19,979
8 18 * 46,697,854

Table 3.1: Region Restricted versus Good Graph Jobs Processed

A substantial search space reduction resulted, as can be seen by comparing results

for n = 7. The search space is reduced by a factor of nearly 75. Running without

Region Restriction, K8 results were not achieved in over a week of runtime. With

43

Region Restriction, all jobs were fully processed in under four hours. This time

reduced to just over two hours when eight processors were employed.

Figure 3.12 illustrates execution time using Region Restriction to run K8 on six

to sixteen processors.

Figure 3.12: Region Restriction Execution Time for K8 on P Processors

An attempt to generate minimal K9 using Region Restriction was not success-

ful given a runtime of one week on sixteen processors. This indicated that tighter

restrictions on the search space were necessary. More pruning was imperative.

3.3.3 Radical Region Restriction

Radical region restriction is a greedy edge placement based on the analysis of the

number of regions between vertices. When laying down all edges from vertex u to

vertex v of graph G, only those edges that are of the minimum region separation

from u to v are generated. For example, Figure 3.13 shows four of the ten possible uv

edge placements for the given graph. Figure 3.13(a) and (b) are the only two possible

uv edge placements that have the minimum number of regions (in this case two)

separating u and v. The minimum number of separating regions, being two, indicates

that only one crossing will be generated in each of these cases. Figure 3.13(c) and (d)

show two other uv edge placements of the remaining eight, each of which separates u

and v by three regions. A three region separation will introduce two crossings.

44

R1

R5R4

R3

R2
R6

R1

R5R4

R3

R2
R6

(a) (b)

R1

R5R4

R3

R2
R6

(c)

R1

R5R4

R3

R2
R6

(d)

u

u

v

u

v

u

v v

Figure 3.13: Placement of Edge uv

Radical Region Restriction determines, for each of the n− 1 edges that need to

be laid down on the given Kn−1 graph the minimal number of regions that need to

be crossed to lay down the complete edge. It then proceeds to follow all branches of

the search tree that do not exceed this minimal number of region crossings for each

edge needing to be laid down. This assures that all edges of minimum length are

generated.

Theorem 13 In generating minimal Kn from minimal Kn−1, the use of Radical Re-

gion Restriction does not eliminate any possible minimal graphs from being generated.

Proof: Radical Region Restriction dictates that all edges from vertex u to vertex v

be the shortest length possible with the length of an edge determined by the number

of regions crossed by the edge uv. Assume minimal Kn exists with f : a u-v path

from u to v with nonminimal length. It is known from Theorem 11 that no two edges

from new vertex n to any vertex n− i, 1 ≤ i ≤ n−1, interfere with each other, so the

nonminimal length of path f is not due to placement of the other n− 1 edges. Path

45

f will add at least one more crossing to Kn than a graph constructed with a uv edge

of minimal length. Thus a contradiction arises and path f cannot exist in minimal

Kn. ./

Radical Region Restriction examines each edge to be laid down individually as

it is encountered as an edge to be added to the graph. The unified queuing parallel

algorithm is employed. Each edge is laid down in segments with each new edge

segment causing an update of the edge being laid down and a new job being created

and enqueued. Those jobs that exceeded the minimal edge length for the given edge

are abandoned as they would exceed the minimal number of crossings for the final

graph being described. The initial search algorithm and region restriction both use a

queue. With the implementation of Radical Region Restriction a stack is utilized to

lay down an entire edge before moving on to the next one. This allows for graphs that

exceed an edge length across regions to be abandoned prior to possible generation of

partial edge segments for other edges.

Radical Region Restriction has been used to generate minimal Kn graphs for

5 ≤ n ≤ 10 to date. It is a viable tool for larger n although as n increases by only

a small amount it is found that long runtimes will be necessary to achieve results.

Table 3.2 illustrates comparative runtimes of Region Restriction and Radical Region

Restriction for minimal K8 through minimal K10 on sixteen processors. The jump in

timing for minimal K9 to that of minimal K10 is due to the number of initial feeder

graphs needed. To generate minimal K9 only three minimal K8 initial feeder graphs

were necessary with forty regions each. Generation of minimal K10 required fourteen

hundred and fifty three minimal K9 feeder graphs, each with sixty-five regions.

Vertices ν(Kn) Region Radical Region
(n) Restriction Restriction
8 18 2 hr 36 min 5 min
9 36 >> 1 week 8 min
10 60 unknown ≈ 1 week

Table 3.2: Radical versus Region Restriction Timing

46

Refer to Section 4.1 for discussion on initial feeder graph selection. Chapter 5

discusses some possible directions for reducing the number of regions required.

3.4 Star Analysis

The parallel implementation discussed in Section 3.2 with the search space reductions

applied to it in Section 3.3 lays down one edge segment, repackages the graph defi-

nition as a job, and enqueues it again with the edge to be added being modified to

reflect the new edge segment. This is done iteratively until there are no more edges

to be added to the graph. All search tree paths are followed, with graph descriptions

being built for each path as encountered. Not every graph is a minimal graph, but it

must be built up to the point where either its number of crossings exceeds the current

minimum number of crossings or it is complete. For those graphs that do exceed the

current minimum number of crossings, the energy spent creating them is lost when

they are discarded for possessing too many crossings.

Radical Region Restriction and its examination of region crossings for each com-

plete edge, along with the fact that order of edge placement does not matter, leads to

a new technique for edge placement, Star Analysis. This technique steps away from

the iterative parallel edge segment placement and examines all the shortest complete

edges that need to be placed. This is accomplished through the construction of a

Distance Tree and its associated Path List, defined in Section, 3.4.1. Star Analysis

finds all the minimal length star graphs centered at vertex n that will be laid down

onto minimal Kn−1.

Star Analysis allows for evaluation of the minimum number of crossings for Kn

from each region of new vertex placement in minimal Kn−1 prior to graph construction.

For every n, there is not always a minimal graph achieved with new vertex placement

in every region. Creation of Path Lists prior to any graph construction allows for

selectively choosing which graphs to construct. Selection for minimal Kn will focus

on only those graphs with minimal crossings across all possible graphs examined.

This technique, in addition to allowing for exploration of the graphs with minimal

47

crossings, also gives access to those that are locally minimal (graphs that have the

minimal number of crossings given the region placement of the new vertex n into

minimal Kn−1 but are not globally minimal). These graphs are discarded as exceeding

the minimal while being constructed according to the method discussed in Section 3.3.

With star analysis, parallel jobs representing partial edge segment placement no

longer exist. A single Distance Tree and associated Path List description are created

sequentially. Parallelism reduces time by having multiple Distance Tree/Path List

combinations created, for each different region placement of new vertex n, simultane-

ously across multiple processors. The job queuing, message passing overhead of the

previous techniques from Section 3.3 are no longer of issue.

Following the introduction of Distance Trees and Path Lists in Section 3.4.1,

the selection of graphs for which to construct descriptions and their construction is

presented in Section 3.4.2.

3.4.1 Distance Trees and Path Lists

Given a minimal Kn−1 with r regions, the search for minimal Kn proceeds with the

placement of the new native vertex n into each region of Kn−1. As stated previously,

not all region placements will generate minimal Kn for all n. A Distance Tree is used

to find the shortest region paths to each native vertex of Kn−1 from the new native

vertex n. A region path is the path an edge follows through regions of a graph.

A Distance Tree is a full (each level is complete) tree. It is built in a breadth-first

fashion as follows: (1) The tree starts with a root node. (2) Each child node of the

root is then added, creating the first level of the tree. (3) The children of the first

level nodes are added, creating the second level, etc, until all levels have been created.

The root of a Distance Tree is the region in which the new native vertex n

being added to the graph Kn−1 is located. Each node of the tree represents a region

being crossed in the path from vertex n to one of the n − 1 other native vertices of

Kn. Each branch of the tree represents a different complete path from the region

containing vertex n to a region on whose boundary lies vertex n − i, 1 ≤ i ≤ n − 1.

