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Abstract

Inspiring entire computing paradigms, hardware platformsand theories of nervous system

function, the field of computational neuroscience has grownsteadily since its emergence

in the mid-1980s. The motivation behind it is to mathematically describe the nervous sys-

tem in terms of how the structures process information. Simulating the brain this way can

be done at varying levels of abstraction and biological realism; providing insight into the

function of the nervous system or supporting empirical evidence. This dissertation presents

a snapshot of the computational neuroscience landscape. Itbegins begins with the math-

ematical theory, moving to implementation, and finally ending with its application. It is

by no means a complete picture but provides a basic understanding of how mathematical

modeling contributes to neuroscience.

This begins by presenting the design considerations behindhigh-performance neural

simulation environments. A concept which is then extended with a novel implementa-

tion for the exchange of spiking information in high-performance cluster environments. A

framework for creating virtual environments for embodied modeling is then developed and

discussed. Finally, a toolkit for efficiently analyzing thelarge amounts of data generated

by these spiking models is presented.

Once these tools are established the focus is shifted to models of the basal ganglia.

After a brief background, spiking models capable of action-selection through reinforce-
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ment learning are described. These borrow from the basal ganglia but are developed for

implementation on neuromorphic hardware and are thereforenecessarily simplified. The

networks are embodied in virtual environments and their performance based on two tasks is

explored under varying conditions. Finally, the use of a simple hybrid neuron is explored in

several published models of the basal ganglia; demonstrating the first example of a hybrid

neuron in biologically faithful models of the basal ganglia.
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Chapter 1

Introduction

Imagine for a moment how you would set about building a modernairplane. The process

may begin with some design diagrams, or sketches and perhapslead to scaled models.

You have mathematical principles you apply to ensure your wing design generates enough

lift and that the static structures can withstand those forces. Fatigue analysis will give

an idea of how long parts will last. You can even model the likelihood of your airplane

being hijacked (Holden, 1986). Modern principles of engineering and software make it

possible to build, analyze and fly your airplane entirely in model space. This is exactly

how Boeing designed the 777 and revolutionized aerospace design (Norris, 1996). But,

despite everything we know about neuroscience and physiology, this kind of design feat is

unobtainable with biological systems.

The roundworm,c. elegans, has a nervous system of roughly300 neurons and5, 000

synapses. However, we still cannot put300 model neurons together and simulate the be-

havior of a roundworm. It is not just that the complexity of the nervous system is too much,

it is that there is still too much that is unknown at the singlecell and network levels. This

is not meant to paint a grim picture of computational neuroscience, but rather frame its role
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in the context of neuroscience research as a whole.

Computational neuroscience encompasses a set of tools thatare complementary to elec-

trophysiological, biophysical and behavioral research. This multifaceted approach is likely

the only way the complexities of the nervous system will be elucidated. Modern research

techniques are only capable of revealing small aspects of neural function. Unfortunately,

these small parts are not enough to tell the whole story. The goal of computational neuro-

science is to help fill in those gaps and point empirical studies towards new directions. In

basic sciences and medicine its role can be distilled into:

• A predictive tool, to guide new experiments.
• To demonstrate the plausibility of a theory.
• To quantitatively compliment experimentation.

It is important to point out that all models are wrong. As goodas the model of the

Boeing 777 was, it was still just an abstract representationof the real thing. In mathematical

simulation the goal is to create a model that encompasses enough of the dynamics of the

real system that is required to support a hypothesis. In fact, too much unnecessary detail

may obfuscate the important details of a system.
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Atoms

Small

Molecules

Compartments

Cells

Organs

Tissues

System

Individual

Figure 1.1: Levels of modeling abstraction

We can study biological phenomena at different levels of abstraction; Figure 1.1, illus-

trates these. Choosing how detailed a model is depends on a number of factors that include

the hypothesis being tested, computing resources, and current understanding of the biolog-

ical process. The models presented in this work fall in the single cell and organ levels.

In addition, all of these are dynamic processes. Dynamic phenomena are anything that

changes over time and almost everything in living organismsis dynamic. For example:
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• Cell growth
• Cell division
• Intercellular communication
• Movement
• Electrical activity

These systems, that are never in static thermal equilibrium, maintain a constant move-

ment of ions and chemical species across cell membranes (Fall et al., 2002). These can

be described with differential equations but all contain nonlinearities. Unfortunately, those

nonlinearities make it difficult or impossible to obtain a solution analytically. In these

instances, numerical methods can provide a mechanism for obtaining accurate approxima-

tions. This dissertation looks at the differential equations that describe neurons, how those

can be simulated and how the resulting models can be used for neuroscience research.

The approach to computational neuroscience presented hereis decidedly bottom-up.

We begin with a single neuron model and its dynamics. This single neuron is then con-

nected to other neurons and the interactions between them are modeled and simulated. The

dynamic changes in activity and structure are then analyzedand in some cases linked to

behavior. In others, theories of how the functional anatomycontributes to activity is estab-

lished. These models borrow from, and build on, other aspects of neuroscience.

Part I of this work explores some of the techniques and tools that are essential to re-

searching large-scale computational models. We begin by exploring the strategies for de-

veloping distributed simulation environments. This is theperfect intersection of software

and biomedical engineering; as the requirements for accurately simulating biological sys-

tems are in constant competition with the need for efficiencyin their calculation. Chapter 3

explores hardware specific strategies for maximizing efficiency with accuracy. In addition,

Chapter 4 takes this a step further by exploring the exchangeof information between dis-

tributed compute elements. Here, we present an analysis of some current methods and
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propose a novel implementation of spike exchange.

Developing the simulation environment is just the first step. Once the modeling capa-

bilities are established, researchers need to interface with them both during and after a sim-

ulation. In Chapter 5, we present a design for embodying these neural models in stimulus

rich environments. This provides a mechanism for generating input stimulus in both static

and dynamic ways. Finally, a new tool-set is developed for analyzing the large amounts

of spiking information generated during the simulation of large-scale models. This is the

focus of Chapter 6.

Armed with a complete set of computational neuroscience tools we set out to explore

models of the basal ganglia with two different approaches inPart II. Chapter 7 presents

a brief background of the mammalian basal ganglia as well as some of the computational

models of it. In Chapter 8 we then develop models that replicate some of the known higher-

level function of the basal ganglia without strictly following the functional anatomy. This

work is framed in the context of embodied modeling in neuromorphic hardware and the

networks are tasked with learning to play two virtual games.

Chapter 9 takes a different approach by replicating as much of the physiology and

dynamics of the basal ganglia as possible using a simple hybrid neuron. These replicate the

results of several published models, and in some cases improve them, but require far less

computational resources than the original. This reductionin complexity is exciting on a

number of different levels. Not only does this validate the results of the original works, but

the use of the hybrid neuron as well. In addition, these models are much more amenable to

hardware implementations and the reduction in computational complexity opens the door

for more thorough analysis of the models. Finally, some future directions and applications

for this research are presented in Chapter 10.

Although there are some cases of overlap, the chapters in this dissertation are written to
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be self-contained. These can realistically be viewed in anyorder and readers familiar with

the subject can skip the background sections.
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Chapter 2

Mathematical Neuroscience

Excitability in cells is an awkward concept for people outside of the physical sciences.

Many of us go through our lives perfectly happy with the computer analogy, where our

nervous system can be abstracted as computing elements connected together through cables

that transmit electrical signals. For those of us who understand computer architecture,

this is a comforting comparison. In fact, in science and engineering that juxtaposition is

essential for analyzing complex systems. Mechanical structures can be reduced to springs

for treatment with finite element analysis. Fluid dynamics can be modeled by electrical

circuits. Even blood-flow in the lungs can be simulated usingelectrical components. So it

is no surprise that the inadequacy of the computer analogy isstartling to an engineer.

This chapter presents a very broad background that is required to not only understand

the concepts presented in this dissertation but also purge the computer analogy from the

readers mind. This is noticeably incomplete and can in no wayreplace an introductory

neuroscience text. In addition, the focus is on point neurons, where a neuron is assumed to

be a single point in space and only the active transmission ofelectrical signals is modeled.

This simplification is required to model large-scale systems in feasible time-frames but
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ignores the more complex interactions within the neuron.

2.1 Excitable cells

All cells have a voltage potential across their plasma membrane (the semi-permeable lipid

bilayer surrounding the cell). This voltage potential is a product of differences in ionic

concentrations between the fluid inside of the cell (cytoplasm) and the extracellular fluid

outside of the cell. The unequal ion distribution results ina negative charge inside, com-

pared to the outside of the cell. Typically that potential ranges from−50 to−100 millivolts.

Dendrites

(Inputs)

Axon

(Output)

Post-Synaptic 

Terminals

Pre-Synaptic

Terminal

Cell Body

(soma)

Nucleus

Figure 2.1: The prototypical neuron.
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2.2 Ionic basis of excitability

Excitable cells are characterized by a dynamic change in membrane voltage that gener-

ates an action potential. This is facilitated by a voltage dependent change in membrane

permeability and the passive diffusion of ions down their electrochemical gradient. Our

description of cellular excitation begins with that electrochemical gradient.

Diffusion is the tendency of molecules to separate from eachother in space. Individ-

ually, these molecules move randomly but the bulk molecularmotion can have direction.

When those molecules have an electrical charge associated with them there is an additional

repelling force. The combination of these forces drive the diffusion of ions across a mem-

brane.

Figure 2.2: Diffusion through a selectively permeable membrane. A container is separated by an artificial
membrane. Each side contains different concentrations of an electrically neutralK+ chloride solution. Ini-
tially, left, the membrane is impermeable. The membrane is then made selectively permeable toK+ only,
right, and the excess of positive charge on the right side of the container creates a voltage potential that
approaches the Nernst potential ofK+, Ek.

The electrical potential arises due to the selective permeability of the membrane. Con-

sider Figure 2.2 left, where two aqueous solutions are separated by an artificial membrane.

The ionic concentrations on each side are electrically neutral, so each positiveK+ ion is
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matched by a negatively chargedCl− ion. The membrane is not permeable to either ion so

there is no net flux or potential across it.

If the membrane is made permeable only toK+, Figure 2.2 right, there will be a net

flux of K+ down its chemical gradient from the left to the right side of the container. As a

positiveK+ ion moves across the membrane it is separated from its corresponding chloride

anion. The result is a net positive charge on the right side ofthe container. Eventually, this

excess positive charge will resist additional cations fromentering the right side and an

equilibrium point is reached. This equilibrium is where thediffusive force balances the

electrical force and is called the Nernst potential.

The Nernst potential can be derived either through statistical mechanics, using the

Boltzmann equation, or with statistical thermodynamics, using the Gibbs free energy (Keener

and Sneyd, 2008). The resulting equation describes the equilibrium potential for a charged

ion based on the concentrations inside and outside of a cell.It is defined by

∆E =
RT

zF
ln

∣

∣

∣

∣

ηout
ηin

∣

∣

∣

∣

. (2.1)

Whereηin andηout are the internal and external concentrations respectively, R is the uni-

versal gas constant,T is the temperature in Kelvin,F is Faraday’s constant andz is the

valence of the ion. This is also referred to as the reversal potential because it is the point

where the bulk ion movement will reverse directions.

A key aspect of this equation, which has been overlooked up tothis point, is the concen-

tration difference between the inside and outside of the cell. This gradient is established and

maintained through active diffusion mechanisms. Using energy, cells transport ions against

their concentration gradient to create the electrical potentials. Table 2.1 presents the four

major ion species in neurons as well as their corresponding concentration gradients and



11

Nernst potentials (Purves et al., 2007).

Table 2.1: Ionic concentrations for typical neurons

Intracellular (mM) Extracellular (mM) Ex(mV)
K

+ 140 5 −87
Na

+ 5− 15 145 +60 to+88
Cl

− 4− 30 110 −88 to−60
Ca

2+ 0.0001 1− 2 +200

As can be seen in Table 2.1 each ion contributes a different value to the membrane volt-

age. If each ion contributed equally the resting potential of a cell would be around85 mV.

However, all cells maintain a resting potential that is morenegative on the inside compared

to the outside of the cell. The reason is that the Nernst potential assumes perfect conduc-

tance to an ionic species. Physically the membrane conductance to an ion dynamically

changes and at rest is in a partially conducting state.

To calculate the resting potential of a cell that is permeable to multiple ions we em-

ploy the Goldman-Hodgkin-Katz (GHK) equation (Fall et al.,2002). This calculates the

contribution of multiple ionic gradients and their respective conductances to the membrane

potential. This is defined as

Em = −
RT

F
ln

(

PNa[Na+]i + PK [K
+]i + PCl[Cl−]e

PNa[Na+]e + PK [K+]e + PCl[Cl−]i

)

. (2.2)

WhereEm is the membrane potential,Px is the relative permeability of the membrane to

ion x, and[X ] is the concentration of ionx. The GHK equation is important for accurately

calculating the membrane potential but it is difficult to usein practice. In addition, obtain-

ing the measurements required for calculating the relativepermeability is arduous and are

themselves approximations. The ionic conductance is an acceptable substitute that is easier

to obtain experimentally.



12

We can simplify the analysis of excitable cells considerably by assuming that the mem-

brane electrochemical physics obey Ohm’s law. From that, wecan calculate the conduc-

tance using

G =
I

V
. (2.3)

The current (I) and voltage (V ) of the cell are now easily obtained using standard electro-

physiological techniques. Similar to the GHK equation, thecontribution of an ionic species

to the membrane potential can be found using a weighted sum,

Em =

∑

i gi · Ei
∑

i gi
. (2.4)

Wherei is the ion species,Ei is the Nernst potential of that species andgi is the conduc-

tance. This is the parallel conductance model for the membrane (Fall et al., 2002). It can

be simplified by rewriting Equation 2.4 as

Vm =
∑

i

G∗

i ·Ei, (2.5)

where

G∗

x =
Gx

∑

i Gi
.

For an example cell with sodium (Na+), potassium (K+), and chloride (Cl−) currents the

membrane voltage would be found using

Vm =
(gNa · ENa) + (gk · Ek) + (gCl · ECl)

gNa + gk + gCl

.



13

For the type of neuron models used in this work, our interest is in how the conductance

of the membrane to different ionic species changes with time. These dynamic systems

become more tractable with the assumption of ohmic properties presented above. Using

that, the cell membrane can be described as an electrical circuit; with the components

analogies:

1. Phospholipid Bilayer: Creates a capacitive effect where ionic charge accumulates
across the nanometer thick Debye layer (Fall et al., 2002).

2. Ionic permeability of the Membrane: Acts like a resistor, impeding the ionic cur-
rent.

3. Electrochemical driving forces: Establishes an ionic battery driving each species.

outside

inside

INa

g Na

ENa

IK

g K

EK

I
Cl

g Cl

ECl

Figure 2.3: Cell membrane equivalent circuit diagram (adapted from Fall et al. (2002) and Keener and Sneyd
(2008).

The diagram in Figure 2.3 illustrates the equivalent electrical circuit for a cell with three

conducting species. However, the interesting aspect of excitable cells is not the steady-
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state membrane potential calculations presented above butthe dynamic changes required

to reach steady-state. Continuing with the assumption of Ohmic properties and that the

ionic battery remains constant, the current across the membrane for potassium now takes

the form

IK = gK(V − EK). (2.6)

With the contribution of multiple ionic currents calculated using

Iion =
∑

i

Ii =
∑

i

gi(V − Ei). (2.7)

The capacitive current across the membrane can be written as

Icap = Cm
dV

dt
. (2.8)

Applying Kirchoff’s law of charge conservation to the circuit

Icap + Iion = 0.

Finally, substituting in we arrive at

Cm
dV

dt
= −

∑

i

gi(V −Ei).

Equipped with a representation of a cross section of cellular membrane we can now

explore the dynamics of the electrical activity. Up to this point we have only stated that

the membrane is selectively permeable. That selection is facilitated by pores, or ion chan-

nels, embedded within the membrane of the cell. These channels, that are often specific
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to species or valence, allow ions to conduct through them. However, that conduction is

modulated by a number of different factors. To develop the models of excitable cells for

this work we focus a subclass of ion channels whose conductance is dependent on the

membrane voltage but first general models of ion channels aredeveloped.

2.3 Ion Channels

Ion channels are constructed of proteins that span the phospholipid bilayer of a cell. There

are many different families of ion channels, and cells contain a lager number of channels

from a particular family that are spread throughout the membrane. Individually ion chan-

nels behave stochastically, changing their conductance randomly through opening and clos-

ing. These random fluctuation are often dependent on an external phenomena. So called

ligand gated channels will modify their conductance based on concentrations of particular

molecules and voltage-gated channels are controlled by themembrane potential.

The activity of ion channels at the single and whole-cell levels can accurately be ap-

proximated using Markov chain models. A Markov process is memoryless, in that the

transition from one state to another is not dependent on whatthe previous states were;

only the current state is important. To illustrate this, consider the two-state ion channel in

Figure 2.4.

Figure 2.4: Two state markov channel model

If we consider the chance that the channel is in the closed state at a particular timet,

then the ratekon is related to the probability that in the time interval(∆t) the channel will
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open (Fall et al., 2002). This relationship can be defined by

kon∆t = Prob{s = O, t+∆t|s = C, t}.

Wherekon∆t is dimensionless andProb{s = O, t+∆t|s = C, t} indicates the probability,

given that the channel is closed at timet, of a closed to open transition occurring in the

interval [t, t + ∆t] (Fall et al., 2002). Similar analysis can be completed for the transition

from open to closed as well as the probability that the channel remains in its current state.

The chance that a channel moves from one state to another can be summarized by the

transition probability matrix

Q =







Prob{C, t+∆t|C, t} Prob{C, t+∆t|O, t}

Prob{O, t+∆t|C, t} Prob{O, t+∆t|O, t}







=







1− kon∆t koff∆t

kon∆t 1− koff∆t






. (2.9)

The elements of thetransition probability matrix(Qij) represent the probability of a tran-

sition from statej to statei. From the conservation of probability the columns ofQ must

sum to1.

One way to simulate the stochastic activity of a single ion channel is to use Gillespie’s

Method. This utilizes the fact that the time to the next transition is an exponentially dis-

tributed random variable with a mean equal to the reciprocalof the rate coefficient (Fall

et al., 2002). We can therefore simulate a two state channel by selecting open and closed

dwell times consistent with that probability distribution.
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The closed dwell time,τC , of the two state channel has the probability distribution

Prob{τ < τC ≤ τ + dτ} = kone
−konτdτ.

Similarly, the open dwell time(τO) of the channel is an exponentially distributed random

variable with the probability distribution function

Prob{τ < τO ≤ τ + dτ} = koffe
−koffτdτ.

With these we can simulate the channel by alternately choosing open and closed dwell

times consistent with these distributions. A simple way to do this is to choose a uniformly

distributed random variableU on the interval[0, 1] and use

τC = −
1

kon
lnU

and

τO = −
1

koff
lnU.

The results of this type of simulations are illustrated in Figures 2.5, 2.6 and 2.7. Notice as

the rate constants are varied the open state probability,PO, will change. This was calculated

after100 simulated transitions.
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Figure 2.5: Single channel model using Gillespie’s method.kon = 0.1ms−1, koff = 0.1ms−1, PO ≈ 0.5
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Figure 2.6: Single channel model using Gillespie’s method.kon = 0.3ms−1, koff = 0.1ms−1, PO ≈ 0.75

Closed

 

 

 

 

Open

0 20 40 60 80 100

S
ta

te

t (ms)

Figure 2.7: Single channel model using Gillespie’s method.kon = 1.5ms−1, koff = 0.5ms−1, PO ≈ 0.75
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When the stochastic gating of a number of single cells is averaged together, the whole

cell activity emerges. There are several ways we can model this, including simulating

a large number of stochastic channels. The most straightforward is to directly model the

ordinary differential equations that result from taking the limit as∆t→ 0 of the probability

relationship defined above (Fall et al., 2002). For the two state channel this would be

dPC

dt
= −konPC + koffPO,

and

dPO

dt
= konPC − koffPO.

From conservation of probability we can eliminatePC(t) using the relation

PC(t) = 1− PO(t).

The governing differential equation is then

dPO

dt
= kon(1− PO)− koffPO. (2.10)

This two-state model is simple enough that a solution to the resulting equations can be

found analytically. At steady-statedPO

dt
= 0 and the steady-state open probability is then

POss =
kon

kon + koff
.

Solving the simple differential equation results in the equation of open probability over
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time

PO(t) = POss − (POss − POInitial) ∗ e
−

t
τ ,

whereτ = 1
kon+koff

. Basically, when the rate constants are stepped to different values the

open probability will go to a new steady-state value with thetime constantτ . Figure 2.8

illustrates the settling of the model using the analytical solution.
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Figure 2.8: Analytical solution for a two-state ion channel model.
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Figure 2.9: Numerical solution for a two-state ion channel model.

Although it is possible to find an analytical solution to the two state channel presented

here, this is not often the case. As the complexity of the channels increase so does the



21

number of states and the interactions of the rate variable with other phenomena (i.e. ligand

concentrations of voltages), making an analytical solution difficult or impossible to find. In

these cases numerical methods must be employed. Figure 2.9 illustrates the solution to the

same two-state channel model using a Runge-Kutta method.

2.4 Active electrical transmission

Many of the concepts presented above were actually established after the work of Alan

Hodgkin and Andrew Huxley on the electrophysiology of the giant squid axon (Hille,

2001). Their work, empowered by the newly discovered voltage clamp techniques, de-

veloped the first kinetic theories of membrane permeability. These mathematical descrip-

tions, accomplished without any knowledge of ion channels,are part of the foundation of

neuroscience.

The first key insight provided by this work was that the membrane currents observed

in the giant squid axon could be separated into different ionic species. This was important

in determining the mechanisms involved in the changing membrane permeability. Two

contributing species were identified,K+ andNa+, as well as a small background leak

current. Through a series of ingenious experiments, Hodgkin and Huxley were able to

demonstrate that not only do these currents mostly follow Ohm’s law, but their permeability

can be described by combinations of two-state kinetic processes. Here we focus on the

mathematical model (HH model) that was developed based on these experiments.

The HH model equations describe the electrical activity of the giant squid axon in terms

of ionic and capacitive currents (2.11).

IM = IC + Ii (2.11)
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Returning back to Figure 2.3, the ionic currents can be separated into

IM = CM
dV

dt
+ ḡKn

4(V − VK) + ḡNam
3h(V − VNa) + ḡleak(V − Vleak). (2.12)

WhereIM is the total membrane current (including externally applied currents). Notice

that the conductances are now defined by the product ofḡi, the maximal conductance for

ionic speciesi, and one or more gating variables. Starting with the non-inactivating slow

K+ current,IK , we can see that the gating is dependent on the variablen. This is called

the activation variable and essentially defines the percentage of channels that are open and

contributing to the conductance ofK+. This probability can be defined by the two-state

kinetic process,

dn

dt
= αn(V )(1− n)− βn(V )n. (2.13)

Recall that this is equation 2.10 developed for the two-state whole cell ion channel model.

The transition from the closed non-conducting state is driven byαn(V ) and the transition

back is now dependent onβn(V ), kon andkoff respectively. The key difference is the volt-

age dependence on these variables. Hodgkin and Huxley were able to fit that dependence

to their experimental results using the equations

αn =
0.01 (V + 10)

e

(

V−10
10

)

− 1

and

βn = 0.125e(
V/80).
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This combination of Ohmic devices and two-state kinetic process describes the contribu-

tion ofK+ to the membrane current at different voltages. Returning back to theIK term of

Equation 2.12, the exponent attached ton is still left unexplained. The currents observed

by Hodgkin and Huxley had a time course that led them to predict four different indepen-

dent particles that contribute to the activation of a channel. Given this independence, the

probability that all of these channels was in the open state isn4 (Hille, 2001).

TheK+ channel described by the HH model has only an activation gating whose dy-

namics determine the channels conductance. However, it wasdiscovered that theNa+

channels are dependent on two independent, but competing gates; an activation gate simi-

lar toK+ and an inactivation gate. Inactivation inNa+ channels is the process of closing

the channel after it has been depolarized (driven to a more positive potential). This is inde-

pendent of the channel’s activation processes and conductance through the channel is only

returned after a prolonged polarization (membrane potential less than or equal to the resting

potential). In the HH model these two processes are again represented by two-state kinetic

models defined by the equations

dm

dt
= αm(V )(1−m)− βm(V )m (2.14)

and

dh

dt
= αh(V )(1− h)− βh(V )h. (2.15)

The rate constants for these variables are defined by

αm =
0.1 (V + 25)

e

(

V+25
10

)

− 1

,
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βm = 4e(
V/18),

αh = 0.007e(
V/20),

and

βh =
1

e

(

V+30
10

)

+ 1

.

It is important to point out that the above equations were developed using sign conventions

and voltage offsets that are different from the conventionsused today. For convenience the

following table summarizes these differences:

H-H Present
Membrane Potential V E
Resting Potential V = 0mV E = Er.p.

∼= −60mV
Na+ Equilibrium Potential VNa = −115mV ENa = 55mV
K+ Equilibrium Potential VK = 12mV EK = −72mV
Current I I
Inward Current > 0 < 0
Clamp Currents Inward Current↑ Inward Current↓

In addition, the more conventional form of the (in)activation equations is

dn

dt
=

(n∞ − n)

τn(V )
,

dn

dt
=

(m∞ −m)

τm(V )
,

and

dh

dt
=

(h∞ − h)

τh(V )
.



25

Where the steady-state gating values are defined by

n∞ =
αn

αn + βn
,

m∞ =
αm

αm + βm
,

and

h∞ =
αh

αh + βh
,

The voltage dependent time constants are defined by

τn =
1

αn + βn
,

τm =
1

αm + βm

,

and

τh =
1

αh + βh
.
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Figure 2.10:Hodgkin-Huxley Variables. (a) (in)activation variables., (b) Time constants.

Figure 2.10 plots these at different voltage potentials. Itis important to point out that

these equations are simple curve fits to the data observed by Hodgkin and Huxley. They

make predictions about the kinetics involved in the gating of these channels but do not

provide a mechanistic description of how that gating is accomplished. There has been a

tremendous amount of subsequent research that has demonstrated that these interactions are

more complicated than communicated here. However, the HH equations are the foundation

for the computational models developed in this dissertation.
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Figure 2.11: Hodgkin-Huxley action potentials. (a) Original Hodgkin-Huxley Action Potential, (b) Inverted
Action Potential.

The model developed by Hodgkin and Huxley accurately describes the dynamic change
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in membrane voltage referred to as the action potential (AP). This phenomena, that is

unique to excitable cells, is essential for sensing, processing and communication in the

nervous systems as well as glandular and muscle function. AnAP is generated when the

membrane voltage of a cell is driven past a threshold. When that threshold is crossed an

avalanche of current drives the membrane voltage to spike and then repolarize. Figure 2.11

illustrates the AP of a point along the giant squid axon described by the HH Model.
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Figure 2.12:Stereotyped action potential.

The AP begins with the activation ofNa+ channels, resulting in an inrush ofNa+

ions and the rising phase of the membrane potential labeled in Figure 2.12. The increased

membrane potential enables the inactivation gate, blocking the conductance ofNa+. Si-

multaneously, theK+ channels become more activated as the membrane voltage increases.

The net efflux ofK+ ions drives the membrane voltage back down towards its resting po-

tential. These are illustrated by the falling phase on Figure 2.12. TheNa+ channels are

then deinactivated (the process of unblocking by the inactivation gate) and they become

available to contribute to further APs. In addition, theK+ channels slowly deactivate, re-

laxing their contribution to driving the membrane voltage negative. This is illustrated in

slow rise in the membrane voltage in the recovery phase of Figure 2.12.
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The HH model describes an AP at a specific point along the giantsquid axon. However,

once an AP is generated it propagates away from that point throughout the cell. The prop-

agation of an AP is facilitated by both the active and passivetransmission of the electrical

signal. Although it is not described here, the passive transmission of electricity in biolog-

ical cells is defined by the cable equations (Koch and Segev, 1998; Bower and Beeman,

1998; Hille, 2001). These describe how the changes in membrane voltage at a location

travel a relatively small distance away from the source. This is due to the charge traveling

perpendicular to the membrane, into the cytosol and extracellular fluids, as well as parallel

to it. Cells rely on the proximity of neighboring channels being small enough to sense

APs or external insulation (a myelin sheath) to reduce the loss of charge away from the

membrane.

2.5 Synaptic transmission

Figure 2.13: Neurotransmitter release at the synapse.

When an AP is fired, it travels down an axon and terminates at the synaptic cleft. This is

where the innervating neuron and its target neuron are connected through a fluid interface.
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At the majority of neural synapses there is no physical connection capable of transmit-

ting an AP between the cells (this is not the case with connexons and gap junctions which

are not covered here). Instead, a chemical signal facilitated by neurotransmitters is the

mechanism of communication. The arrival of the AP, and the resulting voltage change,

openCa2+ channels at the presynaptic terminal. The inrush ofCa2+ ions initiates a com-

munication cascade that culminates in the exocytosis of neurotransmitter molecules. The

neurotransmitters travel across the fluid interface of the synaptic cleft down their concen-

tration gradient. At the post-synaptic neuron they then signal ion channels, resulting in a

dynamic change in membrane potential at the post-synaptic neuron. This process is illus-

trated in Figure 2.13. It is important to note that this change can be excitatory (positive

voltage difference) or inhibitory (negative voltage difference).

2.5.1 Neurotransmitter Diffusion

The release and diffusion of neurotransmitter happens relatively fast; with the initial change

occurring in as little as0.3 ms and peaking in0.5 to 1.0 ms (Scott, 2002). Given the huge

number of synapses in large-scale models, as well as the large integration time-steps of0.5

to 1.0 ms, the onset of neurotransmitter release is generally approximated as instantaneous.

There is an immediate buffering of the neurotransmitter that occurs after release. In

addition, re-uptake mechanisms on the presynaptic cell recycle it. In large-scale modeling

this is either ignored and the neurotransmitter release is treated as a step change in post-

synaptic membrane current, or the buffering and re-uptake is modeled by a decay function.

Rather than modeling the concentration of the neurotransmitter species, its influence on

the conductance of the ion channels in the post-synaptic cell can be simulated. This takes
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the form

τ
dg

dt
= −g +

∑

Wjδ (t− tj) . (2.16)

Whereg is the conductance,τ is the time constant that describes the time course of the

decay in synaptic conductance,Wj is the initial change in conductance when a spike occurs,

and the delta function,δ (t− tj), imparts that influence for a spike at timetj .

This is generally a good approximation to the release and buffering of neurotransmit-

ter. An important aspect that this equation does not addressis the concept of a ceiling

in conductance. There is no upper-bound in the conductance at the synapse which is not

physiologically realistic. In most models however, this isnot an issue as the activity of the

synapse is not high enough to create an unbalance.

More detailed modeling efforts attempt a closer match to theempirically measured

release curves. However, the mathematical benefit of that inlarge-scale models is still

unknown and the computational burden it presents has been prohibitive. As the detail of

these models increases those additions may prove important.

2.5.2 Synaptic plasticity

The ability for synapses to change their post-synaptic influence in both short and long time

frames is essential for learning. Activity dependent changes, both positive and negative,

are observed in most cortical connections of the brain and many theories of learning are

built on these changes.

There are two ways that plasticity can modulate the effect ofan AP, either the presynap-

tic release is modified or the sensitivity on the postsynaptic side is. Generally the release

of neurotransmitter is discrete, with each vesicle containing a similar quantity. Therefore
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fine changes in the concentration released are difficult to control. There are however, many

instances where the plasticity of the synapse is dependent on the presynaptic neuron, but,

these are exclusively a short-term phenomena. Plasticity is modulated more prominently

at the postsynaptic site, where changes are dependent on activity in both a frequency and

timing dependent manner. We discuss a few relevant examplesof this below.

Short-term plasticity

Changes in synaptic efficacy on short time scales, milliseconds to seconds, is usually ac-

tivity dependent. These mechanisms are affected by frequency changes in the presynaptic

cell and generally related to vesicle availability (Purveset al., 2007). Augmentation is an

increase in synaptic efficacy and is related to a greater vesicle release response to APs. De-

pression is a decrease in synaptic efficacy that is related tothe reduced vesicle availability.

One way the short-term availability of a synapse can be modeled is in a frequency-

dependent manner. The mathematical model of Markram et al. (1998) captures the phe-

nomena of both frequency dependent potentiation and depression in a single synaptic

model. Using a mix of variables from Markram et al. (1998) andSussillo et al. (2007)

the model can be described in terms of the fraction of total synaptic efficacy and the loss of

availability to an AP. The conductance of the synapse can be defined by

gn = A · R · u. (2.17)

WhereA is the maximum synaptic efficacy,R represents the fraction of synaptic availabil-

ity, R ∈ [0, 1], andu is the utilization of synaptic efficacy. Facilitation in themodel is

included as an increase inu in response to an AP. This then decays with time-constantF
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to a resting valueU . This can be described by

uk+1 = ukexp

(

−∆t

F

)

+ U

(

1− ukexp

(

−∆t

F

))

. (2.18)

Where∆t is the time difference between spiken and spiken+1. Depression of the synapse

can be modeled in a similar way, except now the available synaptic efficacy,R, is reduced

as an AP arrives and is recovered with a time constantD. This is included in the expression

for the available synaptic efficacy

Rk+1 = Rn (1− uk+1) exp

(

−∆t

D

)

+ 1− exp

(

−∆t

D

)

. (2.19)

Long-term plasticity

Long-term changes in synapses are measured in minutes or hours. These happen quickly

and persist through biophysical and genetic mechanisms. Descriptions of long-term plas-

ticity are generally grounded in studies of excitatory synapses containing NMDA glutamate

receptors. At rest NMDA receptors are clogged by aMg2+ ion, therefore they do not con-

tribute to the membrane potential at the synapse. TheMg2+ ion can be purged through

prolonged or repeated depolarization of the synapse. When this happens the channel can

then positively contribute to the membrane voltage throughthe conduction ofCa2+ ions.

This creates an immediate increase in excitability of the synapse. In addition, the influx

of Ca2+ begins a CaMKII and PKA initiated signaling cascade that leads to increased up-

regulation of AMPA glutamate receptors(Purves et al., 2007). Long term depression of

synapses is also similarly affected byCa2+, with high concentrations and low synaptic

activity causing a down-regulation of AMPA channels (Purves et al., 2007).

