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Abstract

As increasing numbers of closely related genomic sequences become available,

the need to develop methods for detecting fine differences among them also grows

apparent. Several calls have been made for improved algorithms to exploit the wealth

of pathogenic viral and bacterial sequence data that are rapidly becoming available

to researchers. The first stage of our research addresses the computational limitations

associated with whole-genome comparisons of large numbers of subspecies sequences.

We investigate the potential for the use of fast, word-based comparative measures to

approximate computationally expensive, full alignment comparison methods.

Recent advances in next generation sequencing are providing a number of large

whole-genome sequence datasets stemming from globally distributed disease occur-

rences. This offers an unprecedented opportunity for epidemiological studies and the

development of computationally efficient, robust tools for such studies. In the second

stage of our research, we present an approach that enables a quick, effective, and

robust epidemiological analysis of large whole-genome datasets. We then apply our

method to a complex dataset of over 4, 200 globally sampled Influenza A virus iso-

lates from multiple host types, subtypes and years. These sequences are compared

using an alignment-free method that runs in linear-time. These comparisons enable

us to build 2-dimensional graphs that represent the relationships between sequences,

where sequences are viewed as vertices, and high-degree sequence similarity as edges.

These graphs prove useful, as they are able to model potential disease transmission

paths when applied to viral sequences. Mixing patterns are then used to study the

occurrence and patterns of edges between different types of sequence groups, such as

the host type and year of collection, to better understand the potential of genotypic

transfer between sequence groups.
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Chapter 1

Introduction

As the availability of public whole genome sequences increases, a demand to develop

methods that detect fine differences among these sequences grows as well. Several calls

have been made for improved algorithms to exploit the wealth of pathogenic viral and

bacterial sequence data [9, 30]. Whereas these types of data sets continue to expand,

algorithms to compare many long sequences are still lacking [9, 30]. Comparing

whole-genomes, as opposed to shorter sequence segments (such as selected genes of

interest), is a robust comparative approach, using all available genetic information

of the organism. Comparative conclusions are clearly dependent upon the genomic

subsequences selected [83].

Computing sequence alignment scores using traditional dynamic programming

can yield an optimal solution (the best possible alignment); however, this compu-

tation runs on the order of O(N2) in time where N is equal to sequence length.

Thus, dynamic programming (DP) is not a practical approach to compare sequences

of most longer whole genomes. For example, the Eschericia coli genome contains

approximately five million base pairs. Comparing two of these sequences using a

standard DP matrix would require 2.5x1013 memory locations and each would need

to be visited at least once.

The first stage of our research addresses the computational limitations associated

with whole-genome comparisons of subspecies sequences. We investigate and deter-

mine computationally efficient and accurate comparison methods that evaluate entire

databases of viral subspecies whole-genomes. These methods include alignment-free,
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k -mer based measures that run in linear-time. The goal is to find a reliable alignment-

free replacement to alignment-based comparisons, which are computationally expen-

sive. We assess the accuracy of each method via correlation of alignment-free distance

scores with pairwise alignment scores generated by the popular multiple sequence

alignment program ClustalW.

Genomic sequences, being the “molecules as documents of evolutionary his-

tory” [92], have proven integral to research involving the transmission of subspecies

pathogens. Subspecies comparisons can enable insight into viral forensics and disease

transmission patterns. In the second stage of our research, we describe a graphical

approach to examine disease transmission. This entails comparing large numbers of

whole genomes using a rapid, alignment-free algorithm and then creating a graph

based upon these comparative measures. We apply our methodology to a large set of

subspecies, Influenza A virus whole genome sequences, which are publicly available

from the Influenza Virus Resource database [2]. We are then able to examine the

possible transfer of genotypes across species and among virus collection years. We

also compute the probabilities that viral isolate sequences across species and year

groups in the given dataset are very similar.

There are several novel aspects to our research, to the best of our knowledge: A)

ours is the first study that assesses the accuracy of using k -mer based comparisons for

large, subspecies datasets, B) we have not encountered the creation of complex graphs

from genomic sequences, where edges are drawn based upon sequence similarity scores

and user-defined thresholds, C) the k -deep prefix tree algorithm, described in Chapter

6, and D) a word-based distance metric for comparing genomic sequences presented

in Section 7.10.

In Chapter 2, we provide a review for computer scientists about the motivation

behind genomic sequence comparisons. Chapter 3 provides the motivation for the

proposed research. We also discuss the magnitude of data available and some limiting

computational bottlenecks. A review of word-based comparative measures and why

they are favorable for use in comparative algorithms are presented in Chapter 4.
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Chapter 5 summarizes and outlines the research goals, and Chapter 6 describes some

preliminary work regarding an efficient algorithm and data structure that might be

applied to k -mer based comparisons. In Chapter 7, we test several k -mer based

comparative approaches on viral datasets and select the most accurate method. In

Chapter 8, we describe a methodological approach to build a graph from an Influenza

A virus whole-genome data set. Chapter 8 also includes an analysis of the graph with

respect to edges found between vertices collected from different host types and time

points.
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Chapter 2

Some Genomics for Computer
Scientists

2.1 What is a genome to a computer scientist?

A genome contains the complete genetic material of an organism. DNA and RNA

stand for deoxyribonucleic acid and ribonucleic acid molecules. These are long-

stranded molecules composed of only four types of bases; Adenine, Cytosine, Gua-

nine and Thymine (DNA) or Uracil (RNA) (A, C, G, T/U). Most organisms contain

double-stranded DNA molecules, as shown in Figure 2.1; however, a group of viruses,

referred to as RNA viruses, contain single-stranded RNA genomes. In RNA, every

Thymine base is replaced by a Uracil. Either way, genomes are constructed from

only four types of molecules rendering a small alphabet {A,C,G,T/U} with which all

simple instructions must be encoded.

A computer scientist working with genomic sequences will find data in the form of

long (very long) text strings (Figure 2.2). Computations generally involve sequence

comparisons and/or pattern finding. New and diverse algorithms to achieve these

tasks are published regularly in bioinformatics journals.

The image in Figure 2.2 is a piece of the code for human chromosome 21 which

is 49,691,432 base pairs (bp) or characters long. Because of their length, genomic

sequences and their analysis require notable amounts of memory, high power com-

puting, and algorithms that are efficient in computational time and storage space.

The digital format of a genomic sequence is simply a string; thus, many tools from
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Figure 2.1: Depiction of a DNA molecule, from [71]

Figure 2.2: Nucleotide sequence string
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string processing can be leveraged to analyze these sequences.

Genomic sequences contain many genes that can affect the on/off switch of many

other genes, yielding unknown or unstudied sequence regions. Understanding how

these genes interact with external, environmental and/or cellular factors is even more

complicated. For example, epigenetics, post-transcriptional regulation and the his-

tone code refer to changes in gene expression not dictated by the simple DNA code.

Even locating all of the genes in the human genome is still a work in progress. Inter-

genic regions are also still being explored. For example, about 0.3% to 1% of the

human genome is composed of conserved non-genic sequences that are shared among

all mammals [22]. Non-genic or inter-genic regions are those regions of DNA that do

not encode for proteins; they are not genes. The fact that some of these regions are

conserved indicates that they serve a crucial function; however, these functions often

remain unclear.

So, what is a genome to a computer scientist? It is a long text string of only

four letters that forms the basis of instructions for important functions like causing or

preventing cancer, Parkinson’s disease, or the virulence of the bubonic plague. Thanks

to a long history of biochemical research and a shorter history of computational

analysis, it is a code that is being deciphered rapidly.

2.2 Why compare genomic sequences?

Most computational analysis of genomes involves some sort of string and or substring

comparisons. To create a useful algorithm, it is important to understand why these

comparisons are made and what kind of knowledge can be gained. A famous essay

written by the evolutionary biologist Theodisius Dobzhansky was titled “Nothing

in Biology Makes Sense Except in the Light of Evolution” [16]. Genomic sequences

differ from one another because they evolve. This means that, in the most basic sense,

they change over generations. Computationally, the implication is that at any point in

time, each organism on earth is represented by a unique string identifier. Furthermore,

that string is the ultimate record of an organism’s evolutionary history [87]. In
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1965, Emile Zuckerkandl and Linus Pauling accurately predicted that DNA would be

“molecules as documents of evolutionary history” [92].

When comparing genome strings, the basic assumption is that the more similar

the strings, the more related the organisms. Sequences change through mutations

which might accumulate over time. In general, types of mutations include point

mutations, which are changes in single base pairs, or insertions and deletions, which

involve the insertion or removal of small contiguous stretches. Point mutations occur

during DNA replication or can be induced by mutagens. Insertions are usually the

result of transposable elements, which are portions of DNA that might jump from

one region to another. In these cases, deletions also occur upon the removal of an

inserted region and potentially some of the surrounding regions as well. Insertions

and deletions might occur during replication as well.

Mutation rates attributable to replication errors were examined in rats and

mice [48]. In mammals, DNA in male germlines undergoes more cell division than

female germlines. This accounted for a male-to-female sex bias in mutation rates of

approximately 2:1.

Some, but not all errors are terminal. Genomic changes can cause an organism

to die, to have reduced fitness and produce less offspring, to experience no change, or

to gain an adaptive advantage. Evolutionary selection describes this concept. Evo-

lutionary selection is broken down into purifying (negative) selection and Darwinian

(positive) selection [54]. Negative selection operates on genomic regions that must not

change in order for an organism to remain viable. The negative selection mechanism

is basically death or lower reproductive fitness so that changes to functional regions

are not incorporated into later lineages. For example, imagine a gene for ‘has blood’

in mammalian species. An extreme mutation disrupting the function of ‘has blood’

in a mammalian offspring would probably mean that it would not survive.

Positive selection applies to regions that might change and where these changes

might actually confer a fitness advantage (i.e. adaptation). Changes to these regions

are selected for meaning that these regions experience higher degrees of variation be-
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Figure 2.3: Conserved and variable regions, from [54]

cause they do not necessarily cause death. The positive selection mechanism reflects

potential adaptation where a change might allow for better survival of a given lin-

eage. Resistance to antibiotics in some bacteria is an example of a positively selected

mutation.

Figure 2.3 provides an illustration of these concepts [54]. Two genomic sequences

are depicted after a speciation event. A speciation event describes the point at which

a genomic sequence has changed so much so as to now define a new species from

its ancestors. The exons in Figure 2.3 represent functional regions that are under

negative selection. The introns represent variable regions under positive selection.

The y-axis measures the amount of base pair variation found between species A and

B with respect to these regions. This image illustrates the conservation of regions

under negative selection and the variability of regions under positive selection.

When an organism’s genome is sequenced, this means that the entire genome

is available in string form. Comparing genome strings from multiple organisms al-

lows the determination of both conserved and variable regions. Identifying conserved

regions among a group of sequences can aid in the determination of functional re-

gions [50]. Genes associated with virulence in human pathogens have been identified

in this manner [78]. Human pathogens are microbial organisms that can cause illness

in humans, whereas virulence is the damage caused to the human while infected.

Through genome comparisons, the researchers in [78] found 1,024 candidate genes
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that were conserved in 90% of the genomes of a diverse range of virulent pathogens

such as Anthrax, Botulism, Plague, Smallpox and Tularemia, but were absent from

all non-pathogens examined.

Comparing variable regions might indicate adaptive sequence changes in response

to such variables as the environment or in the case of pathogens, host immunity [54].

For example, more than 90% of Influenza A virus (H3N2) samples collected in the

United States in the 2005-2006 flu season were resistance to adamantanes, an early

form of antiviral drugs. This represents a sharp increase from the approximately 1%-

3% of resistance noted before 2004. The genetic cause of resistance is a single amino

acid replacement that is encoded by a three base pair long nucleotide sequence [72].

Comparing genomic sequences can also allow the estimation of evolutionary pro-

gression among a group of organisms. This is important because all inferences in com-

parative biology depend upon accurate estimates of evolutionary relationships [38].

Figure 2.4 represents a phylogeny of the genomes of distantly and closely related

genomes.

A phylogenetic tree is a tree graph representing the evolutionary ordering among

a group of sequences. The degree of similarity between sequences is represented by

their proximity on the tree. Figure 2.4 also depicts terms used to describe the evo-

lutionary breadth of genomic comparisons. Phylogenetic footprinting refers to the

comparison of genomes of distantly related species. Phylogenetic shadowing refers to

comparisons among closely related species, such as primates and humans. Popula-

tion shadowing describes comparing genomes among the same species. Some of the

limitations associated with phylogenetic trees are discussed in Chapter 3.
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Figure 2.4: Phylogenetic tree, from [54]
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Chapter 3

Motivation for Research

3.1 Why differentiate among subspecies viral

genomes?

As technology advances, bioinformaticians are incrementally presented with new com-

binations of increased computing power and larger numbers of complete genomic

sequences. Computing hardware has so far adhered to Moore’s law, which states

that the number of transistors on a circuit board doubles approximately every two

years. This has resulted in rapid and consistent improvements in processing speed

and memory capacity [76]. At the same time, developing methods in sequencing

technology (Next Generation Sequencing) promise to continue to provide faster and

cheaper methods for sequencing entire genomes [51, 53].

As a result, large sets of sequences representing bacterial and viral samples within

the same species group are publicly available. For example, the Influenza A virus

has been particularly well-sampled. The pandemic potential of Influenza coupled

with its high distribution across the globe has resulted in a high rate of sampling,

analysis, and surveillance [10]. The National Center for Biotechnology Information

(NCBI)’s Influenza Virus Resource database currently houses over 70,000 influenza

viral sequences spanning multiple host species, decades, subtypes, and geographic

locations [2]. Other publicly available RNA viral databases include the Dengue Virus

Resource also hosted by the NCBI Virus Variation Resource [69], and the Los Alamos

HIV database [46]. In addition, a West Nile virus database will soon be hosted by the
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NCBI Virus Variation Resource. These databases can be expected to continue to grow

in the future. Advances in computational methods that combine high-throughput

processing capabilities and increasing data set sizes are now the largest challenge to

analysis of such viral genomic information [30].

Genomic-based forensics attempts to pinpoint the source of human infections of

existing pathogens. Two published studies determined the likely source of human

immunodeficiency virus type 1 (HIV-1) through genomic sequence comparisons. The

first study published in 2006 investigated the source of HIV type 1 infection of children

in a Libyan hospital in 1998 [11]. Foreign medical staff, including a Palestinian doctor

and five Bulgarian nurses, were originally accused of infecting 448 children. HIV-1

viruses were sequenced from 51 children and phylogenetic trees of the gag gene showed

these samples closest to strains already circulating in West Africa. This and further

genomic-based analysis led the researchers to conclude that the hospital had had

a longstanding HIV-1 infection-control problem preceding the arrival of the foreign

medical staff. An earlier study in the United States determined the source of HIV-1

infections for five people with no known risk factors to be a common HIV-1 infected

dentist [61]. Figure 3.1 depicts a phylogeny of viral sequences (x and y) collected

from the Dentist and Patients A, B, C, E and G.