48

The leaf, terminating point, of each branch is the last region crossed to reach native

vertex n− i.

In employing breadth-first search to build the Distance Tree examination is not

performed on graph G but on graph H whose vertices represent the regions of G.

Adjacent vertices of H share an edge in G. The source region is the region in which

vertex n is placed to generate Kn. Figure 3.14 illustrates a minimal K6 with its region

graph.

R1 R6
R5

R14 R4
R7

R3

R11

R12R2

R8 R13
R9

4 2

3

8

10 9

1 5

6

7

R10

R9

R13 R12 R11

R8 R2 R3 R4
R10

R14 R7 R6 R5

R1

Figure 3.14: K6 and its Region Graph Used for Breadth-First Search

Breadth-first search is one of the simplest algorithms for searching a graph. Given

a graph H = (V,E) and a source vertex u, breadth-first search systematically computes

the distance (smallest number of edges) from u to each reachable vertex. For any

vertex v reachable from u, the shortest path(s) are located. More information related

to breadth-first search and shortest-path algorithms is available in [14].

Because each vertex of H, and hence, each node of the Distance Tree, represents a

region of G, the region restriction stated in Lemma 1 in Section 3.3.2 can be restated

as follows:

Definition 29 Given a Distance Tree as described, a Distance Tree Region Re-

striction states that once one complete level of a Distance Tree is constructed, no

49

region on that level may be visited by any branch of the Distance Tree at any later

level.

Lemma 1 restated in terms of Distance Tree Region Restriction becomes as fol-

lows:

Theorem 14 In generating a Distance Tree for minimal Kn from minimal Kn−1 as

described, the use of the Distance Tree Region Restriction does not eliminate any

possible minimal graphs from being generated.

Once one complete level of the Distance Tree is constructed, all regions on that

level are restricted from appearing in any branch of the tree at any later level.

R11 R12

R9

R13

(6,9)

(3,9)

(6,3)

25

crossing

Level 1

Figure 3.15: Beginning Distance Tree for One Minimal K6

The following series of figures will illustrate the process of building the Distance

Tree given minimal K6 with native vertex 7 placement in region R9. Figure 3.14

shows the minimal K6 with the vertices and regions labeled for this discussion. In

viewing Figure 3.14 notice that two native vertices, 3 and 6, can be directly connected

to vertex 7 without any crossings. These directly connected vertices are not included

in the Distance Tree but are addressed in the Path List construction at the end of

this section. Crossings will be generated in connecting vertex 7 to the remaining four

vertices 1, 2, 4 and 5. Region R9 has three edges on its boundary, each possible as

a crossing from vertex 7. Thus, three branches emanate from the root representing

region R9. Figure 3.15 illustrates the root and the three initial branches. In addition

to the region traveled to, the tree must remember the edge crossed in getting there

50

so the path can be recreated. This edge information is reflected in Figure 3.15 also.

Notice that there are two direct connections possible through the level 1 regions

R12 and R11 via the crossing edges (3,9) and (6,9) to vertices 2 and 5, respectively.

Regions R11 and R12 are terminal leaves in the tree for their paths from Region R9

to vertices 2 and 5. Level 1 of the Distance Tree is complete.

With each level of the tree encountered, there is at least one crossing that will be

reflected in the K7 graph being considered. With vertices 2 and 5 on the boundaries

of regions at Level 1, there will be two new crossings to add to the already existing

three crossings of minimal K6 in the hunt for minimal K7. More levels, implying more

crossings, are necessary to connect to vertices 1 and 4.

Figure 3.16 shows the addition of Level 2 to the Distance Tree construction being

illustrated. Level 2 indicates that two crossings are necessary to get to any vertex on

the boundary of a region at this level. Both vertex 1 and vertex 4 lie on the boundaries

of regions that appear at level 2. Thus, for each of these vertices, 2 crossings will be

necessary in connecting them to vertex 7. Adding these 4 crossings to the existing 5

tells us that a minimal K7 with nine crossings can be constructed from the minimal

K6 shown in Figure 3.14 with vertex 7 placed in Region R9.

R11 R12

R9

R13

(6,9)

(3,9)

(6,3)

25

crossing

R8R2R3R10 R4R4

1 4 4 1

(5,9) (5,6) (2,3) (2,9) (3,10) (6,10)

Level 1

Level 2

Figure 3.16: Distance Tree for One Minimal K6

Figure 3.16 also illustrates that for this example, vertices 1 and 4 each have two

paths possible from the root Region R9. Considering all possible path combinations,

51

there are four minimal K7 graphs, each with nine crossings, described in this one

Distance Tree.

Because edges of the Distance Tree correspond to crossings in the Kn construc-

tion, it would be possible to terminate the Distance Tree construction if that crossing

count should exceed an upper bound, such as Guy’s Conjecture 3. Or, the Distance

Trees can be created and all local crossing numbers will be determined.

Returning to the issue of the Distance Tree Region Restriction introduced with

Definition 29 and Theorem 14, refer to Figure 3.17, and note that in the search for

the shortest path from vertex 7 to all other native vertices n − i, 1 ≤ i ≤ n − 1,

region exploration takes place in an expanding fashion starting with the initial region

(labeled “start” in this illustration) and working outward to neighboring regions until

connections to all vertices n−i are made. From the starting region, progress moves out

to regions immediately adjacent from level to level. Level 2 regions are the neighbors

of regions R11, R12, and R13 that have not yet been visited, namely regions R2,

R3, R4, R8,and R10. Higher level regions can be determined similarly. As noted

previously, once a region appears in a level, it cannot appear again in any other level.

start
+1

+1

+1

+2
+2

+2

+2

+2

+3
+3

+3
+3

+4

Figure 3.17: Outward Expanding Region Neighborhoods

The paths from vertex n to vertices n − i represented in a given Distance Tree

hold all the shortest path information for at least one Kn that is minimal, though

52

possibly only locally minimal. These paths are saved in Path List descriptions as

described below for future analysis and minimal Kn graph description construction.

For each initial minimal Kn−1 graph description and source region, the paths

from the Distance Tree with the minimum number of crossings are saved as a unit

in a Path List description. The Path Lists are available for future graph description

construction or other analysis.

A Path List is a list of all the possible paths found in the Distance Tree. Recall

that vertices on the boundary of the region in which vertex n was placed are not

considered in the Distance Tree. Instead they are included in the Path List.

The Distance Tree in Figure 3.16 can been seen to reflect directly to the Path

List in Figure 3.18. Reading the first line notice that the path starts in region R9 and

crosses edge (6,3) to enter region R13. From region 13 edge (6,10) is crossed to region

R8 from which a direct connection is made to vertex 1. As seen in the Path List,

there are two shortest paths to vertices 1 and 4. Also note the two direct connection

paths with no crossings for vertices 3 and 6.

R9 (6,3) R13 (6,10) R8 V1

R9 (9,6) R11 (5,6) R10 V1

R9 (3,9) R12 V2

R9 V3

R9 (6,3) R13 (10,3) R2 V4

R9 (3,9) R12 (3,2) R3 V4

R9 (9,6) R11 V5

R9 V6

Figure 3.18: Path List for Minimal K7

A Path List description contains all the information necessary to describe a min-

imal, although possibly only locally minimal, Kn. If the goal is to generate global

minimal Kn, across all Kn, those Path List descriptions with the minimum number

53

of crossings are used to generate graph descriptions for all the graphs possible to

construct from all possible combinations of the paths in the Path List.