One of the most popular long-term plasticity rules was discovered by Markram et al.
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(1997) and is referred to as spike timing dependent plasticity (STDP). This a Hebbian

learning rule where the arrival of presynaptic APs is compared to the activity of the post-

synaptic neuron. If the presynaptic spike arrives before the postsynaptic neuron fires, the

connection is potentiated; the presynaptic neuron is contributing positively to the postsy-

naptic neuron’s firing. If the presynaptic spike arrives after the postsynaptic neuron fires

the synapse is depressed; the presynaptic neuron is not contributing.

A version of this rule is for excitatory synapses observed inthe cortex (inhibitory

synapses have been shown to follow a different rule) and is presented here in the form

used by Song et al. (2001). The conductance of a channel is updated using the expression

g → g + gmaxF (∆t). (2.20)

Where∆t = tpre− tpost, is the timing difference between the presynaptic and postsynaptic

APs. The fractional update is

F (∆t) =











A+e

(

∆t
τ+

)

∆t > 0

A−e

(

∆t
τ
−

)

∆t < 0
(2.21)

if (g < 0) theng → 0

if (g > gmax) theng → gmax

This is a reduced learning rule and only captures some of the phenomena observed ex-

perimentally. However, it is one of the most popular learning rules in large-scale modeling.

As mentioned above, inhibitory synapses follow a completely different STDP rule; as do

some subcortical structures. Exploration of these is left to the reader.
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2.6 Simple point neuron models

The HH model presented in Section 2.4 is useful for describing the electrical activity of

neurons but is computationally expensive to simulate. In addition, there is much more to

the dynamics of neurons than just the generation of action potentials.

2.6.1 Reduced Hodgkin-Huxley neuron

We begin by showing how the dynamics of the HH model can be simplified through as-

sumptions based on the physiology as well as the dynamics we have talked about pre-

viously. Although exploring the HH equations using dynamical system theory is quite

intractable due to the four-dimensional nature of the system, we can characterize them by

their fast and slow dynamics.

The first simplification is based on the assumption thatNa+ activation occurs much

faster than its inactivation as well as thek+ activation. Based on this it can be assumed that

theNa+ activation occurs instantaneously, or thatm = m∞(V ).

The next simplification is based on the dependence betweenh andn. Assuming the

simple linear relationship

h(t) = 1− n(t).

The HH equations can then be reduced to two coupled differential equations

IM = CM
dV

dt
+ ḡKn

4(V −EK) + ḡNam
3
∞
(1− n)(V −ENa) + ḡl(V −El) (2.22)
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and

dn

dt
= αn(V )(1− n)− βn(V )n. (2.23)

When compared to the full model, Figure 2.14, it can be observed that it is not a great

approximation but for some applications it may be acceptable.
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Figure 2.14: Comparison of simple model with the full model.

Returning to the full Hodgkin-Huxley model and plotting thegating variables as action

potentials are triggered, the relationship betweenn andh can be observed more closely

Figure 2.15. This is exactly what was done in some of the earlycomputer simulations

(Izhikevich, 2007b). These demonstrated that

n+ h ≈ 0.84
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Figure 2.15: Full Hodgkin-Huxley Model. Notice hown+ h surrounds0.84

We can actually compare these directly as in Izhikevich (2007b), which reveals that

h = 0.89− 1.1n.

Incorporating this relationship into the simplified model results in a better approximation

to the full HH model, Figure 2.16. The model is still slightlyshifted in time but comparing

the aligned action potentials it can be seen how they compare, 2.17.
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Figure 2.16:Comparison of the improved simple model with the full model.
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Figure 2.17: Comparison of improved simple model with the full model after shifting.

Although the method above improves the computational complexity of the HH equa-

tions, we can still take this further. The two channels of interest in the HH model, the fast

sodium and slow rectifyingK+ channels, contribute mainly to the action potential genera-

tion. As described above, this is an all or nothing event thatoccurs once the threshold has

been reached. Assuming that these channels have minimal contribution to the subthresh-

old dynamics, we can remove the channels and instead reset the membrane voltage once

the threshold has been reached. The characteristic action potential can, and usual is, then

added to the voltage potential using a spike template. This addition is completely arbitrary

and really only useful for visualization.
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2.6.2 Leaky Integrate-and-Fire Neuron

Probably the most basic spiking neuronal description is theintegrate-and-fire model. With

extensive research dating back as far as 1907, it is a simple model that requires limited

computational resources (Koch and Segev, 1998). In the leaky integrate-and-fire model

(LIF) the neuron sums the input currents to calculate the membrane potential. When the

voltage potential reaches a set threshold an AP is fired. The model is created by removing

theNa+ andK+ channels. The AP is simulated by reseting the membrane voltage and

placing the neuron in a forced refractory period; where the membrane voltage is fixed for a

set period of time. The equation takes the form

Cm
dV

dt
= I − gleak(V − Vleak). (2.24)

This is sometimes expressed as

Cm
dV

dt
= I −

Vm

Rm
. (2.25)

Where

Vm(t) = IRm

(

1− e

(

−t
τm

)

)

,

andτm = RmCm is the time constant. This can also be simplified as

v̇ = b− v, (2.26)

and ifv = 1, thenv = 0.
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20 mV

1 pA

100 ms

Figure 2.18:Leaky-Integrate-and-Fire neuron response to excitatory input.

Figure 2.18 demonstrates the response of a typical LIF neuron to increasing voltage

stimulus. Note that the spike shapes are created by artificially setting the voltage to30 mV

when the threshold is reached.

2.6.3 Subthreshold models

The LIF model is capable of capturing only a small subset of neuronal dynamics. It works

well as an integrator but the more complex responses, characteristic to many areas of the

nervous system, are lost with this model. One strategy for replicating those dynamics is

to add additional currents representing ion channels that are involved in the subthreshold

activity of the cells. Here we present three such ionic currents as an example of how the

dynamics of the LIF model can be altered.

We begin with two currents that contribute to the membrane voltage by controlling

spike-frequency adaptation. These are small ionic currents that have a long period of activ-

ity when the membrane voltage is between rest and threshold.
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The noninactivating muscarinicK+ current,IM , is defined by

IM = ḡMmP (Ek − V ) . (2.27)

WhereP is the power that the activation variablem is raised to. This is essentially decreas-

ing the slope of the activation variable. The change of that activation variable is defined

as

dm

dt
=

m∞ −m

τm
. (2.28)

Where

τm =
ǫ

e





V − V1/2

ω





+ e
−





V − V1/2

η





and

m∞ =
1

1 + e
−





V − V1/2

ξ





.

Here,ǫ is a scale factor,ω, η andξ are slope factors affecting the rate of change of the

activation variable m.V1/2 satisfies the equationm∞(V1/2) = 0.5.

Adding this current to the LIF model creates the classic non-accommodating gabaergic

interneuron, Figure 2.19. These neurons fire at steady-state at the onset of a constant current

injection.
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20 mV

100 ms

Figure 2.19: classic non-accommodating gabaergic interneuron modeledusing the noninactivating mus-
carinicK+ current.

The other small spike-adaptation contributing current is an afterhyperpolarizationK+

channel. These are voltage independent and regulated by internal calcium. The current is

defined by

IAHP = ḡAHPm
P (Ek − V ). (2.29)

WhereP is the power that the activation variablem is raised to. The change of that activa-

tion variable is defined as

dm

dt
=

m∞ −m

τm
. (2.30)

Where

τm =
ǫ

f(Ca) + b
,
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m∞ =
f(Ca)

f(Ca) + b
,

ǫ is the scale factor,b is the backwards rate constant andf(Ca) is the forward rate constant

defined by

f(Ca) = κ[Ca]i
α. (2.31)

Physiologically the calcium concentration of a cell increases when an action poten-

tial fires. After the action potential has ended the internalconcentration of calcium will

diffuse throughout the cell where it is taken up by numerous physiological buffers. This

diffusion/buffering phenomena can be modeled by a simple decay equation defined by

[Ca]i(t + 1) = [Ca]i(t)

(

1−
dt

τCa

)

. (2.32)

Wheredt is the integration time step andτCa is the time constant for theCa2+ decay.

20 mV

100 ms

Figure 2.20:Bursting non-accommodating gabaergic interneuron response using small spike-adaptation con-
tributing current is an afterhyperpolarizationK+ channel.
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The addition of this channel simulates a bursting non-accommodating gabaergic in-

terneuron, Figure 2.20. These are characterized by a delayed rise in membrane voltage

after stimulus onset, followed by a period of steady-state firing.

The third channel type is the transient outwardK+ current orKa. This channel requires

hyperpolarization for its activation; meaning that the channel will open during inhibitory

synaptic input. This is defined by

IK = ḡMmPhC (Ek − V ) . (2.33)

Where as beforeP is the power that the activation variablem is raised to andC is the

power that the inactivation variableh is raised to. The change of activation and inactivation

variables is defined by

dm

dt
=

m∞ −m

τm
(2.34)

and

dh

dt
=

h∞ −m

τh
. (2.35)

Here

m∞ =
1

1 + e
−





V − V1/2m

ξ





,

whereV1/2m satisfies the equationm∞(V1/2m) = 0.5 andξ is the slope factor affecting the



45

rate of change of the activation variablem, and

h∞ =
1

1 + e
−





V − V1/2h

η





,

whereV1/2h satisfies the equationh∞(V1/2h) = 0.5 andη is slope factor affecting the rate of

change of the inactivation variableh.

20 mV

100 ms

Figure 2.21: Delayed non-accommodating gabaergic interneuron modeledwith a transient outwardK+

current.

Figure 2.21 is the response of a delayed non-accommodating gabaergic neuron that

results from a transient outwardK+ current. The response is a delayed rise in membrane

voltage after stimulus onset, followed by a period of constant firing.

As can be seen by the inclusion of these example currents, theLIF model can be em-

ployed for replicating more complex firing patterns. Combinations of subthreshold chan-

nels can be included to replicate almost any neuronal response.

An additional technique for extending the LIF neuron is to include an artificial current
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source that replicates the desired current dynamics. This is used for the Integrate-and-fire-

or-burst model that will be introduced in Chapter 9 as well as, among others, the resonate-

and-fire neuron.

The resonate-and-fire model incorporates a function that replicates a low-thresholdK+

current. It is important to note that this term can also be anyother current that is partially

activated at rest. The current is defined by the variableW and can be added to the LIF

model by

C
dV

dt
= I − gleak(V − Eleak)−W. (2.36)

The dynamics ofW are defined by

dW

dt
=

V − V1/2

k −W
. (2.37)

By changing theV1/2 and thek terms the resonate-and-fire model can simulated more com-

plex excitability, damped oscillations and rebound spiking. Creating an artificial current

term provides more flexibility to the model but this can be taken a step further by instead

of directly incorporating the empirical ion channel models, the neuron is treated as a dy-

namical system. The goal is create a spike generating model that replicates the relevant

dynamics but may lack biophysical meaning in its parameters.

2.6.4 Hybrid neuron models

Hybrid neuron models, as defined here, have a continuous spike-generation function and

an after-spike reset (Izhikevich, 2010). Like the HH model,the spike-generation function

does generate an AP, however it does not reset on its own. Whenthe model voltage reaches
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a spike-cutoff it is instead set to a reset value. The first example of this is the quadratic-

integrate-and-fire neuron. This is created by replacing−v in Equation 2.26 withv2

dv

dt
= b+ v2, if v = vpeak, thenv ← vreset. (2.38)

Izhikevich (2003) extended this by including a recovery variableU which can put the model

into different modes (i.e. resonant or amplifying). This can be defined by the system of

equations

dV

dt
= I + v2 − u if v ≥ 1, then (2.39)

dU

dt
= a(bv − u) v ← c, u← u+ d. (2.40)

WhereV is the membrane potential andU is the recovery variable. The sign ofb determines

if U is an amplifying or a resonant variable. In addition,a is the recovery time constant,

vpeak is the spike cutoff value and the reset voltage is defined byc. Finally, d drives the

after-spike behavior.

Equations 2.39 and 2.40 (5-parameter model) can replicate many different cortical cell

types (Izhikevich, 2003) but for other cortical and subcortical neurons it is sometimes more

powerful to represent the model as

C
dV

dt
= k(v − vr)(v − vt)− u+ I; if v ≥ 1, then (2.41)

and

dU

dt
= a{b(v − vr)− u} v ← c, u← u+ d (2.42)
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WhereC is the capacitance,k is related the neuron’s rheobase,Vr is the resting membrane

potential, andvt is the instantaneous threshold potential.

9 Parameter Izhikevich Model

5 Parameter Izhikevich Model

20 mV

400 ms

Figure 2.22: Izhikevich neuron. 5-parameter model (top). 9-parameter model (bottom).

It is slightly more expensive to simulate when expressing the model using Equations

2.41 and 2.42 (9-parameter model). However, it provides a level of control that the 5-

parameter model does not. Figure 2.22 shows the simulation of a striatal neuron. The firing

characteristics of striatal neurons demonstrate distinctup-down states. In the down state

the neurons have significantly reduced excitability. If enough excitatory input is received

to create an AP, the neuron remains in state of raised depolarization, the up state. In this

increased state of excitability the neuron is more likely torespond to excitatory input with

an AP. The 9-parameter model is capable of replicating thosestates, Figure 2.22 top. The

5-parameter model however, does not demonstrate this bistability.
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2.7 Summary

These simple point neuron models represent a simplificationof reality. However, even in

this reduced form, the processing power cannot easily be described discretely. In some

cases a mixed logic description fits; where the neurons process information in analog

(membrane voltage) but communicate digitally (APs). Unlike a digital computer, these

systems do not read in a set of instructions that describe howto handle the information

flow. Instead, that processing is built into a constantly changing functional anatomy. Even

this analogy falls short when exploring how that information is represented in a network.

There is currently no consensus on how the brain represents,processes and stores in-

formation. Research has presented examples of many different types of encoding schemes

(Eliasmith and Anderson, 2003). For example, rate based representations assume the infor-

mation is encoded in the rate of the neurons in a population. Or population based encoding;

where the activity of an entire population contributes to encoding information. There is also

spike-time encoding; where the time between successive spikes is used. All of these, and a

few others, have been demonstrated empirically but there isno single one that can explain

information flow in the brain. It is currently hypothesized that the brain incorporates all

or a subset of these in processing and representing information (Eliasmith and Anderson,

2003). Describing this phenomena as a comparatively simplecomputer does not to do it

justice.
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Part I

Engineering Neural Systems
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Chapter 3

Anatomy of a High-Performance Neural

Simulator

There are many difficulties to overcome in the modeling of large-scale neural systems.

These inherent difficulties can be further compounded by theneed for high-performance

and near real-time simulations. Although the simulation ofspiking neural systems can be

classified as embarrassingly parallel, the models generally do not scale linearly with the

number of compute elements. This is due to the computationalcomplexity of numerically

integrating the governing equations, as well as efficientlycommunicating spiking informa-

tion. This chapter presents some concepts used in designingmodern neural simulators.

Here the focus is on network layout, distribution and numerical integration. Chapter 4 ex-

pands on this by exploring spike exchange methods on general-purpose high-performance

computing clusters.
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3.1 Introduction

For many researchers the choice of neural simulation environment can be extremely diffi-

cult. There is a continuous trade-off between biological realism and computational com-

plexity. If access to high-performance computing resources is unavailable, large-scale mod-

eling may be out of reach. In addition, the time investment required for installing and learn-

ing a new simulator is a hindrance. With the relatively low-cost of GPGPU computing more

researchers now have the ability to explore large-scale models. However, the difficulty in

adopting a new simulation environment remains.

3.1.1 CPU based neural simulators

There are a number of general CPU based simulators that support large-scale neural mod-

els. NEURON, (Hines and Carnevale, 2007; Hines and Carnavale, 1997), and GENESIS,

(Bower et al., 2002; Bower and Beeman, 1998), are two of the most popular. Both offer

CPU versions for single and distributed computer environments. This list also includes

NEST, (Diesmann and Gewaltig, 2002), NCS, (Wilson et al., 2001), and CSIM, (Brette

et al., 2007). Below is a review of some of the more prominent CPU simulation environ-

ments.

NEURON was started by John W. Moore and Micheal Hines at Duke University (Hines

and Carnevale, 2007; Hines and Carnavale, 1997). Originally, The NEURON simulator

was used for modeling single neurons in high levels of detail. It has since been applied

to the study of larger networks of neurons. It is most useful for simulations where the

neurons of interest are spatially diverse, have complex membrane currents and channel

dynamics, and both intracellular and extracellular ionic concentrations are important (Hines

and Carnavale, 1997).
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Different mechanisms for constructing cells is provided bythe concept of sections. This

provides a level of abstraction that not only removes the underlying differential equations

from the user but also separates the cell physiology from thenumerical solution. Several

solution methods for the differential equations are also provided. The choice of algorithm

is left to the user and depends on the level of accuracy neededand the overall complexity

of the model. NEURON has had the benefit of years of development that has resulted in

a robust tool set that has helped to attract a wide user-base.A parallel implementation is

offered with the current version and can distribute the simulation by neuron or even by

section of neuron.

The General Neural Simulation System (GENESIS) project began at California Insti-

tute of Technology by James M. Bower. It was originally utilized for the simulation of large

neural networks (Bower et al., 2002). It has since been used in studies of varying levels

of abstraction and elaboration. The GENESIS design employsan object oriented approach

at the simulator level. Modules within the simulator are black-boxed; allowing connect-

ing modules the luxury of only needing the associated interface. This provides modelers

the ability to change and reuse discrete components of the simulator without having to

change unassociated code. GENESIS also offers a parallel simulation environment allow-

ing researchers to model over networked workstations, a parallel cluster or supercomputer

(Brette et al., 2007; Bower et al., 2002; Bower and Beeman, 1998).

The NeoCortical Simulator (NCS) was developed at The University of Nevada, Reno by

the Brain Computation Lab under the direction of Dr. PhillipGoodman. From its inception

a heavy emphasis was placed on parallelization and performance. In addition, mechanisms

for accessing spiking information and injecting stimulus was also extremely important.

Despite the focus on performance, NCS provides a number of important biological models.

For a review of what NCS refer to Wilson et al. (2001) and to seehow NCS compares to
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other neural simulators seeBrette et al. (2007).

NEural Simulation Technology (NEST) (Diesmann and Gewaltig, 2002) is the result

of the NEST initiative, a collaborative project intended tohelp extend neural simulator

development. NEST is intended for simulations of large neural networks consisting of point

neurons and neurons with minimal compartments. It is employed in studies interested in

the dynamics of neural structures Brette et al. (2007); Diesmann et al. (1999). Parallelism

is achieved by a combination of multithreading and message passing.

Circuit SIMulator (CSIM) (Brette et al., 2007) is a package for modeling networks

of point neurons. It was designed for studies at the network level, with the intention of

revealing high level network dynamics that are unavailableat the single cell level. The

software itself is a combination of a C++ solution engine andMatlab or Python interface.

Currently the implementation includes models for linear leaky integrate-and-fire neurons,

non-linear leaky integrate-and-fire neurons and compartmental based neurons.

XPPAUT (Brette et al., 2007) is a software package for solving differential, difference,

delay, functional, and stochastic equations as well as boundary value problems. While

it was developed as a general numerical tool, its ability to analyze a numerical system’s

dependence on specific parameters has made it extremely useful to neuroscientists.

SPLIT is an experimental package for modeling large-scale multicompartmental neural

models. Rather than rely on a formal interpreted modeling language, SPLIT is a kernel that

developers incorporate into custom C++ programs. It has support for parallel computations

that are completely hidden from the user.

Large-scale Edge Node Simulator (LENS) (Peck et al., 2003) is a simulation environ-

ment developed by the Biometaphorical Computing Group at IBM T.J. Watson Research

Center. LENS is considered a “problem solving environment”for large neural networks.

It offers researchers unique levels of abstraction that range from compartments to global
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brain processes.

Each of these provides a parallel CPU implementation that iswell-suited for many

distributed environments. However, they do not yet offer a GPU compatible version.

3.1.2 GPU based neural simulators

Given the ubiquity of graphical processing units (GPUs) in almost every computing device

today, it is no surprise that they are being exploited for general purpose computing. GPUs

have a large number of single-instruction multiple-data (SIMD) processors capable of ef-

ficiently processing huge amounts of data in parallel. In addition, the cost associated in

creating clusters of GPU’s is considerably lower than CPU based super-computers capable

of similar performance (Fan et al., 2004).

In the computational neuroscience community there have been a large number of projects

focused on single or dual-GPUs localized to a single computenode, however there are no

GPU-cluster based neural simulation environments openly available at the time of writing.

The lack of GPU support in general neural simulation has resulted in a number of

projects focused on creating general environments specificto GPU implementations. This

began with Nageswaran et al. (2009) and their release of a simulator supporting Izhikevich

neuron models, and a C++ user interface for creating networks. This work was recently

updated by Richert et al. (2011), however, both target a single GPU.

Thibeault et al. (2011) presented a proof-of-concept simulator that targeted multiple

GPU’s within a single computer, this is described in Section3.4. A method for distributing

the simulations on multiple nodes was presented as well as a novel spike message passing

scheme that represented the neuron states using individualbits. Izhikevich neurons were

supported along with conductance based synapses and STDP based plasticity.

Similarly, a number of projects have resulted in model-specific GPU implementations.
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Scorcioni (2010) presented a single GPU simulator capable of modeling 100,000 Izhikevich

neurons with 100 randomly connected STDP synapses in real-time.

Tiesel and Maida (2009), created a single planar network of Integrate-and-fire neurons

using the OpenGL graphics API. Along the same lines, the workof Han and Taha (2010),

presented a two-layer input-output network specific to image recognition.

Igarashi et al. (2011) developed a heterogeneous model of action-selection in the basal

ganglia. Two different neuron types are simulated in the model, Izhikevich neurons for the

striatum and Leaky integrate-and-fire with Hodgkin-Huxleychannels for the other areas.

The simulation was executed on a single CPU-GPU combinationin real-time.

Richmond et al. (2011) presented a model with 2 layers of integrate-and-fire neurons

with recurrent connections. The resulting code demonstrated a speed-up as high as 42x

over the comparable Python implementation. In this case theparallelism of the GPU was

exploited for parametric optimization.

Fidjeland and Shanahan (2010) published results for a single GPU simulation similar to

the work of Nageswaran et al. (2009). The system demonstrated higher throughput, defined

as spike arrivals per second, but a lower number of total neurons for real-time simulation.

Yudanov et al. (2010) demonstrated a single GPU simulationsof Izhikevich neurons in-

tegrated using an adaptive Parker-Sochacki method. Emphasis was placed on sub-millisecond

event tracking and accuracy between CPU and GPU implementations. Speedup of 9x be-

tween a comparable CPU implementation was achieved.

Nere et al. (2011) created an extension to a learning model ofthe mammalian neocortex.

The simulation abstracted the neural activity up to the level of neocortical minicolumns

using a rate-based model. Synaptic plasticity is only applied to active columns and follows

a Hebbian learning rule where the weight matrix between columns is increased if the input

is active and decreased if it is not. Simulations were distributed between a single CPU and
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either a single GPU card or dual GPU cards. The resulting implementation demonstrated a

60x speedup over the single-threaded implementation.

de Camargo et al. (2011) created a GPU simulation of multi-compartment conductance-

based neurons. The test network was comprised of excitatorypyramidal cells and inhibitory

cells. Each neuron contained two channel conductances modeled using Hodkgin-Huxley

dynamics. Different number of connections, weights and neural activity were explored

resulting in a speed up of 40x in some cases over the serial CPUimplementation.

3.2 Generic simulator design

The basic steps in a neural simulation are network design, network construction, integra-

tion, spike exchange and finally reporting. To illustrate the storage containers and basic

concept of spike exchange a simple neural simulator, Neurolite, is presented. Neurolite is

a general neural simulator developed by the author to overcome some of the limitations

present in NCS (i.e. limited channel implementations, complexity of network creation and

difficulty accessing individual neurons). The simulator supports single compartment mod-

els that include only the active transmission of electricalsignals. Currently model creation

is only in C++.
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Data Structures

Cell *

nodeConnnection *

localConnection *

(a)

Local Cell Index

Synapse Index

Propogation Delay

(b)

External

Messages
Message

Processor

Cell Index

Time Fired

(c)
Figure 3.1: Basic cell data structures. (a) Cell Information Structure. (b) Fanout Information Structure. (c)
External Message FIFO

The action potential generated by a cell when it fires is represented in the Neurolite simu-

lation as a message. That message will arrive at the receiving cell, after traveling along the

theoretical axonal connection, a certain amount of time after it was sent. In other words

there is a finite amount of time the action potential will needto travel along the axon. This

is known as the propagation delay. The data structures in Neurolite are designed to store

these messages in a way that utilizes the shared memory whileaccurately representing

that propagation delay, Figure 3.1. The intention is to create a system that passes the cell

messages in the most efficient way possible. A high level description of the design of the

message passing system and data structures is included below.
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This begins by visualizing a group of containers connected in a row, Figure 3.2, where

each container represents a moment in time. The number of containers in this group is

determined by the action potential that has the longest travel time, as well as the difference

in time between the containers.

Maximum Action Potential Travel Time

Figure 3.2: Group of cell containers

Each container in this group will in turn hold another group of containers, Figure 3.3.

These hold messages or spiking information about a cell for that particular moment. There

are identical groups stored in each container of the travel time group. It should be noted

here that once the end of the data structure is reached the software will simply loop back

to the beginning. This creates what is known as a circular buffer. These concepts should

become clear below.
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Figure 3.3: Cell containers for time T1

Figure 3.4a shows an example of messages contained in the cell group for time T1.

Notice that action potentials can arrive from multiple cells at the same time. Similarly,

Figure 3.4b, shows an example of messages stored at time T3.

(a) (b)
Figure 3.4: (a) Spiking messages for six cell group at T1. (b) Spiking messages for six cell group at T3.
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It was mentioned before that the size of the time group was limited by the maximum

propagation delay of the simulation. This is because when a cell fires the simulation will

determine which cells will receive that message. It will then place messages in the appro-

priate spots of the structure based on the propagation delayand the receiving cell. The

resulting structure ends up looking like Figure 3.4a and Figure 3.4b. With this scheme

messages are placed forward in time and the maximum distanceahead is determined by the

largest propagation delay. This is why the time group can be constructed using a circular

buffer.

3.3 Shared memory design

The generic design of Neurolite lends itself to a number of hardware implementations.

Presented here is an example applying these concepts to a shared memory architecture

(NeuroliteSM). The design was completed with Dr. FrederickC. Harris, Jr., James Frye

and the author, as part of a NCS redesign at The University of Nevada, Reno. The target

architecture was the Sun microsystems Sunfire X4600.

The X4600 consists of 8 processing boards linked together with a high speed physical

bus. Each board has a single processor socket as well as 8 slots for memory. The memory

on each board is accessible by all of the other processors butit is physically local to one of

the eight processing boards. The memory that is located on the same board as a particular

core (processing unit) is considered local. The memory thatis off-board is considered

remote and it requires more coordination between processors to access. This can affect

performance of the system and must be considered in any largeshared memory design.

With a basic idea of the message data structures defined abovethere are two questions

that need to be explored further. First, how are these structures constructed? Second,
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how can the construction and processing of the messages be completed faster and more

efficiently on a shared memory architecture? Also of interest are the problems that occur

when more than one core attempt to access a shared region of memory. If one core is

writing to a location while another is trying to read it, the core reading will not see an

accurate representation of that memory location. This typeof contention is handled using a

locking mechanism. The software will in some manner lock outa section of shared memory

before reading or writing to it. This can slow down the simulations in two ways. The first

is the timing overhead required to set and clear those locks.The second is the time that can

be spent waiting for a locked section of memory that is required to continue execution.

The NeuroliteSM design circumvents those issues by creating redundant message struc-

tures; one for each core. Figure 3.6 illustrates this idea for a three core system.

Figure 3.5: New message structure representation
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Message

Structure

CPU1

Message

Structure

CPU2

Message

Structure

CPU3

Figure 3.6: Redundant data structures.

During the processing stage of the simulation, a cell or group of cells is assigned to a

core, shown in Figure 3.7. This core will check the containers for that cell on each of the

redundant message structures. Keep in mind that although each structure is stored locally,

they are globally accessible to the other cores, Figure 3.8.

C3

CPU1

CPU2

CPU3

Figure 3.7: Work distribution.
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Message
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CPU1

Message
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CPU2

Message
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Figure 3.8: Each structure is globally accessible.

The issue of mutual exclusion is avoided by assigning each core a specific cell to work

on. When a cell fires, the core will store all messages to its local structure; once again

avoiding the need to use locks. The passing and processing ofmessages between cores on

the same node becomes a simple local memory operation. A similar concept can used for

internode communication but in those instances the strengths of the Infiniband connection

would be emphasized.

This design trades memory usage for speed; because the redundant structures require

large amounts of memory. With those structures the message passing can be done in a

very clean and efficient manner; the passing of a message becomes an address change. On

distributed compute clusters the message passing functionality obviously changes but the

overall data structures remain similar. This provides a mechanism for code reuse and offers

a high-level of extensibility.
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3.4 Single node GPU simulation

Recently, the utilization of graphics processing units (GPUs) for scientific computing has

increased dramatically. Originally intended as a means of offloading graphics and visual-

ization tasks away from the central processing units (CPUs), the single instruction, multiple

data architecture of GPUs lends itself to many scientific computing problems. As one of

the leaders in graphics chip design, NVIDIA has invested considerable resources in pro-

viding the scientific community with both hardware and software solutions aimed at lever-

aging their products for just such applications. The Compute Unified Device Architecture

(CUDA) created by NVIDIA provides developers with a relatively simple instruction set

as well as comprehensive tools for working in a GPU environment.

The proof-of-concept simulation code described here is presented as an illustration of

both the scalability of the design and the performance potential of GPUs. As an unopti-

mized prototype, it is in many ways a worst-case scenario. Only GPUs within a single

compute node are supported. However, even in this immature state, the design lends itself

to the addition of message passing between compute nodes. This prototype supports a sim-

ple input file format that at present is generated by a separate program. Once the input file

has been read in, the program executes the steps outlined in Figure 3.9.

This work was originally published in Thibeault et al. (2011) and was designed by

Roger Hoang and the author. The development of the simulatorwas carried out by Roger

Hoang, while the model construction code and the benchmarkswere completed by the

author.
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3.4.1 Design

Figure 3.9: Simulator Execution Flow

The simulation setup begins with a redistribution of the input model. The neurons are sorted

based on the number of synaptic connections. These are then distributed to the respective

GPUs in a round-robin fashion; providing a first-pass load balancing of the model. Once

the neurons have been distributed each GPU forms a local indexing and representation of its

neurons. The new indexing scheme is shared amongst GPU threads and is used to develop

the local neuron structure array and the Cell Firing Bit Vector, as shown in Figure 3.10. In

this implementation the Cell Firing Bit Vector is a representation of the entire neural model

at the current simulation time tick. In future version this will be restricted only to Neurons

that are of interest to a particular GPU thread.

The Local Synapse array is constructed in a similar manner with the synapses being

grouped by their presynaptic neural connection. This layout provides a contiguous region

of memory that can be accessed with minimal overhead within the GPU architecture.

Finally, the Action Potential Delay Table is constructed. This is a bit vector that pro-
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vides a mechanism for simulating the propagation delay of action potentials. As seen in

Figure 3.10, the X axis represents the local synapse’s axonal connection. The Y axis is a

circular buffer that is the size of the maximum propagation delay.

Figure 3.10:System Setup

After setup, the simulation begins by updating (numerically integrating) the neurons.

The appropriate region of the Action Potential Delay Table is read and the number of “1”

bits are noted. In this context, a “1” bit represents an action potential that has arrived at that

particular synapse. The neuron code then samples the electrical current contributed by that

synapse. After the entire Delay Table for the current time tick has been read, the voltage

of the cells are computed numerically using a forward Euler method. If the cell reaches

threshold and fires an action potential, its corresponding bit in the Current Cell Firings Bit

Vector is set high.
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Figure 3.11: Update Neurons

Once the neurons have been updated and the Cell Firings Bit Vector has been filled in,

the GPU threads will pass a copy of the vector to the other GPU threads. This is illustrated

in Figure 3.12. The layout of this vector for each of the respective GPUs should be noted.

This was described in the setup above and is a result of the redistribution of neurons.

Figure 3.12:Swapping of the Current Cell Firings Bit Vector

The synaptic updates begin by reading the respective Current Cell Firings Bit Vector,
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shown in Figure 3.13. Negative synaptic learning can be calculated and the Action Potential

Delay Table can be updated at this time.

Figure 3.13: Update Pre-Synapses

Shown in Figure 3.14, the Action Potential Delay Table is updated for the Neurons that

have fired. The appropriate bit, based on the delay specified by the model, is set high.

Figure 3.14: Update Action Potential Table
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Figure 3.15: Update Post Synapses

Finally, the synapses sample their post synaptic neuron anduse the result to calculate

positive learning if needed.

At this point, a producer-consumer thread model will grab the current cell firings vector

and begin writing it to the output file. Concurrently, if needed, the Neuron Update step

starts the process all over again.

3.4.2 Example performance

Figure 3.16:Speedup vs. Connections/Neuron
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Figure 3.17: Speedup vs. Number of Neurons (100 Connections per Neuron)

Presented in Figure 3.16 are the speedup results between oneand two GPU simulations.

For networks of only 1000 neurons there is no advantage to moving the simulation off of a

single card. As the network size increases there is a non-linear increase in speedup that can

be seen in Figure 3.17. As the Number of neurons and connections increases the advantage

of two cards approaches the ideal speedup of two.

Also of note is the amount of data transferred between GPUs. Table 3.1 illustrates the

small amount of information required at each time step. Based on the small bandwidth re-

quirements of the design and the linear dependence on the number of neurons, the addition

of hardware should provide a near linear increase in speedup. This is of course dependent

on the model sizes as illustrated by these benchmarks.
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Table 3.1: Total Data Transfer between GPUs at each time step.

