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ABSTRACT 
 

Interactions between the hippocampus, parahippocampal regions and the 

prefrontal cortex are thought to underlie the formation, consolidation, and retrieval of 

short term memories and play an important role in the learning processes. To date, only 

conceptual models have been offered to explain the potential interactions among these 

regions, but their connectivity and synaptic regulation remain unknown. To better 

understand sequential learning and decision making during spatial navigation, a large-

scale biological model was needed to further guide experimental studies. The results of a 

putative entorhinal grid cell and hippocampal place cell circuit-level model was reported, 

incorporating Hebbian learning, ion channels, and asynchronous background activity in 

the context of recent in vivo findings showing specific intracellular-extracellular 

precession disparities and place field destabilization by entorhinal lesioning. A more 

complex model was then proposed by adding another hippocampal formation structure, 

the subiculum, in a complete recurrent loop with the prefrontal cortex. The model 

replicated some of the dynamics of the mammalian hippocampal-frontal loop 

microcircuitry, including phase synchrony of prefrontal cells to hippocampal theta 

oscillations. It also demonstrated short-term augmentation of navigational sequences, 

decision making, and learning reinforcement. To demonstrate the computational model’s 

functionality, a graphic environment with a navigating virtual mouse was created and 

could be used for further real-time simulations. Finally, to refute or support the proposed 

mechanisms of hippocampal-entorhinal dynamics, future experimental studies were 

proposed to test the types of extrinsic connectivity between the entorhinal cortex and the 

hippocampus and the intrinsic connectivity within the subiculum. 
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CHAPTER 1: INTRODUCTION 
 

Since the nineteenth century the research between localization and connection 

among brain areas has led to thinking about cortical functions. The identification and 

specific function of a particular brain region has become a central theme in neuroscience. 

This complex organ appears to adhere to fundamental principles of functional 

organization, integration, and specialization. The integration within and among 

specialized areas is mediated by connections among them, but most extrinsic and intrinsic 

connectivity and synaptic regulation are still unclear. One way to investigate the 

biological basis of information processing in the brain is to study the response of neurons 

to stimulation [33].  

In this dissertation I try to comprehend the physiology of mammalian memory, 

which requires a thorough understanding of circuit-specific interactions of medial 

temporal neocortex and surrounding regions. A basic behavior shared by all mammals is 

the task of navigating in a novel environment [46], which requires reliable short-term 

landmark memory. During evolution, episodic and semantic memory in primates may 

have co-opted this hippocampal navigational system for generic short-term memory as a 

way-station to manipulation and long-term consolidation (and reconsolidation) in the 

neocortex [22, 151], and possibly even to human creativity [6] and imagination [67]. 

Brain dynamics can be experimentally studied using implanted electrodes to 

record the rates and timing of action potentials, but this invasive approach is generally 

difficult or not possible in humans and/or freely moving animals. Many experiments are 

also done on anesthetized rodents, but the activity at rest can be very different from that 

in an active state. Good alternatives to studying brain functions, allowing the indirect 
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study of neuronal activity, have been developed, such as computational neural modeling. 

However, to date, only conceptual models have been offered to explain the potential 

interactions among different brain regions. 

Therefore, I propose the first two comprehensive, spike-timing, circuit-specific 

synaptic models: the first one of the hippocampal-entorhinal dynamics and the second 

one with the addition of a closed-loop with the prefrontal system.  Both may explain 

some of the interactions among these different brain structures. The models suggest 

essential mechanisms during computer-simulated rodent maze navigation, demonstrating 

subthreshold brain dynamics consistent with recent in vivo recordings. They utilize recent 

theoretical microcircuitry dynamics and established and achieved performance criteria, 

based on the reported awake-behaving intracellular recordings and lesioning studies. 

These circuit-specific mechanistic models are also framed so that predictions can be 

biologically represented and experimentally tested. 

The dissertation is structured as follows: Chapter 2 presents the relevance of this 

research and background information on the field of neuroscience and computational 

modeling, including a related literature review. Chapter 3 presents the body of a 

manuscript published in the Journal of Frontiers of Neural Circuits in October 2010, 

which describes hippocampal place cells and the associated entorhinal grid cell firing 

during rodent maze computational navigation. Chapter 4 presents another manuscript that 

is in the process of submission, which adds a hippocampal formation structure, the 

subiculum, in a complete recurrent loop with the prefrontal cortex to accomplish short-

term memory and long-term consolidation of navigational sequences. Along with neural 
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models, related experimental studies are described in Chapter 5. Conclusions, 

contributions to the field and a look into future directions are presented in Chapter 6. 
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CHAPTER 2: BACKGROUND AND SIGNIFICANCE 

 
2.1. Neuroscience  

Neuroscience is the scientific study of the entire nervous system. Since the 1960s 

the number of neuroscientists has increased tremendously, and the scope of neuroscience 

has broadened to include different approaches used to study the developmental, 

structural, functional, evolutionary, computational, and medical aspects of the nervous 

system. In research, the organisms mostly used are rodents. The rat, and even the mouse, 

has the same basic components and major structures in its little, pecan-sized brain that we 

humans have in our large cantaloupe-sized brain. In general terms, what we have learned 

about the anatomy of its brain has been replicated by studies in higher mammals, 

including humans. What is particularly important is that using laboratory rodents allows 

us to control many variables. The related techniques have expanded enormously, from the 

molecular biology of individual neurons to the electrophysiology of groups of nerve cells 

and tissues. The study of computational neural networks has also led to recent theoretical 

advances in the field. These combined approaches from many disciplines have helped 

determine how parts of the brain actually work and how some complex processes occur 

within a single neuron. However, how networks of neurons produce intellectual behavior, 

cognition, emotion, and physiological responses is still poorly understood. Eric R. Kandel 

said: “The task of neural science is to explain behavior in terms of the activities of the 

brain. How does the brain marshal its millions of individual nerve cells to produce 

behavior, and how are these cells influenced by the environment … to understand the 

biological basis of consciousness and the mental processes by which we perceive, act, 
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Nerve Cells or Neurons 

 A nerve cell or neuron is the basic component of the brain that processes and 

transmits long distance information in the form of electrical and chemical signals. There 

are three types of specialized neurons present in the brain. Afferent neurons receive 

excitatory sensory stimuli from sensory organs and transmit them to the central nervous 

system. Efferent neurons receive stimuli from the central nervous system and transmit 

them to effector cells like motor neurons. Interneurons have connections between neurons 

of the same region and most of them produce an inhibitory effect on connected neurons, 

which suppresses signal propagation. More than 100 billion neurons can communicate 

intercellularly in the brain; and these numerous, but sparse, connections result in highly 

complex and intelligent neural networks. This communication consists of many extensive 

branches called dendrites interacting with cell bodies called somas via axons. The 

dendrites are responsible for receiving stimuli from neighboring excitable cells, and the 

somas receive input from many of the dendrites. Any signals have to reach threshold and 

cause firing (or an action potential) for the information to be transmitted. This process is 

called integrate-and-fire [147], and this exchange of electrochemical information with 

other neurons is carried out via axon-dendrite terminals with the help of synapses. 

Membrane Potential and Action Potential 

 A resting membrane potential of about -60mV is maintained by the ion gradient 

and selective permeability (or conductance). The ion concentrations directly measured in 

a mammalian nerve cell is such that there are many more potassium ions (K+) inside the 

cell than out, and many more sodium (Na+) and chloride (Cl-) ions outside than in. At 
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rest, the negative membrane potential results from a net efflux of K+ across neuronal 

membranes. K+ concentration increases extracellularly due to a higher permeability of the 

membrane to that specific ion. However, when information is transmitted, Na+ ions flow 

into the neuron and depolarize the membrane, which changes its permeability to these 

specific ions. If the depolarization reaches a certain level (threshold), an action potential, 

also known as a spike, will propagate from its point of initiation at the cell body to the 

terminus of the axon where synaptic contacts are made. 

Synapses 

Communication and functional contact between neurons would not be possible 

without synapses. Although there are many kinds of synapses within the human brain, 

they can be divided into two general classes: electrical and chemical synapses. Electrical 

synapses permit direct and passive flow of electrical current from the presynaptic element 

of one neuron to the postsynaptic part of another neuron via paired channels and an 

intracellular specialization called a gap junction. In chemical synapses, the change in 

membrane potential caused by the arrival of the action potential leads to the opening of 

voltage-gated calcium (Ca2+) channels, which release neurotransmitters from the 

presynaptic vesicles to postsynaptic receptors. Glutamate is the most important 

transmitter in normal brain function. Nearly all excitatory neurons in the central nervous 

system are glutamatergic, and over half of all brain synapses release this agent [147]. The 

main types of glutamate receptors are NMDA (N-methyl-D-aspartate), AMPA (α-amino-

3-hydroxy-5-methyl-4-isoxazole-propionate) and kainate receptors. Most inhibitory 

synapses in the brain use either γ-aminobutyric acid (GABA) or glycine as 
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All these different types of channels work together, but there is even more 

specificity in the interaction of HVA channel types with AHPs with the firing behavior of 

neocortical pyramidal neurons [145]. In our models, voltage-dependent Ca2+ channels 

(HVA and LVA) and Ca2+ activated K+ channels (KAHP) were used. For further details on 

neuroscience fundamentals readers are referred to Purves et al. (2004) [147]. 

2.1.2. Memory and Navigational Learning 

Memory 

Memory is the ability to store, retain, and recall information based on past 

experiences. In recent decades, memory has become one of the principal pillars of a 

branch of science called cognitive neuroscience. From an information processing 

perspective, there are three main stages in the formation of memory: encoding, storage, 

and retrieval. Encoding allows the information to be received and processed. The storage 

in short-term memory generally allows retrieval (remembering) for a period of several 

seconds to a minute without rehearsal, but the memory is not retained indefinitely. By 

contrast, long-term memory can store much larger quantities of information for a 

potentially unlimited duration, up to a life span. Long-term memory is divided into 

declarative (explicit) and procedural (implicit) memories. Here, we concentrate more on 

declarative memory, especially episodic, which concerns information specific to a 

particular context, such as time and space. The hippocampus is essential for the 

consolidation of information from short-term to long-term memory, without necessarily 

storing information itself. On the other hand, the frontal lobe, especially the prefrontal 
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Navigational Learning 
 

Along with memory, spatial learning is navigating in an environment accurately. 

A person going back home and a mouse running through a maze towards a piece of 

cheese, both utilize visual landmarks for accurate orientation. Exploring an environment 

and remembering the events that occur within it are crucial cognitive abilities that have 

been linked to the hippocampus and parahippocampal regions [18]. In parallel, the 

prefrontal cortex is thought to be critical for goal-directed action and learning 

reinforcement [25]. Both the hippocampus and the prefrontal cortex of most organisms, 

especially rodents, are important for information processing, including memory [45]. 

This, then, poses the question: how does learning occur? 

 In 1949 Donald Hebb proposed that ‘‘when an axon of cell A is near enough to 

excite a cell B and repeatedly or persistently takes part in firing it, some growth processor 

metabolic change takes place in one or both cells such that A’s efficiency, as one of the 

cells firing B, is increased’’ [71]. This ‘neurophysiological postulate has since become a 

central concept in neuroscience through a series of classic experiments demonstrating 

Hebbian-like synaptic plasticity, including long-term potentiation (LTP) and depression 

(LTD) in a large variety of systems [10]. 

