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Abstract

Inspiring entire computing paradigms, hardware platfoamd theories of nervous system
function, the field of computational neuroscience has greteadily since its emergence
in the mid-1980s. The motivation behind it is to mathemadlfadescribe the nervous sys-
tem in terms of how the structures process information. &itmg the brain this way can
be done at varying levels of abstraction and biologicalisesl providing insight into the
function of the nervous system or supporting empirical enie. This dissertation presents
a snapshot of the computational neuroscience landscapegiits begins with the math-
ematical theory, moving to implementation, and finally ewggiith its application. It is
by no means a complete picture but provides a basic unddmstaof how mathematical
modeling contributes to neuroscience.

This begins by presenting the design considerations béfigitperformance neural
simulation environments. A concept which is then extend&t & novel implementa-
tion for the exchange of spiking information in high-perf@nce cluster environments. A
framework for creating virtual environments for embodieddaling is then developed and
discussed. Finally, a toolkit for efficiently analyzing tla@ge amounts of data generated
by these spiking models is presented.

Once these tools are established the focus is shifted to Imofi¢he basal ganglia.

After a brief background, spiking models capable of acsetection through reinforce-



ment learning are described. These borrow from the basglliganut are developed for
implementation on neuromorphic hardware and are therefecessarily simplified. The
networks are embodied in virtual environments and theiigperance based on two tasks is
explored under varying conditions. Finally, the use of ag@etybrid neuron is explored in
several published models of the basal ganglia; demonsgrtie first example of a hybrid

neuron in biologically faithful models of the basal ganglia
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Chapter 1

Introduction

Imagine for a moment how you would set about building a mo@énplane. The process
may begin with some design diagrams, or sketches and pelbagpgo scaled models.
You have mathematical principles you apply to ensure yongwidesign generates enough
lift and that the static structures can withstand thoseefmrcFatigue analysis will give
an idea of how long parts will last. You can even model theliliked of your airplane
being hijacked (Holden, 1986). Modern principles of engiey and software make it
possible to build, analyze and fly your airplane entirely iadal space. This is exactly
how Boeing designed the 777 and revolutionized aerospasigrdéNorris, 1996). But,
despite everything we know about neuroscience and phygigtbis kind of design feat is
unobtainable with biological systems.

The roundwormg. eleganshas a nervous system of rougl3§0 neurons and, 000
synapses. However, we still cannot 300 model neurons together and simulate the be-
havior of a roundworm. It is not just that the complexity of thervous system is too much,
it is that there is still too much that is unknown at the singgét and network levels. This

is not meant to paint a grim picture of computational neusosze, but rather frame its role



in the context of neuroscience research as a whole.

Computational neuroscience encompasses a set of tools¢hadmplementary to elec-
trophysiological, biophysical and behavioral researdhis multifaceted approach is likely
the only way the complexities of the nervous system will hecielated. Modern research
techniques are only capable of revealing small aspectswhh&unction. Unfortunately,
these small parts are not enough to tell the whole story. Dla¢ @f computational neuro-
science is to help fill in those gaps and point empirical gsidbwards new directions. In

basic sciences and medicine its role can be distilled into:

e A predictive tool, to guide new experiments.
e To demonstrate the plausibility of a theory.
e To quantitatively compliment experimentation.

It is important to point out that all models are wrong. As gasdthe model of the
Boeing 777 was, it was still just an abstract representati¢ime real thing. In mathematical
simulation the goal is to create a model that encompassegybraf the dynamics of the
real system that is required to support a hypothesis. In faotmuch unnecessary detail

may obfuscate the important details of a system.
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Figure 1.1: Levels of modeling abstraction

We can study biological phenomena at different levels ofrabson; Figure 1.1, illus-
trates these. Choosing how detailed a model is depends amlaemwf factors that include
the hypothesis being tested, computing resources, aneintumnderstanding of the biolog-
ical process. The models presented in this work fall in timglsi cell and organ levels.
In addition, all of these are dynamic processes. Dynamioa@mena are anything that

changes over time and almost everything in living organignaynamic. For example:



Cell growth

Cell division

Intercellular communication
Movement

Electrical activity

These systems, that are never in static thermal equilibrimaintain a constant move-
ment of ions and chemical species across cell membrandsefFall, 2002). These can
be described with differential equations but all containlim®arities. Unfortunately, those
nonlinearities make it difficult or impossible to obtain dwtimn analytically. In these
instances, numerical methods can provide a mechanism fainifg accurate approxima-
tions. This dissertation looks at the differential equagithat describe neurons, how those
can be simulated and how the resulting models can be usee@dooscience research.

