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ABSTRACT

Interactions between the hippocampus, parahippocampal regions and the
prefrontal cortex are thought to underlie the formation, consolidation, and retrieval of
short term memories and play an important role in the learning processes. To date, only
conceptual models have been offered to explain the potential interactions among these
regions, but their connectivity and synaptic regulation remain unknown. To better
understand sequential learning and decision making during spatial navigation, a large-
scale biological model was needed to further guide experimental studies. The results of a
putative entorhinal grid cell and hippocampal place cell circuit-level model was reported,
incorporating Hebbian learning, ion channels, and asynchronous background activity in
the context of recent in vivo findings showing specific intracellular-extracellular
precession disparities and place field destabilization by entorhinal lesioning. A more
complex model was then proposed by adding another hippocampal formation structure,
the subiculum, in a complete recurrent loop with the prefrontal cortex. The model
replicated some of the dynamics of the mammalian hippocampal-frontal loop
microcircuitry, including phase synchrony of prefrontal cells to hippocampal theta
oscillations. It also demonstrated short-term augmentation of navigational sequences,
decision making, and learning reinforcement. To demonstrate the computational model’s
functionality, a graphic environment with a navigating virtual mouse was created and
could be used for further real-time simulations. Finally, to refute or support the proposed
mechanisms of hippocampal-entorhinal dynamics, future experimental studies were
proposed to test the types of extrinsic connectivity between the entorhinal cortex and the

hippocampus and the intrinsic connectivity within the subiculum.
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CHAPTER 1: INTRODUCTION

Since the nineteenth century the research between localization and connection
among brain areas has led to thinking about cortical functions. The identification and
specific function of a particular brain region has become a central theme in neuroscience.
This complex organ appears to adhere to fundamental principles of functional
organization, integration, and specialization. The integration within and among
specialized areas is mediated by connections among them, but most extrinsic and intrinsic
connectivity and synaptic regulation are still unclear. One way to investigate the
biological basis of information processing in the brain is to study the response of neurons
to stimulation [33].

In this dissertation I try to comprehend the physiology of mammalian memory,
which requires a thorough understanding of circuit-specific interactions of medial
temporal neocortex and surrounding regions. A basic behavior shared by all mammals is
the task of navigating in a novel environment [46], which requires reliable short-term
landmark memory. During evolution, episodic and semantic memory in primates may
have co-opted this hippocampal navigational system for generic short-term memory as a
way-station to manipulation and long-term consolidation (and reconsolidation) in the
neocortex [22, 151], and possibly even to human creativity [6] and imagination [67].

Brain dynamics can be experimentally studied using implanted electrodes to
record the rates and timing of action potentials, but this invasive approach is generally
difficult or not possible in humans and/or freely moving animals. Many experiments are
also done on anesthetized rodents, but the activity at rest can be very different from that

in an active state. Good alternatives to studying brain functions, allowing the indirect



study of neuronal activity, have been developed, such as computational neural modeling.
However, to date, only conceptual models have been offered to explain the potential
interactions among different brain regions.

Therefore, 1 propose the first two comprehensive, spike-timing, circuit-specific
synaptic models: the first one of the hippocampal-entorhinal dynamics and the second
one with the addition of a closed-loop with the prefrontal system. Both may explain
some of the interactions among these different brain structures. The models suggest
essential mechanisms during computer-simulated rodent maze navigation, demonstrating
subthreshold brain dynamics consistent with recent in vivo recordings. They utilize recent
theoretical microcircuitry dynamics and established and achieved performance criteria,
based on the reported awake-behaving intracellular recordings and lesioning studies.
These circuit-specific mechanistic models are also framed so that predictions can be
biologically represented and experimentally tested.

The dissertation is structured as follows: Chapter 2 presents the relevance of this
research and background information on the field of neuroscience and computational
modeling, including a related literature review. Chapter 3 presents the body of a
manuscript published in the Journal of Frontiers of Neural Circuits in October 2010,
which describes hippocampal place cells and the associated entorhinal grid cell firing
during rodent maze computational navigation. Chapter 4 presents another manuscript that
is in the process of submission, which adds a hippocampal formation structure, the
subiculum, in a complete recurrent loop with the prefrontal cortex to accomplish short-

term memory and long-term consolidation of navigational sequences. Along with neural



models, related experimental studies are described in Chapter 5. Conclusions,

contributions to the field and a look into future directions are presented in Chapter 6.



CHAPTER 2: BACKGROUND AND SIGNIFICANCE

2.1. Neuroscience

Neuroscience is the scientific study of the entire nervous system. Since the 1960s
the number of neuroscientists has increased tremendously, and the scope of neuroscience
has broadened to include different approaches used to study the developmental,
structural, functional, evolutionary, computational, and medical aspects of the nervous
system. In research, the organisms mostly used are rodents. The rat, and even the mouse,
has the same basic components and major structures in its little, pecan-sized brain that we
humans have in our large cantaloupe-sized brain. In general terms, what we have learned
about the anatomy of its brain has been replicated by studies in higher mammals,
including humans. What is particularly important is that using laboratory rodents allows
us to control many variables. The related techniques have expanded enormously, from the
molecular biology of individual neurons to the electrophysiology of groups of nerve cells
and tissues. The study of computational neural networks has also led to recent theoretical
advances in the field. These combined approaches from many disciplines have helped
determine how parts of the brain actually work and how some complex processes occur
within a single neuron. However, how networks of neurons produce intellectual behavior,
cognition, emotion, and physiological responses is still poorly understood. Eric R. Kandel
said: “The task of neural science is to explain behavior in terms of the activities of the
brain. How does the brain marshal its millions of individual nerve cells to produce
behavior, and how are these cells influenced by the environment ... to understand the

biological basis of consciousness and the mental processes by which we perceive, act,



learn, and remember?” [93]. Crucial brain areas involved in memory and learning
mechanisms are at the heart of how the brain processes information [150]. A major
reason for investigating these complex dynamics that underlie behavior, memory, and
learning is not only to understand how the brain works, but also to have the basis for

understanding and treating neurologic disorders.

2.1.1. Fundamentals

A mammalian brain consists of many complex structures of which the neocortex
is of special focus in this study since it plays a key role in sensory perception, spatial
navigation, memory, attention and cognition [44, 60]. The neocortex is divided into four
different regions called frontal, parietal, occipital and temporal lobes, as shown in Figure
2.1, each of which contains crucial areas, which are defined to perform specific functions

(Please see Section 2.1.3 for details).

Figure 2.1: Neocortex: Lobes of the Brain (Modified from [133])



Nerve Cells or Neurons

A nerve cell or neuron is the basic component of the brain that processes and
transmits long distance information in the form of electrical and chemical signals. There
are three types of specialized neurons present in the brain. Afferent neurons receive
excitatory sensory stimuli from sensory organs and transmit them to the central nervous
system. Efferent neurons receive stimuli from the central nervous system and transmit
them to effector cells like motor neurons. Interneurons have connections between neurons
of the same region and most of them produce an inhibitory effect on connected neurons,
which suppresses signal propagation. More than 100 billion neurons can communicate
intercellularly in the brain; and these numerous, but sparse, connections result in highly
complex and intelligent neural networks. This communication consists of many extensive
branches called dendrites interacting with cell bodies called somas via axons. The
dendrites are responsible for receiving stimuli from neighboring excitable cells, and the
somas receive input from many of the dendrites. Any signals have to reach threshold and
cause firing (or an action potential) for the information to be transmitted. This process is
called integrate-and-fire [147], and this exchange of electrochemical information with

other neurons is carried out via axon-dendrite terminals with the help of synapses.

Membrane Potential and Action Potential

A resting membrane potential of about -60mV is maintained by the ion gradient
and selective permeability (or conductance). The ion concentrations directly measured in
a mammalian nerve cell is such that there are many more potassium ions (K") inside the

cell than out, and many more sodium (Na") and chloride (CI) ions outside than in. At



rest, the negative membrane potential results from a net efflux of K across neuronal
membranes. K concentration increases extracellularly due to a higher permeability of the
membrane to that specific ion. However, when information is transmitted, Na'ions flow
into the neuron and depolarize the membrane, which changes its permeability to these
specific ions. If the depolarization reaches a certain level (threshold), an action potential,
also known as a spike, will propagate from its point of initiation at the cell body to the

terminus of the axon where synaptic contacts are made.

Synapses

Communication and functional contact between neurons would not be possible
without synapses. Although there are many kinds of synapses within the human brain,
they can be divided into two general classes: electrical and chemical synapses. Electrical
synapses permit direct and passive flow of electrical current from the presynaptic element
of one neuron to the postsynaptic part of another neuron via paired channels and an
intracellular specialization called a gap junction. In chemical synapses, the change in
membrane potential caused by the arrival of the action potential leads to the opening of
voltage-gated calcium (Ca®") channels, which release neurotransmitters from the
presynaptic vesicles to postsynaptic receptors. Glutamate is the most important
transmitter in normal brain function. Nearly all excitatory neurons in the central nervous
system are glutamatergic, and over half of all brain synapses release this agent [147]. The
main types of glutamate receptors are NMDA (N-methyl-D-aspartate), AMPA (a-amino-
3-hydroxy-5-methyl-4-isoxazole-propionate) and kainate receptors. Most inhibitory

synapses in the brain use either y-aminobutyric acid (GABA) or glycine as



neurotransmitters. As many as a third of synapses in the brain use GABA as their
inhibitory neurotransmitter, which is most commonly found in local circuit interneurons

[147].

Channels

Channels are crucial to the flow of ions, thereby causing the activation or the
suppression of action potentials through the membrane. There are several types of
channels: Ca*" channels, K' channels, Na" channels, and CI channels. Ca*" channels are
found in every excitable cell [72]. These voltage-dependent Ca*" channels are involved in
regulating a wide range of neuronal activities, and they control Ca*" entry into cells in
response to membrane potential changes. Some require a high voltage to open, and they
are known as high-voltage activated (HVA) Ca>" channels. This distinguishes them from
low-voltage activated (LVA) Ca®" channels, which open at more negative potentials, as

shown in Figure 2.2.

current (nA)

0.2
potential (inV) 1
-80 -60 -40 -20
M % | i

Figure 2.2: Current-Voltage Relationship of HVA and LVA Ca’" Channels [39]



K" channels are the largest and most diverse superfamily of ion channels. They

are multimeric membrane proteins that share a high selectivity for K'. In the nervous

system, Ca”" activated K" channels (Kc,) are the most common, and their activation leads

to membrane hyperpolarization and cell shrinkage [165]. K¢, currents were shown to

underlie the after-hyperpolarization (AHP), that follows bursts or trains of action

potentials in the mammalian hippocampus, known as Kapp channels [2, 78, 155]. Figure

2.3 shows a decrease of neuronal excitability due K,pp channels effect.

UM

S

—

Figure 2.3: Kapp Channels Effect on Hippocampal Neuron Excitability [165]

Na' channels, especially non-inactivating or slowly inactivating sodium current,

have been found in mammalian neurons located in the neocortex, entorhinal cortex,

hippocampus, and also in human neocortical neurons [28].

Finally, CI" channels are prominent inhibitory nerve-nerve synapses. They play

major roles in intracellular pH and cell volume regulation, and in driving the secretion of

fluid from secretory glands and epithelia [72].
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All these different types of channels work together, but there is even more
specificity in the interaction of HVA channel types with AHPs with the firing behavior of
neocortical pyramidal neurons [145]. In our models, voltage-dependent Ca®* channels
(HVA and LVA) and Ca®" activated K channels (Kaup) were used. For further details on

neuroscience fundamentals readers are referred to Purves et al. (2004) [147].
2.1.2. Memory and Navigational Learning

Memory

Memory is the ability to store, retain, and recall information based on past
experiences. In recent decades, memory has become one of the principal pillars of a
branch of science called cognitive neuroscience. From an information processing
perspective, there are three main stages in the formation of memory: encoding, storage,
and retrieval. Encoding allows the information to be received and processed. The storage
in short-term memory generally allows retrieval (remembering) for a period of several
seconds to a minute without rehearsal, but the memory is not retained indefinitely. By
contrast, long-term memory can store much larger quantities of information for a
potentially unlimited duration, up to a life span. Long-term memory is divided into
declarative (explicit) and procedural (implicit) memories. Here, we concentrate more on
declarative memory, especially episodic, which concerns information specific to a
particular context, such as time and space. The hippocampus is essential for the
consolidation of information from short-term to long-term memory, without necessarily

storing information itself. On the other hand, the frontal lobe, especially the prefrontal
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cortex is crucial for short-term memory. Figure 2.4 represents an abstract representation
of memory.

In order to perform complex tasks such as reasoning, comprehending, and
learning, another form of memory has been identified as working memory. The tasks
associated are the goal-orientated active manipulation of behaviors in the face of
interfering processes and distractions, such as running through a maze to reach a reward.
The cognitive processes involved in working memory are the same as the executive and
attention control of short-term memory, but they tend to be longer in duration (on the
order of seconds). The main area of the brain responsible for this longer duration
working memory, especially spatial learning, is the hippocampus-prefrontal pathway [81,

176].

Encoding ) Permanent
Storage WOI'klrlg Memory
Retrieval Storage
Memory =

Short-term Long-term
Memory Memory

Environmental Reward
Input:

Landmarks Learning
Motor

Movement Response:
Left or Right Turn

Figure 2.4: Memory Representation
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Navigational Learning

Along with memory, spatial learning is navigating in an environment accurately.
A person going back home and a mouse running through a maze towards a piece of
cheese, both utilize visual landmarks for accurate orientation. Exploring an environment
and remembering the events that occur within it are crucial cognitive abilities that have
been linked to the hippocampus and parahippocampal regions [18]. In parallel, the
prefrontal cortex is thought to be critical for goal-directed action and learning
reinforcement [25]. Both the hippocampus and the prefrontal cortex of most organisms,
especially rodents, are important for information processing, including memory [45].
This, then, poses the question: how does learning occur?

In 1949 Donald Hebb proposed that ‘‘when an axon of cell A is near enough to
excite a cell B and repeatedly or persistently takes part in firing it, some growth processor
metabolic change takes place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased’’ [71]. This ‘neurophysiological postulate has since become a
central concept in neuroscience through a series of classic experiments demonstrating
Hebbian-like synaptic plasticity, including long-term potentiation (LTP) and depression
(LTD) in a large variety of systems [10].

Beyond the traditional correlation-based Hebbian plasticity, spike timing
dependent plasticity (STDP) opens up new avenues for understanding information coding
and circuit plasticity that depend on the precise timing of neural spikes [30]. The most
striking feature of STDP is the dependence on the temporal order of pre- and post-
spiking. Several studies have defined the critical windows for spike timing, which are on

the order of tens of milliseconds [24], as shown in Figure 2.5. In this example, each data
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point represents the relative change in the amplitude of evoked postsynaptic current after
repetitive application of pre- and post-synaptic spiking pairs (1 Hz for 60 s). Each fixed
spike timing A¢ is defined as the time interval between pre- and postsynaptic spiking
within each pair. Long-term potentiation (LTP, +) and depression (LTD, —) windows are

each fitted with an exponential function [10]:

where AW is the relative synaptic change, 4 is the spike timing window (in ms), and 7 is

the decay constant (in ms).

| _I— pre
_|— ___;_J — post

x 10° Critical Window for STDP

Change in EPSC Amplitude (%)

Time of Synaptic Input (ms)

Figure 2.5: Spike-Timing-Dependent Synaptic Plasticity

Depending on when a synapse's pre-synaptic spike occurs, there can be positive

learning (the synaptic strength is increased) or negative learning (the synaptic strength is
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decreased). A time window is placed around the resulting post-synaptic spike of a cell. If
the pre-synaptic spike occurs before the post-synaptic spike, it is in the positive learning
portion. If the pre-synaptic spike occurs after the post-synaptic spike, it is in the negative
learning window. Pre-synaptic spikes that occur at the same time as post-synaptic spikes
or outside either window result in no change to the synaptic strength. This important
concept of synaptic plasticity is known to be present in the hippocampus — prefrontal
pathway [108, 168] as a candidate for physiological mechanisms in learning and memory

[12].

2.1.3. Brain Areas and Functions

Many brain areas are known to play a role in short-term and long-term memory,
decision making, and spatial navigation and are pathologically involved in Alzheimer’s
disease, schizophrenia, drug addiction, and other neurological disorders. In this study, the
key is to understand some of the interactive dynamics among these different regions,
especially the medial temporal lobe (Please refer to the review Squire et al. (2004) [162]).
The visual cortex, hippocampal formation, entorhinal cortex, prefrontal cortex, and

premotor cortex are key regions to this study, and they are presented below.

Visual Cortex
The primary visual cortex is located in the occipital lobe where both the dorsal

and the ventral streams originate, as shown in Figure 2.6.
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Figure 2.6: Visual Cortex Representation

The dorsal stream sends information to the posterior parietal cortex. It is sometimes
called the "Where Pathway" or "How Pathway" and is associated with motion,
representation of object locations, and control of the eyes and arms. On the other hand,
the ventral stream transmits signals to the inferior temporal cortex. It is sometimes known
as the "What Pathway" and is associated with form recognition and object representation,
such as visual landmarks. It is known that rodents automatically learn the spatial
disposition of objects explored in an environment [146], and it is therefore possible that

this automatic spatial learning element contributes to the hippocampal activity changes

[1].

Hippocampal Formation
The hippocampus is a neural structure in the medial temporal lobe, as shown in

Figure 2.7 in grey.
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Figure 2.7: Location and Shape of Human Hippocampal Formation [38]

In rodents, the two hippocampi look similar to a pair of bananas. In primate brains,
including humans, the portion of the hippocampus near the base of the temporal lobe is
much broader than the part at the top, but their respective functions are comparable.

The importance of the hippocampus in spatial memory has long been recognized
[141], and hippocampal damage impairs memory for all types of relations [101]. The
most commonly studied relationship of navigational behavior and electrophysiology in
the hippocampus relates to the phenomena of place cells [138, 140, 141]. The
hippocampal formation allows for place recognition, and stores the set of places that can
accessed for any given position in the environment. Figure 2.8 shows the evolution of the
place fields of seven different cells as a mouse is repeatedly exposed to two different
environments, square or round. Hippocampal place fields are known to encode spatial
information using rate and temporal codes [139], and they strongly depend on visual

input changes in a local environment [98].
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Figure 2.8: Place Cell Representation [179]

Hippocampal systems exhibit several types of oscillatory behavior at different
frequencies, including theta (6-12 Hz), beta (12-30 Hz), and gamma (30-100 Hz)
oscillations [4, 23, 57], where some play a functional role in memory [137]. In a freely
moving rodent, these rhythms are all present and seem to be involved in memory
processing [126], but theta rhythms occur more during movement through space and is
crucial for temporal coding [21]. There is evidence that theta oscillations are travelling
waves that propagate predominantly along the hippocampus and other neocortical
regions. Therefore, time in the hippocampus, as clocked by theta oscillations, is
anatomically organized in a progression of local time zones [113]. Changes in the

frequency of theta activity are correlated with either the animal’s speed of movement
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through the environment [161] or the rapidity with which a movement is initiated [178].
However, the behavioral correlate of theta amplitude is still unclear.

Phase precession of extracellularly recorded action potential units, with respect to
that theta inhibition was originally discovered by O’Keefe and Recce [142] and then later
reproduced by other studies [92, 160]. Phase precession is when a neuron fires earlier
with respect to the local field potential (LFP) as the animal moves toward the center of
the place field. There is some evidence that an oscillation arises as interactions among
cell assemblies but is not due to a cell “pacemaker effect” [41]. More realistically, some
authors explain that theta phase is used as a gating mechanism for encoding and
retrieving information [120] and supports remembering the order of events [119]. Harris
et al. [65] reported an overall relationship between phase and rate in spikes recorded on a
linear track, and a similar relationship was seen in Huxter et al. studies [79].