Somewhat similar to forensics is the approximation of disease transmission net-

works through genomic sequence comparisons. This genomic approach to epidemio-

logical discovery is becoming increasingly feasible with the current growth in public

genomic sequence data.

Current methods for characterizing the spatial and temporal structure of past

epidemiological events, which are not based on genomic data, can rely on subjective

data collection and/or require extensive research [37]. Due to collection methods of

the data required for recreating disease transmission networks, such as patients being

required to remember all contacts, resulting graphs can be tree-like [37], relatively

small, and misrepresentative of the networks complexity.

Whole-genome comparison methods can provide a quantitative approach to ap-
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Figure 3.1: Phylogeny of HIV-1 samples (x and y) linking patients A,B,C,E and G to
Dentist, from [61]
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proximating evolutionary relationships. These methods are particularly attractive in

studies of RNA viruses (such as Influenza A virus), which mutate rapidly [67] and

are relatively small. Small sequence sizes reduce computational requirements. High

mutation rates create a potentially traceable micro-evolutionary pathway through

sequence comparisons. Many of the viral isolates have known collection locations

easily convertible into geographic coordinates. Comparisons of global interspecies

isolates with known geographic origins might allow for the identification of global

circulation routes and interspecies transmission (‘host jumping’) patterns, thereby

providing mechanisms to develop networks to model disease transmission.

From a graph theoretic approach, a disease network can be viewed as a graph of

vertices and edges where individuals or groups of genomic sequences are represented

by vertices and their pairwise transmissive potential is indicated by edges. Cur-

rent methods of developing disease networks from publicly available genomic data

are based on phylogenetic tree inferences. These include phylogenies derived from

multiple sequence alignments [56] and more recently, Bayesian phylogeography [42].

Phylogenetic trees are basic networks in the form of tree graphs, and are not designed

to encompass the amount of data available and required to characterize complex net-

works. In a phylogenetic tree, each vertex can have only one parent and two children.

However, in a complex network, vertices can be connected to a number of other

vertices via edges not necessarily based on ancestor/progeny relationships. This ap-

proach circumvents phylogenetic tree computation, and provides the consideration of

larger datasets and less restrictive edges constraints.

3.2 Comparing whole genomes

Historically, limitations in computing power and sequence data have required re-

searchers to select smaller, orthologous coding regions from groups of genomes for

building phylogenies [77]. Orthologous genes are genomic regions that have been con-

served among different species after a speciation event, such as the imaginary ‘has

blood’ gene in mammals. Single gene phylogenies were originally used in response to
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limits in computing power and data [77]. A common example is phylogenetic study

based on ribosomal RNA coding regions. The first reported use of ribosomal RNA

was originally based on the following: 1) ribosomal RNA was thought to be found

in all self-replicating organisms, 2) it was easy to extract and, 3) it changes very

slowly over time allowing that relationships may be detected among distantly related

species [87]. Genome comparisons based on ribosomal RNA are still widely used to-

day to derive the prokaryotic branch of the Tree of Life [44] and serve as the gold

standard when phenotype data are scarce [75]. Prior to the discovery of ribosomal

RNA, building prokaryotic phylogenies had been deemed unsolvable [60].

A problem with using smaller coding regions to represent entire genomes is that

the comparisons of different coding regions can lead to different trees [14, 64, 77]. For

example, Figure 3.2 illustrates different trees resulting from different genome subsets

among species of corona virus genomes [91].

After the year 2000, genome comparisons began using multiple genes and current

studies often incorporated more than 100 coding regions [14]. Most likely, these

genome subsets prove sufficient for genome sequence comparisons among different

mammalian species [14, 31]. However, comparing microbes using only genome subsets

is less supported due to the high prevalence of horizontal gene transfer [88] and

recombination.

Horizontal gene transfer (HGT) is a major force in archaeal and bacterial evo-

lution [20]. This is a mechanism by which genes from one organism might be in-

corporated into the genome of another organism that is not an offspring. Thus, an

evolutionary tree can be viewed as a more complex network than traditional bifurcat-

ing tree representations. This is illustrated in Figure 3.3 from [17]. Yersinia pestis [62]

and Neisseria meningitis [80] are thought to have acquired pathogenicity through this

phenomena. While HGT is not assumed to affect ribosomal RNA coding regions [14],

it requires consideration when building gene-based phylogenies.

Recombination is another genomic mixing mechanism common in microbial species

whereby entire genome segments are inherited for different progenitors [25]. Recombi-
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Figure 3.2: Different phylogenies resulting from whole-genome and selected gene com-
parisons, from [91]
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Figure 3.3: Theorized effects of Horizontal Gene Transfer (HGT) on tree of life,
from [17]

nation is extremely prevalent in RNA viruses such as HIV and Influenza A virus [67].

Figure 3.4 depicts recombination among multiple influenza viruses [30]. In Figure

3.4, two different viruses co-infect the same cell and resulting progeny contain com-

binations of genome segments from both.

For making lineage distinctions among subspecies microbes it should be optimal

to base comparisons on complete genomic sequences. While microbes are rapidly

evolving, organisms from the same species will be expected to still have many con-

served, coding regions. For example, ribosomal RNA is generally too conserved to

distinguish among bacterial strains within the same species [45]. To differentiate

among subspecies samples, the inclusion of variable, non-coding regions is useful.

Subspecies variation is often referred to as phylogenetic noise [54]. However, among

individual samples of the same species, this phylogenetic ‘noise’ may be necessary

for making distinctions among lineages and depicting intra-species phylogenies. To

illustrate this, we ran two word-based comparisons on whole genomes and then again

on only coding regions of two strains of Escherichia coli (E.coli 0157:H7 str. EDL933
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Figure 3.4: Depiction of reassortment between two influenza viruses, from [30]
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and E.coli 0157:H7 str. EC4115). The coding regions contributed to 14% of the total

differences measured between the whole-genomes. Thus, 86% of word-based differ-

ences between strains were found within non-coding regions. These percentages merit

further investigation into how crucial non-coding differences (phylogenetic noise) are

for depicting accurate phylogenetic relationships among closely related strains.

3.3 Computational limits

3.3.1 Multiple Sequence Alignment

Methods commonly used to infer evolutionary trees of genomic sequences are not

amenable to large whole-genome sequence datasets. These methods are generally

based on pairwise and/or multiple sequence alignments (MSA), originally designed

and tested with relatively short protein sequences in mind [9, 19]. Multiple sequence

alignment methods have been proven to be NP-complete [21, 83, 84]. In response,

heuristics (computational shortcuts) are often employed to reduce computation times.

The most common heuristic approach is progressive alignment [19, 59]. In progressive

alignment, pairwise alignments are conducted among all pairs of sequences in a group.

The overall multiple sequence alignment is then progressively built on these pairwise

alignments.

Several commonly used programs based upon sequence alignment methods in-

cluding ProbCons, T-Coffee, MAFFT, MUSCLE, DIALIGN, ProDA and ClustalW

have been reviewed in [19]. In this review, any analysis involving sequences longer

than 20,000 characters might cause all program except ClustalW to default on mem-

ory. Furthermore, ClustalW would be capable of handling only a small number of

these large sequences. While a typical protein sequence will contain approximately

100 characters, complete microbial genomes are generally orders of magnitude larger.

Figure 3.5 depicts relative numbers of microbial species and their general size distri-

butions [25]. Figure 3.5 shows that whole genomes of almost none of the microbial

species included would fall under the 20,000 character limit suggested in [19].
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Figure 3.5: Sizes of a set of sequenced microbes, from [25]

As previously mentioned, heuristics enable the solution of an MSA, but they do

not guarantee the optimal solution. Thus, different algorithms using different heuris-

tics can yield very different results when applied to the same data set. Uncertainty

among MSA algorithms have been described in [47, 49] and illustrated in [89]. MSAs

were conducted among seven yeast species based on 1,502 orthologous genes. Seven

different applications produced six different resulting trees, Figure 3.6 [89].

3.3.2 Maximum Parsimony

Deriving a phylogenetic tree from a multiple sequence alignment can present a second

step which is also NP-Hard [27]. Maximum parsimony is a common approach to tree

construction. Given an MSA, the goal is often to construct a tree by finding the

arrangement of sequences at nodes that requires the minimum number of changes

per nucleotide or amino acid site along each branch. Thus, it is the most parsimo-

nious arrangement of sequences with regards to the number of evolutionary changes
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Figure 3.6: Different phylogenies resulting from different MSA programs, from [89]

required to explain the arrangement. To solve this problem optimally, all possible

trees constructed from a set of sequences must be tested, and the overall number of

site changes tallied for each tree configuration. The tree with the least number of

changes, or the least expense if different types of changes are given different costs, is

then chosen as the optimal solution. This becomes computationally intractable for

even a moderate number of sequences. Given N sequences, the total possible number

of rooted trees is (2N−3)!

2(N−2)(N−2)!
and the number of possible unrooted trees is (2N−5)!

2(N−3)(N−3)!
.

Table 3.1 provides a list of the possible number of each type of tree given N sequences.

Necessarily, heuristics are often employed to avoid constructing all possible trees.

These include methods such as branch and bound [5] and hill climbing [26]. However,

as mentioned above, while heuristics guarantee a solution, they do not guarantee the

optimal solution. Thus, a parsimonious tree constructed with heuristics may or may

not be the best possible solution.

3.3.3 Pairwise Sequence Alignment

Phylogenetic trees may also be constructed from all-against-all pairwise alignments,

avoiding multiple sequence alignments altogether [8, 68]. However, pairwise alignment

also presents a computational bottleneck because of the basic requirements to derive

a solution.
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Table 3.1: Number of possible rooted and unrooted phylogenetic trees from a MSA

N rooted trees unrooted trees
2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 954 10,395
8 10,395 135,135
9 135,135 34,459,425
10 34,459,425 2.13E15
15 2.13E15 8.E21

Alignment algorithms such as Needleman-Wunsch [55] and Smith-Waterman [74]

are very similar to the longest common subsequence(LCS) problem and are based on

dynamic programming. As such, their time and space requirements are asymptotically

bounded by O(N2) in big-O notation, which is a theoretical measure of the compu-

tation required for a given algorithm. Here, N is the maximum sequence length of

a sequence pair. This upper bound is explained by the dynamic programming ap-

proach of solving and storing solutions to sub problems in the process of progressively

solving entire problems. When solving an alignment of two strings, S1 and S2, an

|S1| × |S2| matrix is created, where |Si| denotes the number of characters in sequence

Si. To derive a solution, each entry in the matrix is examined at least once leading

to the O(N2) computational bound. Figure 3.7 illustrates this in a depiction of the

Smith-Waterman algorithm [74].

In Figure 3.7, matrix (H) elements are computed in a row-wise fashion, beginning

at the upper left corner element H1,1. Each subsequent value computed at matrix

element Hi,j depends on the match or mismatch of sequence characters ai and bj

along with values in the matrix previously computed. Specifically, to determine a

value at each position Hij, we must examine the following computed values: 1) the

upper left diagonal neighbor Hi−1,j−1, 2.) the entire computed ith row, and 3) the

entire computed jth column.
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Figure 3.7: Illustration of the Smith-Waterman algorithm

3.4 Alignment-free computation

In contrast to the O(N2) computational bound for pairwise sequence alignment,

alignment-free methods can run on the order of O (N). To compare two sequences,

the general approach is to parse through each sequence once while deriving measure

(M) of each. Thus, to compare two sequences (Si and Sj), we need only parse through

each sequence once, and then compare values between M(Si) and M(Sj). Numerous

alignment-free methods of genomic comparison have been proposed. In addition to

computational advantages, alignment-free comparative approaches are not based on

the assumption that matching subsequences across sequence pairs exist in the same

order (i.e. conservation of contiguity between homologous sequences) [82]. Thus, one

sequence may be ‘shuffled around’ relative to another without violating this assump-

tion. Because of this, alignment-free measures might have an advantage in compar-

isons among microbes which are subject to high levels of recombination and lateral
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gene transfer. A comprehensive review of alignment-free measures is found in [82].
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Chapter 4

k-mer-Based Comparisons of
Microbes

4.1 What is a k-mer?

Vinga and Almeida present a number of alignment-free sequence comparison measures

that are based, in some way, on nucleotide word composition comparisons among

sequences [82]. Nucleotide words are often referred to as k -mers, k -tuples or oligonu-

cleotides. A k -mer is a nucleotide word that is k characters long. Due to the small

alphabet size of genomic sequences {a, c, g, t/u}, there exist only 4k possible nucleotide

words for any positive integer value assigned to k. For example, if k = 2, then the

set of all possible nucleotide 2 -mers, or di-nucleotides, {aa, ac, ag, at, cc, ..., tt} con-

tains 16 (42) words. The same word-based measures can be applied to amino acid

sequences, in which case the alphabet size is 20 instead of 4. This research focuses

on nucleotide sequences, fixing the size of our alphabet to four letters.

In k -mer-based comparisons, a genomic sequence is parsed only once to determine

the number of occurrences (count) of each possible k -mer. Common approaches

view each count as a relative frequency, by dividing the count by the total number

of k -mers observed in the sequence [73]. Another common method is to divide k -

mer observed frequencies by their expected frequencies, which are based on random

nucleotide distributions. In this approach, a large ratio indicates that the expression

of a specific k -mer is favored by some evolutionary mechanism in a given sequence,

an event referred to as usage bias. These observed/expected ratios form the basis of
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oligonucleotide profiles, originally presented in [35].

4.2 Computation of k-mers

Counting and storing all k -mers present in a given sequence is relatively straightfor-

ward and can be accomplished in linear-time using a hash function. A hash function

is a mathematical formula used to convert data into a simplified representative nu-

meric value. A simple hash function can be used to convert all possible k -mers for a

given value of k into consecutive integers ranging from 0, ..., 4k − 1.

For example, each nucleotide is assigned a number (n) such that n(a) = 0, n(c) =

1, n(g) = 2, n(t) = 3. Then each nucleotide character in a word is assigned a position

ranging from 0 to k − 1 increasing in a right to left manner. Thus, given a 3-mer

such as act, its character positions are denoted as subscripts a2c1t0 and its numeric

representation is 013. A single integer value is then computed as:

p=k−1∑
p=0

n(character at position p)× 4p (4.1)

Thus, act = (0× 42) + (1× 41) + (3× 40) = 7. The total number of possible 3-mers is

43 = 64 and using the described formula, values for aaa,...,ttt correspondingly range

from {0, ..., 63}.

