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Abstract

Widespread use of 3D artwork has necessitated the need for managing digital

rights of content owners due to illegal peer-to-peer (P2P) distribution of artwork,

which has been one of the major sources of revenue loss for the art industry. Exist-

ing Digital Rights Management (DRM) systems attempt to provide an anti-piracy

framework that restricts the use of content to its rightful user. However, limitations

of technology have consequently led to solution designs that are either very restrictive

(i.e. device-limiting or usage restrictions) or only succeed in discouraging unlawful

distribution by employing tracing mechanisms.

The objective of this dissertation is to contribute towards DRM implementa-

tions to ensure fair rights management such that the needs of both the authors and

consumers are balanced. The proposed biometric-based watermarking scheme allows

DRM systems to enforce copyright protection by imposing individual-limiting usage

rights, thereby eliminating any device dependency or usage restrictions.

The proposed technique embeds the identity of the consumer in the form of a

voice print, into the graphic content. This voice print serves as a watermark and is

created by using a statistical model (Gaussian Mixture Model) representation of the

consumer’s voice sample. Mel-frequency cepstral coefficients, representing feature

vectors of the speaker from the speech signal, are used to generate the statistical

model. Comparison of the embedded watermark with feature vectors extracted from

a newly acquired voice sample from the consumer enable the biometric-based DRM

system to verify the authenticity of the consumer for legitimate access and usage of

the 3D artwork. The scope of this dissertation is limited to 3D mesh models.
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Chapter 1

Introduction

1.1 Motivation

The past decade has witnessed an explosion of 3D graphics content. Numerous 3D

model catalogs are available online for various industries such as architecture, com-

puter aided design, entertainment, science, medical imaging, archaeological artifacts,

and much more. Such widespread use of 3D artwork has necessitated the need for

managing digital rights of content owners due to illegal peer-to-peer (P2P) distribu-

tion of artwork, which has been one of the major sources of revenue loss for the art

industry. Existing Digital Rights Management (DRM) solutions for 3D multimedia

are either very restrictive (i.e. device-limiting or usage restrictions) or only succeed

in discouraging unlawful distribution by employing tracing mechanisms. While the

objective of DRM is to restrict the use of content to its rightful user, limitations of

technology have consequently led to solution designs that can be broadly classified

into two categories - a) implementations that violate consumer’s rights to fair use(i.e.

using the content without any restrictions) thereby tilting the balance in favor of

the owners, or b) implementations that are ineffective in avoiding unauthorized users

from accessing the content thereby tilting the balance in favor of the consumer. As

a result, DRM systems face the challenge of ensuring fair rights management along

with controlling content access to legal users.

The objective of this dissertation is to contribute towards DRM implementations

such that the needs of both the authors and users are balanced. This research work
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focuses on addressing the shortcomings and challenges of current DRM schemes, by

proposing to employ a biometric based watermarking solution. Watermarking or in-

formation hiding is an identification technology. Thus far, the most any DRM system

has achieved from utilizing watermarking schemes is a piracy tracing mechanism - by

embedding consumer specific identifiers into the digital content and retrieving these

identifiers from pirated content to determine the consumer responsible for piracy. The

proposed watermarking scheme when used in conjunction with DRM solutions serves

as an access control technology.

1.2 Methodology

The proposed watermarking method embeds a representation of a biometric trait,

which corresponds to the identity of consumer, in the graphic content. Various bio-

metrics such as fingerprint, palm print, iris, retina, hand geometry, face, voice, and

signature are evaluated to select the most feasible biometric trait for the DRM ap-

plication. Upon electing an appropriate biometric characteristic, the next step is

to research feature extraction techniques that measure features, from the biometric

trait sample, which uniquely characterize an individual. Factors such as improper

user interaction with the sensor, temporary alterations of the biometric trait itself

caused by aging and illness, and environmental factors affect the quality and consis-

tency of captured biometric data. To incorporate these intra-user variations, feature

representation techniques have to be incorporated in order to generate a statistical

model of the biometric features. This generated model is then used as a watermark.

Comparison of the embedded watermark with the real-time generated features from

the live capture of the biometric trait from the user allows a DRM system to perform

biometric based authentication for graphic content access and usage.

Use of biometric watermarks enables the DRM system to a) enforce graphic

content access to a legitimate user, b) eliminate the usage-restrictions and device-

limiting drawbacks by imposing human-limiting usage rights, c) track down the

traitor in the distribution chain via the biometric tracer embedded as watermark
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in the graphic content, and d) prevent large scale online distribution thereby making

piracy substantially harder. However, the underlying assumption for the proposed

scheme is that users are willing to share their biometrics with the graphics distri-

bution agency(considered as a reliable authority) and are unwilling to share their

biometrics on peer-to-peer networks (fearing misuse of personal biometric data by

strangers) to allow illegitimate users to access the copyright protected graphics.

1.3 Contributions

This dissertation contributes to the research community in three directions - i) a novel

biometric watermarking algorithm for 3D mesh models, ii) design of a novel biometric-

watermarking based DRM system, and iii) assessment of the feasibility of integrating

a biometric system with a watermarking system by evaluating the performance of the

overall system and providing directions for future work to develop a commercially

viable system.

1.4 Dissertation Organization

The remainder of this dissertation is structured as follows: Chapter 2 gives relevant

background information on digital rights management systems, biometrics, digital

watermarking, and voice signal processing along with presenting reviewed literature

on 3D multimedia DRM systems, biometric watermarking, and 3D mesh model wa-

termarking techniques. Chapter 3 presents details on the proposed scheme and out-

lines the framework for the proposed biometric watermarking based DRM system.

Chapter 5 presents experiments to evaluate the performance of the proposed method.

Limitations, conclusions, and future research directions are provided in Chapter 6.
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Chapter 2

Background and Literature Review

2.1 Introduction

This chapter covers the background information for four domains - DRM, biometrics,

3D watermarking, and voice signal processing, and is therefore split into four sections.

Section 2.2 presents the basic architecture of DRM systems along with limitations of

existing DRM solutions for 3D multimedia. Section 2.3 gives relevant background in-

formation on biometrics and outlines characteristics of various biometric traits. Sec-

tion 2.4 provides definitions and background information on watermarking including

a survey of the related literature on - i) biometric watermarking of digital media, and

ii) 3D mesh model watermarking. Section 2.5 discusses fundamentals of voice signal

processing with emphasis on speaker verification techniques and outlines factors that

govern the performance of voice biometric systems.

2.2 Digital Rights Management Systems

2.2.1 Technology Overview

Digital Rights Management (DRM) is a scheme by which content owners use techno-

logical mechanisms to enforce and protect copyrights over the authored digital work.

The objective of a DRM system is to restrict the use of content to its rightful user

in order to facilitate rightful compensation to artists for their work. Depending on

usage scenarios and operating environments, DRM systems architecture [37] and im-
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plementation vary from vendor to vendor but the basic functionality provided by

each system is equivalent, to facilitate publishing of digital content in a manner such

that the usage of this content can be controlled. Figure 2.1 illustrates the various

DRM systems types along with the respective functionality achieved by the type of

implementation.

Figure 2.1: DRM System Types

A typical DRM solution [88] is implemented through software and involves pro-

prietary formats (file formats and viewers) and generally operates in a client-server

context. The technologies used for digital management of rights include cryptography

and watermarking. Cryptography is used for license management. User rights are

expressed in the licenses which are typically implemented as digital certificates. User

rights specify the number of usages, temporary or partial use, duration of access,

lending rights, and number of devices on which the content can be used. Licenses

generally contain an identifier of a user who has purchased the content, or an identi-

fier of a device on which the license may be used. Watermarking is a data embedding

technology used primarily for tracing purposes. It is used to identify the source of

illegal distribution by analyzing the user-specific identifier embedded in the digital

content prior to its distribution. DRM systems can also be realized in hardware

through integrated circuits [132] and biometric devices [82].

DRM System Architecture

Figure 2.2 portrays the framework of a typical client-server based DRM scheme. The



6

Figure 2.2: Software-Based DRM System

functional components of this system include - i) server-side content management:

responsible for packaging of the digital content by translating the contents into a

proprietary format, ii) server-side license management: expression of usage rights

pertaining to each customer in terms of licenses, iii) server-side content distribution:

responsible for access and tracking management modules that handle the registration

of users, payments, authentication, and obtain statistical information about the use

of the DRM system, and iv) client-side license enforcement and rights management: a

proprietary content consumption application that enforces user-specific access rights

specified in the license.

Security Aspects of a DRM System

The goal of an adversary is to try to break the security of the system in order to

obtain the digital content in an unprotected form. Therefore, it is necessary to build

a security model [64] that states the security goals of the system along with the
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threat and trust models. The threat model identifies all possible means by which an

adversary can attempt to attack the system. The trust model describes entities that

are trusted not to have vulnerabilities that give rise to a threat. Readers are advised

to refer to [62] or [63] for further details and specifics on how to analyze the security

of a DRM system. Section 3.3 analyzes the security aspects of the proposed DRM

framework.

2.2.2 Limitations of Existing 3D Multimedia DRM Systems

Published literature on 3D graphics DRM is very limited. The issues with existing

DRM systems that are highlighted in the literature can be summarized as:

• Device-limiting access

• Usage restrictions

• Unauthorized access

Related work on digital rights management of 3D graphics is analyzed based on

the type of implementation:

Client-Server Based Implementation

Stanford University has signed a contract with the Italian authorities to protect the

laser scanned high resolution 3D digital sculptures of Michelangelo by making the

artwork available only to established scholars for noncommercial use. The goal of the

team [68] that has undertaken the project is to prevent piracy of the 3D models such

that simulated marble replicas are not manufactured by unauthorized entities. To

achieve this objective, they have implemented a remote-rendering system with client-

server architecture that allows interactive display and manipulation of the artwork

but provides only low resolution 2D renderings to academic users. To address the

analog attack, the authors discourage 3D reconstruction from 2D images by having

the server impose constraints on rendering requests, disallowing extremely close-up

views of models and requiring a fixed field of view. This DRM model is geared
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towards shared content security and counters piracy by restricting what users can do

with the graphics. The user, however, can share his login credentials but this kind

of dishonesty does not impact the content owner’s primary objective of preventing

piracy. While this system is not device binding and can be accessed from any machine,

it does limit the users’ flexibility to use the graphics as the user does not own the

content. This system is not designed as a business model to trade, manage, and

monitor redistribution of sold content.

PTC [17] deployed a product called Pro/Engineer which customizes Adobes Live-

Cycle Rights Management ES [50] software for copyright protection of 3D CAD files.

The purpose of the product is to restrict access of 3D CAD files (i.e. open, copy,

change access restrictions,) to approved personnel. Implementation of this product

is based on use of web services, authentication systems, and enterprise content man-

agement systems for centralized document protection, control, and administration.

Lightweight Directory Access Protocol (LDAP) and Microsoft Active Directory im-

plementations are used to authenticate recipients’ credentials and provide protection

based on existing identity and group structures. This DRM solution protects the

graphic owner’s right by offering content to consumers in a restrictive usage environ-

ment.

Cryptography-Based Implementation

There is no published work for this category. However, a product OwnerGuard [5] is

available in the market and provides DRM functionalities for 3D AutoCAD drawings

by use of licenses. Licenses define the rules for how the files can be used. License

can be generated by specifying the i) time limitations - license duration or expire

date, ii) input output limitations - allow copy to clipboard, screen capture, OLE drag

and drop, save to new files, write protect the file, and iii) dependencies - hardware

identifier of machine or operating system version.

In addition, Visual Rights is another commercial product rolled out by Informa-

tive Graphics [36] for enterprise document management by providing security controls
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that can be applied to a given file when published for viewing by one of company’s

products. This product provides copyright protection for documents, images, 2D and

3D CAD files. It is a client-server based implementation that utilizes proprietary file

formats and viewers. The system utilizes standard AES 256 bit encryption. Users

can publish a protected file and add controls such as password protection, hard or

relative viewing expiration dates, allow/disallow printing and copying. For 3D CAD

models, the product disables measurement and viewing with CAD layer controls and

also supports blocking out specific content within a drawing file or hide the interior

details of a model completely.

Cryptography-based digital rights management solutions use keys to protect con-

tents and licenses to define access rights [89]. Content is bound to a license, and the

content is only accessible as per the rules specified in the license. Implementations

vary from vendor to vendor but a typical cryptographic solution locks the graphics

file with a public key and packages the locked content with a header. The header

contains an identifier to the public key and a location to the license associated with

that file. The public key used to lock the file is unique to every user. This packaged

content is encrypted and distributed to the consumer. The license consists of a user

specific identifier that binds the license to the corresponding content, the public key

that unlocks the content, seller’s certificate to decrypt the packaged content and rules

governing the use of the graphic content such as time limitations, counted number

of usages, disabling copying of content, machine dependency, and restricting content

editing. The associated license is encrypted and stored on a license management

server at the seller’s end. To access the purchased protected content, the buyer needs

to get the license from the seller. The content consumption application on the buyer’s

side sends the user specific identifier to query the license server for retrieving the as-

sociated license. The user side application then checks the validity of the license,

interprets and enforces the rules in the license to provide appropriate content access

to the user.

Based on the usage policies defined in the licenses, these systems provide con-
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tents in limited usage conditions and usage environments. If the license is machine

dependent, containing the hardware ID of the buyer’s computer, it forces the content

to be accessed on one computer. If the license is machine independent, the license

can be illegally shared along with the content on P2P sites. Generally in such cases,

the license server monitors the usage of the file from the license requests and mul-

tiple simultaneous illegitimate access attempts can be detected and denied by the

server. But stand-alone offline systems cannot perform this check and fail to prevent

unauthorized usage, thereby falling short of protecting the rights of content owners.

Cryptography and Watermarking-Based Implementation

Sohn et al. [134] propose a watermarking based 3D data files security component for

an Intelligent Manufacturing System which is used to develop digital prototypes in the

manufacturing industry. The objective of this system is to prevent 3D data files from

leaking out of the organization. This server-based 3D watermarking system, named

3DGuard, works according to security policies that define the user’s access rights and

permissions. A watermarking plug-in intercepts a users upload or download action

in order to embed, retrieve, or remove watermarks on 3D files as per security policies

stored on server. Every 3D data file has a watermark that is specific to the user who

last accessed the file from the system. In case a 3D data file is leaked out of the

organization, the source of the leak can be determined by analyzing the user-specific

watermark embedded into the file.

Kwon et al. [71] present a DRM scheme for 3D animation games serviced in

mobile devices. Due to the limited bandwidth and high cost associated with directly

downloading game content to a mobile device, game sellers allow consumers to down-

load the game on a PC and then transfer the content to a mobile device. The scheme

is designed to prevent illegal redistribution of purchased 3D game content by address-

ing scenarios where consumers illegally transfer the PC downloaded game content to

multiple mobile devices. Authors present a solution that employs the Buyer-Seller

watermarking protocol [85] for consumers protection and tracing illegal redistribu-
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tion. The consumer generates a pair of public and private keys. The public key is

circulated to a third-party referred to as the Watermarking Certification Authority,

who is responsible for generating an encrypted watermark for the buyer. The water-

mark is then sent to the seller to embed into the game content. The seller inserts a

second watermark in the game as well in case the consumer is able to remove the first

watermark from the game content. The seller encrypts the game content with the

buyer’s public key such that the game can only be unlocked by the buyer using his

private key. This encryption safeguards the consumer from dishonest sellers who may

illegally redistribute a buyer’s game to other consumers and hold the buyer respon-

sible for piracy. Since the buyer is the only one with access to the private key that

decrypts the game content, that game content cannot be unlocked by anyone else.

Should the buyer share his private key and a pirated copy of the game is found, the

seller verifies the unique tracer watermark of each buyer and determines the specified

buyer suspected of unauthorized distribution.

These DRM solutions offer consumers full access to content, but the nature of

the implementations facilitate users to make illegal copies as well. Therefore, these

systems fails to prevent unauthorized distribution and usage. However, these systems

do succeed in deterring illegal circulation since consumers are aware of the possibility

of being tracked down and held responsible for piracy if the pirated content is found by

the owners. The underlying assumption is that the watermark has not been damaged

by the consumer to remove traces of his identity from the pirated graphic content.

However, in order to make sure the tracer watermark identifies a customer without

any disputes, the kind of watermark used should be unique to every customer.

Hardware-Based Implementation

Shi et al. [132] present a hardware-based digital rights management solution that

integrates digital rights functionalities within the Graphics Processing Unit (GPU).

Their goal is to counter piracy of real time graphics entertainment software. Authors

propose the hardware design and API extensions to integrate cryptography within
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the GPU. The GPU has two additional components - a cryptographic unit to decrypt

graphics data during rendering in real-time, and a license verification unit to process

texture and shader binding constraints designated in the licenses of graphics data to

circumvent security threats posed by loose coupling of textures and shader programs

with geometry data.

Hardware DRM solutions provide a higher level of protection as opposed to soft-

ware DRM solutions as it is difficult to break the system by software based attacks

or by hardware tampering to dump signal traces at chip interconnects. However,

hardware systems are not feasible for the consumer market due to cost concerns [26]

since appropriate hardware components need to be installed on the consumers com-

puter. Besides, this system is realized on a GPU architecture simulator. Hardware

realization of the concept is far from reality yet, as the nature of the presented re-

search requires a cross-disciplinary collaboration in digital rights management (DRM)

community, graphics researchers, and GPU architects.

Comparison of DRM Solutions for 3D Multimedia

An assessment of the existing solutions based on - i) owner requirements or rights, ii)

user requirements or rights, and iii) system features, and the comparison of various

solutions is presented in Figure 2.3.

As far as the owner requirements are concerned, the digital content owner strives

to prevent unauthorized usage to compensate for revenue losses incurred due to piracy.

Should the content be leaked out of the DRM system, the owner prefers to have a

mechanism that facilitates tracing the origin of piracy. Users require a system that

provides content in a restriction free environment with no binding to any one machine.

A DRM system is mainly characterized by three features - the ease with which it can

be circumvented, the technology used for its implementation, and whether the system

is interoperable with other systems or adopts a proprietary solution.

The objective of this dissertation is to integrate biometry, watermarking, and

cryptography with client-server based DRM systems to support attributes of deter-
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Figure 2.3: Comparison of DRM Systems. Notations used in the table Y: Yes, N: No,
Crypto: Cryptography, WM: Watermarking, -: Unable to Comment

ring unauthorized usage, tracing origin of piracy, eliminate system imposed usage

constraints on consumer, device independent use, and interoperability, as outlined in

the last column of the comparison matrix.

2.3 Biometrics

2.3.1 Technology Overview

Definition

Biometrics is defined as the science and technology of measuring and statistically

analyzing biological data of humans for the purpose of identification. The biological

feature may be based on either a physiological characteristic - such as fingerprints,

palm prints, facial features, iris, retina, vein patterns, or a behavioral characteristic -

such as voice, handwritten signature, gait, and keystrokes.

Biometric System Functionality

A biometric system involves two phases - enrollment and authentication. During

enrollment, the system acquires biometric data samples from an individual, extracts
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relevant features from the data, creates a mathematical representation of the data

and stores it as a template. During authentication, this template is used to compare

features extracted from the newly acquired biometric samples of the user to accept

or reject the user from the system. Figure 2.4 outlines the components of a generic

biometric system.

Figure 2.4: Biometric System Components

• Electronic sensor - for acquisition of the biometric trait in digitized form.

• Pre-processor - to simplify the acquired digital signal for subsequent opera-

tions without losing relevant information (such as eliminate noise or redundant

information, or enhance the signal).

• Feature Extraction - to reduce the size of data by measuring certain features that

correspond to the identity of an individual. A comprehensive literature review

has been presented in [106] for different approaches employed for biometric

feature extraction and template generation.

• Feature Representation - to construct a complex mathematical representation

for features extracted for a particular individual. Multiple samples of a users

biometric trait very rarely yield the same feature set that was derived from the

enrollment sample. This is mainly due to imperfect sensing conditions arising
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out of faulty sensors, temporary variations in the users biometric characteristic

due to injury/illness, changes in environmental conditions that introduce back-

ground interference in the signal, and improper interaction of the user with the

sensor resulting in incomplete or unusable biometric samples. This variability in

the biometric feature set of an individual is referred to as intra-class variation,

which the constructed statistical model (also known as the biometric template)

attempts to incorporate. For implementation details on various techniques to

generate a biometric template for fingerprint, signature, face, and voice, readers

should refer to [4].

• Template Matcher - used during authentication and constitutes a matching algo-

rithm to compare the biometric features with the stored templates to determine

user legitimacy.

Biometric Characteristics

It must be noted that no biometric measure can identify a person in a large popula-

tion. Biometrics can only link an individual to a biometric pattern. The quantitative

measures derived from a biometric trait can be extensively dissimilar or much alike

across a population of individuals. Therefore, the performance of any biometric sys-

tem is characterized by the following measures:

1. False Rejection Rate (FRR) - the probability that a true user identity claim will

be falsely rejected, thus causing inconvenience to the user.

2. False Acceptance Rate (FAR) - the probability that a false identity claim will

be accepted thus allowing fraud.

3. Equal Error Rate (EER) - the performance of a biometric system can also be

evaluated in terms of this single-valued measure. The plot of FRR against FAR

at various thresholds results in the Detection Error Tradeoff (DET) curve, a

plot of which is shown in Chapter 5. EER is computed from the DET curve

where the FAR equals the FRR.
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Additional quantitative measures are:

• False Non-Match Rate(FNMR) - the probability that the acquired sample will

not match the enrollment model.

• False Match Rate(FMR) - the probability that the acquired sample will match

the enrollment model of another user.

• Failure To Enroll Rate (FMR) - the probability that a user will not be able to

supply a readable measure to the system upon enrollment.

In our work we treat FAR/FMR and FRR/FNMR synonymously although these

terms are not always equivalent [83]. In order to circumvent a biometric system, a

user needs to create a false match by biometric mimicry or forgery of an enrolled

user’s biometric features. False non-matches arise out of low threshold values. Based

on the nature of the application and the desired level of security to be achieved by the

biometric system, the threshold can be lowered to reduce false accepts or increased

to reduce false rejects.

It must also be noted that biometric measures cannot be revoked if compromised

i.e. stolen or mimicked. Furthermore, privacy and security of biometrics is another

factor of concern while devising a system that incorporates biometric data [1, 57].

2.3.2 Comparison of Various Biometrics

The choice of a biometric trait for a particular application is based on the error rates

and failure rates discussed above, and various other factors discussed below. While

each biometric trait has its pros and cons, this section only provides a brief overview

of these characteristics for the most commonly used biometric traits. Readers are

strongly advised to refer to [52] for an in-depth analysis of each biometric trait.

The most commonly used biometrics [20] for user authentication or personal

identification are fingerprints, iris, hand geometry, face, voice, and signature. These

traits are evaluated on the following factors [8, 54]: i) ease of use - how easy is it for

the user to interact with biometric sensor, ii) user acceptance - a person’s willingness
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to offer this trait for authentication and determining if the system is easier, faster,

friendlier, and more convenient than the alternatives, iii) distinctiveness - extent to

which the trait shows great variation over the population, iv) circumvention - ease

with which the authentication system can be deceived by use of a substitute, v)

long-term stability - variance of the trait with age, vi) sensor cost - price for the

biometric trait scanning device, vii) template size - memory storage space required

by the digitally compact and unique representation of the biometric trait, and viii)

variability - factors owing to which the trait is inconsistent and varies among samples

taken from the same individual at different instances of time. Figure 2.5 compares

the most commonly used biometrics based on these factors.

Figure 2.5: Comparisons of Various Biometrics [8, 54]

The false match and non-match error rates for the most commonly used biomet-

rics are listed in Table 2.1. These numbers are collected from [53].
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Table 2.1: Performance Evaluation of Commonly Used Biometrics
Biometric FTE FNMR FMR
Face N/A 4% 10%
Finger 4% 2% 2%
Hand 2% 1.5% 1.5%
Iris 7% 6% ≤0.001%
Voice 1% 15% 3%

Why did we chose Voice Biometric for our Application?