Hippocampal formation is divided into four areas: dentate gyrus, two cornu
ammonis (CA1 and CA3), and subiculum.

Dentate gyrus, a tightly packed layer of small granule cells wrapped around the
end of the hippocampus proper, is actually a separate structure. Unlike many other areas,
it has not evolved by building connections with any other cortical regions [3]. Dentate
gyrus granule cells exhibit place sensitivity [91], and interneurons have a higher firing
rate in novel environments [135].

The CA areas are all filled with densely packed pyramidal cells similar to those
found in the neocortex. These CA regions are structured in clearly defined layers: stratum
oriens (SO), stratum pyramidale (SP), stratum radiatum (SR), and stratum lacunosum and

stratum molecular, often known as SLM. In the SO layer, the cell bodies of inhibitory
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basket cells target the proximal dendrites of pyramidal neurons. (For more detail about
each layer, please refer to the review [115]). It has been proposed that the distal dendritic
regions of CAl (SLM layer) may receive rhythmic synaptic excitatory inputs [177]
during theta oscillations. Whereas the somatic regions (SO and SP layers) may receive
synchronous hyperpolarizing input from interneuron networks [92], which could explain
the mechanisms of phase precession [105, 116]. Also, CA1 and CA3 neurons tend to fire
selectively on the type of task (encoding and retrieval of memory) [61], and their intrinsic
pathways can be modified by LTP during place representation [42]. Similarly, synaptic
plasticity can be induced at synapses connecting place cells [80], which supports the
evidence of STDP to trigger at recurrent synapses of both CA1 and CA3 networks [99].
Although most studies concentrate on LTP, LTD seems just as important in hippocampal
long-term memory [118].

The subiculum is known to be the major output of the hippocampal formation and
plays a role in short-term memory and decision making. It acts as a comparator, and its
task is to increase negative affective bias in all of the active and conflicting goal
processing areas until only one alternative is clearly dominant, as a winner-take-all role
[123, 134]. The subiculum is composed of at least two neuron types -strong bursting (SB)
and regular spiking (RS)- and one type of interneuron -fast spiking (FS)- where the
interconnectivity allows for local inhibition [124]. Their action potential bursting is said
to be driven by a Ca’" tail current [90].

These areas are crucial within the hippocampus and interact with each other, but
the major pathways of the signal through the hippocampus combine to form a loop with

the entorhinal and the prefrontal cortices [143].
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Entorhinal Cortex
Parahippocampal regions, including the entorhinal cortex is located in the medial
temporal lobe, adjacent to the hippocampus, as shown in Figure 2.9 in pink.

Parahippocampal/
Postrhinal cortex

" Hippocampus
Perirhinal Cortex

Figure 2.9: Location and Shape of Human Entorhinal Cortex [38]

The important role of the entorhinal cortex in memory and navigation has long been
understood, with two main superficial layers, II and III. Recently, entorhinal grid cells
were reported as part of a generalized path-integration-based map of the spatial
environment in rats [63, 153]. Their firing pattern spans the environment in a remarkably
regular triangular or hexagonal pattern [51] and is thought to play a crucial function on
the spatially confined activity of hippocampal place fields [34, 52, 63, 131, 170]. As
depicted in Figure 2.10, firing fields of simultaneously recorded cells from the layer III of
the entorhinal cortex are shown. Each row represents one cell, and each pair of columns
represents one trial. The left side of each column shows the trajectory with superimposed
spikes (red), and the right side shows the corresponding color-coded rate map (red: peak

rate; blue: zero; white: regions not visited).
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Figure 2.10: Grid Cell Firing Patterns [52]

There is also evidence for grid-cell-like representations in humans and for their
implication in a specific type of neural representation in a network of regions which
supports spatial cognition and also autobiographical memory [37]. These recent
discoveries have described the basic properties of grid cells, but the neuronal mechanisms
responsible for the formation and maintenance of the place code and the modulation of

entorhinal grid cells on hippocampal place cells remain unclear [171].

Prefrontal Cortex
The prefrontal cortex is the anterior part of the frontal lobe of the brain, as shown

in Figure 2.11 in cyan.
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Figure 2.11: Frontal Cortex Representation

The well-known role of the prefrontal cortex is its executive functions, such as working
toward a defined goal, the prediction of outcomes, and more specifically, spatial working
memory [32]. Learning-induced changes in functional activity in prefrontal neurons
provide crucial evidence for the notion that memories are stored in the brain by altering
patterns of synaptic strengths (short-term augmentation) among coactivated neurons [5].
Also, LTP can be induced in the medial prefrontal cortex through stimulation of
hippocampal CA regions, especially CA1 [84, 107, 108]. Furthermore, studies have
shown cooperativity between hippocampal-prefrontal short-term and long-term plasticity

[40, 94].

Premotor Cortex

The premotor cortex is an area of the motor cortex lying within the frontal lobe of
the brain (Figure 2.11 in yellow) between the prefrontal cortex (cyan) and the primary
motor cortex (pink), which serves as the posterior border for the prefrontal cortex. Any
activity within this region is critical to the sensory guidance of movement and control of

proximal and trunk muscles of the body.
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Projections to and from these structures and their respective connectivity of
neurons are well studied. Even though there are still a lot of unknowns, any new

anatomical and physiological information is crucial to the field.

2.1.4. Recent In Vivo and Lesioning Studies

In information processing, sequential activity of cortical networks may allow for
serial execution of multiple steps [114]. When rapid, one-trial, learning of a novel place
is required, the hippocampus is essential for effective performance but the hippocampus
is not absolutely required after incremental learning even if the tasks are performed much
more slowly [7]. This suggests that the need of interactions from other neocortical
regions, such as the entorhinal cortex and/or the prefrontal cortex, is necessary for
comparable performance.

Lesions of CA1 and CA3 regions of the hippocampus, especially dorsal portions
seem to disturb temporal pattern of spatial sequence processes [75, 109]. Within CA
regions, the proximal portions of CA1 pyramidal neurons (the soma) receive a rhythmic
5-10 Hz input from the inhibitory basket cell and axo-axonic cell network. In parallel, the
dendrites receive a relatively sparse, but nevertheless potentially effective, input from the
bistratified and O-LM (oriens-lacunosum moleculare) interneuron populations that is
180° out of phase with the axo-axonic and basket cell input [97]. Figure 2.12 (a) shows
somatic recording (red) obtained as a 10 Hz sine wave was injected in the soma (blue),
and a random pattern of EPSC-shaped currents of increasing intensity was

simultaneously injected through a dendritic electrode (b).
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Figure 2.12: Simultaneous Somatic-Dendritic Recordings [54]

Several studies have suggested a direct entorhinal-hippocampal circuitry during
spatial recognition tasks [16], representing spatial-memory processes [132], especially
long-term consolidation [149]. Figure 2.13 shows direct projections from entorhinal layer
II to CA3, and from layer III and perforant path (PP) to CA1, which are responsible for

hippocampal spatial firing [15].

Figure 2.13: Hippocampal-Entorhinal Pathways (Modified from [38])
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Insight into this relationship was provided by subsequent lesioning results of Van Cauter
et al. (2008) [170], demonstrating that entorhinal cell populations are responsible for
stabilizing place fields in several ways via layer-specific direct projections to
hippocampal CA regions, as shown in Figure 2.14. Figure 2.14 on the left gives the areas
of the brain that were lesioned. CONT rats were the control groups, which showed the
activity of hippocampal cells stabilized in one area. On the other, ENTO rats were the
animals which underwent entorhinal lesioning. In this case, hippocampal cells tended to
fire at random areas. The table in Figure 2.14 summarized the number of active cells and
the in-field mean firing rate in Hz of both the CONT and ENTO groups. CONT rats had a
lower number of active cells, which had higher firing rates; ENTO rats had a higher
number of active cells, but lower firing rates.
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ENTO RS 1.70 £ 0.15

Figure 2.14: Hippocampal Place Fields Modulated by the Entorhinal Cortex
(Modified from [170])
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In parallel to these lesion studies, the first recordings done in freely moving
animals were achieved by Harvey et al. (2009) [66]. This most recent and relevant
awake-behaving measurements correlated extracellular with intracellular CA1 neuronal
physiology during navigation. This confirmed extracellularly measured theta phase
precession but showed that precession does not occur with respect to intracellular theta.
Figure 2.15 shows raw (left) and filtered (6—10 Hz, right) membrane potential and LFP
traces in the place field from a simultaneous LFP and whole-cell recording. The times of
LFP theta peaks (vertical grey lines), intracellular theta peaks (circles), and spikes
(crosses) are shown to illustrate the phase precession of spikes and intracellular theta
relative to LFP theta oscillations and the absence of phase precession of spikes relative to
intracellular theta oscillations. Rather, higher frequency of intracellular theta toward the
center of the place fields explains this disparity. These authors also observed asymmetric
subthreshold, ramp-like depolarization but could not explain this behavior using their

proposed model.
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Figure 2.15: Membrane Potential Theta Oscillations in Place Cells [66]
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Along with this hippocampal-entorhinal relationship, the medial prefrontal cortex
receives profuse projections from the hippocampus [83] to mediate the formation of
executive matter. These connections are important for spatial awareness, working
memory and motivation [77], and goal-based memory task [110]. During reward
expectation, the anticipatory activity in the prefrontal cortex is dependent on similar
activity in the hippocampus [19]. Similarly, lesions in the prefrontal cortex show a
change in sensitivity in hippocampal place cell firing [106]. There is also evidence of a
feedback loop between the two structures, which seems to play a role in synaptic
plasticity, and consequently memory [176] and dynamic goal-directed behavior [53].
Therefore, both the hippocampus and the prefrontal cortex are necessary for a
biconditional paired-associate task [111]. Also, the main connective flow departs from
prefrontal areas and proceeds through premotor cortex toward a primary motor
processing area [50].

Finally, the comparison of hippocampal theta amplitude, phase, and frequency
(synchronization) to prefrontal theta rhythms has been examined during the performance
of a task requiring working memory [159]. Signals are processed and transmitted to other
areas, possibly supported by the emergence of highly synchronized activations of cell
groups or cell assemblies representing an effective input from afferent structures [49].
Within individual brain areas, oscillations can synchronize neurons and create coherent
cell assemblies [64]. For instance, human medial prefrontal oscillations have been linked
to decision making [26], and hippocampal theta can synchronize medial prefrontal
activity during learning [144, 158], depending on task demands [88]. Overall, there is

evidence of a strong coherence between hippocampal and prefrontal thetas during
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learning [9, 156, 159], but the mechanism is not known by which this form of learning-
related coherence or cell assemblies is tightly synchronized.

Experimental studies are essential to the research in neuroscience. For a detailed
review on lesion and neuroimaging evidence on the role of the hippocampus, and other
structures in relation with episodic, semantic and spatial memory, please refer to
Moscovitch et al. (2005) [129]. Experimentally, cognitive processing that involves signal
propagation through multiple regions and the activation of large numbers of specific
neurons cannot always be researched. Therefore, computational approaches are useful for

studying the nature and mechanisms of this phenomenon.

2.2. Computational Neural Modeling

Computational neuroscience is the study of brain function in terms of information
processing properties, and it emphasizes descriptions of functional and biologically
realistic neurons (and neural systems) and their physiology and dynamics. These models
capture the essential features of the biological system at multiple spatial-temporal scales,
from membrane currents and protein and chemical coupling to network oscillations,
columnar and topographic architecture, and learning and memory. To date, the growing
experimental evidence that spike timing may be important to explain neural computations
has motivated the use of spiking neuron models, rather than the traditional rate-based

models [14].

2.2.1. Different Types of Networks of Spiking Neurons
Although spiking neural models have encountered problems due to large numbers

of active neurons they still propose important mechanisms that generally provide a
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theoretical understanding relating brain to behavior. They often require the use of
detailed biophysical representations of the neurons, which can be accomplished by
conductance-based (COBA) models, such as the Hodgkin and Huxley type or current-

based (CUBA), as shown in Figure 2.16.
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Figure 2.16: Difference of Activity of the CUBA and COBA Models [174]

These computational models include the relation of voltage-dependent ion
channels to the propagation of action potentials [76]. In other cases, if the realistic
capture of the spike generating mechanisms is not needed, simpler models, such as the
integrate-and-fire model, are sufficient. These models are also fast to simulate and are
particularly attractive for large-scale network simulations. Some models can combine
more than one strategy, which can make the simulation more efficient. A large number of

different tools have been developed to allow the simulation of spiking neural networks.

2.2.2. Simulation Tools
In computational modeling of spiking neurons, there are a variety of well-known

existing tools. We review the main available tools in this section.
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NEURON

The development of NEURON was started by John W. Moore and Michael Hines
at Duke University [73]. NEURON is a nerve simulation program used for modeling
single neurons in high levels of detail by implementing the concept of sections. It has
been applied to the study of large networks of neurons, in which cable properties of cells
play an important role, possibly including extracellular potential close to the membrane,
and where cell membrane properties are complex, involving many ion-specific channels

and ion accumulation [74].

GENESIS (General Neural Simulation System)

The GENESIS project began at California Institute of Technology by James M.
Bower. It was originally utilized for the simulation of large networks for the realistic
modeling of neural and biological systems. This simulator provides modelers the ability
to change and reuse discrete components without having to change unassociated code.
GENESIS also offers a parallel simulation environment allowing to model over

networked workstations, a parallel cluster or supercomputer [13].

NEST (Neural Simulation Tool)

NEST was created by Markus Diesmann and Mark D. Gewaltig to help extend
neural simulator development. It is ideally suited for simulations of large networks
consisting of point neurons and architecture with minimal compartments, and is
employed in studies interested in the dynamics of neural structures [36]. The

development of efficient parallelization methods and integration techniques, such as the
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efficient incorporation of precise spike times in globally time-driven simulations, is

achieved by a combination of multi-threading and message passing [35].

2.2.3. NeoCortical Simulator (NCS)

Because parallel architectures and the degree of neuronal compartmental
simplification required for reasonable performance times had not been achieved yet, the
NCS was developed at the Brain Computation Lab at the University of Nevada, Reno to
optimize the modeling of the horizontally dispersed, vertically layered distribution of
neuron parameters of the mammalian neocortex with detailed synaptic plasticity and
connectivity.

In this study, all simulations were performed using NCS [14, 43, 95, 180, 184] on
a shared-memory three 16-processor Sun 4600. All models included leaky integrate-and-
fire neurons with conductance-based synapses with a sampling frequency of 1,000 Hz per
second, where each integrate-and-fire neuron is characterized by a membrane time
constant of 20 ms, a membrane resistance of 100 M€, and a resting membrane potential
of -60 mV. Whenever the membrane potential crosses the spiking threshold of -50 mV,
an action potential is generated, and the membrane potential is reset to the resting
potential where it remains clamped for a 5 ms refractory period. At a single cell level
NCS solves a limited and slightly reordered form of the Hodgkin-Huxley model that is
similar to the following equation. However, during the numerical integration a constant

membrane leak is added.
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Both 7, and I4up contribute to the membrane voltage by controlling spike-frequency
adaptation. These are small ionic currents that have long period of activity when the
membrane voltage is between rest and threshold. Ik is the transient outward potassium
current. In this study, Zzp is the current provided by small spike-adaptation contributing
channel. These represent voltage independent K™ channels that are regulated by internal

Ca®", where the charge delivered after each time step is updated as:

Iypp = gAHPsmP (Egup —=V) A3)

where § is a non-dimensional strength variable added to NCS and P is the power that the

activation variable m is raised to. This Kapp m particle is modeled as:

dm me-—m
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where €1is the scale factor, b is the backwards rate constant, and f(Ca) is the forward rate

constant defined by:
f(Ca) = k[Cal} @)

where a is the exponential factor.
NCS can calculate internal Ca®" concentrations at the compartment level. Physiologically,
the concentration inside a cell increases when an action potential fires. After the action

potential has ended the internal concentration of Ca*" will diffuse through the cell where
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it is taken up by numerous physiological buffers. In NCS, this diffusion/buffering
phenomenon is modeled by a simple decay equation defined by:

d
[cali (e +1) = [caly®) (1 - =) ®

Tca

where dt is the stimulation time step, and 7¢, is the defined time constant for the Ca

decay.

The synaptic currents are calculated by:
Isyn = gsynPSG (t)(Esyn - V) )

The leakage current is voltage-independent and is modeled by:

Leak = GreakV — Ejear) (10)

The leakage current is subtracted in the membrane voltage equation rather than added, as
seen in the traditional membrane voltage equations.

Linpue 1s 1njected from external input at times appropriate for igniting networks, and
I, includes excitatory and inhibitory afferents neurons. Reversal potentials are £ pp = -
80 mV, E,,, = 0 mV for excitatory and -80 mV for inhibitory synapses, and E,.,; = -60

mV (resting membrane). Synaptic conductances (g) are modeled as:

dg
TSE =—g (11)

g < g + w; upon spike arriving at synapse i

with post-synaptic conductance time constants of 5 ms (excitatory) and 10 ms (inhibitory)

[14]. W;represents the synaptic weight that arrives at synapse i.
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In vivo mammalian recordings, a self-sustaining non-Poissonian bimodal firing is
observed [127]. NCS is able to simulate this asynchronous background activity using the
baseline parameters including the inhibition of the inhibition, sparse connectivity (3%
among all cells) among an approximately 4:1 ratio of excitatory to inhibitory neurons
with 10-fold greater inhibitory than excitatory conductance [17, 56, 102, 172, 174]. Self-
sustained firing activity is achieved by a brief irregular external input. The resultant firing
pattern of any given cell is irregular, with periods of higher firing rates separated by
generally longer periods of low inactivity. Because the cells fire asynchronously with
respect to one another, we refer to this as “recurrent asynchronous irregular non- linear”
(RAIN) activity, as shown in Figure 2.17. This RAIN network uses 1,300 excitatory cells
for 300 inhibitory cells with 3% connectivity and synaptic conductances G, and G
(Figure 2.17 A) where a sample of the activity is shown in Figure 2.17 B. (Membrane
potential: green; mean rate: blue). The corresponding supra-Poissonian coefficient of
variation (typically 30-50% greater than a Poisson spiking process), the wide range of
RAIN firing rates of 2-60 Hz with mean rate of 14.8 Hz, and the bimodal distribution of

firing (n = 50 cells) are represented in Figure 2.17 C-E.
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Figure 2.17: Recurrent Asynchronous Irregular Non-linear (RAIN) Activity

NCS can use two kinds of learning, Hebbian and synaptic facilitation depression (SFD).

Here, Hebbian learning is considered for a long-term learning where SFD is more

replicating short-term learning, which decay over time.

2.2.4. Theoretical Models

The use of computational models has been invaluable for exploring the link

between neurons and behavior, enabling hypothetical mechanisms to be defined precisely

and examined quantitatively [4]. Some models have focused on the hippocampal area,

especially CA1 and CA3. Menschik and Finkel (1998) [125] advanced a network model

of hippocampal CA3 region dynamics inspired by Buzsaki’s two-stage memory model

[20]. Lisman and colleagues concentrated more on gamma cycles embedded within theta



36

rhythm [112]. Kunec ef al. (2005) [103] modeled a detailed CA3 representation using the
major type of pyramidal cells and two types of interneurons, and Cutsuridis et al. (2009)
[29] recently advanced a far more detailed biophysical model of the CA1 microcircuit.
Wu et al. (2010) [182] worked on the coupling of dendritic with the soma—axonal action
potential initiation zone of CA1 pyramidal cells. Finally, an integrate-and-fire model of
short buffering was used to simulate performance in hippocampus-dependent spatial
navigation tasks [69, 100].