All k -mer counts in a sequence can be represented by an array of length 4k. The

ith position in the array is associated to the count of the ith word of length k. All 4k

positions are initialized to zero, and a sliding window of length k is used to parse the

sequence. Each k -mer detected by the window is converted to its integer value using

a hash function as described, and the value at that integer position of the array is

incremented. Figure 4.1 depicts a short sequence and its corresponding 2-mer count

profile. Lines are drawn between each 2-mer and its position in the array determined

by the hash function (Equation 4.1).
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Figure 4.1: Illustration of a 2-mer count array

4.3 Comparing k-mer profiles

Methods for comparing two sequences based on k -mer count or frequency profiles

are generally performed on a word by word basis. For example, a distance measure

between 2-mer profiles of sequences S1 and S2 is the sum of differences between

counts of all possible 2-mers {aa, ..., tt} in each profile. While several algorithms

to compare sequences in this manner are similar, they differ in the methods used to

compute differences between specific k -mers and whether k -mer values are represented

as counts, frequencies, observed/expected ratios, etc. As an example, here we present

two word-based comparative methods: the d2 distance published in 1990 [81] and a

method that uses information theory to measure differences among Feature Frequency

Profiles published recently in 2008 [90].

The d2k distance between two sequences (S1, S2) is formalized by [81] as:

d2k(S1, S2) =
4k∑
i=1

pi (ci (S1)− ci (S2))
2 (4.2)

where k is the word length, ci(S1) and ci(S2) indicate counts of k -meri in sequences

S1 and S2, respectively, and pi is a weight associated with each k -mer. Current uses

of this measure are often limited to nucleotide words of length six [29]. However, [81]

suggests using a range of word lengths between l and u providing:
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d2(S1, S2) =
u∑

k=l

d2k(S1, S2) (4.3)

In a recently published comparative measure based on Feature Frequency Profiles

(FFP) in [90], the Jenson-Shannon (JS) Divergence is used to compute distances

between k -mer frequencies. The FFP of a sequence first entails a linear-time parsing

to obtain counts of each possible k -mer, yielding a count vector Ck. The FFP profile

Fk is then obtained by normalizing each vector element in Ck by the total number of

k -mers found in a sequence such that, Fk = Ck/
∑4k

w=1 cw,k.

A measure of dissimilarity between two sequences can then be computed as the

sum of element-wise differences between frequency profiles. In order to compute

element-wise differences, the Jenson-Shannon (JS) Divergence drawn from informa-

tion theory is used. Let Pk and Qk represent FFPs for sequences A and B, respec-

tively, and Mk their average so that Mk = (Pk + Qk) /2. The JS Divergence is then

calculated as:

JSk (Pk, Qk) = (1/2)KL (Pk,Mk) + (1/2)KL (Qk,Mk) (4.4)

where the Kullback-Leibler (KL) Divergence is

KL (Pk,Mk) =
4k∑

w=1

pk,w log2 (pk,w/mk,w) (4.5)

Both equations (4.2 and 4.4) described above derive a single distance measure

between two sequences based on full k -mer profile counts. The approaches differ in

the method of comparing pairwise k -mer count profiles and illustrate the wide range

of available k -mer-based comparative methods.

4.4 The case for k-mers

4.4.1 Usage bias

Usage bias is a term used to describe the over- or under- abundance of specific nu-

cleotide words in a genomic sequence. It is of interest because differences in bias can
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be found between different genomes. Bias is quantified by the ratio of the observed

occurrence of existing k -mers in a sequence compared with the expected occurrence

in a randomly organized sequence, a.k.a, the genomic signature mentioned in Sec-

tion 4.1. Bias in prokaryotic genomes has been found in k -mers where k ranges from

2 to 6 [3, 4, 34, 35, 36, 65].

The prevalence of bias in prokaryotic genomes suggests that k -mer based mea-

sures can address compositional differences at the subspecies level. Biases have been

compared among species types (i.e. eukaryotes, prokaryotes, bacteria and viruses),

although literature searches indicate that subspecies differences have not been exam-

ined in detail.

For example, in [34], di-nucleotide signatures show significantly more difference

between species than within species. Bias within species was noted; however, sub-

species differences have not become a focus of any further research. Figure 4.2

from [34] illustrates pairwise di-nucleotide signature differences among several mi-

crobial species. Identity values show bias differences existing within same species

sequences. Findings such as in [34] indicate that k -mer based measures can be useful

for comparing subspecies microbial genomic sequences.

4.4.2 k-mer presence and absence

Specific nucleotide words have been found to be absent from species of mammals,

bacteria, fungi and yeast [28]. Comparing which words are present in one group of

sequences and absent from another might yield insight into divergent regions among

subspecies microbes. At the microbial subspecies level, researchers in [24] found

word absence/presence to show more correlation between genomes within the same

species than between genomes of different species. Even so, less correlation was found

between same species genomes than was statistically expected, and it was suggested

that word absence can offer delineation within species groups as well.

In some of our previous work [6], k -mer difference measures are restricted to

only those k -mers exhibiting presence/absence variation among Influenza A virus
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whole genomes. Difference measures based on only these subsets enable groupings of

whole-genomes by time and location. Calculated sequence differences are shown to

be minimal between pairs of sequences originating from the same time and location.

Table 4.1 shows a similarity matrix among eight flu isolates from three distinct years

and locations. Within each row, the most similar sample based on present and absent

k -mers is underlined. In Table 4.1, each sample is most similar to another from the

same year and location.

Table 4.1: Inter-epidemic similarity matrix using present/absent k -mers

Hong Kong 1980 Nicaragua 2007 New South Wales 1990
s1 s2 s3 s4 s5 s6 s7 s8

s1 1.000 0.995 0.486 0.480 0.485 0.573 0.573 0.560
s2 0.995 1.000 0.488 0.481 0.487 0.575 0.575 0.561
s3 0.486 0.488 1.000 0.988 0.982 0.656 0.655 0.662
s4 0.480 0.481 0.988 1.000 0.972 0.650 0.649 0.656
s5 0.485 0.487 0.982 0.972 1.000 0.652 0.651 0.658
s6 0.573 0.575 0.656 0.650 0.652 1.000 0.999 0.869
s7 0.573 0.575 0.655 0.649 0.651 0.999 1.000 0.870
s8 0.560 0.561 0.662 0.656 0.658 0.869 0.870 1.000

4.4.3 Markov models

Markov models are commonly used in bioinformatics to compare k -mer compositions

between sequences. We have included a description here, although we are not includ-

ing Markov models in our analyses presented in Chapters 7 and 8 which rely on k -mer

counts and frequencies.

In genomic word analysis, Markov models are often used as a means of calcu-

lating the expected count of each word (E(w)) in a signature set [43, 65, 70]. In

Markov chains, the current state of a system is predicted by its previous states. In

word signature analysis, this translates to predicting a word frequency based on the

observed frequencies of its subwords or nucleotide content. As described in [65], the

ratio of the observed count over its expected count, O(w)/E(w) can then be used to

derive the degree of over- or under- representation of each word in found in a given
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sequence. Depending on the order of the Markov model, bias contributed to a word

of length k from subwords of length 1 to k-1 can be removed.

With the ultimate goal to match DNA’s internal word selection mechanisms, the

optimal order of the Markov model to use remains undetermined. Consistent with

findings in [65] and [52], minimal order Markov models (Equation 4.6) allowed the

most differentiation among genomic signatures of different prokaryotic species.

A minimal order Markov model does not remove subword bias and the expected

count of a word E(w), in a genomic sequence of length N is derived as:

E(w) =
[(
ac(wa) × cc(wc) × gc(wg) × tc(wt)

)
×N

]
(4.6)

a, c, t and g represent specific nucleotide frequencies in the total sequence S and

c(wa), c(wc), c(wg), c(wt) are the count of each nucleotide in a word w.

4.5 Existing k-mer-based comparisons of microbes

Several k -mer-based comparative methods have been used to study nucleotide and

amino acid sequences. Methods specifically applied to distinguishing among micro-

bial genomes are based upon all possible k -mers for a single value of k, and not upon

specified k -mer subsets. In [91] a method combining k -mer statistics and informa-

tion theory is described and used to compare subspecies human Influenza A virus

sequences and for examining the relationship of severe acute respiratory syndrome

(SARS) among other corona viruses. Comparisons are performed by ranking 4-mers

by their observed counts. A similarity index between two sequences (S1 and S2) using

k length words is given as:

Dk (S1, S2) =
1

4k − 1

4k∑
i=1

|R1 (wi)−R2 (wi)|
H1 (wi) + H2 (wi)∑4k

i=1 [H1 (wi) + H2 (wi)]
(4.7)

where R1 (wi) and R2 (wi) represent ranks of individual k -mers (wi) in sequences S1

and S2, and H is a measure of Shannon’s entropy for wi in sequences S1 and S2.

Resulting neighbor-joining phylogenies for both influenza and the corona virus

data sets were congruent with current knowledge of evolutionary histories of these
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viruses. Figure 4.3 shows an influenza phylogeny derived from the comparative

method in [91].

Figure 4.3: Influenza phylogeny, from [91]

Other than analysis of the influenza data set in the previous study (Figure 4.3),

current k -mer-based analysis methods generally do not extend further down phyloge-

netic trees than class distinctions. For example, in [33], the FFP method is used to

classify the prokaryotic branch of the Tree of Life down to the class level (Figure 4.4).

In [33], nucleotide sequences of coding regions are used in comparisons. An earlier

study addresses the entire Tree of Life using k -mer-based comparisons among amino

acid sequences in coding regions [66]. In this study, composition vectors of amino

acid words of length 6 (alphabet size = 20) in coding regions are computed from

genomes representing Eukaryotes, Archaea, and Bacteria, where composition vectors
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Figure 4.4: Phylogeny of prokaryote classes from [33]
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are derived from ratios of actual to expected frequencies of existing words. Corre-

lations among species pairs (X, Y ) with observed/expected frequency ratio profiles

X = (x1, x2, ..., x206) and Y = (y1, y2, ..., y206) are computed as:

C (X, Y ) =

∑206

i=1 xi × yi(∑206

i=1 x
2
i ×

∑206

i=1 y
2
i

) (4.8)

Results from [66] are shown in Figure 4.5.
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Figure 4.5: Phylogeny of Tree of Life, from[66]
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Chapter 5

Proposed Research

5.1 k-mer-based subspecies comparisons

The number of publicly available closely related genomic sequences is rapidly increas-

ing, providing a platform upon which to develop computational methods for detecting

fine differences between similar whole-genome sequences.

The first stage of our research addresses the computational limitations associated

with whole-genome sequence comparisons of large subspecies pathogenic datasets. We

then investigate existing methods and develop new algorithms to efficiently and accu-

rately compare whole-genome sequences without alignment. All algorithms are tested

on viral intraspecies whole-genome sequences. The ultimate goal of this research is

to develop an optimal alignment-free sequence comparison algorithm which approxi-

mates existing alignment-based sequence comparison methods. Accurate alignment-

free comparisons can enable the computation of pairwise distances among large num-

bers of very long genomes, and might enable an ordering of their phylogenetic relat-

edness.

We measure accuracy of all sequence comparison methods by comparing results

with those of a standard multiple sequence alignment algorithm (ClustalW). Opti-

mally, our proposed method will serve as a reliable alignment-free replacement to

alignment-based comparisons, thereby enabling very quick analysis of large whole-

genome sequence datasets. Our work draws from word-based research involving mi-

crobial sequences in published literature such as in [34].
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5.2 Delineating complex Influenza A virus net-

works

A recent article presenting an influenza study states that there has been “no rigorous

measurement of viral diversity across time, across space, and among subtypes” [67] .

We try to address this void in the second stage of our research. Here, we propose a

graph theoretic approach to investigate disease networks. Current methods of using

genomic data to develop disease networks have emerged in response to the increase

in data availability; however, many current methods are based upon phylogenetic

tree inferences [42, 56], which are not designed to encompass large amounts of se-

quence data. phylogenetic trees are also limited in their ability to delineate detailed

transmission patterns [30, 56, 67]. In contrast, graph-based approaches might bypass

many of the computational and structural restrictions associated with phylogenetic

trees and might be used to investigate very large and comprehensive data sets.

Our goal is to create disease network graphs from large sets of genomic sequences

in which each viral sequence is viewed as a vertex, and edges are drawn between nodes

to represent high degrees of sequence similarity. When each sequence is associated

with a geographic location and collection date, this representation might provide an

approximation of the transmission route of a disease through a series of geographi-

cally distributed hosts. The underlying assumption is that a strong degree of sequence

similarity indicates the best estimate of transmission given the available data. This

approach circumvents the necessity of phylogenetic tree computation, which is com-

putationally intensive and restrictive in the number of edges which can be placed

between vertices. To incorporate large sequence datasets, we utilize computation-

ally efficient comparison algorithms examined or developed in the first stage of the

proposed research.
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5.3 Outline of proposed work

This section provides an outline of the proposed research described in the previous

two sections.

Stage 1: Development - develop a computationally efficient k -mer-based

alignment-free comparative algorithm and assess the accuracy of the metric.

• DATA: Collate several publicly available subspecies viral sequence data sets.

Annotate sequences with respect to user-specified characteristics.

• TESTING: Develop and test results from different k -mer sequence compara-

tive algorithms through comparisons with ClustalW alignment scores. Select

the most accurate algorithm.

Stage 2: Application - using the best algorithm from Stage 1, we will incorpo-

rate this into a methodological approach for building graphs from subspecies genomic

sequences.

• DATA: Collate a selected subspecies genomic data set.

• COMPARISON: Derive all pairwise similarity scores using the algorithm se-

lected from Stage 1.

• GRAPH: Derive vertex and edge graph where vertices represent sequences and

edges are based on similarity scores and thresholds.

– determine a threshold that approximates a desired degree of sequence sim-

ilarity for edge placement

– the accuracy of the threshold will be tested using selectivity and sensitivity

measures

• GRAPH ANALYSIS: Examine the graph structure and characteristics using

existing tools and methods.
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– examine the similarity among groups and across groups of sequence groups

via a concept called ‘mixing patterns’

• Example illustrating these methods using Influenza A virus : derive

an Influenza A virus transmission network model from several thousands of

whole-genome sequences using the described methodology.

Future Work:

• Address skewed distribution of viral samples to enable more theoretical graph

analysis (i.e., network structure).

• Further development of an alignment-free metric to approximate dynamic pro-

gramming alignment scores.

