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Abstract

With the explosion of multimedia content over Internet, there is a need for copy-

right protection of digital content. Whether it is music albums swapped over peer

to peer networks or video files uploaded over websites such as YouTube.com or 3D

models such as Shrek, artists need to protect their ownership of content. 3D Water-

marking provides a deterrent to piracy of 3D models by embedding a hidden piece of

information in the original content.

Watermarking algorithms have a basic requirement that the watermark should be

imperceptible to avoid being detected and not cause visible distortion to the viewer.

The watermark should also be robust to withstand unintentional attacks. It is also

desired that the watermark insertion capacity should be as high as possible to with-

stand intentional attacks and to allow insertion of multiple or redundant or bio-

metric watermarks. Insertion of high density imperceptible watermark will make it

extremely difficult for an attacker to find the watermark and then make substantial

changes in the 3D model to remove or overwrite the watermark. However, insert-

ing large amounts of information as watermark can cause distortion. The design of

watermarking algorithms involves a trade off between imperceptibility, capacity and

robustness.

The first generation of 3D watermarking techniques inserted low capacity water-

mark based on spatial geometry and have poor robustness. The second generation

of algorithms explored use of multi-resolution transform to insert the watermark and

improve the robustness. This dissertation explores use of computational intelligence

techniques to build third generation watermarking algorithms, that insert robust, high

density watermarks and go the extra mile in terms of hiding more information than

the first and second generation techniques. The focus of this study is to optimize the

energy of the watermark and intelligently selecting information pockets in 3D model

for watermark insertion and at the same time still maintaining randomness in the

process to avoid detection. Use of Fuzzy Logic, Genetic Algorithms, and Artificial

Neural Networks are proposed and assessed.
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Chapter 1

Introduction

3D graphic models find widespread uses in movies, architecture, gaming, virtual re-

ality, computer aided design (CAD), simulation of organs in medicine, military, and

bioinformatics just to name a few. With the advent of 3D TVs into households and

affordable 3D video cards for desktop computers, 3D models are becoming even more

omnipresent. With the prospect of 3D printers becoming a household reality, its

just a matter of time that the 3D digital content creation market will grow into a

multi-billion dollar industry. There are websites [1, 3] which allow artists to upload

their artwork and sell these 3D models. Princeton University even provides a search

engine [7] to query for 3D models by shape descriptors. There are a number of tools

to create these 3D models such as [4], [6] and [2]. However, designing and build-

ing high end 3D graphic models requires considerable skill and the use of specialized

software and/or hardware such as laser scanners. With high demand and popularity

of 3D models and considering the cost, time, and effort required to build such mod-

els comes the menace of widespread illegal copying of 3D models. Watermarking is a

technique which deters illegal copying by inserting a hidden message in the 3D model.

1.1 Motivation

Digital Rights Management (DRM) techniques based on encryption technologies have

been used to in past to prevent copying of digital multimedia only to be decrypted

and unlocked within few months if not weeks or days. Encryption algorithms used
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are independent of the format of the multimedia, whether it is audio, video, album

songs, movies, ebooks, or 3D models. Numerous copies of the 3D Shrek model (from

the movie Shrek) can be found online. The 3D Gollum character from Lord of the

Rings movie can also be found online. Hollywood suffers millions of dollars in lost

revenue annually for movies which are pirated and sometimes distributed even before

the movies are released in theaters. Prevention of multimedia copying has not only

proven to be difficult but its also difficult to trace the pirates or the origin of breach in

the distribution chain. In spite of strong legislation in United States with the intro-

duction of Digital Millennium Copyright Act (DMCA) and the Recording Industry

Association of America (RIAA) bringing lawsuits, illegal copying of multimedia con-

tinues till this day. DRM systems attempt to provide an anti-piracy framework that

restricts the use of content to its rightful user. The failure of encryption based DRM

can be highlighted with Apple abandoning its FairPlay DRM within iTunes in Jan-

uary 2009.

Watermarking is a technique which inserts a message or code within the digi-

tal content. Secure Digital Music Initiative (SDMI), a consortium of music-industry

companies, held a challenge in 2000 to test the strength of their watermarking tech-

nologies. Edward Felton et al. and his team from Princeton and Rice University [8]

defeated all four watermarking algorithms thereby proving watermarks by themselves

are ineffective. However, there has been considerable amount of significant research

since 2000. In 2008, Fox Studios started using an on-demand watermarking system

to automatically and seamlessly embed imperceptible forensic information in every

frame of video content to protect against piracy. Although encryption and water-

marking techniques when used separately have been proven ineffective, when used

together within a DRM framework, supplement each other and can be a formidable

deterrent for illegal copying. For example, X −MenOrigins : Wolverine movie in

April 2009 was illegally distributed with visible watermarks ‘Rising Sun Pictures’ on

Peer to Peer (P2P) networks and eventually an arrest was made for the person who

uploaded the movie on megaupload .com [85]. Although, the presence of the water-
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mark did not apparently assist in the arrest, nevertheless it still serves as a deterrent.

Its now common practice for movie studios to add watermarks to their pre-release,

in-house versions of productions to track an original uploader.

The state of research of watermarking 3D models is still in its infancy as compared

to published work in image and video watermarking. However, lessons learned from

the movie industry indicate that watermarking is a viable technology which is here

to stay and can be extended to 3D models. It is not a common practice for amateur

artists today to insert watermarks when selling their original 3D content to the seller

and they trust the seller to not violate the ownership rights of the artist. Although

sellers of 3D models give royalties to artists for ownership of 3D models, there are

no business models to support redistribution of 3D models which protect intellectual

rights of the artist. There is not much work done related to insertion of multiple

watermarks to support such a reseller distribution business model. Thus, there is a

business need for strong 3D watermarking algorithms.

1.2 Objective

Typically, very small amount of random information is inserted as watermark. The

lower the energy content of the watermark, the easier it is to potentially remove or

destroy the watermark. If more information is inserted as a watermark, the more

difficult it is to remove the watermark since the attacker will have to identify all the

locations where the watermark was inserted and the amount of watermark inserted at

each location. Inserting high density watermarks further denies the attacker ability

to insert their own watermark to overwrite or destroy the original watermark without

causing perceptible distortion. Recently, biometric prints [69, 67] have been explored

to be used as a watermark for insertion in 3D models to implement a DRM solution to

ensure fair rights management such that the needs of both the artists and consumers

are balanced. Such biometric prints can be large in size and further justify the need

for watermarking algorithms to have the capability to insert imperceptible large size

watermarks. 3D models when streamed through noisy transmission channels can
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corrupt parts of the data thereby destroying the inserted watermark. There is a need

to insert redundant copies of the watermark information for error handling in case

of unintended modification during transmission. Inserting redundant copies implies

that the watermarking algorithm has a high embedding capacity. The objective of

this dissertation is to explore innovative ways to insert the maximum amount of

secret information into 3D mesh models without causing perceptual distortion and

also make it difficult for the attacker to guess where the watermark was inserted and

the amount of watermark inserted.

1.3 Challenges

A watermark inserted in a 3D model is equivalent to adding noise to the 3D model,

which in effect could cause perceptible distortion. Inserting multiple watermarks or

biometric watermarks is a very challenging problem since higher amounts of secret

information need to be inserted in the 3D models without causing perceptible distor-

tion in viewing of the model. To ensure imperceptibility of the modification caused

by watermark embedding, a perceptibility criterion needs to be used. However, the

Human Visual System (HVS) for 3D models is not well understood and has not been

mathematically modeled. It would be optimal to embed a watermark just below the

threshold of perceptual distortion. However, this threshold is difficult to determine

and can vary for individual to individual. As a consequence, the host data is usually

modified by an amount relatively small to their average amplitude in order to avoid

perceptible distortion.

It is also required that for the watermark to be robust, the watermark should sur-

vive unintentional attacks such as compression loss, affine transformations, smooth-

ing, and noise. At the same time, the watermark should survive intentional attacks

by an attacker to remove or overwrite the watermark. The watermark should be

perceptually invisible and should be embedded in such a way so that the potential

hacker should be forced to make substantial changes in the 3D multimedia content

in order to destroy the watermark. For high robustness it is desirable that the wa-
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termark amplitude is as high as possible so that an attacker cannot simply remove

the watermark by applying a noise filter or a low pass filter. It is also desired for

high robustness that the watermark is spread through the model so that the attacker

cannot easily identify the watermark locations.

The requirements of having high capacity and robustness are in direct conflict

with the requirement of being imperceptible. Thus, there is a need for an algorithm

to insert high energy robust watermarks which are imperceptible at the same time.

Thus, there is a need to maximize the amount of watermark information to be inserted

in 3D mesh without causing perceptible distortion, and without being detected by an

attacker to determine where and how much the watermark information was inserted.

This dissertation addresses this challenge and focuses on optimally inserting high

density watermarks in 3D models without causing perceptible distortion to the human

eye viewer.

1.4 Methodology

Invisible watermarking is achieved by insertion of secret binary data in the 3D model.

To deter brute force attacks, information is typically inserted randomly and scattered

throughout the 3D model. To insert higher amounts of information, computational

intelligence techniques have been explored. The proposed approach not only exploits

the geometry of the location where the secret information is to be inserted, but also

exploits local geometry of the surrounding locations to optimize the amount of in-

formation to be inserted. The novelty of the proposed work lies in the approach of

viewing watermarking as an optimization and classification problem and use of com-

putational intelligence techniques such as fuzzy logic, genetic algorithms, and neural

networks to optimally select the locations where the watermark needs to be inserted

and the amount of information to be inserted by exploiting the local geometry of

the 3D model. Fuzzy Logic has been proposed to use heuristic rules for identifying

locations for the watermark and the amount of watermark to be inserted. Evolution-

ary techniques such as genetic algorithms have been explored to adaptively add the
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amount of information to be inserted based on the local geometry. Neural Networks

have also been explored to select the locations for watermark insertion.

1.5 Dissertation Organization

This dissertation is organized as follows: Chapter 2 gives a brief overview of wa-

termarking and categorizes related work into different generations of watermarking

techniques. Chapter 3 gives background of watermarking and describes the rationale

for using computational intelligence techniques in the proposed Third Generation

watermarking. Chapter 4 describes the Fuzzy Logic proposed approach with a brief

overview of the theory, detailed description of algorithm, experiments with analysis

of heuristic rules used. Chapter 5 includes a brief introduction to Genetic Algorithms

(GA) with detailed information on how GA’s are used for watermarking and followed

by parameter analysis. Chapter 6 gives a brief overview of Artificial Neural Network

(ANN) architectures and explain how ANN’s are used for watermarking and then

concluding with experiments. Chapter 7 compares and analyzes the techniques used

in the previous chapters. Limitations, conclusions, and future research directions are

also covered in this chapter.
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Chapter 2

Background and Related Work

2.1 Background

A 3D mesh consists of three combinational entities: vertices, faces, and the edges

connecting the vertices. A vertex list gives the co-ordinates in 3D space of each

and every vertex in the model and a face list which describes how the vertices are

connected to each other. An edge list can be derived by traversing the face and vertex

list. Figure 2.1 is an example of a wireframe mesh.

Figure 2.1: 3D Mesh

Watermarking techniques embed imperceptible data into the multimedia con-
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tent. The covertly embedded data is called the watermark and may consist of a users

unique ID, cryptographic keys, copyright ownership messages, access conditions of

the content, logos, image, biometrics, or content-based information. The watermark

embedding and retrieval process is assisted by a secret key, in which lies informa-

tion on where and to what extent has the original content been modified in order

to accommodate the watermark. Imperceptibility is a strong requirement of every

watermarking scheme, because the watermark should not distort the original me-

dia or interfere with its intended use or function. Robustness is necessary to assure

that common signal processing, geometric operations, and malicious modifications

do not impact the detection or retrieval of the watermark. The objective is to fa-

cilitate content owners to prove their ownership by retrieving the watermark from a

pirated media and then litigate against the offender. Figures 2.2 and 2.3 show the

two components of a watermarking system: embedder and detector.

Figure 2.2: Watermark Insertion

The watermark detection process can be non-blind (retrieval process requires ac-

cess to any of the original content), semi-blind (detector requires access to some side

information and/or the watermark but not the original content), or blind (detection

is performed without access to the original content). Non-blind detection methods

are more robust but impractical for use in DRM systems. Since non-blind tech-
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Figure 2.3: Watermark Detection

niques require that the original content is available to the detector, that necessitates

access ability to the original content from the consumers end of the DRM system

software, which creates a security hole in the system. Semi-blind techniques are most

appropriate for use in this context as blind techniques compromise the robustness

requirement.

Watermarking algorithms are classified into public/blind and private/non-blind

depending on whether the original model is available to check for ownership infringe-

ment. The requirement of being able to detect the watermark without the original

watermark introduces a very challenging problem especially if robustness is also de-

sirable. This dissertation focuses on applications where the original watermark is

available for detection. Such a scheme is practical for distribution of multiples copies

of the watermarked model and identification of end users, where the content provider

would like to identify the watermark in case of illegal use and trace the watermark

back to the appropriate end-user. Our algorithm operates on 3D models that have a

mesh representation.