This section has explained the construction of the Distance Tree for Kn given

an initially minimal Kn−1. All shortest paths from vertex n to each vertex n − i,

1 ≤ i ≤ n − 1, are described in the Path List for the given minimal Kn−1 and

region of vertex n placement. For any initial graph and region placement for a new

vertex, the Path List description makes all locally minimal shortest paths available

for analysis. The ability is now available to examine the regions supporting the same

local minimum across, or within, graphs, path length statistics, etc..

3.4.2 Graph Descriptions from Path Lists

Once all the Path List descriptions are created for a given input set, the selection

of the set of graphs for which to build descriptions presents itself. For example, the

input set might be all minimal K7 with vertex placement in each possible region

(there are 25 regions). Generating Path List files for this input set would supply all

shortest path K8 possible with the number of crossings seen if the graphs were to be

constructed. Given the goal of constructing all minimal K8, only those Path List files

with the minimum number of crossings would be examined. In addition to the ability

to look at just global minimal graphs, this technique allows for the building of graph

descriptions of all shortest path K8 graphs.

To illustrate the construction of graph descriptions, refer to Figure 3.18. Four

minimal K7 graphs can be constructed from this path list. The process of constructing

one of the four is presented.

Figure 3.19 shows a minimal K7 as constructed from the initial K6 of Figure 3.14

with vertex 7 placed in region 9. The Path List of Figure 3.14 contains one path to

each of vertices 2, 3, 5, and 6. The first paths to vertex 1 and vertex 4 from the path

list are used with the only paths to vertices 2, 3, 5, and 6 to describe the first star

graph that we place on K6. Each n− (n− i) path is laid down edge by edge, segment

by segment onto minimal K6 to arrive at this minimal K7.

54

1

2

3

4

6

7

5

Figure 3.19: Minimal K7 from Minimal K6

At this time, it cannot be stated that a mathematical calculation of the number

of ways the different n − 1 paths may be combined definitively indicates the exact

number of graphs defined by a Path List. It is possible that some combinations may

lead to graphs that do not meet the definition of a good graph. An example of what

may theoretically occur is as follows.

Figure 3.20 shows a portion of a hypothetical graph with possible Path Lists

from vertex n to vertices 4 and 5. All combinations of paths are shown on the figure.

All combinations of paths n-4 and n-5 cannot be used together. The two paths

highlighted by stars (*) may not be placed together on the graph. If they were, they

would cross, and the graph would fail to be good. Figure 3.21 illustrates examples of

paths P1 and P4 used in valid n-4, n-5 path combinations.

Refer to [35] for further details on the implementation of Path Lists and Graph

Description construction. With the development of Star Analysis complete, the dis-

cussion turns in Chapter 4 to the process of iteratively growing minimal Kn from

minimal Kn−1.

55

Path List from Vn to V4 and V5

Path P1:
R1 (1,8) R2 (6,8) R4 (9,3) R6 V4

Path P2:
R1 (2,8) R3 (8,3) R4 (9,3) R6 V4

Path P3:
R1 (1,8) R2 (6,8) R4 (6,9) R5 V5

Path P4:
R1 (2,8) R3 (8,3) R4 (6,9) R5 V5

1 2

3

n R1

R2

R3

R4

R5 R6

8

9

45

6

*

*

P2

P3

P1

P4

conflict

Figure 3.20: A Hypothetical Path List Conflict

1 2

3

45

6

n R1

R2

R3

R4

R5 R6

8

9

P2

P4

1 2

36

n R1

R2

R3

R4

R5 R6

8

9

45

P3 P1

Figure 3.21: Two Different Non-conflicting Placement of Paths

56

Chapter 4

Construction of Minimal Complete
Graphs

Using search space reductions described in Section 3.3 and the Star Analysis technique

outlined in Section 3.4, an effective algorithm has been developed for building those

minimal Kn derivable from one minimal Kn−1. This chapter describes a system that

iteratively builds all minimal Kn from all minimal Kn−1, making use of only a subset

of minimal Kn. Section 4.1 discusses the use of graph isomorphism to reduce the

number of minimal Kn−1 graphs that need to be used as root graphs in the growth

process. An overview of the entire inductive process is covered in Section 4.2.

4.1 Isomorphic Families of Minimal Kn

If two graphs are isomorphic (refer to Definition 5) they differ only by the labeling

of their vertices and possibly the physical view chosen for representation. The defin-

ing characteristics, or mathematical structures, of the graphs are identical. In the

process of generating minimal Kn from minimal Kn−1, it is not necessary to use all

minimal Kn−1 graphs as root graphs. Only a single representative is needed from

each isomorphic family, composed of all graphs that are isomorphic.

It is imperative to categorize graphs of order n into isomorphic families to be

able to select the minimum number of necessary representatives to use as root graphs

for the next iteration of minimal graph derivation. The software product nauty,

written by Brendan McKay [42], is employed for isomorphism testing. A C program

57

was written to call nauty for building sets of isomorphic families. nauty compares two

graphs and notifies the calling program if they are isomorphic or not. Each new graph

in the list to be tested is compared to a current family representative and added to

that family if it fits, otherwise a new family is created. After testing of all graphs, a

set of root graphs is compiled by selecting one representative from each isomorphic

family.

Graphs of order n ≤ 4 all have one isomorphic family. Table 4.1 lists the number

of isomorphic families of minimal Kn for 5 ≤ n ≤ 11.

n 5 6 7 8 9 10
Graphs generated 12 4 76 20 4,560 56,618

Iso families 1 1 5 3 1,453 5,679

Table 4.1: Isomorphic Families of Minimal Kn

The need for exploiting isomorphic graphs is evident by examination of Table 4.1.

For example, for n = 9, 4560 graphs were generated from minimal K8 using Radical

Region Restriction. The number of non-isomorphic graphs necessary for iteration to

minimal K10 was 1453, a reduction of sixty-eight percent.

Further algorithmic exploitation of the topological structure of the root graphs

such as symmetry, local and global, or region neighborhood analysis may allow for

reduction of the current requirement that all regions of the root graph be used for

new vertex placement. Refer to Chapter 5 for more discussion of this topic.

4.2 Growing Minimal Kn from Minimal Kn−1

Minimal K4 was used as the initial starting point in growing minimal Kn inductively

from minimal Kn−1. Minimal K4 is a plane graph with no crossings, and there is

only one minimal K4 up to isomorphism. Figure 4.1 illustrates one labeling of the

initial graph used to grow minimal K5 with its associated region list representation.

A region list is just one way a graph can be represented. Using Figure 4.1 think

of standing inside region R1. Begin at vertex 1 with your left hand on edge (1,2).

Walk around R1 keeping your left hand on the boundary of R1, and you will trace

58

the region description for R1: 1, 2, 4. Vertex 1 is adjacent to vertex 2 is adjacent to

vertex 4 is adjacent to vertex 1. All regions of the graph are described in this fashion.

1

4

2

3

R1

R2
R3

R4

Region List

R1: 1 2 4

R2: 2 3 4

R3: 3 1 4

R4 : 1 3 2

Figure 4.1: K4 and its Region List Representation

Using minimal K4 as the example, the entire process of generating the isomorphic

family representatives of minimal K5 necessary to generate minimal K6 is illustrated

in the following steps.

Step 1: Minimal K4, the feeder graph, represented as a region list, is presented

to the Input Generator. The Input Generator adds to the region list a list of edges to

add to the graph necessary to construct minimal K5. Each region in K4 is used as an

initial placement location for vertex 5. Thus 4 different configurations are presented

to the Star Analysis module. Figure 4.2 illustrates these four initial configurations.

Step 2: For each of the four configurations in Figure 4.2, the Star Analysis Module

is instantiated. The resulting Distance Tree and Path List for the configuration

placing vertex 5 in R1 is illustrated in Figure 4.3.