The approach to computational neuroscience presentedshdexidedly bottom-up.
We begin with a single neuron model and its dynamics. Thiglsineuron is then con-
nected to other neurons and the interactions between tremaaeled and simulated. The
dynamic changes in activity and structure are then analgpeldin some cases linked to
behavior. In others, theories of how the functional anateonmtributes to activity is estab-
lished. These models borrow from, and build on, other asp#ateuroscience.

Part | of this work explores some of the techniques and tdw@s are essential to re-
searching large-scale computational models. We begin plperg the strategies for de-
veloping distributed simulation environments. This is pegfect intersection of software
and biomedical engineering; as the requirements for atayraimulating biological sys-
tems are in constant competition with the need for efficiendfeir calculation. Chapter 3
explores hardware specific strategies for maximizing efficy with accuracy. In addition,
Chapter 4 takes this a step further by exploring the exchahgdormation between dis-

tributed compute elements. Here, we present an analysisnoé £urrent methods and



propose a novel implementation of spike exchange.

Developing the simulation environment is just the first st®pmce the modeling capa-
bilities are established, researchers need to interfatetivém both during and after a sim-
ulation. In Chapter 5, we present a design for embodyingethesiral models in stimulus
rich environments. This provides a mechanism for genegatiput stimulus in both static
and dynamic ways. Finally, a new tool-set is developed falyaing the large amounts
of spiking information generated during the simulationargle-scale models. This is the
focus of Chapter 6.

Armed with a complete set of computational neuroscienckstwe set out to explore
models of the basal ganglia with two different approacheBart Il. Chapter 7 presents
a brief background of the mammalian basal ganglia as welbagef the computational
models of it. In Chapter 8 we then develop models that ref@disame of the known higher-
level function of the basal ganglia without strictly follovg the functional anatomy. This
work is framed in the context of embodied modeling in neurgrha@ hardware and the
networks are tasked with learning to play two virtual games.

Chapter 9 takes a different approach by replicating as mdicheophysiology and
dynamics of the basal ganglia as possible using a simpledgburon. These replicate the
results of several published models, and in some cases veaginem, but require far less
computational resources than the original. This reduatiocomplexity is exciting on a
number of different levels. Not only does this validate tbguits of the original works, but
the use of the hybrid neuron as well. In addition, these nsaled much more amenable to
hardware implementations and the reduction in computatioomplexity opens the door
for more thorough analysis of the models. Finally, somerkutlirections and applications
for this research are presented in Chapter 10.

Although there are some cases of overlap, the chapterssidiggertation are written to



be self-contained. These can realistically be viewed inadgr and readers familiar with

the subject can skip the background sections.



Chapter 2

Mathematical Neuroscience

Excitability in cells is an awkward concept for people odé&sof the physical sciences.
Many of us go through our lives perfectly happy with the cotepwanalogy, where our
nervous system can be abstracted as computing elemeneatedtogether through cables
that transmit electrical signals. For those of us who urtdads computer architecture,
this is a comforting comparison. In fact, in science and eegiing that juxtaposition is
essential for analyzing complex systems. Mechanical &iras can be reduced to springs
for treatment with finite element analysis. Fluid dynamias e modeled by electrical
circuits. Even blood-flow in the lungs can be simulated usilegtrical components. So it
is no surprise that the inadequacy of the computer analogpaiting to an engineer.

This chapter presents a very broad background that is estjtornot only understand
the concepts presented in this dissertation but also pteyedmputer analogy from the
readers mind. This is noticeably incomplete and can in no regjace an introductory
neuroscience text. In addition, the focus is on point nesirasmere a neuron is assumed to
be a single point in space and only the active transmissi@heatrical signals is modeled.

This simplification is required to model large-scale sysamfeasible time-frames but



ignores the more complex interactions within the neuron.

2.1 Excitable cells

All cells have a voltage potential across their plasma mamdthe semi-permeable lipid
bilayer surrounding the cell). This voltage potential israduct of differences in ionic
concentrations between the fluid inside of the cell (cyteplpand the extracellular fluid
outside of the cell. The unequal ion distribution resultsiinegative charge inside, com-

pared to the outside of the cell. Typically that potentialgas from—50 to —100 millivolts.