Studies ([57, 101]) on comparison of various physiological biometrics (fingerprint, face,

iris, retina, palm print) and behavioral biometrics (handwritten signature, voice, gait,

keystroke dynamics) indicate iris and fingerprints as the most desirable biometric

traits due to their persistence over time (least variability of biometric trait with age),

performance (lower false accept and false reject rates) and distinctiveness (uniqueness

of the trait in the population) properties. However, these traits are not appropriate

for use in DRM systems owing to user’s unwillingness to offer these traits to non-

government organizations due to privacy concerns. Besides, special and expensive

hardware device such as fingerprint scanners or high resolution iris image capture

cameras would be required to install at the client-side.

Since user acceptance drives the success of any application, we consider signa-

ture, face, and voice biometric traits as the most eligible candidates for selection.

Hand geometry is not appropriate for DRM applications since is not unique for every

individual and requires bulky scanners. In addition to sensor costs for handwrit-

ten signature scanning being relatively higher than face and voice biometric sensors,

signatures can also be easily forged; therefore, this trait is not considered to be favor-

able. Face and voice are more practical choices in this context assuming that desktop

PCs and laptops are equipped with in-built cameras and microphones. However, face

image acquisition requires fixed head pose, fixed background and appropriate illu-

mination conditions. These conditions are not feasible to control at the user’s end.

On the other hand, local acoustics such as no background noise for voice capture,

is relatively easier to impose as a requirement on the user. With face biometrics,
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the camera can be easily spoofed by a face photograph in place of a live face, while

a voice biometric system can be spoofed by a pre-recorded voice sample of an indi-

vidual. But voice has an added benefit which static biometric traits such as face,

fingerprint and iris lack - owing to its behavioral and dynamic nature this biometric

serves as a dual channel with the capacity of delivering information (spoken words)

along with personal identity (speaker’s voice). This unique feature of voice can be

exploited to deal with spoofing (using user’s pre-recorded speech) and data simulation

attacks [151] on the biometrics authentication process. Prompting the user to speak

random phrases [41] during authentication introduces an additional layer of verifica-

tion (since the user’s pre-recorded speech can no longer bypass the authentication

process) and increases the overall security of the system.

Therefore, factors such as higher security, cost-effectiveness of biometric sensor

device (affordable low cost PC microphone device), ease of voice acquisition with less

restrictions on the user for capturing the biometric trait, pervasiveness (automated

speech recognition telephone systems), and less complexity in signal processing due

to voice’s one-dimensional nature, make voice a good candidate for selection as a

biometric trait for watermarking.

2.4 Digital Watermarking

2.4.1 Technology Overview

Terminology

Digital watermarking is defined as perceptible or imperceptible insertion of informa-

tion into digital content for the purpose of copyright protection, owner identification,

content authentication, tamper detection, data labeling, access control, or various

other applications [18].

The digital host medium in which the copyright information is embedded is referred

to as the cover or host signal. The different watermarking host media are - digital
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documents, digital images, audio, video, 3D models, graphic animations, executable

code, and integrated circuits.

The embedded information that is inserted in the cover-signal, is referred to as the

payload or watermark. The digital watermark encoded into digital data is an identify-

ing code and may consist of a bit sequence, random numbers, text representing user’s

unique ID or copyright ownership message or cryptographic keys or access conditions

of the content, logos, image, biometrics or content-based information.

The watermarking scheme is defined as the set of algorithms required for insertion

and extraction of the watermark. Figure 2.6 shows the two components of a water-

marking system - embedder and detector. The embedder is responsible for inserting

the watermark into the digital content, while the detector is responsible for retrieving

this embedded watermark from the host medium.

Figure 2.6: Generic Watermarking System

Desired Properties of a Watermark

Watermarking schemes are evaluated on the basis of these two measures:

• Unobtrusiveness - The embedded watermark should not interfere with intended

use or function of the host data. Perceptible watermarks are therefore faded to

appear in the background as transparent marks or are placed in the bottom or

top corner of the visual media to serve as proof of ownership and to imply au-

thenticity of the content. On the other hand, imperceptible watermarks should
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be embedded in a way that does not distort the original media by creating any

visual artifacts.

• Robustness - Robustness requirement is necessary to assure that common signal

processing and malicious modifications do not impact the detection or retrieval

of the watermark. Any attempts to delete the watermark should destroy the

watermark itself or damage the host data or else the watermark should resist

all attacks. The embedded watermark should persist despite geometric trans-

formations and noisy transmission channels. The objective of this requirement

is to facilitate content owners to prove their ownership over illegitimate copies

of their media by retrieving the watermark from a pirated medium and then

litigate against the offender.

Watermarking Research Areas

The four principal components of digital watermarking schemes which distinguish

one watermarking algorithm from another are - i) what information is inserted as a

watermark, ii) where is the watermark inserted into the host media, ii) how is the

watermark inserted into the data of the host medium (i.e. addition, subtraction,

bitwise operation), and iv) what is the payload size i.e. how many information bits

can be embedded as watermark. Components ii)-iv) also constitute as the major

areas of research in the watermarking field, with the focus on achieving high payload

capacity while maintaining imperceptibility of the embedded watermark.

Classification of Watermarking Schemes

The category of a watermarking scheme is determined by one of the following prop-

erties:

1. Perceptibility

The application scenario of a particular digital content determines whether a

watermark should be perceptible or imperceptible. A perceptible watermark is

most commonly used for ownership identification and informing users that the
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content is authentic. However, such watermarks are easy to remove by adver-

saries since the location of the watermark is known (eg. CNN’s logo displayed

at the corner of the broadcasted video content), can be aesthetically ugly at

times, may cover a portion of the content, and their obtrusiveness increases

susceptibility to being cropped. On the other hand imperceptible watermarks

are used for proof of ownership, content labeling, and in validation of intended

recipient. These watermarks are difficult to remove as their location in the host

medium is not known and can only be guessed by an adversary. This distinction

gives rise to two types of watermarking schemes:

i) Visible watermarking, which refers to the process by which the watermark

embedded into the digital content is visible. This watermark is some text or a

logo which identifies the owner of the host media.

ii) Invisible watermarking, which refers to the process by which the watermark

information is added to the multimedia content, such that it cannot be per-

ceived. A watermark can be imperceptibly inserted into a digital host medium

by slightly modifying the host signal.

2. Robustness

This property defines the strength and persistence of the watermark to adver-

sary attacks. The three categories of robustness are listed below:

i) Robust - The watermark can resist modify and/or delete attacks. It can sur-

vive common signal processing operations (such as filtering, compression, noise),

printing and scanning, and geometric distortions (such as rotation, translation,

scaling).

ii) Fragile - The watermark is invalidated by slightest modification of host

medium. It does not survive high noise level, compression, or signal processing

attacks.

iii) Semi-Fragile - The watermark is only destroyed by major changes to the

host medium but survives mild signal processing operations.
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3. Embedding Method

Figure 2.7 outlines the embedding component of the watermarking system. Ev-

ery host medium has different categories into which the embedding processes can

be classified. For example: image, audio, and video watermarking techniques

modify the host medium in the spatial/temporal domain or the frequency do-

main or in both domains. For 3D graphics the watermark embedding process

can be categorized as geometrical, topological, or vertex re-ordering approaches.

Therefore, the type of method used for inserting the watermark serves as an

important property for classification of watermarking schemes.

Figure 2.7: Watermark Embedder

4. Retrieval Method

Figure 2.8 outlines the three types of extraction or detection process of the

watermark. The watermark detection/extraction process can be informed/non-

blind (retrieval process requires access to the original content (i.e host signal)

along with the embedded piece of data), semi-blind (detector requires access to

some side information and/or the watermark but not the original content), or

blind (detection is performed without access to the original content). In semi-

blind watermarking, the embedding and retrieval process is assisted by a secret

key, in which lies information on where and to what extent has the original

content been modified in order to accommodate the watermark.
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Figure 2.8: Watermark Detector

Attacks

This section lists the most common category of attacks on a watermarking system.

Further reading [18, 69] is required for those interested in gaining more insight into

different categories of attacks.

• Signal Processing Operations - The adversary subjects the watermarked con-

tent to various operations such as filtering, dithering, cropping, scaling, and

compression with the intent to destroy the watermark.

• Geometric Operations- If the watermarked digital content survives affine trans-

formations, the watermarking scheme is resistant to geometric attacks.

• Removal Attack - In this attack, the adversary attempts to remove or destroy

the watermark, without affecting the host medium.

• Forgery Attack- If the attacker is successful in embedding a valid watermark,

then he can claim ownership over the digital content in addition to the true

owner, for there is no legal framework or centralized repository for watermarked

content that can assist in disputing such false claims.
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• Collusion Attack- In this attack, the attacker uses several copies of the water-

marked content to construct a copy with no watermark.

• Cryptographic Attacks - The adversary attempts to crack security methods

in the watermarking scheme, implements a brute force search for embedded

information, and embeds misleading watermarks.

• Protocol Attacks - The adversary subtracts his watermark from the data to

claim ownership, thereby falsely accusing the true owner of forgery.

To date, no benchmarking tools exist to evaluate the performance of 3D water-

marking algorithms. This dissertation attempts to devise a scheme that can cover

only a subset of the above mentioned attacks, such that the effect of most common

operations on 3D models i.e. noise, cropping, smoothing, and quantization are ana-

lyzed.

Limitations of Watermarking Technology

It is evident from the attacks, that watermarking technology only serves as a deterrent

against wrong-doing. It requires a central repository of the original or watermarked

work and a proper legal framework to be effective. In addition, the lack of any

algorithm being robust to all types of attacks and the lack of a general benchmarking

tool for all types of host media (since each host medium has its own set of properties

that cannot be generalized to be applicable for another medium), has prevented this

technology from penetrating into the industry at a full-fledged scale.

Applications of Watermarking

Watermarks have been used for a wide a variety of applications:

• Authentication - The watermark consists of information that assists in deter-

mining that the content is authentic. If the watermark can be extracted and

matched to the information representing authenticity of the content then it

serves the purpose of content authentication assuring the user that the content
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has not been altered during its passage through a noisy or non-secure commu-

nication channel.

• Copyrights - The watermark contains information about the rules of usage and

copying which the content owner wishes to enforce. The content consumption

applications or devices that can play the content might look for the watermark

and compare it with information, such as whether the content is on a recordable

storage device, to identify illegal copies and deny to play the content.

• Signatures - The watermark identifies the owner of the content, and is basically

used to help settle ownership disputes.

• Broadcast or Transaction Monitoring - The content consumption applications

embed transaction identifiers as watermarks into the content, which serve as

transaction logs that are detected by automated systems to monitor television

and radio broadcasts, computer networks, and any other distribution channels

to keep track of when, how and where the content appears or is being used.

• Fingerprinting - For security applications, where the same content is distributed

to multiple users, the content is embedded with different watermarks where each

watermark is specific to a user. In case the watermarked content is leaked out

to unauthorized personnel, the content is examined for the unique watermark

to determine the source of leak.

• Data Labeling - The content is labeled by different data using watermarks to

inform the content consumption application of the different purpose or modes

of usage for the same content.

Watermarking in the Industry

Despite its limitations, watermarking technology has been adopted by the industry

for a wide variety of copyright protection applications. What follows is a list of key
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industry players in multimedia watermarking: Cinea (Video watermarking) [48], Digi-

marc (Document watermarking) [47], GCS Research (Satellite Images watermarking)

[139], MSInternational (Audio watermarking) [16], Philips Electronics (watermark-

ing of Movies) [33], Signum (Documents and Images watermarking) [140], Civolu-

tion (Audion and Video watermarking) [13], Teletrax (Broadcast Monitoring) [141],

Thomson (watermarking of Motion Pictures) [136], Verance (Audio watermarking)

[146], Verimatrix (Video watermarking) [147], Alpha Tec and Houdini (3D Graphics

watermarking) [49, 81].

Since this dissertation deals with biometric watermarking of 3D models, the

next two sections provide an extensive review of biometric watermarking and 3D

watermarking approaches.

2.4.2 Literature Review of Biometric Watermarking of Dig-
ital Content

Biometric watermarking embeds a biometric template into the host medium. While

watermarking of multimedia such as image, audio and video is reaching maturity,

watermarking of 3D multimedia is still a technology in its infancy phase. Moreover,

biometric watermarks have not been explored yet for protecting 3D models. Finger-

print, iris, face, voice features, and signature images have been employed by several

biometric watermarking techniques for still images, audio and video. Figure 2.9 shows

the various biometric traits that have been explored for use in digital media.

Due to the lack of any published work on biometric watermarking of 3D multi-

media, this section is a comprehensive review of biometric watermarking literature

for digital documents, images, audio, and video host mediums from the perspective

of what benefits does utilizing biometrics as watermarks offer.

Jain et al. [55] present a fingerprint image watermarking method that embeds

facial information into host fingerprint images. This scheme has the advantage that

in addition to fingerprint matching, the recovered face during the decoding can be

used to establish the authenticity of the fingerprint and the user. Satonaka ([128]
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Figure 2.9: Research Trend - Biometric Watermarking

and [129]) embeds a face print as a biometric template into face images for biometric

authentication through a distributed network. Biometric watermarking is used for

accurate facial signature authentication. Uludag et al. [56] hide fingerprint minutiae

data in a host image to enable secure exchange of fingerprints. If the host is a face

image, the proposed method provides an additional cue in authenticating the user.

The host image serves as a carrier of the biometric data used for user authentication.

In [54], the authors use eigen-face coefficients to watermark fingerprint images for

security and integrity of fingerprint biometric data. Namboodiri and Jain [103] pro-

pose to secure document images by an image watermark generated from the author’s

digitized handwritten signature. Vatsa et al. [145] propose a biometric image water-

marking algorithm to improve recognition accuracy of face and fingerprint biometric

images in addition to protecting these images from tampering. Sun et al. [137] present

a multimodal biometric scheme using watermarking technique to provide more secure

and reliable personal recognition. Knuckleprint biometric feature is used as water-

mark to be hidden in the palmprint host image. The knuckleprint watermark not only

protects palmprint biometric data, but is also used as a covert recognition. In ad-

dition, the bimodal biometrics recognition provides an improvement in the accuracy

performance of the biometric identification system.
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Hsieh et al. [45] discuss a copyright protection scheme for images using finger-

print images. The scheme does not alter the host image but encodes a share image

by using features from the host image and scrambled version of the binary fingerprint

image. During the fingerprint retrieval phase this share image is used along with

features extracted from the suspected image to decode the scrambled fingerprint im-

age. Unscrambling rearranges the fingerprint image, which is used to verify copyright.

Hassanien [40] propose to protect the ownership by hiding an iris data into digital

image for an authentication purpose. The idea is to secretly embed iris print in the

content of the image for the purpose of identifying the owner.

In [46], the authors employ multimodal biometric to improve security and pri-

vacy in fingerprint authentication system. The proposed scheme embeds and extracts

an iris template in a fingerprint image. Noore et al. [104] discuss a digital water-

marking technique that uses face image and demographic text data image as multiple

watermarks for protecting the evidentiary integrity of fingerprint images. Jung et

al. [65] present a method that identifies users in compressed video streaming with

their biometric watermark. The proposed algorithm generates watermark using the

preprocessed fingerprint image, and then inserts the image in H.264-based video cod-

ing streams.

Park et al. [108] proposed an iris feature watermarking method on face image

data for the following objectives - multimodal biometric authentication to increase

the authentication accuracy, ownership verification by extracting the embedded iris

print, and transmission of biometric data over non-secure and noisy communication

channel by embedding it as a watermark into host data. Feng and Lin [27] adopt

iris biometric to be inserted as watermark into host document images in order to

protect the document and assist in owner identification. Varbanov and Blagoev [143]

use an MD5 hash of iris templates to watermark digital images. Low et al. [80]

use an offline handwritten signature as watermark for host images to authenticate

the claimed source of the digital image. Claus et al. [148] embed a handwriting

biometric trait as a watermark in the form of signatures, passphrases, and sketches
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for the purpose of user authentication, ownership identification and verification of

digital content.

Wang et al. [149] describe an authentication scheme of a DRM system which

integrates a watermarking technique and a multimodal biometric system to provide

more secure and reliable personal recognition. In the watermarking algorithm, a face

image is chosen to be the host image and the iris feature is selected to use as a water-

mark hidden in the host image. Hoang et al. [42] adopt biometric watermarking for

security of the biometric templates in user authentication systems. Encryption does

not provide security once the biometric templates are decrypted; therefore, biometric

watermarks are embedded into the decrypted host biometric templates to provide

security after decryption. Teoh et al. [79] insert a handwritten signature in the host

image to establish legitimate ownership.

Paik et al. [66] present a user identification method for H.264 video streams using

a fingerprint watermark. The biometric watermark is used to reduce the potential

danger of forgery or alteration of the host data and to improve reliability of verifica-

tion using automated fingerprint identification systems. Sharma et al. [43] propose a

remote multimodal biometric authentication framework based on fragile watermark-

ing for transferring multi-biometrics over networks to server for authentication. A

facial image is used as a container to embed other numeric biometrics features. The

purpose of the framework is to enhance security and reduce bandwidth. Tee et al. [78]

embed a handwritten signature in the host image as a notice of legitimate ownership.

Rao et al. [117] embed fingerprint biometric features of the owner as a watermark

to prove ownership of digital images. Musgrave’s [100] patent on a generic biometric

watermark system generates a biometrically encoded bitstream from biometric data of

a user and from electronic data to be transmitted to the user. The encoded bitstream

has the biometric data acting as a biometric watermark. The encoded bitstream is

then sent to a decoder of the user, with the biometric watermark providing security

in the transmission.

Lastly, Vatsa et al. [144] discuss a watermarking algorithm that fuses voice fea-
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tures into a face biometric image. The technique embeds mel-frequency cepstrum

coefficients (MFCC) of an individual’s voice into the face image of the same indi-

vidual. However, the watermark formulation ignores the intra-individual variability

of the voice data and assumes that the MFCC extracted features are invariant for

an individual. A statistical modeling component is required to incorporate variabil-

ity in an individual’s voice features due to factors such as improper interaction with

the biometric sensor, background noise during voice capture, and variations in an

individual’s voice captured at different instances of time. The proposed approach in

this dissertation overcomes these shortcomings in the voice print based watermark

formulation by statistically modeling the voice feature data.

2.4.3 Literature Review of 3D Mesh Model Watermarking

This section presents related work on 3D watermarking with emphasis on mesh mod-

els. Mesh models approximate a 3D object by a set of planar triangles. Due to their

simplicity in representation and speedier rendering mesh models are widely used in

the industry.

Figure 2.10 shows the mesh representation (right) of a 3D model (left). The dots

in the mesh representation represent vertices that define the (x, y, z) co-ordinates

of the mesh model. Other 3D model representations use surfaces that interpolate

parametric curves such as NURBS, B-Splines, and Beizer curves. However, the focus

of this dissertation is to watermark 3D models that are represented by triangular

meshes.

Figure 2.10: Mesh Representataion of 3D Model
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Mesh models consist of the 3D model’s geometry (a set of (x, y, z) vertices),

and connectivity (triangular faces formed by connecting line segments joining three

vertices). The watermark can be inserted in the spatial domain by modifying the

geometry or connectivity of the mesh model or in the spectral domain by modifying

the spectral coefficients of the mesh model [150]. Extraction of the watermark can

be blind, semi-blind, or informed(non-blind). A non-blind retrieval process requires

access to the original model while semi-blind process requires access to some side

information and/or the watermark but not the original model, and blind retrieval is

performed without access to the original model or the watermark.

There are 3 main approaches to 3D watermarking: 1) geometry-based techniques,

which involve altering the positions of vertices, 2) topology-based techniques, which

modify vertex connectivity, and 3) vertex re-ordering techniques, which change the

order of vertices in the 3D model’s file format representation. An extensive survey

of 3D watermarking algorithms based on these three approaches can be found in

[60]. In addition, readers are also advised to refer to [2] for a thorough survey with

classification and critical analysis of watermarking algorithms for 3D models.

The watermarking approach in this dissertation adopts a geometry based tech-

nique and exploits the curvature variation in meshes using surface normals to embed

the watermark. Curvature estimation is an important task in 3D object descrip-

tion and recognition because surface curvature provides a description of local surface

shape. A variety of curvature computing methods are discussed in [30]. Normal

vectors are most widely used for curvature estimation. The presented related work

focuses on algorithms that embed an imperceptible watermark into a 3D mesh model

by exploiting the normal vector distribution. The related literature is presented by

summarizing the watermarking approach and the robustness of the watermark to at-

tacks such as mesh simplification, remeshing, rotation, scaling, translation, cropping,

noise, and smoothing operations.

Han et al. [38] propose a geometry-based watermarking approach that embeds

a content-based watermark and uses a non-blind detection technique. The authors



33

analyze the mean curvature and fluctuation of curvature of the regions of the 3D

mesh model to choose the appropriate regions to embed the watermark. The Voronoi

method [87] is employed to compute the curvature of the mesh. Fluctuation of curva-

ture is computed from the Gaussian-weighted average of the mean curvature. Regions

with large curvature and low curvature fluctuation are selected to accommodate the

watermark as these causing least visual distortion to the model. A threshold value for

the curvature fluctuation eliminates regions not suitable for watermark insertion. The

watermark is embedded by altering the vertex co-ordinate using a visual distortion

measure and a normalized vertex normal. The technique is robust against rotation,

scaling, cropping, noise, and smoothing.

Kwon et al. [70] propose watermarking for 3D polygonal meshes using normal

vector distribution and extended Gaussian image (EGI) [44]. The 3D model is divided

into patches and the normal vectors of each mesh in the patch are mapped to one of

the several bins that subdivide the unit sphere of the EGI. The length of each bin is

the sum of area for all the meshes that are mapped into it. These bins are arranged

in descending order of their length. Bins with large length are selected as locations

for watermark embedding. The watermark is a 1 bit (0 or 1) random sequence of

length N and the ith bit is embedded in the ith bin corresponding to each patch.

The watermark is embedded by changing the average value of the angle between

the normal vectors of mesh surface and the normal vector of the bin center. The

normal vectors in the selected bin are changed according to the bit of the watermark,

thereby changing the position of vertices in the 3D model. The watermark extraction

process does not require the original model. The algorithm is robust against mesh

connectivity altering, additive noise, and cropping attacks.

Jabra and Zagrouba [51] present a robust watermarking algorithm that exploits

the benefits of geometric, topologic, and spectral schemes to achieve robustness

against a wide variety of attacks. The authors segment the original model into multi-

ple sub-connected meshes that are classified into convex, concave, and plane regions.

The watermarking scheme for each segment is determined by the Gaussian and mean
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curvature value of these regions. The Gaussian and mean curvatures of convex regions

are positive. Concave regions have a negative mean curvature and a positive Gaussian

curvature while plane regions have Gaussian curvature approximately equal to zero.

A geometric watermarking approach is utilized for concave regions and convex regions

are watermarked using topologic techniques. Spectral watermarking is adopted for

the plane regions where insertion is done in low frequencies. The algorithm employs

a blind detection approach. The algorithm is robust against affine transformations,

mesh simplification, smoothing, remeshing, additive noise, and cropping attacks.

Lee and Kwon [73] propose 3D mesh watermarking using the complex extended

Gaussian image (CEGI) distribution. The meshes in a 3D mesh model are clustered

into various patches using a distance measure. The surface normal vector of each

mesh in a patch is mapped into a unit Gaussian sphere. The weight of each point

in the Gaussian sphere is equal to the area of the mesh surfaces for a given normal.