Beyond the traditional correlation-based Hebbian plasticity, spike timing 

dependent plasticity (STDP) opens up new avenues for understanding information coding 

and circuit plasticity that depend on the precise timing of neural spikes [30]. The most 

striking feature of STDP is the dependence on the temporal order of pre- and post- 

spiking. Several studies have defined the critical windows for spike timing, which are on 

the order of tens of milliseconds [24], as shown in Figure 2.5. In this example, each data 
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decreased). A time window is placed around the resulting post-synaptic spike of a cell. If 

the pre-synaptic spike occurs before the post-synaptic spike, it is in the positive learning 

portion. If the pre-synaptic spike occurs after the post-synaptic spike, it is in the negative 

learning window. Pre-synaptic spikes that occur at the same time as post-synaptic spikes 

or outside either window result in no change to the synaptic strength. This important 

concept of synaptic plasticity is known to be present in the hippocampus – prefrontal 

pathway [108, 168] as a candidate for physiological mechanisms in learning and memory 

[12]. 

2.1.3. Brain Areas and Functions 
 
 Many brain areas are known to play a role in short-term and long-term memory, 

decision making, and spatial navigation and are pathologically involved in Alzheimer’s 

disease, schizophrenia, drug addiction, and other neurological disorders. In this study, the 

key is to understand some of the interactive dynamics among these different regions, 

especially the medial temporal lobe (Please refer to the review Squire et al. (2004) [162]). 

The visual cortex, hippocampal formation, entorhinal cortex, prefrontal cortex, and 

premotor cortex are key regions to this study, and they are presented below.  

Visual Cortex 

 The primary visual cortex is located in the occipital lobe where both the dorsal 

and the ventral streams originate, as shown in Figure 2.6. 
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through the environment [161] or the rapidity with which a movement is initiated [178]. 

However, the behavioral correlate of theta amplitude is still unclear. 

Phase precession of extracellularly recorded action potential units, with respect to 

that theta inhibition was originally discovered by O’Keefe and Recce [142] and then later 

reproduced by other studies [92, 160]. Phase precession is when a neuron fires earlier 

with respect to the local field potential (LFP) as the animal moves toward the center of 

the place field. There is some evidence that an oscillation arises as interactions among 

cell assemblies but is not due to a cell “pacemaker effect” [41]. More realistically, some 

authors explain that theta phase is used as a gating mechanism for encoding and 

retrieving information [120] and supports remembering the order of events [119]. Harris 

et al. [65] reported an overall relationship between phase and rate in spikes recorded on a 

linear track, and a similar relationship was seen in Huxter et al. studies [79]. 

Hippocampal formation is divided into four areas: dentate gyrus, two cornu 

ammonis (CA1 and CA3), and subiculum.  

Dentate gyrus, a tightly packed layer of small granule cells wrapped around the 

end of the hippocampus proper, is actually a separate structure. Unlike many other areas, 

it has not evolved by building connections with any other cortical regions [3]. Dentate 

gyrus granule cells exhibit place sensitivity [91], and interneurons have a higher firing 

rate in novel environments [135]. 

The CA areas are all filled with densely packed pyramidal cells similar to those 

found in the neocortex. These CA regions are structured in clearly defined layers: stratum 

oriens (SO), stratum pyramidale (SP), stratum radiatum (SR), and stratum lacunosum and 

stratum molecular, often known as SLM. In the SO layer, the cell bodies of inhibitory 
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basket cells target the proximal dendrites of pyramidal neurons. (For more detail about 

each layer, please refer to the review [115]). It has been proposed that the distal dendritic 

regions of CA1 (SLM layer) may receive rhythmic synaptic excitatory inputs [177] 

during theta oscillations. Whereas the somatic regions (SO and SP layers) may receive 

synchronous hyperpolarizing input from interneuron networks [92], which could explain 

the mechanisms of phase precession [105, 116]. Also, CA1 and CA3 neurons tend to fire 

selectively on the type of task (encoding and retrieval of memory) [61], and their intrinsic 

pathways can be modified by LTP during place representation [42]. Similarly, synaptic 

plasticity can be induced at synapses connecting place cells [80], which supports the 

evidence of STDP to trigger at recurrent synapses of both CA1 and CA3 networks [99]. 

Although most studies concentrate on LTP, LTD seems just as important in hippocampal 

long-term memory [118]. 

The subiculum is known to be the major output of the hippocampal formation and 

plays a role in short-term memory and decision making. It acts as a comparator, and its 

task is to increase negative affective bias in all of the active and conflicting goal 

processing areas until only one alternative is clearly dominant, as a winner-take-all role 

[123, 134]. The subiculum is composed of at least two neuron types -strong bursting (SB) 

and regular spiking (RS)- and one type of interneuron -fast spiking (FS)- where the 

interconnectivity allows for local inhibition [124]. Their action potential bursting is said 

to be driven by a Ca2+ tail current [90]. 

These areas are crucial within the hippocampus and interact with each other, but 

the major pathways of the signal through the hippocampus combine to form a loop with 

the entorhinal and the prefrontal cortices [143].  
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Projections to and from these structures and their respective connectivity of 

neurons are well studied. Even though there are still a lot of unknowns, any new 

anatomical and physiological information is crucial to the field. 

2.1.4. Recent In Vivo and Lesioning Studies 

 In information processing, sequential activity of cortical networks may allow for 

serial execution of multiple steps [114]. When rapid, one-trial, learning of a novel place 

is required, the hippocampus is essential for effective performance but the hippocampus 

is not absolutely required after incremental learning even if the tasks are performed much 

more slowly [7]. This suggests that the need of interactions from other neocortical 

regions, such as the entorhinal cortex and/or the prefrontal cortex, is necessary for 

comparable performance. 

 Lesions of CA1 and CA3 regions of the hippocampus, especially dorsal portions 

seem to disturb temporal pattern of spatial sequence processes [75, 109]. Within CA 

regions,   the proximal portions of CA1 pyramidal neurons (the soma) receive a rhythmic 

5–10 Hz input from the inhibitory basket cell and axo-axonic cell network. In parallel, the 

dendrites receive a relatively sparse, but nevertheless potentially effective, input from the 

bistratified and O-LM (oriens-lacunosum moleculare) interneuron populations that is 

180° out of phase with the axo-axonic and basket cell input [97].  Figure 2.12 (a) shows 

somatic recording (red) obtained as a 10 Hz sine wave was injected in the soma (blue), 

and a random pattern of EPSC-shaped currents of increasing intensity was 

simultaneously injected through a dendritic electrode (b). 
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 Along with this hippocampal-entorhinal relationship, the medial prefrontal cortex 

receives profuse projections from the hippocampus [83] to mediate the formation of 

executive matter. These connections are important for spatial awareness, working 

memory and motivation [77], and goal-based memory task [110]. During reward 

expectation, the anticipatory activity in the prefrontal cortex is dependent on similar 

activity in the hippocampus [19]. Similarly, lesions in the prefrontal cortex show a 

change in sensitivity in hippocampal place cell firing [106]. There is also evidence of a 

feedback loop between the two structures, which seems to play a role in synaptic 

plasticity, and consequently memory [176] and dynamic goal-directed behavior [53]. 

Therefore, both the hippocampus and the prefrontal cortex are necessary for a 

biconditional paired-associate task [111]. Also, the main connective flow departs from 

prefrontal areas and proceeds through premotor cortex toward a primary motor 

processing area [50]. 

Finally, the comparison of hippocampal theta amplitude, phase, and frequency 

(synchronization) to prefrontal theta rhythms has been examined during the performance 

of a task requiring working memory [159]. Signals are processed and transmitted to other 

areas, possibly supported by the emergence of highly synchronized activations of cell 

groups or cell assemblies representing an effective input from afferent structures [49]. 

Within individual brain areas, oscillations can synchronize neurons and create coherent 

cell assemblies [64]. For instance, human medial prefrontal oscillations have been linked 

to decision making [26], and hippocampal theta can synchronize medial prefrontal 

activity during learning [144, 158], depending on task demands [88]. Overall, there is 

evidence of a strong coherence between hippocampal and prefrontal thetas during 
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learning [9, 156, 159], but the mechanism is not known by which this form of learning-

related coherence or cell assemblies is tightly synchronized. 

Experimental studies are essential to the research in neuroscience. For a detailed 

review on lesion and neuroimaging evidence on the role of the hippocampus, and other 

structures in relation with episodic, semantic and spatial memory, please refer to 

Moscovitch et al. (2005) [129]. Experimentally, cognitive processing that involves signal 

propagation through multiple regions and the activation of large numbers of specific 

neurons cannot always be researched. Therefore, computational approaches are useful for 

studying the nature and mechanisms of this phenomenon.   

 
2.2. Computational Neural Modeling 

Computational neuroscience is the study of brain function in terms of information 

processing properties, and it emphasizes descriptions of functional and biologically 

realistic neurons (and neural systems) and their physiology and dynamics. These models 

capture the essential features of the biological system at multiple spatial-temporal scales, 

from membrane currents and protein and chemical coupling to network oscillations, 

columnar and topographic architecture, and learning and memory. To date, the growing 

experimental evidence that spike timing may be important to explain neural computations 

has motivated the use of spiking neuron models, rather than the traditional rate-based 

models [14]. 

2.2.1. Different Types of Networks of Spiking Neurons 
 

Although spiking neural models have encountered problems due to large numbers 

of active neurons they still propose important mechanisms that generally provide a 
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NEURON 

 The development of NEURON was started by John W. Moore and Michael Hines 

at Duke University [73]. NEURON is a nerve simulation program used for modeling 

single neurons in high levels of detail by implementing the concept of sections. It has 

been applied to the study of large networks of neurons, in which cable properties of cells 

play an important role, possibly including extracellular potential close to the membrane, 

and where cell membrane properties are complex, involving many ion-specific channels 

and ion accumulation [74].  

GENESIS (General Neural Simulation System)  

 The GENESIS project began at California Institute of Technology by James M. 

Bower. It was originally utilized for the simulation of large networks for the realistic 

modeling of neural and biological systems. This simulator provides modelers the ability 

to change and reuse discrete components without having to change unassociated code. 

GENESIS also offers a parallel simulation environment allowing to model over 

networked workstations, a parallel cluster or supercomputer [13]. 

NEST (Neural Simulation Tool) 

 NEST was created by Markus Diesmann and Mark D. Gewaltig to help extend 

neural simulator development. It is ideally suited for simulations of large networks 

consisting of point neurons and architecture with minimal compartments, and is 

employed in studies interested in the dynamics of neural structures [36]. The 

development of efficient parallelization methods and integration techniques, such as the 
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efficient incorporation of precise spike times in globally time-driven simulations, is 

achieved by a combination of multi-threading and message passing [35]. 

 
2.2.3. NeoCortical Simulator (NCS) 
 
 Because parallel architectures and the degree of neuronal compartmental 

simplification required for reasonable performance times had not been achieved yet, the 

NCS was developed at the Brain Computation Lab at the University of Nevada, Reno to 

optimize the modeling of the horizontally dispersed, vertically layered distribution of 

neuron parameters of the mammalian neocortex with detailed synaptic plasticity and 

connectivity. 