Neurons Data/Time step (Bytes)

1,000 125

10,000 1,250

100,000 12,500

1,000,000 125,000

Figure 3.18 illustrates the real-time capabilities of the prototype simulator. Once again

as the number of connections per neuron is increased the advantage of multiple GPUs is

enhanced. From this a model with 100,000 Neurons and 50 connections per neuron can

run at about 1.2 times real time. We are confident with some basic optimizations that these

numbers will be drastically improved.
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(a)

(b)

(c)
Figure 3.18: Timing comparison for number of neurons vs. number of connections per neuron. (a) 1,000
Neurons., (b) 10,000 Neurons., (c) 100,000 Neurons.
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3.5 Cluster based GPU simulation

Moving neural simulations to high-performance cluster environments offers the potential

for substantial speedup compared to CPU based clusters. Making that move however, is not

straightforward and there are many different design choices that can affect the performance.

We present here a review of the unique design patterns used for a general large-scale neural

simulation framework. Named HRLSim, it was designed for both parallel CPU architec-

tures and parallel General-Purpose Graphics Processing Unit (GPGPU) super-computers.

In addition, example benchmarks are presented to illustrate the potential of the framework.

HRLSim development was started by Aleksey Nogin, YoungkwanCho and Michael J.

O’Brian. This work was then overhauled and extended by Kirill Minkovich, who was later

joined by the author in that effort. The motivation for creating another neural simulator

was driven by the need to support the neuromorphic hardware of the DARPA SyNAPSE

project (DARPA, 2012). The goal of which, is to implement in asquare cm of CMOS,

106 neurons with1010 synapses and an average of104 synapses per neuron. Recently, as

part of this effort, a compiler for the automatic translation of a given neural architecture

into custom neuromorphic hardware was published by Minkovich et al. (2012). HRLSim

was developed to support the neuroscience research of the SyNAPSE project and create the

input into that neuromorphic compiler.
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Figure 3.19: Interactions of the HRLSim neural simulator modules.

Models in HRLSim are created in C++ and then compiled into an executable. By defin-

ing experiments this way the performance optimizations of the compiler can be exploited.

Unused code is automatically removed and other optimizations such as loop-unrolling and

value precalculation can be performed.

Figure 3.19 demonstrates the relationship between different modules of the simulator. A

simulation begins with the main process instantiating a Statistics object, an Input object and

a Master Compute object. The master compute object instantiates the Network and User

Experiment which in turn construct the Network and Network State objects. The Network

is then split into subnetworks and passed to Slave Compute modules using Communication

objects.

The flow of the simulation is controlled by the master process. Inputs and outputs

are facilitated by calls to virtual functions in the user experiment base class. The heavy

lifting of the simulation is done by the slave nodes. The master node is then responsible for
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performing user supplied task and recording the network state, spiking activity and synaptic

weights.

Start Iteration

Integrate
Receive

Spikes

Send

Spikes

Postsynaptic

Update

Presynaptic

Update

Figure 3.20: Flow chart for a single iteration.

Many of the operations of neural simulations can be performed in parallel to each other.

Figure 3.20 illustrates how these bulk tasks are executed inHRLSim. The individual steps

in a single iteration are

1. The communication thread starts receiving incoming spikes.

2. The computation threads waits for the synaptic updates from the previous iteration
to finish.

3. The computation thread performs integration to generatethe outgoing spikes.

4. The communication thread starts transmitting the outgoing spikes.

5. The computation threads starts the synaptic updates.

6. The communication thread waits for incoming spikes to be received and the outgoing
spikes to be sent.



77

This parallelization maximizes the amount of overlapping computation and communi-

cation. Additional strategies employed by HRLSim are explored further below.

3.5.1 Network layout

Even with the C++ preprocessing, anticipating the network configuration at that time is

unreasonably complicated. To compensate for this, the initial network is flattened into

vectors occupying contiguous regions of memory. The network is reduced to three vectors,

one containing the number of outputs for each neurons, one containing the indexes into the

synaptic connection vector and a vector describing the post-synaptic connections of each

neuron. This flattened system allows for optimized memory access and favors synaptic

computations, which take up much of the computational time of a simulation.

3.5.2 Delayed STDP

There are 1000 times more synapses in the brain than there areneurons. The computation

can be dominated by updating synaptic variables. Some of theslowest synaptic calcu-

lations are the STDP parameters, however they are only needed when a neuron fires an

action potential. Rather than calculating these at each time step, HRLSim delays the com-

putation until it is actually required. This avoids having to update synapses at each time

step and removes the simulator’s performance dependence onthe number of synapses. In

CPU simulations this is further optimized by using either precomputed values or approxi-

mations to the exponential decay functions. Initial benchmarks demonstrated a38% faster

simulations.
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3.5.3 Dynamic method selection

GPU performance is heavily dependent on memory accesses. Performance is highest when

those accesses are aligned, so threads access consecutive memory blocks. This is difficult

to predict when memory access is dependent on network activity. An intelligent selection

method was added to HRLSim to provide a way to switch between two different postsy-

naptic updates, each with performance characteristics that are dependent on the activity.

The first one accesses only the neurons that just fired. The second method iterates over the

entire subnetwork of neurons updating only those that just fired.

To illustrate the benefit of switching between these, a network of 100, 000 neurons was

simulated for30 seconds. When only the neurons that fired were accessed the simulation

completed in26 seconds. It took167 seconds to complete if the simulation iterates through

all of the neurons. However, when the simulator dynamicallyswitches between the two,

based on the number of neurons that fired, the simulation completed in21 seconds.

3.5.4 Kernel parallelization

As outline in Figure 3.20, the results of many of the computations are not needed until

later in the current iteration or the subsequent iterations. Because of this, multiple CUDA

streams are used to build queues of required operations. This allows much of the computa-

tion to be completed in parallel by employing the native CUDAmechanisms.

Memory layout

To optimize memory access, data structures are aligned along 128-bits. This is done be-

cause single instruction reads can be up to 128 bits wide in CUDA; avoiding overlapping

memory calls. In addition to this, memory allocations are based on assumed sizes, rather
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than the maximum possible. As a result, the memory usage is greatly reduced and there is

only a minimal overall penalty from rare memory resizes.

3.5.5 Communication message packing

Chapter 4 deals with exchanging spikes but before that can happen the message packets

need to be constructed. To optimize the increase in spikes generated by a GPU simulation

compared to a CPU one, much of the heavy lifting is done on the GPU. A special kernel is

employed to efficiently pack the spikes.

3.5.6 Example benchmarks

Figure 3.21: (Top) Two 80%excitatory / 20% inhibitory networks. (Bottom) Raster plot of2000 neurons for
10 seconds from one of these networks.
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A set of experiments that create an uneven distribution of work were created to demonstrate

the capabilities of the HRLSim environment. The worst case scenario for a large-scale

simulation is when one node is doing a disproportionate amount of work. The networks

created for the benchmarks here do exactly that. These are weak-scaling, in that the number

of neurons and synapses increases linearly with the number of nodes. Each node simulates

a balanced inhibition network consisting of80% excitatory neurons and20% inhibitory

neurons, 3.21 (top). These are connected to other networks with a probability of25%.

To avoid the activity of the overall network getting out of control the nodal networks are

connected with a synaptic weight of zero. This forces a spiketo be passed but does not

affect the activity of the network.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.22:GPU Results, 100,000 neurons per node. (a), (b), and (c) showthe runtime distribution on 4, 16,
and 64 nodes, respectively. (d) shows the linear regressionfor plots (a), (b), and (c). (e) shows the histogram
of maximum spikes per iteration. (f) shows how the runtime scales to network size.
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The difficulty in simulating these networks is that the banded firing of Figure 3.21

(bottom), is uncorrelated between nodes. Compute nodes randomly becomes the most

active of the cluster, slowing down the entire simulation. When examining the maximum

amount of spikes generated on each node, shown in Figure 3.22(e) there is a clear trend

that shows the more nodes being used the more spikes that are generated (when examining

the maximum spikes generated per iteration). The evaluation was performed on a cluster

of 92 compute nodes, each with two Intel Xeon E5520 2.27GHz CPUs and two NVIDIA

Tesla C1060 cards, with Infiniband communication.

The benchmarks were run on 2, 4, 8, 16, 32, and 64 GPU cards where each GPU card

simulated a 100K neuron network. Figures 3.22 (a), (b), and (c) illustrate that the total time

(green) scales linearly with the simulation time (red) and the communication time (blue)

remains relatively constant.

The penalty from the increase in the number of nodes is observed in the trend line of

Figure 3.22 (d). This can actually be explained by the histogram in Figure 3.22 (e). As

outlined above, when the number of nodes increases so does the probability that one of

them is running slowly.
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Figure 3.23: Example timing results for benchmark model execute on 16 nodes showing how simulation
time and communication time correlate to the total time. Theexecution times were summed across all the
nodes.

Figure 3.23 illustrates how well the computation and communication tasks are threaded.

When there are a low number of spikes the computation takes a small percentage of the total

simulation time and the communication dominates the performance. However, when the

spiking activity increases the communication cost goes down since it can be effectively

overlapped with the increased computation time.

3.6 Discussion

The designs presented here represent the choices made in several different simulation

projects. They are a sampling of the neural simulator designspace and as such, do not

offer a complete view of the available neural simulators. The factors in designing these

environments are dominated by two very important details. The first is the target level of

abstraction. Although some environments, such as NEURON (Hines and Carnevale, 2007)
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and GENESIS, (Bower and Beeman, 1998), cover a large range ofphysiological detail,

most environments target specific segments of neural modeling. The high-performance

simulators, such as those presented here, are dominated by point neuron and sub-threshold

implementations. Performance is less of a concern in the detailed neuron simulators where

only a small number of neurons are modeled.

The second factor is the target hardware infrastructure. The GPU based environments

reported here are all exclusive to NVIDIA’s CUDA platform. This restricts the potential au-

dience of these environments and also helps explain previous simulator’s specificity to the

designer’s personal project. The CPU based projects are more general however, an interest-

ing trend can be seen where many of these are implementing performance optimizations for

specific hardware (Plesser et al., 2007; Hines et al., 2011).When creating a new simulator

there are many things that need to be considered. Some of the more important aspects are

outlined below.

3.6.1 Extensibility

A trend of the models presented here is that the more extensible the design, Section 3.2, the

more performance suffers. The GPU simulators, the highest performing designs, currently

lack scalability. Adding new features to either design is tedious and difficult to implement.

While porting these implementations to new hardware is almost completely unreasonable.

The trade-off between performance and scalability is a choice that either complicate the

design or restrict the environment to specific hardware and features.

Projects like OpenCL (Group et al., 2008) can abstract away some of the hardware

dependence but that comes at cost in performance. Additionally, template based designs

can improve extensibility but that brings an associated increase in code complexity and

again, can introduce decreased performance.
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The obsession with simulator performance is in direct conflict with the need for exten-

sibility. The reality, however, is that users are going to continually request new features and

code bloat is inevitable in any long-life software project.In addition, the field of neuro-

science continually presents new information on brain function. Extensibility is an absolute

requirement for remaining state-of-the-art.

3.6.2 Model sharing

Learning to use a given neural simulator is surprisingly difficult. Many users take the time

to learn the specifics of a single one and stick with that, choosing familiarity over features

or performance in some cases. This allegiance to a specific simulator is not necessarily

bad but sharing models between researchers becomes a problem. If a model a researcher is

interested in is not implemented on their simulator of choice, porting it can be an arduous

task. Similarly, validating the results of a simulation study are now tied to a single envi-

ronment, preventing others from building on existing research. The numerous simulation

environments are a benefit to the field (Djurfeldt and Lansner, 2007), but the lack of model

sharing is not.

Standardized interface projects such as PyNN (Davison et al., 2009) and NeuroML

(Crook et al., 2007) are aimed at alleviating some of the problems with model sharing as

well as the usability of simulators. With a common interface, researchers can take the time

to learn the idiosyncrasies of a single language but can haveaccess to many different neural

simulation environments. As general simulators are planned and developed, including one

of the standards is important for improving the chances of adoption in a saturated field.
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Chapter 4

Efficient Spike Exchange in Distributed

Neural Simulation

Efficiently passing spiking messages in a neural model is an important aspect of high-

performance simulation. As the scale of networks has increased so has the size of the

computing systems required to simulate them. In addition, the information exchange of

these resources has become more of an impediment to performance. In this chapter we ex-

plore spike message passing using different mechanisms provided by the Message Passing

Interface (MPI). A specific implementation, MVAPICH, designed for high-performance

clusters with Infiniband hardware is employed. The focus is on providing information

about these mechanisms for users of commodity high-performance simulators. In addition,

a novel hybrid-method for spike exchange implemented and benchmarked.
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4.1 Introduction

The highly distributed nature of the animal nervous system presents a unique challenge

in theoretical and computational modeling of neurobiology. Whether these models are in-

tended to provide a better understanding of biological function or to build more intelligent

agents, the comparatively limited parallelization inherent in all modern computing archi-

tectures must be overcome to achieve models that accuratelyrepresent the highly parallel

nature of biology. The current computing and software paradigms have prevented truly

scalable neural models that can faithfully simulate biology in reasonable amounts of time.

In addition, a compromise between biological realism and performance must be made. This

is a concession that is often unacceptable to the overall performance of the task.

There are two major steps in simulating the nervous system, incrementally solving the

governing equations and communicating the results to otherparts of the system. We previ-

ously presented ways of improving the performance of the former by parallelizing the com-

putations on clusters of General Purpose Graphical Processing Units (GPGPU) (Minkovich

et al., 2012). The purpose of this work is to demonstrate where the spike communication

can be optimized on generic high-performance computing architectures.

The effort to efficiently simulate spiking neural networks has a long history that spans

hardware implementations (VLSI and FPGA) and the more popular highly distributed com-

pute cluster implementations. Although hardware options are increasing in popularity with

projects like SPINNAKER (Furber et al., 2012) and SyNAPSE (Merolla et al., 2011; Srini-

vasa and Cruz-Albrecht, 2012), they still cannot compete with the practicality and flexi-

bility of generalized simulators. Even the aforementionedhardware options are generally

supported by high-performance distributed simulation environments.

Recently, Hines et al. (2011) explored several different spike exchange methods on an
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IBM Blue Gene/P (BP/P) cluster and concluded that point-to-point communication using

the built-in standard Message Passing Interface (MPI) non-blocking MPI Isend was the

worst performing method. Of the top performing methods of that work, the MPI collective

routine, MPIAllgather, was among the best; often with simulation times comparable to the

BP/P specific direct memory access routines.

Hardware such as the BG/P provide unprecedented performance per watt but come with

a price point that can be out of reach to most computational neuroscientists. Because of

this, commodity clusters using Commercial Off-The-Shelf (COTS) components are more

prevalent in research labs. With the availability of GPUs, the architecture of COTS clusters

has changed considerably. Unlike the BG/P architecture were there can be over 100,000

processors linked together, GPU based COTS clusters have much higher processing capa-

bilities on a single node that share a common link to the rest of the cluster. The dense

parallelization available on a single node allows for a muchlarger number of computations

but results in a communication bottleneck as more information must be shared between

nodes.

Morrison et al. (2005) presented a generic architecture fordistributed neural compu-

tation. In that, they contend that the amount of time spent incommunication is small

compared to the amount of time required to update the neurons. This appears to be a rea-

sonable statement so long as the number of compute nodes is small. However, as both the

number of compute nodes and the number of neurons simulated increases the amount of

time spent in communication becomes significant.



89

4.2 Methods

When distributing the network simulation, different portions of the model are simulated by

separate computers in parallel. The neural model is integrated at each iteration, and the

spiking information is sent to all of the neurons connected to those that fired.

Ideally, when parallelizing the simulation of spiking neural networks, the computa-

tional cost of the mathematical integration and synaptic computations is balanced with cost

of communicating information between nodes (single computers within a cluster). His-

torically, as mentioned above, the communication time was significantly lower than the

compute time. With the introduction of higher-performancearchitectures such as General

Purpose Graphical Processing Units (GPGPU) and specialized neural hardware systems,

this is no longer the case. However, the way spiking information is sent has not changed.

Almost all hardware and software simulation environments use a variant of address

event representation (AER) (Boahen, 2000). The simplest and most efficient form of this is

when a neuron fires an action potential, the neuron’s unique Id number is sent to all of the

nodes that contain post-synaptic neurons connected to the one that fired. In general, all of

the neurons that fire during the current iteration can be collected and sent as a single packet

to all of the connected nodes.

As the number of neurons that fired increases, the size of the data packets correspond-

ingly increase. In this case, the time spent in communication is a direct correlation to the

number of neurons that fired. Similarly, as the number of compute nodes increases so does

the number of packets that need to be sent. In some cases, for both software and hardware

based systems, this can prevent scaling up to desirable model sizes.
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4.2.1 Dummy neurons

Figure 4.1: Dummy neurons. A. An example network connection. B. Distribution of the sample network
among three nodes.

HRLSim uses the concept of dummy neurons to not only reduce the amount of informa-

tion distributed for a spike event but also the complexity ofupdating the synaptic weights.

Dummy neurons are essentially copies of pre-synaptic neurons that are located on remote
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compute nodes. These copy neurons receive the spiking information from the remote neu-

ron and then relay that to all of the locally connected post-synaptic neurons. In addition,

the pre-synaptic information is computed at the dummy neurons, rather than on the remote

node. This scheme is illustrated in Figure 4.1.

4.2.2 Rate independent message passing

Figure 4.2: Hybrid message passing. A. The number of neurons that fired are below the threshold. B. When
the number of neurons increases past the threshold the simulator automatically switches into the bit-packed
mode.

The novelty of the hybrid message scheme lies in its deterministic performance, ambiguity

to neuron firing rates and scalability greater than traditional message passing methods.

At its core, the method reduces the firing information down tosingle bits in a packet.

Essentially, each output neuron is represented by a single bit; where a ’1’ indicates that

neuron fired, ’0’ indicates it did not. The key is that this is only done when firing rates are
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high enough that it will reduce packet sizes. In addition, this bit-packing scheme is only

performed between the nodes that meet the fire rate requirement.

Consider the case shown in Figure 4.2. There are four computenodes each simulat-

ing a group of neurons. Focusing on node A, suppose that thereare 2,000 neurons with

projections to node B, 1,000 neurons with projections to node C, and 5,000 neurons with

projections to node D. The maximum communication cost associated with transferring ac-

tion potentials between the populations and the remote nodes is now a function of the

population size. The theoretical cutoff fire rate is also a function of this as well.

The cutoff rate is the point where it is computationally cheaper to represent the neu-

rons in a bit-packed notation compared to traditional AER. This transition point is shown

through an example below and in Figure 4.2. Suppose that on Node A at a particular iter-

ation, 50 neurons connected to B fire an action potential, 24 neurons connected to C fire,

and 100 neurons connected to D fire. In this case the AER schemeis used to communicate

between all nodes. If instead, 72 neurons that are connectedto B fire and everything else

stayed the same, then the bit-packed scheme is used only between nodes A and B. In this

case, only 63 integers would have to be transferred instead of the 72 with the AER scheme.

A single byte at the beginning of each packet is use to facilitate the dynamic switching

between message packing schemes. For the AER scheme this header byte indicates the

total number of firings contained in the current message. Forthe bit-packed scheme this

will be a negative value signaling the receiving node to process the packet as such.
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Figure 4.3: Example message passing.

Consider the action selection model of Thibeault and Srinivasa (2012), as a motivational

example of a physiologically realistic model where the rate-independent message passing

scheme would have a significant performance impact. The network models three micro-

channels of the basal ganglia using 576 neurons. For this example, it is assumed that the

192 neurons in the Globus Pallidus External (GPe) are outputprojections whose spiking

information must be passed to another node. Physiologically the GPe has a basal level

of activity around 30 Hz which is a level where other message passing schemes show

performance degradation.

It takes 18 integers to encode all 576 neurons, which is equivalent to encoding 3.125%

of the total outputs with AER. Figure 4.3 illustrates the amount of simulation time spent for

the different rates of spiking activity over a 5 second simulation. This was only the basal
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level of activity and no inputs were given. The results show that 31% of the simulation time

is spent in the region were more than 18 neurons fire.

4.2.3 Initial characterization

Four possible communication schemes were initially explored using a custom C++ code.

Different message sizes, from 8 bytes to 1000 kilobytes, were exchanged 1000 times. The

total time to send the messages was measured using the Linux Real-Time Timers. The

tests were run for4, 8, 16, 32, and64 physical machines with each machine containing2

processors that are treated as separate nodes by MPI. Simulations were run multiple times

and the lowest time for each message size was recorded. This procedure was chosen to

eliminate the periodic anomalies, such as scheduler synchronization, package updates or

network file system activity.

4.2.4 Benchmark experiments

Here we explore two different aspects of spike exchange withMPI on general computing

architectures. The first, explained further below, is the type of communication mechanism.

The performance between peer-to-peer and collective communication using the included

MPI functionality is analyzed to determine if one shows a clear benefit. This was completed

for both Infiniband communication fabric and standard Ethernet.

The second aspect explored was both the benefit of bit-packing as well as when in a

simulation to switch from AER. The pivot point is a multiplier used to determine when to

switch to bit-packing. The number of neurons connected to a remote node that fire during

a time step,F , is compared to the total number of connections to that node,N , divided by
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32, the number of bits in an integer, times the pivot point,P .

F ≤ P
N

32
. (4.1)

Basically a pivot point of1 would correspond to the point in the simulation when the

number of cells that fire is equal to the horizontal line of Figure 4.3. A pivot point of0

would mean that at every exchange the packets would be encoded with the bit-packing

scheme. Currently only the Non-Blocking and Alltoall mechanisms have the option of

bit-packing. Since the initial performance for the non-blocking method was higher than

Alltoall, it was chosen for the bit-packing experiments. During the experiments pivot points

of 0, 1, 2, 3, 10, 20 and32 are used.

For each of these, two different types of experiments were performed: strong scaling

and weak scaling. The strong scaling experiments explore networks of the same size dis-

tributed over a larger number of compute nodes. The experiments are outlines in Table 4.1.

In the weak scaling experiments the size of the network increases in direct correlation with

the number of nodes, this is outlined in Table 4.2. Only communication time is measured

in the benchmarks and each trial was run three times, with thelowest trial time recorded.



96

Table 4.1: Strong scaling experiments.

Nodes Cells Connections

4 2000000 1000
8 2000000 1000

16 2000000 1000
32 2000000 1000
48 2000000 1000

4 250000 10000
8 250000 10000

16 250000 10000
32 250000 10000
48 250000 10000

Table 4.2: Weak scaling experiments.

Nodes Cells Connections

4 2000000 1000
8 4000000 1000

16 8000000 1000
32 16000000 1000
48 24000000 1000

4 250000 10000
8 500000 10000

16 1000000 10000
32 2000000 10000
48 3000000 10000

4.2.5 Hardware

The Infiniband fabric is a hardware level communication system specifically designed for

high-performance applications. It offers low-latency andhigh-bandwidth over short dis-

tances. In contrast, Ethernet hardware is a ubiquitous technology found on most modern

computing architectures. It is primarily used for local-area connections and includes the
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physical and data link layers of the Open System Interconnection model. Although in high-

performance systems, hardware communication fabrics likeInfiniband are more prevalent,

evaluating the lower bandwidth and lower latency mechanisms is important for both remote

applications (i.e. robotics), as well as inexpensive HPC clusters.

The benchmarks presented here were completed on a cluster of92 compute nodes,

each with two Intel Xeon E5520 2.27GHz CPUs and two NVIDIA Tesla C1060 cards,

with Infiniband and Gigabit Ethernet communication backends.

4.2.6 Test suite

100 ms

50 Hz

1.0

A. B.

C. D.

50 Hz

Figure 4.4: Example activity of 200 neurons from a50 Hz Poisson network. A. Fire rate of the network
calculated using a Gaussian window. B. Neuron spike frequency histogram. C. Raster plot of spiking activity
for 1 second. D. Coefficient of variation for the 200 neurons displayed in C.
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A software suite was developed to facilitate the benchmarks. The suite consisted of network

generation, neuron spike generation, and spike exchange, written in C++, along with job

submission, results analysis and plotting, written in Python. The network is split randomly

with each node simulating the same number of neurons. The connections are randomly

selected from a uniform distribution. The neural activity is generated by a Poisson random

point process with the center at the target frequency. Four target frequencies were used,

10 Hz, 30 Hz, 50 Hz and80 Hz. The spike exchange was then controlled by one of three

mechanisms, described below. Simulations are run for1 second simulation time. The Non-

blocking and Alltoall code was written by the author and the blocking and bit-packing code

was co-written by the author and Kirill Minkovich while at HRL Laboratories LLC.

4.2.7 MPI communication mechanisms

The simulations were performed using MVAPICH 1.7. MVAPICH is built on the MPICH2

libraries by The Network-Based Computing Laboratory at TheOhio State University. It

is developed specifically for Infiniband architectures withoptimizations that exploit the

Infiniband hardware. There are a number of options for messaging passing provided by the

standard. Four of those were explored in this project; theseare described in detail below.

Point-to-point communication

The blocking P2P communication is accomplished with separate calls toMPI Isendand

MPI Recv. TheMPI Isendcommand is a non-blocking function that takes in, as arguments,

a buffer with the data to send, how much data to send and which node in the cluster to send

it to. The receiving node will first call the functionMPI Probeto determine how much data

the sending node has. It will then useMPI Recvto copy the data to a local buffer.MPI Recv

will block until the sending node has completed its corresponding call toMPI ISend.



99

Similar to the blocking communication, the non-blocking scheme uses calls toMPI -

Isendbut it uses the non-blocking call toMPI Irecv. This method allows the underlying

communication to be handled by the MPI threads.

Both point-to-point communication schemes requires a nodeto callMPI Isendfor each

node it sends data to, as well asMPI ProbeandMPI Recvfor each node it is receiving data

from. As a consequence of this, even if a node does not have anydata to send, a dummy

message must be sent to keep the receiving nodes from lockingand waiting for data that

will never arrive.

Collective communication

The MPI standard provides broadcast functions that allow the exchange of data to multi-

ple nodes using a single optimized routine. The motivation behind these functions is to

reduce code complexity while allowing developers of the MPImiddleware to optimize the

communication at the device level. To use the commands, the connection information as

well as the send and receive buffers are setup the same as theywere for the peer to peer

communication above. A single call to the Alltoall functioncompletes the exchange. Two

methods employing these functions in neural simulation were developed and tested.

The collective operations use either a fixed buffer size, this is the case withMPI All-

toall, or variable size buffers, used withMPI Alltoallv. To the user, the execution is similar

to the P2P methods described above except there is no call toMPI Probe, instead a single

byte header is used at the beginning of each message to indicate how much information

was sent. Each sending node has a local buffer that is the samesize as the receiving node’s.

If the amount of data the sending node has exceeds the buffer size, a resizing of the buffer

is completed. The sending node will then send the maximum amount of data the receiving

node can hold. However, the header will indicate the total amount of data the sender actual
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needs to transmit. The receiving node then performs a resizeand a peer to peer ISend/Recv

is completed to transmit the remaining information. Generally, there are very few resizes

and the initial buffer size can be made sufficiently large enough to reduce the likelihood of

needing them.

Collective communication calls block processing so no other computations can be per-

formed while spikes are exchanged. In order to allow for communication and the spike

computations to occur in a parallel, the spike exchanges forcollective communication is

threaded. There is a cost associated with sending and receiving signals from the communi-

cation thread but ideally that is minimal compared to the benefits.

4.3 Results

4.3.1 Initial characterization

In a neural simulation it is unlikely a single node would passa message of1 MB. Even a

200 kB message under the AER scheme would mean that50, 000 neurons on that node had

fired. Figure 4.5 illustrates the results of the initial MPI experiments. For most cases the

point-to-point mechanism are more efficient than the collective operations. The exceptions

are for Alltoall for 64 and128 nodes on Infiniband. This is particularly obvious for128

nodes; which is not an unexpected result. The Network-BasedComputing Laboratory at

The Ohio State University has put considerable effort into fine tuning the Alltoall algorithm

in particular (Sur et al., 2005). The results of that effort were lower latencies compared to

other methods.

The full characterization results are present in Figure 4.6. The most interesting of these,

are the noticeable step jumps in communication time. For earlier Ethernet experiments and
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almost all Infiniband experiments there is discontinuity inthe timing curves. Why this

is present is unclear. Preliminary investigations into theMVAPICH source code revealed

switches in methodology as message sizes changed but whether or not that is the cause is

unknown at this time.
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Figure 4.5: Communication characterization (small)
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Figure 4.6: Communication characterization (large).
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4.3.2 Communication method
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Figure 4.7: Results for communication method experiments on Infiniband. Along the x-axis are the different
communication methods for the different number of compute nodes. The letters correspond to B-blocking,
N-Non-blocking, A-Alltoallv. The subplots are, A. Strong scaling for1, 000 efferent synapses. B. Strong
scaling for10, 000 efferent synapses. C. Weak scaling for1, 000 efferent synapses. D. Weak scaling for
10, 000 efferent synapses.
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The strong scaling results shown in Figures 4.7A and B revealan interesting trend in the

cost of increasing the distribution of a network. In theory,as a network is distributed over

more compute nodes, the performance will increase. This is an effect of reducing the

amount of computational work required by each node. However, as illustrated here, the

communication cost increases with a corresponding increase in compute nodes. This is an

important consideration for balancing the number of neurons per node with the number of

nodes. Unless the network activity and the number of computenodes is low, the simulations

would be unable to run in real-time. The real-time mark is an important measurement for

neural simulation. Models that can be run in real-time or faster, are required for embodied

modeling; something that is important to the work presentedin this paper.

Another interesting trend can be seen in the blocking communication results of Figure

4.7A. At first these were assumed to be anomalies. However, after running12 extra simu-

lations for8, 16 and32 nodes at both50 and80 Hz firing rates the results stayed consistent.

It is still unclear why there is a drop in simulation time at64 nodes compared to8, 16 and

32.

The benefit of dummy neurons is illustrated in Figure 4.7B. Although there is a clear

penalty to encoding more spike messages it is not dependent on firing as in Figure 4.7A.

This likely due to the smaller number of neurons.

The weak scaling experiments shown in Figures 4.7C and D showhow an increase in

both neurons and nodes can affect the overall performance. Disappointingly, the correlation

between the two is not linear; instead following a more exponential trend instead.

Overall on infiniband hardware the choice of communication method seems to favor

the non-blocking method. This is slightly surprising in thecontext of the results of Section

4.3.1, where the blocking and non-blocking methods appeared to be identical. The non-

uniform nature of the Poisson network is the likely explanation for the difference. The



106

non-blocking code allows message processing to happen out of order, favoring those that

are sent earlier. There is obviously less time wasted waiting for messages to arrive in order.
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Figure 4.8: Results for communication method experiments on Ethernet.Along the x-axis are the different
communication methods for the different number of compute nodes. The letters correspond to B-blocking,
N-Non-blocking, A-Alltoallv. The subplots are, A. Strong scaling for1, 000 efferent synapses. B. Strong
scaling for10, 000 efferent synapses. C. Weak scaling for1, 000 efferent synapses. D. Weak scaling for
10, 000 efferent synapses.
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The strong scaling experiments on Ethernet hardware in Figure 4.8A show a similar in-

crease to that seen on Infiniband. However, the Alltoall method shows an advantage for

higher rates of activity and lower number of nodes. Why this happens is again unclear,

as is the step increase in communication time for64 and 96 nodes. When the number

of efferent connections is increased to10, 000, a surprising plateau in the blocking and

non-blocking schemes emerges between16 and96 nodes. The Alltoall scheme however,

continues to trend upwards.

For the weak scaling experiments, Figures 4.8A and B, the Alltoall scheme actually

performs considerably worse than the other two methods. With the Non-blocking scheme

generally demonstrating better timings throughout the weak scaling experiments.
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4.3.3 Bit-packing
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Figure 4.9: Pivot results: Infiniband. The number of nodes are listed along the x-axis. The markers indi-
cate the pivot point that resulted in the best performance. The size of the markers are proportional to the
performance benefit compared not bit-packing (Pivot =32). This is in reference to the marker size in the
legend. The subplots are A. Strong scaling for1, 000 efferent synapses. B. Strong scaling for10, 000 efferent
synapses. C. Weak scaling for1, 000 efferent synapses. D. Weak scaling for10, 000 efferent synapses.
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The bit-packing experiments on Infiniband hardware show no clear trend towards an opti-

mal pivot point, Figure 4.9. On these plots the size of the markers is directly proportional

to the increase in performance when compared to using the AERscheme exclusively. Al-

though there is a benefit to bit-packing, that advantage is surprisingly small. This may be

due to the the low-latency, high-bandwidth characteristics of the Infiniband fabric.
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Figure 4.10: Pivot results: Ethernet. The number of nodes are listed along the x-axis. The markers indi-
cate the pivot point that resulted in the best performance. The size of the markers are proportional to the
performance benefit compared not bit-packing (Pivot =32). This is in reference to the marker size in the
legend. The subplots are A. Strong scaling for1, 000 efferent synapses. B. Strong scaling for10, 000 efferent
synapses. C. Weak scaling for1, 000 efferent synapses. D. Weak scaling for10, 000 efferent synapses.

On the lower performance Ethernet hardware bit-packing offers important performance

gains. The strong scaling results displayed in Figure 4.10A, show that as both the rate
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and number of nodes increases so does the benefit of employingbit-packing. This trend is

slightly less obvious for the case of10, 000 efferents, Figure 4.10B but returns for the weak

scaling experiments, Figures 4.10C and D.
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4.3.4 Bit-packing vs. AER
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Figure 4.11: Bit-packing vs. AER: IB. Along the x-axis are the different two different pivot points for the
different number of compute nodes. The letters correspond to P-bit-packing, N-No packing. The subplots
are, A. Strong scaling for1, 000 efferent synapses. B. Strong scaling for10, 000 efferent synapses. C. Weak
scaling for1, 000 efferent synapses. D. Weak scaling for10, 000 efferent synapses.
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Figure 4.12: Bit-packing vs. AER: Ethernet. Along the x-axis are the different two different pivot points for
the different number of compute nodes. The letters correspond to P-bit-packing, N-No packing. The subplots
are, A. Strong scaling for1, 000 efferent synapses. B. Strong scaling for10, 000 efferent synapses. C. Weak
scaling for1, 000 efferent synapses. D. Weak scaling for10, 000 efferent synapses.