Post-Synaptic
Terminals

Dendrites
(Inputs)
\ Cell Body
(soma)

Direction
of

Action Potey

Nucleus

\ Axon

(Output)

Pre-Synaptic
Terminal

Figure 2.1: The prototypical neuron.



2.2 lonic basis of excitability

Excitable cells are characterized by a dynamic change inbreme voltage that gener-
ates an action potential. This is facilitated by a voltagpeshelent change in membrane
permeability and the passive diffusion of ions down thegrceiochemical gradient. Our
description of cellular excitation begins with that electiemical gradient.

Diffusion is the tendency of molecules to separate from edhbkr in space. Individ-
ually, these molecules move randomly but the bulk molecwation can have direction.
When those molecules have an electrical charge associétethem there is an additional

repelling force. The combination of these forces drive tifieision of ions across a mem-

D O

brane.

v v v v
+ +
K cr K'—cr
—
Cl : Cl :

Figure 2.2: Diffusion through a selectively permeable membrane. A @iowtr is separated by an artificial
membrane. Each side contains different concentrations efectrically neutralk ™ chloride solution. Ini-
tially, left, the membrane is impermeable. The membranhéa imade selectively permeableio" only,
right, and the excess of positive charge on the right siddefcontainer creates a voltage potential that
approaches the Nernst potentialfof-, £).

The electrical potential arises due to the selective pebitgeof the membrane. Con-
sider Figure 2.2 left, where two aqueous solutions are aggéby an artificial membrane.

The ionic concentrations on each side are electricallyragugo each positivél ™ ion is
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matched by a negatively chargéd~ ion. The membrane is not permeable to either ion so
there is no net flux or potential across it.

If the membrane is made permeable onlyXo, Figure 2.2 right, there will be a net
flux of K+ down its chemical gradient from the left to the right sidelwd tontainer. As a
positive K ™ ion moves across the membrane it is separated from its pameing chloride
anion. The result is a net positive charge on the right sideetontainer. Eventually, this
excess positive charge will resist additional cations fremtering the right side and an
equilibrium point is reached. This equilibrium is where th&usive force balances the
electrical force and is called the Nernst potential.

The Nernst potential can be derived either through stegistnechanics, using the
Boltzmann equation, or with statistical thermodynamis#g the Gibbs free energy (Keener
and Sneyd, 2008). The resulting equation describes thélgun potential for a charged

ion based on the concentrations inside and outside of alciElidefined by

RT
AE = —]
zF "

Nout
Nin

: (2.1)

Wheren;,, andn,,; are the internal and external concentrations respectively the uni-
versal gas constant, is the temperature in Kelving' is Faraday’s constant andis the
valence of the ion. This is also referred to as the revers@npial because it is the point
where the bulk ion movement will reverse directions.

A key aspect of this equation, which has been overlooked thagqoint, is the concen-
tration difference between the inside and outside of the Thls gradient is established and
maintained through active diffusion mechanisms. Usinggneells transport ions against
their concentration gradient to create the electrical mitdés. Table 2.1 presents the four

major ion species in neurons as well as their correspondingentration gradients and
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Nernst potentials (Purves et al., 2007).

Table 2.1: lonic concentrations for typical neurons
Intracellular (mM) Extracellular (mM) E,(mV)

K™ 140 3 —87
Na* 5—15 145 +60 to +88
Cl- 4 —-30 110 —88 10 —60
Ca?* 0.0001 1-2 +200

As can be seen in Table 2.1 each ion contributes a differéumé va the membrane volt-
age. If each ion contributed equally the resting potenfial cell would be around5 mV.
However, all cells maintain a resting potential that is moegative on the inside compared
to the outside of the cell. The reason is that the Nernst piateassumes perfect conduc-
tance to an ionic species. Physically the membrane comleetd an ion dynamically
changes and at rest is in a partially conducting state.