• Generate graphs based on directed, rather than undirected, edges representing

transmission from isolates collected at an earlier date to those collected at a

later date.

• Study of more complex connectivity properties of graphs such as connected

components and cliques.
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Chapter 6

An Annotated k-deep Prefix Tree

The following section provides a short summary of an algorithm that we term an

“annotated k -deep prefix tree”. We use this data structure to conduct a number

of word-based comparisons among multiple sequences in a computationally efficient

manner. These comparisons are described in Chapter 7. The data structure stores

all 1-k -mer counts for groups of sequences, where 1-k -mers describe nucleotide words

ranging in length from 1-k. Word-based comparative algorithms can then be con-

ducted on counts stored in the tree without requiring its reconstruction.

The annotated k -deep prefix tree is based upon prefix trees and tree node anno-

tation, both of which are tools often used for string processing in computer science.

Tree-based structures are also used in bioinformatics to compare substrings among

sequences. The k -deep prefix tree is constructed from the k first characters of all

non-empty prefixes of a single or set of genomic sequences. The number of nodes

required is exponentially proportional to tree height (k) rather than the total length

of sequences, as is the case with suffix trees. A comparable structure was used in [3]

to compare the 12-mer ‘languages’ of human chromosomes 21 and 22. Prefix-trees are

also used in the assembly program SSAKE (Short Sequence Assembly by progressive

K-mer search and 3’ read Extension)[85] to locate overlapping 25-mers between short

nucleotide fragments.

The described algorithm provides a compressed and partially or fully dynamically

allocated index to all substrings up to a given length (k) found in a single or groups

of sequences. While index-based hash tables are generally used for this same purpose,
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prefix trees can be more comprehensive, as they might include information regarding

nucleotide words of multiple lengths. Hash tables generally represent nucleotide words

of a single length, and require large, contiguous blocks of memory for fast look-up

times. A prefix tree can be implemented with dynamic memory and is equivalent

to multiple hash tables for each word length (1,..,k), with direct links between each

word and its prefix and suffix(es).

The benefit of the algorithm is that (1-k)-mer compositions of multiple sequences

may be counted, stored, and compared efficiently in both time and space in a sin-

gle analysis. A k -mer denotes a substring (word) of a genomic nucleotide sequence

of length k ; a (1-k)-mer is a word of length k or less. Specific subsets of (1-k)-

mers selected on the basis of statistical characteristics or biological attributes (e.g.

presence/absence variation or high GC content) might easily be highlighted for com-

parisons at run time.

The word length k best suited in k -mer-based comparative measures is often

arbitrarily chosen and must be addressed as a research question in its own right [73].

A fully annotated k -deep prefix tree allows data exploration and the inclusion of

multiple word lengths in a single analysis.

Figures 6.1 (a-f) illustrate the generation of a 3-deep prefix tree from the sequence

‘CATGAT’. A root node denoting the empty string is created, and successive nodes

are built as sequences are parsed and new words are detected. In Figures 6.1(a-f), a

single sequence is parsed by a single-spaced sliding window of length k, where k = 3.

Each nucleotide string determined by the window is inserted into the tree. Each tree

node can point to up to four children ‘A’-child, ‘C’-child, ‘G’-child, ‘T’-child. The

default value for all of a node’s children is set to NULL. If a word path in the tree

does not yet exist, then it is built upon insertion. In this way, no memory is wasted

on nodes that represent non-existent words in the set of sequences being examined.

After the tree has been built, each node represents the termination of a substring

found in the sequences(s) parsed. Determining the nucleotide word ending at any node

requires a trace-back through parent pointers from that node to the root (Figure 6.2).
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Figure 6.1: Building a 3-deep prefix tree [7]
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Figure 6.2: Tracing from a node back to the root [7]

This is accomplished in time linear to the length of the word.

Each node has associated with it a count list to enumerate the number of times

a word exists within a sequence. A count list is of length N , where N is the number

of sequences being compared. When parsing sequence Si, only position i in the count

list will be incremented to count the number of times that word exists (so far) in

sequence Si. Figure 6.3 illustrates a 3-deep tree built from the sequences ‘CATGA’

and ‘ATCAT’. In Figure 6.3, (1-k)-mer counts for ‘CATGA’ are stored in the first

index of the count list at each node. Counts for ‘ATCAT’ are stored in the second

index. By maintaining node based count lists, a single tree can contain the complete

(1-k)-mer composition of multiple sequences. This can then lead to all-against-all

k -mer-based sequence comparisons in a single tree traversal.
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Figure 6.3: A 3-deep prefix tree built on two sequences [7]
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Chapter 7

Evaluating Distance Metrics Based
on an Accuracy Measure

7.1 Overview

To select a meaningful k -mer-based method for comparing whole genomes, we as-

sess the performance of several k -mer distance metrics by comparing each with

ClustalW [40] alignment scores. ClustalW pairwise alignment scores are computed

as the percentage of identical bases between two sequences that have been aligned

via dynamic programming as described in Section 3.3 and thus provide optimal pair-

wise alignment scores. Other studies have also used ClustalW alignment scores as a

reference for testing k -mer-based methods on a amino acid sequences [18] and short

nucleotide fragments [79].

We first convert the ClustalW alignment scores into dissimilarity or distance

measures by simple conversion. We then use these ClustalW alignment scores as

reference scores to compare k -mer-based alignment-free distance metrics via a simple

correlation computation. Higher correlation between the ClustalW reference scores

and the k -mer-based distance scores indicates a better performance (greater accuracy)

in the k -mer approach. The goal is to determine which rapid k -mer based method

provides the best approximation of slower and more computationally expensive full

alignments as provided by ClustalW.

The k -deep prefix tree, described in Chapter 6, is developed to store counts

of all (1-k)-mers in sequence sets, and all k -mer count algorithms are easily and
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efficiently implemented using this annotated tree data structure. Using three whole-

genome viral datasets for testing (described in Sections 7.11.1, 7.11.2, and 7.11.3),

we select five subsets of 20 sequences from each. We then compute pairwise ClustalW

reference scores, k -mer-based distances based upon existing k -mer metrics and some

with our own modifications. Existing methods include the d2k metric and Feature

Frequency Profiles (FFP) methods described in Section 4.3 and the Edgar k -mer

distance from [18].

The k -mer metrics we consider here offer a range of diversity. The d2k metric is

a sum of squares difference of all existing k -mer counts between two sequences. The

FFP method uses information theory by computing the Jensen-Shannon Divergence

of individual k -mer frequencies between two sequences. Finally, the Edgar k -mer

distance from [18] is based on the maximum number of k -mers co-occurring in the

two sequences being compared. This measure is of particular interest, as it includes

sequence length in its computation of distance, which likely is an important factor

when examining the difference in word composition between two sequences of different

lengths.

We make slight modifications to the d2k metric and the Edgar k -mer distance

metrics and assess the accuracy of each method with and without modification. Each

method and all modifications are described in detail in the following sections.

7.2 Data sets

The data sets used here are composed of subspecies genomes of the single-stranded

RNA viruses Influenza A virus, Human Immunodeficiency virus (HIV), and Dengue

virus (DENV). Five sets of 20 sequences are randomly selected for comparisons from

each data set: DENV, HIV, and each of the eight influenza segments (InfA1, InfA2,

InfA3, InfA4, InfA5, InfA6, InfA7, InfA8 ). Data sets are described in detail in

Section 7.11.

We consider here RNA virus genomes, as they are relatively small. Small se-

quence sizes reduce computation requirements and allow us to compute the reference
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alignment scores using ClustalW. The maximum input file size that ClustalW allows

is 10MB; a file of this size can include only two E.coli sequences or 966 DENV se-

quences. Table 7.1 shows the average sequence length for each data set used in our

comparisons, with DENV sequences having the longest average sequence lengths of

10,644 nucleotides. These viral species contain single stranded RNA genomes, so

considering the complementary strand of sequences was not necessary.

Table 7.1: Average sequence lengths

Sequence Type Average Length
InfA, PB2 2,304
InfA, PB1 2,306
InfA, PA 2,188
InfA, HA 1,725
InfA, NP 1,530
InfA, NA 1,422
InfA, M1/M2 992
InfA, NS1/NS2 853
HIV 9,043
DENV 10,644

7.3 ClustalW

ClustalW [40] is a commonly used program that can be used to compute sequence

alignment scores using dynamic programming. Dynamic programming results in the

most optimal alignment between two sequences, but is computationally expensive.

We use ClustalW’s “full alignment” option to compute alignment scores based on

dynamic programming. Using this option is described in its documentation as slow,

but accurate.

For all sequence datasets, ClustalW pairwise alignment scores are computed using

the full alignment option and all other settings left at the default values. The default

gap opening penalty is 10, the gap extension penalty is 0.1 and the DNA weight matrix

is IUB (this contains scores and costs for matching and mismatching nucleotides). A

gap opening penalty is the penalty incurred by introducing a gap in an alignment. The
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gap extension penalty is the penalty for extending this gap per nucleotide. The weight

matrix provides the penalties for mismatched nucleotides. All of these penalties are

used to determine the ‘best alignment’, referred to in Eq. 7.1.

Resulting scores are integers which range between 0-100, where 100 indicates a

near perfect alignment between two sequences.

Alignment scores using ClustalW are computed as:

#identities in best alignment

#nucleotides compared (gaps excluded)
(7.1)

It should be noted that the ClustalW’s “best alignment” score is dependent on the

gap opening and gap extension penalties. If these penalties are high, sparsely aligned

characters (characters separated by large gaps) will be omitted as the gaps required

to include them are too expensive in the best alignment calculation. Decreasing these

penalties will promote the inclusion of more sparsely aligned characters and can yield

higher pairwise alignment scores in certain cases.

7.4 Accuracy assessment

All pairwise alignment scores among the 20 randomly selected sequences are computed

using ClustalW and all pairwise distance scores are computed using the various dis-

tance methods. Both sets of scores are ordered identically and the Pearson correlation

coefficient is computed between sets to measure how well various distance measures

approximate full alignment. This process of randomly selecting 20 sequences, comput-

ing pairwise alignment and distance measures, and computing correlation coefficients

is repeated over five iterations. Correlation scores per method and dataset are aver-

aged over the five iterations.

Because distance methods generate distance scores and ClustalW generates simi-

larity scores, ClustalW similarity scores (percentages) are converted first to distances

to coincide with distances generated by the metrics tested by subtracting scores from

100. Each converted ClustalW score is then associated to its corresponding pair-

wise k -mer distance score so that each set of scores between every sequence pair is
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represented by <100 - ClustalW score,k -mer distance score>.

The Pearson correlation coefficient (r) between each set of scores (X, Y ) contain-

ing n values is computed as:

rxy =

∑n
i=1 (xi − x) (yi − y)

(n− 1) sxsy
(7.2)

where x and y are mean scores, and sx and sy are standard deviations of score

sets X and Y . Standard deviation is calculated as:

sN =

√√√√ 1

N

N∑
i=1

(xi − x)2 (7.3)

7.5 k-mer alignment-free distance metrics tested

This section includes a summary of each k -mer based distance method tested. Each

method utilizes a single value for k. Testing for each method is conducted using k

values ranging from 3 to 13. We find that examining word lengths beyond 13 (up to

20) on several datasets is computationally challenging and does not improve results.

7.5.1 d2
k

The d2k sequence comparison method is presented in Section 4.3. Briefly, it is the sum

of weighted squared differences between counts of all existing k -mers found in two

sequences (A,B). It is given as:

d2k(A,B) =
4k∑
i=1

pi (ci (A)− ci (B))2 (7.4)

The first version of this distance method tested sets all weights (pi Eq. 7.4) equal

to 1. We refer to this method as D2 in the following discussions.

7.5.2 Presence/Absence weighting

The second version of D2 method employs a presence/absence weighting scheme.

In previous work [6], we compare influenza genomic sequences using observed-to-

expected ratios of k -mer frequencies [65] and limit our study to only those k -mers
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that exhibited variation of presence and/or absence across sequences. These are k -

mers present in at least one sequence and absent in at least one other sequence in

the data set. We found that this method, when restricted to the subset of k -mers

exhibiting presence/absence variation, classified sequences from the same epidemic as

most similar.

This approach of selecting the presence/absence subset is our design. It is mo-

tivated by the idea that locally misaligned regions between two sequences will result

in a higher number of k -mers which are absent from at least one sequence. One

mismatching nucleotide between two aligned regions forms a part of k overlapping

words, and can potentially introduce k words to one sequence that are not present in

the second.

We use a simple weighting scheme to instate the presence/absence method: any

k -mer that is absent from at least one sequence and present in at least one sequence

is assigned a weight of value 1; all other k -mers are assigned a weight of 0. Then if pi

represents the weight for word wi and cwi
(a) the count of wi in sequence Sa, a ∈ N ,

then pi in Equation 7.4 is given as:

pi =

 1 if
∑N

a cwi
(Sa) > 0 and

∏N
a cwi

(Sa) = 0

0 else
(7.5)

We refer to this method as D2PA in the following discussions.

7.5.3 FFP

The Feature Frequency Profiles (FFP) sequence comparison method is presented in

Section 4.3. For each k -mer found in a pair of sequences, the Jenson-Shannon Di-

vergence between the two frequencies of occurrence of that word is computed and

summed. The Jensen-Shannon Divergence stems from information theory and it gives

a normalized estimate of how divergent two values are. Please refer to Section 4.3 for

more detail. This method is referred to as FFP in the following discussions.
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7.5.4 Edgar k-mer distance

A distance measure referred to as the k -mer distance is presented in [18]. This measure

divides the maximum number of co-occurring k -mers in two sequences by the total

numbers of k -mers found in the shortest sequence (the total number of possible co-

occurring k -mers). In the initial step, the Fractional k -mer count F is computed

between two sequences (S1, S2) where:

F =
4k∑
i=1

min [cS1 (i) , cS2 (i)]

[min (|S1| , |S2|)− k + 1]
(7.6)

where cS1 (i) and cS2 (i) denote counts of k -mer i in sequences S1 and S2, and

|S1|, |S2| denote the lengths of both sequences.

The minimum sequence length must be at least k.

The k -mer distance Y is then derived through the transformation:

Y = log(0.1 + F ) (7.7)

if F ≤ 0.9, this transformation will result in a negative value. The log transformation

was implemented in [18] to approximate a better linear relationship between ClustalW

scores and F scores.

This method is referred to as KMER in the following discussions.