The weight mapping represents a histogram that records the variation of the surface

area according to the surface orientation. The CEGI concept extends the EGI rep-

resentation by adding the normal distance of a mesh to the origin of the model as

a phase component of the complex weight. Unlike EGI representation, CEGI allows

the pose of the 3D mesh to be extracted and also distinguishes a convex model from a

non-convex model. The watermark bits (0 or 1) are embedded into the normal vector

direction of the meshes that are mapped into cells with large complex weights in the

patch CEGIs. The semi-blind watermark extraction is based on two watermark keys,

the known center point of each patch and a weight rank table of the cells in each

patch. The algorithm is robust against mesh simplification, cropping, and rotation

and does not require the original model for extracting the watermark.

Liu and Yang [76] propose a 3D watermarking scheme based on feature points

that carry the principal shape information of the model. The selected feature points

represent the high variation areas of the model and are used as centroids for a Voronoi

diagram to cluster all the vertices of the model into several segments. For each seg-

ment, the vertices are projected onto a reference plane. The normalized distance
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between a reference point on the plane and the intersection point of a ray from this

reference point to the surface of the model is used to obtain a range image. A DCT

transform is applied to the range image to embed the watermark (bit -1 or 1). The

watermarked 3D mesh is reconstructed from the modified range data. The detection

of the watermark information requires the original range image. The algorithm is re-

sistant against mesh simplification, additive noise, and cropping. The feature points

in this algorithm are used by mesh simplification and surface subdivision techniques

and maintain the main shape of the mess. If the 3D mesh is attacked by simplifica-

tion, its feature points are survivors. Therefore, this algorithm is resistant to mesh

simplification.

Alface and Macq [3] discuss a 3D mesh watermarking technique based on feature

points. The points for which the minimum and maximum curvatures are equal at a

vertex are referred to as umbilical points. These points share the same curvature in

all directions of the tangent plane. Since umbilical points may be due to noise in the

geometry or due to the coarseness of the sampling of the input mesh, a multi-scale

analysis is adopted to discriminate intrinsic umbilical points from those due to noise.

The scale is the size of the vertex neighborhood used to estimate the curvature at a

vertex. Umbilics representing the larger mean curvature are selected as feature points.

The mesh shape is then partitioned using a geodesic Delaunay triangulation of the

detected feature points. To tackle remeshing manipulations, each of these geodesic

triangle patches is then parameterized and remeshed by a subdivision strategy. These

steps provide a mesh which only depends on the mesh shape and resists to connectivity

or sampling changes. These remeshed patches are then watermarked in the spectral

domain. The algorithm resists affine transforms, white noise addition, smoothing,

cropping, and sampling changes such as decimation, subdivision, or remeshing. The

watermark is retrieved by blind detection.

Motwani et. al [90] propose a wavelet-based watermarking technique that uses

fuzzy logic to determine an optimal value for the watermark amplitude to be inserted

in a 3D model. The system is adaptive to the local geometry of the mesh and inserts
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an 8-bit grey scale image as a watermark. Initially, all mesh vertices are normalized

and then a wavelet transform is applied by using even vertices to compute scalar

coefficients and odd vertices to compute wavelet coefficients. Fuzzy input variables

are computed considering the geometry of the model such as area, curvature, and

bumpiness of the surface corresponding for each vertex. Curvature and area for

the mesh vertices are computed in the spatial domain whereas bumpiness for the

corresponding vertex is computed in the wavelet domain. Curvature is the amount

by which a geometric object deviates from being flat. Curved surface consist of more

number of smaller triangles as compared to a flat surface. Curvature is computed

by taking average of the angles between surface normals of 6 neighboring vertices

and the average surface normal. Area of the triangular face formed by 3 vertices is

computed by the magnitude of the normal to the triangular patch. A bumpy surface is

a surface which is not smooth but is irregular and uneven. A bumpy surface has more

details associated with it and thus has more watermark holding capacity. Bumpiness

is calculated by dividing the wavelet coefficient magnitude by the length of vector

joining two even neighbors. The output of the fuzzy system is a single value which

corresponds to a perceptual threshold for each corresponding wavelet coefficient. The

watermark is inserted by modifying the magnitude of the wavelet coefficient vector

based on its fuzzy inference value. An inverse 3D wavelet transform is then computed

to get the watermarked model. The algorithm is non-blind and requires the original

model and original watermark to extract the watermark. The algorithm is robust

against smoothing, cropping, affine operations, and noise attacks.

Benedens [7] proposes a geometry-based 3D mesh watermarking scheme that is

resistant to mesh simplification attacks. The system uses a collection of surfaces from

the 3D mesh model as an embedding primitive. These collections are generated by

grouping mesh normals to distinct sets called bins. Each bin is defined by a bin center,

a normal in three dimensional space and a radius, and an angular difference to the

center normal. A bin is assigned all model face normals whose angular difference is

less or equal than the bins radius. Bin centers and radii are chosen in a way so bins do
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not overlap. The embedding process takes the original model, a key, and a watermark

bit string. From the key, non-overlapping bins, bin centers, and radii, are derived.

For encoding one bit of watermark information, the normals in one bin are changed

with respect to certain measures called feature types, such as the mean normal of

the bin, the mean angle difference of the bin normals to the bin center, and the

amount of normals contained in the kernel of the bin relative to the total amount of

normals in bin. The embedding algorithm tries to move normals towards or away from

the kernel (depending on the bit to be coded) and optimizes the embedding process

with the assistance of a cost measure. The outputs of the embedding process are

the watermarked model and the original feature values which are needed as reference

values in the retrieval process. The semi-blind retrieval process takes the watermarked

model, the key, and the feature values.

Lavoué [72] introduces the notion of roughness for a 3D mesh object. The author

talks about three principal relevant categories of regions in a 3D object, such as edge,

rough, and smooth regions. These categories are associated with different watermark

embedding strengths. A rough region exhibits a high degree of watermark insertion

capacity, whereas a geometric change on edge or smooth regions is much more visible.

For each vertex, the corresponding roughness is processed by computing an asymmet-

ric difference between local average curvatures [14] computed on the original mesh

and on a smoothed version. The average curvatures computed over local windows aim

at detecting regions associated with high geometric variations. These variations can

be due to rough textured regions or edges. On the smoothed version of the object, the

geometric variations disappear while edges are preserved. By computing curvature

difference between original and smoothed versions, the real geometric variations (i.e.

the roughness) are accurately differentiated from the edges. This curvature difference

represents the robust roughness measure for the polygonal meshes and can be used

for selecting appropriate regions for watermarking.

Table 2.2 provides a comparison of the reviewed literature. The majority of the

algorithms reviewed thus far can embed bit sequences only and cannot be adopted for
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Table 2.2: Comparison of Various Watermarking Schemes
Algorithm Watermark Approach Retrieval Robustness
Han et. al Content Geometry Informed Rotation,
[38] -Based Scaling,

Translation,
Cropping,
Noise,
Smoothing

Kwon et. al 1-Bit Geometry Blind Mesh
[70] Sequence Simplification,

Cropping,
Noise

Jabra and Zagrouba 1-Bit Geometry, Blind Mesh
[51] Sequence Topology, Simplification,

Spectral Remeshing,
Rotation,
Scaling,
Translation,
Cropping,
Noise,
Smoothing

Lee and Kwon 1-Bit Geometry Semi- Mesh
[73] Sequence Blind Simplification,

Remeshing,
Rotation,
Translation,
Cropping,
Noise

Liu and Yang Bit Geometry Semi- Mesh
[76] Sequence Blind Simplification,

Cropping,
Noise

Alface and Macq 64-Bit Spectral Blind Subdivision,
[3] Signature Decimation,

Cropping,
Noise,
Smoothing

Motwani et. al 8-Bit Spectral Non-Blind Rotation,
[90] Grey Scale Scaling,

Image Translation,
Cropping,
Noise,
Smoothing

Benedens et. al Bit Geometry Semi- Mesh
[7] Sequence Blind Simplification
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our approach as we need to embed a biometric template of size over 2 KB for a voice

signal. The proposed watermarking algorithm computes a local smoothness measure

to select regions for watermark insertion and it takes motivation from a variety of

algorithms reviewed thus far to achieve reasonable embedding capacity that can afford

payload ranging from 2-20 KB. Chapter 3 presents the proposed curvature-based

watermarking approach that exploits voice biometric as the watermark.

2.5 Voice Signal Processing

The speech signal is a complex wave that not only carries linguistic information but

also information representing the identity of the speaker. While speech recognition

techniques focus on the linguistic component of the speech wave, voice biometric

systems such as speaker verification systems, focus on the speaker specific information

conveyed by the speech signal. The focus of this chapter is to briefly introduce the

fundamentals of voice signal processing and the elements of a speaker verification

system that are utilized in Chapter 3. References [29, 32, 39, 109, 110, 114, 115] are

excellent resources for those who desire an in-depth study of the subject.

2.5.1 Speech Production Mechanism

Speech is produced by the movement of vocal organs that disturb the air particles

originating from the lungs, causing changes in the air pressure which propagate out-

wards through the lips and are eventually perceived as sound by the ear. Different

patterns of air pressure variations create different sounds [39]. The physiology of

speech production involves two main components: the vocal chords and the vocal

tract. Figure 2.11, taken from [105], illustrates the various organs that participate in

the speech production mechanism. The vocal chords are the folds of skin located at

the top of the trachea. The vocal tract mainly consists of the pharynx, mouth cavity

(tongue, teeth, lips), and nasal cavity. Air flowing under pressure from the lungs

passes through the trachea into the larynx. Based on the interaction of the airflow

with the vocal chords, the glottis (gap between left and right vocal chords) opens and
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closes in accordance with the vibrations of the vocal chords causing puffs of air to be

released into the larynx. These air puffs then propagate through the vocal tract and

eventually exit through the lips as a pressure wave, causing rapid variations in air

pressure outside the lips. The vibrations caused by this pressure wave travel though

air and get picked by the ear and are interpreted as sound. This is a very brief ex-

planation of the complex physiological process of speech production and readers are

advised to refer to [110] and [135] for further details.

Figure 2.11: The Human Vocal System [105]

Terminology

The volume of air that is forced out of the lungs into the trachea determines the

degree of loudness of the sound. This is because when more air particles vibrate, the

amplitude of the sound wave is increased. The natural frequency at which the vocal

chords tend to vibrate is known as the fundamental frequency and it correlates to the

speaker’s pitch [123]. During the passage of the sound waves through the vocal tract,
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some of the wave energy is absorbed by the walls of the tract [61], some waves get

reflected while some waves resonate depending on their frequency and the size and

shape of the vocal tract. The resonant frequencies are known as formats [123]. The

shape of the vocal tract determines the frequencies and amplitude of the frequencies

at which the waves vibrate as they pass through the vocal tract. Different shapes

of the vocal tract produce different linguistic sounds. The vocal tract shape can be

changed by the articulators such as moving the tongue, teeth and lips. Voiced sounds

are produced when the vocal chords vibrate and unvoiced sounds are produced out

of the attenuation/amplification effects of the vocal tract on the air stream passing

through the glottis when the vocal chords do not vibrate.

The Source-Filter Model

G. Fant [24] introduced the source-filter theory to mathematically model the method

of speech production. According to this theory, the speech wave is the result of a

vocal tract filter system on a sound wave produced by a source. The production

of speech represented by a source-filter decomposition is shown in Figure 2.12. The

source-filter model is represented by two-phases [52] - the voice wave initiation phase

(glottal airflow) and the wave-filtering phase (impact of vocal tract on glottal airflow).

The source is the origin of a periodic (vibrating vocal chords) or aperiodic (bursts of

air passing through the vocal tract when vocal chords are not vibrating) waveform.

The vocal tract filter system comprises of the pharynx cavity, nasal cavity and the

mouth cavity. The vocal tract acts as an acoustic filter that suppresses energies of

the waveform at certain frequencies and amplifies it at others.

The model assumes that glottal source and the vocal tract filter are independent

of each other. It also assumes that the source-filter system is linear. From the signal

processing perspective, the filtering effect on the source waveform can be achieved

either by convolution in the time domain or by multiplication in the frequency domain.

The filtering operation of the vocal tract is represented by a transfer function H(t).

The waveform produced by the source is represented by S(t). The resulting waveform
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Figure 2.12: Source-Filter Model for Speech Production

generated by the action of the filter on the source is represented by W (t) = S(t)∗H(t),

(where t denotes time-domain representation, * denotes convolution operation). In

the frequency domain, the product of the source S(f) and the transfer function H(f)

represents the speech wave W (f) = S(f)xH(f), (where f denotes frequency-domain

representation..

The filtering characteristics of a vocal tract shape and the fundamental frequency

of vocal chord vibrations, can be estimated from the frequency analysis [115] of the

speech waveform, which is discussed in the next section.

Voice Signal Representation

There are three representations [58] of a voice signal:

i) Time-domain - the speech wave propagates as a pressure wave through air. The plot

of the magnitude of air pressure variations with respect to time represents the voice

signal in the time-domain (see Figure 2.13). This representation allows determination

of the speaker’s pitch [39].

ii) Frequency domain - applying a Discrete Fourier Transform (DFT) to the waveform

in the time domain results in an amplitude spectrum which displays the frequency

content of the waveform. As illustrated by Figure 2.14, the peaks in this spectrum that

are very closely and equally spaced for the entire frequency range are due to the vocal

chord vibrations (fundamental frequency and its harmonics). The widely spaced dips

and peaks that can be noticed in the contour (dotted line)of the spectrum are dictated

by the shape of the vocal tract. The vocal chords contribute to the spectrum as a
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Figure 2.13: Time-domain Representation of Voice Signal

rapidly oscillating component while the vocal tract contributes as a slowly changing

trend line through the oscillations [39]. Applying a DFT to this spectrum isolates the

contributions of the source and filter such that the quickly-changing signal due to the

source appears in the right (higher frequency range) of the resulting spectrum (which

is known as cepstrum) and the slowly varying signal due to vocal tract manifests itself

in left (lower frequency range) part of the spectrum.

Since the source and filter get separated by the cepstral analysis, this represen-

tation is most commonly used for speech and speaker analysis. However, speaker

verification systems typically use features derived only from the vocal tract [10] to

represent the identity of a speaker. This is because even though the difference in

pitch (fundamental frequency) between speakers is large, it is difficult to effectively

use pitch for speaker verification as people can easily change the pitch of their voice.

To the contrary, lower cepstral coefficients representing the vocal tract are invariant

for a given speaker.

iii) Time+Frequency domain - a spectrograph displays the amplitude of voice signal

as a function of frequency and time. In this representation, the variations in ampli-

tude are displayed by varying the intensity(bright or dark) levels in the graph which

is a plot of the frequency values against time. The dark regions on a spectrogram

indicate formants that represent vocal tract resonances. This representation is mainly
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Figure 2.14: Frequency Analysis of Speech Wave

used for speech analysis and in forensics. Figure 2.15 illustrates a spectrograph.

2.5.2 Elements of Speaker Verification Systems

Automatic speaker recognition (ASR) systems aim to recognize a speaker via mea-

surements of individual characteristics derived from the speaker’s voice signal [32].

Speaker recognition requires speakers to enroll into the system prior to being recog-

nized by the system. Speaker recognition is classified into speaker verification and

speaker identification. Speaker verification is the process of verifying the claimed

identity of a speaker. Speaker identification is the process of identifying the speaker

of the provided voice signal from a set of enrolled speakers.

Speaker verification techniques can also be categorized as text-dependent and
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Figure 2.15: Spectrograph

text-independent techniques. In text-dependent methods, the system imposes con-

straints on the text utterance, for example, the claimant speaks a predefined phrase

during enrollment as well as verification. In a text-independent technique the system

does not rely on predetermined text thereby offering users the freedom to choose the

text to be spoken. However, these systems require a lot of training/testing sessions

to deliver good performance.

A generic speaker verification system consists of three modules: front-end pro-

cessing, speaker modeling, and comparison, as shown in Figure 2.16. The system

requires speakers to enroll into the system prior to being verified as authentic users.

The enrollment process requires speakers to speak a number of words or sentences.

From this acquired speech signal, the front-end processing module measures features

that contain identity information. This step is also referred to as parameterization of
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the signal as it reduces the voice signal to a set of speaker specific parameters. The

subsequent step is to create a speaker model from the extracted individual specific

parameters. This step is also referred to as feature representation, as it creates a

mathematical model or statistical representation of the extracted features. The gen-

erated speaker model is stored as a template which is used by the comparison module

during verification. The verification process prompts the speaker to utter the same

or different text used during enrollment, depending on whether it is a text-dependent

or text-independent verification system. This utterance is parameterized, followed by

the modeling of parameters (not all speaker verification systems employ this module

during verification) and then compared against the stored template of the claimed

identity of the speaker to decide if the claim is valid. A match between the newly ex-

tracted parameters and the stored speaker model verifies the speaker and a mismatch

rejects the speaker. What follows is an overview of the parameterization and speaker

modeling techniques.

Parametrization - Acoustic Feature Extraction Techniques

The objective of parametrization techniques is to represent the provided utterance

by a sequence of feature vectors characterizing the identity of the speaker. Effec-

tiveness of various acoustic features has been studied in [124] and [127] and the

most commonly used acoustic parameters in speaker recognition systems have been

voice pitch, intensity, fundamental frequency of speaker, resonant frequencies of vocal

tract, vocal tract information, and spectral patterns. In order to extract the relevant

Figure 2.16: A Generic Speaker Verification System
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features from a voice sample, the speech signal must first be processed to a represen-

tation that facilitates measurement of the features. The short-term spectrum of the

speech signal, which is a function of time, frequency, and spectral magnitude, is the

most common method of representation of the speech signal for feature extraction.

Several approximations to the short-term spectrum such as linear predictive coding

coefficients, reflection coefficients, cepstrum coefficients and mel-frequency cepstrum

coefficients are widely used as well [112, 130, 152]. Cepstral variants such as lin-

ear frequency cepstral coefficients, mel-warped linear prediction cepstral coefficients,

using discrete wavelet transform instead of fast Fourier transform for deriving the

cepstrum have also been used for signal representation. The choice of a particular

representation is determined by factors such as computational complexity, memory

usage, and nature of the transmission channel. While linear predictive coding and lin-

ear predictive cepstral coding techniques are computationally expensive, perceptual

linear predictive coding technique is more robust in presence of background noise,

and mel-frequency cepstral coding is used in noise free environments. Mel-frequency

cepstrum coefficients (MFCC) are by far the most prevalent technique [122] used to

represent a speech signal for feature extraction in state-of-the art speaker recognition

systems [21]. Therefore, the proposed approach adopts the MFCC-based features

extraction technique. The Mel-Frequency Ceptrum Coding [21] is a representation

of the vocal tract structure that produced the voice signal. It is based on a discrete

Fourier transform of the log amplitude spectrum on a nonlinear scale of frequency.

This technique will be explained in detail in Chapter 3.

Speaker Modeling - Acoustic Feature Representation Techniques

Factors such as improper user interaction with the sensor, temporary alterations of

the voice itself caused by fatigue, illness, aging, and due to environmental factors the

quality and consistency of captured voice biometric data is affected. Therefore, a

voice sample collected from the same speaker at different time instances depicts large

variability in the acquired signal (this variability is termed intra-individual variabil-
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ity). For this reason, the recorded voice sample cannot be directly used to uniquely

represent the individual. In order to incorporate these intra-individual variations,

feature representation techniques have to be used to generate a statistical model of

the voice features. Speaker modeling techniques such as Gaussian mixture models

(GMM), vector quantization (VQ), multi-layer perception (MLP), hidden-Markov

models (HMM), artificial neural networks (ANN), support vector machines (SVM)

and many other techniques are popular [121]. However, GMM outperforms other

modeling techniques [121]. Therefore, state-of-the-art speaker recognition systems

use GMM as the classifier owing to its better performance, probabilistic framework

and training methods scalable to large data sets [11].

The approach presented in this dissertation employs GMM to generate the speaker

model. This generated model is then used as a voice print to serve as the watermark.

A Gaussian Mixture Model is a series of Gaussian distributions over the space of the

feature vectors to statistically classify features (MFCC coefficients) using a probabil-

ity based approach. Each Gaussian distribution in the GMM model is characterized

by a mean, a covariance matrix and a prior probability. Chapter 3 covers the theory

on GMM in detail.

A voice print does not contain the entire voice signal but it only consists of

parameters related to the vocal tract, therefore reverse engineering the voice print to

recreate the original voice sample is theoretically not possible. The reverse engineering

process is not only challenging but also requires a lot of time, effort and technological

expertise [15, 84, 107]. The cost and complexity involved in such an effort has to

be far greater than the value of the information (spoken text or speaker’s identity)

obtained by reverse engineering. However, due to security concerns raised over the

possibility of recreation of the voice signal from voice print researchers [119] propose

to encrypt the voice print prior to using it for the purpose of speaker verification.
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Performance Evaluation

The performance of a speaker verification system depends on various factors [121]

such as - i) the quality of the acquired voice signal expressed in terms of signal-to-

noise (SNR) ratio, ii) the number of voice samples used during enrollment and the

duration of utterance of each voice sample used to generate speaker models, iii) the

degree of intra-individual variations in the voice samples used during enrollment (gen-

erally multiple enrollment sessions are conducted at different times to accommodate

variations in voice acquired at different instances), iv) the choice of feature extraction

and feature-representation techniques used to formulate the speaker model, v) accu-

rate estimation of algorithmic parameters for the employed feature extraction and

representation technique, vi) the setting of threshold level used by the comparison

module to reject false claimants and accept genuine claimants, and vii) the size of the

speaker population which impacts the false accept rate of the system.

The voice signal can be acquired in a controlled environment with negligible back-

ground noise using a desktop microphone or a noisy environment such as a telephone

set. The recording channel of the voice signal dictates the selection of parametriza-

tion and modeling algorithm. A trade-off exists between verification accuracy of the

system and the enrollment-session duration of voice samples and the number of en-

rollment sessions to incorporate within-speaker variability. The verification accuracy

is poor if the voice samples used during enrollment are of smaller duration. The ver-

ification accuracy of the system can be varied by changing the threshold - lowering

the threshold causes more false rejections but results in fewer false accepts. Elevat-

ing the threshold is appropriate for low security applications as it enables fewer false

rejections. However, this user convenience benefit comes at the price of higher false

accept rates. The DET curve plots the FAR and FRR for various threshold levels to

depict the overall performance of the system.

The size of the speaker population is determined by the database used for testing.

Various databases [34] (paid access: TI-DIGITS, TIMIT, YOHO, XM2VT, free for

academic use: VALID, MIT Mobile Device Speaker Verification Corpus) are avail-
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able for benchmarking text-dependent speaker verification systems and provide voice

recordings with varied number of enrollment-session and verification-session utter-

ances and recorded in different acoustic environments (controlled or noisy). However,

each database comes with its own set of limitations such as too few speakers, sam-

ples acquired in either quite or noisy environment but not both, insufficient amount of

enrollment session voice samples, small duration for utterances that do not suffice cre-

ation of robust speaker models, lack of impostor utterances to determine rate of false

accepts, lack of free academic license or are not available publicly. Our experimental

evaluation of the system is therefore subject to these limitations.
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Chapter 3

Methodology

Similar to biometric systems, the proposed scheme also has two steps: i) user enroll-

ment, and ii) user authentication. The enrollment step, as depicted by Figure 3.1,

acquires the voice biometric trait from the user, generates a voice print, encodes the

voice print using error correcting codes and then embeds it as a watermark into the

3D mesh model.

Figure 3.1: Enrollment

The authentication step, as portrayed in Figure 3.2, retrieves the biometric wa-

termark from the 3D model, corrects it from any errors caused by signal processing

operations on the 3D model using the error correction decoder and restores the speaker

model which was used as the voice print watermark during enrollment. This step also

acquires a voice sample from the user and extracts features from this sample. These
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extracted features are compared against the retrieved GMM speaker model to verify

if the user attempting to access the 3D model is indeed the same individual whose

voice print was embedded into the 3D model. The results of the verification module

determines a match or mismatch of the user’s voice with the embedded GMM model.

Experiments in Chapter 5 demonstrate the effect of signal processing attacks on the

embedded speaker model and how that subsequently impacts the verification process.