To calculate the resting potential of a cell that is permeablmultiple ions we em-
ploy the Goldman-Hodgkin-Katz (GHK) equation (Fall et &002). This calculates the
contribution of multiple ionic gradients and their respeetonductances to the membrane

potential. This is defined as

RT (PNa[Na+]i + Pr[K™]; + PCl[Cl_]e) _ (2.2)

Pyo[Nat]e + Pg[K*]. + Poy[Cl7);
WhereFE,, is the membrane potentiaP, is the relative permeability of the membrane to
ion z, and[X ] is the concentration of iom. The GHK equation is important for accurately
calculating the membrane potential but it is difficult to us@ractice. In addition, obtain-

ing the measurements required for calculating the relgareneability is arduous and are
themselves approximations. The ionic conductance is agpéaile substitute that is easier

to obtain experimentally.
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We can simplify the analysis of excitable cells considerdilyl assuming that the mem-
brane electrochemical physics obey Ohm’s law. From thatcavecalculate the conduc-

tance using

G = (2.3)

I
v
The current {) and voltage (') of the cell are now easily obtained using standard electro-
physiological techniques. Similar to the GHK equation,¢bstribution of an ionic species

to the membrane potential can be found using a weighted sum,

B, = 29 Fi (2.4)
Zi gi
Wherei is the ion speciesl; is the Nernst potential of that species afds the conduc-
tance. This is the parallel conductance model for the menabfBall et al., 2002). It can

be simplified by rewriting Equation 2.4 as

V=Y _ G E, (2.5)
where
* GI
G, = S G

For an example cell with sodiuni\{a ™), potassium k), and chloride (/™) currents the

membrane voltage would be found using

Vo (9na - Ena) + (g1 - Ex) + (9c1 - Eci)
" INa + g1 + gou
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For the type of neuron models used in this work, our integest how the conductance

of the membrane to different ionic species changes with.tifileese dynamic systems

become more tractable with the assumption of ohmic praggepresented above. Using

that, the cell membrane can be described as an electricalitciwvith the components

analogies:

1. Phospholipid Bilayer: Creates a capacitive effect where ionic charge accumulates
across the nanometer thick Debye layer (Fall et al., 2002).

2. lonic permeability of the Membrane: Acts like a resistor, impeding the ionic cur-

rent.

3. Electrochemical driving forces: Establishes an ionic battery driving each species.

T outside

.

O Na

Ex

a

e

+ Ey

i

.

Jk Z'ga

* Eq

i

(2008).

l inside

Figure 2.3: Cell membrane equivalent circuit diagram (adapted frorhdtall. (2002) and Keener and Sneyd

The diagram in Figure 2.3 illustrates the equivalent eiegktrircuit for a cell with three

conducting species. However, the interesting aspect afaite cells is not the steady-
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state membrane potential calculations presented abovhdutynamic changes required
to reach steady-state. Continuing with the assumption ahi®lproperties and that the
ionic battery remains constant, the current across the mamldor potassium now takes

the form
With the contribution of multiple ionic currents calculdtesing

Lion = Z I; = Zgi(v - Ei)- (2.7)

The capacitive current across the membrane can be written as

av

Toap = O (2.8)

Applying Kirchoff’s law of charge conservation to the circu
Ieap + Lion = 0.

Finally, substituting in we arrive at
Cm% = ;gi(v — E).

Equipped with a representation of a cross section of cellm@mbrane we can now
explore the dynamics of the electrical activity. Up to tham we have only stated that
the membrane is selectively permeable. That selectiorciktéed by pores, or ion chan-

nels, embedded within the membrane of the cell. These clarthat are often specific
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to species or valence, allow ions to conduct through themweer, that conduction is
modulated by a number of different factors. To develop thel@wof excitable cells for
this work we focus a subclass of ion channels whose condeetandependent on the

membrane voltage but first general models of ion channeldereloped.

2.3 lon Channels

lon channels are constructed of proteins that span the pbbpja bilayer of a cell. There
are many different families of ion channels, and cells congalager number of channels
from a particular family that are spread throughout the mramé. Individually ion chan-
nels behave stochastically, changing their conductamzraly through opening and clos-
ing. These random fluctuation are often dependent on annettehenomena. So called
ligand gated channels will modify their conductance basedancentrations of particular
molecules and voltage-gated channels are controlled byjwémebrane potential.

The activity of ion channels at the single and whole-celklswcan accurately be ap-
proximated using Markov chain models. A Markov process isnoiyless, in that the
transition from one state to another is not dependent on wigaprevious states were;
only the current state is important. To illustrate this, sider the two-state ion channel in

Figure 2.4.

kon

Closed<_I Open

kOff
Figure 2.4: Two state markov channel model

If we consider the chance that the channel is in the closed ataa particular time,

then the rate,, is related to the probability that in the time interyal¢) the channel will
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open (Fall et al., 2002). This relationship can be defined by
konAt = Prob{s = O,t + At|s = C, t}.