In moving from Figure 4.2 to Figure 4.3, notice that the edges to add, (5,1), (5,2),

and (5,4), are all direct connections from within region R1. They are not included

in the Distance Tree because they will not produce any crossings in the final graph

descriptions. To place edge (5,3), there are three distinct regions sharing boundary

edges with region R1: R2 via edge (2,4), R3 via edge (1,4) and R4 via edge (1,2). The

Distance Tree reflects these three paths. From each of these three regions there is a

59

1

4

3

R1
R2

2

R3
R4

5

1

4

3

R1
R2

2

R3
R4 5

1

4

2

3

R1
R2

R3
R4 5

1

4

2

3

R1
R2

R3
R4

5

(5, 1)

(5, 2)

(5, 3)

(5, 4)

Edges to Add

Figure 4.2: K4 with Vertex 5 Placement and Edges to Add

R1 direct to Vertex 1

R1 direct to Vertex 2

R1 direct to Vertex 4

R1 (2,4) R2 Vertex 3

R1 (1,4) R3 Vertex 3

R1 (1,2) R4 Vertex 3

Path List:

R1

R4R3R2

(2,4)
(1,4)

(1,2)

{Level 1

Distance Tree

3 3 3

Figure 4.3: Star Analysis: K4 (with Vertex 5 in Region 1) to K5

direct connection to vertex 3. Thus, there are three distinct paths with one crossing

each from region R1 to vertex 3. Each path is reflected in the Distance Tree. From

the Distance Tree it is determined that exactly one crossing is required in growing

the initial configuration, minimal K4 with vertex 5 in region R1, to a K5. No more

60

than (in this case exactly) three graphs will achieve this conclusion.

The Path List reflects all paths from vertex 5 in region R1 to each of the four

vertices to which it must connect. The directly connected vertices are included here

as well as all possible shortest paths to other vertices (only vertex 3 for this example).

Step 3: Selection of graphs for construction follows the Path List generation. For

the example of K4 to minimal K5, recall from Figure 4.2 that there are 4 configurations

to examine. Each of these configurations generates a Distance Tree and Path List

that is similar to the one shown in Figure 4.3, each representing one crossing and

three graphs to achieve minimal K5. So four Path List files are created, each with

minimal K5 (one crossing) from minimal K4 descriptions. In this case all Path Lists

represent minimal K5, so all Path List files are examined for construction of minimal

K5. Twelve graph descriptions will be created (three from each path list), each

representing a minimal K5. The graph description construction process lays down all

Kn−1 star graphs centered at vertex n created from the Path List description into the

appropriate minimal Kn−1. The process splits regions as edge segments are placed

and the star edges are laid down from each n− i, 1 ≤ i ≤ n− 1, vertex to vertex n.

In the general case of constructing minimal Kn from minimal Kn−1, it is common

for n even for the Star Analysis Module to locate an assortment of crossings, thus

generating locally minimal Kn based on the region in which vertex n is placed. For

example, Figure 4.4 shows a minimal K7 with four regions labeled.

A portion of the Path Lists generated for K8 created from the K7 of Figure 4.4

is shown in Figure 4.5. The file extension following the underscore is interpreted

as: isomorphic family.region number.crossings. This listing indicates that Vertex 8

placement in region 10 leads to generation of locally minimal K8 with 19 crossings.

Vertex 8 placement in region 11 leads to minimal K8 with 20 crossings, etc. In the

search for minimal K8, graph generation is performed on those Path List files that

indicate globally minimal K8, or 18 crossings, constructed by placing the new vertex

in region 12 in Figure 4.4.

In general, minimal Kn will be found by examining those Path Lists that represent

61

1

4

2

3

R12

7

5

6

R10

R11

R1

Figure 4.4: A Minimal K7

467 Mar 30 12:38 PathK7K8_1.10.19
712 Mar 30 12:38 PathK7K8_1.11.20
533 Mar 30 12:38 PathK7K8_1.1.21
499 Mar 30 12:38 PathK7K8_1.12.18
.
.
.

Figure 4.5: Path Lists with Locally Minimal K8

min(min Kn for region i in initial graph j), 1 ≤ i ≤ r, where r is the number of

regions in the initial root graph(s). This is a substantial savings over the search space

reduction techniques of Section 3.3. In those cases, energy was expended growing

all graphs until they exceeded the current minimum value found. When a graph

exceeded the current minimum it was discarded. Not only was energy spent growing

a locally minimum graph, but the graph was discarded prior to completion so it

was not available for future analysis of the underlying structure of those nonminimal

graphs.

To date, for n odd, 5 ≤ n ≤ 9, all Path Lists represent minimal graphs. This

means that vertex n placement in any region of Kn−1, for n odd, generates at least

62

one globally minimal Kn. This phenomenon is discussed further in Chapter 5.

Returning to the example of preparing minimal K5 for generating minimal K6,

four Path List descriptions of K5, with a total of twelve graph descriptions among

them, are ready for building.

Step 4: Generation of graph descriptions is, as stated above, a selective process

based on the interest in minimal graphs or locally minimal graphs. In this example,

all K5 Path Lists indicate minimal graphs, so all are evaluated, and twelve minimal

K5 graph descriptions are constructed.

Step 5: A format conversion is required for isomorphic testing. nauty requires

that graphs be represented as adjacency matrices. Figure 4.6 illustrates both region

list and adjacency matrix for minimal K5. Notice that the adjacency matrix has a 1

for each (row, column) vertex pair that is adjacent in the region list, otherwise the

entry is a 0.

1

4

3

R1

R2

2

R3

R4

Adjacency Matrix

V1 V2 V3 V4 V5 V6

V1 0 1 1 1 0 1

V2 1 0 1 0 1 1

V3 1 1 0 1 1 0

V4 1 0 1 0 1 1

V5 0 1 1 1 0 1

V6 1 1 0 1 1 0

Region List

R1: 1 2 6

R2: 2 3 5

R3: 3 1 4

R4 : 1 3 2

R5: 3 4 5

R6: 2 5 6

R7: 4 6 5

R8: 1 6 4

R5

R6

R7

R8

5

6

Figure 4.6: K5 Region List and Associated Adjacency Matrix

Step 6: Isomorphic testing is performed on all minimal K5 graphs. Isomorphism

testing generates a listing of all the isomorphic families for the graphs tested and

enumerates all the members in each family. Figure 4.7 shows the isomorphic testing

results for the twelve minimal K5 graphs tested. Notice that in the case of minimal

K5 there is only one isomorphic family, so only one representative is necessary for

63

File: K5Iso

Graphs are labeled starting at 1
Number of graphs in this file is 12
Number of total vertices is 6

Family of graph #1: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
Total number of graphs in this family is 12

Total number of families in this file is 1

Figure 4.7: Isomorphic Test Results on K5

moving ahead to grow minimal K6.

Actually, all four initial K4 configurations are isomorphic, and all regions of

K4 are isomorphic. Thus, placement of vertex 5 in any region in any configuration

will always generate a graph description isomorphic to any other placement. This

represents further analysis that may be performed at the Step 1 - Step 2 interface to

see if algorithmic topological structure analysis of the graphs being processed may be

exploited to result in the testing of fewer regions. See Chapter 5 for more discussion

on this.

Step 7: Isomorphic family representative selection is performed to extract one

representative from each isomorphic family from minimal Kn to use as a feeder graph

in generating minimal Kn+1. The representative index is determined from the iso-

morphic testing results and the associated graph description (region list) is extracted

from the graph descriptions generated in Step 4. All the isomorphic family represen-

tative graph descriptions are consolidated into one file for ease of handling, and the

process begins again at Step 1 using minimal Kn to step up to minimal Kn+1.

In summary, Figure 4.8 illustrates the seven-step process just outlined.