 In this study, all simulations were performed using NCS [14, 43, 95, 180, 184] on 

a shared-memory three 16-processor Sun 4600. All models included leaky integrate-and-

fire neurons with conductance-based synapses with a sampling frequency of 1,000 Hz per 

second, where each integrate-and-fire neuron is characterized by a membrane time 

constant of 20 ms, a membrane resistance of 100 MΩ, and a resting membrane potential 

of -60 mV. Whenever the membrane potential crosses the spiking threshold of -50 mV, 

an action potential is generated, and the membrane potential is reset to the resting 

potential where it remains clamped for a 5 ms refractory period. At a single cell level 

NCS solves a limited and slightly reordered form of the Hodgkin-Huxley model that is 

similar to the following equation. However, during the numerical integration a constant 

membrane leak is added. 

ேܥ
ܸ݀
ݐ݀

െ ெܫ െ ܫ െ ுܫ െ ௨௧ܫ െ ௦௬ܫ െ ܫ ൌ 0																	ሺ2ሻ 
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Both IM and IAHP contribute to the membrane voltage by controlling spike-frequency 

adaptation. These are small ionic currents that have long period of activity when the 

membrane voltage is between rest and threshold. IK is the transient outward potassium 

current. In this study, IAHP is the current provided by small spike-adaptation contributing 

channel. These represent voltage independent K+ channels that are regulated by internal 

Ca2+, where the charge delivered after each time step is updated as: 

ுܫ ൌ ݃ுܵ݉ሺܧு െ ܸሻ																												ሺ3ሻ 

where S is a non-dimensional strength variable added to NCS and P is the power that the 

activation variable m is raised to. This KAHP m particle is modeled as: 

 
݀݉
ݐ݀

ൌ
݉ஶ െ݉
߬

																																																						ሺ4ሻ 

 

߬ ൌ
߳

݂ሺܽܥሻ  ܾ
																																																			ሺ5ሻ 

 

݉ஶ ൌ
݂ሺܽܥሻ

݂ሺܽܥሻ  ܾ
																																																		ሺ6ሻ 

where ϵ is the scale factor, b is the backwards rate constant, and f(Ca) is the forward rate 

constant defined by: 

݂ሺܽܥሻ ൌ ݇ሾܽܥሿ
ఈ																																																						ሺ7ሻ 

where α is the exponential factor.  

NCS can calculate internal Ca2+ concentrations at the compartment level. Physiologically, 

the concentration inside a cell increases when an action potential fires. After the action 

potential has ended the internal concentration of Ca2+ will diffuse through the cell where 
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it is taken up by numerous physiological buffers. In NCS, this diffusion/buffering 

phenomenon is modeled by a simple decay equation defined by: 

ሾܽܥሿሺݐ  1ሻ ൌ ሾܽܥሿሺݐሻ ൬1 െ
ݐ݀
߬

൰																					ሺ8ሻ 

 

where dt is the stimulation time step, and τCa is the defined time constant for the Ca 

decay. 

The synaptic currents are calculated by:  

௦௬ܫ ൌ ݃௦௬ܲܵܩሺݐሻ൫ܧ௦௬ െ ܸ൯																									ሺ9ሻ 

The leakage current is voltage-independent and is modeled by: 

 
ܫ ൌ ݃ሺܸ െ  ሺ10ሻ																																				ሻܧ

 
The leakage current is subtracted in the membrane voltage equation rather than added, as 

seen in the traditional membrane voltage equations.  

 Iinput is injected from external input at times appropriate for igniting networks, and 

Isyn includes excitatory and inhibitory afferents neurons. Reversal potentials are EAHP = -

80 mV, Esyn = 0 mV for excitatory and -80 mV for inhibitory synapses, and Erest = -60 

mV (resting membrane).  Synaptic conductances (g) are modeled as: 

߬௦
݀݃
ݐ݀

ൌ െ݃																																																												ሺ11ሻ 

݃ ← ݃   i	synapse	at	arriving	spike	upon	ݓ

 
with post-synaptic conductance time constants of 5 ms (excitatory) and 10 ms (inhibitory) 

[14]. Wi represents the synaptic weight that arrives at synapse i. 
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In vivo mammalian recordings, a self-sustaining non-Poissonian bimodal firing is 

observed [127]. NCS is able to simulate this asynchronous background activity using the 

baseline parameters including the inhibition of the inhibition, sparse connectivity (3% 

among all cells) among an approximately 4:1 ratio of excitatory to inhibitory neurons 

with 10-fold greater inhibitory than excitatory conductance [17, 56, 102, 172, 174]. Self-

sustained firing activity is achieved by a brief irregular external input. The resultant firing 

pattern of any given cell is irregular, with periods of higher firing rates separated by 

generally longer periods of low inactivity. Because the cells fire asynchronously with 

respect to one another, we refer to this as “recurrent asynchronous irregular non- linear” 

(RAIN) activity, as shown in Figure 2.17. This RAIN network uses 1,300 excitatory cells 

for 300 inhibitory cells with 3% connectivity and synaptic conductances Gexc and Ginh 

(Figure 2.17 A) where a sample of the activity is shown in Figure 2.17 B. (Membrane 

potential: green; mean rate: blue). The corresponding supra-Poissonian coefficient of 

variation (typically 30-50% greater than a Poisson spiking process), the wide range of 

RAIN firing rates of 2-60 Hz with mean rate of 14.8 Hz, and the bimodal distribution of 

firing (n = 50 cells) are represented in Figure 2.17 C-E. 
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rhythm [112]. Kunec et al. (2005) [103] modeled a detailed CA3 representation using the 

major type of pyramidal cells and two types of interneurons, and Cutsuridis et al. (2009) 

[29] recently advanced a far more detailed biophysical model of the CA1 microcircuit. 

Wu et al. (2010) [182] worked on the coupling of dendritic with the soma–axonal action 

potential initiation zone of CA1 pyramidal cells. Finally, an integrate-and-fire model of 

short buffering was used to simulate performance in hippocampus-dependent spatial 

navigation tasks [69, 100].  

Other models have proposed an explanation for grid cell interference [11] and 

grid cell firing phenomena [57, 58, 68], but most classes of theoretical models have been 

offered to explain place cells and grid cell effects. McNaughton et al. (2006) [122] 

proposed a topographically arranged network that serves as a tutor to train medial 

entorhinal cortex cell modules. Other local-network models, Gaussier et al. (2007) [55] 

and Samu et al. (2009) [152] proposed that stabilization of hippocampal place cells is due 

to the combination of modulo projections from entorhinal grid cells and visual place 

cells. Another class of models is based on the hypothesis that path integration occurs at 

the single cell level and is related to phase precession [130]. In particular, Tsodyks et al. 

(1996) [169] proposed a neural network model based on integrate-and-fire neurons that 

accounts for phase precession. 

 A rich set of experimental data has been gathered from computational models on 

the neural representation of spatial behavior found in and around the hippocampus. 

However, the interactions between place cells and grid cells, their individual and 

interactive mechanisms, their significance for memory storage, and their dynamics with 

representations in other cortical regions remain to be determined [130].  Also, the 
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complete hippocampal-entorhinal-prefrontal loop has yet to be successfully modeled to 

provide more understanding of these microcircuitry dynamics. 

Therefore, the first model presented in this study (covered in Chapter 3) was used 

to understand hippocampal and entorhinal cell interactions, specific intracellular-

extracellular precession disparities and place field destabilization by entorhinal lesioning.  

The corresponding input files used are summarized in Appendix A. The second model 

(covered in Chapter 4) completed the loop with the prefrontal cortex, replicating phase 

synchrony of prefrontal cells to hippocampal theta oscillations, and demonstrating short-

term memory of navigational sequences, decision making, and learning reinforcement. 

The corresponding input files used are summarized in Appendix B. Ultimately, these 

computational models are used to frame hypotheses that can be directly tested by future 

biological experiments.  The corresponding fundamentals in brain slice experiments are 

presented in Chapter 5, and future recording experiments are suggested as future work in 

Chapter 6. 

 
2.3. Relevant Experimental Studies 
 
 After important hypotheses are defined through computational modeling, there are 

several assumptions that could be tested in experimental studies.  For instance, the 

mechanisms of hippocampal dynamics modulating influences of entorhinal cortex could 

lead to interesting findings in the field. Experiments may include exploring the types of 

extrinsic connectivity between the two structures, or the intrinsic connectivity within the 

hippocampus, especially in the subiculum. A hippocampal slice study presented fast 

synaptic activation of hippocampal interneurons by afferents subcortical neurons [173]. 
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Few other studies have tried to combine in vitro hippocampal and parahippocampal slices 

[8, 148, 163, 166, 167, 175] in rats. However, such studies on mice are not available due 

to the difficulty of preparing a smaller brain, slicing it accordingly, and getting relevant 

recording data. Our experiments have revealed fundamental procedures to make studies 

on mice more feasible. 

2.3.1. Brain Removal 
 
  The fastest and easiest way of animal execution is by decapitation, although 

alternatively halothane (for anesthesia) or CO2 (suffocation) could be employed. These 

last two methods are not recommended because they take more time and could produce 

some neuronal damage prior to the brain removal. Once the animal is decapitated, the 

skull is removed with scissors, cutting along the sagital axis from the caudal (posterior) to 

the rostral (anterior) part and then opening the two skull pieces laterally. For shelling out 

the brain, slide the forceps or the scissors in the caudal part, and remove the whole organ 

backwards. The process of brain removal should be gently accomplished, but as fast as 

possible [157]. Once the brain is removed from the skull, place it rapidly into oxygenated 

ice-cold (4°C, 95% O2 - 5% CO2) artificial cerebrospinal fluid (ACSF) containing KCl, 

NaCl, NaHCO3, glucose, MgCl2, and CaCl2 (Please see specific concentrations in Section 

5.1.1). This solution should be sufficiently cold that it contains a few ice crystals, and the 

container should be sitting on ice to maintain this low temperature. Immediately after a 

short incubation time in cold ACSF, the brain is ready for slicing [104].  
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2.3.2. Brain Slice 
 
  To reduce damage of the tissue and to minimize the metabolic activity, it is 

particularly important to keep the brain immersed in iced-cold ACSF during the whole 

slicing process. Despite the many different procedures employed for brain slicing, the 

main goal is to prepare a slice of tissue where the neurons, fibers, and synapses that are 

important to the experiment are in a viable condition.  

The slicing is usually done using a vibratome. The vibration frequency (usually 

near the maximum of 85 Hz) and the slicing speed of the blade should be adjusted to 

prevent the tissue from being pushed while cutting the slices. The angle is critical to 

obtaining the right brain regions that are important to the study [89]. Slicing should be 

accomplished in less than 10 minutes. The brain slices are carefully taken using a cut and 

fire polished Pasteur pipette filled with the ice-cold solution. The slices are then 

incubated at a temperature of around 36ºC for at least 1 hour. Oxygenation and normal 

pH are maintained by bubbling the ACSF with 95% O2 - 5% CO2. This allows the tissue 

to recover from the damage imposed by the preparation and adjust to the new extra 

cellular milieu as well as to change metabolic activity before recordings. 

The animals used in preparing slices are most often small rodents. Young animals 

have some advantages for the slice preparation: their skulls are soft, and therefore easier 

to remove, and their brain is smaller and cools more rapidly when placed in ice-cold 

solution. On the other hand, older animals’ tissue is more susceptible to anoxia, and the 

neuronal damage is higher as time goes by. More myelination and the presence of more 

connective tissue may result in more damage to the cells. Slices can vary from 400 µm to 

1-2 mm in thickness, but thin slices allow a greater optical resolution due to smaller 
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effect from light scattering. Thicker slices exhibit centrally-located necrotic cells that 

are suggestive of hypoxic damage. A standard slice is cut at 300-400 µm thickness.   