Wherek,,, At is dimensionless anBrob{s = O, t+ At|s = C, t} indicates the probability,
given that the channel is closed at timeof a closed to open transition occurring in the
interval t, t + At] (Fall et al., 2002). Similar analysis can be completed ferttAnsition
from open to closed as well as the probability that the chiaremeains in its current state.
The chance that a channel moves from one state to anotherecannbmarized by the

transition probability matrix

Prob{C,t+ At|C,t} Prob{C,t+ At|O,t}
Prob{O,t+ At|C,t} Prob{O,t+ At|O,t}

1= konAt koA
_ , (2.9)
konAt 1 — kg At

The elements of theansition probability matrix(();;) represent the probability of a tran-
sition from statej to statei. From the conservation of probability the columngipmust
sum tol.

One way to simulate the stochastic activity of a single ioarctel is to use Gillespie’s
Method. This utilizes the fact that the time to the next tithms is an exponentially dis-
tributed random variable with a mean equal to the reciprotahe rate coefficient (Fall
et al., 2002). We can therefore simulate a two state channstlecting open and closed

dwell times consistent with that probability distribution
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The closed dwell timeg, of the two state channel has the probability distribution

Prob{r < 7¢ < 74 dr} = kope Ferdr.

Similarly, the open dwell timér,) of the channel is an exponentially distributed random

variable with the probability distribution function

Prob{r <710 < 1+dr} = k:offe_k"fdeT.

With these we can simulate the channel by alternately chgospen and closed dwell
times consistent with these distributions. A simple wayddthis is to choose a uniformly

distributed random variablg on the interval0, 1] and use

TC = _k‘in InU
and
1
TO = — InU.
Koy

The results of this type of simulations are illustrated igufes 2.5, 2.6 and 2.7. Notice as
the rate constants are varied the open state probalsilityyill change. This was calculated

after 100 simulated transitions.
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ClosedU 2‘0 o)
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Figure 2.5: Single channel model using Gillespie’s methég, = 0.1ms™!, ko¢r = 0.1ms™!, Po ~ 0.5

Open -

State

ClosedU 2‘0 0
t (ms)

Figure 2.6: Single channel model using Gillespie’s methag, = 0.3ms™!, ks = 0.1ms™ !, Po ~ 0.75

Open

State

80 100

ClosedL 2‘0
t(ms)

Figure 2.7: Single channel model using Gillespie’'s methég, = 1.5ms™!, ks = 0.5ms™ !, Po ~ 0.75
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When the stochastic gating of a number of single cells isaayesd together, the whole
cell activity emerges. There are several ways we can modgl iticluding simulating
a large number of stochastic channels. The most straigbdfolris to directly model the
ordinary differential equations that result from taking timit asAt¢ — 0 of the probability

relationship defined above (Fall et al., 2002). For the twtesthannel this would be

dPeo
Y, = _k(mP ko P )
dt ¢+ fosslto
and
dPo
— =kowPo — kot Po.
dt c ff4 o

From conservation of probability we can elimindte(t) using the relation
Po(t) =1 — Po(t).

The governing differential equation is then

dPo

2 = hon(1 = Po) — huys Po. (2.10)

This two-state model is simple enough that a solution to éiselting equations can be

found analytically. At steady-staﬁ% = 0 and the steady-state open probability is then

Solving the simple differential equation results in the &pn of open probability over
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time

_t
pn

PO(t) :POss_ (POSS_POlm'tial)*e s

wherer = m Basically, when the rate constants are stepped to differdnes the

open probability will go to a new steady-state value with tinge constant-. Figure 2.8

illustrates the settling of the model using the analyticélison.

Probability

04 05

t(s)

Figure 2.8: Analytical solution for a two-state ion channel model.

Probability

o . . . . ,
0.1 0.2 0.3 0.4 0.5
t(s)

Figure 2.9: Numerical solution for a two-state ion channel model.

Although it is possible to find an analytical solution to tiststate channel presented

here, this is not often the case. As the complexity of the shEnincrease so does the
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number of states and the interactions of the rate varialiteatiher phenomena (i.e. ligand
concentrations of voltages), making an analytical sotudiifficult or impossible to find. In
these cases numerical methods must be employed. Figuréu2t@ates the solution to the

same two-state channel model using a Runge-Kutta method.