It is noted that at no step in this process does the system know that it is working

on complete graphs. The only defining factor indicating complete graphs is the initial

feeder graphs used along with the list of edges to add. Thus, it is anticipated that

64

Input Generator

Star Analysis for
Kn

Format
Conversion

Kn Isomorphic
Testing

Representative
Selection

Kn Graph
Generation

Graph Selection

Increment n

Kn-1 Feeder Graph
START

Figure 4.8: Iterative Process to Grow Minimal Kn

this process will seamlessly allow for examination of other graph families with no

modification other than the initial graph description(s) and the list of edges to add.

A specific example of complete bipartite graph growth from K2,3 to K3,3 and K2,4 is

presented in Chapter 5.

65

Chapter 5

Summary and Open Questions

This dissertation presents an effective framework for iteratively generating minimal

Kn from minimal Kn−1. The process allows for complete enumeration of all minimal

Kn that can be derived from minimal Kn−1, including those graphs that are only

locally minimal. A graph is locally minimal if it reflects the smallest number of

crossings possible for a given region placement of vertex n in minimal Kn−1. All

graphs can be easily classified into isomorphic families so one representative may be

evaluated instead of many. This classification also makes the process of growing the

next complete graph of order n+1 efficient since only one family representative from

each isomorphic family is necessary for complete results. Prior to this work, the

largest confirmed minimal crossing number was for complete graphs of order 10. All

non-isomorphic graphs for larger n will be visually available for each increasing value

of n (we include drawings of one representative of both minimal K10 and K11 later in

this chapter). No prior drawings of graphs larger than K9 have been located.

With access now available to all minimal Kn given minimal Kn−1 graph descrip-

tions, exploration of the underlying structure of the graphs is possible. Access allows

for substructure isomorphic analysis and localized region neighborhood analysis, both

of which will lead to yet more efficient iteration of Kn for increasing n. A multitude of

questions may now be explored that were previously unattainable without a working

set of data to analyze.

Though this work focuses on minimal complete graphs, the only defining elements

directly related to complete graphs are the initial graph descriptions and the edges

66

that need to be added to those graph descriptions to iterate to the next higher n.

Later in this chapter an illustration of using this process on complete bipartite graphs

demonstrates its applicability to an assortment of graph families other than complete

graphs. Enumerated data for other graph families will allow for analysis of their

underlying structure also.

Section 5.1 briefly summarizes the new algorithm development presented in pre-

vious chapters. The questions that have arisen out of the data now available for

analysis, and some new conjectures regarding complete graphs are discussed in Sec-

tion 5.2.

5.1 A Synopsis of New Developments Presented

and Conclusions Drawn

Prior to development of an iterative system for growing minimal Kn for increasing n, it

was necessary to develop a practical algorithm for migrating to Kn that exhibited the

ability to keep functioning as n grew. The starting point for this development was a

theoretically sound, yet realistically impractical, exhaustive search algorithm [34] for

determining the crossing number of Kn, discussed in Section 2.3. Its impracticality

comes from the very nature of exhaustive search algorithms. The required search

space balloons, even for very small n, rapidly making it functionally useless. However,

it was a solid foundation from which to start exploring ways to develop an effective

iterative process with an existing parallel implementation available to analyze [52, 53].

A modification to the initial feeder graphs used by the algorithm for the purposes

of growing all minimal Kn from minimal Kn−1 is to always use a minimal Kn−1 as

the input to the algorithm. Making this decision raises the question of whether the

process presented finds all minimal Kn or if some are lost, specifically those, if any

exist, that may be generated from non-minimal Kn−1. It is acknowledged at this time

that there is a theoretical possibility that minimal K9 may exist that cannot be grown

from minimal K8, and this may also be the case for larger odd n.

The first improvement, a load balancing framework for the parallel system, aided

67

in more fully utilizing the concurrent nature of the parallel system being used. A

unified load balancing system, described in Section 3.1, helped balance the work load

across processors for better exploitation of all processors over time. This improvement

made the parallel system more efficient, but the search space for the exhaustive search

algorithm running on the parallel system had to be reduced drastically.

Three search space reduction techniques were presented in Section 3.3. The first

deals with removing branches of the search space that lay down edges being added to

the initial feeder graph in all permutations possible. Theorem 11 proves that order

of edge placement has no bearing on the resulting graphs generated. It was no longer

necessary to examine all order of edge placement to see if different graphs resulted.

As an example of savings, consider one minimal K8. Eight edges need to be added

to new vertex 9 to grow any K9. There are 8!, or 40,320, different edge placement

permutations that would be necessary if order of edge placement did matter.

The second search space reduction presented is Region Restriction. Region Re-

striction restricts a new edge being laid down from revisiting a previously visited

region of the graph being built upon and restricts visiting regions incident to the ini-

tial edge vertex or any crossing created by the edge. Both of these restrictions, shown

in Lemmas 1 and 2 not to introduce a loss of minimal Kn allow for Definition 28,

which places a tighter bound on the definition of a good graph for the purposes of

generating minimal Kn. Region Restriction did allow for results for greater n than

without its use, but runtimes for generating K9 were considered too slow for practical

application.

The final search space reduction technique that applied to the exhaustive search

algorithm is Radical Region Restriction. Given that the order of edge placement

does not matter, because the edges do not interfere with each other, it makes sense to

generate shortest edge paths from new vertex n to the other n− 1 edges of the initial

minimal Kn−1. The use of Radical Region Restriction is proven with Theorem 13 not

to lose minimal Kn . Radical Region Restriction has proven to be a viable algorithm

for generating minimal Kn iteratively for larger n than possible before. To date it has

68

been used to generate up to K10. Examining optimization of the algorithm related to

how the shortest edge paths could be constructed lead to the Star Analysis technique

which steps away from the parallel implementation utilized up to this point. With

the development of Star Analysis, the Radical Region Restriction algorithm became

obsolete, although without its development Star Analysis would most likely not have

presented itself.

Star Analysis makes the parallel processing of the previous search space reduction

techniques obsolete. Parallel running of instances of the Star Analysis module is

exploited to take advantage of the ability to run disjoint instances (different region

placement for vertex n) simultaneously. But the overhead related to job creation and

queuing, dequeuing and slave sharing issues, as well as message passing, is removed.

Star Analysis looks at the global picture of growing minimal Kn from minimal

Kn−1 by focusing on optimizing the enumeration of all star graphs, K1,n−1, centered

at vertex n that can be placed into initial minimal Kn−1 feeder graphs with vertex n

placed in each region of Kn−1. Figure 5.1 illustrates the two star graphs placed into

a minimal K6 in the indicated region that each generate a minimal K7. The dashed

lines, in each image, highlight the star graph K1,6, centered at vertex 7, placed into

the underlying minimal K6.

1

4

3

2

6

7

51

4

3

5

2

6

7

Figure 5.1: Star Graph Overlays on Minimal K6 to Construct Minimal K7

Two new constructs are introduced, Distance Trees and Path List descriptions,

69

to facilitate enumeration of all possible star graphs, with each edge of the star be-

ing of minimal length, that may be placed into initial minimal Kn feeder graphs.

This process allows for enumeration of all minimal Kn, local and global, grown from

minimal Kn−1. Local minimums relate to the smallest number of crossings possible

given a specific region placement for vertex n in minimal Kn−1. The global minimum

represents the actual crossing number for Kn.

Path List descriptions are generated for each vertex n placement in every region

of each initial feeder graph, minimal Kn−1. The generation of these Path Lists is

enough to determine the crossing number of Kn generated from minimal Kn−1. Graph

descriptions, allowing for visually drawing the desired graphs and for iterating to

minimal Kn+1, may be selectively chosen for construction based on the crossings of

interest (local or global). This is a huge savings over all preceding implementations.

Previously, construction was started on each graph as edge placement was tried.

A graph was disposed of if the number of crossings exceeded the currently known

minimum but had to be constructed to that point. Only the globally minimal Kn are

completely generated and saved due to the overhead involved in building all graphs.