2.3.3. Patch Clamp Recording 
  

The cells and parts of the dendrites can be visualized using a 40 X high numerical 

aperture, long working distance water immersion objective. There are different types of 

patch clamping, such as multiple electrodes, whole-cell or cell-attached recordings. The 

chosen method and the assessment of electrical parameters of slices depend on the type of 

experiments and the characteristics of the particular cells within the tissue, respectively. 

The basic indicators include resting membrane potential, input resistance, and amplitude 

of the action potential. More sensitive measures include the ability of the cells to produce 

a regular, rhythmic train of action potentials after the injection of a small current. 

Damaged neurons will often respond with a single action potential at the onset of the 

current pulse. In addition to direct cellular parameters, amplitudes of extracellular fields 

reflect the synaptic action and are convenient for assessing the overall state of a slice or at 

least of small regions within a slice [164]. Table 1 describes the advantages and 

disadvantages of brain slice experiments. 

Advantages Disadvantages 

Direct visualization Loss of connectivity 

Technical accessibility Damage of neurons 

Mechanical stability Tissue debris mixed with healthy cells 

Ease of use Altered metabolic state 

Control of extracellular medium Slow release of ions from damaged cells 

Table 2.1: Advantages and Disadvantages of Brain Slice Experiments 
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Despite these few studies and guidelines regarding hippocampal-entorhinal brain slices, 

there is still a lot to discover about optimal slicing and recording techniques and the 

interconnectivity between and within brain regions.
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CHAPTER 3: HIPPOCAMPAL PLACE FIELD DYNAMICS MODULATED BY 
ENTORHINAL GRID AND SUPPRESSION-GENERATING CELLS 
 
This model represents hippocampal-entorhinal dynamics during spatial navigation on a 

linear track, passing visual landmarks (VL). A summary of the input files used are 

located in Appendix A. 

3.1. Material and Methods 

 
3.1.1. Navigational Paradigm 
 

To replicate the virtual linear maze of Harvey et al. (2009) [66], we developed a 

computational system representing a navigating rodent (Figure 3.1). The animal is 

assumed to have been trained to run with minimal hesitation along a 180-centimeter 

linear track, passing en route five visual landmarks demarcating an environment we refer 

to as VL1 to VL5. Each VL represents potential place field activity (45 centimeters long), 

modeled as a two-second Gaussian distribution of spike probability along an assumed 

occipital-parietal-temporal axonal pathway terminating in CA regions of the 

hippocampus. Consistent with the experimental findings [66], VL overlap is 37%, the 

total duration of the run is eight seconds, and the average speed of the animal is 22.5 

cm/s. Three consecutive passes through the maze were analyzed for each experimental 

condition (an additional fourth pass was simulated, but no changes in dynamics were 

observed beyond three passes). 
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3.1.3. Analytic and Statistical Methods 

We established specific performance criteria with respect to the published awake-

behaving intracellular recordings of Harvey et al. (H) and the entorhinal cortical lesions 

of Van Cauter et al. (V): 

H1:  Intracellular theta oscillations increase in amplitude toward the center of the place 
field. 

 
H2:  Asymmetric ramp-like depolarization of the DC-filtered baseline membrane 

potential occurs. 
 
H3:   Spike precession relative to extracellular LFP theta is associated with increased 

frequency of intracellular theta.  
 
V1:  Entorhinal cells regulate the location of place fields. 
 
V2:  Entorhinal lesions reduce place cell discharge firing rates by about a fourth and 

approximately double the number of active place cells responding in a given place 
field. 

 
Frequency of Intracellular Theta 

We filtered inhibitory LFP and somatic Vm using Matlab fir1 (finite impulse 

response) notch-filtering from 6 to 10 Hz (Figure 3.5 A). Extracellular LFP theta was 

measured two seconds before entering and during each place field. To determine whether 

our findings were consistent with the rising intracellular theta frequency reported by 

Harvey et al. (2009) [66], we fit the sequence of filtered intracellular inter-theta peak 

intervals using locally weighted least squares regression (LOWESS) (Figure 3.5 B) for 

display purposes and statistically compared the mean frequency of theta oscillations 

during the central third with the first and last thirds of each field (Figure 3.5 C).  
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Spectral Analysis of Intracellular Membrane Potential 

We analyzed theta power spectra for epochs inside and outside of the place field 

using multi-taper spectral analysis methods (function mtspecgramc from the Chronux 

toolbox, http://chronux.org, Figure 3.6 A). We also calculated the ratio of power during 

epochs inside to outside the place field for bands from 6-10 Hz (Figure 3.6 B). 

Membrane Potential Depolarization Inside Place Fields 

We obtained low frequency Vm during the place field tracings using notch-

filtering from 1 to 2 Hz (Figure 3.7 B). We defined the baseline membrane potential as 

the low frequency mean just prior to entering the place field and subtracted this from the 

in-field membrane potential values to derive the ramp ∆V. From this, we computed the 

magnitude and, to estimate asymmetry, the timing of the peak ramp ∆V with respect to its 

location in the place field (Figure 3.7 C).  

Spike Precession with respect to LFP 

To analyze phase precession, we computed spike timing with respect to LFP theta 

phase within the place field (Figure 3.8 A). All cells with increasing mean ramp ∆V in 

the place field were included. For the phase versus position distribution, we first 

computed its outer hull; to that curve we fit a non-linear parabolic curve to obtain 

parameters estimating the phase and timing of the phase of greatest precession (Figure 

3.8 B). From this, we computed the magnitude and, to estimate asymmetry, the timing of 

the trough (maximal precession) with respect to theta (Figure 3.8 D).  
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Entorhinal Cortex Lesioning 

To analyze the effect of putative entorhinal suppression, we compared the 

population sizes and firing rates of active place cells in both control and lesioned groups 

(Figure 3.9). Place field stabilization by the entorhinal cortex was explored by comparing 

place field activation during full 8-second runs in the control versus lesioned groups 

(Figure 3.10). 

Statistics 

To assess reproducibility, we ran the entire simulation under ten different pseudo-

random seeds. Because firing pattern means and variances did not differ statistically by 1-

way ANOVA comparisons, in the subsequent analyses we combined the passes through 

the track and then compared the results of 30 runs of the entorhinal-lesioned group with 

30 runs of the control group. All runs included KAHP channels in CA pyramidal cell 

somas. Group means were compared using the appropriate paired or unpaired student t-

test or one-way ANOVA, and medians compared by the SIGNRANK test.  

3.2. Results  

3.2.1. Model Description 

 
Hippocampal Place Field and Entorhinal Cell Representation 
 
 Integrate-and-fire neuronal simulations are increasingly being used to represent 

interacting cortical and subcortical interactions [47]. Here, we represented CA pyramidal 

neurons as bicompartmental cells with a soma in the stratum pyramidale and apical 

dendritic tuft in the stratum lacunosum moleculare, as shown in Figure 3.3. Pyramidal 
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cells are arranged into subnetworks, receiving inputs from (1) sensory parietal-temporal 

axonal pathways responding to VL, (2) entorhinal cell populations, (3) basket cells (BC) 

in the stratum oriens (SO), (4) O-LM interneurons [96], and (5) perforant pathway 

associated (PPA) interneurons [96]. We assume that visual neocortical activity, along 

with entorhinal cell activity passes through the perforant pathway to activate the distal 

tufts of hippocampal CA networks. VL may or may not synapse in the entorhinal cortex 

specifically, but fibers could pass through the entorhinal cortex or parahippocampal 

regions en passant to hippocampus. We also assume that the GC network was already 

formed during the development of the mouse, and is modeled as a group of simple single-

cell leaky integrate and fire neurons. We program the model to inject short sequence of 

square-wave pulses (1 ms width, 3 nA) just as the mouse crosses the boundary of the grid 

between place fields (because this is a linear maze, the “grid” tiling becomes simple 

linear spacing, or repeating pattern at the boundaries). We modeled five such discrete 

networks serving as the potential basis for corresponding place-field representation. We 

assume that BC are activated by global CA activity and give rise to theta (6-10 Hz) 

phasic field activity [4], which in turn is broadcast as inhibitory input to the proximal 

dendritic branches of the pyramidal cells. BC also inhibit O-LM interneurons, giving rise 

to anti-phase inhibitory theta activity that projects to dendritic tufts in SLM [92]. To 

simulate the putative effects of entorhinal lesioning described by Van Cauter et al. 

(2008), we included two populations of entorhinal cells: (1) “suppression-generating” 

cells (notated EC SG in Figure 3.3) connecting to PPA interneurons, which in turn inhibit 

the pyramidal apical tufts, resulting in fewer cells responding in place fields, and (2) grid 
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B                                                              Populations 

Name Elements Size 
CA  5 RAIN networks 3,200 cells 
VL  5 E cell groups 200 cells 
EC SG Linear positive current N/A 
EC GC Current file based N/A 
BC (theta) RAIN network 1,600 cells 
OLM I cell group 300 cells 

PPA 
Linear negative 
current 

N/A 

C                                                              Neuron and Synapse Model 

Type 
Leaky integrate-and-fire neurons, conductance-
based synapses 

Dynamics/Spiking See Section 2.2.3 for equations 

D                                                              Channel and Plasticity Model 

KAHP and STDP See Section 2.2.3 for equations 

E                                                              Measurements 

Membrane potential V of all neurons 

Table 3.1: Tabular Description of Model.  The model is summarized in panel A and 
detailed in panels B-E. 

 
3.2.2. Model Analysis 

 
Analytical and Numerical Experiments 
 
 The first part of model analysis is a description of analytical and numerical data 

used in the model, as shown in Table 3.2. 

A                                                               Connectivity 

Type Probability (%) Conductance strength (mS) 
RAIN - BC 3 0.004 
BC - CA 3 0.003 
BC - OLM 3 0.2 
OLM - VL 3 0.01 
VL - CA 5 0.006 
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B                                                                Input 

Type Description 
Visual 
cortex 

2 second Gaussian distribution (5 of them) 

Entorhinal 
cortex  
(SG) / PPA 

Linear negative current suppressing CA networks (50%) with 
amplitude of -4 mA and constant duration  

Entorhinal 
cortex 
(GC) 

File based current exciting CA networks (100%) with amplitude of 
3 mA and duration of 300 ms 

Table 3.2: Tabular Analysis of Model. The description of the model connectivity is 
shown in panel A and the model input is given in panel B. 

 
The second part of model analysis is a description of the results obtained. These results 

are designed to test hypotheses H1, H2 and H3, and V1 and V2 (See Section 3.1.3). 

Hippocampal Formation Dynamics 
 

During the first two passes, place field activity spread over most of the two-

second traversal period, but after the virtual mouse ran an additional repetition through 

the maze, place cells localized to a narrower field, with a mean rate decrease from 33.1% 

(pass 1) to 27.9% (pass 2) to 24.9% (pass 3).  Figure 3.4 (A-C) shows typical place field 

firing from the middle to the end (1 sec) during the first traversal (A), second traversal 

(B), and third traversal (C) through the maze for sample of 100 cells. This narrowing 

corresponded to a mean decrease in synaptic strength of 1.6% over the course of three 

passes through the track illustrated in Figure 3.4 (D-F) for a sample of 100 cells. 