Watermarking algorithms can be also be broadly classified into first, second and

third generations of watermarking. Existing watermarking algorithms in this dis-

sertation have been classified in two generations of watermarking algorithms. The
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generations are classified on the basis of capabilities of the algorithms. With advanc-

ing generations, watermarking algorithms have greater embedding capacity without

causing perceptible distortion and still being robust.

Figure 2.4 shows classification of algorithms into generations based on the wa-

termark insertion domain. Third generation techniques build on existing first and

second generation algorithms and also include hybrid domains to allow information

fusion from different domains. The proposed third generation algorithms explore the

use of computational intelligence techniques to insert a high capacity watermark in

both the spatial and transform domains.

Figure 2.4: Watermarking Generations

Background of watermarking has been covered in depth with survey of 3D wa-

termarking techniques [9, 93], so only a brief overview will be presented here.

2.2 First Generation Watermarking

Figure 2.5 shows block diagram of first generation watermarking algorithms. Features

are extracted in the spatial domain. The 3D watermarking schemes which embed data

in the spatial domain may be classified in two main categories: Connectivity-driven

watermarking schemes and Geometry-driven watermarking schemes. The spatial do-

main watermarking schemes are usually less robust to attacks like compression and

noise addition. They however survive cropping attack and are less complex. The first
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generation algorithms insert watermark in spatial domain by either modifying vertex

positions or modifying the connectivity of the vertices.

Figure 2.5: First Generation Watermarking

2.2.1 Connectivity Driven

Connectivity-driven watermarking algorithms are those which make an explicit use

of the mesh connectivity (some authors also refer to these as topological features).

These schemes are typically based on traversal of all the mesh triangles. For each

triangle satisfying an admissibility function, slight modifications are introduced in

local invariants by changing the adjacent point positions. As a consequence, these are

sensitive to noise addition modifications. Among this class of watermarking schemes,

Ohbuchi et al. [73] have proposed four different watermarking algorithms in the

first work published on 3D watermarking. These schemes are respectively named

Triangle Similarity Quadruple (TSQ), Tetrahedral Volume Ratio (TVR), Triangle

Strip Peeling Sequence (TSPS) and Macro Density Pattern (MDP).

Mohsen Ashourian and Reza Enteshary [11] insert a random watermark based on

a masking factor at vertex positions. The masking factor is based on the estimate of

average difference between position and connected vertices. The capacity of inserted

watermark is 100 bits and the algorithm was tested on two models with the number of

faces ranging from 3,500 to 5,000 faces. The non-blind watermarking algorithm was

proven to have robustness against additive noise, MPEG4 compression, and mesh

simplification attacks. However, the robustness of the algorithm was due to the

repeated insertion of the watermark and using error redundant codes and thus the

low embedding capacity.
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2.2.2 Geometry Driven

This section presents the 3D watermarking schemes which embed data in the geome-

try. These schemes modify the point positions and/or the face normal. Point normal

is estimation of the local continuous surface normal and represents the local shape of

the mesh.

Thomas Harte and Adrian G. Bors [41] presented the simplest spatial domain

method for embedding a watermark in 3D models. Their algorithm shifts a vertex

from its regular neighborhood away from the surface if bit 0 is to be embedded and

towards surface if bit 1 is to be embedded. Though the algorithm is very simple, and

does not require the original object in the detection, one vertex is used for embedding

one bit which reduces the capacity of the watermark to a large extent. The watermark

is also not robust to many geometric transformation attacks.

2D image watermarking techniques have inspired algorithms that project 3D

information onto a 2D image. Wang Ying et al. [99] projected 3D meshes onto to 2D

geometry images. This method is robust to remeshing and vertex reordering attacks.

Bennour et al. [15, 16] proposed a framework for watermarking 3D object via their

contour information.

Zhen Li, WeiMin Zheng, and ZheMing Lu [54] proposed an algorithm which

allows embedding public watermarks containing copyright information into 3D models

consisting entirely of triangle meshes. In this algorithm, watermarks are embedded

into a 3D model by altering model vertices with weights and along directions that

are all adaptive to the local geometry. The vertex selection is done on the basis of its

distance from its neighboring vertices.

Oliver Benedens’ [14] bin encoding algorithm is the most successful algorithm

in this generation. Benedens [13] modifies the normal distribution to store invisible

information in the model’s geometry. An orientation histogram is constructed for

this purpose by sampling the normals. The watermarks show significant robustness

against mesh simplifying methods. In another approach based on curvature tensor,
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Alface and Macq [10] automatically selects robust feature points for watermark in-

sertion. Bin Yang et al. [97] combined principal component analysis (PCA) with the

construction of cone bins. Preliminary work using normals for curvature estimation

for this dissertation was published in [68].

2.3 Second Generation Watermarking

There have been several enhancements since the first generation to improve the per-

formance in terms of capacity, invisibility, and robustness of the watermark. Figure

2.6 shows block diagram of second generation watermarking algorithms. The sec-

ond generation algorithms use various transformations to insert the watermark in

the transform domain coefficients to enhance robustness. In the second generation,

spectral decomposition and multi resolution techniques such as wavelet transform

and progressive meshes are used to decompose a 3D model into a lower resolution

and the watermark is inserted in the bit stream. Second generation algorithms thus

enable applying the watermarking approach to streamed meshes and increased the

robustness of the algorithm by inserting the watermark at multiple resolutions.

Figure 2.6: Second Generation Watermarking

2.3.1 Multiresolution Decomposition

The wavelet transform gives a multiresolution representation of a 3D model. The wa-

termark is inserted in the 3D model at each level of the wavelet transform. Thus, the

watermark exists at even lower resolutions of the 3D model. This gives two major ad-

vantages over conventional approaches: First, it helps in defending a down sampling

attack. In a down sampling attack, the attacker down samples the 3D model and

thus reduces the resolution in order to remove the watermark. But as the watermark
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is inserted even in the lower resolution of 3D model, it does not get destroyed. Thus,

the multiresolution approach makes the watermark robust against attacks. Second,

as the watermark is added even at lower resolutions the amount of watermark added

is more than the watermark added without multiresolution analysis. This increases

the capacity of the watermark which increases robustness against attacks such as

smoothing, cropping, and addition of noise. As a limitation, wavelet based methods

require the mesh to have 1-to-4 subdivision connectivity. Wavelet transforms can only

be applied on semi-regular connectivity meshes because of the quaternary subdivi-

sion/simplification process. This drawback has been later solved by [90] who extend

this scheme to irregular meshes.

Kanai et al. [49], in 1998, proposed the first watermarking method based on

wavelet analysis with a non-blind detection scheme. Kanai is the first person to ap-

ply transformed domain approaches to 3D models. It works in the mesh’s wavelet

transformed domain. Kani’s algorithm first decomposes a 3D polygonal mesh by using

lazy wavelets induced on 3D polygonal meshes. He then modified the wavelet coeffi-

cients to embed a watermark. Their watermarks are resistant to affine transformation

and random noise added to the vertices.

Yin et al. [98] have adopted the scheme to perform multiresolution decompo-

sition. Watermark information can be embedded into some spatial kernels of the

low-frequency component of the shape. This strategy actually deals with the low-

resolution representation in the geometry hierarchy which, however, does not play

the same role as the low-resolution components in the frequency domain. Unlike

embedding a bit into the low-frequency domain, embedding a watermark bit into a

vertex of the coarse mesh does not mean that the bit has been embedded globally

into the low-frequency components of the whole mesh. For that reason the scheme is

not robust against crop operations.

Ohbuchi et al. [74, 73] introduced several schemes for watermarking polygonal

models. One scheme embeds information using groups of four adjacent triangles:

they perturb the vertex coordinates to obtain certain desired values for ratios of edge
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lengths in the group or for ratios of triangle height over triangle base. Another scheme

proposed uses ratios of tetrahedral volumes.

2.3.2 Spectral Decomposition

Spectral representation of mesh can be used for progressive transmission and is vastly

superior to existing spatial domain techniques. In 2000, Karni and Gotsman [50]

showed how spectral methods can be applied to 3D mesh data to obtain compact

representations. To reduce complexity, the mesh is partitioned into sub-meshes. Due

to partitioning there could be edge effects, which is a limitation of this technique.

Since then several approaches have been explored for watermarking using spectral

decomposition. Cayre et al. [26] introduced spatial overlapping for the spectral

representation to overcome this limitation. Ohbuchi et al. in [75] embeds message

bits by deforming the ’low-frequency’ components of the mesh by using mesh spectral

analysis. Ohbuchi et al. in [74] then extended mesh-spectral analysis to 3D point

cloud. Since spectral mesh requires connectivity, a non-manifold mesh was generated

to derive connectivity. In [56], and [57], Luo and Bors performed principal component

analysis(PCA) of spectral coefficients and used integral moments as feature to insert

1 bit ensuring minimal distortion.

2.3.3 Progressive Mesh

Hoppe proposed progressive meshes in [42, 43] by generating lower resolution mod-

els of the mesh by performing a sequence of vertex split operations. Praun and

Hoppe [34] reported robust mesh-watermarking algorithm that works using Hoppe’s

progressive meshes and is applicable to polygonal meshes having arbitrary vertex con-

nectivity. Praun’s method modified the shape of the mesh by using a spatial kernel to

embed information in the low frequency component of the shape. Their watermarks

are resistant against similarity transformation, smoothing, additive random noise,

and other attacks. In addition, their watermarks are resistant against mesh simplifi-

cation and other operations that preserve shape but modify vertex connectivity, by
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recreating the connectivity of the reference (i.e. original) mesh on the watermarked

(and possibly attacked) mesh by means of mesh alignment followed by resampling.

The embedding consists in the displacement of the points in normal or reverse-normal

directions accordingly to the watermark value. Recently, in 2010 Chen and Chen [27]

inserted watermarks in a progressive mesh.

Thus, in the second generation, multi resolution techniques such as wavelet trans-

form and progressive meshes were used to decompose a 3D model in to multiple

resolutions and the watermark is inserted in the bit stream. The model is then re-

constructed from lower resolutions. Such capability allows for a watermark to be

inserted in streamed data. With movies being download through broadband Internet

from websites such as netflex.com gaining widespread acceptance, the progressive

streaming of 3D meshes is going to gain more importance. Second generation wa-

termarking algorithms are more suited for such kind of applications and overall are

more robust and have higher capacity as compared to first generation techniques.

2.4 Third Generation Watermarking

Third generation watermarking techniques build on the first and second generation

techniques by adding an intelligent layer of optimization for high density watermark

insertion. Thus, these algorithms can be extended to be used on streaming meshes as

well. Figure 2.7 shows block diagram of second generation watermarking algorithms.

Watermarking can be viewed as an optimization problem where the objective is to

maximize the number of vertices to watermark and also maximize the amount of

watermark to insert without causing perceptible distortion. Third generation tech-

niques also extends to algorithms for fragile watermarking. The novelty of this disser-

tation lies in evaluating computational intelligence techniques to solve high density

watermark insertion as an optimization problem. Evolutionary techniques such as

genetic algorithms have been included in this generation. Fuzzy Logic and Neural

Network based watermarking algorithms are also included in this new breed of algo-

rithms. There is not much published work in this generation class except for [45],
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in which Hu et al. used quadratic programming (QP) for constrained optimization of

3D meshes. Hu proposed a histogram-based method for watermarking 3D polygonal

meshes by using quadratic programming to minimize the mean square error between

the original mesh and the watermarked mesh. However, this method has difficulties

in dealing with large meshes because of the complexity limitations of existing QP

solvers. There is no published work which explores use of genetic algorithms, fuzzy

logic or artificial neural networks for 3D watermarking applications. However, genetic

algorithms (GA), fuzzy logic (FL), and artificial neural networks (ANN) have been

used for image and video watermarking with partial success.

Figure 2.7: Third Generation Watermarking

Genetic Algorithms(GA) are widely used for watermarking of video sequences,

audio signals and digital images. In audio watermarking [51], the algorithm uses

wavelet coefficients of the audio signal as a chromosome. The fitness function used

by the authors is the signal to noise ratio and the similarity between the original and

the extracted watermark. The GA determines the best position for insertion of the

watermark. For a GA used in image watermarking [96], chromosome coefficients of

the image in the Discrete Cosine Transform (DCT) domain are modified to embed the

watermark. Peak signal to noise ratio (PSNR) and normalized cross (NC) correlation

is used for the fitness function and the GA identifies the ideal pixel candidates to

embed the watermark. GA is also used for finding the optimal embedding locations in

image watermarking using wavelet transforms [104]. In this paper, chromosomes are

selected to be the values of the embedding strength and the number of times of Arnold

transform. The normalized cross-correlation and the PSNR constitute the fitness
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function. GA have also been used in video watermarking [39]. In this algorithm,

the watermark image is embedded into video frames by changing the position of

some discrete wavelet transform coefficients. Different positions for watermark image

embedding are simulated as chromosomes and the mean absolute difference between

the intensity values before and after watermark is chosen to be the fitness function.