This process was expensive even with the use of parallel processing. The separation

of creating Path List descriptions from that of generating graph descriptions allows

for holding the data for global and local minimal Kn and the selection of graphs for

which to generate descriptions. For iterating to minimal Kn+1, only globally minimal

Kn graph descriptions are necessary. The other graph descriptions will be of use for

structural analysis of locally minimal Kn in an effort to determine if it is possible, and

how, to reduce the current requirement of having to place vertex n into each region

of minimal Kn−1.

To date Path List descriptions have been generated for minimal Kn, 5 ≤ n ≤

10. In generating these descriptions, it was discovered that in each case of growing

minimal Kn, for n odd, each and every region placement of vertex n into minimal

Kn−1 generates at least one minimal Kn. Review of the data generated by all previous

search space reduction techniques mentioned above verified this result. The Path List

70

description filenames made the result standout and be noticed immediately. Table 5.1

shows the number of initial feeder graphs (non-isomorphic family representatives)

with their associated number of regions and the number of regions that generated a

minimal Kn+1. These results lead to Conjecture 4. A multitude of questions arise

from this observation. See Section 5.2 for a list.

n 5 6 7 8 9
family reps 1 1 5 3 1,453

regions 8 14 25 40 65
regions growing < 8 14 < 25 40 < 65
minimal Kn+1

Table 5.1: Regions of Kn Generating Minimal Kn+1

Conjecture 4 In generating minimal Kn, for odd n, from minimal Kn−1, vertex n

placement into any of the r regions of minimal Kn−1 generates at least one minimal

Kn.

With the development of Star Analysis, one valuable step in the process of iter-

atively generating minimal Kn from minimal Kn−1 is available.

The entire process involves seven steps as covered in Section 4.2. Briefly, the

process starts with all non-isomorphic representatives of minimal Kn−1. In starting

initially with K4, only one graph is required. (1) Input Generation prepares the

initial feeder graph(s) by constructing the list of edges to add to the feeder graph(s),

indicating edges from vertex n to the other n − 1 vertices already in the feeder

graph. (2) For each region of each feeder graph, an instance of Star Analysis is

initiated to generate Path List descriptions for minimal Kn. (3) Selection of graphs

for which to create graph descriptions is done (all globally minimal) for generating

minimal Kn. (4) Graph descriptions for the selected graphs are created. (5) A format

conversion necessary for isomorphic testing is performed on all graph descriptions.

(6) To minimize the number of feeder graphs for growth to Kn+1, isomorphic testing

is done on all pairs of graph descriptions. This categorizes the graphs into isomorphic

families. (7) One representative is taken from each isomorphic family. The combined

71

set of non-isomorphic family representatives become the feeder graphs for growth of

minimal Kn+1.

The iterative process has been utilized to generate minimal K5 through minimal

K11 to date. Verification of Guy’s Conjecture 2 for K11 is complete for minimal K11

generated from minimal K10, ν(K11) = 100. The question still stands if minimal

Kn, for n odd and n ≥ 9, always contains at least one minimal Kn−1 subgraph.

Conjecture 5 is proposed.

Conjecture 5 All minimal Kn contain at least one minimal Kn−1 subgraph.

If this conjecture can be verified, the process presented generates all minimal Kn

without needing the preface of being generated from minimal Kn−1. Related inquiry

into this problem and associated questions are discussed in Section 5.2.

As mentioned, no known illustrations of minimal Kn for n > 9 have been located,

Figures 5.2 and 5.3 illustrate one of the many non-isomorphic drawings available of

both minimal K10 (60 crossings) and minimal K11 (100 crossings). Figure 5.3 was

constructed by placing the star K1,10 over minimal K10 from Figure 5.2.

In conclusion, the above process for generating minimal Kn from minimal Kn−1

is proposed to apply to other graph families with modification only to the initial

feeder graphs and their associated list of edges to add. The following is an example

of how this process can be applied to complete bipartite graphs. Figure 5.4 shows the

complete bipartite graph K2,3. Figure 5.4(a) illustrates it in a standard presentation,

and (b) shows the same graph with the minimal number of crossings of which there is

only one up to isomorphism. The graph from (b) is used as the initial feeder graph.

A region list description for Figure 5.4(b) is shown in Figure 5.5(a). The list of

edges to add for generating minimal K3,3 and minimal K2,4, are shown in (b) and (c)

respectively.

For brevity, examination of new vertex 6 placement into only region R1 is done.

The associated Distance Tree and Path List for Minimal K3,3 is shown in Figure 5.6.

From the Path List Description it is seen that four minimal K3,3, with one crossing

72

Figure 5.2: One Drawing of a Minimal K10

11

Figure 5.3: One Drawing of a Minimal K11

73

1 2

543

(a)

5

4

3
21

(b)

Figure 5.4: K2,3 with Three Crossings, and Minimal with Zero Crossings

Minimal K(2,3)
Region List

R1: 1 4 2 3

R2: 1 3 2 5

R3: 1 5 2 4

(a)

Edges to Add
for K(3,3)

(6,3)

(6,4)

(6,5)

(b)

Edges to Add
for K(2,4)

(6,1)

(6,2)

(c)

Figure 5.5: Minimal K2,3 Region List and Edges to Add for Minimal K3,3 and K2,4

each, can be constructed. The four graphs are illustrated in Figure 5.7.

Isomorphic testing on the four minimal K3,3 from Figure 5.7 results in one iso-

morphic family. Placement of Vertex 6 in any other region of minimal K2,3 results in

the same graph, up to isomorphism. Thus, one minimal K3,3 is all that is necessary

as a feeder graph to generate minimal K3,4.

Skipping over the Distance Tree/Path List for minimal K2,4, the one graph that

is generated given vertex 6 placement in region R1 of K2,3, as described in Figure 5.5,

is illustrated in Figure 5.8. Placement of vertex 6 in any other region of minimal K2,3

results in a graph isomorphic to this, so there is one minimal K2,4 from which to grow

minimal K2,5 and minimal K3,5.

This demonstrates the applicability of the framework presented for generating

74

R1 direct to Vertex 3

R1 direct to Vertex 4

R1 (1,3) R2 Vertex 5

R1 (2,3) R2 Vertex 5

R1 (2,4) R3 Vertex 5

R1 (1,4) R3 Vertex 5

Path List:

R1

R3R2R2

(1,3)
(2,3) (2,4)

R3

Distance Tree

(1,4)

5 5 5 5

crossing

Figure 5.6: Minimal K3,3 Distance Tree and Path List

5

4

3
1 2

5

4

3
21

5

4

3
21

5

4

3
21

6
6

6
6

Figure 5.7: Four Isomorphic Minimal K3,3 Constructed from Minimal K2,3

75

5

4

3

1 2

6

Figure 5.8: Minimal K2,4 Constructed from Minimal K2,3

minimal Kn+1,m and minimal Kn,m+1 from minimal Kn,m. Section 5.2 looks toward

pursuing minimal Kn,m further and applying this framework to other graph families.

5.2 Future Work and Open Questions

Conjectures 4 and 5 are obviously two open questions posed as a result of this re-

search. The following is a list of the directions to which this body of work points with

discussion as appropriate.

Analysis of substructures within non-isomorphic, as well as isomorphic, minimal

Kn needs to be explored. This analysis, directed at individual regions, tightly local

and expanded region neighborhoods, native and crossing vertex relationships within

and across regions, a variety of subgraphs based on different structural parameters

such as crossing edges or native vertex edges, and other features may allow for deeper

understanding of the underlying structure of minimal Kn.

It is obvious, given some graphs, K4 for example, that some regions of the initial

feeder graph in the process of generating minimal Kn are isomorphic. It does not

matter into which region of the graph vertex n is placed, the outcome will be the same

in all cases. Substructure analysis will proceed to develop an algorithmic technique for

determining which regions and larger substructures will result in isomorphic results.