Other models have proposed an explanation for grid cell interference [11] and
grid cell firing phenomena [57, 58, 68], but most classes of theoretical models have been
offered to explain place cells and grid cell effects. McNaughton et al. (2006) [122]
proposed a topographically arranged network that serves as a tutor to train medial
entorhinal cortex cell modules. Other local-network models, Gaussier et al. (2007) [55]
and Samu et al. (2009) [152] proposed that stabilization of hippocampal place cells is due
to the combination of modulo projections from entorhinal grid cells and visual place
cells. Another class of models is based on the hypothesis that path integration occurs at
the single cell level and is related to phase precession [130]. In particular, Tsodyks et al.
(1996) [169] proposed a neural network model based on integrate-and-fire neurons that
accounts for phase precession.

A rich set of experimental data has been gathered from computational models on
the neural representation of spatial behavior found in and around the hippocampus.
However, the interactions between place cells and grid cells, their individual and
interactive mechanisms, their significance for memory storage, and their dynamics with

representations in other cortical regions remain to be determined [130]. Also, the
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complete hippocampal-entorhinal-prefrontal loop has yet to be successfully modeled to
provide more understanding of these microcircuitry dynamics.

Therefore, the first model presented in this study (covered in Chapter 3) was used
to understand hippocampal and entorhinal cell interactions, specific intracellular-
extracellular precession disparities and place field destabilization by entorhinal lesioning.
The corresponding input files used are summarized in Appendix A. The second model
(covered in Chapter 4) completed the loop with the prefrontal cortex, replicating phase
synchrony of prefrontal cells to hippocampal theta oscillations, and demonstrating short-
term memory of navigational sequences, decision making, and learning reinforcement.
The corresponding input files used are summarized in Appendix B. Ultimately, these
computational models are used to frame hypotheses that can be directly tested by future
biological experiments. The corresponding fundamentals in brain slice experiments are
presented in Chapter 5, and future recording experiments are suggested as future work in

Chapter 6.

2.3. Relevant Experimental Studies

After important hypotheses are defined through computational modeling, there are
several assumptions that could be tested in experimental studies. For instance, the
mechanisms of hippocampal dynamics modulating influences of entorhinal cortex could
lead to interesting findings in the field. Experiments may include exploring the types of
extrinsic connectivity between the two structures, or the intrinsic connectivity within the
hippocampus, especially in the subiculum. A hippocampal slice study presented fast

synaptic activation of hippocampal interneurons by afferents subcortical neurons [173].
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Few other studies have tried to combine in vitro hippocampal and parahippocampal slices
[8, 148, 163, 166, 167, 175] in rats. However, such studies on mice are not available due
to the difficulty of preparing a smaller brain, slicing it accordingly, and getting relevant
recording data. Our experiments have revealed fundamental procedures to make studies

on mice more feasible.

2.3.1. Brain Removal

The fastest and easiest way of animal execution is by decapitation, although
alternatively halothane (for anesthesia) or CO, (suffocation) could be employed. These
last two methods are not recommended because they take more time and could produce
some neuronal damage prior to the brain removal. Once the animal is decapitated, the
skull is removed with scissors, cutting along the sagital axis from the caudal (posterior) to
the rostral (anterior) part and then opening the two skull pieces laterally. For shelling out
the brain, slide the forceps or the scissors in the caudal part, and remove the whole organ
backwards. The process of brain removal should be gently accomplished, but as fast as
possible [157]. Once the brain is removed from the skull, place it rapidly into oxygenated
ice-cold (4°C, 95% O - 5% COy) artificial cerebrospinal fluid (ACSF) containing KCl,
NaCl, NaHCOs, glucose, MgCl,, and CaCl, (Please see specific concentrations in Section
5.1.1). This solution should be sufficiently cold that it contains a few ice crystals, and the
container should be sitting on ice to maintain this low temperature. Immediately after a

short incubation time in cold ACSF, the brain is ready for slicing [104].
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2.3.2. Brain Slice

To reduce damage of the tissue and to minimize the metabolic activity, it is
particularly important to keep the brain immersed in iced-cold ACSF during the whole
slicing process. Despite the many different procedures employed for brain slicing, the
main goal is to prepare a slice of tissue where the neurons, fibers, and synapses that are
important to the experiment are in a viable condition.

The slicing is usually done using a vibratome. The vibration frequency (usually
near the maximum of 85 Hz) and the slicing speed of the blade should be adjusted to
prevent the tissue from being pushed while cutting the slices. The angle is critical to
obtaining the right brain regions that are important to the study [89]. Slicing should be
accomplished in less than 10 minutes. The brain slices are carefully taken using a cut and
fire polished Pasteur pipette filled with the ice-cold solution. The slices are then
incubated at a temperature of around 36°C for at least 1 hour. Oxygenation and normal
pH are maintained by bubbling the ACSF with 95% O, - 5% CO,. This allows the tissue
to recover from the damage imposed by the preparation and adjust to the new extra
cellular milieu as well as to change metabolic activity before recordings.

The animals used in preparing slices are most often small rodents. Young animals
have some advantages for the slice preparation: their skulls are soft, and therefore easier
to remove, and their brain is smaller and cools more rapidly when placed in ice-cold
solution. On the other hand, older animals’ tissue is more susceptible to anoxia, and the
neuronal damage is higher as time goes by. More myelination and the presence of more
connective tissue may result in more damage to the cells. Slices can vary from 400 pm to

1-2 mm in thickness, but thin slices allow a greater optical resolution due to smaller
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effect from light scattering. Thicker slices exhibit centrally-located necrotic cells that

are suggestive of hypoxic damage. A standard slice is cut at 300-400 pm thickness.

2.3.3. Patch Clamp Recording

The cells and parts of the dendrites can be visualized using a 40 X high numerical
aperture, long working distance water immersion objective. There are different types of
patch clamping, such as multiple electrodes, whole-cell or cell-attached recordings. The
chosen method and the assessment of electrical parameters of slices depend on the type of
experiments and the characteristics of the particular cells within the tissue, respectively.
The basic indicators include resting membrane potential, input resistance, and amplitude
of the action potential. More sensitive measures include the ability of the cells to produce
a regular, rhythmic train of action potentials after the injection of a small current.
Damaged neurons will often respond with a single action potential at the onset of the
current pulse. In addition to direct cellular parameters, amplitudes of extracellular fields
reflect the synaptic action and are convenient for assessing the overall state of a slice or at
least of small regions within a slice [164]. Table 1 describes the advantages and

disadvantages of brain slice experiments.

Advantages Disadvantages
Direct visualization Loss of connectivity
Technical accessibility Damage of neurons
Mechanical stability Tissue debris mixed with healthy cells
Ease of use Altered metabolic state
Control of extracellular medium Slow release of ions from damaged cells

Table 2.1: Advantages and Disadvantages of Brain Slice Experiments




Despite these few studies and guidelines regarding hippocampal-entorhinal brain slices,
there is still a lot to discover about optimal slicing and recording techniques and the

interconnectivity between and within brain regions.
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CHAPTER 3: HIPPOCAMPAL PLACE FIELD DYNAMICS MODULATED BY
ENTORHINAL GRID AND SUPPRESSION-GENERATING CELLS

This model represents hippocampal-entorhinal dynamics during spatial navigation on a
linear track, passing visual landmarks (VL). A summary of the input files used are

located in Appendix A.

3.1. Material and Methods

3.1.1. Navigational Paradigm

To replicate the virtual linear maze of Harvey et al. (2009) [66], we developed a
computational system representing a navigating rodent (Figure 3.1). The animal is
assumed to have been trained to run with minimal hesitation along a 180-centimeter
linear track, passing en route five visual landmarks demarcating an environment we refer
to as VL1 to VLS. Each VL represents potential place field activity (45 centimeters long),
modeled as a two-second Gaussian distribution of spike probability along an assumed
occipital-parietal-temporal axonal pathway terminating in CA regions of the
hippocampus. Consistent with the experimental findings [66], VL overlap is 37%, the
total duration of the run is eight seconds, and the average speed of the animal is 22.5
cm/s. Three consecutive passes through the maze were analyzed for each experimental
condition (an additional fourth pass was simulated, but no changes in dynamics were

observed beyond three passes).
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Figure 3.1: Simulated Navigational Environment

3.1.2. Computational Brain Model Implementation

The hippocampal model included a total of 37,500 leaky integrate-and-fire
neurons. Pyramidal cells were represented as quasi-bicompartmental [82] neurons by the
inclusion of a population of single-compartment apical tuft cells that connect to the
pyramidal somatic compartment. In the soma, each of five place-field RAIN subnetworks
included 3,200 neurons, comprised of 2,600 pyramidal and 600 single-compartment
interneurons. We hypothesized that grid cell activation at place-field boundaries followed
by visual-parietal input should trigger self-sustained, asynchronous background activity
limited to the place field, which was achieved by a 300 ms irregular input into these

RAIN networks. To generate theta activity, a 1,600-cell RAIN network was weakly
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connected (0.23%, one E to E group) to a 1,600-cell RAIN network whose excitatory
cells contain Kayp channel activity the latter oscillates at 6-10 Hertz oscillation with
variability that appears biologically plausible (Figure 3.2). These oscillating networks
represented synchronized BC activity, with connections to pyramidal and OLM cells as
described in Section 3.2.1.1., allowing us to mix incoming VL excitatory activity with

anti-phase theta inhibitory activity in the distal tuft, independent of somatic currents.
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Figure 3.2: Biological-Like Theta Activity

Excitatory synapses among pyramidal cells (CA RAIN networks) included Kapp
channels and underwent STDP (See Sections 2.1.1 and 2.1.2). Kapp channels had a scale
factor of € =0.000125, an exponential factor of a = 2, a half-min of b = 2.5, a tau scale
factor of 0.01, and a unitary channel strength of 0.00044. STDP had positive and negative
fractional changes in synaptic strength (4W) of 0.003, with positive window (+A4) of 50
ms and negative window (-4) of 90 ms, and with positive decay constant (+7) of 15 ms
and negative decay constant (-7) of 30 ms [30]. External inputs were injected at times
appropriate for igniting the RAIN networks and activating grid cells and VL pathways

(Figure 3.3).
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3.1.3. Analytic and Statistical Methods

We established specific performance criteria with respect to the published awake-
behaving intracellular recordings of Harvey et al. (H) and the entorhinal cortical lesions
of Van Cauter et al. (V):

HI1: Intracellular theta oscillations increase in amplitude toward the center of the place
field.

H2: Asymmetric ramp-like depolarization of the DC-filtered baseline membrane
potential occurs.

H3: Spike precession relative to extracellular LFP theta is associated with increased
frequency of intracellular theta.

V1: Entorhinal cells regulate the location of place fields.
V2: Entorhinal lesions reduce place cell discharge firing rates by about a fourth and

approximately double the number of active place cells responding in a given place
field.

Frequency of Intracellular Theta

We filtered inhibitory LFP and somatic Vm using Matlab firl (finite impulse
response) notch-filtering from 6 to 10 Hz (Figure 3.5 A). Extracellular LFP theta was
measured two seconds before entering and during each place field. To determine whether
our findings were consistent with the rising intracellular theta frequency reported by
Harvey et al. (2009) [66], we fit the sequence of filtered intracellular inter-theta peak
intervals using locally weighted least squares regression (LOWESS) (Figure 3.5 B) for
display purposes and statistically compared the mean frequency of theta oscillations

during the central third with the first and last thirds of each field (Figure 3.5 C).
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Spectral Analysis of Intracellular Membrane Potential

We analyzed theta power spectra for epochs inside and outside of the place field
using multi-taper spectral analysis methods (function mtspecgramc from the Chronux
toolbox, http://chronux.org, Figure 3.6 A). We also calculated the ratio of power during

epochs inside to outside the place field for bands from 6-10 Hz (Figure 3.6 B).

Membrane Potential Depolarization Inside Place Fields

We obtained low frequency Vm during the place field tracings using notch-
filtering from 1 to 2 Hz (Figure 3.7 B). We defined the baseline membrane potential as
the low frequency mean just prior to entering the place field and subtracted this from the
in-field membrane potential values to derive the ramp AV. From this, we computed the
magnitude and, to estimate asymmetry, the timing of the peak ramp AV with respect to its

location in the place field (Figure 3.7 C).

Spike Precession with respect to LFP

To analyze phase precession, we computed spike timing with respect to LFP theta
phase within the place field (Figure 3.8 A). All cells with increasing mean ramp AV in
the place field were included. For the phase versus position distribution, we first
computed its outer hull; to that curve we fit a non-linear parabolic curve to obtain
parameters estimating the phase and timing of the phase of greatest precession (Figure
3.8 B). From this, we computed the magnitude and, to estimate asymmetry, the timing of

the trough (maximal precession) with respect to theta (Figure 3.8 D).
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Entorhinal Cortex Lesioning

To analyze the effect of putative entorhinal suppression, we compared the
population sizes and firing rates of active place cells in both control and lesioned groups
(Figure 3.9). Place field stabilization by the entorhinal cortex was explored by comparing

place field activation during full 8-second runs in the control versus lesioned groups

(Figure 3.10).

Statistics

To assess reproducibility, we ran the entire simulation under ten different pseudo-
random seeds. Because firing pattern means and variances did not differ statistically by 1-
way ANOVA comparisons, in the subsequent analyses we combined the passes through
the track and then compared the results of 30 runs of the entorhinal-lesioned group with
30 runs of the control group. All runs included Kapp channels in CA pyramidal cell
somas. Group means were compared using the appropriate paired or unpaired student z-

test or one-way ANOVA, and medians compared by the SIGNRANK test.

3.2. Results

3.2.1. Model Description

Hippocampal Place Field and Entorhinal Cell Representation

Integrate-and-fire neuronal simulations are increasingly being used to represent
interacting cortical and subcortical interactions [47]. Here, we represented CA pyramidal
neurons as bicompartmental cells with a soma in the stratum pyramidale and apical

dendritic tuft in the stratum lacunosum moleculare, as shown in Figure 3.3. Pyramidal
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cells are arranged into subnetworks, receiving inputs from (1) sensory parietal-temporal
axonal pathways responding to VL, (2) entorhinal cell populations, (3) basket cells (BC)
in the stratum oriens (SO), (4) O-LM interneurons [96], and (5) perforant pathway
associated (PPA) interneurons [96]. We assume that visual neocortical activity, along
with entorhinal cell activity passes through the perforant pathway to activate the distal
tufts of hippocampal CA networks. VL may or may not synapse in the entorhinal cortex
specifically, but fibers could pass through the entorhinal cortex or parahippocampal
regions en passant to hippocampus. We also assume that the GC network was already
formed during the development of the mouse, and is modeled as a group of simple single-
cell leaky integrate and fire neurons. We program the model to inject short sequence of
square-wave pulses (1 ms width, 3 nA) just as the mouse crosses the boundary of the grid
between place fields (because this is a linear maze, the “grid” tiling becomes simple
linear spacing, or repeating pattern at the boundaries). We modeled five such discrete
networks serving as the potential basis for corresponding place-field representation. We
assume that BC are activated by global CA activity and give rise to theta (6-10 Hz)
phasic field activity [4], which in turn is broadcast as inhibitory input to the proximal
dendritic branches of the pyramidal cells. BC also inhibit O-LM interneurons, giving rise
to anti-phase inhibitory theta activity that projects to dendritic tufts in SLM [92]. To
simulate the putative effects of entorhinal lesioning described by Van Cauter et al.
(2008), we included two populations of entorhinal cells: (1) “suppression-generating”
cells (notated EC SG in Figure 3.3) connecting to PPA interneurons, which in turn inhibit

the pyramidal apical tufts, resulting in fewer cells responding in place fields, and (2) grid
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cells (notated EC GC in Figure 3.3) connecting to the basilar dendrites, responsible for

triggering activity at the boundaries of place fields [63].

VL

GO~ _, SLM

EC SG

EC GC

Figure 3.3: Connectivity of the Hippocampal Structures and Surrounding Regions

Hippocampal Place Field and Entorhinal Cell Modeling

The description of neuronal network models should communicate enough
information for readers to comprehend and re-implement a model and to compare
different models [136]. Table 3.1 gives an outline of the model, which validates its

implementation (See Section 3.1.2).

A Model Summary

Seven: CA pyramidal cells, axonal pathway (VL),

Populations entorhinal cells (2), basket cells, OLM interneurons,
PPA interneurons

Neuron Model Leaky integrate-and-fire, fixed threshold, refractory
time

Plasticity STDP

Channel Model Kanp channels

Synapse Model Conductance-based

Measurements Membrane Potential
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B Populations

Name Elements Size
CA 5 RAIN networks 3,200 cells
VL 5 E cell groups 200 cells
EC SG Linear positive current N/A
EC GC Current file based N/A
BC (theta) RAIN network 1,600 cells
OLM I cell group 300 cells
PPA Linear negative N/A
current
Leaky integrate-and-fire neurons, conductance-
Type based synapses
Dynamics/Spiking See Section 2.2.3 for equations

D Channel and Plasticity Model

Kanpand STDP See Section 2.2.3 for equations

E Measurements

Membrane potential V of all neurons

Table 3.1: Tabular Description of Model. The model is summarized in panel A and
detailed in panels B-E.

3.2.2. Model Analysis

Analytical and Numerical Experiments
The first part of model analysis is a description of analytical and numerical data

used in the model, as shown in Table 3.2.

A Connectivity

Type Probability (%0) Conductance strength (mS)
RAIN - BC 3 0.004
BC-CA 3 0.003
BC-OLM 3 0.2

OLM - VL 3 0.01

VL -CA 5 0.006
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B Input

Type Description

Visual 2 second Gaussian distribution (5 of them)

cortex

Entorhinal Linear negative current suppressing CA networks (50%) with
cortex amplitude of -4 mA and constant duration

(SG) / PPA P

Entorhinal File based current exciting CA networks (100%) with amplitude of
cortex i

(GC) 3 mA and duration of 300 ms

Table 3.2: Tabular Analysis of Model. The description of the model connectivity is
shown in panel A and the model input is given in panel B.

The second part of model analysis is a description of the results obtained. These results

are designed to test hypotheses H1, H2 and H3, and V1 and V2 (See Section 3.1.3).