Recently there has been interest in using artificial neural networks (ANN) for

image watermarking [60, 72, 46, 53, 47, 37, 103, 102]. Again, there is no published

work which uses ANN for watermarking of 3D models. Neural networks have been

trained to perform complex functions in various fields, including pattern recognition,

identification, classification, speech, vision, and control systems. Der-Chyuan Lou

et al. [55] used neural networks to emulate the human visual system for generating

the suitable strength of the watermark to be embedded in an image. The water-

mark is adjusted by the neural network to provide maximum watermark strength,

but keeping it imperceptible. The watermark is embedded in the DCT coefficients.

The luminance, sensitivity, frequency sensitivity, texture sensitivity and entropy sen-

sitivity are computed and used as the inputs of the neural network. The neural

network outputs the weight and the length of the watermark. The proposed water-

marking scheme has good peak signal to noise ration (PSNR) and detection response.

Also, the watermark is not concentrated in one area of the image, thus improving

resistance to cropping attack. Kenneth J. Davis and Kayvan Najarian [29] imple-

mented an automated system of creating maximum-strength watermarks. The neural

network accurately and reliably models the performance of the human visual system

perception of the quality of the watermarked images. The input to the neural network

provides the same information that is available to the human visual system. To model

the frequency sensitivity and luminance sensitivity, the neural network is provided

with the wavelet transforms, and with the pixel values of the image in the local neigh-

borhood and texture parameters to model the contrast masking effect of the human

visual system. The neural network must also be provided with the strength of the

added watermark. Their experiments showed that when properly trained, the neural
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network can perform successfully, allowing it to be used in place of several human

reviewers. Although ANNs haven’t been used for 3D watermarking, they have been

explored for surface reconstruction [48, 23, 30]. Radial basis functions have also been

used for surface modelling [89]

Prior to exploring use of fuzzy logic in 3D models in this dissertation, the concept

of using fuzzy logic for information fusion was applied to images by building a fuzzy

perceptual mask. In [64], brightness, edge sensitivity, and texture was computed

for each wavelet at different scales in an image by Motwani et al. to compute the

watermarking strength. Around same time, similar approach was adopted in [44]

to build fuzzy inference filter to select large entropy coefficients to embed watermark

in DWT of image. In [84], Sakr et al. relies on a dynamic fuzzy inference system

to extract the human eye sensitivity knowledge to adjust and select the watermark

strength for each pixel in an image. Success of fuzzy perceptual mask in images

inspired this research work to explore use of fuzzy logic for watermarking in 3D

models and results are outlined in later chapters. Fuzzy logic is not much explored in

the field of 3D computer graphics. Shuhong et al. [94] used fuzzy logic for adaptive

finite element mesh generation.
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Chapter 3

Approach

Computational Intelligence (CI) [71, 86] is the study of adaptive mechanisms to enable

or facilitate intelligent behavior in complex, uncertain and changing environments.

These adaptive mechanisms include those Artificial Intelligence (AI) paradigms that

exhibit an ability to learn or adapt to new situations, to generalize, abstract, discover,

and associate. Recently, these bio-inspired algorithms have been organized under the

umbrella of computation intelligence. The scope of this dissertation is to however

explore the use of ANNs, GAs, and Fuzzy Logic. It is intuitive to use bioinspired

algorithms such as GAs and ANNs because the viewer of this 3D data is a human

and the hacking process is also done potentially by a human to guess the positions

of the watermark. Since there is a human element involved in the viewing and brute

force attack process, it’s logical or intuitive to use a bioinspired process to circumvent

the attacks or counter attack the brute force thinking process or the logical process.

Watermarking can be considered as an optimization and classification problem.

In a watermarking algorithm, vertices are randomly selected and information is added

by perturbing the vertex positions without causing perceptible distortion. Vertices

are randomly selected from the search space of the pool of vertices to increase com-

plexity of a brute force attack. However, if the search space is sufficiently large and is

possible to reduce the search space to a smaller search space which is made up of good

candidates for watermark insertion and at the same time still have randomness in the

reduced but high quality search pool. Thus, the watermarking insertion algorithm

would randomly select vertices for watermark insertion from a pool of vertices which
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have good data hiding capacity. Therefore, watermarking can be considered a classifi-

cation problem where vertices are marked as either good candidates or bad candidates

for data insertion. Watermarking can also be considered as an optimization problem

where we want to optimize the amount of data to be inserted.

Once vertices are selected for watermarking, the amount of watermark to be in-

serted in the vertex position is to determined so that there is no perceptible distortion.

If a smaller watermark is added by modifying fewer bits in the vertex position, the

watermark could be easily eroded or destroyed with a compression attack or other

watermarking attacks. If a higher number of bits are modified, the watermarked ver-

tex could potentially cause perceptible distortion. Thus, the amount of watermark

to be added is an optimization problem where the algorithm needs to be able to

make a determination as to the maximum amount of watermark or bits to modify in

the vertex without causing perceptible distortion. Alternatively, the algorithm can

choose to select only the vertices from the entire search space and watermark only

those which have high data embedding capacity. Thus, the amount of watermark to

add, depends on the vertex to be selected which in turn depends on the surrounding

geometry of the vertex under consideration. HOW MUCH to insert we want to op-

timize using evolutionary algorithms such as a genetic algorithm. WHERE to insert

can be regarding as a classification problem and can be learned using neural networks

or use the key observation to determine the vertices to be watermarked. Motwani

et al. [70] used Support Vector Machines (SVM) as a classifier to classify vertices

as good or bad vertices for 3D watermark insertion. The goal of the watermarking

evolutionary optimization process or algorithm is to know WHAT to maximize or

minimize through the choice of a fitness function but with ignorance of the details of

exactly HOW that goal is achieved since there is randomness involved in achieving

that goal. In other words, we want to find the optimal location of the watermarked

vertex without putting on the emphasis of how that position is obtained (through

evolution).

This approach works for robust as well as fragile watermarking. Fragile water-
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marking is used to detect any kind of tamper i.e. unauthorized modifications in the

model. The best and the simplest way to do this is by inserting a watermark at each

and every vertex of the model.

3.1 Watermark Insertion

Figure 3.1 shows detailed block diagram of third generation watermarking algorithms.

Figure 3.1: Third Generation Watermarking Block Diagram

3.1.1 Triangulation

3D surface can be represented a number of ways and has roots in a branch of mathe-

matics called computational geometry. Computational Geometry is generalization of

a set of tools and techniques developed that takes advantage of the structure provided

by geometry. Triangulation is the process of determining the connectivity between

the vertices to create triangular faces of a wireframe mesh. There are various tech-

niques for surface reconstruction from point clouds. Some of the mesh generation

popular techniques can be referred to in [19]. Voronoi diagrams and Delaunay trian-

gulations [18] have many interesting properties, which are studied in depth in discrete

computational geometry. Laser scanners scan a material object to create a cloud of

3D points. 3D point cloud can be registered using various techniques as shown in [58]

and [20]. Discrete Computational Geometry algorithms such as Delaunay triangula-

tions are then used to create a mesh which is further refined and processed. Ideally,
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the watermark should be inserted right at the source in the 3D point cloud. However,

such a technique may not support a multiple distribution reseller model and the mesh

may further be refined after connectivity between the vertices is determined. Making

triangulation part of the watermarking process makes the watermarking technique

invariant to vertex reordering and remeshing attacks. However, if the mesh is already

generated, this part of the step is not required.

3.1.2 Remeshing

Since the proposed technique requires the mesh to be semi-regular, it is imperative

that the mesh is remeshed into semi-regular. Praun and Hoppe in [78] gives details

on remeshing 3D mesh into semi-regular mesh.

3.1.3 Pre-Processing

Normalization of 3D models as a pre-processing step before insertion of a watermark

makes the watermark resilient to modifications in the 3D model due to affine and

scaling transformations. The center of mass of the 3D model is shifted to the origin

and the model is scaled to fit in a unit cube.

3.1.4 Transformation

Second generation watermarking techniques use various transformations such as spec-

tral representation, wavelet transform, and progressive meshes. Applying a transform

such as wavelet transform is performed in this step.

3.1.5 Local Geometry Representation

It is important that a good watermarking algorithm should not use connectivity

information since mesh vertex reorder would easily destroy such a watermark. There

is a need to define a feature vector to represent the local geometry of the mesh to insert

the watermark. These feature vectors would be then determined over a surface which

represent the local geometry. In this dissertation, 1-ring and 2-ring vertices have been
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selected to represent the local geometry of a 3D model. In future work, other local

geometric structures such as Voronoi rings, fixed radius 3D balls, and voxels can be

used to represent local geometry and feature vectors derived based on these geometric

structures could be exploited using CI techniques to classify the vertices for selection

of insertion of watermark and optimize the amount of watermark to be inserted.

The 1-ring neighborhood of a vertex V is defined as the surfaces formed by that

vertex V with its neighbors as shown in Figure 3.2

[a] [b]

[c] [d]

Figure 3.2: Various 1-ring vertices shown from different angles

3D triangular mesh models are represented by a set of vertices and a list of

triangular faces formed by the vertices. A vertex vi is a neighbor of another vertex

vj if an edge exists that connects vi and vj . The set of all the neighbors of a vertex

vi is called 1-ring of the vertex. The set of all neighbors of the 1-ring neighbors of a

vertex vi along with the set of their 1-ring neighbors is called 2-ring of the vertex, as

shown in Figure 3.3. The number of neighbors of vi in it’s 1-ring neighborhood is the

valence or degree of the vertex vi. Figure 3.3 shows a vertex of valence 5 (1-ring) and

vertices of valence 5 and 6 (in the 2-ring).

2-ring neighbourhood is used here since the level of accuracy increases with a

2-ring neighborhood because the comparison is done with a larger number of vertices.
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Figure 3.3: Neighborhood of a Vertex: 1-ring demonstrated by light gray patch, 2-ring
demonstrated by light and dark gray patches

3.1.6 Feature Extraction

The basis of the use of these bio-inspired algorithms is based on the premise of two

key observations listed below.

1. The perception of distortion caused by inserting watermark is influenced by the

surrounding geometry of the vertices. For example, perturbation of an isolated

vertex in 3D would not cause the eye to perceive any change in location of the

vertex. However, if the isolated vertex is in the backdrop of a flat surface, the

change is more visible. If the same vertex is on a bumpy surface, the change

is imperceptible. Thus, the absolute location of the vertex is not important for

watermarking, but its location relative to the local geometry determines whether

the vertex is a good or bad candidate for watermark insertion. If information

is inserted in a particular vertex, it may be perceivable as distortion, whereas

if information is inserted in the neighborhood of the vertices along with the

vertex under consideration, the distortion can be masked by the supporting

geometry. The neighborhood of the vertices should also be considered in the

selection process to determine their suitability or ”fitness” for selection.

2. If a vertex is located on a very bumpy surface then the change in location would

be least perceptible. For the purpose of analysis of this key observation and

using them as basis of the bio-inspired algorithms, flat, smooth, curved, bumpy

and combinations of these types of surface patches are primarily analyzed. Flat

Surface, Curved surface, Smooth surface, bumpy surface, combination of the
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above surfaces as shown in Figure 3.2.

Thus, based on the above key observations, feature vectors are defined which

quantitatively model these observation. Based on the type of local surface geometry,

two features are defined.

CURVATURE is the amount by which a geometric surface deviates from being

flat. Curved surface consist of a number of smaller triangles to give the perception

of smooth surface as compared to what is needed for a flat surface. Normal variation

usually gives a good indication of the surface curvature. For example, if the surface

is flat, all the surface normals are parallel to each other and there is zero deviation

of the average normal from each of the surface normals. If the surface is smooth,

the deviation of the surface normal from the average normal is consistent with the

deviation of the other surface normals from the average normal. If the surface has

uneven curvature, the deviation of the surface normals from the average normal could

be erratic.

[a] [b]

Figure 3.4: Surface normal’s (in green) and average normal (in blue) for a 1-ring
vertex neighborhood

BUMPINESS in the wavelet domain as used by Kanai [49] is calculated by divid-

ing the scaler coefficient of a low resolution model with the length of vector between

its adjacent scalar coefficients.
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3.1.7 Intelligent Watermark Insertion

This part of the process can include either an optimization step or a classification

step. Depending on the computational intelligence technique, details of the step vary.

The Fuzzy Logic, Genetic Algorithms, and Neural Network chapters (Chapters 4, 5,

and 6) discuss this part of the process.

3.2 Watermark Extraction

The watermark extraction process is shown in Figure 3.5. To make the watermark

robust to remeshing attacks, the extracted watermark is remeshed using geometry

images. The remeshed model is the normalized and rotated to align with the principal

component of the 3D model data for mesh alignment. The extraction process is non-

blind if an input model is available to subtract from the watermarked model. The

process is semi-blind if a key is available to determine which vertices were watermarked

and the amount of information inserted in each vertex.

Figure 3.5: First Generation Watermarking Block Diagram

3.2.1 Similarity Measure

Similarity between the extracted watermark and the original watermark is computing

using correlation. Correlation is found using equations below.

A(u) = Ax(i) + Ay(j) + Az(k) (3.1)

A(u)
′
= A

′

x(i) + A
′

y(j) + A
′

z(k) (3.2)
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Where Ax(i), Ay(j), Az(k) are the x,y,z co-ordinates of the u’ th vertex in the

attacked model. A
′
x(i), A

′
y(j), A

′
z(k) are the x,y,z co-ordinates of the corresponding u’

th vertex in the watermarked model.