7.5.5 Modified Edgar k-mer distance

While computing the correlation between the Edgar k -mer distance and the ClustalW

similarity scores, we find that decreasing the constant 0.1 in Equation 7.7 by one order

of magnitude can result in a greater range of distance scores in our specific sequence

sets that have a greater range in ClustalW alignment scores. This suggests that it may

approximate alignment scores for a wider range of datasets. While we are pleased that

this modification resulted in a greater correlation with ClustalW alignment scores, we

have not tested its robustness with regard to other datasets and have not compared

it to other potentially better transformations.
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Our modification is illustrated by comparing ranges in scores for both the original

and modified Edgar k -mer distance on highly similar and more divergent datasets.

The InfA4 (HA) data set shows a greater range in alignment scores than the InfA8

(NS1/NS2) data set. Using the original Edgar k -mer distance, the average range in

distance scores for the InfA6 (NA) dataset is 2.32. This range in scores is increased

to 4.05 by using the modification we describe here. In contrast, the range in scores

remains 1.97 using the original and the modified metric on the InfA8 (NS1/NS2)

segment.

Our modification is noted as:

Y = log(0.01 + F ) (7.8)

if F ≤ 0.99, this transformation will result in a negative value. We refer to this

method in the following discussions as KMOD.

7.6 Results

All four distance metrics, excluding the FFP method, exhibit high levels of correlation

with ClustalW scores. In datasets composed of very similar sequences exhibiting a

small range in alignment scores, all four methods are in nearly perfect correlation

with the reference ClustalW scores. In contrast, the KMOD method shows greatest

correlation with ClustalW when using datasets with more divergent sequences that

show a greater range in ClustalW alignment scores.

Results are discussed in more detail for each dataset in Section 7.12. A sum-

mary of the ClustalW alignment scores computed for all sequence subsets is also

included with results. This shows the varied ranges in alignment scores for different

datasets. Tables are included in the results, which display the maximum, minimum,

range, average and standard deviation of ClustalW alignment scores. These values

are averaged over the five randomly selected sets of 20 sequences per sequence set.
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7.7 Summary and conclusions

Results here suggest that the best alignment-free k -mer method to approximate align-

ment is influenced by the range in pairwise similarity scores for a set of sequences.

KMOD achieves the highest correlation scores for sequence sets exhibiting wider

ranges in ClustalW alignment scores; InfA (HA), InfA (NA), InfA (NS1/NS2), and

HIV. All methods excluding FFP achieve perfect or near perfect correlation with

ClustalW scores for all other InfA segments with lower sequence divergence. The

DENV dataset is also characterized by a relatively low range in sequence alignment

scores; however, only the KMOD, D2, and D2PA distance method result in perfect

correlation with the ClustalW reference scores.

In all datasets, the KMOD method is either superior or equal to any other

method tested, which is likely due to the log transform, as it approximates a more di-

rect linear relationship with ClustalW scores. The constants in Equations 7.7 and 7.8

is necessary because F scores (Equation 7.6) have the potential to be equal to zero.

This happens in the case when two sequences have no identical k -mers, an event that

becomes more probable with shorter sequences and larger k values. The best value

for the constant (0.1, 0.01, etc.) may vary with different datasets.

As sequences within the selected subspecies datasets are very similar, overall

high levels of correlation with ClustalW alignment scores are not a surprising result:

distance measures generated by the Edgar k-mer distance (Equation 7.7) between

very similar sequences have also shown a high degree of correlation with amino acid

alignment scores generated by ClustalW [18] and short nucleotide sequence align-

ments with the Needleman-Wunsch algorithm [79]. The constant 0.01 in the KMOD

log transformation of Equation 7.8 was chosen experimentally. We expect that there

might be other transformations that will result in equal or better correlations with

ClustalW scores, however, we have not explored this fully. Unsurprisingly, the FFP

method shows the lowest levels of correlation with full alignment scores, however,

Sims et.al. state that accuracy should not be expected between highly similar se-
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quences [73].

7.8 Comparisons with MUMmer

MUMmer is a program used to rapidly compare whole genomes [13]. MUMmer com-

putes alignment scores between sequence pairs with an algorithm primarily based

on suffix-tree construction rather than dynamic programming [39]. MUM stands for

Maximal Unique Matches which form the anchor points for sequence comparisons,

hence the name MUMmer. We generate alignment scores for the InfA4 (HA), InfA6

(NA), DENV, and HIV sample datasets using MUMmer, and compute their cor-

relation with ClustalW alignment scores. These are then compared to the highest

correlation achieved by the distance methods D2, D2PA, KMER, and KMOD

(Figure 7.1). For the datasets showing higher standard deviation in alignment scores;

InfA4 (HA), InfA6 (NA), and HIV, MUMmer correlation is the lowest of all methods

while the KMOD method achieves the highest correlation. For the DENV dataset,

all methods except KMER achieve near perfect correlation with ClustalW.

Figure 7.1: Highest correlation achieved with various methods
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7.9 Run times

The computational speed of the KMOD comparative method is compared with two

rapid string comparison programs commonly used in bioinformatics: BLAST and

MUMmer. The algorithmic time complexity for comparing two sequences using

BLAST is O(n ∗ m) and with MUMmer is O(n + m) [12] where n and m are se-

quence lengths. The linear-time description of MUMmer is based on the assumption

that several large stretches of aligned regions exist between the two sequences being

compared [15].

ClustalW is also included in these comparisons. ClustalW alignments involve

more than pairwise string comparisons as they compute both multiple sequence align-

ments and all pairwise alignments on a given set of sequences. We include run times

as a general reference. It is noteworthy that ClustalW used 17.5 days to process a

dataset of 4,000 short viral sequences, and was unable to complete the processing of

a set of five bacterial sequences of approximately 1.6 million base pairs each after two

months.

To compute actual run times, a varied number of randomly selected, InfA1 se-

quences are used as a basis for comparison. Real run times are calculated on Dual

Core Opterons running at 2.6GHz with 8GB of RAM. Times are reported in Table 7.2.

The KMOD algorithm implemented with the k -deep prefix tree shows the fastest run

times for all sequence sets with the largest dataset of 4,000 sequences requiring under

five hours. A BLAST comparison on the same dataset requires almost five days. The

MUMmer application aborts using larger datasets of 1,000 and 4,000 sequences.

Table 7.2: Run times for all pairwise comparisons using KMOD, BLAST and MUM-
mer. Except for ClustalW, each method label includes its algorithmic complexity.

N KMOD O(n + m) BLAST O(n ∗m) MUMmer O(n + m) ClustalW
10 1 sec 4 sec 4 sec 16 sec
100 5 sec 7 min 56 sec 17 min
1000 12 min 10.6 hrs (program abort) NA
4000 4.9 hrs 4.9 days (program abort) 17.5 days
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7.10 Positional Dependence Metric

This section describes an additional novel k -mer based algorithm that we developed,

but did not include in the accuracy testing procedure. It does not outperform any

other method included above, but we feel it is worth mentioning here.

In the positional dependence metric, we consider differences in the genomic po-

sitions of each k -mer being examined. The position of each k -mer (w) found in a

sequence is defined by its nucleotide starting position. Each position is then divided

by the total (length of the sequence - k) to give a relative position (rw). As we

compare sequences (S1,S2), the relative position of each k -mer in S1 is compared to

the relative position of each matching k -mer in S2. The distance contributed by that

k -mer is the minimum distance found between all its relative positions in S1 and S2.

The formula is given as:

d1,2 (w) =


1 if w ∈ S1 and /∈ S2

min1,2 |rw (S1)− rw (S2)| ∀w ∈ S1 ∩ S2

(7.9)

then d1,2 for word length k is:

dk1,2 =

∑
wk

d1,2 (w)

|S1| − k + 1
(7.10)

This formula is not symmetric in that in most cases, d1,2 6= d2,1. In our application,

we forced symmetry by setting each matrix element (i, j) to the minimum of di,j and

dj,i.

7.11 Data description

7.11.1 Influenza A virus

The InfA dataset was obtained from the Influenza Virus Resource [2], and contains

4,228 worldwide, whole viral genomes of multiple subtypes, from several host types,

collected between the years 1999-2009. Tables 7.3-7.6 list the number of sequences

from each country of origin, subtype, host type, and collection year.
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The InfA genome exists in eight discontiguous segments denoted by the genes

that are encoded for on each of them (Figure 7.2). We divide this InfA dataset

into eight subsets: InfA1 (PB2), InfA2 (PB1), InfA3 (PA), InfA4 (HA), InfA5

(NP), InfA6 (NA), InfA7 (M1/M2), InfA8 (NS1/NS2); distances and accuracy are

measured independently for each segment.

Figure 7.2: The influenza genome is composed of eight discontinuous segments, from
[63]

7.11.2 Dengue Virus

The DENV dataset is available from the Virus Variation website [69]. This dataset

contains 2,194 whole-genome sequences. All Dengue viral serotypes (DEN-1, DEN-2,

DEN-3, DEN-4) are included in this dataset, with distributions shown in Table 7.8.

Collection sites are distributed worldwide (Table 7.7) and collection years range from

1944-2009 (Table 7.9). All viral samples stem from human hosts.

7.11.3 HIV

The HIV dataset is housed at the HIV Sequence Compendium [41]. We consider the

entire set of 2,377 HIV-1 whole-genome sequences included in the database. Sequences

are distributed globally with collection years spanning 1982-2009. See Tables 7.10-

7.12 . All viral samples stem from human hosts.
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Table 7.4: InfA subtypes

Subtype #seqs. Subtype #seqs. Subtype #seqs.
H3N2 1428 H6N5 7 H12N4 1
H1N1 1377 H6N8 7 H5N5 1
H5N1 470 H11N2 5 H3N9 1
H7N2 185 H3N5 5 H1N6 1
H9N2 118 H5N7 5 H5N8 1
H3N8 81 H3N1 4 H2N4 1
H7N3 59 H3N3 4 H6N6 1
H1N2 59 H7N7 4 H9N1 1
H6N1 56 H2N2 4 H11N6 1
H4N6 50 H2N1 3 H11N3 1
H5N2 39 H13N9 3 H4N2 1
H7N1 37 H11N8 3 H11N1 1
H10N7 33 H2N9 2 H10N4 1
H6N2 29 H1N3 2 H4N3 1
H2N3 27 Mixed 2 H7N6 1
H3N6 21 H10N8 2 H7N8 1
H11N9 20 H7N9 2 H5N4 1
H4N8 16 H16N3 2 H3N7 1
H5N3 14 H4N7 2 H2N7 1
H12N5 10 H4N5 2
H8N4 8 H10N3 2

Table 7.5: InfA host types

Host Type #seqs.
Human 2752
Avian 1194
Swine 128

Environment 114
Unknown 16
Equine 13
Tiger 2

Racoondog 2
Cat 2
Pika 2
Civet 1

Stonemarten 1
Mink 1



61

Table 7.6: InfA collection years

Year #seqs.
2009 755
2007 656
2005 598
2004 366
2003 323
2000 291
2006 279
2002 273
2008 248
2001 243
1999 196

Table 7.7: DENV countries of collection

Country #seqs. Country #seqs.
Vietnam 944 Nauru 1

USA 293 PuertoRico 1
Nicaragua 221 Honduras 1
Venezuela 218 BurkinaFaso 1
Cambodia 174 India 1

Mexico 83 Jamaica 1
Brazil 79 Dominican Republic 1

Thailand 79 Saint Kitts and Nevis 1
Colombia 56 Belize 1
SriLanka 12 Papua New Guinea 1

None 4 Cook Islands 1
VirginIslands,UnitedStates 3 Samoa 1

Papua New Guinea 3 Mozambique 1
Philippines 2 Ecuador 1
SaintLucia 2 Peru 1

Trinidad and Tobago 2 Anguilla 1
Virgin Islands,British 1 Guyana 1

French Polynesia 1

Table 7.8: DENV subtypes

Subtypes #seqs.
DENV-1 1072
DENV-2 643
DENV-3 410
DENV-4 69
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Table 7.9: DENV collection years

Year #seqs. Year #seqs.
2007 667 1993 7
2006 378 1991 7
2008 338 2009 6
2001 157 1990 6
2005 154 1986 6
2003 91 1992 5
2004 75 1983 5
1998 60 1988 4
2000 53 1985 3
2002 36 1964 2
1999 29 1944 2
1996 24 1984 1
1995 17 1974 1
1994 17 1973 1
1989 14 1969 1
1997 13 1956 1
1987 13
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Table 7.11: HIV subtypes

Subtype #seqs. Subtype #seqs. Subtype #seqs. Subtype #seqs.
B 702 26 AU 4 AHJU 2 A2CD 1
C 496 28 BF 4 CU 2 A2G 1

01 AE 245 38 BF1 4 DG 2 ACD 1
A1 125 40 BF 4 GKU 2 AD 1

02 AG 69 43 02G 4 K 2 AF2 1
D 60 A1U 4 P 2 AF2G 1

BF1 35 F2 4 213 1 AG 1
01B 32 H 4 225 1 AGU 1
A1D 32 J 4 1819 1 AKU 1

G 31 02D 3 0102A 1 BCF1 1
BF 28 02G 3 01ADF2 1 BCU 1
F1 27 03 AB 3 01AF2U 1 BFG 1

A1C 26 05 DF 3 01C 1 DF1G 1
BC 26 10 CD 3 01DU 1 DO 1
O 25 19 cpx 3 01F2 1 F2KU 1

not defined 23 20 BG 3 02A 1
42 BF 17 21 A2D 3 02A1U 1
07 BC 12 26C 3 02AG 1
35 AD 11 27 cpx 3 02C 1

BG 11 29 BF 3 02GK 1
06 cpx 10 31 BC 3 02O 1
11 cpx 10 34 01B 3 02U 1
46 BF 10 39 BF 3 06A1 1
14 BG 9 A1A2D 3 07B 1

CD 8 A1B 3 17##B 1
N 8 A1CD 3 26##B 1
U 8 A1G 3 26CU 1

12 BF 7 A2 3 27##B 1
17 BF 7 708 2 29##B 1
33 01B 7 01BC 2 34##B 1
02A1 6 02B 2 36##B 1
08 BC 6 16 A2D 2 44 BF 1
13 cpx 6 22 01A1 2 72##B 1

A 6 23 BG 2 74##02D 1
206 5 32 06A1 2 85##B 1

01A1 5 36 cpx 2 94##B 1
09 cpx 5 37 cpx 2 97##B 1
15 01B 5 47 BF 2 98##B 1
25 cpx 5 A1A2CD 2 A1CDGKU 1
45 cpx 5 A1CG 2 A1DHK 1

209 4 A1DK 2 A1F2 1
04 cpx 4 A2C 2 A1GHU 1
18 cpx 4 AC 2 A1GJ 1
24 BG 4 AGKU 2 A1H 1
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Table 7.12: HIV years of collection

Year #seqs. Year #seqs.
2003 250 1983 32

not defined 223 1985 28
2004 195 1995 28
2002 191 1986 25
2005 190 1994 24
1999 181 1992 23
2000 166 1989 22
2001 161 1991 21
1997 114 2008 19
2006 109 1984 8
1996 108 2009 6
1998 103 1987 5
2007 50 1988 4
1993 49 1982 1
1990 41
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7.12 Results

7.12.1 InfA

We observe notable intra-variation in similarity scores in the InfA segments. Ta-

ble 7.13 presents a summary of ClustalW alignment scores per segment. The HA

and NA segments show the largest range and standard deviation in alignment scores,

24.2 - 99 and 25.1 and 31 - 99 and 21.4 respectively. This reflects a higher degree of

sequence variation than found in other segments. For these segments, the KMOD

distance method shows the highest degree of correlation with ClustalW full alignment

scores over all other methods. Results for the HA segments are shown in Figure 7.6

and Table 7.17. The highest correlation score of 94% is achieved using the KMOD

method with a word length of 9 or 10. The second highest correlation score of 90%

is achieved using the KMER method using word lengths of 8 or 9. Results for the

NA segment are shown in Figure 7.8 and Table 7.19. For this segment, the KMER

method also shows the highest correlation of 97% using word lengths 8− 10. Again,

second highest scoring is the KMER method that achieves a correlation of 95% at

word lengths 7− 9.