Individual repetitions of a place field for 10 consecutive runs or different seeds showing 

each pass (1: blue; 2: green; 3: red) and Gaussian fit from the middle to the end of a place 

field (99% CI bands) for the first pass (blue), second pass (green), and third pass (red) 

though the maze (Figure 3.4 G,H). The peak rates (maximum, at the middle of the place 
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unopposed theta range inhibitory input. This bimodally distributed firing requires 

conduction-based synapses [174]. Interaction among RAIN networks spontaneously 

gives rise to biological-appearing, variable-background inhibitory theta activity. Several 

studies have shown that networks of sparsely connected current-based synaptic spiking 

model neurons can produce highly irregular, chaotic activity without any external source 

of noise [17, 172]. Conductance-based synaptic models exhibiting asynchronous irregular 

firing patterns have been proposed as the basis for prefrontal working memory [27], but 

to our knowledge this is the first such application to the hippocampal formation.  

Simulated hippocampal place-cell activity was consistent with that reported by 

Harvey et al. (2009) [66]. Our model showed increased theta power (H1, as defined in 

Section 3.1.3.) toward the middle of a place field. This resulted from a net increase in the 

theta-modulated signal arriving from apical dendrites, which overrides the relatively 

constant anti-phase interference of the local BC theta inhibition onto the principal cells 

[92]. Asymmetric ramp-like depolarization (H2) during place field traversals  is 

attributable to the propagation delay or momentum of RAIN networks; perturbation of a 

RAIN network affects all other cells with delays ranging from 50 to 100 ms, because both 

excitatory and inhibitory cells are sparsely connected and tonically inhibited, resulting in 

widely spaced irregular bursting. In this case, the CA RAIN networks experience an 

average delay of about 70 ms. Of note, the model proposed by Harvey et al. could not 

explain this asymmetry [66]. Our model also confirmed an increased frequency of 

intracellular theta oscillations toward the middle of place fields (H3), which explains 

phase precession of spikes with respect to extracellular LFP theta activity. Spikes 

occurred reliably at or near the peak of intracellular oscillation, but the intracellular 
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oscillation frequency increased near the middle of the field, which made spike timing 

appear to precess with respect to extracellularly measured theta LFP. The increased 

frequency results from interference of the signal arriving from the apical dendrites, 

mixture of visual pathway and local OLM inhibitory theta. The local BC theta effect, 

which is 180 degrees out of phase with OLM [54] was experimentally consistent with 

Kamondi and Buzsaki et al. (1998) [92]. 

Our incorporation of STDP in the excitatory connections within the place cell 

networks and KAHP dynamics in the RAIN theta networks resulted in stabilization of 

place field response generally by the third pass through the track, consistent with such 

delays reported by Wilson and McNaughton (1993) [181] and Frank et al. (2004) [48].  

To test our hypotheses about the mechanism of the entorhinal cortex regulation of 

CA place field behavior, we simulated the lesioning experiments of Van Cauter et al. 

(2008) [170]. Our results support dual roles for entorhinal cell populations projecting to 

CA regions: triggering place-specific pyramidal cell firing and, mediated by local CA 

interneurons, suppressing sporadic place cell activation of established place fields (V1). It 

is the self-regulating characteristic of RAIN networks that accounts for the seemingly 

discordant entorhinal lesioning results, where an increased number of active place cells is 

associated with reduced, rather than increased, overall place cell firing rates (V2). If CA 

networks did not have the inhibition of the inhibition feature of RAIN activity, tonic 

inhibition of the principle cells would lead to a decrease in the firing rate rather than an 

increase and also to the destabilization of place field activity [170]. 

We speculate that transient activation of neural architectures consistent with 

RAIN-like networks may subserve hippocampal CA place field dynamics. This insight is 
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important to better understand not only mammalian navigation but more complex 

episodic and semantic short-term memory and mechanisms of long-term memory 

consolidation and reconsolidation.  
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CHAPTER 4: A CIRCUIT-LEVEL MODEL OF HIPPOCAMPAL, 
ENTORHINAL, AND PREFRONTAL DYNAMICS DURING SEQUENTIAL 
LEARNING 

This model represents hippocampal-entorhinal-prefrontal dynamics during spatial 

navigation on a three binary decision sequential maze, passing visual landmarks. A 

summary of the input files used are located in Appendix B. 

4.1. Material and Methods 

4.1.1. Navigational Paradigm 

 To study sequential learning, we developed a computational system representing a 

navigating rodent (Figure 4.1). The animal is assumed to have been trained to run with 

minimal hesitation in a correct sequence of three turns needed to receive a reward. In any 

scenarios, he is passing en route six visual landmarks demarcating an environment we 

refer to as VL. Each VL represents potential half of a place field activity, modeled as a 

Gaussian distribution of spike probability along an assumed occipital-parietal-temporal 

axonal pathway terminating in CA regions of the hippocampus. The correct sequence to 

get to the reward is a right turn, followed by a left turn, and finally a right turn (right-left-

right or VL1-VL4-VL5). The total duration of one full run is nine seconds, including one 

second to reposition the animal to the beginning of the maze. The average speed of the 

animal is 22.5 cm/s for nine consecutive passes through the maze, which were analyzed. 

During the first pass, the animal made a right-left-left (VL1-VL4-VL6) sequence and did 

not get a reward. During the second trial, the animal was forced to make the correct 

sequence (right-left-right) and did get a reward, but it was considered not to have learned 

fully yet. After making the wrong sequence during the third pass, the rodent was again 
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at place-field boundaries followed by visual-parietal input triggered self-sustained, 

asynchronous background activity (RAIN networks) limited to the place field. For more 

details on our first model, please refer to Chapter 3 or Jayet Bray et al. (2010) [85]. 

 From our previous model (chapter 3), we used additional variations of RAIN 

networks. To represent the prefrontal columns, 1600-cell RAIN subnetworks that 

included reward learning, represented each decision to turn left or right in the maze. Two 

types of learning were tried within the E-E connection of the prefrontal cortex: the first 

type of learning was STDP (Hebbian), which is a long-term learning that does not decay 

over time as much as the second type, synaptic facilitation depression (SFD), which is a 

short-term learning type. Subicular pyramidal neurons (SB and RS) and fast spiking 

interneurons (FS) were represented using KAHP and HVA / LVA channels in the 

subiculum. The firing pattern of both SB and RS neurons are shown in Figure 4.2. 

 

Figure 4.2: Subicular Pyramidal Neurons (SB and RS) Firing 

Premotor cortex was modeled as a group of cells showing a left or right turn motion 

depending on the decision at any given time in the maze. Oscillating networks were used 

to represent theta activity in both the hippocampus and the prefrontal cortex.  
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4.1.3. Analytical and Statistical Methods 

Spectral Analysis of Hippocampal and Prefrontal Theta Synchrony 

We analyzed power spectra for both hippocampus and prefrontal oscillating LFP 

using multi-taper spectral analysis methods (mtspecgramc function from the Chronux 

toolbox, http://chronux.org, Figure). We also compared the coherence between the two 

rhythms using multi-taper spectral analysis methods (mtcohergramc function from the 

Chronux toolbox, http://chronux.org, Figure). Both analyses used custom written 

MATLAB-based programs, and they concerned periods starting when the animal entered 

the maze until it reached the end of the maze. The coherence was compared during the 

second decision in the maze, during trial 3 and trial 9 and also analyzed during decision 

time versus turning time. 

Statistics 

To assess reproducibility, we ran the entire simulation under ten different pseudo-

random seeds. Firing pattern means and variances did not differ statistically from one run 

to the next. 

4.2. Results 

4.2.1. Model Description 

Hippocampal, Entorhinal, and Prefrontal Loop Representation 

 Here, we represent a hippocampal-entorhinal-prefrontal microcircuitry loop. In 

chapter 3, hippocampal pyramidal cells were arranged into subnetworks, receiving inputs 

from sensory parietal-temporal axonal pathways responding to VL, entorhinal cell 
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populations, basket cells (BC) in the stratum oriens (SO), O-LM interneurons [96], and 

perforant pathway associated (PPA) interneurons [96]. We assumed that BC were 

activated by global CA activity and gave rise to theta (6-10 Hz) phasic field activity [4], 

which in turn was broadcast as inhibitory input to the proximal dendritic branches of the 

pyramidal cells. BC also inhibited O-LM interneurons, giving rise to anti-phase 

inhibitory theta activity that projected to dendritic tufts in SLM [92]. We also included 

two populations of entorhinal cells: (1) EC SG connecting to PPA interneurons, which in 

turn inhibited the pyramidal apical tufts, resulting in fewer cells responding in place 

fields, and (2) EC GC connecting to the basilar dendrites, responsible for triggering 

activity at the boundaries of place fields [63]. In the current model, left and right 

subicular pyramidal neurons were added as two groups of three subgroups of cells (SB, 

RS, and FS). Extrinsically, RS neurons received inputs from both CA pyramidal cells and 

prefrontal columns. This represented a feedback loop between the hippocampus and the 

prefrontal cortex, which seems to play a role in synaptic plasticity, and consequently 

memory [176] and dynamic goal-directed behavior [53]. Intrinsically, RS excited 

subicular interneurons (FS), which inhibited the opposite groups of RS and SB neurons, 

suppressing one turn alternative to favor the dominant choice. Prefrontal neurons were 

also organized in subnetworks receiving profuse projections from each hippocampal 

pyramidal networks [83] where each place field provided an increase in activity at a 

given place and time in the maze. Each subnetwork underwent learning if the correct 

sequence was chosen and the animal reached the reward. Finally, premotor neurons 

received inputs from both the subicular RS and prefrontal neurons to create the chosen 
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A                                                        Model Summary 

Populations 

CA pyramidal cells, axonal pathway (VL), EC cells 
(2 groups), basket cells (theta), OLM interneurons, 
PPA interneurons, subicular neurons (SB, RS, FS), 
prefrontal (PF) pyramidal cells (6 columns), PF theta,  
premotor (PM) cells (2 groups) 

Neuron Model 
Leaky integrate-and-fire, fixed threshold, refractory 
time 

Plasticity STDP or SFD 

Channel Model KAHP, HVA and LVA channels 

Synapse Model Conductance-based 

Measurements Membrane Potential 

B                                                              Populations 

Name Elements Size 

CA  5 RAIN networks 3,200 cells 

VL  5 E cell groups 200 cells 

EC SG Linear positive current N/A 

EC GC Current file based N/A 

BC (theta) RAIN network 1,600 cells 

OLM I cell group 300 cells 

PPA 
Linear negative 
current 

N/A 

SB 2 E cell groups 80 cells 

RS 2 E cell groups 80 cells 

FS 2 I cell groups 20 cells 

PF 6 RAIN networks 1,600 cells 

PF (theta) RAIN network 1,600 cells 

PM 2 E cell groups 100 cells 
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C                                                              Neuron and Synapse Model 

Type 
Leaky integrate-and-fire neurons, conductance-
based synapses 

Dynamics / Spiking See Section 2.2.3 for equations 

D                                                              Channel and Plasticity Model 

Channels / Plasticity See Section 2.2.3 for equations 

E                                                              Measurements 

Membrane potential V of all neurons 

Table 4.1: Tabular Description of Model.  The model is summarized in panel A and 
detailed in panels B-E. 

 
4.2.2. Model Analysis 

Analytical and Numerical Experiments 

 The first part of model analysis is a description of analytical and numerical data 

used in the model, as shown in Table 4.2. 