Amount of correlation= w+w
′∗correlation

W
(3.4)

w = number of vertices not attacked, w
′
= number of vertices attacked, W =

total number of vertices in the watermarked model.

If the correlation > 80% implies that the model has not been attacked. For fragile

watermarking, the correlation = 100% to detect tampering.

3.3 Performance Evaluation

The embedding capacity of the watermark can be determined by the number of ver-

tices watermarked and the amount of watermark inserted at each vertex in the model.

For fragile watermarking, the number of vertices watermarked is more important than

the strength of the watermark (bits inserted/vertex is more important) since the goal

is to identify tampering at each vertex. For robust watermarking, the number of

vertices could vary depending on the size of the model and since there is randomness

in the process the number of vertices is not fixed. Thus, for robust watermarking the

strength of the watermark or the capacity is determined by the number of bits/vertex.

However, the number of bits inserted per vertex could vary and thus the Signal to

Noise Ratio (SNR) is good indication for the strength of the watermark. It is well

known fact that SNR is not an indication of the perceptual distortion. Recently,

Hausdorff distance has been used as a more accurate measure to compare the errors

between two surfaces.

3.3.1 Perceptibility Distortion Measures

Watermarking algorithms typically use Signal to Noise Ratio (SNR) [17, 95] to mea-

sure perceptible distortion and Normalized Cross Correlation (NCC) to measure the
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robustness of the watermark. Hausdorff distances (HD) are generally used to find

out the degree of mismatch between two sets of points and have been used as a dis-

tortion measure for image watermarking [62]. The use of Hausdorff distance as an

error measuring parameter has been explained in MESH [12]. The equations below

compute SNR and HD for the 1ring and 2ring local geometric structures.

The amount of distortion in the 1-ring can be measured by computing the signal

to noise ratio (SNR) as follows:

SNR =

∑N
i=1(X

2
i + Y 2

i + Z2
i )∑N

i=1[(Xi −X
′
i)

2 + (Yi − Y
′
i )2 + (Zi − Z

′
i)

2]
(3.5)

where N is the number of vertices in the 1-ring or 2-ring neighborhood of the

center vertex including the center vertex;

Xi, Yi, and Zi are the Cartesian coordinates of the vertices in the 1-ring or 2-ring

neighborhood including the center vertex;

X
′
i , Y

′
i , and Z

′
i are the modified coordinates of the center vertex.

V SNR = 20 ∗ Log10(SNR) (3.6)

For given sets of points, the Hausdorff distance is defined as the maximum dis-

tance of a set to the nearest point in the other set. Thus, Hausdorff distance can be

represented as a maximin function as shown in equation below

h(a, b) =max{min(d(a,b))} (3.7)

where, ’a’ and ’b’ represent the sets of points between whom the Hausdorff distance

is measured. In the proposed algorithms, ’a’ is the vertex list formed by the 1-ring

or 2-ring neighborhood of the vertex V and ’b’ is the vertex list formed by the 2-ring

neighborhood of Vi, which is the position of V with the watermark inserted.

It should, however be noted that h(a, b) 6= h(b, a) Thus, the symmetrical haus-

dorff distance is defined as

H(a, b) = max{h(a, b)h(b, a)} (3.8)
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In this dissertation, we have used Hausdorff Distance and Vertex Signal to Noise

Ratio (VSNR) to find the degree of mismatch between the 1-ring or 2-ring neighbor-

hoods of the original vertex V and the watermarked vertex Vi.

3.3.2 Precision

The vertex is represented in IEEE double precision floating point form as a string

of binary bits. It is composed of 64 bits, divided into a 52 bit mantissa M, 11 bit

exponent E, and sign bit S, as seen in Fig. 3.6

Figure 3.6: Floating Point Representation of Vertex Coordinate

The binary sequence is inserted into the 40 least significant bits (LSB) of the

mantissa by performing Boolean OR operation. This ensures that the watermark is

additive. A sequence of 40 bits is the maximum amount of information that can be

inserted in the vertex without causing visible distortion.
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Chapter 4

Fuzzy Logic

Fuzzy Logic [59, 81] is a superset of classical number theory or set theory. It allows

us to model imprecise or vague information which otherwise is extremely complicated

and difficult to represent using mathematical equations. Fuzzy Logic was introduced

by Professor Lotfi Zadeh [101] in 1965 and has been widely used in control systems,

washing machines, and other electronic systems. It is best suited for modeling non-

linear data and represent imprecise data in easy to understand IF THEN ELSE

linguistic rules. This makes them easy to design and provides a way to capture

human knowledge which otherwise is difficult to represent in mathematical equations

in to simple linguistic rules which otherwise are simple to define or describe using daily

language sentences. Fuzzy Logic has been successfully used for solving classification

problems using unsupervised data.

4.1 Algorithm

4.1.1 Block diagram

As we saw in Chapter 3, we have a block diagram of our framework. That diagram

is shown again in Figure 3.1. We are now going to zoom in on the bottom row of

that diagram and show the enhanced flow for a Fuzzy Logic watermark generation

and embedding. This is shown in Figure 4.1.

In this chapter Fuzzy Logic is used to quantify the amount of watermark to insert

in vertices. Thus, fuzzy logic determines how to classify vertices into separate bins
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Figure 4.1: Fuzzy Logic Based Approach - Block Diagram for Watermark Embedding

identifying which vertices are good for insertion of watermark.

4.1.2 Watermark Insertion

Step 1 - Decomposition of 3D Model

As shown in Section 3.1.3, prior to applying the wavelet transform, all mesh vertices

are normalized between 0 and 1 by placing an imaginary bounding box to provide ro-

bustness against scaling attacks. The wavelet transform [38] is then implemented us-

ing Lifting Scheme [87] and the Cohen-Daubechies-Feauveau CDF (2, 2) [28] wavelet

is used. Lifting scheme requires that the input signal samples be classified into even

and odd for computation of scalar and wavelet coefficients respectively.

Decompose the original 3D model using a 3D wavelet transform with up to three

levels using a CDF (2, 2) wavelet. The basic aim of the application of wavelets to a

3D model is to bring about its multiresolution representation. Figure 4.2 shows the

block diagram for wavelet decomposition.

Figure 4.2: Block diagram for wavelet decomposition
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Step 2: Computing fuzzy inputs

Fuzzy input variables are computed considering the geometry of the model such as

area, curvature, and bumpiness of the surface corresponding for each vertex. The

area of the triangular face formed by 3 vertices is computed by the magnitude of

the normal to the triangular patch. Curvature is the amount by which a geometric

object deviates from being flat. A curved surface consist of more smaller triangles

when compared to a flat surface. Since only semi-regular meshes are considered in

the current system, each regular vertex is connected to 6 other vertices. Thus, 6

surface normals are computed for each corresponding neighbor’s vertex. Curvature is

computed by taking average of the angles between surface normals and the average

surface normal. A bumpy surface is a surface which is not smooth but is irregular

and uneven. A bumpy surface has more details associated with it and thus has

more watermark holding capacity. Bumpiness is calculated by dividing the wavelet

coefficient magnitude by the length of vector joining two EVEN neighbors as shown

in Figure 4.3. Bumpiness, Area, and Curvature are passed as fuzzy inputs to the

Fuzzy Inference System (FIS) to compute a Fuzzy perceptual mask for each wavelet

coefficient at each level. Curvature and area for the mesh vertices are computed in

the spatial domain whereas bumpiness for the corresponding vertex is computed in

the wavelet domain.

Figure 4.3: Bumpiness calculation using Wavelet Coefficient vector

Fuzzy input variables are computed considering the geometry of the models such
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as curvature and bumpiness of the surface for each wavelet coefficient. The output of

the fuzzy system is a single value which gives a perceptual value for each corresponding

wavelet coefficient. Thus, the fuzzy perceptual mask combines all these nonlinear

variables to build a simple, easy to use model for spatial masking. Figure 4.4 shows

block diagram of fuzzy inference system (FIS).

Figure 4.4: Block diagram of fuzzy inference system

Step 3: Computing Fuzzy Mask

The output of the fuzzy system is a single value which corresponds to a perceptual

threshold for each corresponding wavelet coefficient. Thus, the fuzzy perceptual mask

combines 3 nonlinear variables: Curvature, Bumpiness, and Area to build a simple,

easy to use model. Although the fuzzy output has 7 membership functions as shown

in Figure 4.5, only the HIGH and the HIGHER fuzzy output sets are used for insertion

of the watermark in the 3D model. This is to make the watermark imperceptible and

more robust.

A total of 15 fuzzy rules have been developed, described as follows:

1. IF [Curvature] is Low AND [Bumpiness] is Low THEN [Weighting factor] is

Lowest

2. IF [Curvature] is Low AND [Bumpiness] is Medium THEN [Weighting factor]

is Lower
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3. IF [Curvature] is Low AND [Bumpiness] is High THEN [Weighting factor] is

Low

4. IF [Curvature] is Medium AND [Bumpiness] is Low THEN [Weighting factor]

is Lower

5. IF [Curvature] is Medium AND [Bumpiness] is High AND [Area] is Low THEN

[Weighting factor] is Medium

6. IF [Curvature] is Medium AND [Bumpiness] is High AND [Area] is Medium

THEN [Weighting factor] is High

7. IF [Curvature] is Medium AND [Bumpiness] is High AND [Area] is High THEN

[Weighting factor] is Higher

8. IF [Curvature] is High AND [Bumpiness] is Low THEN [Weighting factor] is

Low

9. IF [Curvature] is High AND [Bumpiness] is Medium AND [Area] is Low THEN

[Weighting factor] is Medium

10. IF [Curvature] is High AND [Bumpiness] is Medium AND [Area] is Medium

THEN [Weighting factor] is High

11. IF [Curvature] is High AND [Bumpiness] is Medium AND [Area] is High THEN

[Weighting factor] is Higher

12. IF [Curvature] is High AND [Bumpiness] is High THEN [Weighting factor] is

Higher

13. IF [Curvature] is Medium AND [Bumpiness] is Medium AND [Area] is Low

THEN [Weighting factor] is Low

14. IF [Curvature] is Medium AND [Bumpiness] is Medium AND [Area] is Medium

THEN [Weighting factor] is Medium
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15. IF [Curvature] is Medium AND [Bumpiness] is Medium AND [Area] is High

THEN [Weighting factor] is High

A number of experiments were performed in developing the fuzzy interference

system. Different fuzzy rules were adopted and analyzed using fuzzy surface plots as

shown in Figures 4.8 and 4.9. Figure 4.6 illustrates how the rules are evaluated for a

given fuzzy input.

Once the weighting factor is computed through the FIS (Fuzzy Interference Sys-

tem), the fuzzy sets are further multiplied by the random binary sequence and further

scaled by a salience factor, giving the fuzzy mask for the corresponding wavelet coeffi-

cient. The above procedure of computing the weighting factor is computed for the all

the wavelet coefficients in each level. The weighting factor is obtained by defuzzifying

the fuzzy output using Mamdani [100] type inference system.

Step 4: Embedding watermark sequence

The watermark is inserted by modifying the wavelet coefficient vectors in accordance

with the fuzzy mask corresponding to that wavelet coefficient and the binary water-

mark sequence using the following equation:

W ′ = W + f(F,B,K) (4.1)

where,

W’ = modified wavelet coefficient vector,
W = original wavelet coefficient vector,
F = fuzzy perceptual mask,
B = 8 bit gray scale image,
K = energy scaling factor.

Step 5: Reconstruction of 3D model

Compute the inverse 3D wavelet transform of W’ to get the watermarked model.
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Figure 4.5: Membership functions for Fuzzy Inputs and Outputs
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Figure 4.6: Fuzzy Rule Evaluation

4.1.3 Watermark Extraction

A non blind method is used to extract the watermark as illustrated in Figure 4.7.

Algorithm for extracting the watermark is as follows

Step 1 - Decomposition of 3D Model

Compute the CDF (2, 2) 3D wavelet transform of the model which has to be tested

for attacks and that of the original model.

Step 2 - Watermark Retrieval

Subtract the coefficients of the two models to obtain the watermark.

Step 3 - Watermark Correlation

Correlate the original watermark (B) with the recovered watermark (B*) to determine

the authenticity.
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Since our system is a non-blind watermarking scheme, the original model and

original watermark are needed to extract the watermark from the attacked model.

Correlation is computed for the original and attacked watermark and a threshold

chosen to determine if the model is attacked.

Figure 4.7: Block diagram for watermark extraction

4.2 Experimentation

The choice of wavelet depends on the nature of the data. In nature images, no par-

ticular wavelet seems to perform better in comparison to other wavelets. The same

is assumed for models created using scanning of objects. However, if the mesh is

synthetically created, the choice of wavelet could have a huge impact on the com-

pact representation properties of the wavelet. A bi-linear interpolated wavelet would

then perform better as compared to other wavelet to sparsely represent 3D data.

In the proposed algorithm a CDF(2,2) wavelet was used to obtain multi-resolution

representation of the model.