2.4 Active electrical transmission

Many of the concepts presented above were actually edtedliafter the work of Alan
Hodgkin and Andrew Huxley on the electrophysiology of thargisquid axon (Hille,
2001). Their work, empowered by the newly discovered vatalamp techniques, de-
veloped the first kinetic theories of membrane permeabilityese mathematical descrip-
tions, accomplished without any knowledge of ion chanreais,part of the foundation of
neuroscience.

The first key insight provided by this work was that the membraurrents observed
in the giant squid axon could be separated into differentispecies. This was important
in determining the mechanisms involved in the changing nramd permeability. Two
contributing species were identified* and Na*, as well as a small background leak
current. Through a series of ingenious experiments, Hadgkid Huxley were able to
demonstrate that not only do these currents mostly follom®law, but their permeability
can be described by combinations of two-state kinetic pee® Here we focus on the
mathematical model (HH model) that was developed basedese thxperiments.

The HH model equations describe the electrical activithefdiant squid axon in terms

of ionic and capacitive currents (2.11).

Ly=1Ic+1 (2.11)
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Returning back to Figure 2.3, the ionic currents can be sépainto

A%
Iy = (JMd—t + gxn*(V = Vi) 4+ gnam® MV = Vva) + Gieak(V = Viear).  (2.12)

Where,, is the total membrane current (including externally agpkerrents). Notice
that the conductances are now defined by the produgt, dfie maximal conductance for
ionic specieg, and one or more gating variables. Starting with the noctinating slow
K™ current, I, we can see that the gating is dependent on the variabléhis is called
the activation variable and essentially defines the peagenvf channels that are open and
contributing to the conductance &f ™. This probability can be defined by the two-state

kinetic process,
— =a,(V)(1 =n) — B,(V)n. (2.13)

Recall that this is equation 2.10 developed for the twoestdtole cell ion channel model.
The transition from the closed non-conducting state isatfrioy o, (V') and the transition

back is now dependent gh,(V), k., andk, s respectively. The key difference is the volt-
age dependence on these variables. Hodgkin and Huxley Wwhkrécefit that dependence

to their experimental results using the equations

~0.01(V +10)

and

B, = 0.125¢("7%0),
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This combination of Ohmic devices and two-state kineticcpes describes the contribu-
tion of K™ to the membrane current at different voltages. Returnimf bathel term of
Equation 2.12, the exponent attachect still left unexplained. The currents observed
by Hodgkin and Huxley had a time course that led them to ptédic different indepen-
dent particles that contribute to the activation of a ch&an@éven this independence, the
probability that all of these channels was in the open sgaié {Hille, 2001).

The K+ channel described by the HH model has only an activatiomgatihose dy-
namics determine the channels conductance. However, itdigasvered that théva™
channels are dependent on two independent, but competieg; @a activation gate simi-
lar to K+ and an inactivation gate. Inactivation Ma™ channels is the process of closing
the channel after it has been depolarized (driven to a magiyp®potential). This is inde-
pendent of the channel’s activation processes and contiectarough the channel is only
returned after a prolonged polarization (membrane paHess than or equal to the resting
potential). In the HH model these two processes are agarasepted by two-state kinetic

models defined by the equations

W= (V)1 = m) — (V) (2.19)
and
= (V)1 h) = 5u(V)h (2.15)

The rate constants for these variables are defined by

_0.1(V +25)

o EE
e\ 10 —1
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B = 4%,
ap, = 0.007e72),
and

1
B p—
h e(%> +1

It is important to point out that the above equations werestitged using sign conventions
and voltage offsets that are different from the conventigel today. For convenience the

following table summarizes these differences:

H-H Present
Membrane Potential V E
Resting Potential V =0mV E=FE,,=—-60mV
Nat Equilibrium Potential Vy, = —115mV Eng = 55mV
KT Equilibrium Potential Vi = 12mV Ex = -72mV
Current I 1
Inward Current >0 <0
Clamp Currents Inward Current  Inward Current|

In addition, the more conventional form of the (in)actieatiequations is

dn (N, —n)

dat —  T(V)

dn (Mo —m)

dt (V)

and

dh (he —h)
dt (V)



Where the steady-state gating values are defined by

Q,
Nog = ——————
T an+ 6,

Oy
Moo = ——————
* amt B

and

ap,
oo = ———
*an+ By

The voltage dependent time constants are defined by

1
Tn = )
oy, + B
1
Tm = —————,
O + B
and
1
Th

o+ B

25
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Figure 2.10: Hodgkin-Huxley Variables. (a) (in)activation variablg#) Time constants.