A                                                               Extrinsic Connectivity 

Type Probability (%) Conductance strength (mS) 

RAIN – BC 3 0.004 

BC – CA 3 0.003 

BC – OLM 3 0.2 

OLM – VL 3 0.01 

VL – CA 5 0.006 

RAIN – PFt  3 0.004 

PFt – PF 3 0.003 

CA – PF 0.9 0.002 

SB – FS 24 0.006 
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CA – SB 0.5 0.003 

PF – SB 1 0.002 

PF – PM 5 0.015 

B                                                               Intrinsic Connectivity 

FS – RS 20 0.008 

FS – SB 20 0.008 

SB – RS 10 0.006 

C                                                                Input 

Type Description 

Visual 
cortex 

2 second Gaussian distribution (5 of them) 

Entorhinal 
cortex  
(SG) / PPA 

Linear negative current suppressing CA networks (50%) with 
amplitude of -4 mA and constant duration  

Entorhinal 
cortex 
(GC) 

File based current exciting CA networks (100%) with amplitude of 
3 mA and duration of 300 ms 

PFt 
suppress 

Linear current suppressing PF networks (100%) with amplitude of 4 
mA and duration of 1 sec 

Biasing Pulse current biasing of 2 mA and duration of 500 ms 

Table 4.2: Tabular Analysis of Model. The description of the model connectivity is 
shown in panel A (extrinsic) and B (intrinsic) and the model input is given in panel C. 

 
The second part of model analysis is a description of the results obtained. 

Brain Loop Dynamics 

 The firing pattern of each brain region used in our model during nine consecutive 

runs through the maze is presented in Figures 4.4 a-c. In these results, STDP was used 

such that prefrontal activity remained continuously active once the animal had fully 

learned (after trial 4). STDP had positive fractional changes in synaptic strength (+W) of 
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0.0059 and negative fractional changes in synaptic strength (-W) of 0.003, with positive 

window (+A) of 50 ms and negative window (-A) of 90 ms, and with positive decay 

constant (+τ) of 15 ms and negative decay constant (-τ) of 30 ms. The hippocampal place 

fields (green rectangle) fire appropriately with respect to the position of the mouse in the 

maze. For instance, the first row represents a place field, which corresponds to VL1 

where the second row represents a second place field that corresponds to VL2. When the 

mouse is located at a decision point, both landmarks, VL1 and VL2 are seen equally until 

the animal decides to go one direction towards one specific landmark. Then the place 

cells responsible for firing when VL1 is seen become more active. The subicular area 

(purple rectangle) firing shows a winner-take-all firing pattern, which corresponds to 

every decision the animal made. The first and third rows represent a left decision when 

the second and forth rows represent a right decision. The first two rows represent SB 

neuron firing and the last two rows show RS neuron activity. The prefrontal region (blue 

rectangle) is firing accordingly to the CA input. Each row represents one of the six 

decisions in the order of landmarks (VL1-VL6). Each column underwent STDP when the 

animal got a reward (R). The premotor area (red rectangle) shows a left motion (second 

row) followed by two right motions (first row) during the first run, for example. The field 

potential is shown at the top of the figure where a gamma frequency is seen at the end of 

every run for one second. This is the time we assumed it would take to reposition the 

animal at the beginning of the maze for the next run.  
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plasticity in the prefrontal areas and (2) winner-take-all behavior within the subiculum 

using KAHP and HVA / LVA channels. STDP provided long-term learning from the 

hippocampus and also delivered appropriate learning in the prefrontal cortex to reinforce 

memory back to the hippocampus.  

 Both KAHP and HVA / LVA channels helped reproduce three subicular dynamics, 

whose interconnectivity favored one decision over two conflicting choices. The intrinsic 

connections within the structure represented a winner-take-all scenario that helped the 

animal make a decision, which was reinforced by the prefrontal cortex. This subiculum 

deciding role supported the conflicting goal processing theory described by Mc Naughton 

et al. (2006) [123] and Naber et al. (2000) [134]. 

 Our incorporation of STDP in the excitatory connections within the place cell 

networks and within prefrontal networks resulted in the cooperativity between the 

hippocampus and the prefrontal cortex in synaptic plasticity [40, 94]. These findings 

demonstrated how learning and consolidation could work between the two structures 

during spatial working memory. It also showed the importance of synaptic strengths 

within and among structures during navigational sequences, decision making, and 

learning reinforcement. However, defining STDP parameters precisely within the 

prefrontal area was crucial to have appropriate learning.   

 Our findings demonstrated that STDP positive fractional changes in synaptic 

strength had to be a little lower than 0.006 for hippocampal place cells to have a positive 

impact on the prefrontal cortex.  Based on this parameter, the coherence, including both 

phase and frequency of the prefrontal cells to hippocampal oscillations during performing 

a task was consistent with biological findings of Sigurdsson et al. (2010) [159] and 



82 
 

 

Benchenane el al. (2010) [9]. Hippocampal-prefrontal coherence increased as the animal 

at the decision point in the maze, in particular after learning acquisition when reward 

occurred. 

 This first hippocampal-entorhinal-prefrontal circuit-level model demonstrated 

some important dynamics between the hippocampus, the entorhinal cortex, and the 

prefrontal cortex. Both the extrinsic and intrinsic connectivity of these structures gave a 

good representation of every region dynamics during spatial working memory. It also 

learning within both the hippocampus and the prefrontal cortex is crucial for a higher 

coherence between the two structures. 

 We speculate that transient activation of neural architectures consistent with 

RAIN-like networks may subserve hippocampal CA place field and prefrontal dynamics. 

This insight is important to better understand not only mammalian navigation but more 

complex episodic and semantic short-term memory, working memory and mechanisms of 

long-term memory consolidation and reconsolidation.  
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 Recording experiments will be conducted in future work, and they are described 

in Section 6.3.2. 

5.3. Discussion 
 
 To obtain optimal hippocampal – entorhinal slices with minimal damage of the 

neurons, we developed a fast, easy, and successful technique. Working with the size of 

mice brains has been a challenge in comparison to rat brains that are much bigger. 

However, in the long term, recordings on mice’s neurons will be beneficial because of the 

recent increases in the use of genetically defined mouse lines, which have made mice an 

important animal model for research.  

 After rapidly removing the brain from the skull, slicing speed, frequency, and 

angle are crucial to a successful hippocampal – entorhinal study. The speed has to be 

close to maximal and the frequency has to be optimal to avoid trauma to the tissue. Last 

but not least, we found accurate angles to optimize the visualization of both the 

hippocampus and the entorhinal cortex on a same slice. Positioning the brain at an 

approximately 10º angle on its caudal base, where the rostral portion faced up was 

important as the first step of slicing. Then, slicing at a 15º angle from an upper position 

down to the caudal portion of the brain was the second key step of slicing. Once the 

hippocampal – entorhinal slices are obtained recording experiments can be done and are 

presented as future work (See Section 6.3.2). 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 
6.1. Conclusions 
 
 Computational neural modeling and in vivo / in vitro experiments should 

exchange findings to not only investigate complex brain dynamics that underlie behavior, 

memory, and learning, but also understand and treat neurologic disorders. Computational 

models lead to theoretical advances in the field of neuroscience so that some of the 

predictions can be biologically represented and experimentally tested.  

 In this study, we not only present two neural models, but also suggest relevant 

biological experiments that could lead to interesting findings in brain dynamics during 

navigational learning. The first model described unique circuit-level network features that 

could explain both intracellular and extracellular CA place field dynamics observed while 

navigating on a linear track. Our RAIN networks, combined with entorhinal excitatory 

and inhibitory cells groups provided hippocampal dynamic results similar to in vivo 

studies. In particular, RAIN networks that incorporated KAHP channels, which provided a 

mechanism for the in vivo asymmetry of intracellular place field ramp of depolarization. 

Additionally, these dynamics explain the apparent population-rate discordance and the 

role of entorhinal cortex in stabilizing hippocampal place field activity.  

 The second model described hippocampal-entorhinal-prefrontal circuit-level 

dynamics during sequential learning. It demonstrated how important learning is within 

the prefrontal areas and how the subiculum acts as a winner-take-all using KAHP, HVA 

and LVA channels. STDP provided both short-term learning within the hippocampus and 

delivered long-term consolidation to reinforce working memory back to the 

hippocampus, especially the subiculum. Additionally, coherence, including both the 
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phase and the frequency of the prefrontal cells to hippocampal oscillations increased at 

the decision point and upon learning, which was consistent with biological findings. 

 Last, experimental slicing techniques provided important protocols to obtain 

viable hippocampal–entorhinal slices. Hippocampal recordings following entorhinal 

cortex stimulation could lead to important findings on extrinsic connectivity between the 

two structures. Multiple electrode arrays are something interesting to consider, but they 

come with their own set of challenges, compared with intracellular single cell studies.  In 

some experiments, recording field EPSPs and IPSPs can help to get population, rather 

than single neuron responses, but it depends on the experimental question. Patch 

clamping recording alternatives are described in Section 6.3.2. 

6.2. Contributions to Neuroscience 
 
 Computational modeling is an approach to understanding the information content 

of neural signals by simulating some parts of the nervous system at many different 

structural scales, including the biophysical, the circuit, and the systems levels. Computer 

simulations of neurons and neural networks are complementary to traditional techniques 

in neuroscience, and lead to important hypotheses that could be tested experimentally. 

Here, we have demonstrated beyond the shape of pyramidal cells, some of their synaptic 

connectivity, and the network they impact in the temporal and frontal lobes. Specifically, 

the two models presented in this study have yielded crucial information on hippocampal, 

entorhinal, and prefrontal dynamics in relation to memory and learning, but there are still 

a lot to discover on a complex organ like the brain.  
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6.3. Future Work 
 
 Despite these fundamental findings in this dissertation, there are many discoveries 

that can still be made, both computationally and experimentally. 

6.3.1. Computationally 
  
 Our updated model already contains many important biological-like features 

replicating dynamics in several areas of the brain, but additional important information 

can be simulated to make it even more realistic. For instance, more channel types and 

synapses should be further used because of their responsibility for most essential 

neuronal processes. 

 The hippocampus is modeled as two regions, CA and subiculum, but since the 

dentate gyrus seems to play a role in place sensitivity, especially in novel environments, 

it should also be included. The dentate gyrus is considered to be the main input region of 

the hippocampus, where entorhinal grid cells (layer II) provide monosynaptic projections 

to the granule cells [31], which are necessary for normal spatial-learning [121]. Also, the 

dissociation between grid cells and place cells was shown to arise in the entorhinal-

dentate projection [70]. 

 The entorhinal cortex should also be modeled as its own structure instead of just 

an input source because of its importance in spatiotemporal representation. Phase-coding 

between entorhinal and hippocampal theta activity has been found to influence memory 

formation in a theoretical model [183], and the two oscillations have been shown to be 

independent in humans in vivo studies [128]. Therefore, the hippocampus and the 

entorhinal cortex should have two way connections as a feedback loop. Also, in a freely 
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moving rodents study, both the intrinsic firing frequency of grid cells and theta frequency 

increased with running speed [86], which showed that the  entorhinal cortex plays a 

significant role in spatial navigation. 

 Phase precession is a phenomenon present not only in the hippocampus, but also 

in the entorhinal and prefrontal cortices.  Related to theta phase synchrony seen between 

the hippocampus and the prefrontal, phase precession in the prefrontal cortex is relative 

to the one in the hippocampus [87] during working memory tasks. However, phase 

precession in the entorhinal cortex seems to be independent from the hippocampus [62]. 