Generally the wavelet transform used in 3D multimedia uses a lifting scheme so as

to make it memory and time efficient. There are various types of wavelet transforms

such as spherical wavelets, Bsplines, CDF (2, 2) etc. Due to local support of CDF (2,

2) wavelet, the ratio w/l which is the ratio of wavelet vector to the vector joining two

even vertices can be found out. This ratio is nothing but the bumpiness parameter of
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a mesh. Hence we use CDF (2, 2) wavelet transform. CDF (2, 2) wavelet transform is

bi orthogonal wavelet transform that uses lifting scheme. Thus it is memory efficient

and time efficient. The local support for CDF (2, 2) wavelet is 2. It uses only the

neighboring even vertices of any ODD vertex. Thus due to this any changes made in

wavelet coefficients reflect only locally. Fuzzy Surfaces are plotted as shown in Figure

4.8 and Figure 4.9 to show the non-linearity of the fuzzy variables.

Figure 4.8: Fuzzy Surface for bumpiness and area

4.3 Performance Evaluation

The meshes as shown in Figure 4.10 used for analysis have different shapes to analyze

the fuzzy mask behavior for all three fuzzy inputs: curvature, bumpiness, and area.

Some of the specifications for these models are shown in Table 4.1 8-bit gray scale

images are used for watermark insertion in the meshes. The algorithm was tested with

various gray scale images of different sizes to evaluate attacks. As shown in Table

4.2 and Figure 4.11, the algorithm is robust to all kinds of attacks giving exceptional

results.



41

Figure 4.9: Fuzzy Surface for curvature and area

Table 4.1: Models used for Fuzzy Logic testing
Model No. of Vertices No. of polygons No. of Vertices Watermarked
Smiley 1026 2048 576

Super Pyramid 16386 32768 10346
Doughnut 23040 46080 11780

Super Smiley 16386 32768 12046
Bumpy Doughnut 23040 46080 12364

Figure 4.10: Models used for fuzzy testing

The meshes used for testing had different shapes to analyze the fuzzy mask behav-

ior for all three fuzzy inputs curvature, bumpiness and area. A sphere shaped model

’smiley’ was used to evaluate firing of fuzzy rules for surfaces with relatively smooth

degrees of curvature. A low and high resolution donut shaped mesh ’donut’ was used
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Table 4.2: Correlation results with extracted fuzzy watermark
Model Rotation, Noise Smoothing 2nd Cropping

translation addition (HC Laplacian watermark
and scaling 0.2% Filter)

Smiley 1 0.9829 0.9913 0.9995 0.9891
Super Pyramid 1 0.9919 0.9989 0.7108 0.9442

Doughnut 1 0.7988 0.9586 0.8365 0.9264
Super Smiley 1 0.8671 0.8985 0.8323 0.8011

Bumpy Doughnut 1 0.7144 0.8168 0.8332 0.9409

Figure 4.11: Attacks on Fuzzy Watermarked Models

to evaluate curvature with bumpiness. A pyramidal model was also used to analyze

the fuzzy system response for surfaces with relatively flat geometry so that rules for

larger area polygonal triangles could be tested. Even if an attacker uses subdivision

to increase the number of triangular faces and thus reduce the area of triangular face,

the curvature and bumpiness fuzzy input parameters remain unaffected because the

geometry of the surface remains unchanged. Other meshes with arbitrary geometry

to test firing of multiple fuzzy rules firing at the same time were also used. However,

to evaluate results and analyze performance, models with just either just curvature or

bumpiness were used to analyze the results and draw conclusion. To further evaluate

performance on meshes with a higher number of faces, subdivision was used to create

’supersmiley’. A Similar procedure was adopted on lower resolution meshes like donut
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and pyramid. The following attacks were attempted on watermarked models:

Rotation and Translation: The algorithm is completely invariant to rotation and

translation attacks. The change in parameters does not affect the relative distance

between the vertices and thus the magnitude of the wavelet coefficients remains un-

changed. Thus our algorithm is invariant to rotation and translation.

Scaling: Although scaling modifies the magnitude of wavelet coefficients but due

to normalization of the model during watermark insertion and extraction process,

the watermark is unaffected. Thus our algorithm is invariant to rotation, translation,

scaling or combination of geometrical transformations.

Noise analysis: As shown in Table 4.2, noise affects the watermark the most in

bumpy doughnut and doughnut. The watermark is less variant to noise in case of

planar surfaces and more severely affected in case of bumpy surfaces. The reason

is that during the watermark insertion process the change in entropy of the wavelet

coefficients is most for surfaces with bumpiness and curvature and least for planar

surfaces. In spite of the noise attack the extracted watermark is still recognizable in

all the cases.

Smoothing: Smoothing attack affects the bumpiness of the model more than

curvature. This is because it is nothing but low pass filter that removes the high

frequency part which is bumpiness. Thus bumpy doughnut is more affected as visually

shown in Table 4.2.

Cropping: In our system the watermark is inserted uniformly in the model. Thus

even if the model is cropped the watermark is not completely destroyed. The amount

of watermark destroyed depends upon the extent of cropping.

Second watermark / Fuzzy attack: A second watermark was inserted in a fuzzy

watermarked model in an attempt to overwrite the existing watermark. The existing

first watermark is randomly spread through the model thus making it difficult to

completely overwrite the existing model. There was no distortion due to the insertion

of the second watermark. If a condition is put on not to overwrite the existing

watermarked vertices, the fuzzy system can support insertion of multiple watermarks.
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The first watermark extracted as shown in Table 4.2 is still recognizable to some

degree.

4.4 Analysis

Fuzzy Rules are based on key observations identified in Section 3.3.1 of Chapter 3.

The proposed fuzzy system allows us to model the non-linearities of the HVS in the

3D domain. Thus, the fuzzy system can be used as a perceptual mask to identify the

amount of watermark to be inserted.

Our algorithm takes advantage of both the spatial and the wavelet domain at

the same time by using fuzzy logic. Curvature and area for the mesh vertices are

computed in the spatial domain whereas bumpiness for the corresponding vertex is

computed in the wavelet domain. Thus, fuzzy logic has been used for information

fusion in hybrid domain.

This approach is not suitable for an irregular model because of the limitation

that the mesh should be regular. Features such as bumpiness can be calculated in

the spatial domain without using a wavelet transform. It is robust to compression

since the watermark is inserted up to 4th or 5th significant digit without causing

perceptual distortion.

Choice of membership functions and rules are heuristic. There is no well defined

way to select membership functions best suited for a particular application. Also the

number of rules and the rules used are subjective.

The advantage of wavelet based fuzzy rules is that the watermark can be inserted

at multi-resolutions of the model making the algorithm robust. To overcome these

limitations, fuzzy rules can be developed which are not based in the wavelet domain.

Due to the limitation of wavelet transforms being applied on semi-regular meshes

only, it is a challenge obtaining test data. Only a semi-regular mesh can be used for

experimentation since a wavelet transform cannot be performed on irregular meshes.

Most of the test 3D meshes available freely are non semi-regular meshes. Models such

as smiley were generated using Maya and due to limitations of the artistic skills of
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the author, the model is very simplistic and is basically a sphere with perturbations.

The donut model was obtained as one of the sample models from MeshLab software

[5]. Bumpy donut was created by modifying the smooth donut mesh. To create more

3D test models, it is proposed converting irregular meshes into semi-regular meshes.

One of the techniques to do this is to project the irregular meshes into geometric

images and then project the geometric images as semi-regular meshes.

4.5 Summary

Our proposed algorithm inserts upto 8 bits per vertex coordinate and is robust against

smoothing, cropping, affine operations, compression, and noise attacks. Experimental

results prove that Fuzzy based watermarking systems can work extremely well for

robust watermarking. The proposed algorithm also inserts high capacity watermarks

and allows multiple watermarks.
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Chapter 5

Genetic Algorithms

Genetic Algorithms (GA) are a class of evolutionary algorithms that use evolution

and Darwin’s theory of survival of the fittest as a source of inspiration to solve opti-

mization problems [40, 61, 33]. In a genetic algorithm, all the candidate solutions to

solve the problem are called chromosomes. Each generation has a specific number of

chromosomes, which constitute the population of that generation. The fundamental

block of a GA is the fitness function. The fitness function defines the parameter that

has to be optimized. Each chromosome is evaluated using the fitness function and

returns a value known as the fitness value of that chromosome. According to the best

fitness values, some chromosomes are selected to reproduce and they populate the

next generation. The most common operators used for reproduction are selection,

mutation, and crossover operators.

5.1 Algorithm

5.1.1 Watermark Insertion

The flowchart for genetic algorithm used for watermark insertion is shown in Figure

5.1. Each vertex in the model is represented by (X, Y, Z) coordinates in the Cartesian

axis and also represents a chromosome. For each vertex in the 3D model, 1-ring neigh-

borhood for the vertex is extracted. Local geometry of the mesh can be represented

by 1-ring vertices. Modifying the coordinate position of center vertex of the 1-ring

neighborhood can be considered as adding random noise with reference to the original
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Figure 5.1: Flow chart for GA Approach

location of the vertex. Thus, the watermark added to a vertex is equivalent to noise

being added to the vertex. The initial population of chromosomes or candidates wa-

termark vertex positions around the centre vertex are created using uniform creation

function. Then the fitness of all the chromosomes in the population is evaluated by

sorting the values in ascending order. Parents of the current population are then se-

lected from the sorted fitness values. Elite children, cross over children, and mutated

children are then created using the parents from the current population to create the

next generation of chromosomes. Until a stopping criteria is met, the same procedure

is applied on the next generation. GAs is used to optimize the amount of watermark

to be inserted by choosing the best fit chromosome. For fragile watermarking, a GA

can be applied on all the 1-ring vertices of the 3D mesh. For robust watermarking,

a random number of 1-ring vertices are selected. Once the vertex has been moved
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by an optimum amount, the old vertex list is replaced by the new vertex list and

the face list remains the same. The combination of this new vertex list and face list

creates the watermarked model. The model is then scaled back to the original size

and shifted to its original position as well. The choice of fitness function determines

what the parameter GA is going to optimize. The chromosome with the best fitness

value at the end of pre-determined number of generations is considered as the opti-

mized output of the algorithm. The best fitness value from a pool of chromosomes

corresponds to the chromosome with the maximum signal to noise ratio (SNR). The

amount of distortion in the 1-ring can be measured by computing the SNR as follows:

SNR =

∑N
i=1(X

2
i + Y 2

i + Z2
i )∑N

i=1[(Xi −X
′
i)

2 + (Yi − Y
′
i )2 + (Zi − Z

′
i)

2]
(5.1)

where N is the number of vertices in the 1-ring neighborhood of the center vertex

including the center vertex;

Xi, Yi, and Zi are the Cartesian coordinates of the vertices in the 1-ring neigh-

borhood including the center vertex;

X
′
i , Y

′
i , and Z

′
i are the modified coordinates of the center vertex.

The objective of the genetic algorithm is to minimize distortion by maximizing

the signal to noise ratio (SNR) for the 1-ring neighborhood. The fitness function

chosen is:

FitnessFunction =
1

SNR
(5.2)

A genetic algorithm is used to compute the near optimal value of the amount

of watermark to be added to the center vertex of the 1-ring neighborhood without

causing any perceptible distortion.

5.1.2 Watermark Extraction

In a non-blind approach, the original model is subtracted from the watermarked

model and thus the watermark is extracted. However, this approach is not restricted

to non-blind watermarking. If a key is used to store the vertex index and the amount



49

of watermark added by the above proposed algorithm using GA, the original model

is not required. The extracted watermarked and the original watermark are then

compared using correlation. For robust watermarking, the correlation threshold is

80%. For fragile watermarking, the threshold is 100%.

5.2 Experimentation

5.2.1 Parameters

The probability that the GA based optimization process gets caught in a local op-

timum depends on the parameter settings [83]. Parameters have been selected by

trial and error so that the solution converges. However, even if the algorithm is stuck

occasionally in a local minima, that is perfectly acceptable.

Each chromosome is represented by (X, Y, Z) Cartesian coordinates and a popu-

lation of 100 such chromosomes is initially created near the center vertex of the 1-ring

neighborhood. The uniform creation function creates a normally distributed random

population within the initial range. The initial range defines the upper bound and

the lower bound of the X, Y, and Z co-ordinates while creating the initial population.

These limits have been set to the maximum and the minimum value of the respec-

tive co-ordinates of the 1-ring. This ensures that the optimal chromosome does not

move outside the one ring to avoid perceptible distortion. The uniform creation func-

tion creates a normally distributed random initial population within the range. The

selection operator used is stochastic uniform. Stochastic uniform is used because it

considers a certain value below which it does not allow to reproduce, i.e., it follows the

basic rule of GA that ability to reproduce is directly proportional to its fitness value.

In this type of selection, threshold value is choosen which is inversely proportional

to the number of parents. This threshold value is also called the step size and if the

fitness value of any chromosome lies below this step size, it is considered to be weak

and hence not allowed to reproduce. Similarly, if the fitness value of a chromosome

is greater than or equal to M times the threshold value, then that chromosome is
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selected to reproduce M times. M is determined by

M = b
(
fitnessvalue

stepsize

)
c (5.3)

Scattered crossover is used as crossover operator. The mutation operator used

is uniform mutation operator. In this type of mutation operator, the X, Y, and Z

co-ordinates of the chromosomes are randomly replaced by a value within the range.