This will allow for eliminating duplication of work currently being performed.

76

Spectra analysis is one approach to pursue in analyzing these substructures.

Spectral graph theory is a branch of mathematics that is concerned with character-

izing the properties of a graph and extracting information from its structure via the

eigenvectors of the adjacency or Laplacian matrix of the graph. The spectrum of

the graph is obtained from the eigendecomposition of the matrix representation used.

Isomorphic graphs are known to be cospectral; that is, they have the same eigen-

values with respect to the matrix used. Some non-isomorphic graphs are cospectal

also. Having access to isomorphic family representatives for each minimal Kn gener-

ated affords a body of data with which to work. A brief review of graph spectrum

information may be found in [55]. Another reference book is [17].

Substructure analysis may help reduce the number of regions in which to place

vertex n and may also help with verifying or disproving Conjecture 4. The question

arises as to which characteristics are found in minimal Kn−1, n − 1 even, that pro-

duce this result, and what different characteristics are found in minimal Kn−1, n− 1

odd, that do not produce the result. Can algorithmic analysis be performed on the

regions of Kn−1, n− 1 even, to determine “isomorphic family producing regions”? In

other words, can a certain characteristic be found for a set of regions that generate

isomorphic Kn? This would allow for vertex n placement in fewer than all regions. Of

course, this question can also be asked of minimal Kn−1 for n− 1 odd. The question

of whether the even/odd growth pattern exhibited in Kn occurs within other graph

families awaits Star Analysis of them.

Conjecture 5 points toward recreating non-isomorphic K9 that Guy says existed

but were lost over time. A comparison of his graphs, stated to represent all non-

isomorphic K9, can be made against those created via this newly presented process to

check for differences. If any exist, the illusive minimal K9 not derivable from minimal

K8 may be found and be available to explore how it may be constructed and added to

the existing set of minimal K9 from minimal K8. If no difference is found, movement

is one step closer to verifying Conjecture 5. A related issue that needs addressing is

if the definition of isomorphism used by Guy is his graph generation differs from the

77

standard definition used in this body of work. Analysis of these minimal Kn using

his definition would be an interesting study.

Aside from this approach in examining K9, another way to approach Conjecture 5

is to ask the question: Does there exist a K8 with nineteen crossings that generates

a minimal K9 with a maximum responsibility of 17 for any vertex?

In explanation of this question, recall that the average vertex responsibility of K9

is sixteen. If a vertex with responsibility 16 is removed, a K8 with twenty crossings

is left. If a vertex with responsibility 18 is removed, a minimal K8 is left. All vertices

cannot have responsibility 16, or minimal K8 could not have eighteen crossings. So,

if these special minimal K9 do exist, there must exist a minimal K9 with maximum

responsibility of seventeen, which contains no minimal K8 subgraph. Removal of this

vertex with responsibility seventeen would result in a K8 subgraph with nineteen

crossings. Of course, this question addresses only minimal K9, not larger odd n, but

answering it may lead in the direction of a general answer.

An encouraging note in support of Conjecture 5 is the fact that when Guy’s

conjecture of the equality of Theorem 10 failed, he stated that he anticipated that

Conjecture 2 would fail also as n approaches 14. The underlying argument from which

he deduced that there exist minimal K9 lacking minimal K8 subgraphs is based on

the validity of Conjecture 2.

As seen by the final example in Section 5.1, there are application possibilities to

graph families other than complete graphs. Complete graphs are not the only family

lacking exact results and having little available data for analysis. Examination of

other families is expected to supply new exact results from the growth of graphs of

order n− 1 to graphs of order n, as well as build the enumerated isomorphic family

representatives for analysis of these families.

All the above mentioned work has application beyond the improvement of the

framework of this presentation. As mentioned, lower bound techniques for estimating

lower bounds of the crossing number are lacking. Discoveries from the above analysis

may lead to new or improved estimating techniques.

78

One further area of research to pursue from this work is that of graph drawing.

The graphs generated via this process are represented as region lists. A software

package was developed specifically to aid in drawing these graphs since most packages

available were not found to be receptive to this representation. Because the package

developed is a first generation product, it is lacking in features and ability to produce

pleasing visual representations of these graphs. The regions of the graphs are known,

and with Path Lists available, the paths are known. This information should aid

in developing a system for generating visual representation of these graphs that is

pleasing to the eye. It is known that any graph may be topologically morphed such

that any region of the graph may be the exterior region. A tool to try different

exterior region configurations in combination with other known information about

the graph is one interesting direction to pursue.

79

Bibliography

[1] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating or-
der types for small point sets with applications. In Proceedings of the seventeenth
annual symposium on Computational geometry, Annual Symposium on Compu-
tational Geometry, pages 11–18. Association for Computing Machinery, ACM
Press, 2001.

[2] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Progress on recti-
linear crossing numbers. www.igi.tugraz.at/oaich/psfiles/aak-prcn-01.ps.gz, IGI-
TU, Austria, 2002.

[3] Oswin Aichholzer, Ferran Hurtado, and Marc Noy. On the number of triangu-
lations every planar point set must have. In Proceedings of the 13th Canadian
Conference Computation Geometry, Annual Symposium on Computational Ge-
ometry, pages 13–16, 2001.

[4] Oswin Aichholzer and Hannes Krasser. The point set order type data base: a
collection of applications and results. In Proceedings of the 13th annual Canadian
Conference on Computational Geometry CCCG 2001, pages 17–20, 2001.

[5] Oswin Aichholzer and Hannes Krasser. Abstract order type extension and new
results on the rectilinear crossing number. In Proceedings of the twenty-first
annual symposium on Computational geometry, Annual Symposium on Com-
putation Geometry, pages 91–98. Association for Computing Machinery, ACM
Press, 2005.

[6] M. Ajtai, V. Chvatal, M. Newborn, and E. Szemeredi. Crossing-free subgraphs.
Annals of Discrete Mathematics, 12:9–12, 1982.

[7] G. Di Battista, R. Eades, P. Tamassia, and I.G. Tollis. Algorithms for draw-
ing graphs: an annotated bibliography. Computational Geometry: Theory and
Applications, 4(5):235–282, 1994.

[8] G. Di Battista, R. Eades, P. Tamassia, and I.G. Tollis. Graph Drawing: Algo-
rithms for Visualization of Graphs. Prentice Hall, Upper Saddle river, NJ, 1st
edition, 1999.

[9] Daniel Bienstock. Some provably hard crossing number problems. Discrete Com-
putation Geometry, 6:443–459, 1991.

[10] Daniel Bienstock and N. Dean. Bounds for rectilinear crossing numbers. Journal
of Graph Theory, 17:333–348, 1993.

80

[11] J. Blazek and M. Koman. A minimal problem concerning complete plane graphs.
In Proc. Theory of Graphs and its Applications, pages 333–338, New York, 1965.
Academic Press.

[12] Alex Brodsky, Stephane Durocher, and Gethner Ellen. The rectilinear cross-
ing number of K10 is 62. Technical Report TR-2000-10, University of British
Columbia, October 2000. citeseer.ist.psu.edu/article/brodsky00rectilinear.html.

[13] G. Chartrand and L. Lesniak. Graphs and Digraphs. Chapman & Hall/CRC,
Boca Raton, FL, 3nd. edition, 1996.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press with McGraw Hill, 2nd edition, 2002.

[15] E. de Klerk, J. Maharray, D.V. Pasechnik, R.B. Richter, and G. Salaar.
Improved bounds for the crossing numbers of Km,n and Kn. http:// cite-
seer.ist.psu.edu/682027.html, submitted for publication, 2004.

[16] Hristo N. Djidjev and Vrt’o Imrich. Crossing numbers and cutwidths. Journal
of Graph Algorithms and Applications, 7:245–251, 2003.