Hippocampal Formation Dynamics

During the first two passes, place field activity spread over most of the two-
second traversal period, but after the virtual mouse ran an additional repetition through
the maze, place cells localized to a narrower field, with a mean rate decrease from 33.1%
(pass 1) to 27.9% (pass 2) to 24.9% (pass 3). Figure 3.4 (A-C) shows typical place field
firing from the middle to the end (1 sec) during the first traversal (A), second traversal
(B), and third traversal (C) through the maze for sample of 100 cells. This narrowing
corresponded to a mean decrease in synaptic strength of 1.6% over the course of three
passes through the track illustrated in Figure 3.4 (D-F) for a sample of 100 cells.
Individual repetitions of a place field for 10 consecutive runs or different seeds showing
each pass (1: blue; 2: green; 3: red) and Gaussian fit from the middle to the end of a place
field (99% CI bands) for the first pass (blue), second pass (green), and third pass (red)

though the maze (Figure 3.4 G,H). The peak rates (maximum, at the middle of the place
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field) are statistically different from one pass to the next (P < 0.001). However, the decay
rates or variances of the curves are not statistically different. Removing Kapp channels
affected these results by decreasing theta resonance.
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Figure 3.4: Place Field Activity during Multiple Runs through the Track

The frequency of intracellular theta gradually increased toward the center of the
field (4.75 Hz, P < 0.001, N = 30 fields) and fell again toward the end of the field. This
increased frequency results from interference of the signal arriving from the apical
dendrites (a mixture of visual pathway and local OLM inhibitory theta) and the local BC
theta effect (180 degrees out of phase with OLM, as experimentally shown by Kamondi
and Buzsaki et al. [92]). An example of 6-10 Hz filtered mean theta within a typical place

field and a corresponding moving window average of the theta oscillation period is
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shown in Figure 3.5 A and B (n = 19 cells with increasing mean). Figure 3.5 C
emphasizes the difference of mean frequencies during the first, middle, and last third of
all fields (P < 0.001 by ANOVA, middle versus combined first and last thirds, n = 472

cells with increasing mean). Error bars are + 1 s.e.m.
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Figure 3.5: Frequency of Intracellular Theta

Power spectral analysis as a function of the mouse’s position on the linear track
(N = 30 fields) and theta-band (6-10 Hz) power in the membrane potential trace are
shown in Figure 3.6 A. Figure 3.6 B compares the ratio of theta power inside over outside
the place field of the control to the lesioned group. (n = 390 cells). Error bars are + 1
s.e.m. Theta-band power of the membrane potential was significantly higher within place
fields than outside (Figure 3.6 A) due to interference of local inhibitory theta with
visually-driven apical dendritic input with an average ratio of power in-field to power
out-of-field of 6.7 (P < 0.001; Figure 3.6 B). There were no significant differences

between control and entorhinal-lesioned groups (P > 0.05).
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Figure 3.6: Spectral Analysis of Intracellular Membrane Potential Recordings

LFP was measured from within the soma of a CA pyramidal cell, outside (0-2
sec) and within a place field (2-4 sec), as shown in Figure 3.7 A; spike unit timing is
indicated by dotted red lines. Cyan and magenta markers indicate auto-detection of 0 and
180 degree theta limits. The corresponding intracellular Vm (green line), with a
superimposed 1-2 Hz filtering (dashed black line), and red dots indicating spike timing
are illustrated in Figure 3.7 B (truncated, n = 1 cell as an example). Figure 3.7 C gives a
representative sample of mean 1-2 Hz filtered ramps from third place field (black line:
mean of all curves; black vertical dashed line: true center of place field; red vertical
dashed line: mean timing of the peak of individual ramps). As the virtual mouse
approached a visual landmark, the average membrane potential increased in a ramp-like
manner and remained increased beyond the center of the place field (Figure 3.7 C). The

ramp of depolarization often began before the start of action potential firing in the place
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field. In some cases, the ramp reached a depolarization as large as 13.5 mV with an
average peak depolarization of 8.2 £ 2.6 mV. On complete runs through the place field,
ramps of depolarization were asymmetric, with the timing of the peak depolarization
shifted toward the end of the field. The average right shift of the peak was 0.07 seconds
(P < 0.05), and the average right skewness was 0.5 (P < 0.001). There were no
significant differences among the five place fields (ANOVA P > 0.05) for these
measurements. Removing Kapp channels resulted in statistically symmetric ramps of
depolarization (P > 0.05). This asymmetric ramp depolarization is attributable to the
propagation delay or momentum of RAIN networks; perturbation of a RAIN network
affects all other cells with delays ranging from 50 to 100 ms because both excitatory and
inhibitory cells are sparsely connected and tonically inhibited, resulting in widely spaced

irregular bursting. In this case, the CA RAIN networks experience an average delay of

about 70 ms.
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Figure 3.7: Asymmetric Ramp-Like Membrane Potential Depolarization inside Place
Fields

Figure 3.8 A magnifies the first spike timing of a sample of all 19 cells with an

increasing mean from a single run superimposed on extracellular theta within the third
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place field. For each spike in (Figure 3.8 A), the phase with respect to LFP is represented
in Figure 3.8 B with an outer hull fit. The location of spikes with respect to theta
waveform is shown in Figure 3.8 C. For clarity, a representative sample of 25% of outer
hull fit of precession during third place fields is compared in Figure 3.8 D (Black dashed
line: true center of place field; red dashed line: mean timing of the troughs or maximal
precession). Because spikes occur reliably at or near the peak of intracellular oscillation
(there is no intracellular precession per se) and the intracellular oscillation frequency
increases near the middle of the field, spike timing will appear to precess with respect to
extracellularly measured theta LFP. Phase precession with respect to LFP theta spanned
the entire range between 0 and 360 degrees (Figure 3.8 A). Figures 3.8 B and C show a
typical distribution of spike timing with respect to theta phase while traversing a place
field. A parabolic outer hull fit had significant (P < 0.001) curvature and maximal
precession shifted asymmetrically toward the right half of the field (0.06 sec), as shown
in Figure 3.8 D (P < 0.001). There were no significant differences among the five place
fields (ANOVA P > 0.05) for these measurements.
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Figure 3.8: Precession with respect to LFP during Place Fields
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Entorhinal Cortex Lesioning

The average number of active cells and the average firing rates within five place
fields are compared between the control and lesioned groups (Figures 3.9 A and B) a
sample of n = 390 cells is represented. Lesioning the putative suppressive input from the
entorhinal cortex resulted in approximate doubling (P < 0.001) of the proportion of cells
firing within a place field (Figure 3.9 A). Contrary to this increased population response,
the actual mean firing rate decreased by 24.3% (P < 0.001, Figure 3.9 B). Removing
Kanp channels did not affect these results (P > 0.05). Tonic extrinsic inhibition (as
postulated to arise from the entorhinal cortex) into CA principle cells was manually
adjusted to suppress about half the population excitatory cells from firing; rather than a
net decrease in firing rate among the remaining active cells, an increase of about 24%
was observed, consistent with entorhinal-lesioning findings of Van Cauter et al. (2008)
[170]. The paradoxical response is attributable within RAIN networks to an auto-

regulatory increase of inhibition of inhibition (less net inhibition).
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Figure 3.9: Number of Active Cells and their Firing Rates within Place Fields
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Control groups (Figure 3.10 A) with the active role of entorhinal cortex grid cells
contribute tonic suppression during all five place fields. Tonic entorhinal-derived
inhibition mediated by PPA interneurons and EC SG is sufficient to suppress RAIN CA
networks from triggering in the absence of concurrent visual pathway stimulation. On the
other hand, entorhinal lesioned groups (Figure 3.10 B) in the absence of tonic
suppression show random surges arising within the hippocampus can spuriously ignite
the CA networks when the animal is between place fields, consistent with in vivo findings
of Van Cauter et al. (2008) [170]. (One typical 8 sec run shown, n = 390 cells as a
sample). The presence of entorhinal suppression stabilized the location of every place
field throughout the run. As shown in Figure 3.10 A, each place field fired at its
corresponding visual landmark along the track when the entorhinal cortex was intact.
However, when the entorhinal cortex was lesioned, place field location varied and often

triggered at anomalous locations (Figure 3.10 B).
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Figure 3.10: Place Fields Stabilization

3.3. Discussion

We report here two unique circuit-level network features that can explain
intracellular and extracellular CA place field dynamics observed during in vivo spatial
navigation: (1) self-sustained recurrent asynchronous irregular nonlinear (RAIN)
networks underlying place cell responsiveness and (2) entorhinal neuron groups
providing both transient excitatory ignition (EC GC) and tonic suppression (EC SG). In
particular, RAIN networks incorporating Kapp channel-like dynamics provide a
mechanism for the in vivo asymmetry of intracellular place field ramping not explained
by the models of Harvey et al. [66] and Gasparini and Magee [54]. Additionally, these
dynamics explain the apparent population-rate discordance of the entorhinal-lesioning
results of Van Cauter et al. (2008) [170].

RAIN networks are easily ignited by transient (50-300 ms), sparse (< 100 spikes)
external stimulation, self-sustained non-Poissonian bimodal firing similar to that

observed in most in vivo mammalian recordings [127], yet they readily shut down with
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unopposed theta range inhibitory input. This bimodally distributed firing requires
conduction-based synapses [174]. Interaction among RAIN networks spontaneously
gives rise to biological-appearing, variable-background inhibitory theta activity. Several
studies have shown that networks of sparsely connected current-based synaptic spiking
model neurons can produce highly irregular, chaotic activity without any external source
of noise [17, 172]. Conductance-based synaptic models exhibiting asynchronous irregular
firing patterns have been proposed as the basis for prefrontal working memory [27], but
to our knowledge this is the first such application to the hippocampal formation.
Simulated hippocampal place-cell activity was consistent with that reported by
Harvey et al. (2009) [66]. Our model showed increased theta power (H1, as defined in
Section 3.1.3.) toward the middle of a place field. This resulted from a net increase in the
theta-modulated signal arriving from apical dendrites, which overrides the relatively
constant anti-phase interference of the local BC theta inhibition onto the principal cells
[92]. Asymmetric ramp-like depolarization (H2) during place field traversals is
attributable to the propagation delay or momentum of RAIN networks; perturbation of a
RAIN network affects all other cells with delays ranging from 50 to 100 ms, because both
excitatory and inhibitory cells are sparsely connected and tonically inhibited, resulting in
widely spaced irregular bursting. In this case, the CA RAIN networks experience an
average delay of about 70 ms. Of note, the model proposed by Harvey et al. could not
explain this asymmetry [66]. Our model also confirmed an increased frequency of
intracellular theta oscillations toward the middle of place fields (H3), which explains
phase precession of spikes with respect to extracellular LFP theta activity. Spikes

occurred reliably at or near the peak of intracellular oscillation, but the intracellular
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oscillation frequency increased near the middle of the field, which made spike timing
appear to precess with respect to extracellularly measured theta LFP. The increased
frequency results from interference of the signal arriving from the apical dendrites,
mixture of visual pathway and local OLM inhibitory theta. The local BC theta effect,
which is 180 degrees out of phase with OLM [54] was experimentally consistent with
Kamondi and Buzsaki et al. (1998) [92].

Our incorporation of STDP in the excitatory connections within the place cell
networks and Kapgp dynamics in the RAIN theta networks resulted in stabilization of
place field response generally by the third pass through the track, consistent with such
delays reported by Wilson and McNaughton (1993) [181] and Frank et al. (2004) [48].

To test our hypotheses about the mechanism of the entorhinal cortex regulation of
CA place field behavior, we simulated the lesioning experiments of Van Cauter et al.
(2008) [170]. Our results support dual roles for entorhinal cell populations projecting to
CA regions: triggering place-specific pyramidal cell firing and, mediated by local CA
interneurons, suppressing sporadic place cell activation of established place fields (V1). It
is the self-regulating characteristic of RAIN networks that accounts for the seemingly
discordant entorhinal lesioning results, where an increased number of active place cells is
associated with reduced, rather than increased, overall place cell firing rates (V2). If CA
networks did not have the inhibition of the inhibition feature of RAIN activity, tonic
inhibition of the principle cells would lead to a decrease in the firing rate rather than an
increase and also to the destabilization of place field activity [170].

We speculate that transient activation of neural architectures consistent with

RAIN-like networks may subserve hippocampal CA place field dynamics. This insight is
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important to better understand not only mammalian navigation but more complex
episodic and semantic short-term memory and mechanisms of long-term memory

consolidation and reconsolidation.
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CHAPTER 4: A CIRCUIT-LEVEL MODEL OF HIPPOCAMPAL,
ENTORHINAL, AND PREFRONTAL DYNAMICS DURING SEQUENTIAL
LEARNING

This model represents hippocampal-entorhinal-prefrontal dynamics during spatial
navigation on a three binary decision sequential maze, passing visual landmarks. A

summary of the input files used are located in Appendix B.

4.1. Material and Methods

4.1.1. Navigational Paradigm

To study sequential learning, we developed a computational system representing a
navigating rodent (Figure 4.1). The animal is assumed to have been trained to run with
minimal hesitation in a correct sequence of three turns needed to receive a reward. In any
scenarios, he is passing en route six visual landmarks demarcating an environment we
refer to as VL. Each VL represents potential half of a place field activity, modeled as a
Gaussian distribution of spike probability along an assumed occipital-parietal-temporal
axonal pathway terminating in CA regions of the hippocampus. The correct sequence to
get to the reward is a right turn, followed by a left turn, and finally a right turn (right-left-
right or VL1-VL4-VLS5). The total duration of one full run is nine seconds, including one
second to reposition the animal to the beginning of the maze. The average speed of the
animal is 22.5 cm/s for nine consecutive passes through the maze, which were analyzed.
During the first pass, the animal made a right-left-left (VL1-VL4-VL6) sequence and did
not get a reward. During the second trial, the animal was forced to make the correct
sequence (right-left-right) and did get a reward, but it was considered not to have learned

fully yet. After making the wrong sequence during the third pass, the rodent was again
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biased to make the correct sequence during the fourth trial. During passes five through
nine, the animal went directly to the reward showing its learning performance without
any biasing, which means it took about four trials for the animal to fully learn a sequence

of three decisions.
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Figure 4.1: Simulated Navigational Environment

4.2.2. Computational Brain Model Implementation

This model included a total of 64760 leaky integrate-and-fire neurons arranged in
214 clusters. CA pyramidal cells were represented as quasi-bicompartmental (Izhikevich
et al., 2004) neurons by the inclusion of a population of single-compartment apical tuft

cells that connect to the pyramidal somatic compartment. Entorhinal grid cell activation
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at place-field boundaries followed by visual-parietal input triggered self-sustained,
asynchronous background activity (RAIN networks) limited to the place field. For more
details on our first model, please refer to Chapter 3 or Jayet Bray et al. (2010) [85].

From our previous model (chapter 3), we used additional variations of RAIN
networks. To represent the prefrontal columns, 1600-cell RAIN subnetworks that
included reward learning, represented each decision to turn left or right in the maze. Two
types of learning were tried within the E-E connection of the prefrontal cortex: the first
type of learning was STDP (Hebbian), which is a long-term learning that does not decay
over time as much as the second type, synaptic facilitation depression (SFD), which is a
short-term learning type. Subicular pyramidal neurons (SB and RS) and fast spiking
interneurons (FS) were represented using Kapp and HVA / LVA channels in the

subiculum. The firing pattern of both SB and RS neurons are shown in Figure 4.2.
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Figure 4.2: Subicular Pyramidal Neurons (SB and RS) Firing

Premotor cortex was modeled as a group of cells showing a left or right turn motion
depending on the decision at any given time in the maze. Oscillating networks were used

to represent theta activity in both the hippocampus and the prefrontal cortex.
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4.1.3. Analytical and Statistical Methods

Spectral Analysis of Hippocampal and Prefrontal Theta Synchrony

We analyzed power spectra for both hippocampus and prefrontal oscillating LFP
using multi-taper spectral analysis methods (mtspecgramc function from the Chronux
toolbox, http://chronux.org, Figure). We also compared the coherence between the two
rhythms using multi-taper spectral analysis methods (mtcohergramc function from the
Chronux toolbox, http://chronux.org, Figure). Both analyses used custom written
MATLAB-based programs, and they concerned periods starting when the animal entered
the maze until it reached the end of the maze. The coherence was compared during the
second decision in the maze, during trial 3 and trial 9 and also analyzed during decision

time versus turning time.

Statistics
To assess reproducibility, we ran the entire simulation under ten different pseudo-
random seeds. Firing pattern means and variances did not differ statistically from one run

to the next.

4.2. Results

4.2.1. Model Description

Hippocampal, Entorhinal, and Prefrontal Loop Representation
Here, we represent a hippocampal-entorhinal-prefrontal microcircuitry loop. In
chapter 3, hippocampal pyramidal cells were arranged into subnetworks, receiving inputs

from sensory parietal-temporal axonal pathways responding to VL, entorhinal cell
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populations, basket cells (BC) in the stratum oriens (SO), O-LM interneurons [96], and
perforant pathway associated (PPA) interneurons [96]. We assumed that BC were
activated by global CA activity and gave rise to theta (6-10 Hz) phasic field activity [4],
which in turn was broadcast as inhibitory input to the proximal dendritic branches of the
pyramidal cells. BC also inhibited O-LM interneurons, giving rise to anti-phase
inhibitory theta activity that projected to dendritic tufts in SLM [92]. We also included
two populations of entorhinal cells: (1) EC SG connecting to PPA interneurons, which in
turn inhibited the pyramidal apical tufts, resulting in fewer cells responding in place
fields, and (2) EC GC connecting to the basilar dendrites, responsible for triggering
activity at the boundaries of place fields [63]. In the current model, left and right
subicular pyramidal neurons were added as two groups of three subgroups of cells (SB,
RS, and FS). Extrinsically, RS neurons received inputs from both CA pyramidal cells and
prefrontal columns. This represented a feedback loop between the hippocampus and the
prefrontal cortex, which seems to play a role in synaptic plasticity, and consequently
memory [176] and dynamic goal-directed behavior [53]. Intrinsically, RS excited
subicular interneurons (FS), which inhibited the opposite groups of RS and SB neurons,
suppressing one turn alternative to favor the dominant choice. Prefrontal neurons were
also organized in subnetworks receiving profuse projections from each hippocampal
pyramidal networks [83] where each place field provided an increase in activity at a
given place and time in the maze. Each subnetwork underwent learning if the correct
sequence was chosen and the animal reached the reward. Finally, premotor neurons

received inputs from both the subicular RS and prefrontal neurons to create the chosen
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motion of the animal. The overall connectivity among regions is represented in Figure

4.3.
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Figure 4.3: Connectivity Representation

Hippocampal, Entorhinal, and Prefrontal Modeling

The description of neuronal network models should communicate enough
information for readers to comprehend and re-implement a model, and to compare
different models (Nordlie et al, 2009). Table 4.1 gives an outline of the model, which

validates its implementation (See Section 4.1.2).
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A Model Summary

CA pyramidal cells, axonal pathway (VL), EC cells
(2 groups), basket cells (theta), OLM interneurons,
PPA interneurons, subicular neurons (SB, RS, FS),
prefrontal (PF) pyramidal cells (6 columns), PF theta,
premotor (PM) cells (2 groups)

Leaky integrate-and-fire, fixed threshold, refractory

Populations

Neuron Model

time

Plasticity

STDP or SFD

Channel Model

Kanp, HVA and LVA channels

Synapse Model

Conductance-based

Measurements

Membrane Potential

B Populations

Name Elements Size

CA 5 RAIN networks 3,200 cells

VL 5 E cell groups 200 cells

EC SG Linear positive current N/A

EC GC Current file based N/A

BC (theta) RAIN network 1,600 cells

OoLM I cell group 300 cells

PPA Linear negative N/A
current

SB 2 E cell groups 80 cells

RS 2 E cell groups 80 cells

FS 2 I cell groups 20 cells

PF 6 RAIN networks 1,600 cells

PF (theta) RAIN network 1,600 cells

PM 2 E cell groups 100 cells
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Type

Neuron and Synapse Model

Leaky integrate-and-fire neurons, conductance-
based synapses

70

Dynamics / Spiking

Channels/ Plasticity

Measurements

Membrane potential V of all neurons

See Section 2.2.3 for equations
Channel and Plasticity Model

See Section 2.2.3 for equations

||

Table 4.1: Tabular Description of Model. The model is summarized in panel A and
detailed in panels B-E.

4.2.2. Model Analysis

Analytical and Numerical Experiments

The first part of model analysis is a description of analytical and numerical data

used in the model, as shown in Table 4.2.