Thus, mutation operator randomly flips one of the genes of the chromosome to give a

new offspring. This new generation is then again evaluated using the fitness function

and the process continues till stopping criteria is reached. Stopping criteria is met

when the algorithm encounters one of the following two conditions.

1. Generation limit, i.e., the number of specified generations is exceeded, or

2. Average cumulative change in the fitness values between consecutive generations

is less than the fitness threshold value.

The values of the above described parameters used in the algorithm have been tabu-

larised in Table 5.2.

Population Size and Number of generations

The algorithm is tested with many different shapes of 1-ring neighborhoods for decid-

ing the parameters for the GA. The advantage of a using a 1-ring representation of the

vertex is that it is easy to visualize the change in location of the vertex and the com-

putation of distortion is local to the 1-ring vertex. Different sets of experiments were

conducted to determine the population size and the number of generations. Black

markers in Figure 5.3 to Figure 5.6 correspond to the best fitness value from the

pool of chromosomes for each generation whereas the mean fitness value is denoted

by blue markers. 4 sets of experiments are performed on 3 models to determine the

optimum combination of population size and the number of generations. Figure 5.3

to Figure 5.6 indicate that a population size of 100 run for 20 generations are the
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Figure 5.2: GA Algorithm Parameters

most optimal values. When a GA is run for 20 generations with a population size

of 20, the perceptible distortions is high. This is because the initial pool of chromo-

somes is scattered randomly within the range. Since the population size is just 20,

the chances of these chromosomes being closer to the center vertex of the 1-ring are

very low. When the algorithm with these parameters is run for only 20 generations,

there is not enough time for the GA to converge at a value close to the center vertex.

When the GA is run for 100 generations with population size of 100 the algorithm
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is computationally expensive. As seen in the Figure 5.9, the perceptible distortion

with these parameters is very low. But the same degree of low perceptible distortion

is achieved with a population size of 100 run for just 20 generations and this also

decreases the computational costs. When the population size is 20 and is run for 100

generations, the initial pool of chromosomes is once again scattered within the range

and the chances of them being close to the center vertex are very low. Thus, over a

period of 100 generations, much of the newer chromosomes are produced as a result

of mutation, i.e., mutation will take place at least 100 times, once for each generation.

Mutation is replacement of a chromosome with a random value. This random value

may or may not have a good fitness value. Thus, as the results show, the performance

of this combination is not as good as the performance of the combination of popula-

tion size 100 run for 20 generations. The graphs in Figure 5.3 to Figure 5.6 show that

there is no considerable change in the best fitness value after 20 generations. Thus,

the parameters chosen for embedding the watermark was population size is 100 and

number of generations is 20.

5.2.2 Fitness Function

The fitness function plays the most important role in optimizing the amount of wa-

termark and the distortion. Different fitness functions as listed below are evaluated.

Hausdorff distance based Fitness function

Hausdorff distance [82] is calculated to find the degree of mismatch between two

polygons or broadly, two sets of points in space. In this fitness function, we have

used the Hausdorff distance (HD) to find the degree of mismatch between the 1-ring

neighborhoods of the original vertex V and the watermarked vertex V
′
. This degree

of mismatch is reduced by minimizing the Hausdorff distance and thus preventing

perceptible distortion.

FitnessFunction = H(v, v
′
) = max{h(v, v

′
)h(v

′
, v)} (5.4)
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Figure 5.3: In running for 100 generations with a population size of 100, the change in
best fitness value and the mean fitness value: (a) for vertex index 10 of the Smiley, (b)
for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical.
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Figure 5.4: In running for 100 generations with a population size of 20, the change in
best fitness value and the mean fitness value: (a) for vertex index 10 of the Smiley, (b)
for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical
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Figure 5.5: In running for 20 generations with a population size of 20, the change in
best fitness value and the mean fitness value: (a) for vertex index 10 of the Smiley, (b)
for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical
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Figure 5.6: In running for 20 generations with a population size of 100, the change in
best fitness value and the mean fitness value: (a) for vertex index 10 of the Smiley, (b)
for vertex index 10 of the Mannequin, and (c) for vertex index 20 of the Mechanical
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Curvature based Fitness function

The objective of a GA using the curvature based fitness function is to optimize the

change in magnitude of cross product of the surface normals of the faces constituting

the 1-ring neighborhood of the center vertex and the candidate watermarked vertex.

The fitness function is choosen so that the change in direction of the surface normals

of the local geometry due to the addition of the watermark in the vertex coordinate is

minimal. To maximize the strength of the watermark, it is essential that the vertex V

is moved by a considerable amount of distance to V
′
. For this purpose we take the root

mean square distance of V
′

from each and every triangle in the 1-ring neighborhood

of V. To have minimal distortion, it is essential that the surface normals of the 1-ring

neighborhood of V
′

have nearly the same direction as that of the surface normals

of the one ring neighborhood of V. In this regard, we will take the summation of

the magnitudes of the cross products of the one ring neighborhood surface normals

corresponding to V and V
′
. The point-to-triangle distance is obtained by considering

the relative position of the point from the triangle and finding out if the projection

of the point is closer to an edge or a vertex or if it projects inside the triangle and

accordingly calculating the distance of the point from the triangle. If we consider

only the distance parameter in our fitness function, though the Mean Square error

is high, the amount of distortion is also considerable and in the case where only the

sum of cross products in considered, the amount of watermark and hence the mean

square error (MSE) is low.

Thus, the fitness function can be mathematically expressed as:

For non-flat surfaces

FitnessV alue =
(
∑n

i=1 ‖(S(i) ∗ S ′
(i))‖)4

D1/4
(5.5)

where,
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n= no. of faces in the 1 ring neighborhood,
S(i) = Surface normal of the ith face with the original vertex V,
S

′
(i) = Surface normal of the ith face with the moved vertex V

′
,

D = root mean square of the distances between the vertex V
′

and the triangles in the 1-ring neighborhood of V.

Flat and Cylindrical Surfaces

The algorithm should insert a watermark in 3D models that have flat surfaces as well.

This is difficult because in that condition the chromosome has to move only on a flat

surface on a 2D plane. Since, the fitness function used is the VSNR, every time the

chromosome moves out of the plane, the SNR decreases. Thus, the objective of the

GA is to maximize this SNR, due to which the vertex, V stays in the 2D plane, as

illustrated in Figure 5.7. For flat surfaces, the direction of the average normal will

always be parallel to all the surface normals of the 1-ring. Thus, if the surface is

flat the magnitude of the cross product between average normal and all the surface

normals is equal to 0 i.e. along a 2 dimensional line, the visibility parameter will be

the magnitude of cross product of the new line (formed by Vertex V
′

and V) with

the desired direction and the distance is Euclidean distance between the new vertex

V
′

and the old Vertex V. Point-to-triangle distance is obtained by considering the

relative position of the point from the triangle and finding out if the projection of the

point is closer to an edge or a vertex or if it projects inside the triangle and accordingly

calculates the distance of the point from the triangle. Therefore, the fitness function

for flat surfaces can be mathematically expressed as:

FitnessV alue =
‖(L ∗ L′‖
D1/4

(5.6)

where,

L = line formed by V
′

and V
L’ = desired direction of motion (formed by vertex V and the point which is
farthest from V in its 1-ring neighborhood
d = Euclidean distance between V and V

′
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Thus, by using the above parameters we add the watermark by moving each

vertex by a particular value inside its 1-ring neighborhood. The watermarked vertex

list is subtracted from the original vertex list and hence the result obtained is the

amount of watermark. By using the above parameters, watermark is added by moving

each vertex by a particular value inside its 1-ring neighborhood.

Figure 5.7: Movement of vertex on Flat surface using GA

Figure 5.8: Cube (from left to right: -Original Model, Watermarked Model, Mesh
structure original model, Mesh structure of the watermarked model)

Cylindrical surfaces are formed by the intersection of two planes. Thus, while

watermarking the vertex of the cylinder it is required that the chromosome should

move along the line of intersection of these two planes. Mechanical Figure 5.9 (e) is

a combination of both cylindrical as well as flat surfaces. Figure 5.9 (e) shows ge-

netic algorithm watermarks the mechanical model without any perceptible distortion.

Thus, the GA works for flat as well as cylindrical surfaces.
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5.3 Performance Evaluation

5.3.1 Perceptibility Experiments

The algorithm was run with population sizes population sizes of 20 and 100 and with

20 and 100 generations. The algorithm was tested for 5 different models: bunny,

mannequin, smiley, horse, and mechanical. The results in Figure 5.9 indicate there is

no perceptible distortion between watermarked and original models. Table 5.1 shows

the change in SNR with the change in population and generation sizes.

Table 5.1: Average time per vertex and Vertex SNR
Model Population Size Number of Generations Time (sec) SNR (dB)

Mannequin 100 100 1.340 144.30
100 20 0.480 126.60
20 100 0.420 117.00
20 20 0.240 103.00

Smiley 100 100 1.33 146.00
100 20 0.320 121.25
20 100 0.480 119.00
20 20 0.200 97.88

Mechanical 100 100 1.090 126.73
100 20 0.285 102.81
20 100 0.325 101.34
20 20 0.110 82.15

Horse 100 100 1.440 156.34
100 20 0.370 133.50
20 100 0.438 130.35
20 20 0.218 113.56

Bunny 100 100 1.475 158.68
100 20 0.430 137.75
20 100 0.486 134.87
20 20 0.220 109.36

5.3.2 Attacks

The attacks for fragile watermarking of 3D model differ from the attacks for robust

watermarking. The attacks on the fragile watermarked 3D model deal only with

unauthorized modification of any region in the model.
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Figure 5.9: Perceptibility using GA. Original model is shown on the left and the
watermarked model is on the right
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Figure 5.10: Watermarked 3D models: (a) original model, (b) watermarked model
with a population size of 100, run for 100 generations, (c) watermarked model with
a population size of 20, run for 100 generations, (d) watermarked model with a
population size of 20, run for 20 generations, and (e) watermarked model with a
population size of 100, run for 20 generations.
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Figure 5.11: Attacks on bunny: a) GA watermarked bunny, (b) translated model,
and (c) tamper region detection.

Figure 5.12: Attacks on bunny: (a) original bunny, (b) deformed bunny, and (c)
modified region shown by colored (red) patch.
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Figure 5.13: Attacks on horse: (a) original horse, (b) rotate by 250◦, and (c) no red
patches indicating the model has not been modified.

Figure 5.14: Modification detection: (a) horse deformed and (b) deformed regions.
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Due to normalization of the model as a preprocessing step, the watermark is not

affected by attacks such as translation, rotation and scaling as shown in Figure 5.11

to 5.14. Correlation of 100% is obtained for affine transformations. Note that the

model has not been tampered with since there are no colored (red) patches in Figure

5.13. Similarly, Figure 5.14 shows red patches for the tampered regions in the model.

5.4 Analysis

In this chapter, novel fragile watermarking technique for tamper detection using Ge-

netic Algorithms has been proposed. The algorithm generates and embeds a wa-

termark in each and every vertex of the model. The use of signal to noise ratio as

the fitness function prevents any perceptible distortion in the model. The use of the

Hausdorff Distance as the fitness function is also effective in preventing any percep-

tible distortion in the model. Also, even though Genetic Algorithms are known to

be slow, the approach used here reduces the computational costs significantly. The

premature convergence was achieved by running the algorithm with a population size

of 100 for 20 generations and was found to provide satisfactory results. The average

time for watermarking each vertex was approximately 1.5 seconds. The algorithm has

been analyzed for flat and cylindrical surfaces. It was shown that the mesh structure

in case of flat surfaces is distorted though the model is not, which indicated insertion

of a significant amount of watermark. The algorithm was tested for the unauthorized

structural modifications in the model. It was shown that the algorithm detects the

region of tamper effectively. The objective of the Genetic Algorithm is to minimize

the vertex signal to noise ration or the Hausdorff distance between the 1-ring neigh-

borhood of the original and the watermarked vertex. The other challenge of time

complexity is overcome by running the Genetic Algorithm for just 20 generations and

causing it to converge prematurely. This significantly reduces the computational cost.

The experimental results indicate that the algorithm effectively detects any distor-

tion in model. The Genetic Algorithm has to generate a watermark in 3D models

that have flat surfaces as well. This is difficult because the vertex V can move only
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on a flat surface on a 2D plane. This is ensured by the fitness function. Figure 5.8

shows a cube where the mesh structure is seen to be distorted but the model remains

undistorted.

5.5 Summary

This algorithm presented in this chapter is computationally expensive but achieves

high watermark embedding capacity by allowing watermark to be inserted in all

the vertices of the model without causing any perceptible distortion. Experimental

results indicate that the algorithm can detect any tampering in the watermarked

model. All the simulations were run on a machine with a 2GHz Intel Processor

and the algorithm took approximately 1.5 seconds to watermark one vertex. Up to

50%-60% of the model’s vertices are modified without causing any distortions for

robust watermarking. This algorithm has demonstrated great potential to embed

high capacity watermarks.
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Chapter 6

Artificial Neural Networks

Artificial Neural Networks (ANN) [35, 36] are an algorithmic modeling of biological

neural systems. The neuron, which is the basic component of an ANN, upon activation

fires an output signal corresponding to a set of input signals. A neuron receives input

signals pi and aggregates these signals into a net input signal n by multiplying each

input signal with corresponding numerical weights wi and summing up all of these

computed numerical values along with a bias b, as shown in Figure. 6.1.