Figure 3.2: Authentication

Sections that follow provide details for each block from the enrollment and au-

thentication steps. These sections cover each block in a substantial amount of detail

and are targeted for those readers who wish to gain an in-depth knowledge of the

voice print generation and watermarking process. Readers interested only in exper-

imental results are advised to skip to Chapter 5 which outlines the overall system

performance.

3.1 Voice Biometric Watermark Generation

The proposed method which we presented earlier in [93] embeds a voice biometric

as a watermark in the 3D graphic content. Size of an acquired voice sample (utter-

ance of 10 digits, approximate duration 2-10 seconds, 32KHz sample rate, bit rate

512 kbps, 16 bit sample size, mono channel, PCM format, .wav file recording) from a
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user is in the order of hundreds of kilobytes. 3D models used for experiments in this

paper range in size from an order of tens of kilobytes to hundreds of kilobytes. These

small 3D mesh files cannot accommodate a high payload of a .wav file recording for

insertion as watermark. Therefore, the size of the acquired voice sample has to be

reduced such that a unique and compact representation of a user’s voice can be de-

rived. For this purpose (and to incorporate variations in voice samples of a user taken

at different instances of time, which will be explained later), feature extraction and

representation techniques are used. These techniques measure and statistically model

the features from the acquired voice sample that uniquely characterize an individual.

Feature extraction from a voice sample is analogous to front-end processing or speech

parametrization techniques used by speaker recognition systems [102]. Feature repre-

sentation employs pattern recognition techniques to statistically model the extracted

features. The following sections detail the steps involved in the formulation of the

voice print.

3.1.1 Digital Speech Acquisition

Digitization is the process of converting the sound pressure wave (analog voice signal)

into a format that can be stored on a digital computer. The process involves two steps

- sampling and quantization. Sampling discretizes the signal in time by converting

the continuously varying signal into a discrete set of values. The total number of

samples extracted from an analog signal depends on the sampling frequency and the

duration of the analog signal. Omitting parts of the analog signal that lie between

the sampled points does not impact the reconstruction of the analog signal from the

digital as long as Nyquist’s criteria is satisfied (which states that for a bandlimited

signal that contains only a certain range of frequencies, the sampling frequency should

be at least twice the highest frequency contained in the analog signal). Quantization

discretizes the signal in amplitude by converting the continuously varying amplitudes

into a discrete set of amplitude values. Quantization is measured in terms of the

number of bits used to represent the amplitude levels for the extracted samples from
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the analog signal. The resultant digital signal is defined by a series of amplitude

values for discrete steps of time.

The objective of the digital speech acquisition step is to obtain the user’s voice

sample so that a speaker-specific voice print can be generated. Instead of randomly

speaking into the microphone all users are directed to speak the same predetermined

utterance because a text dependent technique allows to directly exploit voice individ-

uality associated with each syllable. The utterance is constrained to a predetermined

sequence of 10 digits - “1 2 3 4 5 6 7 8 9 10”.

Figure 3.3 demonstrates a speech signal captured with an ordinary PC micro-

phone at a sample rate of 44KHz and 32-bit representation. The average file size

of the digital recording for the utterance is 2.35 MB (.wav file format) and has a

duration of 14 seconds.

Figure 3.3: Discretized Speech Signal: 14 seconds duration, utterance “1 2 3 4 5 6 7
8 9 10”

3.1.2 Speech Signal Pre-Processing

Pre-processing of the speech signal is essential to eliminate periods of silence and

areas of background noise. Pre-processing reduces the processing load of the subse-

quent stages of feature extraction and modeling thereby facilitating the system to be

more computationally efficient. Moreover, the pre-processing step ensures that the
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extracted voice print is independent of the speaking rate. Slow speakers pause for a

few milliseconds between uttering each digit. Also, the first or last few milliseconds

of a voice recording correspond to silence or background noise because the speaker

takes some time to begin speaking when recording starts and there is a minute delay

before the recording can be stopped once the speaker is done uttering the 10 digits.

Figure 3.4 illustrates the silence removed pre-processed frame of the original signal.

The file size is reduced to 680 KB after pre-processing.

Figure 3.4: Preprocessed Discrete Speech Signal: 3 seconds duration

Speech signal can be segregated into voiced, unvoiced, and silence regions. Voiced

speech is produced because of excitation of vocal tract by the periodic flow of air at

the glottis. Unvoiced speech is produced when the vocal chords are not vibrating.

Unvoiced regions usually have very low energy. Silence regions are where no speech

is produced and therefore these regions represent the background noise. Most of

the speaker specific features are present in the voiced part of speech signal. While

there exist many techniques [6] such as short-time energy, auto-correlation, linear

prediction coding coefficient, and Mahalanobis distance [126] to classify speech signal

into voiced/unvoiced regions, we use the zero-crossing rate (ZCR) method [35] to

eliminate silent regions from the speech signal.

The zero crossing count is an indicator of the frequency at which the energy is

concentrated in the signal spectrum. A reasonable generalization is that if the zero-
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crossing rate is high, the speech signal is unvoiced, while if the zero-crossing rate is

low, the speech signal is voiced. The speech signal is segmented into a non-overlapping

frame of samples (frame length 1024 samples, segmentation into frames of 17.75 ms

window progressing at a 8.875-ms frame rate). It is processed frame by frame until

the entire speech signal is covered. ZCR for each frame with N samples is computed

by:

ZCR =
1

N

N∑
i=1

|sign(xi)− sign(xi−1)| (3.1)

where,

sign(xi) = 1, xi ≥ 0

= −1, xi ≤ 0 (3.2)

A zero crossing is said to occur if successive samples have different algebraic signs.

The zero-crossing rate is the rate of sign-changes along a signal, i.e., the rate at which

the signal changes from positive to negative or back. Mathematically, ZCR equates to

the number of time-domain zero-crossings within a defined region of signal, divided

by the number of samples of that region. If the ZCR of a portion speech exceeds

50% then this portion will be labeled as unvoiced or background noise otherwise the

segment is considered to be the voiced one.

3.1.3 MFCC Feature Extraction

The purpose of this step is to parametrically represent the speech waveform by con-

verting it into a set of feature vectors. The digitized speech waveform of the speaker’s

10 digit utterance is approximately of size 2-4 MB which is too high to be accom-

modated by graphic models of size 25 KB or so, that are used in the experiments.

Even if the graphics files of much higher size are used, it is necessary to compact the

waveform such that a statistical model can be created from only necessary waveform

features that uniquely represent the speaker.

The speech waveform is a function of the speaker’s physiological characteristics

such as vocal chords and vocal tract dimensions [25] and extraction of features from
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the speech signal is such that they are primarily a function of speaker and not the

speech. Before performing signal parameterization, it is necessary to understand how

a speech wave is generated and what characteristics of this wave reflect the identity

of a speaker. The next two paragraphs discuss these two aspects briefly.

Speech production mechanism is explained by a simplified source-filter model

[138] according to which sounds are produced by the action of a filter (vocal tract)

on a sound source (glottis or vocal chords), technically equivalent to a convolution

process in signal processing. When air passes from the lungs through the vocal

chords (source) it is subject to rapid variations in pressure due to vibrations of the

vocal chords. Energy of this pressure wave is modified by its passage through the

vocal tract (filter), which acts as an acoustic filter that suppresses energies at certain

frequencies and amplifies energies at other frequencies.

The frequency and amplitude at which the air vibrates as it passes through the

vocal tract is determined by vocal tract shape and length, which vary from person to

person. The vocal tract dimensions are represented by a transfer function that can

be obtained from the frequency amplitude spectrum of the waveform. Peaks in the

spectral envelop correspond to formants which are resonant frequencies of the vocal

tract. The fundamental frequency and harmonics of a speaker’s spectrum reflect the

frequency of vibration of the source. The amplitude of the fundamental frequency and

the locations of the harmonics vary from speaker to speaker. Therefore, an acoustic

waveform carries an imprint of the source and filter that produced it and is unique

for every individual.

The Mel Frequency Cepstral Coding (MFCC) [21] approach to parameterize the

speech signal is a cepstrum (spectrum of a spectrum) based feature representation

technique. As illustrated in Figure 3.5, there are five stages to compute MFCC:

Windowing, Fourier Analysis, Mel-Filter Bank, Log Magnitude Spectrum, Cepstrum.

Stage 1 - Windowing: A speech signal is non-stationary because its characteristics

are not constant over long periods of time. However, when speech signal is examined

over short periods of time (5 to 100 milliseconds), its characteristics are fairly constant
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Figure 3.5: MFCC Block Diagram

and the signal can be considered as a stationary signal. To extract this stationary

part of the signal, a Hamming window is used (see Figure 3.7, 3.8, and 3.9).

A symmetric Hamming window is given by:

w[n] =

{
0.54 - 0.46cos( 2πn

L−1
) , 0 ≤ n ≤ L− 1

0 , otherwise

Multiplying the window function with the time-varying speech signal not only

forces the signal to be periodic (which is a requirement for Fourier analysis) but

also reduces the leakage in the frequency domain which results in the signal energy

spreading over a wider frequency range as opposed to the actual signal frequency

that lies in a narrow frequency range. This leakage is a result of applying a Fourier

transform to non-periodic signals. Using a window that is shaped so that it approaches

zero at the beginning and the end, molds the signal into a periodic form thereby

reducing the leakage.

The Hamming window of width 1024 samples that extracts 17.75 milliseconds

windows (frames of length 1024 samples) from the original signal and is overlapped

for 512 samples such that the offset between successive windows is 8.875 milliseconds

is illustrated by Figure 3.6. There are a total of 337 frames for the pre-processed

signal, shown in Figure 3.4.

Stage 2 - Fourier Analysis: The next stage extracts the energy of the signal

in different frequency bands by applying the Discrete Fourier Transform (DFT) for

each windowed signal i.e. frame. A plot of the magnitude against the frequency is

visualized by the spectrum shown in Figure 3.10. This spectrum reveals the frequency

components for the pre-processed signal. For k frames of an original signal, the DFT
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Figure 3.6: Extracting Frames from Preprocessed Discrete Signal

Figure 3.7: Frames of the Preprocessed Discrete Signal before Windowing

is given by the following equation:

X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn (3.3)

where N represents the discrete frequency, X[k] is a complex number representing the

magnitude and phase of that particular frequency component of the original signal.

Stage 3 - Mel-Filter Bank: The sensitivity of the human ear is not the same for

all frequencies. The ear is less sensitive to frequencies higher than 1 KHz. The melody

scale approximates the frequency response of the human ear and places less emphasis
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Figure 3.8: Hamming Window

Figure 3.9: Frames of the Preprocessed Discrete Signal after Windowing

on the higher frequencies. This stage warps the Fourier spectrum on a melody scale by

applying a mel-filter bank to the spectrum. Mel-filters are linearly spaced below 1KHz

and logarithmically spaced above 1KHz in the filter bank. These filters are triangular

shaped. Each filter from the bank collects energy from its respective frequency band.

The mel frequency can be computed from the acoustic frequency f by using the

following equation:

mel(f) = 1127 ln(1 +
f

700
) (3.4)

We use 39 filters in the filter bank. Figure 3.11 represents the mel-filter bank

used to capture energies from the Fourier spectrum of the windowed original signal.
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Figure 3.10: Fourier Spectrum of one Frame of Windowed Preprocessed Discrete
Signal

Figure 3.11: Mel Bank of Filters

Stage 4 - Log Magnitude Spectrum: This stage takes the logarithm of the mel -

spectrum energy values in order to non-linearly compress the filter bank energies

in accord with the human auditory response. Human response is less sensitive to

small differences in amplitude at high amplitudes than at low amplitudes. Using a

log also makes the extracted features less sensitive to variations in energy of original

signal arising out of the speaker speaking closely into or being further away from the

microphone while recording the speech. Figure 3.12 depicts the transformation of the

mel -spectrum to log scale.
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Figure 3.12: Log of Mel Spectrum

Stage 5 - Cepstrum: This stage takes the inverse DFT of the log magnitude of

the spectrum of a windowed frame of the original signal to get a cepstrum, which is

shown in Figure 3.13. The inverse DFT is computed by the equation below:

c[n] =
N−1∑
n=0

log

(∣∣∣∣∣
N−1∑
n=0

x[n]e−j
2π
N
kn

∣∣∣∣∣
)
ej

2π
N
kn (3.5)

The cepstral representation characterizes the vocal tract (lower cepstral values)

and the source (higher cepstral values) [19]. Peaks in the lower frequency compo-

nents of the cepstrum represent the formants while peaks in the higher frequency

components are caused by the fundamental frequency and harmonics.

MFCC feature extraction takes the first 12 cepstral values that represent the vocal

tract filter distinctly separated from information about the vocal source. Each frame

of the original signal is represented by a 12-dimensional feature vector consisting of

MFCCs i.e., x = x1, x2, x3, . . . x12. Figure 3.14 illustrates the MFCC cepstral features.

3.1.4 GMM Feature Representation

The 12 mel cepstral feature vectors representing spectral information are extracted

from the speech waveform every 17.75 milliseconds. Each of the 337 frames are

represented by 12 MFCC features. A data density plot (histogram) of the first MFCC
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Figure 3.13: Cepstrum

Figure 3.14: First 12 Mel-Frequency Cepstral Coefficients

feature is shown in Figure 3.15 by the grey bars. The data with such a representation

is said to have a non-normal distribution. Figure 3.16 demonstrates the histogram of

data which has a normal distribution, it can be approximated by a Gaussian (bell-

shaped curve). Since each MFCC cesptral feature may not have a normal or Gaussian

distribution, the extracted MFCC features are modeled by a weighted mixture of

Gaussian distributions as shown in Figure 3.15. Such a model is known as a Gaussian

mixture model (GMM).

Each Gaussian is parametrized by a mean µ and variance σ2 value. The mean

defines the position of the center of the Gaussian and the variance defines the width
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Figure 3.15: Gaussian Mixture Model with 20 Gaussians for the first MFCC

Figure 3.16: Data with normal distribution approximated by a Gaussian

of the Gaussian. Figure 3.17 demonstrates Gaussian distributions with different pa-

rameters µ and σ2.

Figure 3.17: Gaussian distributions with different mean µ and variances σ2

A univariate Gaussian represents one-dimensional data. Figure 3.18 shows mul-

tiple univariate Gaussians that are averaged to represent an arbitrary function with

a non-normal data distribution using a GMM for 1-dimensional data set. However,

the MFCC feature set is 12-dimensional, with 337 values for each dimension. Hence,

we use a mixture of multivariate Gaussians to model the multi-dimensional feature



65

set.

Figure 3.18: Gaussian Mixture Model of Univariate Gaussian distributions to approx-
imate 1-dimensional feature set

Each individual multivariate Gaussian in the mixture model is parameterized by

a mean vector ~µ and covariance matrix Σ for the N -dimensional feature vector xn. A

model for M Gaussian mixtures, with each mixture having weight P (k) is given by

the equation:

p(xn) =
M∑
k=1

P (k)p(xn|k) (3.6)

where,

p(xn|k) =
1

(2π)
N
2 |Σ|

1
2

e−
1
2

(xn−~µ)TΣ−1(xn−~µ) (3.7)

represents the Gaussian distribution with |Σ| and Σ−1 are the determinant and inverse

of the covariance matrix, (xn − µ)T is the transpose of the matrix (xn − µ) and the

covariance matrix Σ is a diagonal matrix representing the variance of each dimension

only and all non-diagonal elements are zero (since the MFCC features have a nice

property of being uncorrelated).
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However, for a given non-normal distribution i.e. data set of MFCC features

(Figure 3.15), the question arises which Gaussian accounts for which part of the dis-

tribution. Since it is not known which features from the MFCC set correspond to

which Gaussian, it is difficult to estimate the location (mean) and width (variance) of

each Gaussian in the mixture model. Learning approaches (such as neural networks)

and iterative techniques have been used to find which Gaussians correspond to which

data points and to determine what are the parameters for the individual Gaussian

distributions in the mixture model. In our approach, we use Expectation Maximiza-

tion(EM) [22] which is an iterative approach that is dominantly used to estimate the

best possible value of parameters (means, variances and mixture weights) for each

Gaussian in the distribution.

The EM approach is an optimization technique that estimates parameters for

each Gaussian in the mixture model. It starts off by choosing Gaussian models with an

initial set of parameters µk, Σk for k = 1, . . .M Gaussian distributions and assigning

equal initial probabilities (i.e. mixture weights that characterize which Gaussian is

accountable for which part of the data distribution) P (k) = 1
M

to each Gaussian

model. Given this initial guess of parameters, the estimation step computes posterior

estimates for the mixture weights P (k|xn) (i.e. probability for each data point xn to

belong to the Gaussian mixture (µk,Σk). Given posterior estimates for the mixture

weights, the Gaussian distribution parameters that maximize the expectation of the

joint density for the data and the mixture weights is computed. The estimation and

maximization steps are re-iterated to improve the initially set probabilities until a

convergence to a good fit of Gaussians for representing the distribution is obtained.

Maximizing the expectation and the parameter reestimating steps give no guarantee

of how good the estimates will be, however, it has been proven that the estimates are

guaranteed to improve or at least not worsen with each iteration.

For the set of parameters θ = {P (k), µk,Σk} that need to be optimized using the

EM algorithm, the GMM with M multivariate weighted Gaussians is denoted by the
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following equation:

p(xn, θ) =
M∑
k=1

P (k, θ)p(xn|k, θ) (3.8)

where:

• p(xn, θ) is the probability density function for the GMM,

• θ is the set of estimated parameters with the constraint
∑M

k=1 P (k) = 1,

• P (k, θ) is the weight of the kth Gaussian or the probability that xn is being

generated by Gaussian (µk,Σk), and

• p(xn|k, θ) is the value of the kth Gaussian at xn assuming mean µk, variance Σk

and represents the conditional probability density function for xn conditioned

on xn being generated by the kth Gaussian.

The posterior probability P (k|xn) can be computed from p(xn|k) by Bayes’ for-

mula:

posterior =
prior ∗ likelihood

evidence
(3.9)

P (k|xn, θposterior) =
P (k, θprior)p(xn|k, θprior)

p(xn, θprior)
(3.10)

Substituting Equation 3.8 in the denominator, we get the following:

P (k|xn, θposterior) =
P (k, θprior)p(xn|k, θprior)∑M
k=1 P (k, θprior)p(xn|k, θprior)

(3.11)

The next step is to estimate the true probability densities by maximizing the

logarithm of the joint density for xn and k. Unknown probability density p(xn, θ) can

be decomposed as joint and conditional densities:

p(xn, θ) =
M∑
k=1

P (xn, k|θ) =
M∑
k=1

P (k|θ)p(xn|k, θ) (3.12)
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Expression for the log of joint density is written as:

J = logP (xn, k|θ) = log[P (k|θ)p(xn|k, θ)] (3.13)

Expectation of the log joint density is written as:

Q(θprior, θposterior) =
N∑
n=1

M∑
k=1

P (k|xn, θprior) log p(xn, k|θposterior) (3.14)

where,

the first term P (k|xn, θprior) is given by Equation 3.11,

the second term is determined by Equation 3.12 and the initial/subsequent guess/estimates

for P (k|θ),

θprior is the set of parameters used to determine the distribution and

Q(θprior, θposterior) is the objective function that is maximized by assigning its partial

derivatives taken over each of the parameters of θ to zero.

The new estimates for parameters µk, Σk and P (k|θposterior) are computed by the

following equations:

µk =

∑N
n=1 P (k|xn, θprior)xn∑N
n=1 P (k|xn, θprior)

(3.15)

Σk =

∑N
n=1 P (k|xn, θprior)(xn − µk)(xn − µk)T∑N

n=1 P (k|xn, θprior)
(3.16)

P (k|θposterior) =
1

N

N∑
n=1

P (k|xn, θprior) (3.17)

In approximately 10 iterations the algorithm finds the means and covariances of Gaus-

sians that correctly estimate the probabilities of which Gaussian represents which data

points. Figure 3.15 illustrates the GMM for the 12 MFCC coefficients.

The speaker model (voice print), is the aggregate of the parameter values λ =

{P (k), µk,Σk} of the Gaussian mixture model.
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Figure 3.19: Gaussian Mixture Models with 20 Gaussians for all 12 MFCCs

3.1.5 Error Correction Encoding

The 3D model acts as a host that carries the watermark and can be subject to signal

processing operations such as noise. Therefore, this host is considered as a noisy

communication channel via which the embedded voice print data is transmitted and

gets corrupted, as per Shannon’s theory of communication [131]. In order to en-

sure the integrity of the voice print data, error correcting codes are used to encode

the watermark. We selected Reed-Solomon codes [118] for error correction. Reed-

Solomon codes are an important subclass of the non-binary BCH (Bose-Chaudhari-

Hocquenghem) [111] codes and operate over the Galois Field [74] of arithmetic. Reed-

Solomon codes are chosen because they have a simply-implemented decoding proce-

dure, can detect and correct large numbers of missing bytes of data, and require the
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least number of extra error correcting code bytes for a given number of data bytes. In

addition, this coding scheme provides superior burst error correcting capability while

maintaining an excellent ability to correct random errors [142].

Reed-Solomon (RS) coding scheme generates a N -byte codeword from a K-byte

message. A t-error correcting RS code with symbols from Galois Field GF(2m) has

the following parameters:

• Block length: N = 2m−1 bytes

• Message size: K bytes

• Parity-check size: N −K = 2t bytes

For example, when t = 2, four redundant check bytes will be appended to the

K message byte, m0,m1, . . .mk−1, to form a RS codeword of size N = K + 4. The

check bytes are computed from the message byte using the following equation:

C(x) = M(x) ∗ x2t|g(x)| (3.18)

where:

• M(x) = m0x
k−1 +m1x

k−2 + . . .+mk−1x+mk is the message polynomial,

• C(x) = c0x
3 + c1x

2 + c2x
1 + c3 is the check polynomial, and g(x) = (x+α1)(x+

α2)(x+ α3)(x+ α4) is the generator polynomial

The Reed-Solomon code is performed in the Galois Field GF(28), where α is the

primitive element that satisfies the primitive binary polynomial:

p(x) = x8 + x4 + x3 + x2 + 1 (3.19)

The codeword N constitutes a robust voice print since the error correction en-

coding adds redundancy to the voice print data to enable it to withstand attacks.

This voice print is used as the watermark, which is denoted by W .
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3.2 3D Mesh Model Watermarking Algorithm

3.2.1 Watermark Embedder

The proposed technique estimates local curvature variation of the surfaces in the

3D mesh model and is similar to related work in that it employs surface normals

based approach. The curvature or smoothness of a surface is used as a 3D perceptual

measure to embed the watermark. Smooth surfaces can imperceptibly accommodate

a watermark as opposed to flat surfaces or edges (sharp curves). The variation in

the direction of surface normals is used to measure the smoothness of a surface.

Figure 3.20 outlines the steps of the watermarking algorithm.

Figure 3.20: Watermarking Process

Normalizing and Shifting of 3D Model

Normalization of the 3D model is a pre-processing step that makes the watermark

retrieval process invariant to changes in the orientation, translation, and scale of the

watermarked 3D model. For translation invariance, the center of mass (the mean
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vector of all vertices) is shifted to the origin of the rectangular co-ordinate system

[67]. For rotation invariance [133], the eigenvectors of the 3D model are used to

represent the principal component axes of the model and are aligned to coincide with

the co-ordinate axes. To achieve scale invariance, the average distance of the vertices

from the center of mass is computed to determine the scale factor [77], which is used

during the retrieval process to normalize the model and compensate for scaling.

Finding Vertex Smoothness Measure

The mesh model is collection of triangular facets that approximate the 3D object.

Figure 3.21 shows the mesh structure of a textured Horse model.

Figure 3.21: 3D Model of Horse and the Mesh Representation

Figure 3.22 highlights the 1-ring neighborhood of a set of vertices in the model.