In Figures 4.11 and 4.12 we compare the experiments for bit-packing during every spike

exchange with those always using the AER scheme. In the Infiniband case, Figure 4.11,

using a scheme that packs every spike transfer is less efficient than always using an AER

scheme. However, the opposite result is found for the Ethernet case.
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4.4 Discussion

Past research in spike exchange methods has been noticeablysparse. Many groups present a

single communication mechanism with minimal justificationfor its selection. The majority

of general simulation environments use the point-to-pointblocking mechanisms in MPI

(Wilson et al., 2001; Morrison et al., 2005; Pecevski et al.,2009). Morrison et al. (2005)

combined that with the Complete Pairwise EXchange (CPEX) algorithm. At the time this

was selected based on the assumption that it was more robust.However it was later stated

that the collective,MPI allgather, was more efficient on certain hardware (Eppler et al.,

2007); benchmarks were not presented to support that claim.PCSIM also uses blocking

communication with the CPEX algorithm (Pecevski et al., 2009).

The NEURON simulation environment is one of the few that use the collectiveMPI -

Allgather as opposed to the point-to-point methods (Migliore et al., 2006). This decision

is based on the simplicity of the implementation and that theperformance of NEURON

is dominated by the more complex models that are its niche. However, the use of NEU-

RON on the BG/P Supercomputer was the motivating factor for work presented in Hines

et al. (2011). This is the most current analysis of differentspike-exchange methods but is

unfortunately specific to the BG/P hardware. The work presented here is the first analy-

sis aimed at the COTS hardware more readily available to the computational neuroscience

community.

4.4.1 Choosing a communication mechanism

Selecting a spike exchange method is still a difficult problem. The type of hardware as well

as the configuration can create situations where one method clearly outperforms. The re-

sults of this work suggest that a safe pick for COTS architectures would be the non-blocking
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point-to-point communication methods. This is contradictory to the results found for In-

finiband backend in Eppler et al. (2007), and the BG/P hardware in Hines et al. (2011).

This analysis will need to be repeated as new hardware as wellas more optimized commu-

nication methods are released. Ideally, we will package andrelease this work to provide

an automated mechanism for selecting the highest performing communication method for

a given hardware setup.

Why not Alltoall?

The results of the initial characterization of Section 4.5 suggest that for truly large-scale

simulations, using the basic Alltoall mechanism would offer much higher performance. In

the MVAPICH2 implementation this has been optimized for usewith Infiniband hardware

(Sur et al., 2005). The motivation behind the function is to reduce code complexity while

allowing developers of the MPI middleware to optimize the functions at the device level.

The Alltoall collective requires that all nodes send the exact same amount of informa-

tion to each node in the simulation. So message packets must be fixed size and overflow

of those must be handled by a separate mechanism. For networks with high-activity and

large size, at least large enough to justify128 nodes, this may prove beneficial. An Alltoall

implementation was completed during development cycle of this project. When included in

the HRLSim code the results for all test models was so much worse than the other methods

that the code base was later abandoned. These results suggest that there may in fact be an

important place for the method in the simulator. In the future we plan to update the original

code base and rerun the benchmarks completed here to see if there is in fact a niche for the

Alltoall method.

Another possible benefit of this method that was not tested, is the reduced overhead in

creating the spiking messages. In the methods described above each node keeps a local
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buffer that is filled with spiking information. These are contiguous in memory and require

some form of locking to prevent multiple compute threads writing to the same location.

With the fixed message size scheme, each thread can be assigned a section of the buffer. It

can then be guaranteed that no other thread will be writing tothat buffer. This would allow

the removal of thread-blocking which may provide another point of optimization.

4.4.2 Hybrid message passing

With software simulation environments there is generally acomputational cost associated

with packing the spike message. In most cases it is insignificant or can be reduced by

using GPGPU’s which are designed for just such parallel tasks. The hybrid spike passing

scheme has already proven effective in large-scale clusterbased neural simulations by HRL

(Minkovich et al., 2012).

In addition to large-scale simulations, this technique canalso improve the performance

of communication between neuromorphic architectures. These have traditionally used AER

schemes. Take for example SpiNNaker (Khan et al., 2008), which was designed to use an

AER communication to simulate a neural network with a firing rate of 10Hz. The final

hardware was theoretically able to simulate networks firingup to77.5 Hz (Navaridas et al.,

2009). Once the network is firing above this rate either spikes would have to be dropped

or the whole system slowed down. The problem is that in biological system, even though

the firing rate is on average10 Hz, there are times and regions, when the firing rate goes

beyond100 Hz. Using the hybrid encoding scheme presented in this work,would allow for

scaling to any firing rate.
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4.4.3 Model complexity

The conclusions of this work are based on the idea that the neuron and synaptic computa-

tions are completed relatively quickly. Additionally, it is assumed that a single node can

process a large number of neurons. This is the case for most point neuron implementations

but as the complexity of the neuron model increases the time spent in numerical integra-

tion correspondingly increases. The cost associated with spike exchange is then less of a

performance bottleneck and the benefit of optimization becomes negligible.
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Chapter 5

Embedding Neural Models in Virtual

Environments

5.1 Introduction

The concept of neurorobotics is dependent on the ability to immerse an embodied agent

into an real or virtual world. Although it has been argued that using a physical environment

is vital to creating intelligent systems (Krichmar, 2008),this is often impractical. Further-

more, this can create unnecessary complications during thedevelopment of novel neural

theories. Employing a Virtual Environment (VE) however, presents its own unique issues.

One that is often a hindrance to rapid model development is performance. The emphasis

on creating detailed but slowly executing visual environments runs counter to the high-

performance neural models of software simulators and more recently of high-performance

neuromorphic processors.

With traditional game and VE software development the focusis on graphical rendering

of the environment. Developing new worlds or elements requires creating a visual repre-
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sentation of it; introducing both development and performance bottlenecks. This work is

aimed at reducing these bottlenecks. By removing the restriction of creating and rendering

the visual representation, researchers can focus on how theenvironment will influence the

entity and its sensing systems. This can reduce developmenttime while increasing perfor-

mance. In addition, a system that can interact with both hardware and software models,

without concerns for visualization, are extremely useful for the testing and development of

neuromorphic models. The motivations for this developmentare:

• A system that can interact at fast and slow speeds without concerns for visualization
are extremely useful for testing and development of neuromorphic models.

• The SyNAPSE hardware runs at different speeds, both faster and slower than real-
time.

• Designers can focus on the important interactions rather than the minutia of creating
compelling visible environments.

• Results can be plotted roughly during testing and later rendered in more detail for
publishing and presentation.

The development of a virtual environment is similar to creating a level in a video game.

Because of this similarity we decided to search for a design pattern from video game de-

velopment. There are a remarkably large number of game engine design patterns available

and there is no apparent consensus on where each one is appropriate. This made selecting

a pattern to apply to this project a surprisingly difficult task. Here we present an simple

virtual environment, a classic Pong style game. Its implementation using object-oriented

design is presented first. This works well for basic tasks butfor larger environments the

complexity of the element interactions makes it undesirable. The lack of scalability and

code reuse was the motivation for the entity-system design pattern that is then presented.

Finally, we demonstrate how the Pong environment would be represented using the entity-

system design paradigm.
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5.2 Playing games

5.2.1 Object-oriented design

Object-oriented design is based around the concept of abstracting aspects of a software sys-

tem into logical and reusable components. These components, or objects, can be dynam-

ically created, or instantiated, in the software system to store data, perform computations

and interact with other system components. As an example consider a code that would

represent a wheel. It would contain all of the data (i.e. radius, width, or weight) and com-

putations (i.e. torque, friction or distance traveled) that is required to represent that wheel.

To create a car object we would now instantiate four separateinstances of a wheel but,

in the program all would use the same code that describes the wheel object. This allows

larger software systems to be constructed of smaller objects that can be tested separately

and reused throughout the project.

An additional layer of complexity that this introduces is the concept of inheritance.

This allows class objects to extend an existing object by inheriting its data and function

interface. This is a complex concept and is not completely covered here, but as an example

consider a class that describes a shape. Imagine that the system using this class wants to

get the shape’s area; a calculation that is obviously dependent on the type.

One way to handle this would be to instantiate different objects, circles squares and

triangles. The problem, is that the main system has to keep track of all of these objects

and store them separately. If the designers later want to adda hexagon all of these storage

containers must be redesigned, coded and tested.

Inheritance provides a way for the main system to simply store objects that are of type

shape. The shape base class provides a function for calculating the area of a shape, we will

call it getArea. The different types of shape classes will then inherit fromthe base class.
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That inheritance creates a contract with the rest of the system promising that this class will

provide an implementation of thegetAreamethod specific to that shape. The main program

can then create one storage container for shape objects and different shape classes can be

be instantiated and passed to that container. When the area calculations are required the

main project simply call the shape object’sgetAreamethod and the appropriate calculation

is performed by the class.

When employed appropriately this pattern works well for many applications. To il-

lustrate how to apply this to a virtual world we present an example of interfacing neural

models to a simple Pong game. In this, a puck is given basic physics where it will move

linearly through the game board and bounce off of the left, right and top walls. The player

controls a paddle at the bottom of the board and must use that to reflect the puck and keep

it on the board. If the puck gets past the paddle the player loses a life. Keep in mind that

we are only creating the game elements, controller and interface to the neural model. The

visualization is done after the simulations have been completed by a separate program that

simply renders the script output from this environment.
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Figure 5.1: Pong class layout.

The objects for this system are relatively simple and the class diagram outlining each of

the properties and functions is presented in Figure 5.1. TheBGEntity class is used to rep-

resent the different elements that make up the game. In this case, that is the player’s paddle

and the puck. The StimMap class is used to encode the game space into neural stimulus

based on the position of the puck. Finally, the controller for the game is implemented in
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the Pong class.

This is a relatively simple environment with a small number of interacting elements.

However the Pong class is responsible for much of the heavy lifting, such as collision

detection, input and output processing, and game physics. For a small code base this is

reasonable, but as the complexity of the task increases thisdesign pattern will quickly

become unmanageable. Details of the implementation are provided in Chapter 8.

5.2.2 Braingames

To support a reduction in VE development time, we propose an implementation of the

Entity System Paradigm (ESP) (West, 2007). Unlike hierarchical design patterns, most

notably the object-orient design pattern presented above,ESP provides better code-reuse

and extensibility that is required in research and development. Traditionally, ESP has been

used exclusively in video game development, however, it is an ideal solution for a generic

VE engine. The features of this design are:

• A headless framework for creating high-performance virtual-environments capable
of interfacing with neural simulations and neuromorphic hardware.

• Written in C++ with comprehensive unit test suite.

• Generic reusable components for simple environment generation.
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5.2.3 Entity System Design

Figure 5.2: BrainGames Framework.
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Component based design offers a way to decompose the different functional domains of

the VE entities into their constituent components. In addition, it provides a means for lay-

ered abstraction without the negative impacts on performance and extensibility that many

hierarchical object-oriented designs impose.

Entities represent groups of components; here every VE element is an entity. The com-

ponents themselves do not contain any logic. Instead, a data-driven approach is taken and

the components are nothing more than collections of data with exposed getter and setter

functions. The control logic is implemented by the systems.Systems encapsulate the up-

date functions for each of the components. The systems are responsible for modifying

the data contained within the components. The different systems contain references to the

components they are interested in. In fact, the systems never have a need to reference the

entity object itself. This allows the addition and subtraction of systems in a clean and un-

obtrusive way. The removal of a component from an entity doesnot result in a broken

hierarchy. Instead the systems previously using the components of that entity simply re-

move the references to it. The addition or modification of systems works exactly the same

way; essentially creating a run-time plug-in interface.
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Create Mapper

Add System Type

Create System

Initialize System

{Uses} {Uses}
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Delete Entity
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Create Entity

Refresh Entity

Get Entity

Loop

Figure 5.3: Basic virtual environment use cases with the world class of BrainGames.

Add Component

Entity

Environment

Get Component

Refresh

Figure 5.4: Basic virtual environment use cases with the Entity objectsof BrainGames.

System

Create Mappers

Add Component Type

Process Entities

Figure 5.5: Basic system use cases.



127

The design for a C++ realization of this idea is presented in Figure 5.2. Use case dia-

grams for this concept are presented in Figures 5.3, 5.4 and 5.5. The use cases themselves

are provided in Appendix A. This represents a minimal architectural design based on the

ideas presented in Bilas (2007) and the framework of Arent and Costa (2012). Unlike game

engines, this implementation focuses on the specific needs of the neurorobotics community.

Mainly, many parallel sensory and motor loops that are the hallmark of most neurally in-

spired designs.

Pong using ESP

Once an ESP framework is in place, creating the components for the Pong game becomes

relatively simple. Consider this from the point of view of the main code. The world object

is instantiated first along with the system objects, Listing5.1.

1 / / C r e a t e t h e wor ld .
wor ld = new World ( ) ;

3 / / C r e a t e t h e sys tems .
wor ld . r e g i s t e r S y s t e m (new MovementSystem ( ) ) ;

5 wor ld . r e g i s t e r S y s t e m (new C o l l i s i o n t S y s t e m ( ) ) ;
wor ld . r e g i s t e r S y s t e m (new St imOutpu tSystem ( ) ) ;

7 wor ld . r e g i s t e r S y s t e m (new I n p u t C o n t r o l S ys t em ( ) ) ;
wor ld . r e g i s t e r S y s t e m (new Record ingSystem ( ) ) ;

Listing 5.1: Instantiate the world and the required systems.

The Puck and the Paddle are then the only entities added to theworld, Listing 5.2.
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/ / C r e a t e t h e puck .
2 E n t i t y puck = wor ld . c r e a t e E n t i t y ( ) ;

puck . addComponent (new P o s i t i o n ( ) ) ;
4 puck . addComponent (new V e l o c i t y ( ) ) ;

puck . addComponent (new C o l l i d a b l e ( ) ) ;
6 puck . addComponent (new St imu lus ( ) ) ;

/ / C r e a t e t h e padd le .
8 E n t i t y padd le = wor ld . c r e a t e E n t i t y ( ) ;

padd le . addComponent (new P o s i t i o n ( ) ) ;
10 padd le . addComponent (new V e l o c i t y ( ) ) ;

padd le . addComponent (new C o n t r o l l a b l e ( ) ) ;

Listing 5.2: Create the Pong entities and add the components to them.

The environment then loops until an end condition is released. The implementation for

each of the system objects defines the logic for the world. Thesystems loop through the

entity references that contain all of the required components.

The motion of each of the entities is handled by the movement system. It uses the po-

sition and velocity components to determine the change in position. The collision system

is then responsible for all objects in the game that move around and can collide with other

game elements. In this case that is only the puck. The input system is responsible for gath-

ering the input information from the neural model, processing it and updating the control

system for the paddle. This could be further separated into separate input and control but

would require a component to maintain the input information. The stim output system is

used to create the neural stimulus based on the position of the puck. Finally, the recording

system will collect the current state of the environment andsave it for rendering off-line.

In the transition to the BrainGame architecture, the code presented in Figure 5.1 is

moved into the separate system classes. In the ESP however, that code becomes cleaner

and is logically abstracted, rather than contained in a single monolithic class. In addition,

switching out systems to perform different tasks or adding players and entities is not as

simple as adding a new entity.
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5.3 Discussion

5.3.1 Similar Work

CASTLE (SET Corporation, 2012) provides a generic virtual environment that offers ca-

pabilities similar to those presented here. However, it lacks mechanisms for running simu-

lations faster than real-time or without rendering the graphics to the screen. These restrict

the performance of the neural models and their use in distributed computing. The latter

is important not only for parameter searches but for stability analysis of deployable sys-

tems. Entities and environments are created in Blender withsupport for other 3D modeling

software planned in the future.

Similarly, Webots (Michel, 2004) offers a comprehensive virtual environment along

with a number of different modes, including a headless mode.However, Webots was not

developed specifically for neurorobotics, and adaptation for neural applications requires

custom software modules. In addition, the software requires a physical license for each

instance; making distributed execution unreasonable.

Unlike the environments presented above, this design can becompiled directly into the

simulation environment or it can be instantiated remotely.Additionally, the inherent sup-

port for parallel and distributed hardware further separates it from existing generic virtual

environments.

5.3.2 Benefits of ESP

A difficult problem to address in the design of these types of systems is the communication

between components. One option for addressing this would beto give each entity a ref-

erence to those it needs to send messages to. The problem is this creates a tight coupling
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between components and changing any of those becomes extremely difficult. Another ap-

proach has been to create a message passing system. For larger systems this can become

complex and again the coupling of components can be an issue.The advantage to ESP is

that the systems take care of all communication between objects. They can easily access

different classes of components associated with an entity.The system does not need to

know everything about the entity, only that it contains the components it requires to do its

update. Similarly, a component does not need to know anything about the other compo-

nents in the entity, or anything about the entity itself for that matter.

The logic for the environment is contained entirely in the system objects. If designed

correctly, those systems will essentially be autonomous units. Changing one will not affect

the others. In addition, the components essentially do not change. Combined, these provide

a level of code reuse that is important in the rapid development of neurorobotics.

Development and Testing also becomes more straightforwardin ESP systems. In par-

ticular, multi-developer projects become more tractable,as developers can work on in-

dependent system objects. The common components are the only aspect that need to be

enforced.

5.3.3 Real vs. virtual worlds

In Krichmar and Edelman (2005) it is argued that simulated environments introduce un-

wanted biases to the model. These are a product of the artificial nature of the input stimu-

lus. In addition, they contend that simulated environmentscannot compete with the noisy

stimulus of the real world and cannot support many importantemergent properties.

The chaotic nature of the real world is no doubt difficult to simulate however there

are benefits to constraining initial model development to virtual worlds. The first is the

time intensive nature of dealing with physical robots. Development of novel neural models
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becomes extremely time consuming as repeating experimentsmust be completed in real

time. Using a high-performance environment such as the one proposed here, models can

be rapidly developed and tested. The tests can be automated and the results can be validated

over multiple simulations in a realistic amount of time. Thecomplexity of the worlds can

also be increased providing a process for building up and exploring the unique properties

of a given model.

Virtual worlds also provide a sense of control to the experiments. Different networks

can be immersed in a common environment, allowing for a quantifiable comparison be-

tween them. As models are developed and refined, they can thenbenefit from the type of

embodying championed by Krichmar and Edelman (2005). The virtual environments then

become a compliment to their real-world counterparts.
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Chapter 6

Analyzing Large-Scale Spiking Models

The additional performance provided by high-performance neural environments allows for

very large neural simulations. However, this increase in model size includes a correspond-

ing increase in data size. In order to not only process the increased amount of data in a

reasonable amount of time, but also provide a rich and user friendly interface, a new set of

analysis tools is presented here. These were developed to support the modeling efforts of

both the projects presented in this paper and the SyNAPSE project as a whole.

6.1 Introduction

The HRLAnalysis package is an implementation of off-line visualization of spiking and

network data for use with HRLSim. The emphasis is on processing the information of

large-scale models as efficiently as possible while providing a rich feature set to users.

To balance efficiency with usability, the extraction and analysis of the simulation data is

performed with C++ and the plotting and further manipulation is handled in Python. The

C++ code is interfaced directly with Python through the Boost package and can be called
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as a normal python library, so from the users perspective there is no distinction between the

packages. The analysis capabilities include:

Individual cells

• Individual cell spike count averages over the given time interval.
• Binned counts of the number of neurons within ranges of spikefiring.
• Coefficient of variation for cells in the given interval.

Populations

• Extraction of spike times and cell indexes within the given interval.
• Average spike rates for the population. Currently, rectangular and Gaussian window

functions are supported.

Network analysis

• Visualization of the network at the population level in the Graphviz DOT format.
• Average synaptic weights between populations.
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6.2 Design and use

Figure 6.1: Spiking analysis class library.

Figure 6.1 illustrates the main spike analysis class. The spiking information is read in and

processed by the library. The exposed methods are accessed by Python and the resulting

information is passed around using STL vectors wrapped as Python lists. The network

analysis library is handled in a similar way. Figure 6.2 outlines the methods exposed by the

library.
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Figure 6.2: Network analysis class library.

6.2.1 Use within an experiment

The utility of HRLAnalysis lies in its integration with the HRLSim user experiments. When

enabled, a configuration file is output based on the setup within the experiment. A call to the

Analyzefunction with the experiment instructs it to output information about a particular

population. For example:

1 / / C r e a t e t h e p o p u l a t i o n .
E = b u i l d n e t . NewPopulat ion (1400 , NeuronKind ( ) . S e t I z h i k e v i c h ( a, b , c , d ) ) ;

3 / / T e l l t h e s i m u l a t o r t o c r e a t e t h e a n a l y s i s code f o r t h i s p o pu l a t i o n .
E−>Analyze ( s t d : : s t r i n g ("CA1" ) ) ;

Where “CA1” is the name used for that population. When the simulation is executed a

python file will be placed in the Data directory. For this simple example, that Python file

will be:
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#
2 # Th is f i l e was a u t o m a t i c a l l y g e n e r a t e d by t h e h r l A n a l y s i s Sof twa re .

#
4

de f g e t C e l l G r o u p s ( ) :
6 c e l l G r o u p = [ ]

c e l l G r o u p . append ({ "name" : "CA1" ,"startIdx" : 0 ,"endIdx" : 1399} )
8 c e l l G r o u p . append ({ "name" : "CA2" ,"startIdx" : 1400 ,"endIdx" : 2799} )

re turn c e l l G r o u p
10

i f name == "__main__" :
12 p r i n t g e t C e l l G r o u p s ( )

This file can then be used by the provided analysis code or in your own analysis code, to

inform the HRLAnalysis package about the populations of interest. The purpose of using

an external file is to avoid the need to recalculate the location within the network of the

populations of interest whenever a network is modified.

Users are also given the option of grouping together populations that are defined con-

secutively. This will create a single analysis group with cell indexes spanning all of the

given model populations. At this time nonconsecutive populations are not supported. To

use this feature you would give the same name in the calls to Analyze. For example

/ / C r e a t e t h e p o p u l a t i o n s .
2 Str ia tumD1 = b u i l d n e t . NewPopulat ion (

NUM, NeuronKind ( ) . S e t I n h i b i t o r y ( ) . S e t I z h i k e v i c h ( a , b ,c , d ) ) ;
4 Str ia tumD2 = b u i l d n e t . NewPopulat ion (

NUM, NeuronKind ( ) . S e t I n h i b i t o r y ( ) . S e t I z h i k e v i c h ( a , b ,c , d ) ) ;
6 SNr = b u i l d n e t . NewPopulat ion (

NUM, NeuronKind ( ) . S e t I n h i b i t o r y ( ) . S e t I z h i k e v i c h ( a , b ,c , d ) ) ;
8 STN = b u i l d n e t . NewPopulat ion (

NUM, NeuronKind ( ) . S e t I z h i k e v i c h ( a , b , c , d ) ) ;
10 GPe = b u i l d n e t . NewPopulat ion (

NUM, NeuronKind ( ) . S e t I n h i b i t o r y ( ) . S e t I z h i k e v i c h ( a , b ,c , d ) ) ;
12 / / T e l l t h e s i m u l a t o r t o c r e a t e t h e a n a l y s i s code f o r t h e e n t ir e group

Str ia tumD1−>Analyze ( s t d : : s t r i n g ("Channel" ) ) ;
14 Str ia tumD2−>Analyze ( s t d : : s t r i n g ("Channel" ) ) ;

SNr−>Analyze ( s t d : : s t r i n g ("Channel" ) ) ;
16 STN−>Analyze ( s t d : : s t r i n g ("Channel" ) ) ;

GPe−>Analyze ( s t d : : s t r i n g ("Channel" ) ) ;
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The resulting configuration file would look like:

1 #
# Th is f i l e was a u t o m a t i c a l l y g e n e r a t e d by t h e h r l A n a l y s i s So f twa re .

3 #

5 def g e t C e l l G r o u p s ( ) :
c e l l G r o u p = [ ]

7 c e l l G r o u p . append ({ "name" : "Channel" ,"startIdx" : 3 2 0 ,"endIdx" : 6 3 9} )
re turn c e l l G r o u p

9

i f name == "__main__" :
11 p r i n t g e t C e l l G r o u p s ( )

6.2.2 HRLAnalysis

Once the simulation has completed and the configuration has been generated the analysis

can be completed off-line using the python interface. Note that the use of the configuration

file and the support scripts provided here is completely optional. The user only needs to

tell python where the HRLAnalysis libraries are located andwhere the simulation output

files are. At that point how the analysis is completed and whatis done with it are up to the

user. Provided below is an example of how the provided scripts use the configuration files

and plot the results of the analysis.

Setup

The path and library can be imported using

1 # Add t h e l i b r a r y i n c l u d e pa th
sys . pa th . append ( o p t i o n s . i n c l u d e P a t h )

3 # impo r t t h e a n a l y s i s l i b r a r y
import l i bHRLAna lys is

Similarly, using the generated configuration file Python needs to know where that is located
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and dynamically import it. This can be done using:

# Impor t t h e c o n f i g u r a t i o n module .
2 ( d i r , f i l eName ) = os . pa th . s p l i t ( o p t i o n s . con f i gF i l eName)

sys . pa th . append ( d i r )
4 t r y :

exec( ’from %s import * ’ % f i leName )
6 except:

p r i n t "Error: Cannot find the requested configuration file: " ,
f i l eName

8 r a i s e

The configuration file provides one function that will returna dictionary containing infor-

mation on all of the requested cell populations. Once the fileis imported it can be called

using:

# Get t h e c e l l g roups and t h e p a r a m e t e r s
2 c e l l G r o u p s = g e t C e l l G r o u p s ( )

The list of binary files can be extracted directly from the given directory using the following

filter and regular expression code:

# Search f o r b i n a r y f i l e s i n t h e s e a r c h pa th .
2 b i n F i l e s = os . l i s t d i r ( o p t i o n s . s e a r c h P a t h )

f i l t e r T e s t = r e . comp i le ("ˆspikes" , r e . IGNORECASE )
4 b i n F i l e s = f i l t e r ( f i l t e r T e s t . sea rch , b i n F i l e s )

6 f o r i i n x range ( l e n ( b i n F i l e s ) ) :
b i n F i l e s [ i ] = os . pa th . j o i n ( o p t i o n s . s e a r c h P a t h , b i n F i l es [ i ] )

8

# S o r t t h e l i s t o f f i l e s .
10 b i n F i l e s . s o r t ( )

Finally, the analysis can be done each of the populations provided by the configuration file.

f o r c e l l s i n c e l l G r o u p s :
2 ana lyzeDa ta ( c e l l s , o p t i o n s , b i n F i l e s )
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Running the spike analysis

After collecting the cell group information and the full paths to the binary files, the analysis

object for a particular cell group can be constructed:

a n a l y s i s = l ibHRLAna lys is . h r l S p i k e A n a l y s i s ( )
2 a n a l y s i s . b u i l d D a t a S t r u c t u r e s ( l ibHRLAna lys is . p yl i s t t o v e c t o r s t r i n g (

b i n F i l e s ) , o p t i o n s . s t a r t T i m e , o p t i o n s . endTime , c e l l G r ou p [ ’startIdx’ ] ,
c e l l G r o u p [’endIdx’ ] )

The resulting analysis object can be used to fill in the desired analysis data structures. The

spike raster data will fill two arrays, one containing a spiketime and the other containing a

cell index. Keep in mind there will be redundant spike times.This was originally intended

for use in plotting the spiking activity as a raster plot. This is collected using:

# C r e a t e t h e v e c t o r s t o ho ld t h e s p i k e t i m i n g i n f o r m a t i o n
2 t i m e s = l ibHRLAna lys is . v e c t o ri n t ( )

s p i k e s = l ibHRLAna lys is . v e c t o ri n t ( )
4 # c o l l e c t t h e i n f o r m a t i o n

a n a l y s i s . c a l c S p i k e R a s t e r ( t imes , s p i k e s )

The population level average spiking activity can be computed using:

1 # Get t h e C e l l Ra tes .
windowRates = l ibHRLAna lys is . v e c t o rd o u b l e ( )

3 i f o p t i o n s . windowRateType =="binned" :
a n a l y s i s . calcWindowRate ( windowRates , o p t i o n s . WindowSize , o p t i o n s .

S t e p S i z e )
5 e l s e:

a n a l y s i s . ca lcGaussWindowRate ( windowRates , o p t i o n s . WindowSize ,
o p t i o n s . S t e p S i z e )

There are several functions for getting individual cell information either separately or in a

single call. Here the runAnalysis.py script is gathering the average spike count rate over
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the given interval as well as using that information to create bins of cell counts with activity

in spike rate ranges.

# Get t h e Window Rates and t h e Binned Ra tes
2 c e l l s = l ibHRLAna lys is . v e c t o r i n t ( )

r a t e s = l ibHRLAna lys is . v e c t o rd o u b l e ( )
4 c o u n t s = l ibHRLAna lys is . v e c t o ri n t ( )

f r e q s = l ibHRLAna lys is . v e c t o rd o u b l e ( )
6 a n a l y s i s . c a l c R a t e s W i t h B i n s ( c e l l s , r a t e s , f r e q s , coun ts, 1 0 0 )

The coefficient of variation is calculated using:

# Get t h e COV a n a l y s i s .
2 c o v C e l l s = l ibHRLAna lys is . v e c t o ri n t ( )

COV = l ibHRLAna lys is . v e c t o r d o u b l e ( )
4 a n a l y s i s . calcCOV ( covCe l l s ,COV)

Running the network analysis

The network analysis can be completed by constructing a representation of the populations.

n e t w o r k A na lys i s = l ibHRLAna lys is . h r l N e t w o r k A n a l ys i s ( )
2

numOutputs = 3 ;
4 numInputs = 4 ;

o u t p u t S t a r t = 0 ;
6 i n p u t S t a r t = 210 ;

8 f o r i i n r ange ( 1 0 ) :
n e t w o r k A na lys i s . addDummyPopulation ("ctx_%i" %( i +1) , i n p u t S t a r t

+( numInputs∗ i ) , i n p u t S t a r t +( numInputs∗ i ) +numInputs− 1)
10

f o r i i n r ange ( 1 0 ) :
12 n e t w o r k A na lys i s . a d d P o p u l a t i o n ("str_%i" %( i +1) , o u t p u t S t a r t +(

numOutputs∗ i ) , o u t p u t S t a r t +( numOutputs∗ i ) +numOutputs− 1)

14 n e t w o r k A na lys i s . bu i l dNe twork (’Data/net.bin’ )
n e t w o r k A na lys i s . ge tWe igh ts ( f i leName )

16 n e t w o r k A na lys i s . ou tpu tWe igh ts (’populationNames.dat’ , ’weights.dat’ )
n e t w o r k A na lys i s . ou tpu tGraph (’network.dot’ )
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6.2.3 Plotting the results

Figure 6.3: Simple plot using Biggles package

Figure 6.4: More detailed plot using Matplotlib package
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There are several examples of plotting the calculated information provided by the suite.

The main two use either the Python Biggles library or the Matplotlib library. The Biggles

plots are simpler but the library is efficient. Unfortunately it is also less flexible as far as

options and output formats are concerned. An example of calling the provided Biggles

interface is:

1 import h r l A n a l y s i s P l t b i g g l e s
p l o t t e r = h r l A n a l y s i s P l t b i g g l e s . s p i k e P l o t t e r B i g g l e s ( c e l l G r o u p [’name’

] , o p t i o n s . s t a r t T i m e , o p t i o n s . endTime , c e l l G r o u p [’startIdx’ ] , c e l l G r o u p
[ ’endIdx’ ] )

3 p l o t t e r . p l o t R a s t e r ( t imes , s p i k e s )
p l o t t e r . p lo tWindowRate ( windowRates )

5

i f l e n (COV) > 0 :
7 p l o t t e r . plotCOV ( covCe l l s ,COV)

9 p l o t t e r . s a v e P l o t ( os . pa th . j o i n ( o p t i o n s . o u t p u t P a t h , c el l G r o u p [ ’name’ ]+ ’.
png’ ) )

The results of this command for the sample data provided withthe package is shown in

Figure 6.3.

The second plotting interface uses the Matplotlib library.This can be called using:

1 import h r l A n a l y s i s P l t
p l o t t e r = h r l A n a l y s i s P l t . s p i k e P l o t t e r ( c e l l G r o u p [’name’ ] , o p t i o n s .

s t a r t T i m e , o p t i o n s . endTime , c e l l G r o u p [’startIdx’ ] , c e l l G r o u p [’endIdx’
] )

3 p l o t t e r . p l o t R a s t e r ( t imes , s p i k e s )
p l o t t e r . p lo tWindowRate ( windowRates )

5 i f l e n (COV) > 0 :
p l o t t e r . plotCOV ( covCe l l s ,COV)

7

p l o t t e r . p l o t C e l l R a t e s ( c e l l s , r a t e s )
9 p l o t t e r . p l o t S p i k e B i n s ( f r e q s , c o u n t s )

11 p l o t t e r . s a v e P l o t ( os . pa th . j o i n ( o p t i o n s . o u t p u t P a t h , c el l G r o u p [ ’name’ ]+ ’.
png’ ) )

p l o t t e r . c l o s e P l o t ( )
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The resulting plot is presented in Figure 6.4.
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Figure 6.5: Example of overlaying raster activity with spike rate.

Since the returned data is treated in Python as lists, users are not restricted to the ex-

amples provided here. Figure 6.5 is an example of overlayinga raster plot with spike rate

information. Similarly, the suite has been used for live animations of neural activity as well

as for the construction of off-line animations and publication quality plots.
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Excitatory_1 
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N = 1 0
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Figure 6.6: Example graph produced by graphviz.

The network analysis can return information about the average synaptic weight between

populations as well as a graphical representation of the network at the population level.

The network output uses the dot format of the Graphviz package. There are a number of

free interpreters and converters for this format so users can also leverage other network

analysis tools. Figure 6.6 illustrates a network created using Graphviz. Notice the number

of connections and the average synaptic efficacy is includedon the edges. The synaptic

weights between populations can also be returned by the network analysis code. Figure 6.7

is an example of this.
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Figure 6.7: Example average synaptic weights.