Extrinsic Connectivity

‘

Type Probability (%0) Conductance strength (mS)
RAIN - BC 3 0.004

BC -CA 3 0.003

BC -OLM 3 0.2
OLM-VL 3 0.01

VL-CA 5 0.006

RAIN - PFt 3 0.004

PFt - PF 3 0.003

CA-PF 0.9 0.002

SB-FS 24 0.006
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CA-SB 0.5 0.003
PF-SB 1 0.002
PF-PM 5 0.015

Intrinsic Connectivity

FS-RS 20 0.008
FS-SB 20 0.008
SB-RS 10 0.006

Type Description
Visual 2 second Gaussian distribution (5 of them)
cortex
Entorhinal Linear negative current suppressing CA networks (50%) with
cortex amplitude of -4 mA and constant duration
(SG) / PPA P
Entorhinal File based current exciting CA networks (100%) with amplitude of
cortex .
3 mA and duration of 300 ms
(GC)
PFt Linear current suppressing PF networks (100%) with amplitude of 4
suppress mA and duration of 1 sec
Biasing Pulse current biasing of 2 mA and duration of 500 ms

Table 4.2: Tabular Analysis of Model. The description of the model connectivity is
shown in panel A (extrinsic) and B (intrinsic) and the model input is given in panel C.

The second part of model analysis is a description of the results obtained.

Brain Loop Dynamics

The firing pattern of each brain region used in our model during nine consecutive

runs through the maze is presented in Figures 4.4 a-c. In these results, STDP was used

such that prefrontal activity remained continuously active once the animal had fully

learned (after trial 4). STDP had positive fractional changes in synaptic strength (+#) of
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0.0059 and negative fractional changes in synaptic strength (-#) of 0.003, with positive
window (+4) of 50 ms and negative window (-4) of 90 ms, and with positive decay
constant (+7) of 15 ms and negative decay constant (-7) of 30 ms. The hippocampal place
fields (green rectangle) fire appropriately with respect to the position of the mouse in the
maze. For instance, the first row represents a place field, which corresponds to VL1
where the second row represents a second place field that corresponds to VL2. When the
mouse is located at a decision point, both landmarks, VL1 and VL2 are seen equally until
the animal decides to go one direction towards one specific landmark. Then the place
cells responsible for firing when VL1 is seen become more active. The subicular area
(purple rectangle) firing shows a winner-take-all firing pattern, which corresponds to
every decision the animal made. The first and third rows represent a left decision when
the second and forth rows represent a right decision. The first two rows represent SB
neuron firing and the last two rows show RS neuron activity. The prefrontal region (blue
rectangle) is firing accordingly to the CA input. Each row represents one of the six
decisions in the order of landmarks (VL1-VL6). Each column underwent STDP when the
animal got a reward (R). The premotor area (red rectangle) shows a left motion (second
row) followed by two right motions (first row) during the first run, for example. The field
potential is shown at the top of the figure where a gamma frequency is seen at the end of
every run for one second. This is the time we assumed it would take to reposition the

animal at the beginning of the maze for the next run.
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Figure 4.4a: Brain Loop Dynamics. Trials 1-3.

After four to five trials through the maze and biasing the sequence towards the reward,
the animal seems to have fully learned. Without any biased decisions, trials 5 through 9
(Figure 4.4b-c) show the correct sequence and according firing in each of the regions.
The prefrontal area remains active until the end of trial 9 to reinforce the subiculum

neurons for further runs through the maze.
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Figure 4.4c: Brain Loop Dynamics. Trials 7-9.

The firing pattern of each brain region used in our model during nine consecutive
runs through the maze is presented in Figures 4.5 a-c. However, in these results, STDP
was used such that prefrontal firing remained active accordingly with hippocampal
activity and the position of the animal in the maze. STDP had positive fractional changes
in synaptic strength (+7) of 0.0055 and negative fractional changes in synaptic strength
(-W) of 0.003, with positive window (+4) of 50 ms and negative window (-4) of 90 ms,

and with positive decay constant (+7) of 15 ms and negative decay constant (-7) of 30 ms.
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Figure 4.5a: Brain Loop Dynamics. Trials 1-3.
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Figure 4.5¢: Brain Loop Dynamics. Trials 7-9.

When each prefrontal column underwent SFD when the animal got a reward, the firing
pattern of the prefrontal cortex, and consequently the subiculum and the premotor cortex

was not representative of the sequential and navigational learning.

Hippocampal and Prefrontal Coherence

After trying different learning settings within the prefrontal cortex, we decided to
look at the coherence between hippocampal and prefrontal oscillations. When STDP was
higher, the coherence between the two regions was not significant (<0.5). Figure 4.6 A
and B show the power of hippocampal (top) and prefrontal (middle) LFPs, and the

coherence between the two as a function of frequency (bottom) for trial 3 and trial 9,
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respectively. Figure 4.6 C and D represent the spectrograms of hippocampal and
prefrontal LFPs (top and middle) and the coherogram during two representative trials (3
and 9 respectively). In this scenario, band coherence did not peak at the maze choice
point, where hippocampal and prefrontal amplitudes are not maximal. Figure 4.6 E shows
the overall coherence as less than 0.5 between trial 3 (red) and trial 9 (black) as a function

of frequency.
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Figure 4.6: Characterization of Hippocampal-Prefrontal Coherence
When STDP was lower, the coherence between the two regions was significant

(>0.5). Figure 4.7 A and B show the power of hippocampal (top) and prefrontal (middle)

LFPs, and the coherence between the two as a function of frequency (bottom) for trial 3
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and trial 9, respectively. Figure 4.7 C and D represent the spectrograms of hippocampal
and prefrontal LFPs (top and middle) and the coherogram during two representative trials
(3 and 9 respectively). In this scenario, band coherence peaks at the maze decision point.
Figure 4.7 E shows the overall coherence as a function of frequency. It is above 0.5,

which is significant between trial 3 (red) and trial 9 (black), upon learning.
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Figure 4.7: Characterization of Hippocampal-Prefrontal Coherence

4.3. Discussion
In addition to the findings of our previous model [85] regarding hippocampal-
entorhinal dynamics, we report two unique circuit-level network features that can explain

a closed loop with the prefrontal cortex during spatial working memory: (1) Hebbian
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plasticity in the prefrontal areas and (2) winner-take-all behavior within the subiculum
using Kapp and HVA / LVA channels. STDP provided long-term learning from the
hippocampus and also delivered appropriate learning in the prefrontal cortex to reinforce
memory back to the hippocampus.

Both Kappand HVA / LVA channels helped reproduce three subicular dynamics,
whose interconnectivity favored one decision over two conflicting choices. The intrinsic
connections within the structure represented a winner-take-all scenario that helped the
animal make a decision, which was reinforced by the prefrontal cortex. This subiculum
deciding role supported the conflicting goal processing theory described by Mc Naughton
et al. (2006) [123] and Naber ef al. (2000) [134].

Our incorporation of STDP in the excitatory connections within the place cell
networks and within prefrontal networks resulted in the cooperativity between the
hippocampus and the prefrontal cortex in synaptic plasticity [40, 94]. These findings
demonstrated how learning and consolidation could work between the two structures
during spatial working memory. It also showed the importance of synaptic strengths
within and among structures during navigational sequences, decision making, and
learning reinforcement. However, defining STDP parameters precisely within the
prefrontal area was crucial to have appropriate learning.

Our findings demonstrated that STDP positive fractional changes in synaptic
strength had to be a little lower than 0.006 for hippocampal place cells to have a positive
impact on the prefrontal cortex. Based on this parameter, the coherence, including both
phase and frequency of the prefrontal cells to hippocampal oscillations during performing

a task was consistent with biological findings of Sigurdsson et al. (2010) [159] and
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Benchenane e/ al. (2010) [9]. Hippocampal-prefrontal coherence increased as the animal
at the decision point in the maze, in particular after learning acquisition when reward
occurred.

This first hippocampal-entorhinal-prefrontal circuit-level model demonstrated
some important dynamics between the hippocampus, the entorhinal cortex, and the
prefrontal cortex. Both the extrinsic and intrinsic connectivity of these structures gave a
good representation of every region dynamics during spatial working memory. It also
learning within both the hippocampus and the prefrontal cortex is crucial for a higher
coherence between the two structures.

We speculate that transient activation of neural architectures consistent with
RAIN-like networks may subserve hippocampal CA place field and prefrontal dynamics.
This insight is important to better understand not only mammalian navigation but more
complex episodic and semantic short-term memory, working memory and mechanisms of

long-term memory consolidation and reconsolidation.
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CHAPTER 5: BRAIN SLICE EXPERIMENTS

Brain slice experiments require precise, rapid, and accurate techniques to obtain
best results. In these experiments, C57BL/6 mice (Figure 5.1) were used in accordance
with National Institutes of Health (NIH) guidelines, and all procedures were reviewed

and approved by the Downstate Medical Center Animal Care and Use Committee.

Figure 5.1: A Mouse Prior to Experiments

5.1. Materials and Methods

5.1.1. Brain Removal
The animal was anesthetized with 5% halothane and decapitated, as shown in

Figure 5.2.
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Figure 5.2: Head Decapitation

The outside layer (fur, skin...) was cut with scissors along the sagital axis from
the caudal (posterior) to the rostral (anterior) part (Figure 5.3 A). The skull was then cut
along the same axis (Figure 5.3 B) to access the brain. Using a curved spatula, the brain

was carefully removed from the skull, as seen in Figure 5.3 C.

Figure 5.3: Brain Removal Steps

After removal (Figure 5.4 A), the brain was put in ice-cold ACSF cutting solution

(in mM: NaCl 126, KC1 2.5, CaCl, 2, MgCl, 1, KH,PO4 1.25, NaHCOs3 25, and glucose
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20; pH 7.4, when exposed to 95% O, / 5% CO,) and was allowed to sit for a few minutes

before slicing (Figure 5.4 B, C).

(A)

Figure 5.4: After Brain Removal

5.1.2. Brain Slice

The cerebellum and rostral pole of the brain were slightly dissected away. The
whole brain was then mounted to a vibratome chuck using glue (Figure 5.5 A, B). Thin
slices (400 pm) were cut using a Leica VT 1200 S sectioning system, which included
portions of the hippocampus and parahippocampal areas, as shown in Figure 5.5 C).
Slices were then transferred into a holding chamber that contained ACSF perfusing
solution. Slices were incubated for one hour at room temperature until final transfer to the

recording setup.



86

Figure 5.5: Slice Procedures

From the holding chamber, single slices were placed on a nylon mesh support in

the recording chamber in the set-up shown in Figure 5.6 A, B.

Figure 5.6: Recording Set-up

5.2. Results

To obtain the desired slices of hippocampus and parahippocampal areas,
important factors have to be set effectively and accurately. The vibration frequency was
set at 85 Hz and the slicing speed of the blade was adjusted to 0.24 mm/s to prevent the

tissue being pushed while cutting the slices. The amplitude was 0.95 pm.
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The angle is critical to obtain the right brain regions that are important to the
study. The brain was glued on its base with the rostral part facing forward, and slightly
tilted upward at approximately 10°-15° angle. The vibratome blade was also set at an
angle of 15°-21°, slicing from the top of the rostral portion to the bottom of the caudal

portion, shown in Figure 5.7.

Cerebellum Rostral
Dissection Dissection

M)

15° angle —
"7 vibrotome blade

10° angle — glue
e on base

Figure 5.7: Slicing Angle (Modified from [89])

Figure 5.7 shows the regions of interest obtained from the slicing, portions of

hippocampus (Figure 5.8 A), and both hippocampus and entorhinal cortex (Figure 5.8 B).

(B)

Figure 5.8: Slice Images
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Recording experiments will be conducted in future work, and they are described
in Section 6.3.2.

5.3. Discussion

To obtain optimal hippocampal — entorhinal slices with minimal damage of the
neurons, we developed a fast, easy, and successful technique. Working with the size of
mice brains has been a challenge in comparison to rat brains that are much bigger.
However, in the long term, recordings on mice’s neurons will be beneficial because of the
recent increases in the use of genetically defined mouse lines, which have made mice an
important animal model for research.

After rapidly removing the brain from the skull, slicing speed, frequency, and
angle are crucial to a successful hippocampal — entorhinal study. The speed has to be
close to maximal and the frequency has to be optimal to avoid trauma to the tissue. Last
but not least, we found accurate angles to optimize the visualization of both the
hippocampus and the entorhinal cortex on a same slice. Positioning the brain at an
approximately 10° angle on its caudal base, where the rostral portion faced up was
important as the first step of slicing. Then, slicing at a 15° angle from an upper position
down to the caudal portion of the brain was the second key step of slicing. Once the
hippocampal — entorhinal slices are obtained recording experiments can be done and are

presented as future work (See Section 6.3.2).
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK
6.1. Conclusions

Computational neural modeling and in vivo / in vitro experiments should
exchange findings to not only investigate complex brain dynamics that underlie behavior,
memory, and learning, but also understand and treat neurologic disorders. Computational
models lead to theoretical advances in the field of neuroscience so that some of the
predictions can be biologically represented and experimentally tested.

In this study, we not only present two neural models, but also suggest relevant
biological experiments that could lead to interesting findings in brain dynamics during
navigational learning. The first model described unique circuit-level network features that
could explain both intracellular and extracellular CA place field dynamics observed while
navigating on a linear track. Our RAIN networks, combined with entorhinal excitatory
and inhibitory cells groups provided hippocampal dynamic results similar to in vivo
studies. In particular, RAIN networks that incorporated Kapp channels, which provided a
mechanism for the in vivo asymmetry of intracellular place field ramp of depolarization.
Additionally, these dynamics explain the apparent population-rate discordance and the
role of entorhinal cortex in stabilizing hippocampal place field activity.

The second model described hippocampal-entorhinal-prefrontal circuit-level
dynamics during sequential learning. It demonstrated how important learning is within
the prefrontal areas and how the subiculum acts as a winner-take-all using Kagp, HVA
and LVA channels. STDP provided both short-term learning within the hippocampus and
delivered long-term consolidation to reinforce working memory back to the

hippocampus, especially the subiculum. Additionally, coherence, including both the
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phase and the frequency of the prefrontal cells to hippocampal oscillations increased at
the decision point and upon learning, which was consistent with biological findings.

Last, experimental slicing techniques provided important protocols to obtain
viable hippocampal—entorhinal slices. Hippocampal recordings following entorhinal
cortex stimulation could lead to important findings on extrinsic connectivity between the
two structures. Multiple electrode arrays are something interesting to consider, but they
come with their own set of challenges, compared with intracellular single cell studies. In
some experiments, recording field EPSPs and IPSPs can help to get population, rather
than single neuron responses, but it depends on the experimental question. Patch

clamping recording alternatives are described in Section 6.3.2.

6.2. Contributions to Neuroscience

Computational modeling is an approach to understanding the information content
of neural signals by simulating some parts of the nervous system at many different
structural scales, including the biophysical, the circuit, and the systems levels. Computer
simulations of neurons and neural networks are complementary to traditional techniques
in neuroscience, and lead to important hypotheses that could be tested experimentally.
Here, we have demonstrated beyond the shape of pyramidal cells, some of their synaptic
connectivity, and the network they impact in the temporal and frontal lobes. Specifically,
the two models presented in this study have yielded crucial information on hippocampal,
entorhinal, and prefrontal dynamics in relation to memory and learning, but there are still

a lot to discover on a complex organ like the brain.
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6.3. Future Work
Despite these fundamental findings in this dissertation, there are many discoveries

that can still be made, both computationally and experimentally.

6.3.1. Computationally

Our updated model already contains many important biological-like features
replicating dynamics in several areas of the brain, but additional important information
can be simulated to make it even more realistic. For instance, more channel types and
synapses should be further used because of their responsibility for most essential
neuronal processes.

The hippocampus is modeled as two regions, CA and subiculum, but since the
dentate gyrus seems to play a role in place sensitivity, especially in novel environments,
it should also be included. The dentate gyrus is considered to be the main input region of
the hippocampus, where entorhinal grid cells (layer II) provide monosynaptic projections
to the granule cells [31], which are necessary for normal spatial-learning [121]. Also, the
dissociation between grid cells and place cells was shown to arise in the entorhinal-
dentate projection [70].

The entorhinal cortex should also be modeled as its own structure instead of just
an input source because of its importance in spatiotemporal representation. Phase-coding
between entorhinal and hippocampal theta activity has been found to influence memory
formation in a theoretical model [183], and the two oscillations have been shown to be
independent in humans in vivo studies [128]. Therefore, the hippocampus and the

entorhinal cortex should have two way connections as a feedback loop. Also, in a freely
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moving rodents study, both the intrinsic firing frequency of grid cells and theta frequency
increased with running speed [86], which showed that the entorhinal cortex plays a
significant role in spatial navigation.

Phase precession is a phenomenon present not only in the hippocampus, but also
in the entorhinal and prefrontal cortices. Related to theta phase synchrony seen between
the hippocampus and the prefrontal, phase precession in the prefrontal cortex is relative
to the one in the hippocampus [87] during working memory tasks. However, phase
precession in the entorhinal cortex seems to be independent from the hippocampus [62].
These phenomena are important and must also be considered in our future simulations as
well.

Other cortices play important roles in memory, especially navigational learning.
For instance, the parietal cortex seems to be involved in many different aspects of spatial
information processing [154]. Ultimately, humans have shown to have different functions
in the left and right hemispheres of the brain, also seen in the hippocampus [117].
Despite the limitations of computer hardware for larger simulations, further models
should include most known brain areas involved in spatial navigation, and differentiate
the two sides of the brain for multiple function purposes.

Our lab and collaborators are working on improving our computer hardware and
software to simulate large-scale neural networks. The goal is to integrate 10° neurons and
10" synapses into the architecture, which would lead to a million-cell model. Finally, a
virtual environment was created to test the functionality of our models. It will be used in
further studies for real-time simulations in combination with our new computer

technology.
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6.3.2. Experimentally

Now that the fundamental slicing procedure has been described, we discuss
recording techniques that can be used. One alternative to consider is multiple electrode
arrays, also known as multielectrode arrays contain plates through which neural signals
are obtained. Their main advantage is to simultaneously receive data from multiple sites,
which would be optimal when recording between two regions with a probability of
connection is as low as 5%. However, they come with their own set of challenges, such
as low spatial resolution. On the other hand, intracellular single cell recording gives more
detail on one individual neuron by measuring voltage and/or current across the membrane
to measure its resting potential and action potential.

Our results suggest further biological experiments to test our proposed
mechanistic explanation in our first model. First, stimulation of subsets of entorhinal
perforant path axons should result in enhanced tonic inhibition of CA pyramidal cells.
Then, knock-out or knock-in experiments (potentially with rhodopsin optical modulation
or monitoring) will test the role of specific CA interneurons. Finally, pharmacologic
blockade or agonists of Kagp channels [165] should modulate theta field activity of ex
vivo hippocampal preparation [59]. In our second model, single-cell intracellular
recording experiments within the subiculum could test the interconnectivity between RS,
SB and FS neurons. Finally, multiple electrode recording experiments to verify synaptic
strengths in between and within the hippocampus and the prefrontal cortex.

Therefore, when the connectivity between two regions is very sparse, such as the
one between the hippocampus and the entorhinal cortex, single-cell intracellular

recording would not be optimal, especially if EPSPs and/or IPSPs from the hippocampus
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after stimulating the entorhinal cortex have to be identified. In some cases though, such
as recording within the subiculum to identify the interconnectivity between SB, RS and
FS neurons, this recording may be a better option. In other cases, such as recording
connections between two major areas, such as the hippocampus and the prefrontal cortex,
multielectrode arrays could be a better choice. As a further research project, these

recording techniques will be tried and used for improving model parameters.