In all other segments except for the last (NS1/NS2), KMER and KMOD both

achieve perfect correlation for ranges of word lengths, which begin at 6 or 7. The D2

and D2PA method achieve nearly perfect correlation of 99% beginning at minimum

word lengths of 5 − 7. Graph and tabular results for these segments are shown in

Figures 7.3 - 7.5, 7.7, 7.9 and Tables 7.14 - 7.16, 7.18, and 7.20.

In segment NS1/NS2, the KMOD method shows the highest correlation of 99%

at a minimum word length of 7, while the KMER results in a correlation of 98% at

a minimum word length of 6. Like the HA and NA segments for which the KMOD

method also achieves the highest correlation, this segment shows a relatively high

range in alignment scores. Table 7.13 shows this segment with the third highest

range of scores, following HA with the largest range and NA with the second.
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Table 7.13: Alignment score distribution per segment (AVE = average, STD = stan-
dard deviation)

segment MAX MIN RANGE AVE STD
PB2 99.4 81.6 17.8 86.7 5.4
PB1 99.6 80 19.6 87.0 5.7
PA 99.4 81.2 18.2 87.0 5.3
HA 99 24.2 74.8 52.9 25.1
NP 99.8 80.6 19.2 86.3 5.9
NA 99.4 31 68.4 62.9 21.4

M1/M2 99.8 85.2 14.6 90.4 3.9
NS1/NS2 100 70.2 29.8 83.8 8.3
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Figure 7.3: Plotted correlation for InfA1 (PB2)

Table 7.14: Correlations between five distance metrics and ClustalW alignment scores
InfA1 (PB2)

k FFP D2 D2PA KMER KMOD
3 0.24 0.89 - 0.93 0.93
4 0.30 0.95 0.80 0.96 0.96
5 0.32 0.98 0.98 0.98 0.98
6 0.28 0.99 0.99 0.99 0.99
7 0.33 0.99 0.99 1.00 1.00
8 0.38 0.99 0.99 1.00 1.00
9 0.38 0.98 0.98 1.00 1.00
10 0.38 0.98 0.98 1.00 1.00
11 0.38 0.97 0.97 1.00 1.00
12 0.38 0.97 0.97 0.99 0.99
13 0.36 0.96 0.96 0.99 0.99
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Figure 7.4: Plotted correlation for InfA2 (PB1)

Table 7.15: Correlations between five distance metrics and ClustalW alignment scores
for InfA2 (PB1)

k FFP D2 D2PA KMER KMOD
3 0.23 0.87 - 0.95 0.95
4 0.44 0.97 0.81 0.98 0.98
5 0.27 0.99 0.98 0.98 0.98
6 0.35 0.99 0.99 0.99 0.99
7 0.34 0.99 0.99 1.00 1.00
8 0.38 0.98 0.98 1.00 1.00
9 0.41 0.98 0.98 1.00 1.00
10 0.40 0.97 0.97 1.00 0.99
11 0.39 0.97 0.97 1.00 0.99
12 0.38 0.96 0.96 1.00 0.99
13 0.40 0.95 0.95 1.00 0.98
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Figure 7.5: Plotted correlation scores for InfA3 (PA)

Table 7.16: Correlations between five distance metrics and ClustalW alignment scores
InfA3 (PA)

k FFP D2 D2PA KMER KMOD
3 0.21 0.85 - 0.90 0.90
4 0.28 0.95 0.77 0.96 0.96
5 0.20 0.97 0.98 0.97 0.97
6 0.18 0.98 0.99 0.99 0.99
7 0.31 0.99 0.99 1.00 1.00
8 0.38 0.98 0.98 1.00 1.00
9 0.40 0.98 0.98 1.00 1.00
10 0.38 0.97 0.97 1.00 1.00
11 0.40 0.97 0.97 1.00 1.00
12 0.41 0.96 0.96 1.00 0.99
13 0.41 0.96 0.96 0.99 0.99
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Figure 7.6: Plotted correlation scores for InfA4 (HA)

Table 7.17: Correlations between five distance metrics and ClustalW alignment scores
InfA4 (HA)

k FFP D2 D2PA KMER KMOD
3 0.33 0.85 - 0.83 0.83
4 0.21 0.88 0.83 0.86 0.87
5 0.16 0.88 0.89 0.87 0.87
6 0.15 0.87 0.87 0.87 0.87
7 0.29 0.86 0.86 0.89 0.90
8 0.34 0.85 0.85 0.90 0.92
9 0.40 0.84 0.84 0.90 0.94
10 0.40 0.83 0.83 0.89 0.94
11 0.42 0.82 0.82 0.88 0.91
12 0.41 0.81 0.81 0.86 0.84
13 0.41 0.81 0.81 0.86 0.85
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Figure 7.7: Plotted correlation scores for InfA5 (NP)

Table 7.18: Correlations between five distance metrics and ClustalW alignment scores
InfA5 (NP)

k FFP D2 D2PA KMER KMOD
3 0.26 0.85 - 0.91 0.91
4 0.20 0.96 0.88 0.98 0.98
5 0.32 0.99 0.99 0.99 0.99
6 0.27 0.99 0.99 1.00 1.00
7 0.36 0.99 0.99 1.00 1.00
8 0.41 0.99 0.99 1.00 1.00
9 0.44 0.99 0.99 1.00 1.00
10 0.46 0.98 0.98 1.00 1.00
11 0.46 0.98 0.98 1.00 0.99
12 0.46 0.97 0.97 1.00 0.99
13 0.46 0.96 0.96 0.99 0.99



73

Figure 7.8: Plotted correlation for InfA6 (NA)

Table 7.19: Correlations between five distance metrics and ClustalW alignment scores
InfA6 (NA)

k FFP D2 D2PA KMER KMOD
3 0.19 0.82 - 0.84 0.84
4 0.18 0.90 0.87 0.88 0.88
5 0.23 0.93 0.93 0.91 0.91
6 0.35 0.92 0.92 0.93 0.94
7 0.42 0.90 0.90 0.95 0.96
8 0.43 0.89 0.89 0.95 0.97
9 0.46 0.87 0.87 0.95 0.97
10 0.46 0.86 0.86 0.94 0.97
11 0.46 0.85 0.85 0.93 0.95
12 0.46 0.84 0.84 0.92 0.86
13 0.46 0.83 0.83 0.91 0.85
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Figure 7.9: Plotted correlation for InfA7 (M1/M2)

Table 7.20: Correlations between five distance metrics and ClustalW alignment scores
InfA7 (M1/M2)

k FFP D2 D2PA KMER KMOD
3 0.47 0.90 - 0.92 0.92
4 0.17 0.96 0.80 0.97 0.97
5 0.32 0.98 0.98 0.99 0.99
6 0.32 0.99 0.99 1.00 1.00
7 0.32 0.99 0.99 1.00 1.00
8 0.38 0.98 0.98 1.00 1.00
9 0.37 0.98 0.98 0.99 0.99
10 0.40 0.98 0.98 0.99 0.99
11 0.40 0.97 0.97 0.99 0.99
12 0.40 0.97 0.97 0.99 0.99
13 0.40 0.96 0.96 0.99 0.99
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Figure 7.10: Plotted correlation for InfA8 (NS1/NS2)

Table 7.21: Correlations between five distance metrics and ClustalW alignment scores
InfA8 (NS1/NS2)

k FFP D2 D2PA KMER KMOD
3 0.48 0.91 - 0.90 0.90
4 0.24 0.95 0.89 0.94 0.94
5 0.28 0.96 0.97 0.96 0.96
6 0.15 0.96 0.96 0.98 0.98
7 0.32 0.94 0.94 0.98 0.99
8 0.41 0.93 0.93 0.98 0.99
9 0.44 0.92 0.92 0.98 0.99
10 0.44 0.91 0.91 0.97 0.99
11 0.44 0.90 0.90 0.97 0.99
12 0.46 0.89 0.89 0.96 0.98
13 0.45 0.88 0.88 0.96 0.98
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7.12.2 DENV

ClustalW alignment scores in this dataset show a relatively low range (22.8) and

standard deviation (5.4) (Table 7.22). For this dataset, three methods; D2, D2PA,

and KMOD all show perfect correlation with alignment scores. The minimum word

lengths at which perfect correlation was achieved were 5, 6 and 8, respectively. Fig-

ure 7.11 and Table 7.23 show correlation scores achieved by each method.

Table 7.22: DENV ClustalW alignment score distribution

MAX MIN RANGE AVE STD
97 74.2 22.8 85.2 5.4
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Figure 7.11: Plotted correlation for DENV

Table 7.23: Correlations between five distance metrics and ClustalW alignment scores
for DENV

k FFP D2 D2PA KMER KMOD
3 0.41 0.91 - 0.87 0.84
4 0.29 0.99 - 0.87 0.95
5 0.30 1.00 0.98 0.89 0.97
6 -0.04 1.00 1.00 0.92 0.98
7 0.12 1.00 1.00 0.93 0.99
8 0.04 1.00 1.00 0.94 1.00
9 0.29 1.00 1.00 0.93 1.00
10 0.30 1.00 1.00 0.92 1.00
11 0.29 0.99 0.99 0.91 1.00
12 0.28 0.99 0.99 0.89 1.00
13 0.30 0.99 0.99 0.88 1.00
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7.12.3 HIV

Alignment scores in this dataset show a moderately wide range (32.6) and standard

deviation (12.4) (Table 7.24). Only one distance method, KMOD, achieves perfect

correlation with alignment scores. This was found at a minimum word length of 9.

The KMER method shows the second highest correlation of 99% beginning at a

word length of 8. Figure 7.12 and Table 7.25 show correlations of each method.

Table 7.24: HIV ClustalW alignment score distribution

MAX MIN RANGE AVE STD
99.2 66.6 32.6 79.0 12.4
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Figure 7.12: Plotted correlation for HIV

Table 7.25: Correlations between five distance metrics and ClustalW alignment scores
for HIV

k FFP D2 D2PA KMER KMOD
3 0.13 0.44 - 0.20 0.20
4 -0.01 0.71 0.16 0.43 0.43
5 0.10 0.87 0.78 0.76 0.76
6 0.02 0.92 0.93 0.93 0.93
7 0.06 0.94 0.94 0.98 0.98
8 0.05 0.94 0.94 0.99 0.99
9 0.05 0.93 0.93 0.99 1.00
10 0.05 0.92 0.92 0.99 1.00
11 0.05 0.91 0.91 0.99 1.00
12 0.11 0.91 0.91 0.99 0.99
13 0.11 0.90 0.90 0.99 0.99
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Chapter 8

Graph Theoretic Approaches to
Modeling Disease Networks

8.1 Overview

This part of our research focuses on the development of graph models to represent

disease transmission using the distance metrics developed and discussed in Chapter 6

and Chapter 7. The basic approach to our method is that each sequence is repre-

sented as a graph vertex and vertices are connected by edges only if they represent

very similar sequences. We specify the degree of similarity by a distance threshold

developed below.

A fast, alignment-free string comparison method is used to compute distance

scores for all sequence pairs in the dataset being examined. Using one of these fast

methods allows our presented method to accommodate very large subspecies viral

data sets. Here we use the KMOD metric described in Chapter 7, as it results

in the highest correlation with ClustalW pairwise alignment scores for all data sets

tested in Chapter 7. This allows that the method presented might accommodate the

computation required to incorporate growing subspecies viral data sets.

Using a graph to represent relationships among sequences opens up a number of

possible analytical approaches based on existing graph theory and statistical methods.

Here, we examine edges across different sequence types by using a concept called

‘mixing patterns’ [58]. Mixing patterns describe the probability of edges existing

between different sequence types in a given network.
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Examining patterns of similarity or dissimilarity within and across sequence

types, such as place of origin and/or host type, enables us to examine cross-species

transmission (i.e. host jumping) and how genotypes are carried over from year to

year. The method and analysis presented here try to address some of the current

needs for the examination of global influenza circulation [56, 67].

In this chapter, we first describe our general approach, and then apply this

method to a complex Influenza A virus data set.

8.2 General method to build and examine graphs

8.2.1 Distance Matrix

In the first step, all pairwise distance scores for the entire sequence set are computed

using a fast, alignment-free comparison method as presented in Chapter 7. Recall

that these methods compute similarity/distance metrics for large datasets with small

computational effort. The first step results in an N x N distance matrix computed

using the KMOD metric (N= number of sequences in a dataset). A small example

of this is depicted in Figure 8.1.

8.2.2 Incidence Matrix

From the distance scores computed in the first step, we generate an edge, or incidence

matrix. An incidence matrix I is a symmetric NxN matrix, in which a “1” as

element Iij represents an edge between vertexi and vertexj, and a “0” in Iij denotes

no connection between vertex(i) and vertex(j). A graph is defined by its set of vertices

and edges representing all connections between any two vertices. Thus, the graph is

generated from the incidence matrix.

Distance Thresholds

Distance matrices are converted to incidence matrices by a Boolean conversion. Each

distance that is less than or equal to a specified threshold is assigned a value of 1,

indicating a similarity of a certain degree. All other distances are converted to 0.
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Figure 8.1 illustrates this.