Figure 2.10 plots these at different voltage potentialss linportant to point out that
these equations are simple curve fits to the data observedtgkih and Huxley. They
make predictions about the kinetics involved in the gatihghese channels but do not
provide a mechanistic description of how that gating is agashed. There has been a
tremendous amount of subsequent research that has deatedstrat these interactions are
more complicated than communicated here. However, the Hidteans are the foundation

for the computational models developed in this dissematio
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Figure 2.11: Hodgkin-Huxley action potentials. (a) Original Hodgkinskey Action Potential, (b) Inverted
Action Potential.

The model developed by Hodgkin and Huxley accurately dessrihe dynamic change
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in membrane voltage referred to as the action potential .(AR)s phenomena, that is
unique to excitable cells, is essential for sensing, pingsand communication in the
nervous systems as well as glandular and muscle functionARAIs generated when the
membrane voltage of a cell is driven past a threshold. Whanttiieshold is crossed an
avalanche of current drives the membrane voltage to spitkéheem repolarize. Figure 2.11

illustrates the AP of a point along the giant squid axon dbsdrby the HH Model.

|

Rising Phase
e
oseud Bul! 4

Threshold J

_~

nase
Resting Potential | recove™

Figure 2.12: Stereotyped action potential.

The AP begins with the activation d¥a* channels, resulting in an inrush ofa™
ions and the rising phase of the membrane potential labelEtyure 2.12. The increased
membrane potential enables the inactivation gate, blgctie conductance aVa™. Si-
multaneously, théd ™ channels become more activated as the membrane voltagases:
The net efflux of K+ ions drives the membrane voltage back down towards itsuggi-
tential. These are illustrated by the falling phase on Fedlid2. TheNat channels are
then deinactivated (the process of unblocking by the imatitin gate) and they become
available to contribute to further APs. In addition, the' channels slowly deactivate, re-
laxing their contribution to driving the membrane voltagagative. This is illustrated in

slow rise in the membrane voltage in the recovery phase air€ig.12.
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The HH model describes an AP at a specific point along the gt axon. However,
once an AP is generated it propagates away from that poimigimout the cell. The prop-
agation of an AP is facilitated by both the active and passamesmission of the electrical
signal. Although it is not described here, the passive trassion of electricity in biolog-
ical cells is defined by the cable equations (Koch and Sed#88;1Bower and Beeman,
1998; Hille, 2001). These describe how the changes in membraltage at a location
travel a relatively small distance away from the sourcesThidue to the charge traveling
perpendicular to the membrane, into the cytosol and extudaefluids, as well as parallel
to it. Cells rely on the proximity of neighboring channelsrigesmall enough to sense
APs or external insulation (a myelin sheath) to reduce tke tf charge away from the

membrane.

2.5 Synaptic transmission

Presynaptic Cell

Synaptic Vesicles

Synaptic Cleft

Postsynaptic Cell

Figure 2.13: Neurotransmitter release at the synapse.

When an AP is fired, it travels down an axon and terminateseasynaptic cleft. This is

where the innervating neuron and its target neuron are cv@thé¢hrough a fluid interface.
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At the majority of neural synapses there is no physical cotoe capable of transmit-

ting an AP between the cells (this is not the case with conm&and gap junctions which
are not covered here). Instead, a chemical signal faeltdly neurotransmitters is the
mechanism of communication. The arrival of the AP, and tisailteng voltage change,
openCa?" channels at the presynaptic terminal. The inrustPef" ions initiates a com-

munication cascade that culminates in the exocytosis afotieunsmitter molecules. The
neurotransmitters travel across the fluid interface of tmaptic cleft down their concen-
tration gradient. At the post-synaptic neuron they thenaligon channels, resulting in a
dynamic change in membrane potential at the post-synagticon. This process is illus-
trated in Figure 2.13. It is important to note that this cheuegn be excitatory (positive

voltage difference) or inhibitory (negative voltage diface).