95

REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

Albasser, M. M., Poirier, G. L., and Aggleton, J. P., "Qualitatively different
modes of perirhinal-hippocampal engagement when rats explore novel vs.

Familiar objects as revealed by c-fos imaging," FEuropean Journal of
Neuroscience, vol. 31, pp. 134-147, 2010.

Alger, B. E. and Nicoll, R. A., "Epileptiform burst afterhyperpolarization -
calcium-dependent potassium potential in hippocampal cal-pyramidal cells,"
Science, vol. 210, pp. 1122-1124, 1980.

Amaral, D. G. and Witter, M. P., "The 3-dimensional organization of the
hippocampal-formation - a review of anatomical data," Neuroscience, vol. 31, pp.
571-591, 1989.

Andersen, P. M., R. Amaral, D. Bliss, T. O'keefe, J., The hippocampus book. New
York, NY: Oxford University Press, 2006.

Baeg, E. H., Kim, Y. B., Kim, J., Ghim, J. W., Kim, J. J., and Jung, M. W.,
"Learning-induced enduring changes in functional connectivity among prefrontal
cortical neurons," Journal of Neuroscience, vol. 27, pp. 909-918, 2007.

Balter, M., "Did working memory spark creative culture?," Science, vol. 328, pp.
160-163, 2010.

Bast, T., Wilson, I. A., Witter, M. P., and Morris, R. G. M., "From rapid place
learning to behavioral performance: A key role for the intermediate
hippocampus," Plos Biology, vol. 7, pp. 730-746, 2009.

Bear, J., Fountain, N. B., and Lothman, E. W., "Responses of the superficial
entorhinal cortex in vitro in slices from naive and chronically epileptic rats,"
Journal of Neurophysiology, vol. 76, pp. 2928-2940, 1996.

Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P. L., Gioanni, Y.,
Battaglia, F. P., and Wiener, S. 1., "Coherent theta oscillations and reorganization
of spike timing in the hippocampal-prefrontal network upon learning," Neuron,
vol. 66, pp. 921-936, 2010.

Bi, G. Q., "Spatiotemporal specificity of synaptic plasticity: Cellular rules and
mechanisms," Biological Cybernetics, vol. 87, pp. 319-332, 2002.

Blair, H. T., Welday, A. C., and Zhang, K. C., "Scale-invariant memory
representations emerge from moire interference between grid fields that produce
theta oscillations: A computational model," Journal of Neuroscience, vol. 27, pp.
3211-3229, 2007.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

96

Bliss, T. V. P. and Collingridge, G. L., "A synaptic model of memory - long-term
potentiation in the hippocampus," Nature, vol. 361, pp. 31-39, 1993.

Bower, J. M. and Beeman, D., The book of genesis: Exploring realistic neural
models with the general neural simulation system, 2nd ed. New York, NY:
Springer, 1998.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Zirpe, M.,
Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel,
O., Vieville, T., Muller, E., Davison, A. P., El Boustani, S., and Destexhe, A.,
"Simulation of networks of spiking neurons: A review of tools and strategies,"
Journal of Computational Neuroscience, vol. 23, pp. 349-398, 2007.

Brun, V. H., Leutgeb, S., Wu, H. Q., Schwarcz, R., Witter, M. P., Moser, E. L,
and Moser, M. B., "Impaired spatial representation in cal after lesion of direct
input from entorhinal cortex," Neuron, vol. 57, pp. 290-302, 2008.

Brun, V. H., Otnaess, M. K., Molden, S., Steffenach, H. A., Witter, M. P., Moser,
M. B., and Moser, E. 1., "Place cells and place recognition maintained by direct
entorhinal-hippocampal circuitry," Science, vol. 296, pp. 2243-2246, 2002.

Brunel, N., "Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons," Journal of Computational Neuroscience, vol. 8, pp.
183-208, 2000.

Burgess, N., Maguire, E. A., and O'keefe, J., "The human hippocampus and
spatial and episodic memory," Neuron, vol. 35, pp. 625-641, 2002.

Burton, B. G., Hok, V., Save, E., and Poucet, B., "Lesion of the ventral and
intermediate hippocampus abolishes anticipatory activity in the medial prefrontal
cortex of the rat," Behavioural Brain Research, vol. 199, pp. 222-234, 2009.

Buzsaki, G., "2-stage model of memory trace formation - a role for noisy brain
states," Neuroscience, vol. 31, pp. 551-570, 1989.

Buzsaki, G., "Theta oscillations in the hippocampus," Neuron, vol. 33, pp. 325-
340, 2002.

Buzsaki, G., "Theta rhythm of navigation: Link between path integration and
landmark navigation, episodic and semantic memory," Hippocampus, vol. 15, pp.
827-840, 2005.

Buzsaki, G., Buhl, D. L., Harris, K. D., Csicsvari, J., Czeh, B., and Morozov, A.,
"Hippocampal network patterns of activity in the mouse," Neuroscience, vol. 116,
pp. 201-211, 2003.



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

97

Caporale, N. and Dan, Y., "Spike timing-dependent plasticity: A hebbian learning
rule," Annual Review of Neuroscience, vol. 31, pp. 25-46, 2008.

Churchwell, J. C., Morris, A. M., Musso, N. D., and Kesner, R. P., "Prefrontal
and hippocampal contributions to encoding and retrieval of spatial memory,"
Neurobiology of Learning and Memory, vol. 93, pp. 415-421, 2010.

Cohen, M. X., Elger, C. E., and Fell, J., "Oscillatory activity and phase-amplitude
coupling in the human medial frontal cortex during decision making," Journal of
Cognitive Neuroscience, vol. 21, pp. 390-402, 2009.

Compte, A., Brunel, N., Goldman-Rakic, P. S., and Wang, X. J., "Synaptic
mechanisms and network dynamics underlying spatial working memory in a
cortical network model," Cerebral Cortex, vol. 10, pp. 910-923, 2000.

Crill, W. E., "Persistent sodium current in mammalian central neurons," Annual
Review of Physiology, vol. 58, pp. 349-362, 1996.

Cutsuridis, V. and Wennekers, T., "Hippocampus, microcircuits and associative
memory," Neural Networks, vol. 22, pp. 1120-1128, 20009.

Dan, Y. and Poo, M. M., "Spike timing-dependent plasticity of neural circuits,"
Neuron, vol. 44, pp. 23-30, 2004.

De Almeida, L., Idiart, M., and Lisman, J. E., "The input-output transformation of
the hippocampal granule cells: From grid cells to place fields," Journal of
Neuroscience, vol. 29, pp. 7504-7512, 2009.

De Saint Blanquat, P., Hok, V., Alvernhe, A., Save, E., and Poucet, B., "Tagging
items in spatial working memory: A unit-recording study in the rat medial
prefrontal cortex," Behavioural Brain Research, vol. 209, pp. 267-273, 2010.

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., and Friston, K., "The
dynamic brain: From spiking neurons to neural masses and cortical fields," Plos
Computational Biology, vol. 4, pp. 1-36, 2008.

Derdikman, D., Whitlock, J. R., Tsao, A., Fyhn, M., Hafting, T., Moser, M. B.,
and Moser, E. 1., "Fragmentation of grid cell maps in a multicompartment
environment," Nature Neuroscience, vol. 12, pp. 1325-1332, 2009.

Diesmann, M., Gewaltig, M. D., Morrison, A., and Plesser, H. E., "Large scale
simulations of cortical neuronal networks," Neuroscience Research, vol. 58, pp.
S9-S9, 2007.

Diesmann, M., Gewaltig, M. O., and Aertsen, A., "Stable propagation of
synchronous spiking in cortical neural networks," Nature, vol. 402, pp. 529-533,
1999.



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

98
Doeller, C. F., Barry, C., and Burgess, N., "Evidence for grid cells in a human
memory network," Nature, vol. 463, pp. 657-663, 2010.

Doherty, A. (2010). Neural pathways. Available:
http://www.bristol.ac.uk/synaptic/pathways/

Doughty, J. M., Barnes-Davies, M., Rusznak, Z., Harasztosi, C., and Forsythe, I.
D., "Contrasting ca2+ channel subtypes at cell bodies and synaptic terminals of
rat anterioventral cochlear bushy neurones," Journal of Physiology-London, vol.

512, pp. 365-376, 1998.

Doyere, V., Burette, F., Redinidelnegro, C., and Laroche, S., "Long-term
potentiation of hippocampal afferents and efferents to prefrontal cortex -
implications for associative learning," Neuropsychologia, vol. 31, pp. 1031-1053,
1993.

Dragoi, G. and Buzsaki, G., "Temporal encoding of place sequences by
hippocampal cell assemblies," Neuron, vol. 50, pp. 145-157, 2006.

Dragoi, G., Harris, K. D., and Buzsaki, G., "Place representation within
hippocampal networks is modified by long-term potentiation," Neuron, vol. 39,
pp. 843-853, 2003.

Drewes, R., Zou, Q., and Goodman, P. H., "Brainlab: A python toolkit to aid in
the design, simulation, and analysis of spiking neural networks with the
neocortical simulator," Frontiers in Neuroinformatics, vol. 3, 2009.

Duncan, J. and Owen, A. M., "Common regions of the human frontal lobe
recruited by diverse cognitive demands," Trends in Neurosciences, vol. 23, pp.
475-483, 2000.

Eichenbaum, H., "A cortical-hippocampal system for declarative memory,"
Nature Reviews Neuroscience, vol. 1, pp. 41-50, 2000.

Fleischer, J. G., Gally, J. A., Edelman, G. M., and Krichmar, J. L., "Retrospective
and prospective responses arising in a modeled hippocampus during maze

navigation by a brain-based device," Proceedings of the National Academy of
Sciences of the United States of America, vol. 104, pp. 3556-3561, 2007.

Fox, C. and Humphries, M., "Technical integration of hippocampus, basal ganglia
and physical models for spatial navigation," vol. 3, ed. Frontiers in
Neuroinformatics, 2009.

Frank, L. M., Stanley, G. B., and Brown, E. N., "Hippocampal plasticity across
multiple days of exposure to novel environments," Journal of Neuroscience, vol.
24, pp. 7681-7689, 2004.



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

99

Fries, P., "A mechanism for cognitive dynamics: Neuronal communication
through neuronal coherence," Trends in Cognitive Sciences, vol. 9, pp. 474-480,
2005.

Fuster, J. M., The prefrontal cortex, 4th ed. San Diego, CA: Elsevier, 2008.

Fyhn, M., Hafting, T., Witter, M. P., Moser, E. 1., and Moser, M. B., "Grid cells
in mice," Hippocampus, vol. 18, pp. 1230-1238, 2008.

Fyhn, M., Molden, S., Witter, M. P., Moser, E. 1., and Moser, M. B., "Spatial
representation in the entorhinal cortex," Science, vol. 305, pp. 1258-1264, 2004.

Gabbott, P. L. A., Warner, T. A., Jays, P. R. L., Salway, P., and Busby, S. J.,
"Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and
limbic centers," Journal of Comparative Neurology, vol. 492, pp. 145-177, 2005.

Gasparini, S. and Magee, J. C., "State-dependent dendritic computation in
hippocampal cal pyramidal neurons," Journal of Neuroscience, vol. 26, pp. 2088-
2100, 2006.

Gaussier, P., Banquet, J. P., Sargolini, F., Giovannangeli, C., Save, E., and
Poucet, B., "A model of grid cells involving extra hippocampal path integration,
and the hippocampal loop," Journal of Integrative Neuroscience, vol. 6, pp. 447-
476, 2007.

Gewaltig, M., "Self-sustained activity in networks of integrate and fire neurons
without external noise," presented at the Bernstein Conference on Computational
Neuroscience, Frankfurt, Germany, 2009.

Giocomo, L. M. and Hasselmo, M. E., "Computation by oscillations: Implications
of experimental data for theoretical models of grid cells," Hippocampus, vol. 18,
pp. 1186-1199, 2008.

Giocomo, L. M., Zilli, E. A., Fransen, E., and Hasselmo, M. E., "Temporal
frequency of subthreshold oscillations scales with entorhinal grid cell field
spacing," Science, vol. 315, pp. 1719-1722, 2007.

Goutagny, R., Jackson, J., and Williams, S., "Self-generated theta oscillations in
the hippocampus," Nature Neuroscience, vol. 12, pp. 1491-1493, 20009.

Gray, J. R., Braver, T. S., and Raichle, M. E., "Integration of emotion and
cognition in the lateral prefrontal cortex," Proceedings of the National Academy
of Sciences of the United States of America, vol. 99, pp. 4115-4120, 2002.

Griffin, A. L., Eichenbaum, H., and Hasselmo, M. E., "Spatial representations of
hippocampal cal neurons are modulated by behavioral context in a hippocampus-
dependent memory task," Journal of Neuroscience, vol. 27, pp. 2416-2423, 2007.



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

100

Hafting, T., Fyhn, M., Bonnevie, T., Moser, M. B., and Moser, E. I,
"Hippocampus-independent phase precession in entorhinal grid cells," Nature,
vol. 453, pp. 1248-U50, 2008.

Hafting, T., Fyhn, M., Molden, S., Moser, M. B., and Moser, E. I,
"Microstructure of a spatial map in the entorhinal cortex," Nature, vol. 436, pp.
801-806, 2005.

Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsaki, G., "Organization
of cell assemblies in the hippocampus," Nature, vol. 424, pp. 552-556, 2003.

Harris, K. D., Henze, D. A., Hirase, H., Leinekugel, X., Dragoi, G., Czurko, A.,
and Buzsaki, G., "Spike train dynamics predicts theta-related phase precession in
hippocampal pyramidal cells," Nature, vol. 417, pp. 738-741, 2002.

Harvey, C. D., Collman, F., Dombeck, D. A., and Tank, D. W., "Intracellular
dynamics of hippocampal place cells during virtual navigation," Nature, vol. 461,
pp. 941-946, 2009.

Hassabis, D., Kumaran, D., and Maguire, E. A., "Using imagination to understand
the neural basis of episodic memory," Journal of Neuroscience, vol. 27, pp.
14365-14374, 2007.

Hasselmo, M. E., "Grid cell mechanisms and function: Contributions of
entorhinal persistent spiking and phase resetting," Hippocampus, vol. 18, pp.
1213-1229, 2008.

Hasselmo, M. E., Hay, J., Ilyn, M., and Gorchetchnikov, A., "Neuromodulation,
theta rhythm and rat spatial navigation," Neural Networks, vol. 15, pp. 689-707,
2002.

Hayman, R. M. and Jeffery, K. J., "How heterogeneous place cell responding
arises from homogeneous grids-a contextual gating hypothesis," Hippocampus,
vol. 18, pp. 1301-1313, 2008.

Hebb, D. O., The organization of behavior. New York, NY: Wiley, 1949.

Hille, B., lon channels in excitable membranes, 3rd ed. Sunderland, MA: Sinauer
Associates, Inc., 2001.

Hines, M. and Moore, J. W., "Neuron, a computer program specialized for
simulating nerve function," Society for Neuroscience Abstracts, vol. 19, p. 1759,
1993.

Hines, M. L. and Carnevale, N. T., "The neuron simulation environment," Neural
Computation, vol. 9, pp. 1179-1209, 1997.



[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

101

Hoang, L. T. and Kesner, R. P., "Dorsal hippocampus, ca3, and cal lesions
disrupt temporal sequence completion," Behavioral Neuroscience, vol. 122, pp. 9-
15, 2008.

Hodgkin, A. L. and Huxley, A. F., "Currents carried by sodium and potassium
ions through the membrane of the giant axon of loligo," Journal of Physiology-
London, vol. 116, pp. 449-472, 1952.

Hok, V., Lenck-Santini, P. P., Roux, S., Save, E., Muller, R. U., and Poucet, B.,
"Goal-related activity in hippocampal place cells," Journal of Neuroscience, vol.
27, pp. 472-482, 2007.

Hotson, J. R. and Prince, D. A., "Calcium-activated hyperpolarization follows
repetitive firing in hippocampal-neurons," Journal of Neurophysiology, vol. 43,
pp. 409-419, 1980.

Huxter, J., Burgess, N., and O'keefe, J., "Independent rate and temporal coding in
hippocampal pyramidal cells," Nature, vol. 425, pp. 828-832, 2003.

Isaac, J. T. R., Buchanan, K. A., Muller, R. U., and Mellor, J. R., "Hippocampal
place cell firing patterns can induce long-term synaptic plasticity in vitro,"
Journal of Neuroscience, vol. 29, pp. 6840-6850, 2009.

Izaki, Y., Takita, M., and Akema, T., "Specific role of the posterior dorsal
hippocampus-prefrontal cortex in short-term working memory," FEuropean
Journal of Neuroscience, vol. 27, pp. 3029-3034, 2008.

Izhikevich, E. M., Gally, J. A., and Edelman, G. M., "Spike-timing dynamics of
neuronal groups," Cerebral Cortex, vol. 14, pp. 933-944, 2004.

Jay, T. M., Glowinski, J., and Thierry, A. M., "Selectivity of the hippocampal
projection to the prelimbic area of the prefrontal cortex in the rat," Brain
Research, vol. 505, pp. 337-340, 1989.

Jay, T. M. and Witter, M. P., "Distribution of hippocampal cal and subicular
efferents in the prefrontal cortex of the rat studied by means of anterograde
transport of phaseolus-vulgaris-leukoagglutinin," Journal of Comparative
Neurology, vol. 313, pp. 574-586, 1991.

Jayet Bray, L. C., Quoy, M., Harris, F. C., and Goodman, P. H., "Hippocampal
place field dynamics modulated by entorhinal grid and suppression-generating
cells," Frontiers in Neural Circuits, vol. 4, 2010.

Jeewajee, A., Barry, C., O'keefe, J., and Burgess, N., "Grid cells and theta as
oscillatory interference: Electrophysiological data from freely moving rats,"
Hippocampus, vol. 18, pp. 1175-1185, 2008.



[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

102

Jones, M. W. and Wilson, M. A., "Phase precession of medial prefrontal cortical
activity relative to the hippocampal theta rhythm," Hippocampus, vol. 15, pp.
867-873, 2005.

Jones, M. W. and Wilson, M. A., "Theta rhythms coordinate hippocampal-
prefrontal interactions in a spatial memory task," Plos Biology, vol. 3, pp. 2187-
2199, 2005.

Jones, R. S. G. and Heinemann, U., "Synaptic and intrinsic responses of medial
entorhinal cortical-cells in normal and magnesium-free medium invitro," Journal
of Neurophysiology, vol. 59, pp. 1476-1496, 1988.

Jung, H. Y., Staff, N. P., and Spruston, N., "Action potential bursting in subicular
pyramidal neurons is driven by a calcium tail current," Journal of Neuroscience,
vol. 21, pp. 3312-3321, 2001.

Jung, M. W. and Mcnaughton, B. L., "Spatial selectivity of unit-activity in the
hippocampal granular layer," Hippocampus, vol. 3, pp. 165-182, 1993.

Kamondi, A., Acsady, L., Wang, X. J., and Buzsaki, G., "Theta oscillations in
somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent
phase-precession of action potentials," Hippocampus, vol. 8, pp. 244-261, 1998.

Kandel, E. R., Schwartz, J. H., and And Jessell, T. M., Principles of neural
science, 4th ed. New-York, NY: McGraw-Hill, 2000.

Kawashima, H., Izaki, Y., Grace, A. A., and Takita, M., "Cooperativity between
hippocampal-prefrontal short-term plasticity through associative long-term
potentiation," Brain Research, vol. 1109, pp. 37-44, 2006.

King, J., "Brain communication server: A dynamic data transferal system for a
parallel brain simulator " Master's thesis, Computer Science, University of
Nevada, Reno, NV, 2005.