Figure 8.1: Once a distance matrix is generated, it is converted to an edge matrix
by instating edges between sequences with distance scores less than or equal to a user-
specified threshold. Here, the threshold is 0.30. The resulting graph is shown at the
bottom of the image, in which each vertex represents a sequence, and an edge between
vertices represents a ‘similar’ relationship

A distance threshold is a mechanism for labeling two sequences as “similar”. If

a pairwise distance measure is less than the specified threshold, the two sequences

are indicated as being similar to a certain, acceptable degree. Such a threshold

can be used for any distance metric (KMOD or otherwise) and is commonly used
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in applications such as clustering methods to determine when elements are similar

enough to be considered elements of the same cluster.

Developing a biologically meaningful distance (or similarity) threshold is non-

trivial. We use the ClustalW pairwise similarity scores as a guide to computing

meaningful distance thresholds. For a review on ClustalW similarity scores, please

see Chapter 7. We first select tC , a ClustalW pairwise alignment score threshold. We

then find distance measures of the KMOD distance metric that equate to at least a

ClustalW score of tC .

Due to the computational limitations based upon sequence length and number

as described in Chapter 3, it is not feasible to compute the ClustalW scores on all

sequence pairs in many datasets of interest. Thus we sample 10% of our datasets to

approximate at what values the KMOD (or other distance measure) results in at

least ClustalW scores of tC . The set of pairs (KMOD distance, ClustalW) is ordered

to detect the maximum KMOD distance that corresponds to a ClustalW score of

tC . This maximum KMOD distance is selected as the distance threshold. Figure 8.2

illustrates this concept for a range of threshold values.

In our analysis, distances are rounded up to the third significant digit to account

for floating point errors and minor score discrepancies beyond the third significant

digit (this is not illustrated in Figure 8.2).

Distance Threshold Performance

As we are using only a small subset of our data to determine a distance threshold, it

is necessary to assess the accuracy of our choice of threshold. We do this by calcu-

lating the sensitivity and specificity of each threshold. Sensitivity and specificity are

statistical measures used to determine the accuracy of a binary classification, where

each sample is assigned to one group or another [1]. Here we determine whether dis-

tance scores equal to or less than the specified threshold indicate accurately ClustalW

pairwise alignment scores of at least tC .

Sensitivity gives a measure of the number of alignment scores correctly identified



84

Figure 8.2: ClustalW alignment scores and distance matrices are computed for a set
of sequences. The maximum distance value found for a given alignment score of tC is
then selected as a threshold value
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by using the specified threshold tK . A threshold with perfect sensitivity would cor-

rectly identify all distance scores corresponding to at least ClustalW alignment scores

of tC . Specificity provides a measure of the exclusivity of the threshold being used.

A threshold with perfect selectivity would not mistakenly select any distance scores

corresponding with alignment scores of less than tC .

Sensitivity is calculated here as:

sensitivity =
number of True Positives

number of True Positives + number of False Negatives
(8.1)

where:

True Positives: Sequence pairs with distance scores ≤ tK and ClustalW alignment

scores ≥ tC

False Negatives: Sequence pairs with distance scores >tK and ClustalW alignment

scores ≥ tC

Selectivity is calculated here as:

selectivity =
number of True Negatives

number of True Negatives + number of False Positives
(8.2)

where:

True Negatives: Sequence pairs with distance scores > tK and ClustalW alignment

scores < tC

False Positives: Sequence pairs with distance scores ≤ tK and ClustalW alignment

scores < tC

In general, there is a tradeoff in selectivity and sensitivity. Recall that perfect

sensitivity does not miss anything, while perfect selectivity does not mistakenly accept

anything. A more stringent threshold yields higher selectivity but may yield lower

sensitivity. Thresholds may be adjusted by the researcher to suit desired goals. For

example, if it is crucial that a test has no false positives, then selectivity would be a

more important measure to ascertain accuracy for.
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The overall accuracy of a given threshold may be assessed using bounds derived

from selectivity and sensitivity scores:

PERFECT if selectivity = 1 and sensitivity = 1

EQUIVALENT TO RANDOM GUESS if sensitivity = (1 - selectivity)

WORSE THAN RANDOM GUESS if sensitivity < (1 - selectivity)

PERFECTLY INCORRECT if sensitivity = 0 and selectivity = 0

A full review of these concepts may be found in [23].

We compute the sensitivity and selectivity measures using a second subset of

size 10% of our entire data set, which is mutually exclusive of our first training data

subset that was used to determine the k -mer distance metric threshold tK . We again

compute a distance matrix using the KMOD method and all pairwise alignment

scores using ClustalW. We use these values and Equations 8.1 and 8.2 to assess the

performance of our threshold tK .

8.2.3 Graph connectivity

After determining that the accuracy of the distance threshold is acceptable using the

selectivity and sensitivity measures, we use the resulting incidence matrix to represent

a graph. Our next step is to examine the graph’s connectivity patterns.

Here we examine the occurrence of edges between different vertex types that can

indicate transmission across (or within) these types. Types of sequences might include

country of origin, continent of origin, organism, type of host, date of collection, etc.,

or any combination of these. For example, we might be interested in the occurrence

of all edges between Human and Avian vertices in North America during the years

1990-1995.

In addition, we examine mixing patterns [58] among vertex types. Mixing pat-

terns describe the probability of edges existing between different types within the

given network. Specifically, for each vertex of type A in a network, we compute the



87

Figure 8.3: Assuming two vertex types exist (A and B), the number of edges between
each type is added to generate a mixing matrix. This mixing matrix is then normalized
by its total number of edges. To compute mixing patterns, the sum of each row is
computed, and each element is divided by its corresponding row sum. Thus, given a
vertex of type A, the probability that it is connected to a vertex of type B (P (B|A))
is 0.6. By the definition of P (B|A), it is clear that the final mixing pattern matrix is
asymmetric.

conditional probability that its neighbor is of type B, i.e., P (B|A).

To examine mixing patterns, a mixing matrix E is generated in which EAB con-

tains the number of edges connecting vertices of type A to vertices of type B. A

normalized mixing matrix Ē is then derived where:

Ē =
E

‖E‖

‖E‖ represents the sum of all elements in E. P (B|A) for each vertex type A and

all neighbor types B can then be computed as P (B|A) = Ēab/
∑

b Ēab, as described

in [58].

Figure 8.3 illustrates an example of mixing pattern calculation.

Examining graph connectivity as described above allows us to approximate trans-

mission among and between different vertex types.
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8.3 Methodology applied to Influenza A Virus

Here we present our approach applied to a large set of publicly available whole-genome

Influenza A virus sequences from Influenza Virus Resource [2]. This dataset contains

4,228 worldwide, whole viral genomes of multiple subtypes, from several host types,

collected between the years 1999-2009, across 58 countries. Tables in Section 7.11.1

list the number of sequences from each country of origin, subtype, host type, and

collection year.

Applying the KMOD method on RNA viruses such as Influenza A virus is very

efficient, as these viruses mutate rapidly [32, 67] and the sequence length is relatively

short. Recall that short sequences reduce computational requirements. Furthermore,

high mutation rates of RNA viruses create potentially traceable micro-evolutionary

pathways through sequence comparisons [42], which we hope to identify.

8.3.1 InfA incidence matrices

In Chapter 7, it was determined that distance scores using the KMOD comparative

method show the best overall correlation with ClustalW pairwise alignment scores for

all RNA viral datasets tested. The optimal word length (k value) across all datasets

is nine. Recall that the InfA genome is composed of eight segments (Fig. 7.2). We

begin by computing distance matrices of all pairwise distance scores for each segment

in the InfA dataset using the KMOD distance score with a word length of nine.

Note that by definition of KMOD these distance matrices are symmetric.

8.3.2 InfA distance threshold performance

Because the InfA dataset is composed of eight distinct segments, we generate eight

individual graphs from eight individual distance thresholds. Each KMOD distance

threshold tK is derived from sequence subsets of each segment, yielding eight thresh-

olds (tK1, .., tK8).
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We estimate KMOD distance score values that correspond to ClustalW align-

ment scores of 97% and 96% for specific segments. We base these choices on the

distribution of ClustalW alignment scores for each segment, shown in Figures 8.4

- 8.11. For each segment, a natural break in score distribution occurs at the 96% or

97% score. Thresholds of 97% are applied to segments 1-3, 7, and 8. Thresholds of

96% are applied to segments 4-6.

Figure 8.4: Histogram of ClustalW alignment scores for InfA1

Using approximately one-tenth of our entire dataset, 400 sequences are selected

from each segment specific dataset. For each segment specific subset of size 400,

a ClustalW alignment matrix is computed as well as a distance matrix using the

KMOD distance metric. Thresholds are derived in the manner described in earlier

sections.

8.3.3 InfA accuracy assessment

Table 8.1 lists sensitivity and selectivity scores per segment. All thresholds show near

perfect sensitivity. All thresholds also show near perfect selectivity, with no scores

less than 0.98, where 1 is a perfect sensitivity score. Table 8.1 also show the number

of True Positives, True Negatives, False Positives and False Negatives counted for

each threshold.
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Figure 8.5: Histogram of ClustalW alignment scores for InfA2

Figure 8.6: Histogram of ClustalW alignment scores for InfA3

Figure 8.7: Histogram of ClustalW alignment scores for InfA4
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Figure 8.8: Histogram of ClustalW alignment scores for InfA5

Figure 8.9: Histogram of ClustalW alignment scores for InfA6

Figure 8.10: Histogram of ClustalW alignment scores for InfA7
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Figure 8.11: Histogram of ClustalW alignment scores for InfA8

Table 8.1: Sensitivity and selectivity of threshold scores per segment

Threshold Sens. Sel. True POS False POS True NEG False NEG

tK1 1 0.990 12,221 757 66,822 0
tK2 1 0.995 12,025 352 67,422 1
tK3 1 0.993 13,510 443 65,846 0
tK4 1 0.980 11,246 1,338 67,216 0
tK5 1 0.995 13,372 352 66,076 0
tK6 1 0.980 12,489 1,321 65,990 0
tK7 1 0.993 13,405 453 65,938 4
tK8 1 0.992 11,707 541 67,551 1

AVERAGE 1 0.998
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Table 8.2: Number of edges per segment

Segment Number of edges Ave. Degree
1 73,879 9.3
2 37,832 17.9
3 36,472 17.3
4 18,688 8.8
5 31,213 14.8
6 37,536 17.8
7 34,295 16.2
8 73,879 35.0

TOTAL 269,915

8.3.4 InfA resulting graph

The final graph is computed as the sum of all segment specific graphs. Given N whole

viral sample sequences composed of disjoint segments 1-8, a summed N × N graph

G is created by summing all pairwise edges across all segments:

∀i, j ∈ N, Gi,j =
8∑

seg=1

gseg,i,j (8.3)

The resulting graph constructed from the InfA dataset contains 269,915 edges.

The number of edges per segment are listed in Table 8.2. The degree(k) of a vertex is

the total number edges connecting to it, whereas the average degree (k) is the average

of all vertex degrees in a graph. The average degree for each segment is also reported

in Table 8.2. Segments 1 and 4 show the lowest average degree and segment 8 shows

the highest average degree.

8.3.5 InfA cross-type edges and mixing patterns

Here we examine edges between host types and collection years. cross-type edges

might indicate transmission across hosts and the persistence of genotypes across years.

Pinpointing which edges indicate transmission across hosts addresses ‘host jump-

ing’. This is a characteristic of Influenza A virus which has enabled the emergence

of highly pathogenic strains such as the recent H5N1 bird flu and the Spanish flu in
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1918 [86]. Examining the persistence of genotypes across years addresses the ques-

tion of whether new influenza strains emerge and circulate globally each year, or

whether they remain in localized pockets and re-emerge periodically [57]. We do

not address these questions directly in this research. Instead, we simply illustrate

how the described method can be used to address specific questions regarding disease

transmission.

We quantify the number of inter-type edges in detail and for certain cross-type

edges, we examine the countries where these edges occur. We also examine which

InfA segments contribute the most to edges across various types. In addition, we

examine mixing patterns [58] across host and year types.

Inter-host edges

The host types of our data set include Human, Domestic Avian, Wild Avian, Swine,

Mammal, Environment, or Unknown. The Domestic Avian class includes all viral

samples from hosts labeled chicken, turkey, duck, or goose. Samples from hosts la-

beled by wild bird species, such as “mallard” or “egret” are considered Wild Avian.

The Mammal class is broad and includes all non-human and non-swine mammals,

including species such as horse, civet and tiger. As described in Section 7.11.1, se-

quences were obtained during the years 1999-2009 and were collected in 58 different

countries.

Table 8.3 displays the number of edges found between different host types in the

summed graph G, and the contributions from each segment specific graph (g1 − g8).

The largest number of inter-host edges (1, 094) are found between the Wild Avian

and Domestic Avian groups. The non-human host type showing the highest number

of edges with Human is Swine. Links are also found between Human and Domestic

and Wild Avian types, however, while these edges only sum to 27, the number of

edges between Human and Swine samples is 197.
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Figure 8.12 is a heatmap of the conditional probabilities that a vertex of type

A has an edge with type B in the overall graph G. Table 8.4 lists the numerical

values used to generate the heatmap. Diagonal entries on the heatmap reflect the

tendency for edges to be found between identical host types. This image displays the

connectedness of Domestic and Wild Avian types, also shown by the high number of

edges found between these classes in Table 8.3. Unknown type samples show a high

probability of forming edges with both Domestic Avian, as well as Environment ver-

tices. Environment types form higher numbers of edges with Unknown and Domestic

Avian types. This image also reflects the relatively high numbers of edges between

Swine and Human samples.

Figure 8.12: Probability that a vertex of host type (A) has an edge with a vertex of
host type (B) in the network
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Table 8.4: P (B | A) for inter-host mixing. Values less than 0.01 are omitted

B
Wild
Avian

Domestic
Avian

Human Swine Mammal Environ-
ment

Unknown

A

Wild Avian 0.35 0.57 0.05 0.03
Domestic Avian 0.20 0.65 0.12 0.03

Human 1.00
Swine 0.01 0.02 0.27 0.70

Mammal 0.03 0.03 0.01 0.92 0.01
Environment 0.06 0.37 0.52 0.05

Unknown 0.15 0.43 0.25 0.18

Edges between host type pairs of particular relevance to host-jumping and global

transmission are examined in more detail. These pairs include Human/Swine, Hu-

man/Avian (Domestic and Wild), and Domestic Avian/Wild Avian.