These phenomena are important and must also be considered in our future simulations as 

well. 

 Other cortices play important roles in memory, especially navigational learning. 

For instance, the parietal cortex seems to be involved in many different aspects of spatial 

information processing [154]. Ultimately, humans have shown to have different functions 

in the left and right hemispheres of the brain, also seen in the hippocampus [117].  

Despite the limitations of computer hardware for larger simulations, further models 

should include most known brain areas involved in spatial navigation, and differentiate 

the two sides of the brain for multiple function purposes. 

 Our lab and collaborators are working on improving our computer hardware and 

software to simulate large-scale neural networks. The goal is to integrate 106 neurons and 

1010 synapses into the architecture, which would lead to a million-cell model. Finally, a 

virtual environment was created to test the functionality of our models. It will be used in 

further studies for real-time simulations in combination with our new computer 

technology. 
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6.3.2. Experimentally 

 Now that the fundamental slicing procedure has been described, we discuss 

recording techniques that can be used. One alternative to consider is multiple electrode 

arrays, also known as multielectrode arrays contain plates through which neural signals 

are obtained. Their main advantage is to simultaneously receive data from multiple sites, 

which would be optimal when recording between two regions with a probability of 

connection is as low as 5%. However, they come with their own set of challenges, such 

as low spatial resolution. On the other hand, intracellular single cell recording gives more 

detail on one individual neuron by measuring voltage and/or current across the membrane 

to measure its resting potential and action potential.  

 Our results suggest further biological experiments to test our proposed 

mechanistic explanation in our first model. First, stimulation of subsets of entorhinal 

perforant path axons should result in enhanced tonic inhibition of CA pyramidal cells. 

Then, knock-out or knock-in experiments (potentially with rhodopsin optical modulation 

or monitoring) will test the role of specific CA interneurons. Finally, pharmacologic 

blockade or agonists of KAHP channels [165] should modulate theta field activity of ex 

vivo hippocampal preparation [59]. In our second model, single-cell intracellular 

recording experiments within the subiculum could test the interconnectivity between RS, 

SB and FS neurons. Finally, multiple electrode recording experiments to verify synaptic 

strengths in between and within the hippocampus and the prefrontal cortex. 

 Therefore, when the connectivity between two regions is very sparse, such as the 

one between the hippocampus and the entorhinal cortex, single-cell intracellular 

recording would not be optimal, especially if EPSPs and/or IPSPs from the hippocampus 
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after stimulating the entorhinal cortex have to be identified. In some cases though, such 

as recording within the subiculum to identify the interconnectivity between SB, RS and 

FS neurons, this recording may be a better option. In other cases, such as recording 

connections between two major areas, such as the hippocampus and the prefrontal cortex, 

multielectrode arrays could be a better choice. As a further research project, these 

recording techniques will be tried and used for improving model parameters.  
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APPENDIX A: MODEL ONE – BRAIN INPUT FILE 
 
 
############################## Define BRAIN ############################ 
 
%-- Model Main Brain Object --% 
 
BRAIN 
 TYPE             Brain_Navigation  %-- Name of brain configuration  
 JOB              ./output/Brain_Navigation %-- Name of any files generated  
 FSV              1e3    %-- Frequency of sampling value 
 DURATION    8    %-- Duration of simulation (sec) 
 SEED             -20    %-- Random number generator 
 
 
################################ COLUMN TYPE ######################## 
 
%-- Columns within Brain --%   
 
COLUMN_TYPE       CA3_COLUMN 
 
COLUMN_TYPE  column_VL1  
COLUMN_TYPE  column_VL2  
COLUMN_TYPE  column_VL3  
COLUMN_TYPE  column_VL4   
COLUMN_TYPE  column_VL5  
 
COLUMN_TYPE       RAIN2_HP_COLUMN 
COLUMN_TYPE       RAIN_ahp_HP_COLUMN 
 
 
################################ STIM INJECT ########################## 
 
%-- RAIN2_HP stimulation inject to jump start --% 
 
STIMULUS_INJECT      RAIN2_HP_inj_stimE1 
… 
STIMULUS_INJECT      RAIN2_HP_inj_stimE13 
 
%-- PCR GC stimulation inject to jump start --%% 
 
STIMULUS_INJECT      PCR1_GCstim 
… 
STIMULUS_INJECT      PCR5_GCstim 
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%-- Visual landmark input --% 
 
STIMULUS_INJECT  stiminj_VL1  
… 
STIMULUS_INJECT  stiminj_VL5 
 
%-- Added current to OLM neurons --% 
 
STIMULUS_INJECT  stiminj_OLM 
 
%-- Added current to suppress the PCR-E cells --% 
 
STIMULUS_INJECT  PCR1_E_GCsuppress 
… 
STIMULUS_INJECT  PCR5_E_GCsuppress 
 
%-- Added current to suppress the PCR-I cells --% 
    
STIMULUS_INJECT  PCR1_I_GCsuppress 
… 
STIMULUS_INJECT  PCR5_I_GCsuppress 
 
%-- Hippocampal random activity --% 
     
STIMULUS_INJECT  PCR1_random 
… 
STIMULUS_INJECT  PCR5_random 
 
 
############################### REPORTS ###############################  
  
%-- Sample of 1 RAIN voltage report (E1 group) --% 
 
REPORT    EC_II_Voltage_RAIN2_HP_E1 
         
 %-- Sample of 1 PCR voltage report (PCR1 E group) --% 
 
REPORT      Voltage_PCR1_E 
 
%-- Sample of 1 PCR synaptic strength report (PCR1 E group) --% 
  
REPORT       PCR1_EE_USE 
 
%-- Reports can be obtained on any cell or group of cells used in the model --% 
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############################### CONNECTIONS ######################### 
 
%-- Example of a connection from RAIN2 to RAIN_ahp  (Basket cells - theta) --% 
 
CONNECT        %-- From --% 
    RAIN2_HP_COLUMN    
    layer_RAIN2_HP  
    RAIN2_HP_E1  
    somaE_RAIN2 
 
                           %-- To --% (Basket cells) 
    RAIN_ahp_HP_COLUMN    
    layer_RAIN_ahp_HP    
    RAIN_ahp_HP_E1     
    somaE_RAIN_ahp 
                     
    synEE_R2C_RC   %-- Synapse used --%      
    0.03              %-- Probability of connection --% 
 
%-- Many connections were used between each column and/or cell group --% 
Please see Table 3.1 and 3.2. 
 
END_BRAIN 
 
 
############################### INCLUDE FILES ######################### 
  
%-- ANATOMY --% 
 
INCLUDE ./input/INCLUDE_ANATOMY_PCRAIN.inc 
INCLUDE ./input/INCLUDE_ANATOMY_VL.inc 
INCLUDE ./input/INCLUDE_ANATOMY_RAIN_ahp_HP.inc 
INCLUDE ./input/INCLUDE_ANATOMY_RAIN2_HP.inc 
 
%-- STIMULUS --% 
 
INCLUDE ./input/INCLUDE_STIMULUS_PCRAIN.inc 
INCLUDE ./input/INCLUDE_STIMULUS_VL.inc 
INCLUDE ./input/INCLUDE_STIMULUS_GCsupp.inc 
INCLUDE ./input/INCLUDE_STIMULUS_PCR_Random.inc 
INCLUDE ./input/INCLUDE_STIMULUS_OLM.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN_ahp_HP.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN2_HP.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN_ahp_PF.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN2_PF.inc 
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%-- SYNAPSES --% 
 
INCLUDE ./input/INCLUDE_SYNAPSES_PCRAIN.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_OLM.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_VL_PC.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN_ahp_HP_PF.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN2_HP_PF.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN_ahp_HP_PCRAIN.inc 
 
%-- REPORTS --% 
 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_PCRAIN.inc 
INCLUDE ./input/INCLUDE_REPORTS_VL.inc 
INCLUDE ./input/INCLUDE_REPORTS_OLM.inc 
INCLUDE ./input/INCLUDE_REPORTS_USE_PCRAIN.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_RAIN_ahp_HP.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_RAIN2_HP.inc 
 
%-- INCLUDE FILES have all data and parameters used in the model: ANATOMY of 
brain areas, STIMULUS, SYNAPSES for each connection, and REPORTS --% 
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APPENDIX B: MODEL TWO – BRAIN INPUT FILE 
 
 
############################## Define BRAIN ############################ 
 
%-- Model Main Brain Object (See Appendix A for detail) --% 
 
BRAIN 
 TYPE              Brain_Navigation_loop 
 JOB               ./output/Brain_Navigation_loop 
 FSV               1e3 
 DURATION         54 
 SEED              -21 
 
 
################################ COLUMN TYPE ######################## 
 
%-- Columns within Brain --%   
 
COLUMN_TYPE       PM_LEFT_COLUMN 
COLUMN_TYPE       PM_RIGHT_COLUMN 
 
COLUMN_TYPE       PF_LEFT2_COLUMN     
COLUMN_TYPE       PF_LEFT4_COLUMN 
COLUMN_TYPE       PF_LEFT6_COLUMN 
COLUMN_TYPE       PF_RIGHT1_COLUMN 
COLUMN_TYPE       PF_RIGHT3_COLUMN 
COLUMN_TYPE       PF_RIGHT5_COLUMN 
     
COLUMN_TYPE       SUB_LEFT_COLUMN 
COLUMN_TYPE       SUB_RIGHT_COLUMN 
     
COLUMN_TYPE       CA_COLUMN 
 
COLUMN_TYPE  column_VL1  
COLUMN_TYPE  column_VL2  
COLUMN_TYPE  column_VL3  
COLUMN_TYPE  column_VL4   
COLUMN_TYPE  column_VL5  
COLUMN_TYPE  column_VL6  
COLUMN_TYPE  column_VL7  
COLUMN_TYPE  column_VL8  
COLUMN_TYPE  column_VL9  
COLUMN_TYPE  column_VL10 
COLUMN_TYPE  column_VL11 
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COLUMN_TYPE  column_VL12 
COLUMN_TYPE  column_VL13 
COLUMN_TYPE  column_VL14 
 
 
COLUMN_TYPE       RAIN2_HP_COLUMN 
COLUMN_TYPE       RAIN_ahp_HP_COLUMN 
COLUMN_TYPE       RAIN2_PF_COLUMN 
COLUMN_TYPE       RAIN_ahp_PF_COLUMN 
 
 
################################ STIM INJECT########################### 
 
%-- RAIN2_HP stimulation inject to jump start  (see appendix A) --% 
 
%-- RAIN2_PF stimulation inject to jump start --% 
 
STIMULUS_INJECT      RAIN2_PF_inj_stimE1 
… 
STIMULUS_INJECT      RAIN2_PF_inj_stimE13 
 
%-- PCR GC stimulation inject to jump start --%% 
 
STIMULUS_INJECT      PCR1_GCstim 
…     
STIMULUS_INJECT      PCR14_GCstim 
 
%-- Visual landmark input --% 
 
STIMULUS_INJECT  stiminj_VL1  
…     
STIMULUS_INJECT  stiminj_VL14 
 
%-- Added current to OLM neurons --%     
 
STIMULUS_INJECT  stiminj_OLM 
 
%-- Added current to suppress the PCR-E cells --%     
 
STIMULUS_INJECT  PCR1_E_GCsuppress 
… 
STIMULUS_INJECT  PCR14_E_GCsuppress 
 
%-- Added current to suppress the PCR-I cells --% 
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STIMULUS_INJECT  PCR1_I_GCsuppress 
… 
STIMULUS_INJECT  PCR14_I_GCsuppress 
 