All the vertices that a vertex under consideration is connected to, is called the 1-

ring neighborhood of a vertex. The curvature for each vertex’s 1-ring neighborhood

surface is estimated to determine whether the vertex can accommodate the watermark

without causing any perceptual distortion to the model.

Figure 3.23 demonstrates the direction of the normals (in blue) to each face of

the model. Since only the face normals in the 1-ring neighborhood of each vertex of

the model are considered, the smoothness measure is local.

The following steps are implemented to compute the local smoothness measure:

Step 1: Consider a vertex v from the mesh model as shown in Figure 3.24. Let M
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Figure 3.22: 1-Ring Neighborhood(highlighted in red) of Vertices

Figure 3.23: Face Normals(in blue)

be the number of its adjacent faces (M = 6 for the vertex v in Figure 3.24). The

normals Ni to each face Fi which is formed by v and its neighboring vertices vi is

computed by taking the cross-product of the two edges of the face.

Step 2: Shift the face normals to pass through v. Find the eigen normal N of

all the normals passing through v by computing the eigen-vectors from the eigen-
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Figure 3.24: Eigen Normal N derived from 6 Face Normals

decomposition of the covariance matrix of all these surface normals. The eigen-vector

corresponding to the maximum eigen-value constitutes the eigen-normal, as shown in

Figure 3.25.

Figure 3.25: Normals Shifted to Pass Through Vertex v

Step 3: Now compute angles αi between each pair of Ni and N . Figure 3.25

shows an angle α1 between the eigen vector N passing through a vertex v and a

normal N1 to a face which has v as one of is vertices.

αi = cos−1

(
NiN

|Ni||N |

)
(3.20)

Step 4: Compute the average of all the angles αi to give the local smoothness
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measure.

αavg =
1

m

M∑
i=1

αi (3.21)

Similarly, the algorithm is implemented at all the vertices in the mesh, to obtain the

local smoothness measure for the entire model. If the region around the considered

vertex is flat, the angles αi will be small in magnitude since the face normals will

be almost parallel to the eigen normal. If the region represents a peak, the angle

between the face normal and the eigen normal through the vertex, αi will have a

larger magnitude and so the smoothness measure’s magnitude will be higher. Thus,

this parameter αi represents local geometry or shape of a surface or region.

The illustration of this method is shown in Figure 3.26. The color scale starts

with blue and ends with red, where red represents the most rough surface. Toolbox

graph [66] has been used to display the models in MATLAB.

Figure 3.26: Curvature Variation in the Horse Model

Bin Formation

Based on the observed values of smoothness measure obtained for the vertex under

consideration, the degree of smoothness variation is scaled to lie between 1 and 8.
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These scaled values are labeled into three bins. This scaling is done on the basis

that the bins between 1 and 2 have a low smoothness measure, bins between 3 and

6 are have a moderate smoothness measure, and bins between 7 and 8 have a high

smoothness measure. Thus, different regions of vertex smoothness measure are clas-

sified in the model. The decision of choosing 8 bins (instead of 3) was made to allow

room for the algorithm for manipulation of the number of bins selected for embed-

ding the watermark. Preliminary experiments suggested that 8 bins provide sufficient

granularity of curvature variation to adjust appropriate bins for watermarking should

the algorithm fail to achieve imperceptibility while embedding the voice print in all

bins with moderate smoothness measure. In scenarios where the watermark caused

perceivable distortions in the 3D model, the number of selected bins with moderate

smoothness measure were lowered and the scaling factor (discussed in later sections)

was decreased by an order of 10−1. Figure 3.27 shows the model and color bar indi-

cating bins with pseudo colors (blue for the lowest variation and red for the highest

variation).

Figure 3.27: Bin Formation in Original Models
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Selection of vertices for watermark insertion

Vertices lying in the regions which have moderate smoothness are selected to allow

imperceptible distortions in the final watermarked model. High values of the smooth-

ness measure represent very sharp changes such as edges. Low values correspond to

smooth or flat surfaces. Watermark insertion in these extreme high or low smooth-

ness regions is perceptible due to response of the Human Visual System. Figure 3.28

shows the selected vertices (in dark red) in the model.

Figure 3.28: Vertices Selected for Watermarking (in red)

Insertion of watermark

The robust voice print W is inserted as the watermark in the selected vertices. Water-

mark embedding is performed by altering the co-ordinate (x, y, z) of a vertex according

to the following formula:

v́(x, y, z) = v(x, y, z) +KW (3.22)

where,

K = ScalingFactor,

W = WatermarkSequence. The corresponding watermarked vertex is denoted by v́.
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A scaling factor of 10−4 is used to embed the watermark values in the fourth decimal

place of the vertex coordinate. The watermark is embedded in x,y,z co-ordinates

therefore it is replicated thrice in the 3D model, thereby employing a secondary level

of redundancy in addition to the Reed Solomon error correction encoding.

Rescaling and Shifting

Finally, the model is re-shifted and re-oriented to its initial location in the co-ordinate

system. The watermark is inserted in the geometry of the model and modifies only

the locations of vertices, without changing the connectivity of vertices. As it can be

seen from Figure 3.29, there is minimal perceptible distortion between the original

model and the watermarked model.

Figure 3.29: The Original and Watermarked Model of Horse

3.2.2 Watermark Detector

The watermark retrieval process requires the semi-blind key as well as the water-

marked model to extract the watermark. Figure 3.30 outlines the extraction process.

Prior to watermark retrieval, the center of mass of the watermarked 3D model is

determined and subtracted from the center of mass of the original model to determine

the translation on the x,y and z coordinates of the watermarked vertices. The model

is then shifted to compensate for this translation. The extent of scaling in the x,

y and z directions is computed by dividing the average distance of the x, y, and z
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Figure 3.30: Watermark Extraction Process

coordinates of the watermarked and original vertices from the center of mass of the

respective models. The normalization process [133] then re-scales and re-aligns the

model after determining the degree of rotation.

3.2.3 Error Correction Decoding

Error correcting codes are applied to retrieve the voice print from the extracted

watermark. The extracted watermark is decoded by the Reed-Solomon decoder and

the original voice print data is recovered depending on the extent of damage caused to

the watermark. The decoder can either correct errors (half as many as parity/check

bytes appended to the original voice print) or fail to make corrections, in which case

the verification module assists in determining the extent of damage and whether the

extracted voice print can still be used to verify the user.

3.2.4 Verification Module

This step measures - i) the extent of similarity between the embedded and extracted

watermark, and ii) whether the MFCC features extracted from a newly acquired

voice sample from the user represent the same speaker whose voice print has been

embedded as the watermark.

The correlation coefficient Corr that gives the extent of similarity between the
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embedded watermark W and the recovered watermark W ′ is computed by:

Corr =

∑
WW ′ −

(∑
W
∑
W ′

n

)
√(∑

W 2 − (
∑
W )2

n

)(∑
W ′2 − (

∑
W ′)2

n

) (3.23)

where, n is the size of the watermarks.

This correlation coefficient is a number between -1 and +1 which measures the

degree to which two variables are linearly related. If there is perfect linear relationship

with positive slope between the two variables, the correlation coefficient will be +1.

If there is a perfect linear relationship with negative slope between the two variables,

the correlation coefficient will be -1. A correlation coefficient of 0 indicates that there

is no linear relationship between the variables.

The acoustic likelihood measure of the extracted MFCC features from the user’s

voice sample acquired at access time, with the extracted voice print(i.e. the speaker

model embedded into the 3D model) is computed by:

LogLikelihood = log[P (k|θ)p(xn|k, θ)] (3.24)

The value of this log likelihood measure suggests if the extracted features from the

acquired voice sample match the speaker model represented by the GMM embedded

as the watermark. When a speaker’s GMM is evaluated for a set of MFCC features,

only that speaker’s features contribute significantly to the likelihood value. If this

value falls within a threshold of ±1 (which allows for intra-individual variations in

voice) of the original log likelihood measure derived during the enrollment phase, then

the user is authenticated and allowed to access the 3D model. Changing the value of

the threshold results in different FRR and FAR, as demonstrated by the experiments

in Chapter 5.

3.3 Proposed Digital Rights Management Model

A high-level overview of the proposed DRM system framework is outlined in Figure

3.31. This process model [95] shows the basic processes in the DRM system and the

logical work flow from creation to consumption of the graphic file.
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Figure 3.31: DRM System Block Diagram

DRM framework is composed of two stages - i) enrollment (represented by steps

3-8 in Figure 3.31) and ii) authentication (represented by steps 9-12 in Figure 3.31).

The consumer provides his biometric images during enrollment, prior to purchasing

the graphics. The system inserts the biometric image of the consumer as watermark

into the purchased 3D graphics, wraps the watermarked graphic in a custom file for-

mat so that the graphic file cannot be accessed outside the system, and encrypts these

contents using a consumer-specific key. This packaged content is then distributed to

the consumer. When the consumer attempts to access the graphics file, the authenti-

cation stage prompts the consumer to provide his biometric image and compares this

newly acquired biometric image with the biometric image embedded as watermark to

verify the consumer’s legitimacy. Based on the computed similarity measure between

the acquired and embedded biometric images, the system authenticates the user to

access the graphics. A predefined threshold value is set for the similarity measure to

distinguish a genuine user from an illegitimate user. An illegitimate user’s biometric

provided at access time does not match with a genuine user’s biometric embedded as
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the watermark, so the system denies access to the graphics.

If the biometric watermark can’t be retrieved from the graphic file, the system

denies access to the graphic file. Therefore, the system does not rely on the assump-

tion that the biometric watermark is intact and has not been destroyed by hackers.

This feature discourages consumers from tampering with the packaged graphics. If

illegal copies of the artwork are redistributed by a legitimate user, the biometric

watermark travels with the artwork and secures it from illegitimate usage. This is

because the custom file format prevents consumers from accessing the file outside the

DRM system, and the authentication stage of the system sieves legitimate users from

illegitimate users. Therefore, the biometric watermark protects the graphics content

from being used by anyone other than the valid user.

If the system is compromised and the artwork is distributed and accessed by any-

one other than the legitimate user, the embedded biometric serves as a tracer. The

pirated graphic file is examined for the embedded biometric watermark. If the bio-

metric watermark has not been tampered with, it assists in tracing back illegitimate

redistribution to the traitor in the distribution chain and suing the responsible indi-

vidual for piracy. Privacy concerns over sharing one’s biometric trait along with the

purchased protected graphic content on peer-to-peer(P2P) networks, prevents large

scale piracy of the artwork.

In the event of compromised biometrics, since a biometric trait cannot be revoked,

the framework has the provision to support multiple biometrics so the compromised

trait is replaced by an alternative trait. Furthermore, upon receiving notification of

compromised biometrics from the user, the server de-activates the user-specific key

thereby locking out access to files previously encrypted with this key and issues a

new key for the user. This new key is used to encrypt files previously purchased

by the user, so only the legitimate user is able to access these files in spite of the

compromised biometrics.
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3.3.1 DRM System Architecture

The architectural design of the system, see Figure 3.32, has been motivated by various

DRM system architectures [9, 28, 31, 37, 59, 62, 75, 89, 113, 116]. The system uti-

lizes a client-server protocol for implementation as shown in Figure 3.32 and involves

a custom file format associated with a DRM enabled graphics design/consumption

application. 3D graphics files are sold in various formats , such as 3ds (3D Studio),

mb (Maya), lwo (Lightwave), c4d (Cinema 4D). A file format’s (e.g. 3ds) native

graphics design software (e.g. 3D Studio) is not equipped with DRM functionali-

ties. Embedding biometric watermarks in existing file formats requires the associated

graphics design software to incorporate a DRM plug which enforces access control.

Graphics designed and sold prior to installation of this plug-in are DRM-free and

are not protected from piracy. Biometric watermarks from protected graphics can

be easily removed by using DRM-free versions of the same graphic. Since backwards

compatibility and DRM can’t go hand in hand, it necessitates the need for a custom

3D graphic file format and a customized graphics design application equipped with

DRM modules. The custom file format enables access control by notifying a graphics

consumption application that a file is DRM enabled. The custom file format is a just

way to bind the graphics to the DRM system in order to prevent users from bypassing

the access control mechanism. The custom file format also assists in content editing,

logging, and system renewability.

The proposed DRM system has five components: Content Creation, Content Pro-

cessing, Transaction Management, Content Distribution, and Content Consumption.

Functionality of each component is specified below.

Content Creation

Artists use a graphics design application to create the artwork. The design software

has DRM capabilities after installation of a DRM plug-in. Alternatively, a proprietary

DRM system based on a proprietary 3D file format can be developed that supports

design of the graphics in multiple native formats (3ds, mb, lwo) which then undergo
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Figure 3.32: DRM System Components

DRM compliant format conversion. Figure 3.32 illustrates the functionalities of this

component. The plug-in for the artists will include the watermark embedder, detector

and matcher components, and an interface to connect to the graphics repository on

the content server.

Content Processing

The user enrollment interfaces provided by the content distribution component (see

Figure 3.33) securely transfer the acquired biometric trait of the user to the biometric

template generation module on the content server. This module generates a biometric

print from the biometric samples provided by the user. Due to privacy concerns [57],

the template is encrypted and then stored in the biometric templates repository along

with an associated user identifier. The packaging module is responsible for conversion

of graphics to custom file format representation. This module populates meta data in

a header with default values. The graphic content is watermarked with an encrypted

version of the biometric template. A key is generated for the user, stored in the key

repository, and linked with the user’s biometric template. The packager encrypts the

content along with the meta data using this key so that the content is scrambled and

made unreadable. The packaged content is ready for distribution to the user.
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Figure 3.33: Content Processing

Transaction Management

This component handles the user registration, commerce, and billing activities. It

includes a module for interaction with an external payment service to handle the

financial aspects of the purchase transaction.

Content Distribution

The main function of this component is trading and registration of the user. It main-

tains a website which acts as the interface between the consumer and the content

provider. It provides interfaces to register the user, accept payment information,

capture user’s biometric samples and securely transfer the acquired information to

the Transaction Management component. Distribution of the packaged graphics to

the clients is also handled by this component. Distribution is carried out by provid-

ing download interfaces using either HTTP, FTP, or SMTP protocols. Content is

delivered over a secure transmission channel.
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Figure 3.34: Content Consumption

Content Consumption

Figure 3.34 outlines the content consumption component of the proposed DRM sys-

tem. The client-side DRM enabled graphics consumption software is responsible for

authorizing rightful users to access the purchased graphics. When an attempt is made

to access the file by the end user, the 3D content consumption application prompts

the consumer to provide his/her biometric trait. The DRM plug-in installed at the

client application generates a biometric template from the acquired sample, encrypts

it and then sends it to the server along with the user identifier to request the key as-

sociated with the user to decrypt the file contents. The plug-in used by the consumer

application will only have the watermark detector and matcher component. The en-

crypted biometric template is compared with the extracted biometric watermark to

validate legitimacy of the user. A match between the captured biometric template

and the embedded template grants access to the user, while a mismatch locks down

the graphic file. If the watermark detector is unable to retrieve the watermark it

denies access to the file. The plug-in provides access management by tracking save

as, modify and save, cut, copy, paste operations on the graphics file. It keeps track

of the user activity in regards to modifying and copying the graphics to new files and



87

updates the header of the graphics file with appropriate logging information. This

logging assists the plug-in to maintain the presence of the biometric watermark in the

graphics content regardless of modifying or saving of the graphics to a new file. If the

system is compromised and the file is distributed and accessed by anyone other than

the legitimate user, the embedded biometric serves as a tracer. The pirated graphic

file is examined for the embedded biometric watermark. If the biometric watermark

has not been tampered with, it assists in tracing back illegitimate distribution to the

traitor in the distribution chain and suing the responsible for piracy.

The system employs a locking and logging mechanism and handles security issues

by using encryption to address the privacy and maintain anonymity of users. The

robustness of the system is based on the performance characterization of biometrics

which has been discussed in detail in [106].

3.3.2 Custom File Format

Figure 3.35 illustrates the proposed file format which includes a header and the wa-

termarked graphics content. The header comprises of 7 fields that serve as meta data.

Figure 3.35: Header Fields

The field for version number is used to allow future modifications to the file format.

To avoid a file from being watermarked twice, the watermark field indicates whether

the file has been watermarked or not. The number of times access is denied to a file

based on the provided biometrics, is stored in the access denied count field. This is to
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prevent illegitimate users from circumventing the system by repeated trial and error

attempts. The user is allowed 3 attempts to access the file using biometric authenti-

cation and then the Lock flag is set to disable the file. Access log stores the number

of attempts required to access the file for monitoring user activity, the date, time and

PC’s hardware identifier for the last successful access. The first time a user accesses

a file on a PC, the user is prompted to provide biometric samples. The biometric

print is encrypted and cached on the local store. Subsequent accesses on the same PC

utilize a locally cached copy of the biometric print. Each time the user tries to access

the file from a different PC, the hardware ID in the header is checked to prompt the

user for biometric sample acquisition. Activities of the user in terms of modifying and

copying the graphic content are recorded in the usage log field to notify the system

for taking incremental protection measures to watermark the modified or copied file.

Analogue attacks are addressed by the system by monitoring the screen capture flag.

Reserved field is included to accommodate tags for future use such as multiple wa-

termarks, reseller watermarks, transfer of watermark, and interoperability. Table 3.1

provides the description and values for the header fields.

3.3.3 Security Aspects of the DRM System

Security Model

The primary security goal of the DRM system is to prevent illegitimate access to the

legally distributed 3D graphics. The secondary goal of the system is to trace illegally

accessible graphics back to the buyer responsible for unauthorized redistribution.

According to Kerckhoff’s principle, the strength of a system should lie entirely in

the difficulty in determining the key and not in the secrecy of the algorithm. The

proposed system utilizes a consumer-specific key to encrypt/decrypt the custom file

format. The custom file format merely serves as a container for the raw graphics data

and the purpose of the key is to make it difficult for the adversary to segregate this

raw graphics data that is wrapped in the custom file format. The system is breached

if this key is accessible to the adversary, for the unprotected graphics data can be
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Table 3.1: Header Fields of Custom File Format
Byte Description Value
0: Version 1, For current implementation
2: Watermark 0 - File is not watermarked,

1 - File is watermarked
3: Access Denied Number of Times Access to File is Denied

Count
10: Lock 0 - File is Unlocked,

1 - File is Locked For Access
11-51: Access Log Number of Attempts Required to Access the File

Date, Time and Machine’s Hardware Identifier
for Last Successful Access

52-56: Usage Log 00000 Default Value
52 1 - File is Modified and Saved,
53 1 - File is Saved As New Copy,
54 1 - Copy (Ctrl-C Key pressed),
55 1 - Paste (Ctrl-V Key Pressed),
56 1 - Screen Capture (PrtScrn Key is Pressed)
57 - 300 Reserved For Future Use

separated from the decrypted custom file format. Therefore, the system completely

relies on the secure storage of this key in order to protect the data.

The security assumption made by the system is that the communication between

the artist, the DRM client and servers, and the consumer takes place through a secure

channel in order to protect information from eavesdropping when it is transmitted.

Trust Model

• To ensure that the content server receives artwork from a genuine artist, the sys-

tem requires the artist to provide his digital certificate. Prior to uploading the

graphics to the content server. the artist signs and encrypts the graphics. The

server validates the integrity of the uploaded content by verifying the artist’s

signature and then decrypts the content for further processing. This validates

the content to be genuine and establishes trust between the artist and content

server.

• To obtain the user-specific key from the content server to decrypt the packaged
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graphics, the content consumption client application requires that the buyer

must authenticate to prove his identity to the server by providing a user ID.

• The user’s authentication data and biometric data are only available to the user.

• The system will not share a user’s personal data with third parties.

• The framework handles security issues associated with biometric data by using

encryption to address the privacy and maintain anonymity of users.

Threat Model

Security Issues For The Server

The Content Server is prone to hacking. An adversary can exploit security flaws in

the server to obtain control over any one of the server repositories that store the bio-

metric templates, keys and unpackaged graphics, the packaging module and defeat

the system.

Security Issues For The Communication Channel

The communication channel is considered to be under the complete control of an

adversary who can break weak cryptography, exploit weak keys, knows the commu-

nication protocol, controls the network, can break into servers with security flaws,

download original content.

Security Issues For The Client’s Side

• The adversary has complete control over the user side and can hack the DRM

client consumption application. The client side watermark extractor or matcher

component can be replaced by an attacker-supplied component.

• The user-specific key acquired from the server is temporarily stored on the

client’s machine to decrypt the packaged graphics, and is vulnerable to exposure.
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• It is possible to make an analogue copy of the output (e.g. reconstructing the

3D model from 2D images captured from the display screen). This can be

prevented by limiting the number of allowed screen captures.

• Attacks against the rendering application that replace part of the rendering

application so that once the content is decrypted, it can be captured and saved.

• A major threat to the system is compromised biometrics that lead to spoof-

ing attacks. When a user’s biometric trait is compromised (i.e. an adversary

obtains the biometric of a legitimate user without his consent or knowledge),

the adversary fraudulently gains access to the protected graphics file with the

legitimate biometric trait. Biometric-based authentication systems have been

criticized due to this vulnerability, since a biometric trait cannot be revoked.

The proposed framework addresses this security issue by supporting the use

of multiple biometric traits such that if one biometric trait is compromised, it

can be replaced by an alternative trait. Furthermore, since the DRM system

is an online system, the server deactivates the key generated for a user whose

biometric has been compromised thereby locking out access to files previously

encrypted with this key and issues a new key for the user. This new key is used

to encrypt files previously purchased by the user, so only the legitimate user is

able to access these files in spite of the compromised biometrics.
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Chapter 4

Software Engineering Design
Principles

This chapter outlines the system assumptions, requirements, specifications along with

software engineering design principles concerned with the modularization and detailed

interfaces of the system elements.

4.1 System Assumptions

The system operation is based on the following assumptions:

1. The biometric trait is present in the user (which means that the user has a

voice).

2. The user is willing to offer his/her voice biometric samples to the system for

legitimate access control of watermarked 3D models.

3. The user is cooperative and utters the predetermined phrase while providing

voice samples during both enrollment and authentication phases. The system

does not check the validity of the spoken phrase should the user intentionally

change the spoken text.

4. The voice samples are acquired in a quite environment.

5. The acquired voice samples represent a single speaker audio stream. The system

does not support multi-speaker streams.
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6. The user will not share voice recordings of the spoken phrase with others. The

security of the system is based on this assumption so that prerecorded voice

samples of legitimate user do not circumvent the system.

7. The system ignores variations such as different pitch that alters the speaking

manner, noisy voice samples due to the environment or communication channel

(voice acquired over telephone), speaking under stress or during sickness (cough,

cold, fatigue), and attempted mimicry.

8. The file formats that will be used are .wav for sound file input, .off format for

3D mesh models, ascii .txt representation for the biometric voice print.

9. The input .off file size is restricted to the range of 15KB - 2000KB. Most 3D files

smaller than 15KB are unable to accommodate a watermark that houses a voice

print (minimum size 1.17KB). 3D files over 2000KB require longer processing

times (over a couple of minutes) on a desktop PC.

4.2 Requirements Specification

The purpose of the requirements specification is to describe the functionality that the

Biometric Watermarking System (BWS) will support. The system requirement can

be categorized as non-functional and functional.

4.2.1 Non-Functional Requirements

The non-functional requirements are associated with the usability, reliability, perfor-

mance of the system, and system specifications.

Usability: BWS must meet usability goals set in regards to:

• Effectiveness: The system must always accept legitimate users and may falsely

accept non-genuine users depending on the FAR for a specific user.

• Efficiency: The system must not require an inordinate amount of the users’

effort for enrollment and authentication.
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• Satisfaction: The system must be perceived as easy to use by the users.

• Learnability: The system must not require an inordinate amount of effort for

novice users to learn how to use it.

Performance: Watermarking and Accessing 3D Files: A model should be water-

marked and the user authenticated in a reasonable amount of time. Actual processing

time for a model will depend on variables such as file size and user interaction.