Klausberger, T., "Gabaergic interneurons targeting dendrites of pyramidal cells in

the cal area of the hippocampus," European Journal of Neuroscience, vol. 30, pp.
947-957, 20009.

Klausberger, T., Marton, L. F., Baude, A., Roberts, J. D. B., Magill, P. J., and
Somogyi, P., "Spike timing of dendrite-targeting bistratified cells during

hippocampal network oscillations in vivo," Nature Neuroscience, vol. 7, pp. 41-
47, 2004.

Knierim, J. J. and Mcnaughton, B. L., "Hippocampal place-cell firing during
movement in three-dimensional space," Journal of Neurophysiology, vol. 85, pp.
105-116, 2001.



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

103

Kobayashi, K. and Poo, M. M., "Spike train timing-dependent associative
modification of hippocampal ca3 recurrent synapses by mossy fibers," Neuron,
vol. 41, pp. 445-454, 2004.

Koene, R. A. and Hasselmo, M. E., "Consequences of parameter differences in a
model of short-term persistent spiking buffers provided by pyramidal cells in
entorhinal cortex," 2008, pp. 54-67.

Konkel, A., Warren, D. E., Duff, M. C., Tranel, D. N., and Cohen, N. J.,
"Hippocampal amnesia impairs all manner of relational memory," Frontiers in
Human Neuroscience, vol. 2, 2008.

Kumar, A., Schrader, S., Rotter, S., and Aertsen, A., "Dynamics of random
networks of spiking neurons with conductance-based synapses," in Cosyne, Slat
Lake City, UT, 2005.

Kunec, S., Hasselmo, M. E., and Kopell, N., "Encoding and retrieval in the ca3
region of the hippocampus: A model of theta-phase separation," Journal of
Neurophysiology, vol. 94, pp. 70-82, 2005.

Kunitake, A., Kunitake, T., and Stewart, M., "Differential modulation by
carbachol of four separate excitatory afferent systems to the rat subiculum in
vitro," Hippocampus, vol. 14, pp. 986-999, 2004.

Kwag, J. and Paulsen, O., "The timing of external input controls the sign of
plasticity at local synapses," Nature Neuroscience, vol. 12, pp. 1219-1221, 2009.

Kyd, R. J. and Bilkey, D. K., "Hippocampal place cells show increased sensitivity
to changes in the local environment following prefrontal cortex lesions," Cerebral
Cortex, vol. 15, pp. 720-731, 2005.

Laroche, S., Davis, S., and Jay, T. M., "Plasticity at hippocampal to prefrontal
cortex synapses: Dual roles in working memory and consolidation,"
Hippocampus, vol. 10, pp. 438-446, 2000.

Laroche, S., Jay, T. M., and Thierry, A. M., "Long-term potentiation in the
prefrontal cortex following stimulation of the hippocampal cal/subicular region,"
Neuroscience Letters, vol. 114, pp. 184-190, 1990.

Lee, I. and Kesner, R. P., "Differential roles of dorsal hippocampal subregions in
spatial working memory with short versus intermediate delay," Behavioral
Neuroscience, vol. 117, pp. 1044-1053, 2003.

Lee, I. and Kesner, R. P., "Time-dependent relationship between the dorsal
hippocampus and the prefrontal cortex in spatial memory," Journal of
Neuroscience, vol. 23, pp. 1517-1523, 2003.



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

104

Lee, I. and Solivan, F., "The roles of the medical prefrontal cortex and
hippocampus in a spatial paired-association task," Learning & Memory, vol. 15,
pp- 357-367, 2008.

Lisman, J., "The theta/gamma discrete phase code occuring during the
hippocampal phase precession may be a more general brain coding scheme,"

Hippocampus, vol. 15, pp. 913-922, 2005.

Lubenov, E. V. and Siapas, A. G., "Hippocampal theta oscillations are travelling
waves," Nature, vol. 459, pp. 534-539, 2009.

Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G., and Harris, K. D., "Sequential
structure of neocortical spontaneous activity in vivo," Proceedings of the National
Academy of Sciences of the United States of America, vol. 104, pp. 347-352,
2007.

Maccaferri, G., "Stratum oriens horizontal interneurone diversity and
hippocampal network dynamics," Journal of Physiology-London, vol. 562, pp.
73-80, 2005.

Magee, J. C., "Dendritic mechanisms of phase precession in hippocampal cal
pyramidal neurons," Journal of Neurophysiology, vol. 86, pp. 528-532, 2001.

Maguire, E. A., "The retrosplenial contribution to human navigation: A review of
lesion and neuroimaging findings," Scandinavian Journal of Psychology, vol. 42,
pp. 225-238, 2001.

Malleret, G., Alarcon, J. M., Martel, G., Takizawa, S., Vronskaya, S., Yin, D. Q.,
Chen, I. Z., Kandel, E. R., and Shumyatsky, G. P., "Bidirectional regulation of
hippocampal long-term synaptic plasticity and its influence on opposing forms of
memory," Journal of Neuroscience, vol. 30, pp. 3813-3825, 2010.

Manns, J. R., Howard, M. W., and Eichenbaum, H., "Gradual changes in
hippocampal activity support remembering the order of events," Neuron, vol. 56,
pp. 530-540, 2007.

Manns, J. R., Zilli, E. A., Ong, K. C., Hasselmo, M. E., and Eichenbaum, H.,
"Hippocampal cal spiking during encoding and retrieval: Relation to theta
phase," Neurobiology of Learning and Memory, vol. 87, pp. 9-20, 2007.

Mcnaughton, B. L., Barnes, C. A., Meltzer, J., and Sutherland, R. J,
"Hippocampal granule cells are necessary for normal spatial-learning but not for

spatially-selective pyramidal cell discharge," Experimental Brain Research, vol.
76, pp. 485-496, 1989.



[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

105

Mcnaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. 1., and Moser, M. B,
"Path integration and the neural basis of the 'cognitive map'," Nature Reviews
Neuroscience, vol. 7, pp. 663-678, 2006.

Mcnaughton, N., "The role of the subiculum within the behavioural inhibition
system," Behavioural Brain Research, vol. 174, pp. 232-250, 2006.

Menendez De La Prida, L., "Control of bursting by local inhibition in the rat
subiculum in vitro," Journal of Physiology (Cambridge), vol. 549, pp. 219-230,
2003.

Menschik, E. D. and Finkel, L. H., "Neuromodulatory control of hippocampal
function: Towards a model of alzheimer's disease," Artificial Intelligence in
Medicine, vol. 13, pp. 99-121, 1998.

Mitchell, D. J., Mcnaughton, N., Flanagan, D., and Kirk, I. J., "Frontal-midline
theta from the perspective of hippocampal "theta"," Progress in Neurobiology,
vol. 86, pp. 156-185, 2008.

Mormann, F., Kornblith, S., Quiroga, R. Q., Kraskov, A., Cerf, M., Fried, L., and
Koch, C., "Latency and selectivity of single neurons indicate hierarchical

processing in the human medial temporal lobe," Journal of Neuroscience, vol. 28,
pp- 8865-8872, 2008.

Mormann, F., Osterhage, H., Andrzejak, R. G., Weber, B., Fernandez, G., Fell, J.,
Elger, C. E., and Lehnertz, K., "Independent delta/theta rhythms in the human

hippocampus and entorhinal cortex," Frontiers in Human Neuroscience, vol. 2,
2008.

Moscovitch, M., Rosenbaum, R. S., Gilboa, A., Addis, D. R., Westmacott, R.,
Grady, C., Mcandrews, M. P., Levine, B., Black, S., Winocur, G., and Nadel, L.,
"Functional neuroanatomy of remote episodic, semantic and spatial memory: A

unified account based on multiple trace theory," Journal of Anatomy, vol. 207, pp.
35-66, 2005.

Moser, E. 1., Kropff, E., and Moser, M. B., "Place cells, grid cells, and the brain's
spatial representation system," Annual Review of Neuroscience, vol. 31, pp. 69-
89, 2008.

Moser, E. 1. and Moser, M. B., "A metric for space," Hippocampus, vol. 18, pp.
1142-1156, 2008.

Muir, G. M. and Bilkey, D. K., "Instability in the place field location of
hippocampal place cells after lesions centered on the perirhinal cortex," Journal
of Neuroscience, vol. 21, pp. 4016-4025, 2001.



[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

106

Mysid. (2006). Lobes of the brain nl. Available:
http://en.wikipedia.org/wiki/File:Lobes_of the brain NL.svg

Naber, P. A., Witter, M. P., and Da Silva, F. H. L., "Networks of the hippocampal
memory system of the rat - the pivotal role of the subiculum," Parahippocampal
Region, vol. 911, pp. 392-403, 2000.

Nitz, D. and Mcnaughton, B., "Differential modulation of cal and dentate gyrus
interneurons  during exploration of novel environments," Journal of
Neurophysiology, vol. 91, pp. 863-872, 2004.

Nordlie, E., Gewaltig, M. O., and Plesser, H. E., "Towards reproducible
descriptions of neuronal network models," Plos Computational Biology, vol. 5,
2009.

Nyhus, E. and Curran, T., "Functional role of gamma and theta oscillations in
episodic memory," Neuroscience and Biobehavioral Reviews, vol. 34, pp. 1023-

1035, 2010.

O'keefe, J., "Review of the hippocampal place cells," Progress in Neurobiology,
vol. 13, pp. 419-439, 1979.

O'keefe, J. and Burgess, N., "Dual phase and rate coding in hippocampal place
cells: Theoretical significance and relationship to entorhinal grid -cells,"
Hippocampus, vol. 15, pp. 853-866, 2005.

O'keefe, J. and Dostrovski, J., "Hippocampus as a spatial map - preliminary
evidence from unit activity in freely moving rats," Brain Research, vol. 34, pp.
171-175, 1971.

O'keefe, J. and Nadel, L., The hippocampus as a cognitive map. Oxford, New
York: Clarendon Press, 1978.

O'keefe, J. and Recce, M. L., "Phase relationship between hippocampal place
units and the eeg theta rhythm," Hippocampus, vol. 3, pp. 317-330, 1993.

O'mara, S., "The subiculum: What it does, what it might do, and what
neuroanatomy has yet to tell us," Journal of Anatomy, vol. 207, pp. 271-282,
2005.

Paz, R., Bauer, E. P., and Pare, D., "Theta synchronizes the activity of medial
prefrontal neurons during learning," Learning & Memory, vol. 15, pp. 524-531,
2008.

Pineda, J. C., Waters, R. S., and Foehring, R. C., "Specificity in the interaction of
hva ca2+ channel types with ca2+-dependent ahps and firing behavior in



[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

107

neocortical pyramidal neurons," Journal of Neurophysiology, vol. 79, pp. 2522-
2534, 1998.

Poucet, B., "Object exploration, habituation, and response to a spatial change in
rats following septal or medial frontal cortical damage," Behavioral
Neuroscience, vol. 103, pp. 1009-1016, 1989.

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., Lamantia, A. S.,
Mcnamara, J. O., and Williams, S. M., Neuroscience, 3rd ed. Sunderland, MA:
Sinauer Associates, Inc, 2004.

Rafiq, A., Zhang, Y. F., Delorenzo, R. J., and Coulter, D. A., "Long-duration self-
sustained epileptiform activity in the hippocampal parahippocampal slice - a
model of status epilepticus," Journal of Neurophysiology, vol. 74, pp. 2028-2042,
1995.

Remondes, M. and Schuman, E. M., "Role for a cortical input to hippocampal
area cal in the consolidation of a long-term memory," Nature, vol. 431, pp. 699-
703, 2004.

Rolls, E. T., "Memory systems in the brain," Annual Review of Psychology, vol.
51, pp. 599-630, 2000.

Samsonovich, A. V. and Ascoli, G. A., "A simple neural network model of the
hippocampus suggesting its pathfinding role in episodic memory retrieval,"
Learning & Memory, vol. 12, pp. 193-208, 2005.

Samu, D., Eros, P., Ujfalussy, B., and Kiss, T., "Robust path integration in the
entorhinal grid cell system with hippocampal feed-back," Biological Cybernetics,
vol. 101, pp. 19-34, 2009.

Sargolini, F., Fyhn, M., Hafting, T., Mcnaughton, B. L., Witter, M. P., Moser, M.
B., and Moser, E. 1., "Conjunctive representation of position, direction, and
velocity in entorhinal cortex," Science, vol. 312, pp. 758-762, 2006.

Save, E. and Poucet, B., "Role of the parietal cortex in long-term representation of
spatial information in the rat," Neurobiology of Learning and Memory, vol. 91,
pp. 172-178, 2009.

Schwartzkroin, P. A. and Stafstrom, C. E., "Effects of egta on the calcium-
activated afterhyperpolarization in hippocampal ca3-pyramidal cells," Science,
vol. 210, pp. 1125-1126, 1980.

Sehatpour, P., Molholm, S., Schwartz, T. H., Mahoney, J. R., Mehta, A. D., Javitt,
D. C., Stanton, P. K., and Foxe, J. J., "A human intracranial study of long-range
oscillatory coherence across a frontal-occipital-hippocampal brain network during



[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

108

visual object processing," Proceedings of the National Academy of Sciences of the
United States of America, vol. 105, pp. 4399-4404, 2008.

Shankaranarayana Rao, B. S. and Raju, T. R., "The brain slice technique," in
Brain and behavior, Raju, T. R., Kutty, B. M., Sathyaprabha, T. N., and
Shankaranarayana Rao, B. S., Eds., ed Bangalore, India, 2004.

Siapas, A. G., Lubenov, E. V., and Wilson, M. A., "Prefrontal phase locking to
hippocampal theta oscillations," Neuron, vol. 46, pp. 141-151, 2005.

Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A., and Gordon, J. A.,
"Impaired hippocampal-prefrontal synchrony in a genetic mouse model of
schizophrenia," Nature, vol. 464, pp. 763-U139, 2010.

Skaggs, W. E., Mcnaughton, B. L., Wilson, M. A., and Barnes, C. A., "Theta
phase precession in hippocampal neuronal populations and the compression of
temporal sequences," Hippocampus, vol. 6, pp. 149-172, 1996.

Slawinska, U. and Kasicki, S., "The frequency of rat's hippocampal theta rhythm
is related to the speed of locomotion," Brain Research, vol. 796, pp. 327-331,
1998.

Squire, L. R., Stark, C. E. L., and Clark, R. E., "The medial temporal lobe,"
Annual Review of Neuroscience, vol. 27, pp. 279-306, 2004.

Stanton, P. K., Jones, R. S. G., Mody, I., and Heinemann, U., "Epileptiform
activity induced by lowering extracellular mg-2+ in combined hippocampal-
entorhinal cortex slices - modulation by receptors for norepinephrine and n-
methyl-d-aspartate," Epilepsy Research, vol. 1, pp. 53-62, 1987.

Sticker, C., "Slices of brain tissue," in Neuroscience methods, martin, R., Ed., ed
Australia: Harwood Academic, 1997.

Stocker, M., "Ca2+-activated k+ channels: Molecular determinants and function
of the sk family," Nature Reviews Neuroscience, vol. 5, pp. 758-770, 2004.

Stringer, J. L. and Lothman, E. W., "Epileptiform discharges induced by altering
extracellular potassium and calcium in the rat hippocampal slice," Experimental
Neurology, vol. 101, pp. 147-157, 1988.

Stringer, J. L. and Lothman, E. W., "Hippocampal slices from kindled rats show
an increased sensitivity for induction of epileptiform activity by changes in
extracellular ion concentrations," Neuroscience Letters, vol. 89, pp. 43-48, 1988.

Takita, M., Izaki, Y., Kuramochi, M., Yokoi, H., and Ohtomi, M., "Synaptic
plasticity dynamics in the hippocampal-prefrontal pathway in vivo," Neuroreport,
vol. 21, pp. 68-72, 2010.



[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

109

Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., and Mcnaughton, B. L.,
"Population dynamics and theta rhythm phase precession of hippocampal place
cell firing: A spiking neuron model," Hippocampus, vol. 6, pp. 271-280, 1996.

Van Cauter, T., Poucet, B., and Save, E., "Unstable cal place cell representation
in rats with entorhinal cortex lesions," European Journal of Neuroscience, vol.

27, pp. 1933-1946, 2008.

Van Strien, N. M., Cappaert, N. L. M., and Witter, M. P., "The anatomy of
memory: An interactive overview of the parahippocampal-hippocampal network,"
Nature Reviews Neuroscience, vol. 10, pp. 272-282, 2009.

Van Vreeswijk, C. and Sompolinsky, H., "Chaotic balanced state in a model of
cortical circuits," Neural Computation, vol. 10, pp. 1321-1371, 1998.

Varga, V., Losonczy, A., Zemelman, B. V., Borhegyi, Z., Nyiri, G., Domonkos,
A., Hangya, B., Holderith, N., Magee, J. C., and Freund, T. F., "Fast synaptic
subcortical control of hippocampal circuits," Science, vol. 326, pp. 449-453, 2009.

Vogels, T. P. and Abbott, L. F., "Signal propagation and logic gating in networks
of integrate-and-fire neurons," Journal of Neuroscience, vol. 25, pp. 10786-
10795, 2005.

Walther, H., Lambert, J. D. C., Jones, R. S. G., Heinemann, U., and Hamon, B.,
"Epileptiform activity in combined slices of the hippocampus, subiculum and
entorhinal cortex during perfusion with low magnesium medium," Neuroscience
Letters, vol. 69, pp. 156-161, 1986.

Wang, G. W. and Cai, J. X., "Disconnection of the hippocampal-prefrontal
cortical circuits impairs spatial working memory performance in rats,"
Behavioural Brain Research, vol. 175, pp. 329-336, 2006.

Watanabe, H., Aihara, T., and Tsukada, M., "Phase shift of subthreshold theta
oscillation hippocampal cal pyramidal by excitatory synaptic inputs,"
Neuroscience, vol. 140, pp. 1189-1199, 2006.

Whishaw, I. Q. and Vanderwo.Ch, "Hippocampal eeg and behavior - changes in
amplitude and frequency of rsa (theta rhythm) associated with spontaneous and
learned movement patterns in rats and cats," Behavioral Biology, vol. 8, pp. 461-
484, 1973.

Wills, T. J., Lever, C., Cacucci, F., Burgess, N., and O'keefe, J., "Attractor
dynamics in the hippocampal representation of the local environment," Science,
vol. 308, pp. 873-876, 2005.



[180]

[181]

[182]

[183]

[184]

110

Wilson, C. E., Goodman, P. H., and Harris, F. C., Jr., "Implementation of a
biologically realistic parallel neocortical-neural network simulator," in Tenth
SIAM conference on parallel processing, Portsmouth, VA, 2001.

Wilson, M. A. and Mcnaughton, B. L., "Dynamics of the hippocampal ensemble
code for space," Science, vol. 261, pp. 1055-1058, 1993.

Wu, Z. H. and Yamaguchi, Y., "Independence of the unimodal tuning of firing
rate from theta phase precession in hippocampal place cells," Biological
Cybernetics, vol. 102, pp. 95-107, 2010.

Yamaguchi, Y., Sato, N., Wagatsuma, H., Wu, Z. H., Molter, C., and Aota, Y., "A
unified view of theta-phase coding in the entorhinal-hippocampal system,"
Current Opinion in Neurobiology, vol. 17, pp. 197-204, 2007.

Zirpe, M. A., "Rain and ncs5 benchmarks " Master's thesis, Computer Science,
University of Nevada, Reno, NV, 2007.