%-- Added positive current to PF theta (E) to suppress PF networks when no reward --% 
 
STIMULUS_INJECT   PF_theta_suppress 
    
%-- Added positive current to subiculum for only the first run (biased decision) --% 
 
STIMULUS_INJECT     SUB_LEFT2 
STIMULUS_INJECT     SUB_LEFT4 
STIMULUS_INJECT     SUB_LEFT6 
STIMULUS_INJECT     SUB_RIGHT1 
STIMULUS_INJECT    SUB_RIGHT3 
STIMULUS_INJECT     SUB_RIGHT5 
     
%-- PCR ongoing activity --% 
 
STIMULUS_INJECT PCR1_activity 
… 
STIMULUS_INJECT PCR14_activity 
 
%-- PF ongoing activity --% 
 
STIMULUS_INJECT PF_LEFT2_E1_activity 
… 
STIMULUS_INJECT PF_LEFT2_E13_activity 
 
STIMULUS_INJECT PF_LEFT4_E1_activity 
…     
STIMULUS_INJECT PF_LEFT4_E13_activity 
 
STIMULUS_INJECT PF_LEFT6_E1_activity 
…     
STIMULUS_INJECT PF_LEFT6_E13_activity 
 
STIMULUS_INJECT PF_RIGHT1_E1_activity 
…     
STIMULUS_INJECT PF_RIGHT1_E13_activity 
 
STIMULUS_INJECT PF_RIGHT3_E1_activity 
…     
STIMULUS_INJECT PF_RIGHT3_E13_activity 
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STIMULUS_INJECT PF_RIGHT5_E1_activity 
…     
STIMULUS_INJECT PF_RIGHT5_E13_activity 
 
 
############################### REPORTS ###############################    
  
%-- Reports can be obtained on any cell or group of cells used in the model --% 
Please see Appendix A for an example 
 
 
############################### CONNECTIONS ######################### 
 
%-- Many connections were used between each column and/or cell group --% 
Please see Appendix A for an example 
Please see Table 4.1 and 4.2 
    
END_BRAIN 
 
 
############################### INCLUDE FILES ######################### 
  
%-- ANATOMY --% 
 
INCLUDE ./input/INCLUDE_ANATOMY_PCRAIN.inc 
INCLUDE ./input/INCLUDE_ANATOMY_VL.inc 
INCLUDE ./input/INCLUDE_ANATOMY_RAIN_ahp_HP.inc   
INCLUDE ./input/INCLUDE_ANATOMY_RAIN2_HP.inc 
INCLUDE ./input/INCLUDE_ANATOMY_RAIN_ahp_PF.inc 
INCLUDE ./input/INCLUDE_ANATOMY_RAIN2_PF.inc 
INCLUDE ./input/INCLUDE_ANATOMY_PF_LEFT2.inc 
INCLUDE ./input/INCLUDE_ANATOMY_PF_LEFT4.inc 
INCLUDE ./input/INCLUDE_ANATOMY_PF_LEFT6.inc 
INCLUDE ./input/INCLUDE_ANATOMY_PF_RIGHT1.inc 
INCLUDE ./input/INCLUDE_ANATOMY_PF_RIGHT3.inc 
INCLUDE ./input/INCLUDE_ANATOMY_PF_RIGHT5.inc 
INCLUDE ./input/INCLUDE_ANATOMY_SUB_LEFT.inc 
INCLUDE ./input/INCLUDE_ANATOMY_SUB_RIGHT.inc 
INCLUDE ./input/INCLUDE_ANATOMY_PM.inc 
 
%-- STIMULUS --% 
 
INCLUDE ./input/INCLUDE_STIMULUS_PCRAIN.inc 
INCLUDE ./input/INCLUDE_STIMULUS_VL.inc 
INCLUDE ./input/INCLUDE_STIMULUS_GCsupp.inc 
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INCLUDE ./input/INCLUDE_STIMULUS_PFsupp.inc 
INCLUDE ./input/INCLUDE_STIMULUS_PCR_Random.inc 
INCLUDE ./input/INCLUDE_STIMULUS_OLM.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN_ahp_HP.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN2_HP.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN_ahp_PF.inc 
INCLUDE ./input/INCLUDE_STIMULUS_RAIN2_PF.inc 
INCLUDE ./input/INCLUDE_STIMULUS_activity_PCR_PF.inc 
INCLUDE ./input/INCLUDE_STIMULUS_SUB.inc 
 
%-- SYNAPSES --% 
 
INCLUDE ./input/INCLUDE_SYNAPSES_PCRAIN.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_OLM.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_VL_PC.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN_ahp_HP_PF.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN2_HP_PF.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN_ahp_HP_PCRAIN.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN_ahp_PF_PF.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_RAIN_ahp_HP_SUB.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_HP_PF_ahp.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_PF.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_PCR_PF.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_SUB.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_PF_SUB.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_PCR_SUB.inc     
INCLUDE ./input/INCLUDE_SYNAPSES_SUB_PM.inc 
INCLUDE ./input/INCLUDE_SYNAPSES_probe.inc   
 
%-- REPORTS --% 
 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_PCRAIN.inc 
INCLUDE ./input/INCLUDE_REPORTS_VL.inc 
INCLUDE ./input/INCLUDE_REPORTS_OLM.inc 
INCLUDE ./input/INCLUDE_REPORTS_USE_PCRAIN.inc 
INCLUDE ./input/INCLUDE_REPORTS_USE_PF.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_RAIN_ahp_HP.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_RAIN2_HP.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_RAIN_ahp_PF.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_RAIN2_PF.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_PF.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGES_PM.inc 
INCLUDE ./input/INCLUDE_REPORTS_SUB.inc 
INCLUDE ./input/INCLUDE_REPORTS_VOLTAGE_probe.inc 
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APPENDIX C: INCLUDE FILES 
 
%-- ANATOMY --%  (Example of premotor cell group anatomy) 
 
#########################  
## Define Column Shells   
######################### 
  
COLUMN_SHELL  
    TYPE              columnshell_PM  
    WIDTH             300  
    HEIGHT            800  
END_COLUMN_SHELL 
  
#########################  
## Define Columns   
#########################  
  
COLUMN  
    TYPE            PM_LEFT_COLUMN  
    COLUMN_SHELL    columnshell_PM  
   LAYER_TYPE       layershell_PM_LEFT  
END_COLUMN 
  
COLUMN  
    TYPE             PM_RIGHT_COLUMN  
    COLUMN_SHELL    columnshell_PM  
    LAYER_TYPE      layershell_PM_RIGHT  
END_COLUMN  
 
#########################  
## Define Layer Shells   
######################### 
  
LAYER_SHELL  
 TYPE              layershell_PM_LEFT 
 UPPER             100  
 LOWER            0  
END_LAYER_SHELL 
 
LAYER_SHELL  
 TYPE              layershell_PM_RIGHT 
 UPPER             100  
 LOWER            0  
END_LAYER_SHELL   
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#########################  
## Define Layers    
######################### 
  
LAYER  
 TYPE   layer_PM_LEFT  
 LAYER_SHELL layershell_PM_LEFT  
 CELL_TYPE  LEFT_E_PM  100   
END_LAYER  
 
LAYER  
 TYPE   layer_PM_RIGHT  
 LAYER_SHELL layershell_PM_RIGHT  
 CELL_TYPE  RIGHT_E_PM 100   
END_LAYER 
  
#########################  
## Define Cells    
######################### 
  
CELL  
 TYPE   LEFT_E_PM   
 COMPARTMENT soma_exc_PM     soma_E_PM      0  0 0   
END_CELL  
 
CELL  
 TYPE   RIGHT_E_PM   
 COMPARTMENT soma_exc_PM     soma_E_PM      0  0 0   
END_CELL  
 
#########################  
## Define Compartments    
#########################  
 
COMPARTMENT  
    TYPE             soma_exc_PM 
    SPIKESHAPE        spikeshape_1k_default  
    TAU_MEMBRANE     0.020  0.0  
    R_MEMBRANE       200      0  
    THRESHOLD         -50       0  
    VMREST            -60     0  
END_COMPARTMENT  
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%-- STIMULUS --% (Example of subiculum stimulus) 
 
STIMULUS_INJECT 
    TYPE             SUB_LEFT2 
    STIM_TYPE        realstim_SUB_LEFT2 
    INJECT           SUB_LEFT_COLUMN  
    layer_SUB_LEFT  
    SUB_LEFT_E_SB  
    somaE   0.50 
END_STIMULUS_INJECT 
 
STIMULUS 
 TYPE   realstim_SUB_LEFT2 
 MODE   CURRENT 
 PATTERN          PULSE 
 TIME_INCREMENT 0.01 
 FREQ_COLS  100 
 CELLS_PER_FREQ 1 
 DYN_RANGE 0 400 
 TIMING           EXACT 
 SAMESEED  NO 
 AMP_START  2 
 WIDTH  0.001 
     TIME_START .5   
 TIME_END  1    
END_STIMULUS 
 
%-- SYNAPSES --% (Example of subiculum synapses) 
 
SYNAPSE 
    TYPE            synIE_SUB 
    SFD_LABEL       NO_SFD 
    LEARN_LABEL     NO_LEARN 
    SYN_PSG         PSGinhib 
    MAX_CONDUCT    0.008   0.0 
    DELAY           0.001  0.005 
    SYN_REVERSAL   -80    0 
    ABSOLUTE_USE   0.5    0.05 
END_SYNAPSE 
 
SYNAPSE 
    TYPE            synEI_SUB 
    SFD_LABEL       NO_SFD 
    LEARN_LABEL     NO_LEARN 
    SYN_PSG         PSGexcit 
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    MAX_CONDUCT    0.006  0.0 
    DELAY           0.005  0.01 
    ABSOLUTE_USE   0.25    0.1 
END_SYNAPSE 
 
SYNAPSE 
    TYPE            synEE_SUB 
    SFD_LABEL       NO_SFD 
    LEARN_LABEL     NO_LEARN 
    SYN_PSG         PSGexcit 
    MAX_CONDUCT    0.006  0.0 
    DELAY           0.005  0.01 
    ABSOLUTE_USE   0.25    0.1 
END_SYNAPSE 
 
%-- REPORTS --% (Example of premotor cell group reports) 
 
REPORT 
    TYPE                   LEFT_PM_VOLTAGE_E 
    CELLS                 PM_LEFT_COLUMN  
    layer_PM_LEFT   
    LEFT_E_PM   
    soma_E_PM 
    PROB                  0.3 
    REPORT_ON            VOLTAGE 
    FILENAME             LEFT_PM_VOLTAGE_E.txt 
    FREQUENCY            1 
    TIME_START           0 
    TIME_END             100 
END_REPORT 
 
REPORT 
    TYPE                  RIGHT_PM_VOLTAGE_E 
    CELLS                 PM_RIGHT_COLUMN  
    layer_PM_RIGHT   
    RIGHT_E_PM   
    soma_E_PM 
    PROB                  0.3 
    REPORT_ON            VOLTAGE 
    FILENAME             RIGHT_PM_VOLTAGE_E.txt 
    FREQUENCY            1 
    TIME_START           0 
    TIME_END             100 
END_REPORT 
 