• Time should not exceed 120 seconds per 3D model 95% of the time for files less

than 500KB.

Reliability: The system must have the ability to operate correctly over time, includ-

ing consistent stability of the system at all times.

Hardware and Software Requirements: The hardware and software requirements

of the system are outlined in Figure 4.1.

Figure 4.1: Hardware and Software Requirements
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4.2.2 Functional Requirements

This section has a list of all specific requirements that are to be implemented by

BWS. Each functional requirement has been assigned a reference number, starting

with the characters - DT, PR, for traceability to other system artifacts.

Data Requirements

• Graphics File Format (F DT 01): BWS must support the Open File Format

(.off) for 3D models.

• Characteristics and quality of the recorded voice (F DT 02): A 2 channels stereo

sound signal with a bit rate of 1411kbps, sample size of 16 bits and an audio

sampling rate of 44 KHz is captured in .wav format.

Process Requirements

• Imperceptible watermark (F PR 01): The system embeds a voice print of the

user into a 3D model such that watermarked 3D mesh model looks like the orig-

inal model and it should not reveal any clues of the presence of the watermark.

• Semi-Blind watermarking technique (F PR 02): The system does not require

the original unmarked model to extract the watermark from the watermarked

media but makes use of a key, that stores the locations and original values of

the vertices that are modified by the watermarking scheme, in addition to the

original watermark.

• Semi-Fragile watermark (F PR 03): A semi-fragile watermark is inserted into

the host model and can withstand certain attacks (noise, cropping, smoothing)

but not all. The watermarking scheme does not support 3D content editability,

mesh subdivision, decimation and remeshing operations.

• Text and speaker dependent voice print (F PR 04): The voice capture process

is text dependent as all the speakers have to speak a predetermined text. The

speech waveform is then converted to a parametric representation i.e. feature
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vectors. Extraction of features is done such that they are primarily a function

of speaker.

• Variable speaking rate (F PR 05): The voice print extracted from the recording

has to independent of the length of duration of recorded voice sample (talking

speed of the speaker). The system achieves insensitivity to speaking rate by

pre-processing the acquired voice sample to eliminate silence thereby accom-

modating slow, moderate, and fast speakers which generate voice samples of

different duration.

• Constant size voice print (F PR 06): Since the voice print is derived from the

Gaussian mixture model of the mel-frequency cepstral co-efficients of the voice

signal, the voice print always assumes a fixed size of values irrespective of who

the speaker is.

• Access Control Decision (F PR 07): BWS will determine if a user for a 3D model

is authentic or not. The system provides a decision on whether to accept or

reject the user based on the comparison of the voice sample provided by the user

during authentication with the voice print generated during user enrollment.

4.3 System Design

Figure 4.2 demonstrates a high-level layered architecture of the system. There are

six functional layers - Voice Acquisition, Watermark Generation, Watermark Embed-

ding, Voice Parametrization, Watermark Detection, and Access Control. The system

is divided into two sub-systems - Enrollment and Authentication subsystems.
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Figure 4.2: System-Level Layered Architectural Diagram
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Enrollment Sub-System

• Voice Acquisition Layer - This module is responsible for acquiring the voice

samples of an individual and preprocessing the waveform to eliminate silence

areas.

• Watermark Generation Layer - This module is responsible of generating a voice

print from the speech waveform by extracting feature vectors and representing

those features using a GMM.

• Watermark Embedding Layer - This module generates a watermarked model

by embedding the voice print as a watermark into the 3D graphic model after

employing error correcting codes to safeguard the voice print.

Authentication Sub-System

• Voice Parametrization Layer - This module extracts the MFCC features from

the newly acquired pre-processed voice sample for comparison against the voice

print embedded into the watermarked 3D mesh model.

• Watermark Detection Layer - This module extracts the watermark and attempts

to correct any modifications that the voice print may have been subject to by

an attack.

• Access Control Layer - This module is responsible for authentication of the user

by comparing the user’s extracted voice features against the extracted voice

print. This layer either grants or denies access to the graphics based on the

obtained likelihood measure between voice features and the GMM-based voice

print.

4.4 Use Cases

The system has 10 use cases (see Figure 4.3). Each use case is assigned a reference

number, starting with the characters UC, for traceability to other system artifacts.
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Figure 4.3: Use Case Diagram

• AcquireVoiceSamples (UC01): The user provides the system with voice samples

in .wav format for a predefined utterance. The user presses the Provide 3 Voice

Samples button to upload the .wav files into the system.

• SignalPreprocessing (UC02): The system eliminates silent regions from the

waveform when the user presses the Voice Signal Pre-Processing button. This

step enables the voice print formulation process to be independent of the pace at

which the predetermined phrase was spoken during the voice acquisition phase.

The display area is updated with the representation of processed signal.

• FeatureExtraction (UC03): The user presses the MFCC Feature Extraction but-

ton to extract features representing the identity of the user.
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• SpeakerModelling (UC04): The user presses the GMM Speaker Model button

to instruct the system to use the extracted features in the previous step for

generating a GMM that constitutes the user’s voice print.

• GenerateWatermark (UC05): The user presses Generate Watermark button to

encode the voice print using error correction routines in order to protect its data

from attacks.

• Input3DModel (UC06): The user presses the Input 3D Mesh Model button to

upload the 3D model for watermarking. The display area is updated with a

rendering of the graphic file.

• WatermarkInsertion (UC07): The user presses the Watermark Insertion button

to enable the system to inserts the watermark into the previously selected 3D

model.

• Display3DModel (UC08): The user pushes the DRM Protected 3D Model button

to display the watermarked model in the bottom right axis on the interface.

• ProvideVoiceSample (UC09): The user presses the Provide Voice Sample button

to upload a voice sample with the predetermined utterance. The system pre-

processes this voice sample and extracts user specific features from it.

• AccessControlDecision (UC010): The user presses the Access Control Decision

button for the system to provided a decision regarding granting or denying

access to the graphics file. The access control decision is displayed in the center

bottom area of the authentication interface panel.

4.5 Requirements Traceability Matrix

Figure 4.4 shows the mapping between the functional requirements and the corre-

sponding use cases which implement the requirement. This traceability matrix is

used to check if the requirements are being met.
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Figure 4.4: Requirements Traceability Matrix

4.6 User Interface

Figure 4.5 illustrates the main GUI of the system. The GUI provides an interface

with buttons and axes to interact with the user and display intermediate phases

of the biometric watermarking process. The GUI is divided into two sections to

represent the two phases of the system - Enrollment and Authentication. For the

enrollment phase, the end user only needs to interact with the system using the

first button (Provide 3 Voice Samples) which prompt the user to upload his voice

samples, the Input 3D Mesh Model button which prompts the user to upload the

3D model that needs to be watermarked, and the last button (DRM Protected 3D

Model) which inserts the voice biometric watermark into the uploaded 3D model

and provides a rendering of the watermarked 3D model in the right bottom display

area. The remaining intermediate buttons have been provided to enable - i) users

to understand the various steps involved in the biometric watermarking process and

ii) visualize the intermediate steps of signal pre-processing, MFCC feature extraction

and GMM speaker modeling. The right panel does not provide an interface for the

intermediate steps of watermark extraction solely for the purpose of giving users a

feel of the simplicity of interacting with the system during the authentication phase.

Figure 4.6 depicts one of the intermediary steps that displays the speech waveform in

red, representing the pre-processed voice signal.
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Figure 4.5: Main GUI - The left panel provides an interface for user enrollment. The
right panel provides an interface for user authentication.

Figure 4.6: Voice Signal Preprocessing - The axis on the upper left corner shows a
plot of the voice signal (in red) after silence removal.
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Figure 4.7 portrays a plot of the 12 MFCC coefficients of the first frame from the

acquired voice sample.

Figure 4.7: MFCC Feature Extraction - The axis on the upper left corner plots the 12
MFCC coefficients corresponding to the first frame of the first voice sample provided
by the user.
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Figure 4.8 enables users to see the GMM in one dimension plotted for the first

MFCC coefficient acquired from all the frames of the enrollment voice samples.

Figure 4.8: GMM Speaker Model - The axis on the upper left corner plots the Gaus-
sian mixture model for the first MFCC coefficients of all the frames from the three
voice samples..
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When the user pushes the Input 3D Mesh Model button, the system pops up

a file selection window that lets the user select the .off 3D model that needs to be

watermarked (see Figure 4.9). The selected model is then displayed in the bottom

right corner of the left panel in the GUI.

Figure 4.9: Input 3D Mesh Model - The system prompts the user to provide the 3D
model that needs to be watermarked.
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Figure 4.10 demonstrates the 3D model watermarked using the voice signal plot-

ted in red.

Figure 4.10: DRM Protected 3D Model - The axis on the upper left corner shows a
plot of the voice signal used for generating the voice print. The bottom right display
area shows the watermarked 3D model.
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Figure 4.11 illustrates the system access control decision for a given voice sample

and watermarked 3D model, which are provided by the user in the right authentication

panel of the main GUI.

Figure 4.11: Access Control Decision - The user has only 3 verification attempts to
gain access to the 3D mesh model. Since the FRR of the system is 0.6667 (computed
for a total of 3 verification attempts), the system is guaranteed to grant access to
legitimate user within the three trials.
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Figure 4.12 displays the system’s decision to grant access to a DRM protected

(biometric watermarked) 3D model.

Figure 4.12: Access Control Decision - A legitimate user is granted access to the
watermarked 3D model upon providing a voice sample.
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Chapter 5

Experimental Results

Evaluation of System Performance

The proposed scheme embeds a biometric system within a watermarking system.

Therefore, this chapter lists several experiments which are performed to: i) evaluate

the effectiveness of the watermarking scheme, ii) determine parameters for the voice

biometric system, and iii) test the feasibility of the overall system with the objective of

determining the extent of attacks the biometric watermark can withstand to correctly

verify the legitimacy of a user.

5.1 Effectiveness of the Watermarking Scheme

Watermarking algorithms are evaluated in terms of perceptibility, embedding capacity,

and robustness of the watermark to attacks. Perceptibility is the perceivable distortion

caused to the 3D model after embedding the watermark. It is measured by the

Hausdorff distance between the original and watermarked model. Embedding capacity

is the amount of data that can be embedded as watermark into the 3D model. It

is expressed in terms of the count of vertices that are modified to accommodate the

watermark. Generally, the size of the watermark, commonly referred to as the payload

size, also indicates the embedding capacity. Robustness is the ability of the watermark

to withstand attacks such as affine transformations, cropping, additive noise, vertex

reordering, mesh simplification, remeshing, mesh smoothing, and watermark removal.

It is expressed in terms of a correlation coefficient which indicates the similarity
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measure between the embedded watermark and the extracted watermark that has

been affected by the aforementioned attacks..

5.1.1 Perceptibility and Embedding Capacity

The 3D mesh models used for our experiments are shown in Figure 5.1. Table 5.1 lists

the perceptibility measure and the capacity of the proposed watermarking technique.

Figure 5.1: Original and Watermarked 3D Models

Table 5.1: Comparison Of Original Model With Watermarked Model
Model Total # of Hausdorff Distance
Name # of Watermarked Max Mean RMS

Vertices Vertices Dist. Dist. Dist.
Nefertiti 299 127 0.018535 0.001203 0.002547
Robot 600 255 0.038651 0.005788 0.009253
Beetle 988 230 0.040023 0.002398 0.005490
Horse 2450 765 0.041686 0.004004 0.007774

Dinopet 4500 1275 0.03904 0.002267 0.005113
MaxPlanck 7399 510 0.041861 0.000754 0.003323

Camel 9770 765 0.041082 0.001153 0.003884
Armadillo 26002 6630 0.043971 0.002279 0.005451

The Hausdorff distance(H) measures the distance of two meshes in 3D space
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from each other. It is defined by:

H(M1,M2) = max

{
supv∈M1infv′∈M2

d(v, v
′
),

supv′∈M2
infv∈M1d(v, v

′
)

where,

• M1 and M2 are the two meshes,

• d(v, v
′
) is the Euclidean distance between vertex v and v

′
in the 3D space,

• sup represents the supremum [125] and inf the infimum [125].

For our experiments, Hausdorff distance is computed using the Metro [12] tool. Metro

measures the surface error incurred by watermarking by calculating the maximum,

mean, and root-mean-square errors between original and watermarked meshes.

An attack on a 3D model attempts to destroy or remove the watermark while

minimizing the distortion or usability of the model. 3D models are prone to operations

such as translation, rotation, scaling, cropping, mesh smoothing, and noise addition

which tend to destroy the watermark depending on the level and extent of the opera-

tion. It is desired that the watermark is preserved despite such operations. Therefore,

the embedded watermark should be robust enough to withstand such attacks. The

efficiency of the presented scheme is evaluated by simulating noise, cropping, and

smoothing attacks on the watermarked models. The following experiments solely test

the robustness of the 3D watermarking scheme and do not incorporate any level of

error correction for the embedded watermark. The following sections present the sum-

mary of experiments and results for the Horse model. The value of the correlation

coefficient lies between 0(no match) and 1(perfect match).
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5.1.2 Robustness

Smoothing

Smoothing has a considerable effect on the watermarked model. A smoothing opera-

tion filters out high-frequency components of the model and attenuates the roughness

of the surface. This results in degradation of the watermark. Figure 5.2 shows the

effect of Laplacian and Taubin(λ = 0.5, µ = −0.53) smoothing on the Horse model.

Table 5.2 lists the values of the correlation coefficient.

Table 5.2: Smoothing Attacks
Laplacian Smoothing 1 step 2 steps 3 steps

Correlation Value 0.0443 0.0984 0.1082
Taubin Smoothing 3 steps 10 steps 30 steps
Correlation Value 0.0550 0.0423 0.0338

Figure 5.2: Smoothing operation on Horse model



113

Noise

This attack is simulated by adding normally distributed random numbers i.e. Gaus-

sian noise with varied mean and variances, to the coordinates of the vertices of the

watermarked 3D mesh model. Table 5.3 lists the impact of noise on the extracted

watermark. The noise level expressed in % is the extent of vertices that are modified

by noise. A 100% level indiciates additive noise for all vertices of the mesh model.

Figure 5.3 and 5.4 shows the result of noise attacks on the Horse model.

Table 5.3: Noise Attacks
Proportion of
Vertices Affected 10% 30% 50% 70% 100%
by Noise
Correlation Value
(Gaussian Noise: 0.8441 0.4821 0.4187 0.3020 0.1819
Mean 0
Variance 0.5477)
Correlation Value
(Gaussian Noise: 0.7749 0.5062 0.0482 0.0417 0.1302
Mean 1
Variance 2)

Figure 5.3: Gaussian Noise (Mean 0, Variance 0.5477) added to Horse model
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Figure 5.4: Gaussian Noise (Mean 1, Variance 2) added to Horse model

Scaling, Translation, and Rotation

The implementation is completely invariant to geometric attacks such as uniform

scaling and affine transformations. Since the 3D model is normalized prior to the

watermark insertion, the change in the position, scale and orientation of the model

does not affect the relative orientation of the normals at the vertices and thus the

local smoothness measure for each vertex remains unchanged. Thus our algorithm

gives 100% correlation between original and extracted watermarks, as outlined in

Table 5.4. Figures 5.5, 5.6, and 5.7 show the watermarked 3D model subject to these

geometric transformations.

Table 5.4: Geometric Attacks
Transformation X Y Z X,Y,Z
Translate 5 units 10 units 5 units (5,10,5) units
Correlation Value 1.0 1.0 1.0 1.0
Rotate 45◦ 90◦ 75◦ (45◦,90◦,75◦)
Correlation Value 1.0 1.0 1.0 1.0
Scale 0.25 0.5 0.75 1.5
Correlation Value 1.0 1.0 1.0 1.0
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Figure 5.5: Scaling of Watermarked Horse model

Figure 5.6: Translation of Watermarked Horse model
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Figure 5.7: Rotation of Watermarked Horse model

Cropping

Cropping refers to removal or chopping off a part or parts of a model. The amount

of watermark destroyed depends upon the extent and location of cropping. This ne-

cessitates adequate presence of the watermark in various regions. Figure 5.8 shows

the Horse model cropped at varied levels in the x, y, and z-directions. Table 5.5 re-

flects the similarity measure between the embedded and extracted watermark against

different cropping levels. However, 10% cropping in the y-direction removes the tail

portion of the Horse where most of the watermark is embedded, so the correlation

value is significantly lowered.
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Table 5.5: Cropping Attacks
Cropping Ratio 10% 30% 50% 70%

Correlation Value 0.7013 0.2144 0.1755 0.0133
Cropping along X-Axis

Correlation Value 0.1596 0.1504 0.0411 0.0574
Cropping along Y-Axis

Correlation Value 0.9992 0.4378 0.1412 0.0842
Cropping along Z-Axis

Figure 5.8: Cropped Horse

5.2 Parameter Evaluation of Voice Biometric Sys-

tem

For our experiments, the VALID database [23] was used. The database has a total

of 106 subjects with 5 voice samples acquired from each subject in a controlled en-

vironment. Each speaker utters the sentence - 5 0 6 9 2 8 1 3 7 4. The file sizes of
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voice recordings range from 173 KB to 696 KB with a duration of 2.5 seconds - 10

seconds, thereby incorporating slow, moderate and fast speakers. The .wav files are

acquired at a sampling rate of 32KHz with bit rate 512kbps, sample size 16-bit, 1

Channel (mono) mode and PCM format.

To get optimum performance from the speaker verification (voice biometrics)

module various experiments are conducted to tune algorithmic parameters, determine

threshold for verification, and determine the required number of voice samples to

generate a robust speaker model (voice print) formulation using MFCC and GMM.

The performance measures of a biometric verification system are the False Acceptance

rate(FAR) and the False Rejection rate(FRR). False acceptance is the case where an

illegitimate user is granted access by the system. False rejection is the case where a

genuine user is denied access by the system. FAR and FRR are computed by:

FAR =
NumberofFalseAcceptances

NumberofV erificationAttempts
(5.1)

FRR =
NumberofFalseRejections

NumberofV erificationAttempts
(5.2)

Determination of Threshold and Number of Voice Samples

Experiments were conducted using either 1, 2 or 3 voice samples for generating the

GMM model. Figure 5.9 illustrates the FRR when 1 voice sample was used for

generating the speaker model and the remaining 4 used for verification. Since the

duration of just 1 sample was not sufficient to incorporate intra-individual variations,

it mostly resulted in a rejection of all the remaining 4 voice samples for the test

subjects. While the database has 106 test subjects, the reference numbers assigned

to the subjects span a range of 1 through 122 leaving some reference numbers as

void, which explains the cross marks on the x-axis indicating an FRR of 0.000 for

these dummy reference numbers. Figure 5.10 depicts the performance of the speaker

verification module at threshold values between 0.5 and 10 with increments of 0.5.
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Figure 5.9: Plot of False Reject Rates for various Test Subjects with 1 voice sample
used to generate the speaker model

Figure 5.10: FAR and FRR plots for Test Subject 2 at various threshold values when
1 voice sample was used to generate the speaker model

The FRR improved when 2 voice samples were used for creating the speaker

model. Figure 5.11 depicts the FRR at threshold values of 0.5 and 1.5, with some

test subjects still having significantly higher false reject rates of 0.5 and above (which

means that out of 4 verification attempts the user is falsely rejected by the systems at
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least twice). The FRR and FAR plots for a single test subject at different thresholds

are shown in Figure 5.12.

Figure 5.11: Plot of False Reject Rates for various Test Subjects when 2 voice samples
are used to generate the speaker model

Figure 5.12: FAR and FRR plots for Test Subject 2 at various threshold values when
2 voice samples are used to generate the speaker model

When 3 voice samples were used to create the speaker model, FRR for all test

subjects was less than 1.0 (at threshold 1.5, see Figure 5.13), indicating that no test



121

subject from the dataset would be rejected by the system after 3 verification attempts.

A plot of the FRR and FAR for various threshold values and different test subjects

is shown in Figure 5.13. It was observed that FRR depends on the number of voice

samples available for generating GMM speaker model - more the number of samples,

the better the speaker model is thereby lowering the FRR. Experiments also show that

lowering the threshold causes more false rejections but results in fewer false accepts.

From Figure 5.14, it can be concluded that a threshold value of 1.5, where the FAR

and FRR curves intersect, is the optimal value to be used for the aggregate system

that integrates the speaker verification module with the 3D watermarking module.

Figure 5.13: Plot of False Reject Rates for various Test Subjects when 3 voice samples
are used to generate the speaker model
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Figure 5.14: FAR and FRR plots for Test Subject 2 at various threshold values when
3 voice samples are used to generate the speaker model

For user enrollment, we use the first 3 out of the 5 voice samples from the

dataset to generate the speaker model. The MFCC features extracted from the frames

derived from each of the 3 voice samples are concatenated to train the GMM. For

user verification, the last 3 voice samples are used of which 2 are unused samples from

the dataset and 1 sample overlaps with the enrollment samples. The speaker model

generating algorithmic parameters are determined by experiments shown in Table 5.6

which lists the False Reject Rate(FRR) and False Accept Rate(FAR) for different

frame lengths, number of MFCC co-efficients extracted from each frame, and order of

the GMM (which is the number of Gaussians used to model the speaker). To evaluate

the effect of the frame length on FRR, the number of MFCC co-efficients is fixed at

12 with an order of 3 for the GMM.

Tuning Algorithmic Parameters

The next set of experiments are based on a frame length of 512, GMM model order

of 3 and vary the number of extracted MFCC co-efficients for each frame from 8 to
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100. Using 12 MFCC coefficients gives optimal performance. The order of GMM is

varied from 1 to 36, and it was observed that this order does not have a significant

impact on the FRR. Therefore a GMM order of 3+ can be used for experiments since

FAR is 18% or lower.

Table 5.6: Experiments on Voice Print Generation Algorithmic Parameters
(N=number of MFCC Coefficients, M=GMM order)

Frame Length N M FRR FAR
(#samples) min max mean min max mean

128 12 3 0.0000 0.3333 0.0136 0.0095 0.9810 0.4057
256 12 3 0.0000 0.3333 0.0136 0.0095 0.9143 0.3123
512 12 3 0.000 0.6667 0.0488 0.0095 0.6952 0.1807
1024 12 3 0.000 1.000 0.1274 0.0095 0.6190 0.1182

512 12 1 0.000 0.6667 0.0244 0.0095 0.9238 0.3237
512 12 2 0.000 0.6667 0.0379 0.0095 0.9238 0.2320
512 12 3 0.000 0.6667 0.0488 0.0095 0.6952 0.1807
512 12 6 0.000 0.6667 0.0949 0.0095 0.5333 0.1053
512 12 12 0.000 0.6667 0.1518 0.0095 0.3714 0.0437
512 12 15 0.000 0.6667 0.2141 0.0095 0.2857 0.0388
512 12 18 0.000 0.6667 0.2304 0.0095 0.2667 0.0312
512 12 24 0.000 0.6667 0.3144 0.0095 0.2000 0.0202
512 12 36 0.000 0.6667 0.4065 0.0095 0.0952 0.0126

512 8 3 0.000 0.6667 0.0244 0.0095 0.9048 0.2821
512 12 3 0.000 0.6667 0.0488 0.0095 0.6952 0.1807
512 16 3 0.000 0.6667 0.0678 0.0095 0.6095 0.1160
512 39 3 0.000 1.000 0.2710 0.0000 0.4571 0.0616
512 100 3 0.000 1.000 0.7534 0.0095 0.3143 0.1162

The FRR and FAR are determined for all the test subjects from the dataset and

the table outlines the minimum, maximum and mean values of FRR and FAR derived

from voice samples of 106 test subjects. Results show that the GMM order improves

the FAR (a higher order of GMM lowers the FAR) at the expense of increasing the

FRR (while maintaining the upper limit of 0.6667) for various test subjects (mean of

FRR for 106 test subjects increases as GMM order increases) because a higher number

of Gaussians in the mixture model result in over fitting of the data. Conclusively, a

order as high as 36 for the GMM, maintains the FRR at 0.6667 which means that the

user is guaranteed to be authenticated by the system within 3 verification attempts.
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The frame length primarily affects the FRR (increasing in frame lengths increases the

FRR) but from the table it can be observed that a higher frame length also lowers

the FAR. Although frame lengths 128 and 256 give the lowest FRR for 3 verification

attempts, we choose 512 since the corresponding FAR is relatively lower. The number

of MFCC coefficients change both FRR and FAR significantly with 12 coefficients

striking a good balance between FRR and FAR. For experiments conducted to test the

overall system performance presented in the next section, the voice print generation

process uses a frame length of 512, 12 MFCC co-efficients per frame and 3 or higher

number of Gaussians in the GMM depending on the size of the 3D model.