111

APPENDICES



112

APPENDIX A: MODEL ONE - BRAIN INPUT FILE

HHHHHIHHRHIH A Define BRAIN ##HHHHHHIFHIHIFHHHHIHIFHIHEHH

%-- Model Main Brain Object --%

BRAIN
TYPE Brain_Navigation %-- Name of brain configuration
JOB Joutput/Brain Navigation  %-- Name of any files generated
FSV le3 %-- Frequency of sampling value
DURATION 8 %-- Duration of simulation (sec)
SEED -20 %-- Random number generator

HHHHEHHHHAHH A COLUMN TY PE #HHHEHHHHHHEHIHHHHHH

%-- Columns within Brain --%

COLUMN TYPE CA3 COLUMN
COLUMN TYPE column VL1

COLUMN TYPE column VL2

COLUMN TYPE column VL3

COLUMN TYPE column VL4

COLUMN TYPE column VL5

COLUMN TYPE RAIN2 HP COLUMN
COLUMN TYPE RAIN ahp HP COLUMN

HHHHEHHRHAHHEHE A STIM INJECT #HHHAHEHEHHHHRHHHEHAR A
%-- RAIN2 HP stimulation inject to jump start --%

STIMULUS INJECT RAIN2 HP inj stimEl

éTIMULUS_INJ ECT RAIN2 HP inj stimE13

%-- PCR GC stimulation inject to jump start --%%

STIMULUS INJECT PCR1 _GCstim

STIMULUS INJECT PCRS_GCstim
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%-- Visual landmark input --%

STIMULUS INJECT stiminj VLI
.S'".FIMULUS_INJECT stiminj VL5

%-- Added current to OLM neurons --%
STIMULUS INJECT stiminj OLM

%-- Added current to suppress the PCR-E cells --%
STIMULUS INJECT PCR1_E GCsuppress
.S.".FIMULUS_INJECT PCR5 _E GCsuppress
%-- Added current to suppress the PCR-I cells --%
STIMULUS INJECT PCR1 I GCsuppress
.S.".FIMULUS_INJECT PCR5 I GCsuppress
%-- Hippocampal random activity --%

STIMULUS INJECT PCR1 random

STIMULUS INJECT PCRS5 random

HEH IR R REPORTS #HHHH I IR
%-- Sample of 1 RAIN voltage report (E1 group) --%

REPORT EC II Voltage RAIN2 HP El

%-- Sample of 1 PCR voltage report (PCR1 E group) --%

REPORT Voltage PCR1_E

%-- Sample of 1 PCR synaptic strength report (PCR1 E group) --%

REPORT PCR1_EE USE

%-- Reports can be obtained on any cell or group of cells used in the model --%
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HHHHEHHHAHH A CONNECTIONS #HFHHEHHHHFHIHIHEHHHHE

%-- Example of a connection from RAIN2 to RAIN ahp (Basket cells - theta) --%

CONNECT %-- From --%
RAIN2 HP COLUMN
layer RAIN2 HP
RAIN2 HP El
somaE RAIN2

%-- To --% (Basket cells)
RAIN ahp HP COLUMN
layer RAIN ahp HP
RAIN ahp HP El

somaE RAIN ahp

synEE R2C RC %-- Synapse used --%
0.03 %-- Probability of connection --%

%-- Many connections were used between each column and/or cell group --%

Please see Table 3.1 and 3.2.

END BRAIN

HiHHHEHHHHH A INCLUDE FILES #HHHHHHHHEHHHHHAHEHHH

%-- ANATOMY --%

INCLUDE ./input/INCLUDE_ANATOMY_ PCRAIN.inc
INCLUDE ./input/INCLUDE_ANATOMY VL.inc

INCLUDE ./input/INCLUDE_ANATOMY RAIN ahp HP.inc

INCLUDE ./input/INCLUDE_ANATOMY RAIN2 HP.inc
%-- STIMULUS --%
INCLUDE ./input/INCLUDE_STIMULUS_PCRAIN.inc

INCLUDE ./input/INCLUDE STIMULUS VL.inc
INCLUDE ./input/INCLUDE STIMULUS GCsupp.inc

INCLUDE ./input/INCLUDE_STIMULUS PCR Random.inc

INCLUDE ./input/INCLUDE_STIMULUS OLM.inc

INCLUDE ./input/INCLUDE_STIMULUS RAIN ahp HP.inc

INCLUDE ./input/INCLUDE_STIMULUS_RAIN2_HP.inc

INCLUDE ./input/INCLUDE_STIMULUS RAIN ahp PF.inc

INCLUDE ./input/INCLUDE_STIMULUS_RAIN2_PF.inc
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%-- SYNAPSES --%

INCLUDE ./input/INCLUDE_SYNAPSES PCRAIN.inc

INCLUDE ./input/INCLUDE_SYNAPSES OLM.inc

INCLUDE ./input/INCLUDE_SYNAPSES VL PC.inc

INCLUDE ./input/INCLUDE_SYNAPSES RAIN ahp HP PF.inc
INCLUDE ./input/INCLUDE_SYNAPSES RAIN2 HP PF.inc
INCLUDE ./input/INCLUDE_SYNAPSES RAIN ahp HP PCRAIN.inc

%-- REPORTS --%

INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_PCRAIN.inc
INCLUDE ./input/INCLUDE_REPORTS_VL.inc

INCLUDE ./input/INCLUDE_REPORTS_OLM.inc

INCLUDE ./input/INCLUDE _REPORTS_USE PCRAIN.inc

INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_RAIN ahp HP.inc
INCLUDE ./input/INCLUDE_REPORTS VOLTAGES RAIN2 HP.inc

%-- INCLUDE FILES have all data and parameters used in the model: ANATOMY of
brain areas, STIMULUS, SYNAPSES for each connection, and REPORTS --%
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APPENDIX B: MODEL TWO - BRAIN INPUT FILE

HHHHHIHHRHIH A Define BRAIN ##HHHHHHIFHIHIFHHHHIHIFHIHEHH

%-- Model Main Brain Object (See Appendix A for detail) --%

BRAIN
TYPE Brain_Navigation_loop
JOB Joutput/Brain_Navigation loop
FSV le3
DURATION 54
SEED 221

HHHHEHIHHHAHH A COLUMN TY PE #HHHEHHHHHHHEHIHHHHHH

%-- Columns within Brain --%

COLUMN TYPE PM _LEFT COLUMN
COLUMN TYPE PM_RIGHT COLUMN
COLUMN TYPE PF LEFT2 COLUMN
COLUMN TYPE PF LEFT4 COLUMN
COLUMN TYPE PF LEFT6 COLUMN
COLUMN TYPE PF RIGHT! COLUMN
COLUMN TYPE PF RIGHT3 COLUMN
COLUMN TYPE PF RIGHT5 COLUMN
COLUMN TYPE SUB _LEFT COLUMN
COLUMN TYPE SUB RIGHT COLUMN
COLUMN TYPE CA COLUMN
COLUMN TYPE column VL1

COLUMN TYPE column_ VL2

COLUMN TYPE column VL3

COLUMN TYPE column VL4

COLUMN TYPE column VLS5

COLUMN TYPE column_ VL6

COLUMN TYPE column VL7

COLUMN TYPE column_ VL8

COLUMN TYPE column VL9

COLUMN TYPE column VLI10

COLUMN TYPE column VLI11



COLUMN TYPE
COLUMN _TYPE
COLUMN TYPE

COLUMN TYPE
COLUMN TYPE
COLUMN TYPE
COLUMN TYPE
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column VL12
column VLI13
column VL14

RAIN2 HP_COLUMN
RAIN ahp HP COLUMN
RAIN2 PF_COLUMN

RAIN ahp PF_ COLUMN

HEHHHEHIHHHAHEHHAHHAHEHAAAE STIM INJECTHHHHHHEHHHHHEHHHHAHEH

%-- RAIN2 HP stimulation inject to jump start (see appendix A) --%

%-- RAIN2 PF stimulation inject to jump start --%
STIMULUS INJECT RAIN2 PF inj stimE1l
éTIMULUS_INJ ECT RAIN2 PF inj stimE13
%-- PCR GC stimulation inject to jump start --%%
STIMULUS INJECT PCR1_GCstim
éTIMULUS_INJECT PCR14 GCstim

%-- Visual landmark input --%

STIMULUS INJECT stiminj VL1
STIMULUS_INJECT stiminj VL14

%-- Added current to OLM neurons --%

STIMULUS INJECT stiminj OLM

%-- Added current to suppress the PCR-E cells --%
STIMULUS INJECT PCR1_E GCsuppress
éTIMULUS_INJECT PCR14_E GCsuppress

%-- Added current to suppress the PCR-I cells --%
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STIMULUS INJECT PCR1 I GCsuppress

éTIMULUS_INJECT PCR14 1 GCsuppress

%-- Added positive current to PF theta (E) to suppress PF networks when no reward --%
STIMULUS INJECT PF_theta suppress

%-- Added positive current to subiculum for only the first run (biased decision) --%

STIMULUS INJECT SUB LEFT2
STIMULUS_ INJECT SUB LEFT4
STIMULUS INJECT SUB LEFT6
STIMULUS_ INJECT SUB_RIGHT1
STIMULUS INJECT SUB RIGHT3
STIMULUS_ INJECT SUB_RIGHTS

%-- PCR ongoing activity --%

STIMULUS INJECT PCRI1_activity
éTIMULUS_INJ ECT PCR14_activity

%-- PF ongoing activity --%

STIMULUS INJECT PF_LEFT2 El_activity
.S.’.HMULUS_INJ ECT PF_LEFT2 E13 activity
STIMULUS INJECT PF_LEFT4 El_activity
.S.’.HMULUS_INJ ECT PF_LEFT4 E13 activity
STIMULUS INJECT PF_LEFT6 El1_activity
.S.’.HMULUS_INJ ECT PF_LEFT6 _E13 activity
STIMULUS INJECT PF_RIGHT1 E1 activity
.S.’.HMULUS_INJ ECT PF_RIGHT1 E13 activity
STIMULUS INJECT PF_RIGHT3 E1 activity

STIMULUS INJECT PF_RIGHT3 EI13 activity
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STIMULUS_INJECT PF_RIGHT5 El_activity

STIMULUS_INJECT PF_RIGHT5 E13_activity

HIHHHEHIHHHAHEHEHAHHAHEHAA REPORTS fHHHEHHHHHAH A

%-- Reports can be obtained on any cell or group of cells used in the model --%
Please see Appendix A for an example

HHHHHIHHHAHH A CONNECTIONS H#HHHHEHIHHHHEHHHRHHEHEH

%-- Many connections were used between each column and/or cell group --%
Please see Appendix A for an example
Please see Table 4.1 and 4.2

END BRAIN

HHHHHEHHHAH A INCLUDE FILES A
%-- ANATOMY --%

INCLUDE ./input/INCLUDE_ANATOMY_ PCRAIN.inc
INCLUDE ./input/INCLUDE_ANATOMY _VL.inc
INCLUDE ./input/INCLUDE_ANATOMY_ RAIN ahp HP.inc
INCLUDE ./input/INCLUDE_ANATOMY RAIN2 HP.inc
INCLUDE ./input/INCLUDE_ANATOMY RAIN ahp PF.inc
INCLUDE ./input/INCLUDE_ANATOMY RAIN2 PF.inc
INCLUDE ./input/INCLUDE_ ANATOMY_ PF LEFT2.inc
INCLUDE ./input/INCLUDE_ANATOMY PF LEFT4.inc
INCLUDE ./input/INCLUDE_ ANATOMY_ PF LEFT6.inc
INCLUDE ./input/INCLUDE_ANATOMY PF RIGHT!.inc
INCLUDE ./input/INCLUDE_ANATOMY_ PF RIGHT3.inc
INCLUDE ./input/INCLUDE_ANATOMY PF RIGHTS.inc
INCLUDE ./input/INCLUDE_ ANATOMY_SUB_LEFT.inc
INCLUDE ./input/INCLUDE_ANATOMY SUB RIGHT.inc
INCLUDE ./input/INCLUDE_ANATOMY_ PM.inc

%-- STIMULUS --%
INCLUDE ./input/INCLUDE STIMULUS PCRAIN.inc

INCLUDE ./input/INCLUDE STIMULUS VL.inc
INCLUDE ./input/INCLUDE STIMULUS GCsupp.inc



INCLUDE ./input/INCLUDE_STIMULUS_PFsupp.inc
INCLUDE ./input/INCLUDE_STIMULUS PCR_Random.inc
INCLUDE ./input/INCLUDE_STIMULUS_OLM.inc

INCLUDE ./input/INCLUDE_STIMULUS_RAIN ahp HP.inc
INCLUDE /input/INCLUDE_STIMULUS_RAIN2 HP.inc
INCLUDE /input/INCLUDE_STIMULUS_RAIN ahp PF.inc
INCLUDE /input/INCLUDE_STIMULUS_RAIN2_ PF.inc
INCLUDE ./input/INCLUDE_STIMULUS _activity PCR_PF.inc
INCLUDE /input/INCLUDE_STIMULUS_SUB.inc

%-- SYNAPSES --%

INCLUDE ./input/INCLUDE_SYNAPSES PCRAIN.inc

INCLUDE ./input/INCLUDE_SYNAPSES OLM.inc

INCLUDE ./input/INCLUDE_SYNAPSES VL PC.inc

INCLUDE ./input/INCLUDE_SYNAPSES RAIN ahp HP PF.inc
INCLUDE ./input/INCLUDE_SYNAPSES RAIN2 HP PF.inc
INCLUDE ./input/INCLUDE_SYNAPSES RAIN ahp HP PCRAIN.inc
INCLUDE ./input/INCLUDE_SYNAPSES RAIN ahp PF PF.inc
INCLUDE ./input/INCLUDE_SYNAPSES RAIN ahp HP SUB.inc
INCLUDE ./input/INCLUDE_SYNAPSES HP PF ahp.inc
INCLUDE ./input/INCLUDE_SYNAPSES PF.inc

INCLUDE ./input/INCLUDE_SYNAPSES PCR PF.inc

INCLUDE ./input/INCLUDE_SYNAPSES SUB.inc

INCLUDE ./input/INCLUDE_SYNAPSES PF SUB.inc

INCLUDE ./input/INCLUDE_SYNAPSES PCR _SUB.inc
INCLUDE ./input/INCLUDE_SYNAPSES _SUB_PM.inc

INCLUDE ./input/INCLUDE SYNAPSES probe.inc

%-- REPORTS --%

INCLUDE ./input/INCLUDE_REPORTS VOLTAGES PCRAIN.inc
INCLUDE ./input/INCLUDE_REPORTS_VL.inc

INCLUDE ./input/INCLUDE_REPORTS_OLM.inc

INCLUDE ./input/INCLUDE_REPORTS_USE_PCRAIN.inc

INCLUDE ./input/INCLUDE_REPORTS_USE_PF.inc

INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES RAIN ahp HP.inc
INCLUDE ./input/INCLUDE_REPORTS VOLTAGES RAIN2 HP.inc
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES RAIN ahp PF.inc
INCLUDE ./input/INCLUDE_REPORTS VOLTAGES RAIN2 PF.inc
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES _PF.inc

INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES PM.inc
INCLUDE ./input/INCLUDE_REPORTS_SUB.inc

INCLUDE ./input/INCLUDE_REPORTS_VOLTAGE _probe.inc
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APPENDIX C: INCLUDE FILES

%-- ANATOMY --% (Example of premotor cell group anatomy)

HHHH
## Define Column Shells
HHH

COLUMN_SHELL

TYPE columnshell PM
WIDTH 300
HEIGHT 800

END COLUMN_SHELL

HHHHHHHHHH A
## Define Columns
HHHHHHHHHH A

COLUMN
TYPE PM _LEFT COLUMN
COLUMN SHELL columnshell PM
LAYER TYPE layershell PM_LEFT
END COLUMN
COLUMN
TYPE PM RIGHT COLUMN
COLUMN SHELL columnshell PM
LAYER TYPE layershell PM_RIGHT
END_COLUMN

HH TR
## Define Layer Shells
HH IR

LAYER SHELL

TYPE layershell PM_LEFT
UPPER 100
LOWER 0

END LAYER SHELL

LAYER SHELL

TYPE layershell PM_RIGHT
UPPER 100
LOWER 0

END LAYER SHELL
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HH TR
## Define Layers
HH TR

LAYER
TYPE layer PM_LEFT
LAYER SHELL layershell PM_LEFT
CELL TYPE LEFT E PM 100
END LAYER
LAYER
TYPE layer PM_RIGHT
LAYER SHELL layershell PM_RIGHT
CELL TYPE RIGHT E PM 100
END LAYER

HHHHHHHHHHHHHHHHH
## Define Cells
HHHHHHHHHHHHHHHHH

CELL

TYPE LEFT E PM

COMPARTMENT soma exc PM soma E PM 0 0 0
END CELL

CELL

TYPE RIGHT E PM

COMPARTMENT soma exc PM soma E PM 0 0 0
END CELL

TR
## Define Compartments
TR

COMPARTMENT
TYPE soma_exc PM
SPIKESHAPE spikeshape 1k default
TAU MEMBRANE 0.020 0.0
R_MEMBRANE 200 0
THRESHOLD -50 0
VMREST -60 0

END COMPARTMENT
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%-- STIMULUS --% (Example of subiculum stimulus)

STIMULUS INJECT
TYPE
STIM TYPE
INJECT

END STIMULUS INJECT

SUB_LEFT2
realstim_SUB LEFT2
SUB_LEFT COLUMN
layer SUB LEFT
SUB_LEFT E SB
somaE 0.50

STIMULUS
TYPE realstim_SUB_LEFT2
MODE CURRENT
PATTERN PULSE
TIME INCREMENT 0.01
FREQ COLS 100
CELLS PER FREQ 1
DYN RANGE 0 400
TIMING EXACT
SAMESEED NO
AMP_START 2
WIDTH 0.001
TIME START 5
TIME_END 1

END STIMULUS

%-- SYNAPSES --% (Example of subiculum synapses)

SYNAPSE
TYPE
SFD LABEL
LEARN LABEL
SYN_PSG
MAX_CONDUCT
DELAY
SYN_REVERSAL
ABSOLUTE_USE

END SYNAPSE

SYNAPSE
TYPE
SFD_LABEL
LEARN LABEL
SYN_PSG

synlE SUB
NO_SFD
NO_LEARN
PSGinhib
0.008 0.0
0.001 0.005
-80 0

0.5 0.05

synEl SUB
NO_SFD
NO_LEARN
PSGexcit



MAX_CONDUCT
DELAY
ABSOLUTE _USE

END SYNAPSE

SYNAPSE
TYPE
SFD LABEL
LEARN LABEL
SYN PSG
MAX_CONDUCT
DELAY
ABSOLUTE _USE

END SYNAPSE

0.006 0.0
0.005 0.01
0.25 0.1

synEE SUB
NO _SFD
NO_LEARN
PSGexcit
0.006 0.0
0.005 0.01
0.25 0.1

%-- REPORTS --% (Example of premotor cell group reports)

REPORT
TYPE
CELLS

PROB
REPORT ON
FILENAME
FREQUENCY
TIME START
TIME_END
END REPORT

REPORT
TYPE
CELLS

PROB
REPORT ON
FILENAME
FREQUENCY
TIME START
TIME_END
END REPORT

LEFT PM VOLTAGE E
PM_LEFT COLUMN
layer PM_LEFT
LEFT E PM
soma E PM

0.3

VOLTAGE

LEFT PM VOLTAGE E.txt
1

0

100

RIGHT PM _VOLTAGE E
PM RIGHT COLUMN
layer PM_RIGHT
RIGHT E PM
soma E PM

0.3

VOLTAGE

RIGHT PM_VOLTAGE E.txt
1

0

100
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