Figure 6.1: Neuron - The Building Block of a ANN [31]

The output signal a is computed by an activation function f that takes n as

the input. An activation function can be linear or non-linear in nature. The most

commonly used activation functions, such as sigmoid and hyperbolic tangent, map

n to a in a non-linear way. The neuron transmits an output signal only when it is

activated i.e. the net input signal falls within the working range of the activation

function. The bias is used to change the threshold at which a neuron activates and is
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adjusted by the learning phase of the ANN. The weights w, that control the strengths

of the input signals, are very critical in defining the behavior of the ANN and evolve

during the learning phase as well. An ANN is a layered network of neurons (Figure.

6.2). The goal of the learning phase of ANN is to determine the best values for w and

b from a given set of data and adjust these values until a certain criterion is satisfied.

Neural networks are trained to perform a particular function by adjusting the

values of the connections (weights) between elements. Neural networks are trained

so that a particular input leads to a specific target output. During training the

network parameters or weights are adjusted, based on a comparison of the output

and the target, until the network output matches the target. Typically many such

input/target pairs are needed to train a network. Once trained, the neural network

can be used to determine the output when input is fed.

In supervised learning, the neuron is provided with a training data set consisting

of input vectors and a target (desired output) associated with each input vector. A

supervised learning ANN uses the target vector to determine how well it has learned,

and to guide adjustments to weight values to minimize the overall error between the

real output of the neuron and the target output.

Figure 6.2: Multi-Layer ANN [31]

A feedforward ANN propagates the signals through all the layers to obtain the
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result, which is the output of the last layer in the network. Backpropagation is one

of the architectures used to train the ANN such that the output of the network is

an accurate approximation of the target values. During the learning iterations, the

output value of the ANN for each training pattern is computed and the error signal

is propagated back from the output layer toward the input layer so that the weights

are revised appropriately.

For the proposed approach, described in the following section, the neural network

is used as a classifier to determine whether a vertex is suitable for watermark insertion.

6.1 Algorithm

6.1.1 Block Diagram

The objective of the artificial neural network is to watermark a 3D model in those

locations which will produce imperceptible distortions in the final watermarked model.

This task can be achieved by selecting vertices where addition of watermark data will

not produce visible distortion. The artificial neural network needs to be trained to

recognize different topologies of 1-rings of vertices of a model. Figure 6.3 shows the

process of training the neural network by feeding the geometry of 1-ring vertices as

feature vectors.

An artificial neural network is adopted for selecting vertices that are classified

as suitable for watermark insertion. A variety of 3D models with varying degrees of

surface curvature are used to train the neural network. An array of neural networks

is used for vertices with different valences to achieve higher watermark embedding

capacity. The watermark extraction process is informed and needs the original wa-

termark and 3D model.

The input vectors that are used to train the neural network are derived from

the 1-ring neighborhoods of each vertex. The 1-ring neighborhoods take into account

the local geometry of the vertex. Based on analysis of the local curvature which is

estimated by the angles between surface normals of a neighborhood, a neural network



70

Compute

Neural Network 4

Neural Network 1

Neural Network 2

Neural Network 3

Values

3D Models

Target Vectors

Valence 
Determination

φ

For 1−ring
& 2−ring 

Neighborhood 
of Vertices

Valence = 4

= 5

= 6

= 7

Input Vectors

Output

Training of Feedforward Backpropagation Neural Network 

3D Model

Input Vector Extraction 

Input Vector Extraction Neural Network

Vectors

Watermark Embedder

Watermarked 3D Model

Watermark 

Watermark Insertion Process

Similarity MeasureWatermark 

Watermark Retrieval Process

Watermark Extractor

Watermark 

Extracted

Statistical Comparison

Potential Attacks

Bitmap Image

Bitmap Image

Figure 6.3: ANN System Block Diagram

is trained so that it can appropriately choose regions from any 3D model to embed

the watermark. Figure 6.4 demonstrates the surface normals for 3D models with

varying levels of curvature. For flat surfaces, the angles between surface normals are

small in magnitude since these normals are almost parallel to each other. For regions

representing edges, the angle between the neighboring normals is much larger in mag-

nitude. Smoother regions like the Mushroom top have relatively smaller variations

in orientation of the surface normals. Thus, angular difference between neighboring

surface normals represents the curvature or local shape of a region and is an appro-

priate input vector for training and simulation of the artificial neural network. The

neighborhood size is restricted to 1-ring so that local details of surfaces are not lost.

Figure 6.3 outlines the system block diagram and the following subsections de-
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Figure 6.4: Curvature Estimation From Normal Vector Distribution

scribe the three blocks of the system - Neural Network Training, Watermark Insertion,

and Watermark Extraction.

6.1.2 Feature Vector

A feature vector includes each of the angles formed between the surface normal cor-

responding the triangular face with v as one of the vertices and the average normal

as shown in Figure 6.5. This feature vector represents the geometry of the 1-ring

vertex neighborhood. Valency of a vertex is the count of how many other vertices the

vertex is connected to in the 3D model. Thus, the length of the feature vector would

be equal to the valency of the vertex. However, feature vectors used for training of

ANN have to be of fixed length. Thus, vertices with only valency 6 are selected for

feature extraction. Semi-regular meshes have vertices with valency of either 6 or 4.

Valency 6 vertices are also called regular vertices since most of the vertices in a 3D

model have valency 6. Thus, the feature vectors used in the proposed algorithm also

have length of 6.

The following steps are implemented to compute the curvature value of a vertex:

Step 1: Consider a vertex v with valency equal to 6 from the mesh. Let M be

the number of its adjacent faces which are equal to 6. Find normal’s Ni to each face

which is formed by v and its neighboring vertices vi as shown in Equation 6.1
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Figure 6.5: Surface normals (in red) and average normal (in blue) for a 1-ring vertex
neighborhood.

Step 2: Find the average resultant vector Navg of all the above normals passing

through v.

Navg =
1

M

M∑
i=1

Ni (6.1)

Step 3: Now compute angles αi between each pair of Ni and Navg.

αi = cos−1
(
Ni ·Navg

|Ni||Navg|

)
(6.2)

Step 4: Compute angles which form the feature vector to be fed to ANN.

FeatureV ectorF = [α1 α2 α3 α4 α5 α6] (6.3)

Thus, if the region around the considered vertex is flat, the angles αi will be

small in magnitude since the face normals will be almost parallel to the average

normal. However, if the region represents a peak, the angle between the face normal

and the average normal through the vertex, will have a larger magnitude and so the

smoothness measure’s magnitude will be higher. Thus, the selected feature vector

represents local geometry or shape of a surface or region and is fed as features vectors

to ANN for training and simulation.
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6.1.3 Training of Artificial Neural Network

The artificial neural network is trained to recognize which types of one-rings are

suitable for insertion of watermark data, and which ones are not. The angle variations

of each vertex having valency 6 as computed in Equation 6.3 will be fed to the neural

network in order to train it to recognize different types of vertices. Figure 6.6 shows

the block diagram for the training the artificial neural network.

Figure 6.6: Training of Artificial Neural Network

Figure 6.7 shows the architecture of the back propagation neural network being

used to select vertices for watermarking. The output of the neural network is trained

to be either 1 for a suitable vertex, or -1 for a non-suitable vertex.

Training is done by manually adding noise to the vertices and the human operator

determines if the addition of noise is perceptible or not. The vertices in which visible

distortion is produced after adding a small amount of information are marked as

unsuitable for watermark insertion. These will be vertices having a surrounding ring

which is flat, or they could be the peaks of raised surfaces. On the other hand, the

vertices in which addition of large amount of information does not produce visible

distortion are marked as suitable for watermark insertion. 162 sets of vertex rings
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Figure 6.7: Neural Network Architecture

with different geometrical structures were extracted from 5 normalized 3D models

and were evaluated by 2 human operators to reduce the human error of deciding

whether to insert the watermark or not. Since there is no Human Visual System

for 3D models, the labelling of output vectors is a manual process. Thus, human

intelligence is transferred to the classifier by using using training data which was

manually generated. The neural network was trained to recognize vertices suitable

for watermarking according to the topology of the one-ring around the vertices. 20

neurons were in the hidden layer.

Figure 6.8 shows the output produced after testing of the trained neural network.

The output produced by the neural network follows the actual output very closely.

Thus, the neural network can be said to be successfully trained.

6.1.4 Insertion of watermark

Figure 6.6 gives the overview of the watermarking insertion process. Feature vectors

extracted from vertices with valency equal to 6 are extracted from the entire model

and fed as inputs to the neural network. The trained ANN then selects the vertices

for watermarking. Fig. 6.9 shows these vertices (in dark red) in the models. It can be

easily verified from these figures that the neural network is indeed choosing vertices

on the mesh which are suitable for watermarking, and no vertices are selected from

smooth regions such as the Mannequin’s forehead. We insert a random sequence

in the selected vertices. The difference between the watermarked vertices and the
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Figure 6.8: Testing of Neural Network (Blue: Expected Output, Red: Actual Output)

original vertices is the watermark. Thus, for each co-ordinate of a vertex selected to

be modified, we have:

v
′
(x, y, z) = v(x, y, z) +KW where,

v
′
=Watermarked Vertex,

K=Scaling Factor,
W=Watermark Data.

Finally, the model is re-shifted to its initial location in space and the co-ordinates

are also re-scaled. Thus, the watermark is inserted in the geometry of the model

and this model can be distributed for use by others. The watermark inserted can

be the logo of a company, the designer’s identification, the user’s signature or any

other intellectual property. This watermarking method modifies only the locations of

vertices, without changing the connectivity of vertices.

This demonstrates that the neural network adds watermark data to those vertices

where visible distortion will not be produced in the model.
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Figure 6.9: Vertices selected for ANN based watermarking in red

6.1.5 Extraction of Watermark

The process of semi-blind watermark extraction is as shown in Figure 6.10. In the

watermark extraction process, the watermarked 3D model is normalized and shifted to

the origin. The private key, which contains the indices of the watermarked vertices,

is used to extract the watermark from those vertices. Finding the correlation is

a common method used to determine the extent of similarity between the original

watermark, and the extracted watermark, as seen in Chapter 3. The output of the

correlator is a Pearson’s correlation coefficient. The extracted watermark and the

original watermark are correlated and a high ad-hoc value of correlation coefficient

greater than 0.7 will prove the ownership of the 3D model.The correlation coefficient

is a number between -1 and +1 which measures the degree to which two variables are

linearly related.

The percentage of correlation between the recovered watermark and original wa-

termark is 100% in the absence of any attacks on the watermarked model.
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Figure 6.10: ANN Watermark Extraction Process

6.2 Experimentation

In addition to backpropogation networks, radial basis function networks were also

evaluated.

6.2.1 Radial Basis Function Network

For training the neural network, 3D models with varying degrees of surface curvature

are chosen. Input vectors are computed for vertices of valence 4, 5, 6 and 7 from

each 3D model chosen for training. Input vectors are the values of angles φ between

the face normals and the average normal for the 1-ring and 2-ring neighborhood of a

vertex. These φ values are computed using the technique specified in Chapter 3 and

published in [65]. The limitation in [65] was that it considered vertices of valence 6

only and the output vector specified whether a vertex was appropriate for watermark

insertion or not. Here we use multiple neural networks, each trained with input

vectors derived from vertices of a different valence. We use 4 neural networks, one

each for vertices of valence 4, 5, 6, and 7. The output of the neural network is one

of four levels(1, 2, 3, 4) used to represent the watermark embedding strength of a

vertex. The watermarking algorithm selects vertices with levels 2, 3 & 4 to embed a

watermark of different strength in each level. This approach increases the embedding
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capacity of the algorithm while maintaining imperceptibility of the watermark. To

achieve rotational invariance, all permutations of the input vectors for each vertex

are added to the training set.

Target vectors, for a set of input vectors, are derived from the original and

watermarked models using the algorithm in [66] with the parameter for embedding

capacity set at 100% (this ensures that all the vertices are modified). Subtracting

vertices of the original model from the watermarked model gives the value of the

watermark embedded into each vertex. The minimum and maximum value of the

strength of this watermark is determined and the difference between the two values

is divided into four intervals. The watermark values lying in these four ranges are

assigned levels of 1, 2, 3, or 4. This level serves as the target vector for a set of input

vectors corresponding to a vertex.

Input vectors and the corresponding target vectors are used to train the 4 neural

networks such that the aggregate neural network can classify new input vectors by

associating an appropriate output vector for each vertex.

The artificial neural network has 1 hidden layer with R=4, 5, 6, or 7 inputs and

1 output layer with S1 inputs. The hidden layer uses a hyperbolic tangent sigmoid

transfer function(f 1) while the output layer uses a linear transfer function(f 2). The

hidden layer has S1 = 20 neurons and the size S2 = 1 of the output layer is determined

by the target vector. LW denotes the layer weight matrices, IW represents the input

weight matrices. 3D models different from those used in the training session are used

for network simulation. The mean square error is used as the performance function

to compute the error between the network outputs and the target vectors.