5.3 Overall System Performance

The overall performance of the voice biometric 3D watermarking system is evaluated

in the case of no attacks and varied levels of noise, cropping and smoothing attacks.

All the experiments are conducted using the following parameters:

1. Out of 5 voice samples for Test Subject 2 from the VALID dataset, the first

3 voice samples are used for enrollment and the last 3 samples are used for

verification.

2. Value of threshold used to compute the likelihood of extracted features with the

speaker model (i.e voice print) is 1.5.

3. 12 MFCC coefficients are used to generate the voice print.

4. The MFCC feature extraction process employs a frame rate of 512 samples with

a frame overlap of 256 samples.

5. 3D mesh models of various sizes (ranging from small(15KB-60KB), medium(140KB-

450KB), large(640KB-1700KB)) and varied geometry (surface curvature) are

selected for experiments.

6. The Reed Solomon error correction encoding and decoding processes impose a

restriction on the number of bits in the message (voice print) m and codeword
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(watermark) length n such that n = 2m− 1. The system requires the 3D model

to have an embedding capacity of at least n for a chosen value of m. Since a

GMM requires at least 3 Gaussians (which generates a voice print of length 75)

to attain low FRR and FAR, the codeword length n should be greater than 75

to accommodate redundancy through error correcting bytes. Given this criteria,

values of m must be 7 or higher such that a codeword of size 127 or higher is

generated. Since the watermark embedding capacity of a 3D model drives the

size of the codeword and is entirely dependent on the geometry of the model

and not the size of the model (i.e. total number of vertices), therefore the value

of m may vary from model to model.

7. The order of the GMM varies according to the watermarking embedding capac-

ity of the model and can lie anywhere between 3 and 15. The order of the GMM

model increases the size of the voice print since each Gaussian in the model is

parameterized by its weight (1 value), µ (12 values for 12 MFCC coefficients),

and Σ (12 values for 12 MFCC coefficients) - a total of 25 values, thereby

decreasing the level of error correction that can be utilized for the watermark.

No Attacks

In the case of no attacks, Figure 5.15 shows the FRR and FAR plots for the sys-

tem. The False Accept Rate(FAR) is obtained by comparing voice prints of 106 test

subjects from the database against the extracted voice print. The FRR is computed

using 3 verification attempts. These plots were generated for the voice print extracted

from the watermarked Nefertiti model (total number of vertices=299, watermarked

vertices=127, GMM order=3, m=7) for every test subject. These plots are not iden-

tical to Figure 5.13 as one would expect since the likelihood measure generated for

the GMM of a speaker is not a fixed value and it varies each time a speaker model is

generated due to variation in the initialization of the parameters by the EM algorithm

that incorporates random values for the covariance matrix. FRR and FAR are highly

dependent on the value of this likelihood measure and therefore can vary for a GMM
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model of the same speaker generated at a different instances of time.

Figure 5.15: System performance when the watermarked 3D model is not subject to
any attacks

Attacks

Table 5.7 illustrates the maximum tolerance limit of the system to mesh smoothing,

cropping and additive noise attacks on the embedded watermark in order to accept a

legitimate user. The robustness of the watermark depends on the level of redundancy

employed by the error correction encoding. The payload (watermark) size minus the

voice print size indicates the number of parity bytes or the level of redundancy. Re-

sults from these experiments indicate that larger size models with higher embedding

capacity can afford a higher level of redundancy for the payload and can withstand an

increased level of cropping and noise attacks up to 20%-49%. However, the system’s

tolerance of 20% levels of noise and cropping is highly dependent on the location of

the noise and cropping attacks. For example, since no watermark is inserted in the

forehead region of the MaxPlanck model (see Figure 5.1), no information is lost when

the forehead is cropped, thus offering a higher tolerance of 45% noise and cropping

irrespective of its relatively smaller payload capacity. To the contrary, even though

Camel has a higher payload capacity it can not withstand higher levels of cropping

which alter the vertices accomodating the watermark.
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Table 5.7: Measure of Overall System Performance
3D Model Model Voiceprint Payload Maximum Tolerance For User Acceptance

Size Size Size Smoothing Cropping Noise
Attack Attack Attack

(Taubin) (Level %) (Level %)

Nefertiti 17KB 1.17KB 1.98KB
299 75 127 5 steps 26% 20%

vertices values values λ = 0.0005

Robot 35KB 1.17KB 3.98KB
600 75 255 40 steps 27% 35%

vertices values values λ = 0.0005

Beetle 56KB 1.17KB 3.58KB
988 75 230 200 steps 36% 25%

vertices values values λ = 0.001

Horse 145KB 1.17KB 11.9KB
2450 75 765 5 steps 44% 40%

vertices values values λ = 0.0025

Dinopet 278KB 1.17KB 19.9KB
4500 75 1275 5 steps 49% 45%

vertices values values λ = 0.005

MaxPlanck 438KB 1.17KB 7.97KB
7399 75 510 2 steps 40% 45%

vertices values values λ = 0.002

Camel 646KB 1.17KB 11.9KB
9770 75 765 35 steps 28% 45%

vertices values values λ = 0.005

Armadillo 1662KB 1.17KB 99.6KB
26002 75 6630 60 steps 49% 45%

vertices values values λ = 0.005

Smaller models can not resist such high levels of noise or cropping attacks since

the embedded speaker model suffers damage to the extent that it rejects a genuine

user. Further research is required in the direction of high embedding capacity wa-
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termarking algorithms for small size 3D models. The next three sections provide

an in-depth analyses of the impact of noise,cropping and smoothing attacks on the

watermarked models.

Impact of Noise Attack

In the case of additive Gaussian noise (Mean 0, Variance 1.2247), Tables 5.8-5.21

list the effect of various noise levels on the test subject’s verification decision by the

system. For smaller 3D models (Nefertiti, Beetle, and Robot), a GMM of order 3

and 5 was used to ensure that whole voice print could be embedded in the model

with small degree of error correction. Due to the high embedding capacity, Horse

and Dinopet models could afford 9 and 15 order GMMs respectively. Maxplanck had

relatively lower payload capacity and therefore used 6 Gaussians to model the GMM

for the same test subject. Although Camel and Armadillo model could accommodate

a much higher order GMM, we used a GMM of 3 Gaussians for a codeword size of 255

that was inserted within the model multiple times. Experimental results indicated

that keeping the order of GMM down to 3 did not impact the FAR, FRR but it did

improve the system tolerance owing to the higher degree of error correction employed

in the watermark in place of the additional Gaussian parametric values.

Table 5.8: 3D Model Nefertiti- Impact of Gaussian Noise on Voice Biometric Wa-
termark of Length 127 (m = 7) that Accommodates a Voice print of Size 75 (GMM
order 3)

Proportion of
Vertices Affected 10% 15% 20% 25% 30% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 0.6006 0.4976 0.3409 0.1055
y dimension 1.0000 1.0000 1.0000 0.3208 0.2143 0.1529 0.0468
z dimension 1.0000 1.0000 1.0000 0.4097 0.2887 0.2159 0.0230
Error Correction
(# of corrected ) 14 20 23 Failed Failed Failed Failed
values)
FRR 0.0000 0.0000 0.0000 1.0000 0.3333 1.0000 1.0000
FAR 0.0857 0.0857 0.0857 0.0000 0.3048 0.0000 0.0000
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Even though the embedding capacity of Robot was twice that of Nefertiti, the

system did not show any significant improvement in surviving higher noise levels (see

Table 5.9). Therefore, we experimented with a lower order GMM and observed a

significant improvement in noise tolerance. Lowering the number of Gaussians in the

GMM allowed for increased redundancy of the voice print values in the watermark

enabling a higher degree of error correction on the extracted watermark. Table 5.10

indicates the improvement in performance from noise tolerance of 20% to 35%.

Table 5.9: 3D Model Robot- Impact of Gaussian Noise on Voice Biometric Watermark
of Length 255 (m = 8) that Accommodates a Voice print of Size 125 (GMM order 5)

Proportion of
Vertices Affected 10% 15% 20% 25% 30% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.3167 0.1986 0.1901
y dimension 1.0000 1.0000 1.0000 1.0000 0.2625 0.2209 0.1612
z dimension 1.0000 1.0000 1.0000 1.0000 0.1754 0.1205 0.0499
Error Correction
(# of corrected ) 28 36 47 63 Failed Failed Failed
values)
FRR 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.0952 0.0952 0.0952 0.0952 0.0000 0.0000 0.0000

Table 5.10: 3D Model Robot- Impact of Gaussian Noise on Voice Biometric Watermark
of Length 255 (m = 8) that Accommodates a Voice print of Size 75 (GMM order 3)

Proportion of
Vertices Affected 10% 20% 30% 35% 40% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.4637 0.4215 0.3109
y dimension 1.0000 1.0000 1.0000 1.0000 0.1200 0.0971 0.0025
z dimension 1.0000 1.0000 1.0000 1.0000 0.3229 0.3214 0.1689
Error Correction
(# of corrected ) 24 51 76 85 Failed Failed Failed
values)
FRR 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.1619 0.1619 0.1619 0.1619 0.0000 0.0000 0.0000
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Even though Beetle is larger in size than Robot it has a lower tolerance to noise

(see Table 5.11) than Robot because the watermark (codeword of size 255) is truncated

to 230 to match the embedding capacity of the model. The 25 truncated values lower

the redundancy in the error correcting codeword (watermark) thereby affecting the

tolerance of the system to noise attacks.

Table 5.11: 3D Model Beetle- Impact of Gaussian Noise on Voice Biometric Water-
mark of Length 230 that Accommodates a Voiceprint of Size 75 (GMM order 3)

Proportion of
Vertices Affected 10% 15% 20% 25% 30% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.4361 0.3961 0.1621
y dimension 1.0000 1.0000 1.0000 1.0000 0.4380 0.3412 0.1677
z dimension 1.0000 1.0000 1.0000 1.0000 0.4953 0.3981 0.0586
Error Correction
(# of corrected ) 47 61 71 79 Failed Failed Failed
values)
FRR 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
FAR 0.3143 0.3143 0.3143 0.3143 0.0000 0.0000 0.0000

Table 5.12: 3D Model Horse- Impact of Gaussian Noise on Voice Biometric Water-
mark of Length 765 (m =8), Voiceprint size is 225 (GMM order 9, voiceprint is split
into 3 equal parts with each part having a codeword of size 255, the 3 codewords
concatenate to form the watermark)

Proportion of
Vertices Affected 10% 20% 30% 35% 40% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 0.6006 0.2224 0.1349 0.0588
y dimension 1.0000 1.0000 1.0000 0.3208 0.2786 0.2352 0.1225
z dimension 1.0000 1.0000 1.0000 0.4097 0.2746 0.2222 0.0127
Error Correction
(# of corrected ) 64 137 213 253 Failed Failed Failed
values)
FRR 0.3333 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000
FAR 0.0095 0.0095 0.0095 0.0095 0.0000 0.0000 0.0000
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Results from Table 5.12 indicated a low noise level tolerance for the system for

models with embedding capacity higher than 255 which motivated us to try a variation

in the watermark pattern by concatenating the codeword of 255 values (with 75 voice

print values) to see if performance could be improved. The GMM order of 3 yielded

better performance, as shown in Tables 5.13, 5.15, and 5.17.

Table 5.13: 3D Model Horse- Impact of Gaussian Noise on Voice Biometric Water-
mark of Length 765 (m =8), Voiceprint size is 75 (GMM order 3, voiceprint is split
into 3 equal parts with each part having a codeword of size 255, the 3 codewords
concatenate to form the watermark)

Proportion of
Vertices Affected 10% 20% 30% 40% 45% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.2064 0.1708 0.0978
y dimension 1.0000 1.0000 1.0000 1.0000 0.4333 0.2506 0.1492
z dimension 1.0000 1.0000 1.0000 1.0000 0.3839 0.2108 0.0550
Error Correction
(# of corrected ) 85 164 229 300 Failed Failed Failed
values)
FRR 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.3333 0.3333 0.3333 0.3333 0.0000 0.0000 0.0000

Table 5.14: 3D Model Dinopet- Impact of Gaussian Noise on Voice Biometric Wa-
termark of Length 1275 that Accommodates a Voiceprint of Size 375 (GMM order
15)

Proportion of
Vertices Affected 10% 20% 25% 30% 35% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.4660 0.2308 0.0631
y dimension 1.0000 1.0000 1.0000 1.0000 0.4484 0.2084 0.0451
z dimension 1.0000 1.0000 1.0000 1.0000 0.4985 0.2531 0.0737
Error Correction
(# of corrected ) 133 251 303 365 Failed Failed Failed
values)
FRR 0.3333 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000
FAR 0.0381 0.0381 0.0381 0.0381 0.0000 0.0000 0.0000
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Table 5.15: 3D Model Dinopet- Impact of Gaussian Noise on Voice Biometric Wa-
termark of Length 1275 that Accommodates a Voiceprint of Size 75 (GMM order 3)
that is split into 5 parts with each part forming a codeword of size 255

Proportion of
Vertices Affected 10% 20% 30% 40% 45% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.6274 0.4750 0.1251
y dimension 1.0000 1.0000 1.0000 1.0000 0.6364 0.4586 0.0334
z dimension 1.0000 1.0000 1.0000 1.0000 0.4761 0.3343 0.1134
Error Correction
(# of corrected ) 124 244 373 498 423, 231, Failed
values) Part 4 Part 2,4,

Failed 5 Failed
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 0.3333 1.0000
FAR 0.1905 0.1905 0.1905 0.1905 0.1905 0.1905 0.0000

Table 5.16: 3D Model MaxPlanck- Impact of Gaussian Noise on Voice Biometric
Watermark of Length 510 that Accommodates a Voiceprint of Size 150 (GMM order
6)

Proportion of
Vertices Affected 10% 20% 25% 30% 35% 40% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 1.0000 0.2970 0.1406
y dimension 1.0000 1.0000 1.0000 1.0000 1.0000 0.2593 0.1066
z dimension 1.0000 1.0000 1.0000 1.0000 1.0000 0.2620 0.1175
Error Correction
(# of corrected ) 46 105 127 146 169 Failed Failed
values)
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.0571 0.0571 0.0571 0.0571 0.0571 0.0000 0.0000

Since Camel has the same embedding capacity as Horse (765 values), instead of

splitting up the voice print into sections and generating codewords for each section

to utilize the high embedding capacity of the model, a variation of the algorithm was

experimented with the hope of improved performance. The codeword was embedded

into the 3D model 3 times and resulted in degraded performance mainly due to the

fact that lower level of error correction was being employed for each codeword as
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Table 5.17: 3D Model MaxPlanck- Impact of Gaussian Noise on Voice Biometric
Watermark of Length 510 that Accommodates a Voiceprint of Size 75 (GMM order
3) that is split into 2 parts with each part forming a codeword of size 255

Proportion of
Vertices Affected 10% 20% 30% 40% 45% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.3063 0.2334 0.1102
y dimension 1.0000 1.0000 1.0000 1.0000 0.4448 0.1388 0.1448
z dimension 1.0000 1.0000 1.0000 1.0000 1.0000 0.2630 0.1644
Error Correction
(# of corrected ) 51 94 136 187 211 Failed Failed
values)
FRR 0.3333 0.3333 0.3333 0.3333 0.3333 1.0000 1.0000
FAR 0.1048 0.1048 0.1048 0.1048 0.1048 0.0000 0.0000

compared to the original strategy. Tables 5.18 and 5.19 demonstrate the system

performance using the variation and the original strategy.

Table 5.18: 3D Model Camel- Impact of Gaussian Noise on Voice Biometric Wa-
termark of Length 765 that Accommodates Voiceprint of Size 255 (GMM order 3)
repeated three times

Proportion of
Vertices Affected 10% 20% 30% 35% 40% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.4753 0.4939 0.2652
y dimension 1.0000 1.0000 1.0000 1.0000 0.4803 0.4440 0.3073
z dimension 1.0000 1.0000 1.0000 1.0000 0.3751 0.3573 0.0527
Error Correction
(# of corrected ) 21 42 69 85 Failed Failed Failed
values)
FRR 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.3429 0.3429 0.3429 0.3429 0.0000 0.0000 0.0000

Armadillo was also subject to experiments similar to that of Camel. Tables 5.20

and 5.21 illustrate the results.



134

Table 5.19: 3D Model Camel- Impact of Gaussian Noise on Voice Biometric Water-
mark of Length 765 that Accommodates Voiceprint of Size 75 (GMM order 3) split
3 times

Proportion of
Vertices Affected 10% 20% 30% 40% 45% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 1.0000 0.3609 0.2362
y dimension 1.0000 1.0000 1.0000 1.0000 1.0000 0.4242 0.2235
z dimension 1.0000 1.0000 1.0000 1.0000 1.0000 0.2488 0.1367
Error Correction
(# of corrected ) 82 157 224 293 331 Failed Failed
values)
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.3524 0.3524 0.3524 0.3524 0.3524 0.0000 0.0000

Table 5.20: 3D Model Armadillo- Impact of Gaussian Noise on Voice Biometric Wa-
termark of Length 6630 that Accommodates a Voiceprint of Size 255 (GMM order 3)
repeated 26 times

Proportion of
Vertices Affected 10% 20% 30% 35% 40% 45% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.4487 0.5430 0.2776
y dimension 1.0000 1.0000 1.0000 1.0000 0.4935 0.4937 0.2927
z dimension 1.0000 1.0000 1.0000 1.0000 0.5557 0.4829 0.4025
Error Correction
(# of corrected ) 19 56 77 86 88 Failed Failed
values)
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.2000 0.2000 0.2000 0.2000 0.2000 0.0000 0.0000

Overall it was observed that as the payload capacity of the model increased,

higher level of redundancy in the form of error correcting bytes could be achieved

thereby increasing the noise tolerance level of the system. Figure 5.16 shows plots of

the FRR and FAR for all the 3D models at various noise levels. From the plots, it

can be concluded that the system is tolerant to 20%-45% noise levels for 3D models

ranging from size 17KB to 1700KB.
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Table 5.21: 3D Model Armadillo- Impact of Gaussian Noise on Voice Biometric Wa-
termark of Length 6375 that Accommodates a Voiceprint of Size 75 (GMM order 3)
split 25 times

Proportion of
Vertices Affected 10% 20% 30% 40% 45% 50% 100%
by Noise
Correlation Value
x dimension 1.0000 1.0000 1.0000 1.0000 0.9691 0.3025 0.1110
y dimension 1.0000 1.0000 1.0000 1.0000 0.9997 0.0668 0.0175
z dimension 1.0000 1.0000 1.0000 1.0000 0.9949 0.0883 0.1554
Error Correction
(# of corrected ) 615 1264 1929 2577 2768, 1351, Failed
values) Part 1 14 Parts

Failed Failed
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.2190 0.2190 0.2190 0.2190 0.2381 0.0000 0.0000

Figure 5.16: System performance when the watermarked 3D model is subject to noise
attacks
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Impact of Cropping Attack

The cropping attack is simulated in MATLAB by determining the minimum and

maximum values of vertices in the x,y, and z dimension and using a threshold value

that lies between this min-max range. All vertices that have a value above this

threshold are cropped such that the new vertex value equals the threshold. Cropping

along an axis resets the qualified vertices values to the threshold thereby truncating

the 3D model in that dimension. The value of the threshold decides the level of

cropping as it impacts the count of vertices that lie above this value. The proportion of

vertices affected by cropping is ratio of the count of vertices adjusted by the threshold

value and the total number of vertices in the 3D model. The watermark is inserted into

3 dimensions and therefore cropping along one or two dimension does not impact the

user verification process as the watermark can be recovered from the third dimension.

Table 5.22-5.24 show the impact of cropping along any one axis on the FAR and FRR.

Tables 5.25-5.32 list the effect of various cropping levels in all three dimensions on

the test subject’s verification decision by the system.