6.3 Discussion

Although this work is geared towards processing data formatted by HRLSim, adapting it to

other formats is simply a matter of overloading the input functions. The core analysis and

high-level python code can all remain the same. Using this, support for other simulators

will be added as needed.

Analyzing large data sets is a problem in numerous research areas; there are entire fields

dedicated to processing “big data.” In computational neuroscience there is a continual

trend towards larger and more complex models. Currently, the tools for analyzing these

models do not exist. Researchers are left to their own techniques and utilities for processing

results. The HRLAnalysis package does handle large data sets on reasonable time scales.

Processing10 seconds of results from a network with100, 000 neurons can take minutes

in MATLAB as opposed to a few seconds with HRLAnalysis. The included tools however,

are still derived from theories based on small-scale network analysis. Fortunately, adding

functionality to the HRLAnalysis libraries is straightforward. The comprehensive unit test

suite that is included can shield existing functionality from additions users make to the
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software. This helps ensure the package remains extensibleas the HRLSim environment

matures.
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Part II

Modeling the Basal Ganglia
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Chapter 7

Background

7.1 The basal ganglia
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Reticulata Globus Pallidus

External

Globus Pallidus

Internal

Subthalamic

Nucleus

Thalamus
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Frontal

Cortex Glutamate

Dopamine

GABA

Substance P

Enkephalin

Figure 7.1: Basal ganglia box and arrow diagram.
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The Basal Ganglia (BG) is a phylogentically ancient structure spanning the telencephalic

and mesencephalic regions of the nervous system. This sub-cortical structure plays a role

in a number of cognitive and behavioral phenomena that include action-selection, action-

gating, timing, reinforcement-learning, working memory,fatigue, apathy, goal-oriented

behavior and movement preparation. In addition, it is the epicenter of a number of neu-

rological disorders that include Parkinson’s Disease and Huntington’s Disease as well as

psychiatric disorders such as schizophrenia and obsessivecompulsive behavior. Like many

sub-cortical structures the BG has a topographic organization that is maintained throughout

the nuclei that compose it. This organization has been the foundation on which most BG

theories are grounded. However, new findings have revealed amore complex functional

anatomy than previously believed.
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Thalamus
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Globus Pallidus
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Figure 7.2: Basal ganglia nuclei in a coronal brain slice.

7.1.1 Anatomy

Historically there are six nuclei in models of the BG, as illustrated in Figure 7.1. These are

the Striatum, the external segment of the Globus Pallidus (GPe), the internal segment of the

Globus Pallidus (GPi), the Subthalmic Nucleus (STN), the Substania Nigra pars compacta

(SNc), and the Substania Nigra pars reticulata (SNr). The major input into these nuclei

come from a large number of cortical areas. In fact, almost every layered neocortical region

contain outgoing connections from layer V into the striatumof the BG (Bolam et al., 2000;
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Gerfen and Bolam, 2010). The output connections are split mainly between the brainstem

and thalamus. Figure 7.2 shows the physical relation of these structures in a coronal slice

of a fictitious mammalian brain.

Multiple pathways

There is a separation of the functional anatomy of the BG nuclei that forms parallel paths

through the organ. These paths have been defined as the “direct” pathway, so named be-

cause the input neurons directly connect to the output nuclei, the “indirect” pathway, named

as such due to the elongated path through the inner BG nuclei,and the “hyper-direct” identi-

fied by cortical innervations directly connecting to the subthalamic nucleus. The functional

significance of these paths is still debated however their existence is not. Historically the

pathways have been functionally separated as the “go” (direct) and the “no-go” (indirect)

pathways (O’Reilly, 2006; Cohen and Frank, 2009; Shouno et al., 2009; Chakravarthy et al.,

2010; Krishnan et al., 2011). However, the role of the “hyper-direct” pathway is gaining

more interest. We describe the major BG anatomy below.

Striatum

In primates the striatum can be separated into two functional regions, the caudate and the

putamen. The caudate is primarily innervated by prefrontalcortical connections. Whereas

the putamen receives afferents preferentially from the motor and somatosensory regions

(Gerfen and Bolam, 2010), they are often included as a singleunit since there is no clear

demarcation between the two. In addition, there are overlaps in cortical input to the puta-

men (Gerfen and Bolam, 2010).

The recipients of the cortical inputs are medium-size spinyGABAergic neurons that

comprise about 95% of the striatum (Oorschot, 2010). These projection neurons are sepa-
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rated based on the subcortical targets they project to. The “direct” pathway neurons directly

innervate the output nuclei of the BG. Those neurons that comprise the “indirect” pathway

connect to the intermediate structures as described above.The remaining 5% of neurons

are interneurons that do not project beyond the boundaries of the striatum.

Globus Pallidus External

The external segment of the Globus Pallidus (GPe) is considered part of the indirect path-

way and is composed mainly of spontaneously active inhibitory neurons that utilize GABA

for neurotransmission. In the traditional BG models the inputs into the GPe are GABAer-

gic inhibitory connections from striatum as well as glutamaterigc excitatory inputs from

the subthalamic nucleus. The major output targets are a feedback connection to the subtha-

lamic nucleus and a forward connection to the globus pallidus internal segment. However,

in addition to these the GPe also contains projections to thesubstania nigra and back to the

striatum.

Globus Pallidus Internal

The internal section of the Globus Pallidus (GPi) is one of the major output nuclei of the

BG. This area contains mostly inhibitory neurons with a highlevel of basal activity ( 30Hz)

(Humphries et al., 2006). The major input connections are inhibitory innervations from

the GPe and the striatum as well as excitatory innervations from the subthalamic nucleus.

The GPi innervates the thalamus and among other things is involved in limb and trunk

movements.
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Subthalamic Nucleus

The Subthalamis Nucleus (STN) appears to contain only one type of neuron that is excita-

tory and releases glutamate (Gerfen and Bolam, 2010). Inputinto the STN arise from the

GPe but also directly from the cortex. The latter innervations have been labeled by some

as the “hyperdirect” pathway since this avoids the striatumdirectly.

Substania Nigra pars compacta

Included here only for completeness, the Substania Nigra pars compacta (SNc) is at the

core of the dopaminergic system of the midbrain. These neurons are spontaneously active

and provide tonic and phasic releases of dopamine at about5 Hz (Cohen and Frank, 2009).

The neurons of the SNc are densely connected and principallyoutput to the patch/matrix

layout of the striatum. The ventral region of the SNc connects to small islands or patches

spatially segregated in the striatum. Whereas the neurons of the dorsal SNc project to the

regions surrounding the patches, referred to as the matrix (Gerfen and Bolam, 2010). The

functional implications of this organization is still unknown.

Substania Nigra pars reticulata

The Substania Nigra pars reticulata (SNr) is the other output nuclei of the basal ganglia

and is responsible for head, neck and eye movements. The SNr is comprised mainly of

GABAergic inhibitory neurons and similar to the GPi it has a high basal level of activity.

The SNr receives inputs from STN and striatum and outputs to the superior colliculus, the

thalamus and the pedunculopontine nucleus.
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Thalamus

The primary role of the thalamus is believed to be to modulateand process the information

entering the cortex (Sherman and Guillery, 2002). The output neurons of the BG play are

prominent in modulating thalamic activity. A model thalamocortical relay neuron is used

here to model that influence. These are bimodal neurons that alternate between a tonic

firing mode and a burst firing mode depending on the voltage andtime dependentCa2+

T-current (Sherman, 2001).

7.1.2 Neurocomputational modeling of the basal ganglia

Computational models of the basal ganglia provide a mechanism for generating novel

hypothesis about BG function as well as providing direct interpretation of empirical re-

sults (Cohen and Frank, 2009). These computational models can not only bridge the high-

level behavioral studies with the low-level electrophysiological experiments but also create

novel working theories that are directly applicable to artificial intelligence. There are a

number of BG models presented in the literature, each one selecting a different level of

biological realism depending on the question begin asked. Aselection of relevant publi-

cations that pertain to action-selection and reward-learning are presented here. Since the

majority of BG models deal with disease states, a number of models that deal with Parkin-

son’s disease are given as well. These models present both the dynamics and functional

anatomy that this proposal is concerned with. Only the most relevant literature is presented

so this list is necessarily incomplete.
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7.1.3 Action selection

The model of Gurney Gurney et al. (2001) utilized rate based neurons to demonstrate ac-

tion selection in the basal ganglia. This was later extendedinto the spiking domain by

Humphries et al. (2006). This work is explained further below. The contraction model

of Girard et al. (2008) created an action selection network for use in embedded robotics.

The network was constructed using a dynamical theoretic approach and rate coding. The

resulting model was integrated into a robot as an action selection mechanism for decid-

ing between seven possible actions during a survival task. Shouno et al. (2009) and later

Igarashi et al. (2011) designed a model of binary channel selection and output timing. The

resulting network demonstrated probabilistic action selection and timing that they consid-

ered important for promoting behavioral variability during exploration and exploitation.

7.1.4 Reward learning

Izhikevich (2007b) solved the problem of credit-assignment by combining dopaminergic

modulation with an eligibility trace that could reward neurons that fired in appropriate

temporal-patterns. This mechanism allowed a test network to learn stimulus-specific re-

sponses. Chorley and Seth (2011) combined that mechanism with the dual path model of

Tan and Bullock (2008). The resulting network demonstrateda number of physiologically

relevant dopamine responses that the Izhikevich (2007b) model did not explore. For a re-

view of reinforcement learning models refer to Cohen (2008)and Cohen and Frank (2009).

In addition, Atallah et al. (2004) presents a review of earlier computational models of the

basal ganglia with a focus on interactions between the hippocampus, cortex and BG as it

relates to a number of functions including stimulus-response learning.



156

7.1.5 Combined models:

Brown et al. (2004) combined the frontal cortex with the BG todemonstrate how primates

can integrate reactive and planned behaviors in a rate-based network. The simulations

predicted how dopaminergic signals could guide the learning of saccadic eye movements.

The model of Stewart et al. (2012) was based on the rate model of Gurney et al. (2001).

It employed LIF neurons and the neural engineering framework (Eliasmith and Anderson,

2003) to convert the variables of the original model into populations of spiking neurons.

Although this model was capable of learning the desired input output functions, it was

not done through classical reinforcement learning. Instead, this was accomplished using

a feedback function that would compare the error between themodel output and desired

output.

7.2 Parkinson’s disease

Parkinson’s disease is a neurodegenerative disorder characterized by a marked loss of

dopaminergic neurons in the SNc. The fundamental symptoms of Parkinson’s disease are

tremor: the involuntary movements of the body and limbs, rigidity: stiffness in the muscles,

bradykinesia: slowed movement, and postural instability:difficulty maintaining an upright

position (Bezard et al., 2010). In addition, there are a number of secondary and non-motor

symptoms that may be present. With no known cause or cure, Parkinson’s disease affects

tens of millions of people throughout the world (Bergman et al., 2010).
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Figure 7.3: Parkinsonian Basal Ganglia

The loss of constant inhibitory influence on the striatum from the SNc results in an

increased level of activity throughout the BG, Figure 7.3. It is still unclear how these

increases in activity correspond to the symptoms of PD. Despite this gap in knowledge,

there have been some therapeutic options that have demonstrated a benefit in alleviating the

symptoms of PD. The reality however, is that there is no knownway to stop the disease’s

progression.

Treatments of PD generally begin pharmacologically; dopamine replacement using lev-

odopa is one such early treatment option. Unfortunately, not only is the the dosing schedule

difficult and its benefit eventually deteriorates completely but there can be negative side-

effects, such as dyskinesia: impediment of voluntary movement or hypertonia: increased

muscle tone (Fahn et al., 2004). As the clinic benefit of dopamine replacement is lost many

patients are treated with deep brain electrodes that constantly stimulate the BG.
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7.2.1 Deep brain stimulation

Figure 7.4: Example deep brain stimulation electrode placement.

Deep brain stimulation (DBS) was first reported in the early eighties but did not become a

serious treatment option until a decade later (Montgomery,2012). Prior to this, other than

pharmacological treatments, PD patient’s only other option was surgical ablation (Purves

et al., 2007). DBS consists of two bilateral electrodes implanted in the deep structures of
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the BG. Figure 7.4 illustrates how the path of the electrodes. Connecting wires are then

implanted subcutaneously to the patients shoulders where battery and open-loop control

electronics are located.

There is an immediate clinical benefit associated only with the placement of the elec-

trodes, this is referred to as the microthalamotomy effect (Chang et al., 2009). A high-

frequency electric pulse is then applied to the electrodes;creating an electric field within

the target region of the brain. Clinicians will generally experiment with the frequency and

amplitude of the electric pulse to find the region of highest benefit. Finding that point is an

inexact science and periodic adjustments throughout the lifetime of the patient are required;

as that point moves as compensatory mechanisms in the BG attempt to regulate the activity.

Despite the proven clinical benefit of DBS, there is no clear explanation for that benefit.

This has been the focus of a number of research projects but some of the most compelling

theories have come from computational studies of the BG.

7.2.2 Computational models of Parkinson’s disease

Rubin and Terman (2004) offered the first explanation for theparadoxical therapeutic ef-

fects of deep brain stimulation (DBS) in a Parkinsonian BG. This was utilized by Feng

et al. (2007) to explore feedback control of the DBS protocols. Similarly, it was extended

by Pirini et al. (2009) to include the striatum and sensorimotor cortices. In Pascual et al.

(2006) the overall usefulness of this and any model of Parkinson’s disease was explored.

Although the result was that this type of modeling can be useful, care should be taken when

making specific claims about model results and predictions.The work of Frank (2005)

looked at dopamine modulation and the cognitive deficits it had in medicated and non-

medicated Parkinson’s disease. Hahn and McIntyre (2010) explored a network of the sub-

thalamopallidal (STN,Thalamus,GPe,GPi) network under deep brain stimulation. Leblois
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et al. (2006) created a model of the BG without the GPe but included a feedback from the

thalamus into the cortex. The resulting model explored onlythe direct and hyper-direct

pathways in action selection. The network demonstrated a loss of action selection capabil-

ities as dopamine input was reduced and predicted that this occurs before the oscillatory

patterns associated with Parkinsonianism were present.
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Chapter 8

Reward-Learning and Action-Selection

in an Embodied Agent

Adding value to action-selection through reinforcement-learning provides a mechanism for

modifying future actions. This behavioral-level modulation is vital for performing in com-

plex and dynamic environments. In this chapter we focus on four classes of biologically in-

spired feed-forward spiking neural networks capable of action-selection via reinforcement-

learning. These networks are embodied in a minimal virtual agent and their ability to learn

two simple games through reinforcement and punishment is explored. There is no bias or

understanding of the task inherent to the network and all of the dynamics emerge based on

interactions with the environment. Value of an action takesthe form of reinforcement and

punishment signals assumed to be provided by the environment or a user. The variation

in the four classes arises from different levels of network complexity based on differences

in network architecture, the nature of network interactions including the interplay between

excitation, inhibition and reinforcement, and the degree of bio-fidelity of the model. The

models obey the constraints of neuromorphic hardware that are currently being developed,
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including the DARPA SyNAPSE neuromorphic chips for very lowpower spiking model

implementations. The simulation results demonstrate the performance of these models for

a variant of classic pong as well as a first-person shooter. The results suggest that these

models could serve as a building block for the control of morecomplex robotic systems

that are embodied in real and changing environments.

8.1 Introduction

The combination of action-selection and reinforcement-learning in biological entities is

essential for successfully adapting and thriving in complex environments. This is also im-

portant for the effective operation of intelligent agents.However, strategies for embedding

artificial intelligence have resulted in agents with limited demonstrable emergent proper-

ties. Because of this, it is still unreasonable to deploy a neurorobotic entity and expect it

to learn from and perform in its environment the same way biological entities can. Simi-

larly, neural models require complex and varied input signals in order to accurately repli-

cate the activity observed experimentally. One strategy for creating this complex stimuli

is through immersing a model in a real or virtual environmentcapable of providing the

feedback necessary for the model to extract value and interact appropriately. These are

part of the motivations for the DARPA SyNAPSE program. Through the creation of low-

power neuromorphic architectures both suitable for efficient remote operation and capable

of replicating many of the biologically salient features ofneural systems, the program can

reduce the technological and theoretical barriers of embodied modeling.

Action selection is the appropriate negotiation of competing signals. In the mammalian

nervous system the complex circuitry of the Basal Ganglia (BG) is active in gating the

information flow in the frontal cortex by appropriately selecting between input signals.
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This selection mechanism can affect simple action all the way up to complex behaviors

and cognitive processing (Cohen and Frank, 2009). Althoughoverly simplified, it can be

helpful to relate the BG to a circuit multiplexer, actively connecting inputs to outputs based

on the current system state.

Reinforcement or reward learning (RL) is the reinforcementof actions or decisions that

maximizes the positive outcome of those choices. This is similar to instrumental condition-

ing where stimulus-response trials result in reinforcement of responses that are rewarded

and attenuation of those that are not (Chakravarthy et al., 2010). Reinforcement-learning

in a neural network is an ideal alternative to supervised learning algorithms. Where super-

vised learning requires an intelligent teaching signal that must have a detailed understand-

ing of the task, reinforcement learning can develop independent of the task without any

prior knowledge. Only the quality of the output signal in response to the input signal and

current contextual state of the network is needed.

In this work we focus on three different classes of small biologically inspired feed-

forward spiking networks capable of action-selection and reinforcement-learning while

immersed in a virtual environment. Each is suitable for realization on the neuromorphic

hardware developed under the SyNAPSE project and provides atheoretical framework for

testing future novel reinforcement-learning algorithms.These networks are embodied in a

minimal virtual agent and their ability to learn a simple ping-pong game through reinforce-

ment and punishment is explored. There is no bias or understanding of the task inherent

to the network and all of the dynamics emerge based on interactions with the environment.

Value of an action takes the form of simple reinforcement andpunishment signals.

This concept is then extended by exploring how these networks can be combined to

perform more complex actions. Towards this goal, a first-person shooter was developed.

A model combining multiple RL networks was then constructedand trained to target and
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shoot the most appropriate enemy.

Beyond supporting hardware validation, the resulting models are ideal for simple robotic

embodiments. In addition, these are capable of demonstrating reinforcement-learning and

action-selection in different ways.

8.2 Design and Methods

8.2.1 Neuron model

The neural model supported by the initial SyNAPSE hardware is the Leaky-Integrate and

Fire (LIF) neuron. The LIF model is defined by

Cm
dV

dt
= −gleak(V − Erest) + I. (8.1)

Where

Cm is the membrane capacitance.

I is the sum of external and synaptic currents.

gleak conductance of the leak channels.

Eleak is the reversal potential for that particular class of synapse.
As the current input into the model neuron is increased the membrane voltage will pro-

portionally increase until the threshold voltage is reached. At this point an action potential

is fired and the membrane voltage is reset to the resting value. The neuron model is placed

in a refractory period for 2 milliseconds where no changes inmembrane voltages are al-

lowed. If the current is removed before reaching the threshold the voltage will decay to

Erest. The LIF model is one of the least computationally intensiveneural models but is still

capable of replicating many aspects of neural activity (Burkitt, 2006).
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The connections between neurons are modeled by conductance-based synapses. The

general form of that influence is defined as

Isyn = gmax · geff · (V − Esyn). (8.2)

Where

gmax is the maximum conductance for that particular class of synapse.

geff is the current synaptic efficacy between[0, geffmax].

Esyn is the reversal potential for that particular class of synapse.
To simulate the buffering and re-uptake of neurotransmitters, the influence that a presy-

naptic action potential has on a neuron can be decayed based on a specified time constant.

This process is abstracted using

τsyn
dgsyni

dt
= −gsyni +

∑

Wjiδ (t− tj) . (8.3)

An Euler integration method is used with time stepτ = 1ms.

Learning at the synaptic level is achieved through the spike-timing dependent plasticity

rules defined by Songet al. Song et al. (2000).

geff → geff + geffmaxF (∆t)

Where

∆t = tpre − tpost

F (∆t) =











A+e

(

∆t
τ+

)

A−e

(

∆t
τ
−

)
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if (geff < 0) thengeff → 0

if (g > geffmax) thengeff → geffmax

The global parameter values used in this study are presentedin Table 8.1.

Table 8.1: Global model parameters.

Parameter Value

Cm 1. (pF)
τge 5. (ms)
τgi 100. (ms)
Eexc 0. (mV)
Einh −80. (mV)
Vrest 0. (mV)
A+ 0.025
A− 0.026
τ+ 20. (ms)
τ− 20. (ms)

8.2.2 Networks

Three possible embodiments of this idea are presented here.Initially, each of these net-

works have no knowledge or inherent understanding of their environment. The behavior

is learned through feedback from the environment in the formof reward and punishment

signals encoded as either random or structured spike events. These signals strengthen or

weaken the synaptic connections between neurons; reinforcing the appropriate action.

Although a technological breakthrough, the initial SyNAPSE hardware has limited

functionality. This has direct implications on the types ofneural networks it can support.

There are two phase 1 chips that have been developed, each with a common set of limita-

tions. The most significant is the lack of fixed weight synapses. All connections, including

those coming from dummy neurons, are plastic. This presentsa number of problems but the

most egregious is that it effectively eliminates the use of inhibitory neurons. In addition,
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each neuromorphic processor (NP) has very different timingproperties, number afferent

inputs, and number of usable neurons.

Excitatory only network

Figure 8.1: Excitatory neuron only network.

Table 8.2: Parameters for the excitatory only network.

A. Neuron parameters

Neural Region
Neurons

Per Channel

Input 3
Output 3
Reward 1

B. Connections

Source→ Destination
Synaptic Conductance

(gmax) · (geff)
Number of Incoming
Connections (total)

Input→ Output (10.0) · (0.25) 15
Reward→ Input (10.0) · (1.0) 1

The first model explored was a simple feed-forward network that consists entirely of exci-

tatory neurons, Figure 8.1. This network is compatible withthe first phase neuromorphic
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processors of the SyNAPSE project. Notice that the input layer is divided into channels

represented by a population of neurons. The parameters are presented in Table 8.2. The

total size of the network is70 neurons. Note that each output neuron receives a maximum

of 16 inputs. These connections are randomly created from the entire input population to

ensure that there is no bias between input and output channels. The connections between

the reward populations are focused projections within a channel.

Lateral-inhibition network

Figure 8.2: Lateral-inhibition network.
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Table 8.3: Parameters for the lateral-inhibition network.

A. Neuron parameters

Neural Region
Neurons

Per Channel

Input 3
Output 3
Inhibition 3
Reward 1

B. Connections

Source→ Destination
Synaptic Conductance

(gmax) · (geff)
Number of Incoming
Connections (total)

Input→ Output (10.0) · (0.25) 15
Output→ Inhibition (10.0) · (1.0) 15
Inhibition→ Output (10.0) · (1.0) 15
Reward→ Input (10.0) · (1.0) 1

As an extension of this idea, lateral inhibition between theoutput populations is added, as

shown in Figure 8.2. This creates an on-center off-surroundnetwork where the most active

population suppresses the other output populations. Not only is this a more biologically

realistic network but it also offers more control in the selection process. The parameters

of this model are included in Table 8.3. A key aspect of this network are the diffuse con-

nections of the inhibitory interneurons. These populations project to every other output

population; excluding the channel of which they are a part of.
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Basal ganglia direct pathway

Figure 8.3: basal ganglia direct pathway network.

Table 8.4: Parameters for the basal ganglia direct pathway.

A. Neuron parameters

Neural Region
Neurons

Per Channel

Cortex (Ctx) 4
Striatum (Str) 3
Substania Nigra
pars reticulata

(SNr) 3

Excitatory 9
Reward 6

B. Connections

Source→ Destination
Synaptic

Conductance
Number of Incoming

Connections (per channel)

Ctx→ Str 0.1 4
Str→ Str (diffuse) 10.0 3
Excitatory→ SNr 0.08 3
Str→ SNr 10.0 3
Reward→ Str 10.0 6
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The third network presented is an implementation of the direct pathway of the Basal Gan-

glia (BG), Figure 8.3. This network emulates the physiological activity of the BG direct

pathway where the neurons of the SNr are tonically active, firing around30 Hz. This basal

activity is suppressed by the inhibitory afferents of the striatum, resulting in a dis-inhibitory

mechanism of action. Learning occurs between the cortex andthe neurons of the striatum

to develop the appropriate input-output channel combinations.

Physiologically neurons in the SNr are tonically active. The LIF neuron however, is

not capable of replicating that spontaneous activity. To compensate, a Poisson random

excitatory input is injected into the SNr populations. In addition, low-level uniform random

noise is injected into the network.

Combined reward learning network

Figure 8.4: FPS Control Network

Although simple, these networks are capable of distinguishing competing inputs under

noisy conditions. They can also be used as building blocks toperform more complex tasks.

To illustrate this concept we combine three of the lateral-inhibition networks of Section
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8.2.2. Each of the networks is divided into multiple channels with the outputs of two of the

channels directly connecting to the corresponding input channel of the third, Figure 8.4.

The connections are made one-to-one at a weight of0.5, with output channel1 connected

to input channel1, output channel2 to input channel2, and so on.

As illustrated in Figure 8.4, each of the three networks receives a different input signal.

Through reinforcement the network can learn to appropriately respond to different com-

binations of inputs. In this case, these are used to play a first-person shooter, described

below.

Stimulus learning

Learning in these networks is driven by a conditioned stimulus injection. Stereotyped spik-

ing signals sent to an input population and all of the reward populations. The timing of

the signal is delayed for the target channel so the synaptic learning between the input pop-

ulation and the desired output populations is potentiated,while all other channels are de-

pressed. The stimulus period lasts for either300 or 500 ms.
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8.2.3 Games

Pong

Figure 8.5: Pong game mock-up.

To illustrate the capabilities of these networks a pong style virtual environment was imple-

mented. Figure 8.5 is a mock-up of that environment. This version of the game has a single

player controlling the paddle at the bottom of the board. Thepuck bounces off of the left,

right and top walls with minimal physics that change the speed of the puck based on the

angle of incidence with the wall. The player has to move the paddle to block the puck from

falling through the bottom of the game board.

The game was developed in different stages. First, A mock-upof the game was created
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in Python using PyGame (Shinners, 2012). A game controller was then developed in C++

using the concepts of Section 5. The C++ controller has no visualization capabilities. It

compiles directly into the HRLSim experiment and provides the virtual environment for

the networks. The output of the environment is recorded by the controller and can then be

played back by the Python visualizer.

The game engine was extended to support multiple players. Inthese instances two

players control paddles on opposite sides of the board. A player scores a point when the

puck gets past the opposing players paddle. Using this the Phase 1 excitatory network and

the Phase 2 lateral-inhibition networks competed against each other.

In addition, a live real-time version was developed with a socket server to support con-

nections from an external player. This embodiment does not synchronize with the external

player so both the game and the network can run at different speeds. The board is sam-

pled by the player and commands to control the paddle are sentafter processing. This was

created for coupling with the neuromorphic processors.

The position of the puck in the game space is sent to a number ofdiscretized neural

channels. Each of these channels represents a vertical column of the game board. The

input signal is Poisson random spike events with a rate determined by a Gaussian curve,

described below. This provides a noisy input signal with overlap between channels. The

networks signal, through a winner-takes-all mechanism, the position of the paddle.

The stimulus into the network is determined by the location of the puck relative to each

of the spatial channels. The location of the puck on the map determines the peak amplitude

and center of a Gaussian function defined as

fXc
(X∗) = ae−(

(Xc−X∗)2/2c2) (8.4)
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Where

a Peak amplitude of the Gaussian function.
b Center of the Gaussian function.
c Spatial width orσ of the Gaussian

function.
Xc The non-dimensional location of the

channel.

The peak amplitude and Gaussian center are defined as

a = Y ∗ · Rmax (8.5)

b = X∗ (8.6)

Where

Y ∗ Non-dimensional location of the puck in
they dimension.

Rmax Maximum input stimulus inSpikes/s.
Θ∗ Non-dimensional location of the puck in

thex dimension.

This is visualized in Figure 8.6 for the three different spatial widths, c, used for the

experiments presented here. The reward or punishment to thenetwork arrives when the

puck reaches the bottom of the game board.
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Figure 8.6: Pong game board disrectizations for a10 channel network. Three different spatial widths,c, are
used for these experiments,0.025 (left column),0.035 (middle column),0.045 (right column). In the top
row are the stimulus maps for channel2 for each of the spatial widths. The middle row illustrates the overlap
between two consecutive channels. The bottom row shows how the location of the puck (top) translates to
input stimulus for each of the10 channels (bottom).

8.2.4 Pong controller

The paddle in the simulated pong environment is controlled by a simple proportional con-

troller. The environment receives discrete locations fromthe neural network. The location

on the screen that the paddle has to move to is calculated based on these discrete locations.

Its velocity in theX direction is defined by
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Vx = Vmax · P. (8.7)

The variableP is the output of the proportional controller defined by

P = k · e. (8.8)

Wherek is the gain variable ande is the error between the target and current locations

e = XLocation −XTarget (8.9)

The output of the proportional controller,P , is a piecewise linear function that is dependent

on the distance from the target.

P =























−1 −e < − 1
k

1 e > 1
k

e− k |e| ≤ 1
k

This ensures that the speed of the paddle does not exceed the maximum defined velocity.

The pivot point1
k

is calculated by settingk ·e = 1. In addition, the proportionality constant

k is less than1 to ensure that the paddle slows down as it gets closer to its target.

Neuralstein first-person shooter

The first-person shooter (FPS), Neuralstein, is similar to one of the original FPS games,

Wolfenstein (id Software, 2012). This implementation is a rail-shooter where the player

moves along a specified path. The player controls its forwardmovement along that path,
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where it is aiming and when to take a shot. Similar to the pong environment described

above this was implemented at different levels of abstraction. The game engine and visu-

alization was developed in Python, with the latter using PyGame (Shinners, 2012) and the

Pyggel library (Pyggel group, 2012). The game engine is abstracted away from the visu-

alization to facilitate faster simulations. Communication with the simulations is provided

through a socket server. The engine and the simulation are synchronized so the perfor-

mance is determined by the slowest component.

(a) (b) (c)

(d) (e) (f)

Figure 8.7: FPS Discretization. (a) A rectangular frame is taken from the hemispherical point-of-view
(POV) of the player. (b) The POV space is discretized into equal segments (channels). (c) The resulting
frame segments the players view of the world. (d) Each of the channels is centered along equal angular
steps about the space with arc-lengths defining the stimulusregime for that channel. (e) The channels are
constructed with overlapping stimulus regions to create a noisier environment for the networks to negotiate.
(f) The stimulus space for a single channel is defined by a Gaussian function that is railed to the segment
boundary.

The game board is discretized based on the players perspective. The hemispherical

point-of-view (POV) for the player is partitioned into a rectangular region, Figure 8.7 (a).

The POV is then segmented into discrete channels with centers at equally spaced angles

along the hemisphere, Figure 8.7 (b). This defines the centerfor each of the channels that

are represented by the network, Figure 8.7 (c). The channelscreates a pie shaped region
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of interest, Figure 8.7 (d), which have arc lengths with a10% overlap between channels,

Figure 8.7 (e). Each of the segments defines that channels stimulus map, which is described

by a Gaussian function, Figure 8.7 (f).

fΘc
(Θ∗) = ae−(

(Θc−Θ
∗)2/2c2) (8.10)

Where

a Peak amplitude of the Gaussian function.
b Center of the Gaussian function.
c Spatial width orσ of the Gaussian

function.
Θc The non-dimensional angular location of

the channel.

The peak amplitude and Gaussian center are defined as

a = r∗ ·Rmax (8.11)

b = X∗ (8.12)

Where

r∗ Non-dimensional location of the puck in
the radial dimension.

Rmax Maximum input stimulus inSpikes/s.
Θ∗ Non-dimensional angle of the puck.



180

(a) (b)

Figure 8.8: Example stimulus encoding and FPS game board. (a) Enemy only. (b) enemy and friend.

The overall arena is a square track with equal width, Figure 8.8. As the player moves

through the environment game elements enter into the view ofthe player. Elements in the

players POV are picked up and their location in that view creates the input stimulus injected

into the saliency channels of the network.

There are two types of game elements right now. The primarilyblack characters are

considered dangerous and the characters with blue accenting are considered innocuous.

Each of these creates a different input into the black and blue channels respectively. It is

assumed that a separate mechanism identifies the element anddetermines which channel

is stimulated. For this implementation the game engine directs the stimulus. Figure 8.8

(a) illustrates the stimulus for a black element in the players POV. Figure 8.8 (b) illustrates

what the stimulus for two different game elements would be.
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8.3 Results

8.3.1 Excitatory only network

Basal activity
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Figure 8.9: Basal activity of the excitatory only network. Notice that the time is moving from the top of the
chart down. The x-axis is the respective input or output channel and the rate is normalized based on the peak
output of the network.

Initially all of the networks are randomly constructed withno intentional bias between

channels. Figure 8.9 illustrates the random response of an excitatory only network to

changing input channels. Raster plots of this activity is presented in Figures 8.10 (a) and

(b). The plot in Figure 8.10 (c) is the average synaptic efficacy value between input and

output channels. Figure 8.10 (d) highlights the input/output pair with the highest average

synaptic weight. Theoretically this marks the output population that should be maximally

activated when that input population is activated. This is important for identifying how
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well the networks are learning.
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Figure 8.10: Results of 20s of Basal level activity. (a) Input raster. (b)Output raster. (c) Average synaptic
weights for each of input-output pairs. (d) Location of maximum average synaptic weight between each pair.

Learning capabilities

An important characteristic of this class of networks is itsability to learn arbitrary out-

put responses. The random initial weights can be driven, through the stereotyped reward

feedback, to desired values. Here we demonstrate the networks ability to learn one set of

associations and later learn whole new set of associations.This scenario is illustrated by

the spiking activity presented in Figure 8.11 (a). The stages, marked by the letters in the

center are:

A. The network is initialized with all input/output connections have a synaptic USE

value of 0.25; as illustrated in Figure 8.12a by the heat map of the average weights

between input/output populations.
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B. A Poisson random input is injected into consecutive channels for 10 seconds to estab-

lish the basal activity of the network. The resulting average synaptic weight matrix

is shown in Figure 8.12b
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Figure 8.11: Excitatory network: reward-learning scenario. (a) Activity rate map of the example scenario.
Activity was calculated using a moving Gaussian weighted window. (b) Spike raster of the input populations.
(c) Spike raster of the output populations.