Watermark Insertion

The process for embedding the watermark in the 3D model is outlined in Figure 6.11.

The 3D model is normalized before the feature extraction process to ensure that the

curvature values are invariant of translation, scale, and orientation operations on the

3D model. The curvature values for the normalized 3D model are computed by the
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feature extraction block using the method discussed in the previous section. For a

given 3D model that needs to be watermarked, the input vectors are computed for

vertices of different valences and fed as input to the artificial neural network. The

output of the artificial neural network specifies the watermark embedding capacity

level of the vertex corresponding to the input vector. The watermark embedder selects

vertices with level 2, 3, and 4 for watermark insertion. The algorithm perturbs a

vertex by using a scaling factor for the watermark to be embedded. A scaling factor

of K1 = 0.25 ∗ 10−4 is used for vertex of level 2, K2 = 0.5 ∗ 10−4 is used for vertices

of level 3 and K3 = 10−4 is used for vertices of level 4. A gray scale bitmap image

is used as a watermark. For each co-ordinate of a vertex selected to be modified, the

modification to the vertex is determined by the following equation:

v′x′,y′,z′ = vx,y,z +KW (6.4)

where, v = Original Vertex,

v′ = Watermarked Vertex,

K = Scaling Factor,

W = Watermark Data (image pixel value between 0-255).

The trained RBF neural network is tested with these features vectors as input

for each vertex in the 3D model, to predict the watermark value at each vertex. The

watermarked model is computed by randomly selecting vertices in the 3D model and

adding the corresponding watermark value to those vertices. Finally, the watermarked

model is de-normalized.

Watermark Extraction

The embedded watermark is retrieved from a watermarked model by subtracting the

vertices of the normalized original model from the vertices of the normalized version

of the watermarked model. This retrieved watermark is correlated with the originally

inserted watermark to determine a measure of similarity between the two sets of

watermark values. A correlation measure of 1.0 indicates a perfect match between



80

RBF Neural

Network

Watermark

Insertion

De−Normalize 

3D Model

Normalize 

3D Model

Watermark

Watermarked

Model

3D Mesh 

Model

Extract Feature 

Vectors

Figure 6.11: ANN Watermark Insertion Process

the original and extracted watermark. If the correlation measure is above 0.70, the

test model is declared to be authentic and tamper-proof. Figure 6.12 sketches the

block diagram for the non-blind retrieval process.
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6.3 Performance Evaluation

An attack on a 3D model is an attempt to remove the watermark, but still retain

enough of the model so that it can be used. 3D models are prone to operations like

cropping, smoothing, noise addition, translation, rotation and scaling, which may

destroy the watermark. This is not desired as the 3D model’s ownership or copyright

integrity inserted as watermark may be destroyed as well. Thus, it is important that

the watermark inserted should be robust enough to handle such attacks. To prove the

efficiency of our method, typical attacks were simulated on the watermarked models.

Table 6.2 and Table 6.1 gives the summary of tests and results for some models.

Model Number Number of VSNR
Name of Modified (dB)

Vertices Vertices
Cow 2904 883 98.75

Hypersheet 487 287 119.23
Mushroom 226 98 104.57
Mannequin 428 224 81.25

Eagle 1000 153 61.15
Mechanical 175 62 85.34

Table 6.1: Distortion of ANN Watermarked Algorithm

Noise This attack was simulated by adding normally distributed random numbers

(with mean 0 and variance 0.3). Such an attack does affect the extracted watermark,

but the correlation is still above the predetermined threshold of 0.7. This threshold

was found after attacking the watermarked model, and finding how much of the

original watermark remains after the noise attack.

Smoothing The HC smoothing algorithm is described in detail in [91]. Smoothing

has a considerable effect on the watermarked model. By smoothing, large transitions

in surface levels are minimized by shifting or removal of some vertices. This resulted

in degradation of the watermark. In most cases more than 50% of the watermark was

destroyed in this attack.
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3D Model Similarity Measure
Name Noise HC Smoothing Cropping

(% level) (# of steps) (# of cropped vertices)
Cow 87.66% 40.07% 67.57%

(10% level) (2 steps) (758 vertices)
Hypersheet 77.13% 30.38% 62.41%

(10% level) (2 steps) (86 vertices)
Mushroom 85.06% 42.42% 33.09%

(10% level) (2 steps) (105 vertices)
Mannequin 89.82% 56.50% 92.91%

(10% level) (2 steps) (42 vertices)
Eagle 88.06% 44.42% 65.10%

(10% level) (2 steps) (651 vertices)
Mechanical 82.62% 52.50% 34.91%

(10% level) (2 steps) (50 vertices)

Table 6.2: Similarity Measure Results For Embedded and Extracted Watermarks
after Various Attacks

Cropping Cropping refers to removal/chopping of a part or parts of a model. The

amount of watermark destroyed depends upon the extent of cropping. This necessi-

tates adequate presence of the watermark in various regions. The technique is robust

against cropping; a high value of correlation is obtained between the original wa-

termark and the extracted one. Since no watermark was inserted in the legs and

part of the wings of the ‘Eagle’ model, no information was lost when the legs were

cropped, thus giving a 95% correlation between the original watermark and extracted

watermark.

Scaling, Translation, Rotation and Affine attacks This method is completely

resistant to uniform scaling and affine attacks. The change in these parameters does

not affect the relative orientation of the normal’s at the vertices. Thus our algorithm

is invariant to scaling and affine attacks and gives 100% correlation.
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6.4 Analysis

Since the input feature vector to be fed to the ANN should of constant size, multiple

neural networks have been adopted to accommodate vertices of different valences.

The performance of the ANN is heavily dependant on the quality of the training data

set. The initial training sets created by human operators did not yield satisfactory

performance. The primary reason was that the training data quality was poor due

to a number of reasons. There was human fatigue when labeling data and also there

was ambiguity among the operators as to whether watermark should be inserted. To

avoid data quality shortcomings, outputs of a high embedding capacity algorithm

[66] are utilized for training the neural networks. Watermark invisibility is achieved

through embedding the watermark with different scaling factors in vertices with higher

embedding strengths. Experimental results show that the presented watermarking

algorithm is of higher capacity than the formerly devised algorithm [65].

6.5 Summary

This chapter proposes a novel watermarking algorithm in which vertices are selected

from the 3D model for watermarking by an ANN without causing perceptible distor-

tion. Feedforward backpropagation and radial basis function neural networks were

evaluated for selecting vertices for watermark insertion. A variety of 3D models

with varying degrees of surface curvature were used to train and test the neural net-

work. An array of neural networks was used for vertices with different valences to

achieve higher watermark embedding capacity. The watermark extraction process

is informed and needs the original watermark and 3D model. Experimental results

evaluate the imperceptibility and robustness of the proposed algorithm and tested the

algorithm against various attacks including noise addition, smoothing, and cropping.

The proposed method uses an artificial neural network to select vertices based on the

geometry of the 1-ring of vertices surrounding them, and gives good results (visual

and analytical) for various types of surfaces (flat, curved, uneven, etc.) present on
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3D models. Also, the system is robust against various possible attacks.
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Chapter 7

Conclusions

7.1 Conclusions

The criteria of minimizing distortion or maximizing the amount of watermark was

explored using computational intelligence (CI) techniques. Fuzzy logic is used for data

fusion for spatial masking in wavelet domain. The scheme also adaptively varies the

strength of the watermark signal with reference to the local geometry. The fuzzy input

variables are computed for each wavelet coefficient in the model based on the local

geometry. The output of the fuzzy system is a single value which gives a perceptual

value for each corresponding wavelet coefficient. Thus, the fuzzy perceptual mask

combines all these non-linear variables to build a model for spatial masking in 3D

domain. We have demonstrated that this watermarking scheme is robust against

attacks such as mesh simplification, addition of noise, model cropping, and at the same

time achieve a high level of imperceptibility. Although the fuzzy based approach is not

very suitable for fragile watermarking, it is the ideal choice for robust watermarking.

24 bits per vertex coordinate were inserted as a watermark. In 2008, Kai Wang et al.

[92] claimed to be the first to insert multiple watermarks in 3D mesh. However, in

2007 [63], the proposed fuzzy logic in this dissertation was the first approach to insert

multiple watermarks. Kai’s work validates that wavelet transform has deep pockets

of information for inserting watermarks.

In this dissertation, GAs have been used to find near-optimal solutions from

infinite optimal solutions. In a GA based approach, by reducing the number of gener-
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ations, optimality is traded for speed gains. In the case of optimizing a single criterion

f , an optimum is either its maximum or minimum. A GA based approach works ex-

tremely well for fragile watermarking by inserting random numbers as watermark in

all the vertices of a 3D mesh. Upto 120 bits per vertex coordinate can be inserted

as watermark. This was never achieved before in 3D watermarking. The proposed

algorithm works equally well for low and high resolutions models. The algorithm was

equally effective in inserting information in flat and curved surfaces and was tested on

CAM models as well. The GA based approach can also insert multiple watermarks

as well for robust watermarking.

When compared to the Fuzzy Logic and Genetic Algorithms based approaches,

performance of ann ANN is not exceptional. Lack of good quality training data is the

primary reason. For the same reason, hybrid approaches such as neuro-fuzzy based

approaches were not explored since such an approach too would require good quality

data to learn the parameters of the network. However, an ANN based approach

holds promise for other watermarking related applications such as stegnalysis. It

can be concluded that unsupervised classifiers are a better choice when compared to

supervised learning algorithms for 3D watermarking application.

7.2 Limitations

Each of the approaches explained in detail in previous chapters have limitations. For

the Fuzzy based approach using wavelet transform, the limitation arises due to the

use of semi-regular meshes required by the wavelet transform. That limitation is

overcome by remeshing any irregular mesh into semi-regular mesh. However, thats

adds another processing step. Another challenge with the fuzzy based approach is

evaluating the quality of rules. Rough Sets [77] are proposed to evaluate if the the

proposed 15 rules are sufficient and if the number of input and output membership

classes are sufficient to differentiate classes.

For the GA based approach, computational resources can be a constraint since

genetic algorithms are slow. However, genetic algorithms can be executed using par-
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allel programming or implemented in parallel using hardware to speed the execution

of the algorithm [24]. Also, in the current implementation only random information

is inserted as watermark. In future work, images can be supported as a watermark

by using binary representation of the chromosome. IEEE 754 floating point repre-

sentation can be used as the binary representation for the vertex coordinates. Also,

GA can be explored to insert information in the wavelet domain. Also, the current

GA based implementation uses a single objective for optimization. Future work could

use multiple objectives [79]. Multi-objective optimization algorithms have not been

explored in the current scope of this dissertation. However, future work should ex-

plore multi-objective algorithms to minimize distortion and maximize the embedding

capacity.

The biggest limitation for ANNs based approach is the lack of good quality

training data. The performance of the ANN based approach is heavily dependent on

the quality of the training data set. To overcome this limitation in the current ANN

based implementation, 1-ring vertices from the original model are used as input and

watermarked vertices using the GA approach are used as the output in the training

dataset. Self-organizing maps [52] can also be evaluated for improved performance.

Other features could also be evaluated.

7.3 Future Work

The goal of this dissertation was to build a framework using computational intelligence

algorithms such as GAs, ANNs, and Fuzzy Logic to build a robust, fragile, and high

density 3D watermarking system. There are other watermarking related applications

such as fingerprinting and stegnalysis [22] which have not been explored in this disser-

tation using computational intelligence techniques. ANNs can be a very powerful tool

for 3D stegnalysis since a neural network can be trained to learn which vertices could

have been watermarked. Future work would explore and compare other computational

intelligence and metaheuristics [88] techniques such as simulated annealing and tabu

search. Computational Intelligence also includes Swarm intelligence [21] algorithms
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such as Particle Swarm Optimization [76] and Ant Colony Optimization [32]. Artifi-

cial Immune System [25] with algorithms such as Clonal Selection can also be used

in this framework. There are several other directions in which the future work can

be explored. Some of the extended capabilities in future could be exploring different

applications some of which are listed below.

7.3.1 Third Generation Framework Capabilities

The capabilities of the third generation framework can be exploited to applications

other than watermarking. Few of them are discussed below.

1. 3D Compression

Watermarking and compression can be viewed as complementary problems. In

watermarking, the goal is to add information without causing perceptible dis-

tortion, whereas in compression the objective is to remove information without

causing perceptible distortion. Success of applying CI techniques can be ex-

tended to applying a similar approach to 3D compression [80].

2. New Watermarking Attacks

A good watermarking technique can also be a considered as a good watermark-

ing attack as well. For example, the approach described using genetic algo-

rithms can also be used to insert multiple watermarks, or destroy the existing

watermark as well.

The framework will result in a robust intelligent system that uses computational

intelligence techniques to search optimal location for insertion or removal of infor-

mation and optimize the amount of insertion or removal of the information to be

added or removed. This system can also be applied to other systems such as surface

reconstruction from point clouds and animations, images and video.
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