Human and Swine samples are connected by 197 edges. The dates and countries

of origin of samples forming these links are listed in Table 8.5. In Table 8.5, New

Zealand/Human/2000 samples form edges with Canada/Swine/2003 and China/Swine

/2003 samples. These edges connecting with New Zealand/Human vertices account

for 96% of all Human/Swine edges. Edges are also found between Canada/Human/2005

and Canada/Swine/2005 samples. The contribution of edges from each segment is

shown in Table 8.10. While all segments are represented in Human/Swine edges,

segments 1 and 4 are the least common whereas segments 5 and 8 are the most

common.

Table 8.5: Edges found between Human and Swine samples

Human Swine Edges g1 g2 g3 g4 g5 g6 g7 g8
NewZealand,
Human,
2000 (120)

Canada,
Swine,2003
(5)

65 0 0 16 0 23 2 0 24

NewZealand,
Human,
2000 (120)

China,
Swine,2003
(4)

124 0 15 16 0 23 16 30 24

Canada,
Human,
2005 (2)

Canada,
Swine,2005
(5)

8 2 1 0 1 0 1 0 3

TOTAL 197 2 16 32 1 46 19 30 51
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Human and Avian (both Wild and Domestic) samples are connected by 27 edges.

Most of the edges found are between Human and Domestic Avian. cross-species links

all occurred within the same country and within the same year or consecutive years.

The countries where host-jumping between Human and Avian species occurred are

indicated in this graph and include Canada, the Netherlands, and Thailand. As noted

between Human and Swine samples, segments 5 and 8 contribute the most to these

cross-species edges.

Table 8.6: Edges found between Human and Avian samples

Human Avian Edges g1 g2 g3 g4 g5 g6 g7 g8
Canada,
Human,
2004 (1)

Canada,
D.Avian,
2004 (1)

11 0 0 1 1 3 1 2 3

Canada,
Human,
2005 (2)

Canada,
D.Avian,
2005 (2)

1 1 0 0 0 0 0 0 0

Netherlands,
Human,
2003 (1)

Netherlands,
D.Avian,
2003 (1)

2 0 0 0 0 0 0 2 0

Thailand,
Human,
2004 (4)

Thailand,
D.Avian,
2004 (4)

5 0 0 0 0 5 0 0 0

Thailand,
Human,
2006 (1)

Thailand,
D.Avian,
2005 (1)

2 0 1 0 0 0 0 0 1

Thailand,
Human,
2006 (6)

Thailand,
W.Avian,
2005 (6)

6 0 3 0 0 0 0 0 3

TOTAL 27 1 4 1 1 8 1 4 7

Wild and Domestic Avian samples are connected by 848 edges. These links occur

in several countries and during several years. With the exception of two edges between

Thailand Avian vertices in 2004 and 2008, all edges are found between vertices of the

same year type or consecutive years. Most edges are also across vertices collected

in the same country. Tables 8.7- 8.9 display an extended table showing Domestic

Avian and Wild Avian vertex types with edges between them. Entries marked with
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an * denote vertices from different countries. Inter country edges are found between

Canada and the US, China and Russia, Italy and Hungary, Mongolia and Russia, and

South Korea and Japan.
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Table 8.10 shows the percentage of segments forming links in the three host pairs

examined. Segments 5 and 8 contribute the most to edge formation between Human

and non-human hosts. Segments 7 and 8 contribute the most to edges between Avian

types.

Table 8.10: Percentage of each segment forming inter-host type edges

g1 g2 g3 g4 g5 g6 g7 g8
Human/Swine 1% 8% 16% 1% 23% 10% 15% 26%

Human/Avian (Wild,Dom) 4% 15% 4% 4% 30% 4% 15% 26%
Wild Avian/Domestic Avian 8% 9% 8% 9% 13% 12% 19% 22%

Inter-year edges

Table 8.11 shows the number of edges found between samples collected in different

years. The majority of edges (95%) are found between pairs of consecutive years.

Edge statistics between consecutive years are denoted with a * in Table 8.11. Notably,

segment 8 contributes to 70% of all edges.
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Figure 8.13 is a heatmap generated from the conditional probabilities computed

for inter-year mixing. This image displays the tendency for edges to be primarily

found between samples collected during the same year or those collected in consecutive

years. Table 8.12 displays the values used to generate the image.

Figure 8.13: Probability that a sample collected in year (A) has an edge with a sample
collected in year (B) in the network
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Table 8.12: P (B | A) for inter-year mixing. Values less than 0.001 are not shown

B
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

A

1999 0.801 0.194 0.005 0.001
2000 0.076 0.885 0.025 0.013
2001 0.047 0.896 0.056 0.001
2002 0.047 0.947 0.005 0.001
2003 0.001 0.008 0.002 0.941 0.043 0.005
2004 0.001 0.051 0.804 0.143
2005 0.009 0.215 0.755 0.014 0.006
2006 0.003 0.077 0.772 0.148
2007 0.005 0.018 0.813 0.164
2008 0.001 0.264 0.732
2009 1.00

8.4 Estimating number of mutations

In this section, we estimate how many mutations have occurred between two viral

genomes exhibiting a range of alignment scores, which can provide a general estimate

of the genomic difference between two sequences deemed similar via a specific thresh-

old. This is not a part of our general graph-examination approach (Section 8.2), but

might be used to justify or fine-tune threshold choices in future work.

We randomly select one sequence as a ‘start sequence’ from our data set. Be-

ginning with each start sequence, a random single base change (SBC) is introduced,

creating a second sequence differing from the first by only one base. A random single

base change is then introduced to the second sequence, creating a third, and so on.

200 sequences are created in this manner and all pairwise ClustalW alignment scores

are calculated for each set. Tables 8.13- 8.20 show the average number of mutations

between sequences exhibiting a range of ClustalW alignment scores.
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Table 8.13: Average number of single base changes for a range of ClustalW Alignment
scores, segment 1

ClustalW alignment score (%) Ave # SBC’s # samples
100 1.62 218
99 19.42 6654
98 55.84 5282
97 92.87 4069
96 130.40 2676
95 167.75 1181
94 196.60 20

Table 8.14: Average number of single base changes for a range of ClustalW alignment
scores, segment 2

ClustalW alignment score (%) Ave # SBCs # samples
100 1.61 216
99 19.35 6645
98 55.97 5336
97 92.88 3998
96 128.84 2517
95 163.67 1279
94 191.06 109

Table 8.15: Average number of single base changes for a range of ClustalW alignment
scores, segment 3

ClustalW alignment score (%) Ave # SBCs # samples
100 1.48 199
99 18.47 6320
98 52.62 5073
97 86.81 3898
96 122.70 2957
95 158.45 1425
94 186.20 228
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Table 8.16: Average number of single base changes for a range of ClustalW alignment
scores, segment 4

ClustalW alignment score (%) Ave # SBCs # samples
100 1.67 248
99 14.95 5002
98 41.55 4175
97 67.01 3356
96 92.38 2822
95 118.90 2206
94 145.30 1432
93 170.03 719
92 189.59 140

Table 8.17: Average number of single base changes for a range of ClustalW alignment
scores, segment 5

ClustalW alignment score (%) Ave # SBCs # samples
100 1.48 199
99 13.44 4508
98 36.65 3723
97 59.76 3382
96 83.56 2733
95 106.69 2190
94 130.27 1694
93 153.62 1062
92 175.93 555
91 193.89 54

Table 8.18: Average number of single base changes for a range of ClustalW alignment
scores, segment 6

ClustalW alignment score (%) Ave # SBCs # samples
100 1.67 248
99 12.90 4246
98 35.02 3621
97 55.93 2916
96 76.04 2473
95 96.85 2306
94 118.72 1786
93 140.11 1279
92 160.91 812
91 180.74 387
90 196.15 26
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Table 8.19: Average number of single base changes for a range of ClustalW alignment
scores, segment 7

ClustalW alignment score (%) Ave # SBCs # samples
100 1.68 250
99 9.07 2819
98 24.16 2733
97 39.87 2555
96 55.08 2189
95 70.41 1965
94 85.45 1855
93 101.53 1622
92 118.80 1468
91 137.42 1210
90 156.04 824
89 172.50 404
88 186.65 2

Table 8.20: Average number of single base changes for a range of ClustalW alignment
scores, segment 8

ClustalW alignment score (%) Ave # SBCs # samples
100 1.67 248
99 8.29 2530
98 21.47 2362
97 34.33 2109
96 48.02 2236
95 61.61 1805
94 75.88 1976
93 91.15 1540
92 105.40 1448
91 119.89 1145
90 135.01 1037
89 149.89 713
88 165.74 610
87 182.08 337
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8.5 Summary

In this chapter, we describe a method for generating a network from viral genomes.

We also apply this method to an Influenza A Virus dataset and examine the patterns

of connectivity between sequence groups.

In the network generated here, the non-human host type showing the highest

number of edges with Human vertices is Swine. Edges are found between Human

and Swine vertices from different and same countries: New Zealand Human/Canada

Swine, New Zealand Human/China Swine, and Canada Human/Canada Swine. A

lesser number of edges are found between Human and Avian vertex types. The Avian

types are primarily Domestic. All of these edges occur within the same country of

origin and are found within Canada, the Netherlands, and Thailand. Segments 5

and 8 contribute the most the Human/Swine and Human/Avian edges. In contrast,

segments 7 and 8 contribute the most to edges found between Domestic and Wild

Avian vertices.

Examining inter-year edges shows that the majority are found between consecu-

tive years. Additionally, segment 8 contributes to 70% of these edges.

The analysis we describe here is not all inclusive in that it might be adapted to

examine several other aspects of viral transmission with different thresholds applied.

This type of analysis might be improved by allowing more accurate comparisons by

making the distribution of vertex groups more uniform. However, we feel that this

method is promising and can provide insight into some aspects of global and local

disease transmission.
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Chapter 9

Conclusions and Future Work

The research described in this dissertation is focused on two major components. The

first is approximating complete, whole-genome alignment scores with a k -mer based,

alignment-free method. We examine existing word-based methods, and develop two of

our own. Each method is tested for accuracy against the popular ClustalW pairwise

alignment scores, and we select one such metric which we believe is the most accurate.

The second introduces a method for developing a graph to model and examine

similarity relationships between whole genome sequences. The method uses a k -

mer alignment-free distance metric to efficiently compute pairwise distances of all

sequences of interest, and draws on existing tools to examine characteristics of graphs.

We present a detailed example of this method applied to a complex Influenza A virus

dataset, and discover some interesting results, which are discussed in detail.

Table 9.1 provides a summary of the benefits of our approach over methods

traditionally used in similar studies. These benefits include time- and space- efficient

computations providing the ability to study large datasets. Strengths of our approach

also include a general graph formation, as opposed to phylogenetic tree construction,

without restrictions on node degree. Furthermore, graph theory is a well developed

field of study with many tools to draw from for designing further analysis.

Although our research is presented mostly in conjunction with viral sequences,

all components of the tools and methods developed here may be applicable to whole

genome sequences that are somewhat similar and show relatively fast mutation rates.

This makes our method applicable to a variety of datasets and enables researchers to
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Table 9.1: Benefits of the described methods

Method Described Standard Approach
Sequence Comparisons Sequence comparisons

via fast and accurate
estimates of alignment
scores allow for large
datasets of whole-
genomic sequences to be
studied.

Standard pairwise
alignments are com-
putationally intensive,
which may restrict the
number of sequences
and/or sequence lengths
to be included in a
study.

Graph-Based Analysis A graph allows for flexi-
bility in the placement of
edges and node degree.
Existing graph theoretic
approaches may also be
applied, such as mixing
patterns.

Traditional phylogenetic
tree approaches used
to estimate evolution-
ary distances between
elements are computa-
tionally intensive and
typically are based on
node degree restrictions.

examine a number of geographic trends of genomic variability.

A potential application of our approach could be to determine infection sources

in disease outbreaks, particularly in cases where timely results are desired. In such

outbreaks, sequencing of large numbers of viral or bacterial samples could provide

large sequence sets which would be efficiently analyzed using a linear-time comparison

method and graph-based approach described. In the event of an outbreak, it would

be possible to collect and sequence viral samples from infected people from different

geographic locations. For a set of sequences similar in size to the Influenza A Virus

dataset used in Chapter 8, the time to build transmission graphs using the described

method on one dual core computer with 8GB of RAM would be less than one day.

Comparing all sequences and generating a phylogenetic tree with ClustalW would

require about six days. Mixing patterns could indicate the most probable routes of

transmission. If viral isolates were collected at different time intervals, mixing pattern

analysis in conjunction with sample collection times could indicate the direction of

transmission as well. For example, if several vertices showed a high probability of

forming edges with vertices located west of them and collected at an earlier date, the
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indication would be that the disease was spreading in an eastward fashion.

Other applications may include generating a graph to represent similarities be-

tween human genomic sequences collected in distributed locations. This could yield

insight into the geographic aspect of disease susceptibility in human populations. Our

method could locate highly connected vertices, or clusters, of similar genotypes which

overlay geographically with disease instances. The probability of disease transmission

between certain genotypic types may also be indicated by mixing patterns.

For ecological-based studies, comparisons of viral samples in non-human, animal

populations such as rodents or migratory avian species may prove useful when study-

ing the movement of these species groups. As it can be assumed that, in general,

viral transmission requires physical proximity, geographic routes of viral transmission

would indicate the physical movement of animals carrying the virus. Mixing pattern

analysis could indicate highly utilized routes of movement or the interaction of certain

species groups.

The work presented here might be expanded in several interesting directions. The

first is the further development of an alignment-free metric to approximate dynamic

programming alignment scores in a more general setting. The research here focuses on

small, viral genomes. Our methods are not tested on a diverse set of longer genomes,

and so our results cannot be easily extrapolated to general instances. In addition,

the method we found most useful (KMOD) was developed experimentally and has

not been justified mathematically.

As a second possible expansion of this study, we would like to consider gener-

ating graphs that are based on directed, rather than undirected edges to represent

transmission from isolates collected at an earlier date to those collected at a later

date. Using appropriate tools from graph theory to study directed graphs, we might

be able to study transmission patterns throughout time.

A third additional investigation can include the study of more complex connec-

tivity properties of graphs, and applications of these to our disease network models.

Studying graph characteristics such as connected components and cliques might en-
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able us to examine connectivity patterns across and within certain vertex groups.

A fourth possible direction for future work is to develop a normalization pro-

cedure of viral datasets so that resulting graphs can be used to more accurately

extrapolate general transmission tendencies around the globe. The Influenza A virus

dataset is highly skewed with regard to many characteristics. For example, approxi-

mately half of all sequences originate from the United States. The second most highly

represented country is New Zealand, contributing approximately 13% of all samples.

Human samples contribute to 65% of all sequences. Future work should investigate

the underlying network structure of influenza in more evenly distributed data sets.

Future work will also include making the C++ code used for k -mer comparisons

and graph creation publicly accessible.
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