C. Alternating reward signals are sent to establish single input/output pairs. The weight

matrix is now dominated by the diagonal shown in Figure 8.12c.

D. The repeated Poisson input signals from B are injected for10 seconds. After this,

the weight matrix shown in Figure 8.12d demonstrates further potentiation of the

established input/output pairs and a continued depressionof the other connections.

E. An opposite set of input/output associations are established using alternating reward

signals. For stable retraining of the network the reward protocol needs to be about



184

twice as long as the original training. The new weight matrixis shown in Figure

8.12e.

F. 10 seconds of the repeated Poisson inputs illustrate the newly established input/out-

put pairs, Figure 8.12f.
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Figure 8.12: Average and maximum synaptic weights between input/outputpairs after learning correspond-
ing to Figure 8.11. (a) 0 sec (b) 10 sec (c) 11 sec (d) 21 sec (e) 22 sec (f) 33 sec
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Pong environment

Figure 8.13:Example of the excitatory network learning a one-to-one rule for pong.

When immersed in the pong virtual environment, the excitatory only network learns the

correct input/output pairs to play the game, Figure 8.14. Inthis case the game requires

that the network move the paddle to the channel that matches the location of the puck, a

one-to-one association. Figure 8.13 illustrates the network learning this. The rules of the

game can then be changed, as they were in the learning exampleabove. The network now

has to associate the location of the puck with the opposite paddle location, a one-to-ten

association, Figure 8.15.
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Figure 8.14: Excitatory network pong game play. The input signal corresponds to the position of the puck.
Notice that the time course runs along the y-axis from top to bottom. The x-axis is the corresponding channel.
(a)0− 20 seconds. The network has minimal responds. (b)80− 100 seconds. As the network receives feed-
back from game the required input/output pairs begin to form. (c) 180− 200 seconds. The pair correlations
become more defined. (d)480− 500 seconds the pairs are completely defined and the output directly follows
the input.



187

Figure 8.15: Example of the excitatory network learning a new set of pong rules. This time a one-to-ten
input/output rule is required.

Pong performance analysis

There are a number of factors that determine how well the network performs in the game

task. The first is the spatial width of the Gaussian stimulus curve, c. This affects the

overlap between channels, the larger the value ofc the larger the overlap between channels.

We use three spatial widths,0.025, 0.035, 0.045. The next factor is the peak of the Gaussian

stimulus curve. The larger the value the more active the input channels become. Two input

peaks,Rmax, are used,10Hz and40Hz. Finally, the length of reward is an important factor.

This determines how long a stimulus lasts for. Two values arechosen for this analysis,300

ms and500 ms.

For each combination of these parameters,5 simulations of500 seconds were run. The

accuracy,(saves/opportunities) ·100, is computed for25 second blocks. The average and
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standard deviation of these blocks is plotted below.
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Figure 8.16: Excitatory network pong performance for300 ms reward. The y-axis is the accuracy of the
network. A value of100 means the network blocked all of the pucks in that25 second block. The column
titles correspond to the spatial width of the input stimulus. The row labels indicate the Gaussian peak value.

Figure 8.16 presents the results when the reward is300 ms long. The network struggles

to perform when the input stimulus is too high (40 Hz results). For the lower activity

stimulus this network has very similar performance throughout the different spatial widths.
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Figure 8.17: Excitatory network pong performance for500 ms reward. The y-axis is the accuracy of the
network. The column titles correspond to the spatial width of the input stimulus. The row labels indicate the
Gaussian peak value.

This network benefits most from a longer reward period. Not only does the variability in

the10 Hz peak input results go down but the overall performance is increased throughout

the spatial widths. As the peak input stimulus is raised, theresults forc = 0.025 are

comparable to the lower input stimulus. However, this performance is lost as the spatial

width is increased.
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8.3.2 Lateral inhibition network

Basal activity
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Figure 8.18:Basal activity of the LI network. Notice that the time is moving from the top of the chart down.

As with the excitatory only network there is no bias between channels in the lateral-

inhibition (LI) network. The basal activity of a sample network is presented in Figure

8.18, with the rasters and synaptic weights presented in Figure 8.19. The interneurons sup-

press the overall activity of the output populations resulting in lower rates and more control

than the excitatory only network. This directly affects thechanges in the output weights,

which are much smaller than in the excitatory case.
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Figure 8.19: Results of 20s of Basal level activity for the lateral inhibition network. (a) Input raster. (b)
Output raster. (c) Average synaptic weights. (d) Location of maximum average synaptic weights.

Learning capabilities

Similar to the excitatory only case, Figure 8.20 demonstrates the LI network’s ability to

learn different channel associations. The stages match those discussed in Section 8.3.1.
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Figure 8.20: Example lateral inhibition network reward-learning scenario. (a) Activity rate map of the
example scenario. Activity was calculated using a moving Gaussian weighted window. (b) Spike raster of
the input populations. (c) Spike raster of the output populations.
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Figure 8.21: Average and maximum synaptic weights between input/outputpairs after learning correspond-
ing to Figure 8.20. (a) 0 sec (b) 10 sec (c) 11 sec (d) 21 sec (e) 22 sec (f) 33 sec
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Pong environment

Figure 8.22: Lateral-inhibition network learning a one-to-one rule forpong.

Comparing the example game playing of the excitatory network in Figure 8.14, with the

LI network in Figure 8.22, reveals the stability the interneurons provide. The output pop-

ulations begins to track the input populations much earlierin the experiments. Similarly,

Figure 8.22 demonstrates a clear diagonal in the synaptic weights and the new set of asso-

ciations is learned with clear stability, Figure 8.24.
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Figure 8.23:LI network pong game play. The input signal corresponds to the position of the puck. The time
course runs along the y-axis from top to bottom. (a)0 − 20 seconds. (b)80 − 100 seconds. (c)180 − 200

seconds. (d)480− 500 seconds.
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Figure 8.24:Example of the LI network learning a new set of pong rules. This time a one-to-ten input/output
rule is enforced.
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Pong performance
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Figure 8.25: LI network pong performance for300 ms reward. The y-axis is the accuracy of the network.
The column titles correspond to the spatial width of the input stimulus. The row labels indicate the Gaussian
peak value.

Figure 8.25 presents the results when the reward is300 ms long. For the10 Hz stimu-

lus the network performs considerably better than the excitatory network results of Figure

8.16. The variability in the standard deviation is much lower and the overall performance

is higher. However, when the peak input stimulus is higher the performance drops consid-

erably. Although peak accuracy is slightly higher than the excitatory network, the standard

deviations are larger in both cases.
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Figure 8.26:LI pong performance: 500 ms reward

When the reward time is increased to500 ms the overall performance throughout the

parameter space is surprisingly consistent. The slopes in the accuracy curves are slightly

different but all approach an accuracy of100% with relatively small standard deviation.
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Excitatory network vs. LI network

Figure 8.27: Excitatory network (Phase 1) vs. Lateral-inhibition network (Phase 2) in pong.

These results illustrate how the addition of inhibitory interneurons provide a mechanism

for channels to actively suppress the surrounding channels. This creates a more stable

configuration at the relatively low-cost of thirty extra neurons. As a toy example of this,

the excitatory network is set against the LI network in pong,Figure 8.27. As would be

expected, the LI network consistently beats the excitatorynetwork. However, this paradigm

does create an interesting test-bed for future network comparisons.
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8.3.3 Basal ganglia direct pathway

Basal activity
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Figure 8.28: Basal activity of the BG Direct network. (a) (b) (c)

The basal output of the BG direct pathway is a tonic30 Hz firing from the SNr inhibitory

neurons. A channel is activated through disinhibition facilitated by the Str neurons. This

basal activity is illustrated in Figure 8.28.
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Learning capabilities
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Figure 8.29: learning in the BG Direct network. (a) IO (b) Initial weight plots (c) Initial location of maxi-
mum average synaptic weight. (d) Average synaptic weights after learning. (e) Location maximum average
synaptic weight after learning.

The ability of the BG direct pathway to learn a particular setof input/output pairs is similar

to the other models, Figure 8.29. It should be noted that the network is capable of relearning

but the time course is longer than in the Excitatory and LI networks.
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Pong environment
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Figure 8.30: BG Direct network pong game play. The input signal corresponds to the position of the puck.
The time course runs along the y-axis from top to bottom. (a)0 − 20 seconds. (b)80 − 100 seconds. (c)
180− 200 seconds. (d)480− 500 seconds.



203

When immersed in the pong environment the BG direct network is capable of tracking the

input stimulus, Figure 8.30.
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Figure 8.31: BG Direct pong performance for300 ms reward. The y-axis is the accuracy of the network.
The column titles correspond to the spatial width of the input stimulus. The row labels indicate the Gaussian
peak value.

The peak value of the input stimulus for the BG direct networkneeds to be higher than the

other networks to sufficiently activate the desired channel. The low rate is set to50 Hz and

the high is set to80 Hz. With a300 ms reward period the BG direct network performs well

for small spatial widths, Figure 8.31. As the overlap is increased however, the performance

degrades quickly.
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Figure 8.32: BG Direct pong performance: 500 ms reward

Increasing the reward period to500 ms improves the performance of the network for

the first two spatial widths, Figure 8.32. When the spatial width is0.045 the performance

is improved but it is still not as high as the LI network.
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8.3.4 First-person shooter
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Figure 8.33: Basal activity of FPS network.

The combination of three LI networks allows for more complexdecision making. The net-

works can learn to weight different classes of input information based on reward feedback.

The basal activity of FPS network is presented in Figure 8.33. Each of the subnetworks

has9 channels, with the Black and Blue subnetworks both feeding into the action selec-

tion (AS) subnetwork. The AS subnetwork also receives saliency information from the

environment.
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Figure 8.34: FPS network learning capabilities.

Using the same stereotyped reward mechanisms, the FPS network can be trained to

perform more complex action selection tasks, Figure 8.34. In this case the Black and AS

subnetworks have learned a one-to-one correlation, while the Blue subnetwork has been

effectively disconnected. The result is that the saliency information alone is not enough to

cause the AS network to cross the selection threshold. A complementary input is required

from one of the other subnetworks, in this instance only a black game element can con-

tribute, Figure 8.35. The resulting network learns to ignore the innocuous blue elements

while focusing on the dangerous Black ones.
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Figure 8.35:FPS single channel activity after training. The saliency input alone is not enough to push the AS
subnetwork above the selection threshold (dashed gray line). The addition of a blue stimulus is ignored and
thus does not contribute to the AS subnetwork activity. Whena black element stimulus is added the activity
of the AS subnetwork is driven passed the selection limit andthat channel is selected.

Figure 8.36:FPS Game Play. The network appropriately targets and shootsthe enemy player.
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Figure 8.37: FPS Game Play. Although the blue character is more salient inthe player’s field of vision the
network appropriately targets and shoots the enemy player.

When placed in the Neuralstein environment the network can move through the envi-

ronment and target enemies when in view, Figure 8.36. In addition, when presented with

both types of game elements, the network can appropriately select the black element, even

when the blue one is closer to the player, Figure 8.37.

8.4 Discussion

8.4.1 Similar Work

Wiles et al. (2010) developed a spiking neural model to control a rat animate performing

phototaxis. The network was constructed to perform the tasksimilar to a Braitenberg vehi-

cle. Burgsteiner (2006) created a liquid state machine using a recurrent network with fixed

internal synapses and plastic output synapses that learneda similar task.

The model of Arena et al. (2009) consisted of three layers of Izhikevich neurons to

control a virtual robot with several sensory modalities. The networks were constructed

with an initial understanding of how to process low-level sensor input such as proximity
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and contact sensors as well as visual cues. These were used todirect the robot through

the environment. Simultaneously, the network learns to perform this navigation using a

range-finding sensors. The inherent low-level sensors basically train the network on how

to respond to the high-level sensors.

Florian (2006) evolved a fully recurrent spiking neural network to control a simple

virtual agent to seek out, push and the release balls in its environment. An evolutionary

algorithm was used to calculate the synaptic weights of the network to accomplish the task.

Barr et al. (2007) implemented a mode of the basal ganglia on aneural processor ar-

ray. Although not directly demonstrated in the hardware presentation the original software

neural model was capable of performing action selection. However, there are no inherent

mechanisms for reinforcement-learning and the micro-channels of the basal ganglia were

predefined by the network.

Merolla et al. (2011) presented a neuromorphic processor capable of playing a game

of pong against a human opponent. This description was laterextended by (Arthur et al.,

2012). The network was constructed off-line and once programmed on the hardware re-

mained static. In that, a neural network, consisting of224 neurons, that could also play a

pong style game was created. The network was constructed off-line and was demonstrated

on a neuromorphic processing core. The training of the network involved teaching the net-

work to predict different patterns of motion by the puck. Rather than simply tracking it, like

the networks here, the model would plan where the paddle mustbe placed. The resulting

networks however, are specialized for that task and can not adapt to changing environments

once embodied in hardware.
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8.4.2 Playing games

Pong

The learning of channel associations is somewhat arbitraryin the examples presented here.

The correlation between input and output populations can infact be engineered to have

more complex relationships than a simple pair. As illustrated by the FPS network results,

other combinations can be created as well as mechanisms for more intricate information

processing as well.

The tracking of the puck in the pong networks is reactive, with movements made based

on the current position in the game. In the future this concept will be extended to include

predictive control of the paddle. A recurrent network capable of learning these kinds of

associations could be included along side the reactive networks presented here to achieve

this.

Initially all of the weights would be random. Through the feedback mechanisms demon-

strated here the reactive networks can be trained to track the position of the puck. This

learned behavior can then be used as an training signal to thepredictive networks.

Neuralstein

First-person shooters have been extremely popular in Artificial Intelligence (AI) research.

The complex interactions between the environment, game elements and multiple players,

challenge non-player controllers in unique ways. This popularity has even led to competi-

tions, such as the Botprize, where the goal is to create the most “human like” AI controller

(BotPrize, 2012).

Due to the different strategies required to successfully play a modern FPS, traditional

AI domains have dominated (van Hoorn et al., 2009; Schrum andMiikkulainen, 2010). It
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is the complexity of the task that makes it attractive to embodied modeling. The approach

taken here relies on abstracting some of that complexity away. As the networks become

more capable other aspects of the FPS paradigm can be added.

8.4.3 Future work

These simple feed-forward networks are a satisfactory start to employing the SyNAPSE

neuromorphic architecture in embodied modeling. Alone, they can be utilized as config-

urable controllers but their real potential lies in their use as building blocks in more complex

control systems. We have already demonstrated how these canbe connected together in a

simple configuration but in the future these will be combinedwith more sophisticated net-

works. For example, recurrent networks can provide, through feedback, state information

of the system. This basic form of short-term memory can process the temporal aspects of a

system’s inputs and allow for more intelligent processing.

Although the performance of the BG direct pathway is slightly lower than the LI net-

work for the tasks presented here, it is still an extremely useful building-block for future

models. Physiologically the mammalian basal ganglia achieves action-gating by removing

its inhibitory influence on thalamocortical relay neurons.This allows information from

higher-cortical areas to pass through the thalamus to otherbrain areas. This type of action-

gating is replicated by the BG model presented here and can perform a similar function in

larger neural models.

Finally, the feedback for these networks was dependent on conditioned input stimulus

to the reward modulation populations. The games played the role of the critic. In the

future, more sophisticated reward and punishment signals,such as those in Florian (2007)

and Friedrich et al. (2011), will be implemented to find a generic reward critic and more

efficient controllers.
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Chapter 9

Models of The Basal Ganglia For

Neuromorphic Hardware

The basal ganglia plays a central role in many associative, motor and limbic functions. In

addition, it is an important clinical target in several neurological disorders. While its func-

tional significance is a topic of ongoing research, our current understanding has facilitated

the creation of computational models that have contributednovel theories, explored new

functional anatomy and demonstrated results complimenting physiological experiments.

The utility of these models however, extends beyond these applications. In particular in

neuromorphic engineering, where the basal ganglia’s functional role in computation is im-

portant for applications such as power efficient autonomousagents and model-based con-

trol therapies. The neurons used in existing computationalmodels of the basal ganglia

however, are not amenable for many low-power hardware implementations.

In this chapter we explore some of these networks using the simple Izhikevich hy-

brid neuron (Izhikevich, 2003). Capable of replicating many of the known dynamics of

the basal ganglia nuclei, hybrid neurons are computationally efficient compared to con-
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ductance based counterparts. Four published models, spanning single neuron and small

networks of the basal ganglia are created using the simple hybrid neuron. These models

successfully replicated the results of the original works,providing validation for the hybrid

neuron in biologically faithful models of the basal gangliaand creating a foundation for

future neuromorphic hardware implementations.

9.1 Introduction

Computational models of the BG have proved useful in many aspects of neuroscience; in-

cluding developing novel theories of Parkinson’s disease and deep brain stimulation (Rubin

and Terman, 2004) or testing novel functional anatomy involved in action selection (Gurney

et al., 2001). Given its prominent role in behavioral function as well as its clinical relevance,

models of the BG are important to many different aspects of neuroscience application and

research. One of particular importance to this work, is neuromorphic engineering.

Neuromorphic engineering is a bottom-up approach to neuralmodeling where the sin-

gle neuron dynamics are implemented in hardware specific digital and analog circuits. The

neurons are then connected to each other through different levels of communication fabric

to create large neural simulations. These low-power application specific options offer not

only a mechanism for simulating large-scale neural models but also a means of embodying

them in mobile agents. First introduced by Mead (1989), modern manufacturing processes

with higher yield and transistor density have resulted in a renaissance for neuromorphic

engineering. This is evidenced by a number of projects such as FACETS/BrainScaleS

(Schemmel et al., 2010), SpiNNaker (Furber et al., 2012), Neurogrid (Gao et al., 2012),

and SyNAPSE (Merolla et al., 2011; Srinivasa and Cruz-Albrecht, 2012). Each of these

have different methods of simulating and abstracting models of the nervous system. How-
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ever, they share the common goal of creating large-scale neural models of the nervous

system.

One possible application for these low-power neuromorphicprocessors is in neural

control engineering. The work of Voss et al. (2004) demonstrated one of the first examples

of combining dynamical control theory and electrophysiology, where the state of a reduced

neuron model was estimated using an unscented Kalman filter.This helped establish the

strategies for observing and controlling the highly non-linear dynamics of neural systems.

Although that original application contained only a singleneuron and merely estimated the

missing model parameters, subsequent work has shown the robustness of this strategy in

a number of control and estimation paradigms (Abarbanel et al., 2008; Ullah and Schiff,

2009, 2010; Schiff, 2010, 2012; Aprasoff and Donchin, 2012).

Closed-loop control of deep brain stimulation (DBS) has already proven to be more

effective in the treatment of late-stage Parkinson’s disease then open-loop configurations

(Rosin et al., 2011). Model-based control strategies can potentially provide further clinical

benefit as well as improved power efficiency. A key component to power-efficiency lies in

the neuromorphic hardware discussed above. In addition, the computational models of the

basal ganglia capable of capturing the important dynamics of Parkinson’s disease need to

be further developed along with more hardware friendly versions of those networks.

The individual neurons that comprise the subcortical structures of the BG have distinct

firing characteristics that are thought to be essential for its function. These firing pat-

terns are too complex for simple neuron models such as the leaky-integrate-and-fire (LIF)

(Dayan and Abbott, 2005) and the more complex conductance based models are difficult

to implement in hardware (Rangan et al., 2010). In order to satisfy the firing requirements

and facilitate the realization of these models in hardware we are proposing the use of the

simple hybrid neuron of Izhikevich (2003).
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Simultaneously lauded for its ability to replicate a multitude of neuronal dynamics

(Izhikevich, 2007a) and criticized for its lack of stability (Touboul, 2009), the Izhikevich

simple hybrid neuron appears to be an ideal candidate for large-scale biologically realistic

models of the BG. However, its use in existing spiking modelshas been sparse and when

employed, only the fast-spiking and regular-spiking modesare used. To justify its use in

developing novel BG theories as well as its inclusion in future neuromorphic hardware,

four published models of the BG are explored using the hybridmodel. The focus is on

faithfully replicating both the single neuron and overall network dynamics while staying

as close to the originally published architectures as possible. An additional motivation is

to create a foundation for models amenable to both hardware implementations as well as

model-based control systems.

9.2 Materials and methods

9.2.1 Simple Izhikevich neuron

Hybrid neuron are characterized by a set of continuous non-linear spike functions and a

discontinuous after-spike reset. These are derived from dynamical system theory and are

capable of replicating the firing activity of many cortical neurons (Izhikevich, 2007a). The

model is expressed by the simple membrane voltage equation,

dV

dt
= 0.04V 2 + 5V + 140− u+ I, (9.1)

a recovery variable,
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du

dt
= a(bV − u), (9.2)

and the spike reset equations

if V ≥ 30, then











V ← c

u← u+ d.

The currentI represents the sum of the total synaptic and externally applied currents.

The synaptic influence on the cell is defined by

Isyn = gsyni · (Esyn − V ). (9.3)

Whereg is the synaptic conductance andEsyn is the reversal potential of the synapse. After

the arrival of a spike the synaptic currents are decayed based on

τsyn
dgsyni

dt
= −gsyni +

∑

Wjiδ (t− tj) . (9.4)

In all of the simulations presented here a Euler integrationmethod is used with time step

τ = 1ms. Often such a large time step can have undesired effects on the slower recovery

variable. To avoid instability in the model the precise timethe membrane voltage crosses

the peak of30 mV is calculated using the linear interpolation formula from Izhikevich

(2010):

tpeak = t+
30− V (t)

V (t+ τ)− V (t)
. (9.5)
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The recovery variableU updated using(tpeak − t) instead ofτ . This increases the computa-

tional cost when a spike occurs but maintains an appropriateupdate ofU that is particularly

important in some of the bursting neuron types found in the basal ganglia.

9.2.2 Integrate-and-fire-or-burst model

20 mV

5 pA
100 ms

Figure 9.1: Thalamocortical neuron response using IFB model.

The integrate-and-fire-or-burst (IFB) model neuron is a simple model capable of capturing

the burst responses of thalamacortical neurons. The model is defined by the differential

equation

Cm
dV

dt
= I − Ileak − IT , (9.6)

and the leak current

Ileak = gleak (V −Eleak) , (9.7)
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and the T-type calcium channel current

IT = gT · hT ·H (V −Eh) · (V − ECa2+) . (9.8)

H is the Heaviside function andhT is the inactivation variable defined by

hT =











hT

τ−
h

(V > Vh)

(1−hT )

τ+
h

(V ≤ Vh)

When the membrane voltage goes aboveVp an action potential is fired and the neuron

is reset toVr. The model is then placed in a refractory period for5 ms.

The inactivation variable,hT , controls the burst response of the mode. When the mem-

brane voltage is hyperpolarizedhT deinactivates with timescaleτ+h . When the neuron is

depolarized,hT is immediately activated due to the Heaviside function and begins to in-

activate with timescaleτ−h . This allowshT to essentially build during periods of sustained

hyperpolarization and when depolarized again facilitate bursts of action-potentials. An

example thalamocortical neuron model is presented in Figure 9.1.
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9.2.3 Modeling basal ganglia nuclei

STR

STN

GPe

TC

SNr

20 mV

10 pA

0.5 s

Figure 9.2: Basal Ganglia neurons. Many of the firing characteristics inherent to neurons of the BG nuclei
are captured by the simple hybrid model. The model parameters used to achieve these patterns are STR:
(a = 0.02,b = 0.2,c = −65.0,d = 8.0), STN: (a = 0.005,b = 0.265,c = −65.0,d = 2.0), GPe: (a =

0.005,b = 0.585,c = −65.0,d = 4.0), TC: (a = 0.002,b = 0.25,c = −65.0,d = 0.05), SNr: (a = 0.005,b =
0.32,c = −65.0,d = 2.0). Note that the GPi response is not shown here but has similarfiring characteristics
to the GPe neurons only with a higher basal level of firing.

As described in Chapter 7 there are six nuclei in historical models of the BG that can be

separated into multiple pathways. Here, the dual pathway model is used. These dual path-

ways play an important role in the action selection models presented. Using the Humphries
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et al. (2006) terminology the direct pathway acts as the “Selection” mechanism and the

indirect pathway as the “Control” mechanism. Below we describe the fire patterns for the

nuclei modeled in this chapter.

Striatum

For the models described here we selected parameters that matched the the medium-size

spiny neurons of the striatum. The neurons in Figure 9.2 respond to increases in depolariz-

ing inputs with an increase in firing rate. Notably absent from the single cell response is the

presence of bistable behavior. Found in vitro, the neurons will fall into, the “up-state” and

the “down-state.” These contribute to the responses to deploarizing currents and in particu-

lar, the long-latency spike-discharges. The simple hybridmodel used here is not capable of

replicating those dynamics, although there are versions ofit that can (Izhikevich, 2007a).

Despite this, the model is still suitable as the bistablity was determined to be unnecessary

for the networks replicated here (Humphries et al., 2006).

Globus Pallidus External

The GPi neuron model presented in Figure 9.2 are intrinsically active and respond to hy-

perpolarizations with a decrease in tonic firing. Unlike themodels of Rubin and Terman

(2004) the simple hybrid model is unable to replicate the transition from tonic firing to

bursting in response to sufficient hyperpolarizations. This however, did not appear to be a

necessary property to replicate the dynamics of the model.

Globus Pallidus Internal

The firing patterns of the GPi neurons employed here match those of the GPe neurons

presented above. However, they have a higher level of basal activity (Rubin and Terman,
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2004).

Subthalamic Nucleus

The neurons of the STN model used here have spontaneous activity of a around5 − 10

Hz. Physiologically this is due to voltage activatedNa+ channels. In addition, when a

depolarizing current is applied the STN model responds witha high-frequency tonic firing

with a quiescent period after sustained depolarization. The model will fire rebound bursts

in response to hyperpolarizations that are sufficient in time and magnitude, Figure 9.2.

Missing from this model are the spontaneous bursts in the absence of inputs as well as

plateau deploarizations as observed experimentally. The simple hybrid model is incapable

of including all of the STN cell dynamics. However, the firingproperties of the model

neuron is sufficient to encompass all of those included in theoriginal models.

Substania Nigra pars reticulata

The neuron model firing patterns are similar to those of the STN but with higher level of

basal activity (see Figure 9.2).

Thalamus

The model parameters were selected to have firing patterns that match those of Sherman

(2001). They do not fire spontaneously but when in the tonic mode show an increase in

firing rate in response to larger depolarizing currents. In the burst mode when subjected to

sustained hyperpolarizing input the model neurons respondwith periods of bursting that is

dependent on the strength and duration of the applied current (see Figure 9.2).
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9.2.4 A physiologically plausible model of action selection

Conceptually, action selection is the arbitration of competing signals and the role of the

BG is to select the most appropriate one. The complex circuitry of the BG is active in

gating information flow in the frontal cortex and the selection mechanism can affect simple

action all the way up to behaviors and cognitive processing Cohen and Frank (2009). To

explore that mechanism in a physiologically meaningful way, Humphries et al. (2006) con-

nected populations of realistic “spiking neurons” configured using the functional anatomy

of Gurney et al. (2001). The biological fidelity of the model was validated at the population

level as well as single-unit recordings from networks replicating anesthetized or lesioned

conditions. The ability of the model to replicate single neuron dynamics under normal con-

ditions similar to Rubin and Terman (2004) or the simulations presented in Figure 9.2 was

not presented but descriptions of the included dynamics were included in the appendices.

This was the first network model created for this work.

Substania

Nigra pars

Reticulata

Globus Pallidus

External

Subthalamic

Nucleus

Thalamus

&

Brainstem

++

Cortex

Striatum

Caudate/Putamen
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-

+
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-
+

+

-
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Control
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-

Figure 9.3: Action selection network model (Humphries et al., 2006).

The model exploited the concept of competing anatomical channels within the BG.
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Three separate channels were constructed using the networkof Figure 9.3. Each popula-

tion consisted of 64 neurons with the parameters of Table 9.1A. Most connections of the

model were focused projections where post-synaptic connections were randomly sampled

within a channel using the probabilityρc = 0.25. However, the diffuse projections listed

in Table 9.1B, spanned all channels and the connection probability ρc was divided among

each of those. This is consistent with the more diffuse outputs from the STN (Haber, 2010).

Cortical inputs to the striatum were simulated as Poisson random spikes.
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Table 9.1: Parameters for the model of action selection.

A. Neuron parameters

Neural Region a b c d
Iapp

(pA)

STR 0.02 0.2 −65.0 8.0 0.0
SNr 0.005 0.320 −65.0 2.0 25.0
STN 0.005 0.265 −65.0 2.0 20.0
GPe 0.005 0.585 −65.0 4.0 5.0

B. Connections

Source→ Destination
Synaptic

Conductance
Delay (ms)

Cortical Input→ STR 0.2 11
Cortical Input→ STN 0.2 6
Striatum D1→ SNr 0.12 6
Striatum D2→ GPe 0.1 6
GPe→ STN 0.025 6
GPe→ GPe 0.025 2
GPe→ SNr 0.015 6
SNr→ SNr 0.015 6
STN→ SNr Focused 0.075 2
STN→ SNr Diffuse 0.35 2
STN→ GPe Focused 0.075 2
STN→ GPe Diffuse 0.35 2

C. Synaptic parameters

Parameter Value

τge 5 (ms)
τgi 100 (ms)
Eexc 0 (mV)
Einh −80 (mV)
Vrest 0 (mV)
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9.2.5 The parkinsonian BG and deep brain stimulation

The modeling study of Rubin and Terman (2004) presented the first explanation for the

mechanism of action of deep brain stimulation. In Parkinson’s disease there is a marked

loss of dopaminergic cells in the Substania Nigra pars compacta. The reduction in tonic and

phasic dopamine onto the BG nuclei results in, among many other phenomena, a rhythmic

synchronization of the major output nuclei of the BG. Withinthe computational model this

resulted in a decrease in the ability of thalamocortical neurons to respond to depolarizing

cortical inputs. It was hypothesized that this loss of relayfidelity is one of the underlying

causes for many clinical Parkinsonian symptoms.
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Figure 9.4: (A) Network layout of Rubin and Terman (2004). (B) Individual neuron connections.

The network of Rubin and Terman (2004) (RT Model), illustrated in Figure 9.4A, con-

sists of four populations: the GPe, STN, GPi and thalamus. With the exception of the

thalamus, that contains 2 neurons, each population has 16 neurons. Unlike the action se-

lection model presented above, the RT model maintained consistent network connectivity

that was exactly the same used by Rubin and Terman (2004). Figure 9.4B illustrates the
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connectivity patterns for individual neurons of the network.

Table 9.2: Model parameters for Parkinson’s disease model.

A. Neuron parameters

Neural Region a b c d
Iapp

(pA)

GPe 0.005 0.585 −65.0 4.0 5.0
GPi 0.005 1.2 −65.0 4.0 7.0
STN 0.005 0.265 −65.0 2.0 15.0
TC 0.002 0.25 −65.0 0.05 0.0

B. Connections

Synaptic Conductance Range

Source→ Destination Low High

GPe→ GPe 0.1 0.2
GPe→ STN 0.1 0.2
GPe→ GPi 0.3 0.4
STN→ GPe 0.2 0.3
STN→ GPi 0.5 0.6
GPi→ TC 0.02 0.0225

C. Input Parameters

Parameter Value

iSM 30 (pA)
δSM 3 (ms)
ρSM 25 (ms)
iDBS 130 (pA)
δDBS 1 (ms)
ρDBS 8 (ms)

The parameters used for the neurons of the RT model are listedin Table 9.2A. The

synaptic conductances were randomly selected from a normaldistribution with the ranges

specified in Table 9.2B. There are two sources of depolarizing input current used in this



227

model. Both follow an equation of the form

I = iχ ·H

(

sin
2πt

ρχ

)

·

(

1−H

(

sin
2π(t+ δχ)

ρχ

))

, (9.9)

whereH is the Heaviside function andχ ∈ {SM,DBS}, SM andDBS, are somatomo-

tor and deep brain stimulation respectively. The values used for each of these currents is

presented in Table 9.2C. The synaptic delay, imposed by the simulator, was2 ms.

The role of the STN and GPe in this model is to create the patterns of activity within

the GPi that are observed experimentally. As discussed above, the GPi is the major output

nuclei and is responsible here for appropriately controlling the activity of the thalamic

neurons. The role of the thalamus in this case is simplified into a relay station; responsible

for appropriately relaying depolarizing signals from somatomotor inputs.

Under the normal mode of operation the nuclei of the BG produce irregular firing pat-

terns and the thalamus is capable of relaying somatomotor information reliably. In the

Parkinsonian state the GPe and STN nuclei have more regular synchronized firing rates and

the thalamic relay fidelity is greatly diminished. Similar to the original work the Parkinso-

nian mode is accomplished by reducingGPe→ GPe to 0 as well as reducing the current

Iapp to−19. This follows the procedure of Rubin and Terman (2004) and isbased on the

activity patterns of Terman et al. (2002). Finally, the application of DBS to the STN is used

to restore relay capabilities while in the Parkinsonian state.

To quantitatively evaluate the performance of the model in each of the three states, an

error index measure was introduced in Rubin and Terman (2004). This is defined as

EI =
m+ b

t
(9.10)
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wherem, representing misses, is the number of somatomotor signalsthat were not relayed,

b, bad, is the number of responses that result in multiple spikes andt is the total number

of stimulus inputs. The error index evaluation was completed by running20 simulations

of the model in each of the modes described above. Each run resulted in different results

due to the randomly selected connection weights described in Table 9.2B. The error index

was calculated for each of the TC cells and a box and whisker plot were created to compare

with Rubin and Terman (2004).

9.2.6 Restoring action selection in the Parkinsonian basalganglia

In addition to exploring different sites of DBS application, the work of Pirini et al. (2009)

divided the RT model into 2 distinct control channels and added a striatal current into the

GPi, representing the direct pathway discussed above. The model was capable of demon-

strating simple two channel action selection by way of disinhibition. The successful switch-

ing between channels was lost under Parkinsonian conditions but could be restored by the

application of DBS into the STN.