[17] Dragos M. Dvetkovic, Michael Doob, and Horst Sachs. Spectra of Graphs: Theory
and Applications. Academic Press, 3rd edition, 1997.

[18] J. Edmonds. A combinatorial representation for polyhedral surfaces. Notices of
the American Mathematical Society, 7:646, 1960.

[19] Rober B. Eggleton. Crossing Numbers of Graphs. PhD thesis, University of
Calgary, 1973.

[20] P. Erdos and Guy Richard K. Crossing number problems. American Mathemat-
ical Monthly, 88:52–58, 1973.

[21] I. Fáry. On the straight line representations of planar graphs. Acta Scientiarum
Mathematicarum, 11:229–233, 1948.

[22] Scott Fortin. The graph isomorphism problem. Technical Report TR96-
20, University of Alberta, July 1996. www.cs.ualberta.ca/research/techreports
/1996/TR96-20.php.

[23] Judith R. Fredrickson, Bei Yuan, and Frederick C. Harris, Jr. A time saving
region restriction for calculating the crossing number of Kn. Congressus Numer-
antium, 168:145–158, May 2004.

[24] Michael R. Garey and David S. Johnson. Computers and intractability a guide to
the theory of NP-completeness. W. H. Freeman and Company, New York, 1979.

[25] M.R. Garey and D.S. Johnson. Crossing number is NP-complete. SIAM J. of
Alg. Disc. Meth., 4:312–316, 1983.

[26] L. Yu. Glebsky and G. Salazar. The crossing number of Cm×Cn is as conjectured
for n > m(m + 1). Journal of Graph Theory, to appear.

81

[27] Martin Grohe. Computing crossing numbers in quadratic time. Journal of Com-
puter and System Sciences, 68(2):285–302, March 2004.

[28] H. Gronau and H. Harborth. Numbers of nonisomorphic drawings for small
graphs. Congressus Numerantium, 71:105–114, 1990.

[29] Richard K. Guy. A combinatorial problem. Nabla (Bulletin of the Malayan
Mathematical Society), 7:68–72, 1960.

[30] Richard K. Guy. The decline and fall of Zarankiewicz’s theorem. In Frank Harary,
editor, Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph The-
ory Conf., Ann Arbor, Mich., 1968), pages 63–69. University of Michigan, 1969.

[31] Richard K. Guy. Crossing numbers of graphs. In Graph Theory and Applications
(Proc. of the Conference at Western Michigan University, 1972), pages 111–124.
Western Michigan University, 1972.

[32] Richard K. Guy, Tom Jenkyns, and Jonathan Schaer. The toroidal crossing
number of the complete graph. Journal of Combinatorial Theory, 4:376–390,
1968.

[33] Frank Harary and Anthony Hill. On the number of crossings in a complete
graph. In Proceedings of the Edinburgh Mathematical Society, volume 13 2nd
Series, pages 333–338, London, 1963. Edinburgh Mathematical Society.

[34] Frederick C. Harris, Jr. and Cynthia R. Harris. A proposed algorithm for calculat-
ing the minimum crossing number of a graph. In Yousef Alavi, Allen J. Schwenk,
and Ronald L. Graham, editors, Proceedings of the Eighth International Confer-
ence on Graph Theory, Combinatorics, Algorithms, and Applications, volume 2,
pages 469–478. Western Michigan University, June 1998.

[35] Linda Humphrey. Efficient generation of minimal graphs using independent path
analysis. Master’s thesis, University of Nevada, Reno, NV, 2006.

[36] H.F. Jensen. An upper bound for the rectilinear crossing number of the complete
graph. Journal of Combinatorial Theory, 10 Series B:212–216, 1971.

[37] Daniel J. Kleitman. The crossing number of K5,n. Journal of Combinatorial
Theory, 9:315–323, 1970.

[38] F. T. Leighton. Complexity Issues in VLSI. MIT Press, 1983.

[39] F. T. Leighton. New lower bound techniques for VLSI. Math. Systems Theory,
17:47–70, 1984.

[40] Annegret Liebers. Planarizing graphs - a survey and annotated bibliography.
Journal of Graph Algorithms and Applications, 5:1–74, 2001.

[41] Sean Christopher Martin. A parallel queuing system for computationally inten-
sive problems of medium to large beowulf clusters. Master’s thesis, University of
Nevada, Reno, NV, 2003.

82

[42] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981.

[43] F. Pach, J. Shahrokhi and M. Szegedy. Applications of crossing numbers. Algo-
rithmica, 16:11–117, 1996.

[44] J. Pach and G. Tóth. Thirteen problems on crossing numbers. Geombinatorics,
9:225–246, 2000.

[45] J. Pach and G. Tóth. Which crossing number is it anyway? Journal of Combi-
natorial Theory, 80 Series B:225–246, 2000.

[46] Janos Pach, Joel Spencer, and Geza Tóth. New bounds on crossing num-
bers. Technical Report 37, Dimacs, Rutgers University, June 1999. ftp://
dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/1999/99-37.ps.
gz.

[47] Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Odd crossing
number is not crossing number. In Healy, Patrick and Nikolov, Nikola S., Eds,
Proceedings Graph Drawing, volume 13 2nd Series, pages 386–396, Limerick,
Ireland, 2006. Edinburgh Mathematical Society.

[48] R. B. Richter and C. Thomassen. Relations between crossing numbers of com-
plete and complete bipartite graphs. American Mathematical Monthly, 104:131–
137, Feb. 1997.

[49] Farhad Shahrokhi, Ondrej Sykora, Laszlo A. Szekely, and Vrt’o Imrich. A new
lower bound for the bipartite crossing number with applications. Theoretical
Computer Science, 245:281–294, August 2000.

[50] David A. Singer. The rectilinear crossing number of certain graphs. Case Western
Reserve University, Cleveland, OH, 1971.

[51] O. Sykora and I. Vrt’o. On VLSI layouts of the star graph and related networks.
Integration, the VLSI Journal, 17:83–93, 1994.

[52] Umid Tadjiev. Parallel computation and graphical visualization of the minimum
crossing number of a graph. Master’s thesis, University of Nevada, Reno, NV,
1998.

[53] Umid Tadjiev and Frederick C. Harris, Jr. Parallel computation of the minimum
crossing number of a graph. Proceedings of the Eighth SIAM Conference on
Parallel Processing for Scientific Computing, 1997.

[54] John T. Thorpe and Frederick C. Harris, Jr. A parallel stochastic optimization
algorhtm for finding mappings of the rectilinear minimal crossing problem. Ars
Combinatoria, 43:135–148, 1996.

[55] Edwin R. van Dam and Willem H. Haemers. Which graphs are determined by
their spectrum? Linear Algebra and its Applications, 373:241–272, 2003.

[56] Imrich Vrt’o. Crossing numbers of graphs: a bibliography. http:// www.ifi.
savba.sk/~imrich, ftp://ifi.savba.sk/pub/imrich/crobib.ps.gz.

83

[57] Douglas B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle
River, NJ, 1st. edition, 1996.

[58] D. R. Woodall. Cyclic-order graphs and Zarankiewicz’s crossing-number conjec-
ture. Journal of Graph Theory, 17(6):137–145, 1993.

[59] J. Youngs. Minimal embeddings and the genus of a graph. Journal of Mathe-
matical Mechanics, 12:303–315, 1963.

[60] Bei Yuan. A generic queueing system and time saving region restrictions for
calculating the crossing number of Kn. Master’s thesis, University of Nevada,
Reno, NV, 2004.

[61] Bei Yuan, Sean C. Martin, Judith R. Fredrickson, and Frederick C. Harris, Jr.
A generic queuing system for computationally intensive problems. Congressus
Numerantium, 171:193–206, May 2004.

[62] K. Zarankiewicz. On a problem of P. Turán concerning graphs. Fundamenta
Mathematicae, 41:137–145, 1954.