Table 5.22: 3D Model Nefertiti- Impact of Cropping along X-Axis on Voice Biometric
Watermark of Length 127 (m = 7) that Accommodates a Voice print of Size 75 (GMM
order 3)

Proportion of
Vertices Affected 10% 25% 40% 60% 75% 90% 100%
by Cropping
Corrected Errors
x dimension 7 20 Failed Failed Failed Failed Failed
y dimension 0 0 0 0
z dimension
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FAR 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857

Cropping attack on Camel highlights the fact that if the cropping occurs in

regions where the watermark is inserted then the system tolerance to such attacks

drops regardless of the 3D model and payload size. Cropping beyond 28% truncates

those regions that accomodatethe watermark so the error correction routines fail to
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Table 5.23: 3D Model Nefertiti- Impact of Cropping along Y-Axis on Voice Biometric
Watermark of Length 127 (m = 7) that Accommodates a Voice print of Size 75 (GMM
order 3)

Proportion of
Vertices Affected 10% 25% 40% 60% 75% 90% 100%
by Cropping
Corrected Errors
x dimension
y dimension 15 Failed Failed Failed Failed Failed Failed
z dimension 0 0 0 0 0 0
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FAR 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857

Table 5.24: 3D Model Nefertiti- Impact of Cropping along Z-Axis on Voice Biometric
Watermark of Length 127 (m = 7) that Accommodates a Voice print of Size 75 (GMM
order 3)

Proportion of
Vertices Affected 10% 25% 40% 60% 75% 90% 100%
by Cropping
Corrected Errors
x dimension 0 0 0 0 0 0
y dimension
z dimension 8 Failed Failed Failed Failed Failed Failed
FRR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FAR 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857

Table 5.25: 3D Model Nefertiti- Impact of Cropping along X,Y and Z-Axes on Voice
Biometric Watermark of Length 127 (m = 7) that Accommodates a Voice print of
Size 75 (GMM order 3)

Proportion of
Vertices Affected 5-11% 17-26% 22-26% 35-37% 44-51%
by Cropping
Corrected Errors
x dimension 7 15 20 Failed Failed
y dimension 15 Failed Failed Failed Failed
z dimension 8 Failed Failed Failed Failed
FRR 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.0857 0.0857 0.0857 0.0000 0.0000

recover the watermark and decline the performance of the system.
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Table 5.26: 3D Model Robot- Impact of Cropping along X,Y and Z-Axes on Voice
Biometric Watermark of Length 255 (m = 8) that Accommodates a Voice print of
Size 75 (GMM order 3)

Proportion of
Vertices Affected 10-17% 23-27% 54-62% 72-82% 92-100%
by Cropping
Corrected Errors
x dimension 10 54 Failed Failed Failed
y dimension 34 78 Failed Failed Failed
z dimension 40 54 Failed Failed Failed
FRR 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.1619 0.1619 0.0000 0.0000 0.0000

Table 5.27: 3D Model Beetle- Impact of Cropping along X,Y and Z-Axes on Voice
Biometric Watermark of Length 230 that Accommodates a Voiceprint of Size 75
(GMM order 3)

Proportion of
Vertices Affected 17-21% 21-26% 32-36% 43-47% 56-59%
by Cropping
Corrected Errors
x dimension 79 79 Failed Failed Failed
y dimension 49 49 78 Failed Failed
z dimension 85 Failed Failed Failed Failed
FRR 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.3143 0.3143 0.3143 0.0000 0.0000

Table 5.28: 3D Model Horse- Impact of Cropping along X,Y and Z-Axes on Voice
Biometric Watermark of Length 765 (m =8), Voiceprint size is 75 (GMM order 3,
voiceprint is split into 3 equal parts with each part having a codeword of size 255,
the 3 codewords concatenate to form the watermark)

Proportion of
Vertices Affected 9-16% 24-28% 39-44% 44-48% 57-62%
by Cropping
Corrected Errors
x dimension 70 158 282 Failed Failed
y dimension 98 293 206 Failed Failed
z dimension 130 168 Failed Failed Failed
FRR 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.3333 0.3333 0.3333 0.0000 0.0000
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Table 5.29: 3D Model Dinopet- Impact of Cropping along X,Y and Z-Axes on Voice
Biometric Watermark of Length 1275 that Accommodates a Voiceprint of Size 75
(GMM order 3) that is split into 5 parts with each part forming a codeword of size
255

Proportion of
Vertices Affected 5-19% 27-31% 37-49% 49-57% 64-77%
by Cropping
Corrected Errors
x dimension 174 484 Failed Failed Failed
y dimension 25 317 409 Failed Failed
z dimension 167 233 291 Failed Failed
FRR 0.0000 0.0000 0.0000 1.0000 1.0000
FAR 0.1905 0.1905 0.1905 0.0000 0.0000

Table 5.30: 3D Model MaxPlanck- Impact of Cropping along X,Y and Z-Axes on
Voice Biometric Watermark of Length 510 that Accommodates a Voiceprint of Size
75 (GMM order 3) that is split into 2 parts with each part forming a codeword of size
255

Proportion of
Vertices Affected 6-11% 22-26% 31-40% 47-51% 57-64%
by Cropping
Corrected Errors
x dimension 79 115 140 Failed Failed
y dimension 65 84 Failed Failed Failed
z dimension 18 67 134 Failed Failed
FRR 0.3333 0.0000 0.0000 1.0000 1.0000
FAR 0.1048 0.1048 0.1048 0.0000 0.0000

Table 5.31: 3D Model Camel- Impact of Cropping along X,Y and Z-Axes on Voice
Biometric Watermark of Length 765 that Accommodates Voiceprint of Size 75 (GMM
order 3) split 3 times

Proportion of
Vertices Affected 9-10% 17-28% 32-35% 35-41% 44-51%
by Cropping
Corrected Errors
x dimension 112 205 Failed Failed Failed
y dimension 0 Failed Failed Failed Failed
z dimension 46 178 Failed Failed Failed
FRR 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.3524 0.3524 0.0000 0.0000 0.0000
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Table 5.32: 3D Model Armadillo- Impact of Cropping along X,Y and Z-Axes on
Voice Biometric Watermark of Length 6375 that Accommodates a Voiceprint of Size
75 (GMM order 3) split 25 times

Proportion of
Vertices Affected 4-8% 8-17% 17-27% 35-49% 51-63%
by Cropping
Corrected Errors
x dimension 338 688 879 1312 Failed
y dimension 633 633 942 1500 Failed
z dimension 238 777 1020 1245 Failed
FRR 0.0000 0.0000 0.0000 0.0000 1.0000
FAR 0.2190 0.2190 0.2190 0.2190 0.0000

Overall it was observed that as the payload capacity of the model increased,

higher level of redundancy in the form of error correcting bytes could be achieved

thereby increasing the cropping tolerance level of the system. Figures 5.17 and 5.18

shows plots of the FRR and FAR for all the 3D models at various cropping levels.

From the plots, it can be concluded that the system is tolerant to 20%-44% cropping

levels for 3D models ranging from size 17KB to 1700KB.

Figure 5.17: System performance when the watermarked 3D model is subject to
cropping attacks
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Figure 5.18: System performance when the watermarked 3D model is subject to
cropping attacks

Impact of Smoothing Attack

The smoothing attack is simulated using the Taubin smoothing filter from Mesh-

lab [86]. The parameters for Taubin smoothing (λ : 0−1, µ : negativevaluelessthan−)

were experimented for variable steps to determine the system tolerance. Values of λ

in the order of 10−3-10−4 were used for experiments since the system rejected users

for higher values. Smaller models had a tolerance for λ in the oder of 10−4, while

larger models could handle higher values as indicated by the tabulated results. The

value of µ was set at frac10. Tables 5.33-5.40 outline the effect of the smoothing

operations on the system’s FRR and FAR.
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Table 5.33: 3D Model Nefertiti- Impact of Smoothing on Voice Biometric Watermark
of Length 127 (m = 7) that Accommodates a Voice print of Size 75 (GMM order 3)

Smoothing 1 step 2 steps 3 steps 5 steps 8 steps
λ = 0.0005
Correlation Value
x dimension 1.0000 1.0000 0.9994 0.9987 0.9968
y dimension 1.0000 1.0000 0.9994 0.9985 0.9965
z dimension 1.0000 0.9995 0.9992 0.9980 0.9957
Error Correction
(# of corrections ) 6 14 Failed Failed Failed
FRR 0.0000 0.0000 0.0000 0.0000 1.0000
FAR 0.0857 0.0857 0.1143 0.0762 0.0000

Table 5.34: 3D Model Robot- Impact of Smoothing on Voice Biometric Watermark of
Length 255 (m = 8) that Accommodates a Voice print of Size 75 (GMM order 3)

Smoothing 10 steps 15 steps 20 steps 30 steps 40 steps 50 steps
λ = 0.0005
Correlation Value
x dimension 0.9996 0.9993 0.9986 0.9971 0.9948 0.9919
y dimension 0.9996 0.9993 0.9987 0.9971 0.9949 0.9916
z dimension 0.9997 0.9993 0.9988 0.9973 0.9952 0.9923
Error Correction
(# of corrections ) Failed Failed Failed Failed Failed Failed
FRR 0.0000 0.0000 0.0000 0.6667 0.0000 1.0000
FAR 0.2381 0.2571 0.2667 0.5238 0.3429 0.1619

Table 5.35: 3D Model Beetle- Impact of Smoothing on Voice Biometric Watermark
of Length 230 that Accommodates a Voice print of Size 75 (GMM order 3)

Smoothing 60steps 90 steps 150 steps 120 steps 200 steps
λ = 0.001
Correlation Value
x dimension 0.9985 0.9968 0.9908 0.9943 0.9834
y dimension 0.9983 0.9962 0.9897 0.9931 0.9815
z dimension 0.9980 0.9956 0.9877 0.9921 0.9778
Error Correction
(# of corrections ) Failed Failed Failed Failed Failed
FRR 0.0000 0.0000 0.0000 0.0000 1.0000
FAR 0.2381 0.1238 0.0571 0.1048 0.000

Due to a small value of λ Beetle could withstand a higher number of smoothing
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steps. Therefore, we increase the value of λ for the remaining models to test the

system tolerance at difference levels of Taubin smoothing.

Table 5.36: 3D Model Horse- Impact of Smoothing on Voice Biometric Watermark
of Length 765, Voiceprint size is 75 (GMM order 3), voiceprint is split into 3 equal
parts with each part having a codeword of size 255, the 3 codewords concatenate to
form the watermark)

Smoothing 2 step 3 steps 5 steps 8 steps 10 steps
λ = 0.0025
Correlation Value
x dimension 0.9979 0.9952 0.9870 0.9787 0.9496
y dimension 0.9986 0.9968 0.9914 0.9863 0.9680
z dimension 0.9980 0.9956 0.9878 0.9797 0.9509
Error Correction
(# of corrections ) Failed Failed Failed Failed Failed
FRR 0.0000 0.6667 0.6667 1.0000 1.0000
FAR 0.0095 0.0095 0.2341 0.1714 0.0000

Table 5.37: 3D Model Dinopet- Impact of Smoothing on Voice Biometric Watermark
of Length 1275 that Accommodates a Voiceprint of Size 75 (GMM order 3) that is
split into 5 parts with each part forming a codeword of size 255

Smoothing 3 step 5 steps 8 steps 10 steps 12 steps
λ = 0.005
Correlation Value
x dimension 0.9992 0.9978 0.9945 0.9915 0.9876
y dimension 0.9988 0.9965 0.9910 0.9859 0.9795
z dimension 0.9992 0.9978 0.9943 0.9913 0.9871
Error Correction
(# of corrections ) Failed Failed Failed Failed Failed
FRR 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.1905 0.1048 0.0190 0.0000 0.0000
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Table 5.38: 3D Model MaxPlanck- Impact of Smoothing on Voice Biometric Water-
mark of Length 510 that Accommodates a Voiceprint of Size 75 (GMM order 3) that
is split into 2 parts with each part forming a codeword of size 255

Smoothing 1 step 2 steps 3 steps 5 steps 8 steps
λ = 0.002
Correlation Value
x dimension 0.9975 0.9995 0.9604 0.8987 0.7599
y dimension 0.9983 0.9995 0.9227 0.7958 0.7596
z dimension 0.9951 0.9995 0.9487 0.7981 0.8145
Error Correction
(# of corrections ) Failed Failed Failed Failed Failed
FRR 0.0000 0.0000 1.0000 1.0000 1.0000
FAR 0.0347 0.0551 0.0000 0.0000 0.0000

Table 5.39: 3D Model Camel- Impact of Smoothing on Voice Biometric Watermark
of Length 765 that Accommodates Voiceprint of Size 75 (GMM order 3) split 3 times

Smoothing 5 step 10 steps 20 steps 35 steps 50 steps
λ = 0.005
Correlation Value
x dimension 0.9993 0.9993 0.9970 0.9910 0.9809
y dimension 0.9992 0.9992 0.9970 0.9900 0.9785
z dimension 0.9993 0.9993 0.9973 0.9913 0.9819
Error Correction
(# of corrections ) Failed Failed Failed Failed Failed
FRR 0.0000 0.0000 0.0000 0.0000 1.0000
FAR 0.3619 0.3619 0.2571 0.1333 0.0000

Table 5.40: 3D Model Armadillo- Impact of Smoothing on Voice Biometric Water-
mark of Length 6375 that Accommodates a Voiceprint of Size 75 (GMM order 3) split
25 times

Smoothing 10 step 30 steps 50 steps 60 steps 80 steps
λ = 0.005
Correlation Value
x dimension 0.9912 0.9831 0.9694 0.9287 0.9068
y dimension 0.9974 0.9745 0.9532 0.9485 0.9065
z dimension 0.9987 0.9990 0.9371 0.9583 0.9057
Error Correction
(# of corrections ) Failed Failed Failed Failed Failed
FRR 0.0000 0.0000 0.0000 0.0000 1.0000
FAR 0.2318 0.0672 0.1457 0.5761 0.0000
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5.3.1 Interpretation of Results

From the above experiments, the following conclusions can be drawn:

• The False Reject Rate of the system can be lowered by increasing the threshold

value. In addition to that, the higher the variability in the voice samples pro-

vided during enrollment and the higher the number of voice samples provided

by the user during enrollment the lower is the rate at which the system falsely

rejects a legitimate user.

• The False Accept Rate of the system can be improved by increasing the order of

the GMM, which in turn increases the size of the voice print thereby requiring

a 3D model to have an embedding capacity high enough to accommodate the

voice print with error correction encoding. The FAR can also be improved by

extracting 16 instead of 12 features (MFCC coefficients) from each frame of the

voice signal.

• The robustness of the system to attacks can be increased by increasing the level

of redundancy offered by the error correction routines for the voice print.
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Chapter 6

Summary and Discussion

6.1 Conclusions

This dissertation presents a novel approach to address the problem of piracy by em-

ploying a biometric watermarking scheme and proposes a client-server based DRM

framework that - i) offers content access to a legitimate user, ii) offers device porta-

bility, iii) offers restriction-free usage to consumers, iv) eliminates the traditional use

of licenses to govern the usage of the content, v) offers interoperability, and vi) deters

piracy to protect artists and artwork sellers from incurring losses. The proposed sys-

tem relies on the assumption that the user is willing to offer his voice samples to the

graphics distribution agency (which is considered as a reliable authority). Since con-

sumers are not accustomed to giving away their voice biometrics for desktop applica-

tions, user acceptance may seem to pose a barrier to adoption of the proposed system.

However, according to a market analysis report released by Opus Research [120], one

of the leading voice biometrics solutions provider, the global spending on speaker

verification solutions was over $124 million in the year 2009. A majority of this

spending came from high volume call centers at financial institutions, insurance com-

panies, healthcare firms, and telecommunication companies for customer verification

to prevent identity theft. Automatic speaker verification (ASV) systems are also pen-

etrating into the government sector (for verification of employee identity), residential

communities (to allow senior citizens access to apartments), online universities (to

verify identity of test taker), credit card firms (for transaction authorization using
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voice), and iPhone applications (to secure contacts list by using voice to authenticate

owner’s identity). As ASV systems penetrate further and further into the market

and begin to impact consumers, adoption of the proposed system will not be far from

reality. Figure 6.1 compares the features of our system with existing 3D multimedia

DRM systems. The work presented in this dissertation is a novel application as it

integrates a speaker verification system with a 3D watermarking system. Such in-

tegration has not been done for any kind of digital medium., therefore providing a

performance comparison is not feasible at this point.

Figure 6.1: Feature Based Comparison of Existing 3D DRM Solutions with The
Proposed System

The proposed DRM system can be adapted to support different digital con-

tent types such as documents, images, audio, and video. The proposed technique is

superior to a biometric authentication system [106] that could utilize a unique ID wa-

termark for tracing, because biometric-based sign-on procedure authenticates a user

to gain access to the system, subsequently enabling an authorized user to copy the

content out of the system and illegally redistribute it. In such cases, the unique ID

watermark serves as a means to identify the user responsible for piracy. However, if
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such a system were to employ a custom file format, illegitimate users could not gain

access to the system to consume the content without having access to the biometrics

of the authorized user, so piracy would still be deterred but legitimate users would be

restricted to that particular system and would not enjoy the feature of interoperabil-

ity. To the contrary, even though the proposed approach utilizes a custom file format

encrypted by a key, it supports interoperability because the custom format only serves

as a container for the watermarked graphics in order to enforce access control. The

watermarked graphics can be in any format. The custom format can be interpreted

by any 3D graphics software that has the DRM client installed. In case of piracy,

the biometric watermark travels with the graphics file and secures the graphics from

illegitimate access. The pirated graphics file is accessible to the illegitimate user only

if the authorized user who has leaked the graphics content, supplements the contents

with his biometric data. If the key is compromised and the contents of the custom

file format are decrypted, the access control mechanism is defeated and the biometric

watermark serves as a tracer. While the biometric watermark and the unique ID

both serve as tracers that assist in identifying the individual responsible for piracy,

a biometric watermark serves as a stronger deterrent to piracy than a unique ID.

This is because biometrics are a personal trait which not only give away the identity

of the user (such as face, fingerprint images) but can also be potentially misused by

illegitimate users. On the other hand, there are no such privacy issues associated

with a unique ID-based watermark, since the scope of a unique ID is just limited to

the context of the application. By making use of biometric data as a watermark, the

proposed approach benefits in two ways - authentication and tracing, wherein lies the

novelty of the approach.

This dissertation has also introduced a novel 3D model watermarking method

and evaluated the use of voice biometrics as watermarks for 3D models. The primary

focus of this work has been to test the verification accuracy of the biometric water-

marking scheme in scenarios when the watermarked 3D model is subject to signal

processing operations that potentially corrupt the embedded watermark. The exper-
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imental evaluation has examined and tuned several parameters for MFCC extraction

and Gaussian mixture models to generate a watermark of appropriate length such

that the payload size can be accommodated by the host 3D model without causing

any perceptible distortions. The proposed method is resistant against affine trans-

formations and mesh quantization since the watermark is embedded in the fourth

decimal place of the floating point representation of the 3D mesh. The algorithm is

immune to 20%-49% levels of noise and cropping attacks depending on the size of the

3D model. The algorithm has given good results for large size 3D models over 140

KB by verifying a user even after the watermarked model has been subject to higher

levels of noise and cropping attacks.

Analogous to speaker verification systems, our system also trades off verifica-

tion accuracy for user convenience by acquiring shorter durations of enrollment voice

samples. The FRR and FAR can be improved by increasing the duration of the train-

ing voice sample, adjusting the threshold value, increasing the order of the Gaussian

mixture model, and extracting higher number of cepstral coefficients as features. How-

ever, in application scenarios that demand high security of graphics content such as

the government officials transferring confidential information, the issue of acquiring

longer duration voice samples is eliminated as the high profile nature of the applica-

tion requires the sender/receiver to co-operate for generating robust voice prints.

6.2 Contributions

The main objective of this research is to assess the viability of using voice biometrics

as watermarks to verify user legitimacy. The main contribution of this dissertation

lies in integrating a biometric system with a 3D watermarking system and measuring

the performance of the aggregate system for feasibility in commercial or government

applications.

This dissertation has also proposed a biometric DRM solution to address the

key issues with current 3D graphics DRM implementations from two perspectives:

artwork owners rights and users rights. Our approach suggests a different view to
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the problem by employing a biometric watermarking scheme and presents a DRM

framework that offers device portability, fair usage to consumers and deters piracy to

protect sellers form incurring losses. The presented work has analyzed the need and

provided the architecture and design for a software-based DRM system that employs

biometric watermarking for legitimate user access control of 3D graphics. While

existing DRM solutions for audiovisual content cannot be applicable to 3D graphic

content due to the extendibility and edit-ability requirements for graphic files (as

opposed to just play-back requirement for music and movie content), the vice versa is

not true. The proposed solution can be adopted for audio and video content as well.

However, images and documents require system adaptations as these content types

also demand editability in most cases.

In addition, a novel 3D mesh model watermarking algorithm has been imple-

mented which is based on curvature estimation of local geometry. The algorithm has

shown improved embedding capacity (1.98KB-99.6KB entirely dependent on the size

and geometry of the model, with watermarking capacity ranging from 6% to 42% of

the model size) as compared to other curvature based algorithms. In addition, our

watermarking algorithm is also independent of the contents of the watermark to be

embedded, unlike most of the related work that relies on the binary value of the water-

mark to alter the host signal. This feature makes our algorithm flexible to accept any

content as watermark such as face or fingerprint templates, logos, images, text etc.

Moreover, our previous work [94] and our further research work on variations of the

proposed scheme [91, 92], different strategies [97] with improved embedding capacity

and enhancements of the algorithm [96, 98, 99] that cater to different watermarking

applications (owner identification and tamper proofing) have also been published.

6.3 Limitations

The system has not delivered good results for 3D models with size in the order

of tens of kilobytes, thereby demanding higher embedding capacity algorithms for

watermarking. The extendibility and edit-ability requirements for graphic files are
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not yet addressed by the system. Issues arising out of 3D graphics editability require

3D model segmentation based watermarking algorithms such that the watermark is

embedded in all segments of the model so that it can be propagated into extended or

edited versions of the original model. The system does not deal with analog attacks

to address reconstruction of 3D graphics from 2D renderings obtained through screen

capture of the graphics.

Limitations of the application include delaying the enrollment and verification

process if artist suffers from a cough or cold, since that alters the features extracted

from the voice sample. One of the major loopholes is that the system can be de-

feated by play backs of recorded voice of a genuine user speaking the predetermined

text (0-10 digits). This loophole can be overcome by incorporating a text-prompted

verification technique that does not rely on a predetermined phrase to be spoken by

the user and safeguard the system from spoofing attacks that use pre-recorded voice

samples of the pre-defined utterance from a genuine user.

The need for network access in order to decrypt the graphics content is an ad-

ditional drawback of the proposed DRM system. A desirable feature would be the

ability to authenticate and access user in offline situations. However, like any other

DRM solution, some features are traded-off for others while designing the proposed

solution. An offline system requires the keys to be stored locally on the consumer’s

PC, which if discovered by the consumer/adversary decrypts the packaged graph-

ics and defeats the DRM system’s access control mechanism. A client-server based

architecture is not only more secure in this aspect but also safeguards users from

compromised biometrics by deactivating old keys.

Practical realization of a biometric DRM system is far from reality unless a

biometric infrastructure is in place and consumers are more tuned to giving away

biometrics for all sorts of transactions/applications. When user’s are mandated to

give biometrics for transactions and access, then such systems will succeed. Therefore,

we believe that this work is one step ahead of time from creating an impact on the

commercial market. However, the proposed solution is appropriate for use in high
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security defense related scenarios that require strict access control of high profile

graphics, since thus far biometrics have been very successfully deployed in government

applications where individuals do not have a choice but to offer their biometrics.

6.4 Future Work

DRM systems limit access to only those consumers who have purchased a license to

use the content. No DRM system to date has been able to provide 100% security.

The attackers only have to succeed once to hack the system and distribute the illegal

copies on a large scale. Against such circumstances, it is not surprising that many

DRM systems have not succeeded. However, ongoing research attempts to counter

attacks and come up with improved techniques for dealing with piracy. The proposed

biometric based watermarking scheme in this dissertation paves the way for a DRM

system for 3D multimedia serving the purpose of preventing naive attackers from

bypassing such a DRM system, making it difficult and costly for skilled attackers to

compromise such a DRM system, and minimizes the scope of breaks. Tie ups with

popular 3D graphics creation software firms (similar to Digimarc’s partnering with

Adobe for protecting Photoshop images [47]) could be one way to address piracy

issues with 3D graphics files. However, considerable amount of effort is required to

build a secure and practical anti-piracy system that balances the needs of content

owners and consumers. Further research is not limited to, but includes more work or

decision making in the following areas:

1. An in-depth study of speech recognition systems to incorporate the feature of

prompting for a random spoken phrase to address spoofing attacks resulting

from using voice recordings of a legitimate user.

2. Dealing with analog attacks to address 3D graphics piracy arising from 2D

renderings obtained through screen capture of the graphics.

3. In the event that the proprietary format is hacked, it is necessary to integrate

anti-collusion codes into the watermark to deter collusion attacks. Collusion
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attacks are applicable when adversaries obtain several watermarked copies of a

particular media content and fuse all copies to remove traces of the watermark.

4. System renewability in case of error conditions is an important issue to be

addressed. System renewability arises in case of false rejection of legitimate

user due to intrinsic failure arising out of intra-user voiceprint variations, sensor

failure or incorrect interaction by the user with the system while acquiring the

biometric trait or adverse environmental conditions such as noise. Ongoing

research is directed at reducing the probability of intrinsic failure, by developing

invariant representation schemes and robust and efficient matching algorithms

and use of multiple biometrics. However, some challenging questions remain on

who assumes the liability if the user’s access has been revoked in error. Should

the system be allowed to recover after security has been compromised?

5. The embedded watermark should survive graphic file format conversions if the

DRM system is designed to be interoperable such that any 3D graphics creation

application can avail the same biometric enabled DRM plug-in.

6. Monitoring of illegal use to prohibit piracy by use of a tracking component that

has agents to search illegal graphics files in networking, and a logging component

that logs and sends certain messages to the tracking component

7. The system currently supports only personal use of files and must be extended to

feature organizational buyers by allowing multiple owners for the same content,

resellers for large organizations, and provisions for transfer of ownership.

Future work also entails research work on high embedding capacity algorithm to

improve the performance of the overall system for 3D models with size in the order

of tens of kilobytes. In addition, algorithmic enhancements are required to make the

watermarked model robust against a wider variety of attacks such as vertex reordering

(by storing the indexes of vertices in a hash table), mesh simplification (a common

operation on 3D model used to transmit a low resolutions of the model), and local
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manipulations (by using 3D object segmentation and embedding the watermark in

different segments). Accuracy of the system can be improved through the use of

multi-modal biometrics, such as fusion of face and voice, so that the FRR/FAR of

one biometric can be compensated by the use of a different biometric trait. Future

direction for this application would also involve protecting various other forms of dig-

ital multimedia such as audio, video and animations in addition to providing support

for other popular 3D graphic file formats other than the .off format such as .max,

.3ds. .blend, .lwo, .md2, .md3, and .x .
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