The exact two channel network from Pirini et al. (2009) was constructed here. The

network layout and individual neuron connections matched those of Figure 9.4 and the

parameters of Table 9.2 were used with some modifications to handle the change in network

configuration as well as the stochastic input pattern. The somatomotor input into the TC

cells was reduced to24.5 pA and the duration,δSM was changed to4 ms. In addition, the

pulse times were randomly selected from an exponential distribution with a mean of15 Hz.

The DBS current was reduced to50 pA and the periodρDBS was reduced to7 ms to more

closely match the original work.

The action selection mechanism signaled by the striatum is modeled as a current input

into the GPi nucleus. Under normal conditions the current values areIOn = 0 pA and
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IOff = 27 pA. For the Parkinsonian condition the values are set toIOn = 0 pA and

IOff = 22 pA to represent the loss of striatal inputs into the GPi. Eachstate lasts2 s before

switching.

9.2.7 Thalamic relay fidelity between the BG and thalmus

+

-

Globus Pallidus

Internal

Cortex

TC TC

(1-c)λ

μ μ

cλ

(1-c)λ

Figure 9.5: Correlation network configuration (Reitsma et al., 2011).

Correlated firing in neuronal ensembles is important in bothunderstanding informa-

tion encoding and in interpreting functional anatomy (Cohen and Kohn, 2011). Correlated

activity in many brain regions has been linked to stimulus decoding and discrimination,

attention, and motor behavior (de la Rocha et al., 2007). In addition, highly correlated

firing has been associated with pathological conditions. Inthe basal ganglia in particular,

correlated activity of globus pallidus internal (GPi) neurons is associated with Parkinson’s

disease or pharmacological agents causing Parkinsonian like conditions (Reitsma et al.,

2011).

Reitsma et al. (2011) explored the implications the temporal relationships that emerge

from the GPi have on the relay fidelity of the thalamic neuronsthey innervate. In the

Parkinsonian BG the firing patterns become increasingly oscillatory with pronounced burst-

ing. This synchronous fire rate can have deleterious effectson the functionality of the BG.

The effect of those patterns of activity have on thalamocortical relay fidelity was explored
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through correlation analysis of a computational model. Exploring single cell responses

to correlated inputs is important in understanding how population level effects translate

down to single cells. In addition, this helps in the elucidation of the important properties of

correlations (Cohen and Kohn, 2011).

One conclusion of that work was that the integrate-and-fire-or-burst (IFB) neuron model

demonstrated similar firing patterns and correlation transfer to that of a conductance-based

model. This not only strengthened the overall conclusions of the study but also motivated

the authors to suggest the IFB model as a suitable replacement for the conductance-based

model in correlation studies. Here, we explore if a similar result can be accomplished with

the hybrid neuron.

The IFB model achieves the bursting dynamics of TC cells through the inclusion of a

T-type calcium channel. When the membrane voltage is hyperpolarized the inactivation

gate of the channel begins to deinactivate. When the membrane voltage is depolarized the

channel remains activated until the gate is reinactivated.Unlike the IFB model, the hy-

brid neuron used here does not have an explicit bursting mechanism. Instead the recovery

variable is used to put the neuron with the bursting regime ofthe phase-portrait (Izhike-

vich, 2007a). Reitsma et al. (2011) demonstrated that although the T-current is required to

replicate the physiological spike patterns, it is not needed to demonstrate transfer of cor-

relations. However, our goal here was to replicate both the physiological spike patterns of

the thalamocortical neurons as well as the correlation transfer.

The model consists of two spiking thalamocortical (TC) neurons subjected to inhibitory

input from an engineered GPi signal as well as an excitatory input representing cortical

innervations. This is illustrated in Figure 9.5. Each TC neuron receives independently

generated 20Hz Poisson random excitatory inputs. The GPi spike trains are generated

by inhomogeneous Poisson rate functions defined asλ(t), with a fraction,c, of spikes
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overlapping between each TC neuron. For values ofc > 0 a single spike train with rate

λ(t)/c is constructed. Each cell then samples from this spike trainwith probabilityc. For

c = 0 two Poisson random spike trains are generated using a commonrate functionλ(t).

The model and corresponding analysis was computed using thenumerical programming

language Octave (Eaton et al., 2008). Table 9.3 presents theparameters used in the model.

The simple hybrid neuron of Equation 9.1 is used however, to increase the stability of the

simulations under the increased synaptic activity of the GPi the hybrid solution method

from Izhikevich (2010) was used along with the spike peak detection presented in Equation

9.5. The hybrid numerical method treats the synaptic influence implicitly resulting in a

linear dependence on the future value of the membrane voltage. The equation is

V (t + 1) =
V (t) + 0.04V 2 + 5V + 140− u+ g(t)E(t) + I

1 + g(t)
. (9.11)

Where the total conductance is

g(t) =
∑

gi(t) (9.12)

and the total reversal potential is

E(t) =
∑ gi(t) · Ei

g(t)
. (9.13)
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Table 9.3: Parameters for the model of correlation transfer.

Parameter Value

a 0.002
b 0.25
c −65.0
d 0.05
ge 0.12
τe 6.0 (ms)
Ve 0.0 (mV)
gi 0.09
τi 15.0 (ms)
Vi −85.0 (mV)

IFB model

The IFB neuron model was also developed for comparison with the original work. Using

Equation 9.6 and the parameters of Table 9.4 the procedure outlined above was repeated.
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Table 9.4: Parameters for the model of correlation transfer.

Parameter Value

Cm 2. µF/cm2

Iapp 0.89 nA/cm2

gleak 0.035mS/cm2

gT 0.07 µF/cm2

gi 0.024 µF/cm2

ge 0.06 µF/cm2

Eleak −65.0 mV
ECa 120.0 mV
Ee 0. mV
Ei −85. mV
Vh −70. mV
τ+h 100. ms
τ−h 20. ms
Vr −68. mV
Vp −50. mV
τe 4. ms
τi 15. ms

Input patterns

Consistent with the original work, four different GPi inputpatterns are constructed to em-

ulate normal and Parkinsonian conditions observed experimentally. Samples of the rate

functions are illustrated in Figure 9.6A. The normal input is a constant70 Hz Poisson

random spike train. Similar to the original work the first Parkinsonian pattern, labeled

oscillatory, is constructed as a sum of 21 sine waves. The individual sine waves have fre-

quencies ranging from5 Hz to 15 Hz with step changes of0.5 Hz between them. These

are weighted by a Gaussian distribution with a mean of10 Hz and a variance of1.5 Hz;

resulting in the10 Hz component dominating the rate function. The phase of the sine waves

are then randomly shifted and summed together. The resulting function is then amplified

by 50 Hz and shifted up by150 Hz. Any negative values are railed to zero. Although
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constructed differently than those described in Reitsma (2010); Reitsma et al. (2011), the

resulting function qualitatively matches the samples presented there. In addition, the re-

sulting functions exhibited a distinct peak at10 Hz, see Figure 9.6A below, similar to the

original work.

The third pattern, labeled Bursty, consists of a basal levelof firing at70 Hz interrupted

by random bursts stepping to470Hz. The duration of each burst is selected from a Gaussian

distribution with a mean of30 ms and a variance of10 ms. The time between bursts is

selected from a Poisson distribution with a mean of70 ms. The final GPi pattern, labeled

Oscillatory Bursty, is constructed similar to the bursty case however, the inter-burst-interval

is selected from a Gaussian distribution with a mean of30 ms and a variance of10 ms. This

results in more periodic bursts.
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Figure 9.6: Example GPi spike patterns and TC cell responses for each of the four modes for the Izhikevich
model. (A) Example input rate functions. Resulting GPi spike trains, (B), and TC Cell responses, (C).
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These rate functions are then used to generate Poisson random spike trains. For the

Izhikevich model examples of these spike trains are presented in Figure 9.6B with the

corresponding TC neuron response in Figure 9.6C. For the IFBmodel examples of the

spike trains are presented in Figure 9.7B with the corresponding response of the inactivation

variablehT in Figure 9.7C and the TC neuron response in Figure 9.7D. These patterns were

selected by the authors to replicate firing patterns and overall spike rates found in the GPi

under parkinsonian conditions (Reitsma et al., 2011).
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TC model spike response

Both interspike interval (ISI) distributions and power spectra were computed on the model

TC cells for comparisons with the original work. The power spectra was computed for
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the TC model spike response as well as the corresponding GPi and cortical inputs using

the point process multi-taper spectrum analysis from the Chronux software package (Bokil

et al., 2010).

Correlation calculations

The measure of correlation is calculated using the Pearson’s correlation coefficient. This is

a spike count measurement that compares the number of spikesthat occur over a window

of lengthT defined as

ρ(t) =
cov(n1(T ), n2(T ))

[var(n1(T )) · var(n2(T ))]
1/2

. (9.14)

Wherecov is the covariance,var is the variance andn1(T ) andn2(T ) are spike counts at

windowT .

The correlation coefficient is used to calculate the correlation susceptibility. This is

used to quantify the degree to which correlations are transfered through the model. This is

found using the equation

ρout(T ) = S(T )ρin(T )− k. (9.15)

Whereρin andρout are the GPi input correlation coefficient and the TC output correlation

coefficient respectively.

To demonstrate how sensitive the TC neurons were to correlated input the correlation

coefficients were calculated forc = 0, 0.25, 0.5, 0.75, 1.0 and similar to Reitsma et al.

(2011) a sample bootstrap method was used to generate confidence intervals on the analysis.

For each value ofc, 30 simulations of were run for100 s each. This resulted in150 pairs
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of correlation coefficients. A straight line was then fit between the values ofρin andρout to

find the correlation susceptibilityS based on the slope of the line. This was completed over

a range of window sizesT . The150 pairs were then sampled with replacement to generate

a new set correlation coefficients andS values. This resampling was completed 1000 times

to generate98% confidence bands for each value ofT .

9.2.8 HRLSim

With the exception of the correlation study, all of the models were simulated using the

HRLSim neural simulator package (Minkovich et al., 2012). HRLSim is the first distributed

GPGPU spiking neural simulation environment. It currentlysupports two different point

neuron implementations, the Leaky Integrate-and-Fire (LIF) model and the simple hybrid

Izhikevich model. With an emphasis on high-performance, HRLSim was developed to

support the modeling efforts of the SyNAPSE project and its team members. It has also

proven extremely useful in general neural simulation studies (Srinivasa and Cho, 2012;

O’Brien and Srinivasa, 2013).
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9.3 Results

9.3.1 Action selection
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Figure 9.8: Basal activity of the model of action selection. Upper left:the mean rates for the STN, GPe and
SNr qualitatively match the simulated and experimental results of Humphries et al. (2006). Remaining plots:
the spike rasters for each of the nuclei are overlaid with thecorresponding spike-count firing rates.

The action selection model of Figure 9.3 was first tuned to match the original model of

Humphries et al. (2006). Using the model-as-animal strategy 15 simulations were com-

pleted with different randomly connected networks. From each of those simulations3 cell

indexes were selected from a normal distribution and the overall activity rate of the last9

seconds of simulation were computed for those neurons. The mean rates and95% confi-

dence intervals were then computed to ensure the activity was in the ranges as Humphries

et al. (2006). This is presented in Figure 9.8. In addition, the spike rasters and binned

spike count rate functions are included. The overall mean firing rate results are in good
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agreement with the original work as well as the experimentalresults referenced there.
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Figure 9.9: Action selection performance. The model is capable of appropriate selecting the most salient
input between two competing channels (A) as well as three competing channels (B).

Using the protocol of Humphries et al. (2006) the ability of the models to appropriately

select the most salient input was first simulated using two ofthe three channels. Figure

9.9A illustrates the two channel action selection results.Initially the network is at its basal

level of activity with a3 Hz Poisson input. At1 second the input for channel1 is increased

to 20 Hz, causing, through disinhibition, the selection of that channel. At2.5 seconds a40

Hz cortical input is injected into Channel2. The activity of channel1 is pushed up to its
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basal level of activity and the channel2 output is inhibited causing it to be selected. This

selection mechanism is more decisive then the one presentedin Humphries et al. (2006). In

the original work the previously selected channel had an increase in activity that was only

slightly above the selection limit. To build on this result we tested the selection capabilities

of all three channels, something that was not part of the original work. The results of this

are presented in Figure 9.9B as well as in Figure 9.10 where the spike rasters of the model

nuclei are plotted with the overlaid spike count rate functions. This is an encouraging result

and suggests that the functional anatomy of the original work can be extended to more than

three channels.
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Figure 9.10: Network response to competing inputs; spike rasters of the major nuclei of the BG action
selection with the spike count rates overlaid.
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9.3.2 The Parkinsonian BG and deep brain stimulation
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In the normal mode the BG nuclei have irregular firing patterns with interspike interval

coefficients of variation≥ 1.0. With this irregular pattern of activity the thalamus is capable

of reliably transmitting the somatomotor signals (see Figure 9.11A).

In Parkinson’s disease the firing pattern of the BG neurons have been reported to have

regular synchronous firing patterns (Walters and Bergstrom, 2010). In Figure 9.11B it can

be seen that the BG nuclei begin to fire synchronously. The neurons of the STN sepa-

rate into two distinct populations with different phases ofbursting. The periods of burst-

ing oscillate around4 Hz which is consistent with synchronous oscillations observed in

the parkinsonian BG (Walters and Bergstrom, 2010). This synchronous activity results a

marked loss of thalamic relay. As noted by Rubin and Terman (2004) the GPi activity is

affected by the periods of bursting in the GPe, where the GPi would otherwise fire tonically.

The application of DBS to the STN results in an increased firing rate and a disruption

of the synchronous oscillations of the BG nuclei. This disruption in the oscillatory activity

is sufficient to restore the relay fidelity of the thalamus (see Figure 9.11C).
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Figure 9.12: Error index statisitcs. Allowing the network connection weights to randomly change over 20
simulations results in the Normal and DBS modes operating with less errors then the PD mode.

The results of Figure 9.11 are quantified in Figure 9.12. Herethe normal and DBS
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modes of the model result in EI medians that are comparable. Although the spreads are

somewhat dissimilar neither overlaps with the much higher values measured in the Parkin-

sonian state.

9.3.3 Restoring action selection in the Parkinsonian basalganglia
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Figure 9.13:Parkinsonian fire patterns result in a loss of accurate selection capabilities.

The modified RT network of Pirini et al. (2009) puts the theoretical concepts of the previous

sections into a dynamical model of action selection. The results of this experiment are

shown in Figure 9.13. Once again the loss of faithful relay can be alleviated with the

application of DBS to the STN.
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9.3.4 BG correlation transfer
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Figure 9.14: Correlation analysis. Spectral power of the GPi input patterns (A), excitatory input (B) and
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Firing patterns

Validating the generated GPi input spike trains was completed by the spectral power anal-

ysis presented in Figure 9.14A. As in Reitsma et al. (2011) the Oscillatory and Oscillatory
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Bursty patterns have clear spectral peaks at10 Hz, while the Normal and Bursty cases have

no obvious peak. As expected the cortical inputs lack a peak in the frequency range of

interest (see Figure 9.14B).

The parameters for the model were selected based on the TC cells firing patterns and

spectral analysis. Although the Normal and Bursty spectralpowers do peak around10 Hz

there are oscillations present in both (see Figure 9.14C). This is contrasted with the cleaner

peaks of the Oscillatory and Oscillatory Bursty cases. Thisis however, consistent with the

spectral analysis reported by Reitsma et al. (2011). The discrepancies are likely due to

analysis parameters and the way GPi inputs were generated, as discussed below.

There is a clear bimodality to the interspike interval histogram of Figure 9.14D, which

is consistent with the original work. However the first peak,at 10 ms, is lower than the30

ms peak described by Reitsma et al. (2011). This may be a product of that model using

a refractory period of5 ms, possibly resulting in slower bursts. It may also be a product

of the way the dynamical correlate of the T-current is produced in the hybrid model. This

would cause the inputs to recruit the bursting regime of the model in a different or perhaps

less efficient way than the IFB or conductance based models used in Reitsma et al. (2011).

Despite the slight differences the firing patterns of the hybrid model in this network

are still in general agreement with Reitsma et al. (2011). Inthat work it was stated that

without the T-current these firing characteristics were lost. Suggesting that the mechanism

for bursting in the hybrid model is sufficient to reveal thesecharacteristics. In addition,

the power spectrum peaks suggest a frequency selectivity that is observed in experimental

paradigms and was suggested to be dependent on the T-current(Reitsma et al., 2011).



246

Correlation susceptibility

The general susceptibility analysis, Figure 9.14F, qualitatively matches the results of Re-

itsma et al. (2011) however, the magnitude of the steady-state values are consistently lower

than the original work. Similar results were found for our implementation of the IFB model,

Figure 9.15, suggesting that the discrepancy in the magnitude of the susceptibility may arise

due to differences in the way the input signals are generated. The correlation coefficients

for T = 95 ms, Figure 9.14E, when fit with a linear curve illustrates thedifferent slopes

produced by the four input patterns tested. The Bursty and Oscillatory Bursty cases here

have input correlation coefficients that are always greaterthan zero, even whenc = 0. This

is a product of generating the spike trains using a common time-dependent rate function.

In the work of Reitsma et al. (2011) the susceptibility values reach an asymptote around

T = 200 ms. Here for the Normal and Oscillatory cases that plateau isreached much

earlier, aroundT = 100 ms. The implications of this are unclear but they do not appear to

affect the conclusion that the bursty inputs cause an increase in correlation susceptibility.

In addition, this further supports the conclusion that the correlation results of Reitsma et al.

(2011) are independent of model details. That combined withthe fire pattern results above,

helps validate the use of the simple hybrid model in correlation studies.
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IFB Response
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Figure 9.15: IFB model correlation analysis. Spectral power of the GPi input patterns (A), excitatory input
(B) and corresponding TC cell response (C). (D) ISI profile ofthe TC Cells. (E) Correlation susceptibility
for T = 95ms (F) SusceptibilityS of the TC cells based on the analysis windowT .

Using the same parameters of (Reitsma et al., 2011) for the IFB neuron model and the input

patterns presented here, we were unable to recreate the samespectral and ISI patterns as

the original paper Figure 9.15B and C. It is unclear where thedifference arises from and
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communications with the original authors did not reveal a cause. Despite these different

responses, the correlation susceptibility results, Figure 9.14 E and F, were extremely close

to the Izhikevich model results as well as the original work .

9.4 Discussion

9.4.1 Previous BG models utilizing the hybrid neuron

There are number of spiking neural models of the basal ganglia. However, only a small

subset of those make use of the simple hybrid model and none use parameters that produce

dynamics faithful to the nuclei they are modeling. For example the model presented by

Igarashi et al. (2011) utilized the hybrid model for neuronsonly in the striatum. However,

they use the expanded form of the hybrid equation. The other BG nuclei are modeled

using a conductance-based integrate-and-fire model. Modolo et al. (2007) incorporated the

simple Izhikevich neuron into a population based model but the neuron parameters were

selected to achieve single neuron dynamics within the tonicregime described by Izhikevich

(2003). Latteri et al. (2011) explored the synchronizationcharacteristics of a population

of coupled neurons. A single type of Izhikevich model was used with the simulations

matching both experimental results and model results basedon the Morris Lecar neuron

model. Although this model has been shown to phenomenologically replicate the spiking

dynamics of most neuron types, there have been no spiking models of the basal ganglia that

attempt to use the hybrid model parameters that produce single neuron dynamics of the BG

nuclei.
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9.4.2 Physiological model of action selection

An interesting result of this work that was absent from Humphries et al. (2006) was the

use of a neuron model that could replicate experimental dynamics at both the single neuron

and population levels. Even with the added current source the LIF neuron employed by

Humphries et al. (2006) is unable to completely replicate the complex fire patterns pre-

sented in Figure 9.2. It was argued that the most relevant dynamics are included and given

that the model of Humphries et al. (2006) was able to replicate experimental results, it can

be argued that the individual neuron dynamics may not be necessary. However, as illus-

trated by the results in Figure 9.9, the model presented herewas able to not only selected

the most salient input but also drive the activity of the previously activated channel clearly

away from the selection limit. The selection results presented by Humphries et al. (2006)

as well as by independent testing of the model (not presented) demonstrated a sufficient but

modest increase in the activity of the previously selected channel. The increased activity

of our model is large enough to push the previous channel backto its basal level of firing;

reducing the possibility of selecting undesired or multiple channels. The mechanism for

the improved selection capabilities is unclear and remainsa focus of future studies. In ad-

dition, in the future this model will be extended to include alarger number of channels to

determine how feasible it is to scale beyond the three presented here.

The original rate based model of Gurney et al. (2001) was converted into the spiking

domain by Stewart et al. (2010) using LIF neurons and the Neural Engineering Frame-

work (Eliasmith and Anderson, 2003). It was then expanded toinclude both action selec-

tion and reward learning (Stewart et al., 2012). The combination of action-selection and

reinforcement-learning is another aspect of this model we plan to explore.
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9.4.3 The Parkinsonian BG

Rubin and Terman (2004) offered the first explanation for theparadoxical therapeutic ef-

fects of DBS in a Parkinsonian BG. The simplicity of the modelcombined with the com-

prehensive mathematical analysis has made it a seminal workin BG modeling. The data

driven extension of this work presented by Guo et al. (2008) further supported these results

and linked its theories to experimental recordings. A similar extension was performed by

Meijer et al. (2011) where the relay fidelity of a single TC neuron in response to differ-

ent DBS parameters was explored. Similarly, Dorval et al. (2010) used the RT model to

compliment human subject experiments exploring the regularity of DBS inputs.

The majority of these studies supported the theory that oscillatory inputs into the tha-

lamus from the GPi negatively affect relay fidelity of the thalamus. In addition, constant

inputs from the GPi, arising from DBS application, result inmore effective relay in the

thalamus (Rubin et al., 2012).

There have been a number of studies that have extended the RT model to explore the

therapeutic effects of different DBS locations, protocolsand strategies (Hahn and McIn-

tyre, 2010; Guo and Rubin, 2011; Agarwal and Sarma, 2012), aswell as closed loop con-

figurations (Feng et al., 2007) and medicated states (Frank,2005). Similarly, the inverse

relationship between frequency and stimulus amplitude in clinically effective DBS has been

explored with the RT Model (Cagnan et al., 2009). In addition, the effects of Parkinsonian

symptoms and reduced levels of dopamine on action selectionhave been researched with

the RT model (Leblois et al., 2006; Pirini et al., 2009).
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Future Work
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Preliminary searches of the parameter space have revealed that this model can replicate a

number of different states that match experimental resultswithout modification to the net-

work structure. Figure 9.16 demonstrates a model with oscillations around6 Hz. The error

analysis, Figure 9.17, reveals similar results to the4 Hz model presented here. The con-

cept that the parameter choice can move this model into different pathological conditions is

novel in basal ganglia modeling. We plan to explore this further in future studies. The re-

sults of which could in fact merge previously divergent theories of the nature of Parkinson’s

disease or possibly reveal serious deficiencies in these network models.
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Figure 9.17: Error index statisitcs for 6Hz model. Allowing the network connection weights to randomly
change over 20 simulations results in the Normal and DBS modes operating with less errors then the PD
mode.

9.4.4 Thalamic relay fidelity between the BG and thalamus

The correlation study of Reitsma et al. (2011) highlighted that a number of point neuron

models were capable of demonstrating how the pattern of firing in the GPi could affect

correlation transfer in the thalamus. With this aspect of the study a similar result, that firing

patterns observed in the Parkinsonian BG result in increased correlation susceptibility of

the thalamus was found. This could provide an explanation for some of the pathological
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hallmarks of Parkinson’s disease.

Although it was shown that the T-current, required for TC neuron bursting, is responsi-

ble for the spike pattern of the model, it does not appear to have an effect on the correlation

transfer (Reitsma et al., 2011). Here however, we were able to demonstrate both similar

spiking patterns as well as similar correlation susceptibility as the models with higher bi-

ological fidelity. These results open up a number of future studies employing the hybrid

model. This includes a frequency space analysis of the correlation transfer as well as a

more thorough mathematical analysis of the relationship between GPi inhibition and spike

correlation.

9.4.5 BG models in neuromorphic hardware

The complexity of the neuron models explored in the originalstudies require a level pop-

ulation specificity that is undesirable in generic hardwareimplementations. Although the

LIF neurons of Humphries et al. (2006) are ideal for neuromorphic hardware the gated

synaptic currents as well as the piecewise calcium currentswould require circuitry specific

to a nuclei type and would greatly diminish the utility of a hardware system.

The motivations for embedding BG models in hardware systemsgo beyond the obvi-

ous applications to intelligent agents and neurorobotics.It has been shown that the model

based control concepts introduced in Section 9.1 have a number of clinical and practical

applications (Schiff, 2012). In addition to the control system computations are the numer-

ical calculations required for simulating the model aspectof the observer. Combining the

control system with neuromorphic hardware, perhaps in a system on chip, would greatly

reduce the power consumption and provide a solution appropriate for portable realization.

As emphasized in Schiff (2010), even if the results of closing the loop are a significant

reduction in battery life the model-based paradigm would bebeneficial. Ideally, extended
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battery life will be accompanied by clinical improvements and studies cited here support

the presence of both in closed-loop strategies.

Model Based

Controller

Model

Adaptation
Globus Pallidus

Internal

Thalamus

Globus Pallidus

External

Subthalmic

Nucleus

Input DBS

Input

-

+

-

- -
-

+

+

+

Model

Figure 9.18:Simplified example of how these models fit in a model based control DBS paradigm.

Model based or model predictor control systems work as stateestimators where the

dynamics of the model are used to predict the state of the current system. That prediction

is then corrected with new measurements. These allows us to incorporate the predictions

of the system’s state as well as sensor estimates with the real sensor information to get

a better estimate of the actual state. Figure 9.18 is a simplified overview of how these

models would fit into such a control system. This is a brief example of how these models

and neuromorphic hardware fit in with model based control strategies, for a more extensive

review see Schiff (2012).

To quantify the energy efficiency of neuromorphic hardware,power estimates were

computed for the models presented here. The details of how these were computed are
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included in Appendix 1. The comparison with three commercial off-the-shelf components,

Figure 9.19, illustrates the tremendous energy advantage neuromorphic hardware has over

the current hardware.
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Figure 9.19: Power estimate for a model on a particular hardware, top. Energy per spike for the model,
bottom. (A) Estimates for Action selection model of Section9.2.4. (B) Estimates for Parkinsonian model
of Section 9.2.5. The hardware used for comparison was standard central processing unit (CPU), field pro-
grammable gate arrays (FPGA),graphical processing unit (GPU) and sample neuromorphic hardware (NH).
The neuromorphic hardware is consistently lower in both andpower and and energy per spike for both neural
models. The details for this are included in Appendix B.

There are a number of issues, however, beyond implementation difficulties that need to

be resolved before model-based control strategies will prove useful. The level of realism

required in the neuron model is still unclear at this point. Schiff (2010) was able to demon-

strate model-based control of DBS using the simple neuron implementation of Rubin and

Terman (2004). Although computationally cheaper than the full conductance based mod-

els this still suffers from the problems discussed above. A logical next step in this work
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will be to show that the simple hybrid neuron can also be effective in model-based control

strategies of DBS.

These strategies may also prove efficacious in brain computer interfaces (BCI). Rather

than contributing to the dynamic changes in brain dynamics,BCI applications would be

used in estimating state and decoding measurements. This isa concept that, although

promising, has proven difficult to achieve (Schiff, 2012). Low-power realizations of these

systems, as suggested here, offer a cost-effective option as BCI theories mature.

Finally, the most important point on the study of neural control engineering is that often

the best model is not the most physiological one, but the one that best reduces error (Schiff,

2012). This is important because focusing too much on model adequacy may take away

from the more important task of producing better therapies.An important question that

will need to be answered in this case is, how detailed does a BGnetwork model need to

be in order to prove effective in estimating pathological conditions? The next step in this

work is to begin developing strategies based on the these models and the control theoretic

approaches of Voss et al. (2004), Schiff (2010), and Schiff (2012).

Ultimately, until models are capable of predicting therapeutic outcomes, either through

realistic biological results or through a dimensionality reduced interpretations, the patho-

logical BG models will remain just a compliment to physiological experiments.

9.4.6 Conclusions

The models utilizing the simple hybrid neuron presented here may offer a mechanism for

revealing mathematical details of BG function and dysfunction that are hidden by the com-

plexity of other models. An immediate extension that highlights that concept is in the

parameter exploration of the RT model. The computational efficiency of the network pre-

sented in Section 9.2.5 has allowed us to begin exploring theparameter space using a
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commodity computing cluster. Sweeps can be completed in hours as opposed to months of

computing it would take to explore the original RT Model. We hope to present details of

this in future publications.

Using the simple hybrid neuron in such small networks and deriving biologically sig-

nificant meaning from them can be unreliable. Care must be taken when interpreting the

results in the context of both pathological conditions as well as clinical therapies. The tra-

ditional niche for the simple model has really been in large-scale modeling. The more bio-

logically realistic conductance based neuron models are generally recommended for single

and small-scale network studies (Izhikevich, 2007a). In addition to those presented above,

one of the primary motivations for using the simple model liein the intention to construct

large-scale models of the BG. This work presents the foundations for those future studies

and the results demonstrate that the hybrid model is capableof capturing many of the rel-

evant BG responses and dynamics. These studies are meant to compliment experimental

research as well as the more detailed modeling efforts.



258

Chapter 10

Discussion and Future Directions

Future extensions of this work will focus on exploring how the anatomy that has been

historically ignored in basal ganglia models can influence the reward related firing leading

to dynamic models of action-selection. This includes the context specific firing of the

pedunculopontine tegmental nucleus onto the dopaminergicsystems of the basal ganglia as

well as a new theories of the functional anatomy of the basal ganglia. The combination of

theories that will be integrated are outlined below.

10.1 The role of dopamine as a neuromodulator

At the D1 receptors dopamine plays a contrast enhancer role,suppressing activity in less

active cells while enhancing activity in already active cells (Cohen and Frank, 2009). How-

ever, at D2 type receptors dopamine has an inhibitory effect. The SNc has a tonic level

of activity that creates a constant release of dopamine on the striatum. That release is

phasically enhanced by unexpected reward and reduced when an expected reward does

not arrive (Schultz et al., 1997). One theory for how these dynamic changes in dopamine
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release can affect reward learning rely on the parallel pathways of the traditional model

(Cohen and Frank, 2009). Considering this, during an unexpected reward the phasic in-

crease in dopamine will enhance the response of active neurons in the “Go” pathway, thus

encouraging long-term potentiation through Hebbian synaptic plasticity. While the less ac-

tive neurons of the D1 “Go” pathway will be further depressedby long-term depression

mechanisms. Similarly, during drops in dopaminergic neuron activity the neurons of the

“No-Go” pathway will have a reduction in dopamine modulatedinhibition at D2 receptors.

This increase in activity promotes long-term potentiation.

There are a number of inconsistencies in the current understanding of dopamine’s role

in RL. Two in particularly are relevant here. (i) The stereotyped response and latency of

phasic dopamine release has an on-rate and duration that is faster than it takes to both at-

tend to and appreciate a rewarding stimulus (Redgrave et al., 2010). This implies that the

dopaminergic response will have finished before the rewarding stimulus can be acknowl-

edged. (ii) Dopamine neurons also produce a phasic responseto unexpected stimuli that,

although novel, have no reinforcement consequences (Redgrave et al., 2010). In addition,

the afferent information from the superior colliculus may be better suited for assessing the

agency of a stimulus as well as the novelty of the actions thatresulted in an unpredicted

stimulus, rather than a processed representation of it(Redgrave and Gurney, 2006). Given

that sensory information, and the level of processing the superior colliculus is capable of

providing to the the midbrain dopaminergic neurons, it is more likely that they will be no-

tified that an event has occurred as opposed to the details of that event. This theory implies

that the BG is involved in predicting the error in sensory information and whether or not the

agent was responsible for a discrepancy in that prediction.The concept of “sensory predic-

tion error” places less burden on the sensory processing areas than the “reward prediction

error” hypothesis.
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10.2 New functional anatomy

The early models of the BG organized the flow of information inclosed parallel paths. The

BG was considered a pass-through structure where information was processed and returned

to the signaling cortical area. Recent studies have shown that the BG can no longer be

thought of this way (Obeso and Lanciego, 2011). This is supported by the acceptance of

the hyper-direct pathway and the subcortical innervationsdescribed below. In addition,

recent experimental evidence has shown that the connections from STN to GPi may not

have the sharpened projections that are a hallmark of the traditional BG model. Rather then

the GPe transmitting its influence by way of the STN it is now believed that information is

translated directly to the GPi through more focused efferent connections. In addition, the

STN influence on the GPi is now believed to act as a global modulator due its more diffuse

projections to GPi (Cohen and Frank, 2009). The dopaminergic afferents into the other

structures of the BG also runs counter to the traditional BG model (Obeso and Lanciego,

2011).

10.3 Subcortical connections

There are large number of subcortical connections with the BG that have historically been

neglected in neurocomputational models. Decerabrate rats, where the entire brain behind

the superior colleculus is removed, still exhibit simple action selection; such as performing

coordinated feeding movements Humphries et al. (2007). This action selection capability in

the absence of the major BG afferents suggests that there aresubcortical correlates to simple

action selection. In addition, the role of other subcortical influences has been demonstrated

empirically Winn et al. (2010); Norton et al. (2011)
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10.3.1 Pedunculopontine tegmental nucleus

The pedunculopontine tegmental nucleus (PPN) is a sub-cortical structure often associated

with orienting movement(Gerfen and Bolam, 2010). It has connections to both the brain-

stem and the basal ganglia (Winn et al., 2010). The reciprocal connections to the BG are

made to the striatum by way of the different thalamic nuclei and the dopaminergic nuclei

of the VTA and SNC, as well as directly to the BG nuclei that include, SNr, STN, GPe and

GPi. The PPN has been shown to encode reward stimulus in context-dependent manner

(Norton et al., 2011). However, unlike the VTA and SNc the PPNdoes not appear to en-

code the prediction of a reward but rather its consumption (Norton et al., 2011). In addition,

the duration of PPN reward response can be as long as 1000ms compared to the 70-100ms

bursts observed in the SNc and VTA (Norton et al., 2011). The response of PPN neurons

also appears to be dependent on the context transmitted by sensory systems (Norton et al.,

2011).

10.3.2 Lateral habenula

The lateral habenula (LHb) is an epithalamic structure thatis associated with the negative

control of motivation (Bromberg-Martin and Hikosaka, 2011; Lavezzi and Zahm, 2011).

Appropriately, the LHb shows a decrease in basal levels of firing in response to rewards

and reward-predicting cues and increases firing in responseto noxious or omitted stim-

ulus (Bromberg-Martin and Hikosaka, 2011; Lavezzi and Zahm, 2011). Neurons in the

LHb has been shown to respond to the prediction of reward-information sensory cures as

well as errors in primary rewards themselves (Bromberg-Martin and Hikosaka, 2011). In

addition, it has been shown that LHb neurons would increase activity when it was learn-

ing that a reward was being withheld (Bromberg-Martin and Hikosaka, 2011). It has long



262

been theorized that the inhibitory projection neurons of the LHb supress the activity of the

dopaminergic neurons of the midbrain (Lavezzi and Zahm, 2011). However, there are a

number of timing and response characteristics that run counter to that theory. In addition,

the majority of LHb neurons that do project to the midbrain are glutamatergic (Lavezzi

and Zahm, 2011). It wasn’t until the discovery of the mesopontine restromedial tegmental

nucleus that these observations had an explanation.

10.3.3 Mesopontine restromedial tegmental nucleus

The mesopontine restromedial tegmental nucleus (RMTg) is newly discovered structure

located behind the VTA. It is densely packed with GABAergic inhibitory neurons that

receive dense glutamatergic connections from the LHb. The major output projections of the

RMTg are to the VTA and SNc. In addition, there are robust connections to the PPN, dorsal

raphe nucleus, pontine and medullary reticular formation (Lavezzi and Zahm, 2011). The

current theory is that the RMTg acts as a functional inhibitory relay for the LHb, among

other areas. This is support by investigations demonstrating that the RMTg responds to

adverse stimuli but does not respond to rewarding stimuli (Lavezzi and Zahm, 2011).

10.3.4 The agency hypothesis in reward learning

The idea that the BG is involved with reinforcement learning(RL) is most often attributed

to the seminal work of Schultzet al. (1997)(Schultz et al., 1997). In that work the phasic

changes in tonic firing of dopaminergic neurons in response to unexpected, noxious or

expected but absent stimuli, was observed in the superior colliculus. This has become an

accepted basis of RL in neuroscience (Redgrave et al., 2010). However, Redgrave and

colleagues argue that there is enough contradictory evidence to support a reevaluation of
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that idea(Redgrave and Gurney, 2006; Redgrave et al., 2008).

The agency hypothesis, discussed above, proposes that the BG circuitry is more suited

to determining if the agent is the likely cause of the unpredicted event. Then through neural

plasticity the appropriate novel actions can be reinforced(Redgrave et al., 2010). In this

theory there are three afferent signals to the striatum. (i)Sensory information is projected

to both the SNc as well as the striatum by way of the thalamus. Given the timing of these

two signals they should converge on the striatum. (ii) Contextual information is sent from

the higher cortical structures to communicate the current state of the agent. (iii) There is a

motor-copy that is sent via fibers that connect to motor and pro-motor areas in the medulla

and spinal cord.

This hypothesis fits with the well known timing of dopamine release in the BG. How-

ever, it fails to provide a satisfactory answer for where thedrop in dopamine activity initi-

ated during harmful or noxious stimuli. Part of this future work is to explore the possible

role of the subcortical structures described above to see ifthey can fill this theoretical gap

in the agency hypothesis.

10.4 Bringing sensory information together

In the traditional model of the basal ganglia sensory feedback is communicated through the

SNc only. However, this can only account for phasic responses to unexpected rewarding

stimuli. By introducing the sub-cortical structures reviewed above this aim is attempting to

elucidate the neural mechanisms behind those unexplained responses. Given the reliance

of the agency hypothesis on sensory information and the empirical evidence that the sub-

cortical structures described above all participate in therelaying of sensory information,

the overall performance of the RL/AS system should be improved. This evidence can be



264

summarized as:

• The LHb responds to errors in the prediction of reward-information in sensory cues
Bromberg-Martin and Hikosaka (2011).
• RMTg relays the error information from sensory cues processed by the LHb (Lavezzi

and Zahm, 2011).
• The reward correlates of the PPN appear to be sensory based (Norton et al., 2011).

The usefulness of this is supported by the reliance the agency hypothesis has on sen-

sory feedback. The combination of the proposed functional anatomy, as well as subcortical

connections, with novel theories of reward-learning is unique to this project. The computa-

tional complexity of the agency hypothesis is not only consistent with current understand-

ing of RL but also facilitates using this model in an embodiedagent.

10.5 The Integration of action-selection and

reinforcement-learning

These concepts will be incrementally merged with the modelspresented in this paper. First

the model of Section 9.2.4 will be modified to emphasize the new functional anatomy

described above. The more prominent roles of the GPe and STN should improve the overall

stability and extensibility of the model.

The simple models from Chapter 8 will then be extended to explore the agency hypoth-

esis. Although these models ignore the full structure of theBG the integration of sensory,

motor and contextual information can be included. Such simple models will make the task

of exploring, tuning and validating the agency hypothesis more tractable.

The subcortical afferents of the LHb, RMTg and PPN will integrated into both of these
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modeling tasks. This will provide increased stability as well as a neural correlate for pun-

ishment signals; improving overall task performance.
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Appendix A

Communication Experiment Results
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Table A.1: Communication Scheme Experiments: IB, 10Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 0.16 0.18 0.27
8 2000000 1000 0.21 0.22 0.31

16 2000000 1000 0.33 0.30 0.64
32 2000000 1000 0.52 0.47 1.27
48 2000000 1000 1.23 1.24 2.16

4 250000 10000 0.04 0.04 0.06
8 250000 10000 0.14 0.09 0.15

16 250000 10000 0.15 0.21 0.33
32 250000 10000 0.32 0.32 1.07
48 250000 10000 1.21 1.22 1.98

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 0.16 0.18 0.19
8 4000000 1000 0.40 0.41 0.43

16 8000000 1000 1.06 1.16 1.22
32 16000000 1000 2.71 2.61 3.25
48 24000000 1000 5.40 5.37 5.53

4 250000 10000 0.04 0.03 0.05
8 500000 10000 0.13 0.15 0.17

16 1000000 10000 0.22 0.22 0.60
32 2000000 10000 0.46 0.50 1.26
48 3000000 10000 1.38 1.45 2.21
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Table A.2: Bit-Packing Experiments: IB, 10Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 0.75 0.17 0.16 0.18 0.18 0.17
8 2000000 1000 0.87 0.21 0.23 0.24 0.23 0.22

16 2000000 1000 0.90 0.34 0.38 0.33 0.34 0.33
32 2000000 1000 1.32 0.55 0.49 0.52 0.46 0.50
48 2000000 1000 2.01 1.26 1.24 1.23 1.20 1.21

4 250000 10000 0.14 0.04 0.05 0.04 0.04 0.04
8 250000 10000 0.18 0.09 0.09 0.08 0.10 0.10

16 250000 10000 0.26 0.18 0.21 0.17 0.21 0.20
32 250000 10000 0.37 0.29 0.35 0.33 0.35 0.32
48 250000 10000 1.20 1.19 1.20 1.24 1.18 1.18

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 0.77 0.17 0.18 0.19 0.17 0.17
8 4000000 1000 2.04 0.43 0.41 0.43 0.46 0.44

16 8000000 1000 4.32 1.01 1.11 1.00 1.07 1.00
32 16000000 1000 9.95 3.06 2.67 2.58 2.72 2.34
48 24000000 1000 21.56 5.28 5.21 5.45 5.36 5.37

4 250000 10000 0.13 0.04 0.06 0.03 0.04 0.04
8 500000 10000 0.27 0.11 0.11 0.12 0.13 0.07

16 1000000 10000 0.50 0.27 0.30 0.21 0.22 0.26
32 2000000 10000 1.03 0.50 0.54 0.48 0.51 0.53
48 3000000 10000 2.55 1.38 1.44 1.40 1.47 1.46
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Table A.3: Communication Scheme Experiments: IB, 30Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 0.70 0.50 0.55
8 2000000 1000 0.61 0.62 0.60

16 2000000 1000 0.94 0.76 0.90
32 2000000 1000 0.87 1.15 1.47
48 2000000 1000 1.88 2.06 2.35

4 250000 10000 0.08 0.10 0.10
8 250000 10000 0.13 0.16 0.19

16 250000 10000 0.26 0.26 0.48
32 250000 10000 0.33 0.35 1.03
48 250000 10000 1.21 1.19 2.06

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 0.68 0.51 0.56
8 4000000 1000 2.08 1.31 1.26

16 8000000 1000 5.15 3.15 3.11
32 16000000 1000 11.47 7.99 7.99
48 24000000 1000 20.92 14.57 17.77

4 250000 10000 0.08 0.08 0.10
8 500000 10000 0.21 0.20 0.24

16 1000000 10000 0.40 0.41 0.70
32 2000000 10000 0.81 0.87 1.43
48 3000000 10000 2.33 2.49 2.61
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Table A.4: Bit-Packing Experiments: IB, 30Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 1.44 0.52 0.51 0.51 0.52 0.50
8 2000000 1000 1.40 0.65 0.63 0.63 0.62 0.68

16 2000000 1000 1.43 0.94 0.71 0.75 0.72 0.76
32 2000000 1000 1.62 1.21 1.07 1.08 1.01 0.85
48 2000000 1000 3.36 2.16 2.05 2.00 2.12 1.97

4 250000 10000 0.18 0.10 0.08 0.08 0.10 0.11
8 250000 10000 0.26 0.19 0.14 0.14 0.15 0.12

16 250000 10000 0.35 0.29 0.21 0.20 0.27 0.27
32 250000 10000 0.45 0.40 0.33 0.33 0.30 0.35
48 250000 10000 1.28 1.15 1.20 1.21 1.22 1.20

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 1.37 0.53 0.53 0.53 0.50 0.53
8 4000000 1000 3.05 1.30 1.33 1.31 1.36 1.30

16 8000000 1000 7.13 3.19 3.44 3.21 3.17 3.28
32 16000000 1000 15.86 7.93 7.92 7.95 8.10 8.18
48 24000000 1000 59.47 15.09 14.39 14.93 14.48 14.21

4 250000 10000 0.21 0.11 0.09 0.07 0.08 0.12
8 500000 10000 0.41 0.25 0.20 0.21 0.21 0.18

16 1000000 10000 0.77 0.58 0.41 0.48 0.47 0.43
32 2000000 10000 1.57 1.15 0.83 0.82 0.81 0.86
48 3000000 10000 3.34 2.75 2.74 2.68 2.76 2.53
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Table A.5: Communication Scheme Experiments: IB, 50Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 1.13 0.83 0.84
8 2000000 1000 1.69 1.05 1.05

16 2000000 1000 1.36 1.25 1.16
32 2000000 1000 1.67 1.54 1.85
48 2000000 1000 2.75 2.71 2.87

4 250000 10000 0.12 0.12 0.11
8 250000 10000 0.16 0.15 0.30

16 250000 10000 0.25 0.27 0.55
32 250000 10000 0.35 0.39 1.16
48 250000 10000 1.17 1.17 2.05

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 1.07 0.82 0.81
8 4000000 1000 3.06 2.19 2.12

16 8000000 1000 7.37 5.25 4.63
32 16000000 1000 17.14 12.66 17.22
48 24000000 1000 32.65 22.54 30.39

4 250000 10000 0.10 0.13 0.11
8 500000 10000 0.25 0.28 0.31

16 1000000 10000 0.56 0.57 0.79
32 2000000 10000 1.36 1.35 1.76
48 3000000 10000 3.85 3.90 3.53
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Table A.6: Bit-Packing Experiments: IB, 50Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 2.08 2.12 0.87 0.82 0.85 0.85
8 2000000 1000 2.08 2.10 1.06 1.08 1.04 1.06

16 2000000 1000 2.17 2.13 1.26 1.36 1.29 1.47
32 2000000 1000 2.18 2.25 1.55 1.54 1.53 1.58
48 2000000 1000 5.62 5.57 2.77 2.76 2.95 2.87

4 250000 10000 0.28 0.27 0.11 0.10 0.15 0.12
8 250000 10000 0.34 0.33 0.18 0.14 0.17 0.15

16 250000 10000 0.43 0.41 0.26 0.24 0.27 0.27
32 250000 10000 0.49 0.54 0.37 0.36 0.35 0.38
48 250000 10000 1.30 1.30 1.18 1.21 1.20 1.17

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 2.07 2.06 0.82 0.96 0.82 0.83
8 4000000 1000 4.47 4.50 2.22 2.19 2.18 2.31

16 8000000 1000 10.48 9.76 6.71 5.29 5.34 5.33
32 16000000 1000 23.85 24.00 12.84 12.64 14.61 15.13
48 24000000 1000 96.84 96.90 22.84 22.52 23.15 21.48

4 250000 10000 0.27 0.27 0.12 0.12 0.11 0.13
8 500000 10000 0.57 0.56 0.26 0.25 0.30 0.25

16 1000000 10000 1.08 1.06 0.59 0.66 0.57 0.67
32 2000000 10000 2.22 2.16 1.72 1.26 1.31 1.37
48 3000000 10000 4.31 4.46 3.92 3.93 3.95 3.91
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Table A.7: Communication Scheme Experiments: IB, 80Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 1.81 1.51 1.30
8 2000000 1000 2.54 1.77 1.69

16 2000000 1000 3.58 2.08 2.23
32 2000000 1000 2.64 2.54 2.84
48 2000000 1000 4.05 4.05 4.21

4 250000 10000 0.17 0.17 0.21
8 250000 10000 0.21 0.24 0.33

16 250000 10000 0.31 0.31 0.55
32 250000 10000 0.48 0.47 1.24
48 250000 10000 1.20 1.26 2.00

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 1.78 1.52 1.32
8 4000000 1000 5.74 3.76 3.15

16 8000000 1000 15.48 8.81 10.08
32 16000000 1000 36.77 20.11 23.19
48 24000000 1000 54.08 35.16 47.50

4 250000 10000 0.16 0.17 0.18
8 500000 10000 0.37 0.40 0.44

16 1000000 10000 1.18 1.11 1.00
32 2000000 10000 2.70 3.05 3.03
48 3000000 10000 5.58 5.34 5.57
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Table A.8: Bit-Packing Experiments: IB, 80Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 3.33 3.30 3.36 1.43 1.45 1.45
8 2000000 1000 3.37 3.38 3.35 1.81 1.78 1.80

16 2000000 1000 3.39 3.47 3.41 1.99 2.02 2.07
32 2000000 1000 3.63 3.40 3.49 2.62 2.78 2.70
48 2000000 1000 10.02 10.00 9.98 3.88 3.95 3.91

4 250000 10000 0.37 0.37 0.37 0.17 0.17 0.18
8 250000 10000 0.47 0.55 0.53 0.22 0.24 0.23

16 250000 10000 0.65 0.61 0.63 0.32 0.33 0.33
32 250000 10000 0.62 0.63 0.70 0.46 0.48 0.46
48 250000 10000 1.39 1.40 1.37 1.27 1.27 1.24

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 3.29 3.35 3.28 1.45 1.43 1.46
8 4000000 1000 7.14 7.13 7.28 3.76 3.88 4.15

16 8000000 1000 15.31 15.36 15.40 8.77 8.85 9.00
32 16000000 1000 40.52 40.11 40.01 20.68 19.75 20.47
48 24000000 1000 163.72 163.65 163.69 33.63 32.90 35.69

4 250000 10000 0.36 0.37 0.37 0.16 0.20 0.18
8 500000 10000 0.84 0.84 0.84 0.39 0.40 0.39

16 1000000 10000 1.70 1.73 1.69 1.09 1.05 1.02
32 2000000 10000 3.55 3.51 3.57 2.45 2.73 2.58
48 3000000 10000 5.96 5.73 5.59 5.48 5.65 5.48
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Table A.9: Communication Scheme Experiments: Ethernet, 10Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 1.84 1.84 3.61
8 2000000 1000 5.32 5.43 5.09

16 2000000 1000 5.67 5.69 9.47
32 2000000 1000 6.65 6.33 16.74
48 2000000 1000 7.34 7.64 24.66

4 250000 10000 0.41 0.40 0.54
8 250000 10000 3.38 3.40 3.56

16 250000 10000 3.47 3.45 6.86
32 250000 10000 3.74 3.69 13.82
48 250000 10000 4.15 4.18 23.54

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 1.83 1.95 3.18
8 4000000 1000 8.03 8.30 6.94

16 8000000 1000 15.19 15.49 13.89
32 16000000 1000 49.33 53.29 35.13
48 24000000 1000 92.64 79.04 235.38

4 250000 10000 0.38 0.34 0.60
8 500000 10000 3.71 3.68 4.07

16 1000000 10000 4.36 4.38 8.20
32 2000000 10000 6.22 6.43 19.51
48 3000000 10000 9.35 9.42 28.76
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Table A.10: Bit-Packing Experiments: Ethernet, 10Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 5.62 2.06 1.92 1.87 1.94 1.85
8 2000000 1000 11.57 5.36 5.35 5.45 5.33 5.49

16 2000000 1000 12.43 5.71 5.70 5.69 5.83 5.71
32 2000000 1000 16.17 6.39 6.62 6.24 6.39 6.33
48 2000000 1000 18.26 7.56 7.42 7.44 7.38 7.58

4 250000 10000 0.85 0.40 0.38 0.39 0.37 0.39
8 250000 10000 3.92 3.38 3.37 3.38 3.29 3.40

16 250000 10000 4.13 3.45 3.48 3.46 3.45 3.47
32 250000 10000 4.44 3.70 3.68 3.69 3.72 3.73
48 250000 10000 5.06 4.10 4.23 4.08 4.12 4.12

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 5.78 1.90 1.92 1.94 1.90 1.89
8 4000000 1000 21.92 8.15 7.89 8.12 7.84 7.89

16 8000000 1000 55.24 15.64 17.35 17.26 15.47 19.01
32 16000000 1000 132.93 40.14 39.65 38.31 39.91 39.20
48 24000000 1000 226.11 77.33 80.05 80.55 79.42 79.37

4 250000 10000 0.87 0.38 0.37 0.38 0.34 0.37
8 500000 10000 4.93 3.74 3.53 3.72 3.71 3.75

16 1000000 10000 8.21 4.37 4.37 4.32 4.38 4.40
32 2000000 10000 15.50 6.34 6.60 6.47 6.37 6.35
48 3000000 10000 27.18 9.52 9.67 9.62 9.74 9.54
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Table A.11: Communication Scheme Experiments: Ethernet, 30Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 5.38 5.46 4.20
8 2000000 1000 10.68 11.31 8.22

16 2000000 1000 11.96 13.94 12.24
32 2000000 1000 15.30 15.52 21.20
48 2000000 1000 18.85 19.11 34.36

4 250000 10000 0.82 0.81 1.10
8 250000 10000 3.88 3.99 4.30

16 250000 10000 4.05 4.07 7.47
32 250000 10000 4.37 4.43 17.00
48 250000 10000 4.90 4.91 23.91

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 5.32 5.29 4.11
8 4000000 1000 21.03 22.12 12.67

16 8000000 1000 70.41 64.25 29.45
32 16000000 1000 194.21 146.62 232.97
48 24000000 1000 364.11 245.22 377.52

4 250000 10000 0.86 0.82 1.14
8 500000 10000 4.80 4.82 4.92

16 1000000 10000 7.67 7.09 9.95
32 2000000 10000 25.29 15.23 25.61
48 3000000 10000 29.76 28.80 38.97



292

Table A.12: Bit-Packing Experiments: Ethernet, 30Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 6.19 5.53 5.44 5.30 5.43 5.48
8 2000000 1000 11.63 12.34 10.61 11.97 10.52 9.90

16 2000000 1000 13.52 13.84 14.18 13.09 12.75 12.68
32 2000000 1000 16.12 237.04 25.30 15.27 19.07 242.93
48 2000000 1000 18.33 17.66 19.60 18.84 18.68 18.78

4 250000 10000 0.93 0.78 0.85 0.85 0.84 0.76
8 250000 10000 4.12 3.96 3.79 3.99 3.98 3.99

16 250000 10000 4.20 3.98 4.04 4.04 4.07 4.06
32 250000 10000 4.75 4.43 4.33 4.38 4.43 4.44
48 250000 10000 5.32 5.05 4.97 4.94 4.89 5.06

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 6.41 5.49 5.39 5.36 5.34 5.30
8 4000000 1000 22.58 21.04 23.52 21.48 23.36 25.03

16 8000000 1000 54.85 62.73 57.29 66.67 98.17 72.82
32 16000000 1000 133.43 165.18 152.16 158.69 236.06 191.45
48 24000000 1000 286.30 252.61 253.78 241.15 262.10 256.16

4 250000 10000 0.95 0.82 0.80 0.80 0.85 0.83
8 500000 10000 5.37 4.73 4.81 4.79 4.83 4.84

16 1000000 10000 8.34 9.68 9.44 7.04 6.97 7.14
32 2000000 10000 26.97 159.68 26.40 234.89 16.91 22.33
48 3000000 10000 28.29 25.79 29.52 28.47 30.03 29.87
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Table A.13: Communication Scheme Experiments: Ethernet, 50Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 8.64 9.11 6.76
8 2000000 1000 17.18 17.14 10.91

16 2000000 1000 24.86 23.41 15.51
32 2000000 1000 29.22 23.86 26.61
48 2000000 1000 27.95 29.11 39.58

4 250000 10000 1.18 1.27 1.41
8 250000 10000 4.52 4.53 5.17

16 250000 10000 4.73 4.74 8.00
32 250000 10000 4.92 5.25 14.99
48 250000 10000 5.83 5.95 24.61

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 9.18 9.06 6.25
8 4000000 1000 39.77 31.73 18.84

16 8000000 1000 109.70 95.48 213.88
32 16000000 1000 272.96 293.19 425.38
48 24000000 1000 419.45 376.31 630.91

4 250000 10000 1.21 1.22 1.19
8 500000 10000 5.99 5.97 5.76

16 1000000 10000 11.54 10.73 11.52
32 2000000 10000 34.41 23.52 28.32
48 3000000 10000 45.67 47.20 48.82
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Table A.14: Bit-Packing Experiments: Ethernet, 50Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 7.11 6.78 8.94 9.17 8.94 8.96
8 2000000 1000 11.91 12.34 18.24 16.80 17.04 16.15

16 2000000 1000 14.16 14.30 24.19 22.23 23.80 20.15
32 2000000 1000 16.22 16.26 26.62 25.21 28.08 25.18
48 2000000 1000 18.15 17.32 30.53 30.20 32.29 30.91

4 250000 10000 1.00 0.99 1.21 1.22 1.24 1.21
8 250000 10000 4.22 1.59 4.50 4.55 4.49 1.55

16 250000 10000 4.30 4.29 5.59 4.75 4.65 4.70
32 250000 10000 4.54 4.45 5.26 5.09 5.19 5.08
48 250000 10000 4.97 5.01 5.81 5.78 5.90 5.91

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 6.80 6.78 8.59 8.82 8.98 9.41
8 4000000 1000 22.48 23.16 35.23 35.71 38.12 33.55

16 8000000 1000 56.46 55.87 110.51 113.05 110.06 116.20
32 16000000 1000 132.68 133.80 260.28 251.28 257.27 253.73
48 24000000 1000 201.72 197.08 392.48 395.30 382.98 360.71

4 250000 10000 1.00 0.99 1.22 1.21 1.21 1.23
8 500000 10000 5.27 5.05 5.91 5.97 5.12 5.97

16 1000000 10000 9.55 8.02 11.48 9.94 12.41 10.33
32 2000000 10000 16.67 16.59 24.64 24.30 24.31 25.39
48 3000000 10000 28.01 28.70 47.11 48.44 48.63 47.85
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Table A.15: Communication Scheme Experiments: Ethernet, 80Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 16.20 14.01 9.78
8 2000000 1000 29.16 24.48 16.63

16 2000000 1000 39.14 36.98 21.38
32 2000000 1000 46.83 43.75 44.42
48 2000000 1000 62.37 51.28 52.45

4 250000 10000 2.05 1.91 2.06
8 250000 10000 5.01 5.47 5.01

16 250000 10000 5.75 6.75 9.64
32 250000 10000 6.31 6.52 16.86
48 250000 10000 7.19 7.35 23.19

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall

4 2000000 1000 14.94 15.69 10.22
8 4000000 1000 56.78 60.68 78.58

16 8000000 1000 197.00 216.01 570.75
32 16000000 1000 555.59 481.38 942.53
48 24000000 1000 956.47 673.16 1445.66

4 250000 10000 1.93 1.83 1.74
8 500000 10000 9.32 10.96 7.09

16 1000000 10000 22.39 21.04 167.58
32 2000000 10000 48.50 40.44 201.09
48 3000000 10000 86.21 73.22 238.44
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Table A.16: Bit-Packing Experiments: Ethernet, 80Hz Activity.

Strong Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 8.03 7.76 7.97 15.38 15.63 14.33
8 2000000 1000 13.69 13.64 12.60 27.06 29.19 26.91

16 2000000 1000 16.85 16.89 14.40 42.47 52.34 41.32
32 2000000 1000 16.76 16.27 16.81 45.56 46.33 65.91
48 2000000 1000 15.34 18.44 18.04 51.73 52.85 51.69

4 250000 10000 1.07 1.13 1.13 1.94 1.86 1.89
8 250000 10000 4.32 4.31 4.30 5.53 5.65 5.36

16 250000 10000 4.77 4.36 4.36 5.70 7.27 5.74
32 250000 10000 4.84 7.04 4.70 6.37 6.32 6.34
48 250000 10000 5.22 5.22 5.20 7.34 7.45 7.40

Weak Scaling Pivot Point

Nodes Cells Connections 0 1 2 3 10 20

4 2000000 1000 7.51 7.71 7.83 15.08 15.47 15.78
8 4000000 1000 23.57 24.41 24.25 54.64 58.78 66.61

16 8000000 1000 55.00 62.10 56.10 180.90 210.29 205.21
32 16000000 1000 134.76 135.33 135.90 412.85 514.29 351.14
48 24000000 1000 209.46 209.46 207.97 759.45 765.08 685.88

4 250000 10000 1.15 1.08 1.18 2.02 1.97 1.87
8 500000 10000 5.49 5.69 5.43 9.72 8.79 9.54

16 1000000 10000 10.46 8.43 14.93 21.76 57.27 20.55
32 2000000 10000 16.52 16.65 16.18 48.21 48.43 47.04
48 3000000 10000 27.78 28.16 27.65 77.37 76.48 74.80
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Appendix B

BrainGames Use Case Diagrams
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Use Case 1Create System

Description Create a system object that implements the BaseSystem interface. The
unique bit id for this system will be registered.

Assumptions The world object has been instantiated successfully.
Preconditions This System has not been registered before.
PostconditionsThis System will be registered and available.
Actors • World

• BaseSystem

Steps 1. The environment will instantiate the new System with de-
fault parameters.

2. The environment registers the new System with the world.
3. The world assigns this System a Bit Id.
4. The system is added to the System Container.

Extensions 2. A system of this type has already been added.

2.1 The program raises an exception.
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Use Case 2Initialize System

Description Loop through the Systems and initialize their data members.If needed,
the components the system needs will be added.

Assumptions The System objects have been created and registered with theWorld.
Preconditions All systems have been created and registered.
PostconditionsThe System’s components will be registered and its mappers will be cre-

ated.
Actors • World

• BaseSystem
• ComponentTypeManager

Steps 1. The world asks the System to initialize itself giving access
to the componentTypeManager.

1.a The System gets the IDs for the component classes
it needs.

1.b The System compiles its ComponentType bit string
based on the IDs.

1.c The System instantiates its vector mappers.

Extensions 1.a A component of this type has already been added.

1.a.1 The program raises an exception.
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Use Case 3Add System Type

Description Add a new SystemType to the SystemTypeManager
Assumptions RTTI can get the type information.
Preconditions This System has not been registered before.
PostconditionsThis System will be registered with the manager.
Actors • SystemTypeManager

Steps 1. The SystemTypeManager searches for the typeIdStr of
the System in the data structure.

2. A new SystemType object is instantiated.
3. A SystemTypePtr is added to the data structure.

Extensions 1. The SystemType exists in the structure.

1.1 The program raises an exception.

3. Insertion of the SystemTypePtr into the structure fails.

3.1 The program raises an exception.

Use Case 4Add Component Type

Description Add a new ComponentType to the ComponentTypeManager
Assumptions RTTI can get the type information.
Preconditions This Component has not been registered before.
PostconditionsThis Component will be registered with the manager.
Actors • ComponentTypeManager

Steps 1. The ComponentTypeManager searches typeIdStr of the
Component in the Data Structure.

2. A new ComponentType object is instantiated.
3. A ComponentTypePtr is added to the structure.

Extensions 1. The ComponentType exists in the structure.

1.1 The program raises an exception.

3. Insertion of the ComponentTypePtr into the structure
fails.

3.1 The program raises an exception.
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Use Case 5Create Entity

Description Create an empty entity and return a pointer of it to the caller.
Assumptions The entity manager has created a list of available Entities.
Preconditions The World has been created and initialized
PostconditionsA new Entity will be created and placed active.
Actors • World

• EntityManager
• Environment

Steps 1. The Environment requests a new Entity object pointer
from the World.

2. The request is passed to the EntityManager that will cre-
ate the Entity.

2.a The next available Entity is removed from the avail-
able list.

2.b The Entity is added to the active list and returned to
the caller.

Use Case 6Delete Entity

Description Remove an entity from the active world.
Assumptions The
Preconditions Stuff that must be set before
PostconditionsStuff that will be changed
Actors • Environment

• World
• EntityManager

Steps 1. The World asks the Environment to remove the provided
Entity

2. The EnvironmentManager Sets the typeBits to 0.
3. The Entity is then updated/refreshed on all of the systems.
4. The associated Components for this Entity are removed

from the ComponentMap.
5. The Entity is moved from the active list to the available

list.

Issues The container objects are still unclear.
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Use Case 7Refresh Entity

Description Something within the entity has changed so the systems need to be made
aware of that.

Assumptions The entity has changed type or system bits
PostconditionsThe systems that are interested in this entity have been updated.
Actors • World

• EntityManager
• BaseSystem

Steps 1. Loop through each of the Systems notifying them that a
change was made.

1.a Compare the Entities System and Type bits for com-
patibility.

1.b Add or Remove this entity as needed.

Use Case 8Add Component

Description Add a component to and Entity
PostconditionsThe component will be associated with this Entity.
Actors • Environment

• Entity
• EntityManager

Steps 1. Get the ComponentType for the Component to be added.
2. Add the Component to the ComponentMap and associate

it with the Entity.

Extensions 1.a The Component has not been register with the Compo-
nentTypeManger

1.a Follow Use Case B.4

2.a The Component does not have an entry in the Compo-
nentMap

1.a Add a new entry to the ComponentMap using the
ComponentTypeId as the key.
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Appendix C

Hardware efficiency analysis

For comparison with the neuromorphic hardware (NH) three commercial off-the-shelf (COTS)

components were selected, standard central processing unit (CPU), field programmable

gate arrays (FPGA) and graphical processing unit (GPU). Thehardware analysis was con-

structed to give the COTS components an advantage over the NHestimates. The NH val-

ues were selected based on90nM CMOS processes while the COTS components all used

40nM or smaller. The NH estimates were made based on SyNAPSE hardware and pub-

lished VLSI level models of the simple hybrid neuron.

The estimates begin with the floating point operations (FLOPs) per second for the neu-

rons in a particular model,Fneuron, is defined as

Fneuron = Mfsgn. (C.1)

WhereM is the total number of neurons,fs, is the integrations steps per second andgn

are the floating point operations per neuron. The synaptic FLOPs per second,Fsynaptic, is

calculated using
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Fsynaptic = Nfsgsynapse. (C.2)

WhereN is the Total number of synapses andgsynapse is the number of FLOPS per second

for the synapses. The total FLOPs per second for a model is thesum of neuron and synaptic

FLOPs per second.

Using the power, in Watts, required for a model can be estimated by

Pmodel =
Fmodel

β
, (C.3)

and the estimated energy per spike is

Emodel =
Pmodel

fmodelN
. (C.4)

Whereβ is the FLOPS per watt for the particular hardware andfmodel is the average firing

rate of the model. Table C.1 presents theβ values used for each of the COTS components.

Table C.1: FLOPs per watt,β for the COTS calculations.

Component β Source

CPU 0.18 · 109 Duan et al. (2011)

FPGA 1.90 · 109
Duan et al. (2011)

Xilinx (2009)
GPU 15.85 · 109 NVIDIA (2012)

The theoretical neuromorphic hardware comparisons are based on the SyNAPSE hard-
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ware of Srinivasa and Cruz-Albrecht (2012). The power requirement estimates were calcu-

lated using

Pmodel = 1.1 [MPneuron +N (Psynapse + Prefresh)] . (C.5)

WherePneuron andPsynapse are the power estimates for neurons and synapses respectively.

Prefresh is the power for memory refreshes required in the hardware. Note that the power

estimate is scaled by1.1 to include costs associated with routing and switching. Theenergy

per spike was calculated using

Emodel =
Pmodel

fsN
. (C.6)

Table C.2: Power estimates for neuromorphic hardware.

Variable Power Source

Pneuron 20 nW
Rangan et al. (2010)

Demirkol and Ozoguz (2011)

Psynapse 2.4 nW
Cruz-Albrecht et al. (2012)
Personal communication

Prefresh 18 pW
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Table C.3: Parameters used for each of the models.

Variable Description
Action Selection Model

Section 9.2.4
Parkinsonian Model

Section 9.2.5

M Total number of neurons 1, 152 50
N Total number of synapses 25, 124 160
fmodel Average firing rate of the model 20 80
fs Integration steps per second 1, 000 1, 000
gn FLOPS per neuron 13 13
gsynapses FLOPS per neuron 1 1