2.5.1 Neurotransmitter Diffusion

The release and diffusion of neurotransmitter happensvelafast; with the initial change
occurring in as little a9.3 ms and peaking i0.5 to 1.0 ms (Scott, 2002). Given the huge
number of synapses in large-scale models, as well as theilaegration time-steps 6f5
to 1.0 ms, the onset of neurotransmitter release is generallyoappated as instantaneous.
There is an immediate buffering of the neurotransmittet teaurs after release. In
addition, re-uptake mechanisms on the presynaptic cejltledt. In large-scale modeling
this is either ignored and the neurotransmitter releasee@éead as a step change in post-
synaptic membrane current, or the buffering and re-uptskaeodeled by a decay function.
Rather than modeling the concentration of the neurotrattasnspecies, its influence on

the conductance of the ion channels in the post-synapticaelbe simulated. This takes
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the form

dg

Whereg is the conductance; is the time constant that describes the time course of the
decay in synaptic conductandg; is the initial change in conductance when a spike occurs,
and the delta function, (¢ — ¢;), imparts that influence for a spike at tihe

This is generally a good approximation to the release anfétwd of neurotransmit-
ter. An important aspect that this equation does not addsedse concept of a ceiling
in conductance. There is no upper-bound in the conductanite aynapse which is not
physiologically realistic. In most models however, thisng an issue as the activity of the
synapse is not high enough to create an unbalance.

More detailed modeling efforts attempt a closer match toempirically measured
release curves. However, the mathematical benefit of thirge-scale models is still
unknown and the computational burden it presents has bedmbgive. As the detail of

these models increases those additions may prove important

2.5.2 Synaptic plasticity

The ability for synapses to change their post-synapticemibe in both short and long time
frames is essential for learning. Activity dependent clesndpoth positive and negative,
are observed in most cortical connections of the brain anayrttzeories of learning are
built on these changes.

There are two ways that plasticity can modulate the effeahdAP, either the presynap-
tic release is modified or the sensitivity on the postsyregitie is. Generally the release

of neurotransmitter is discrete, with each vesicle comtgia similar quantity. Therefore
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fine changes in the concentration released are difficultiierab There are however, many
instances where the plasticity of the synapse is dependethteopresynaptic neuron, but,
these are exclusively a short-term phenomena. Plastemyddulated more prominently
at the postsynaptic site, where changes are dependentivitydotboth a frequency and

timing dependent manner. We discuss a few relevant exaropths below.

Short-term plasticity

Changes in synaptic efficacy on short time scales, millisdsdo seconds, is usually ac-
tivity dependent. These mechanisms are affected by freyuamanges in the presynaptic
cell and generally related to vesicle availability (Pureesl., 2007). Augmentation is an
increase in synaptic efficacy and is related to a greatecleasilease response to APs. De-
pression is a decrease in synaptic efficacy that is relatdtetoeduced vesicle availability.
One way the short-term availability of a synapse can be neadisl in a frequency-

dependent manner. The mathematical model of Markram e1298) captures the phe-
nomena of both frequency dependent potentiation and dapresn a single synaptic
model. Using a mix of variables from Markram et al. (1998) &ussillo et al. (2007)
the model can be described in terms of the fraction of totahpyic efficacy and the loss of

availability to an AP. The conductance of the synapse carebeatl by

gn=A-R-u. (2.17)

WhereA is the maximum synaptic efficack represents the fraction of synaptic availabil-
ity, R € [0,1], andu is the utilization of synaptic efficacy. Facilitation in tineodel is

included as an increase inin response to an AP. This then decays with time-condfant
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to a resting valué¢/. This can be described by

—At —At
Ukt = URETD (T) +U (1 — ugexrp (T)) ) (2.18)

WhereAt is the time difference between spikend spike:+ 1. Depression of the synapse
can be modeled in a similar way, except now the availablegjmefficacy,R, is reduced
as an AP arrives and is recovered with a time congtanthis is included in the expression

for the available synaptic efficacy

—At —At
Rpy1 = Ry (1 — ugy1) exp <T) +1—exp <T) : (2.19)

Long-term plasticity

Long-term changes in synapses are measured in minutes . hbuese happen quickly
and persist through biophysical and genetic mechanismscripgions of long-term plas-
ticity are generally grounded in studies of excitatory gg&s containing NMDA glutamate
receptors. At rest NMDA receptors are clogged by/a** ion, therefore they do not con-
tribute to the membrane potential at the synapse. Mhg&* ion can be purged through
prolonged or repeated depolarization of the synapse. Whistappens the channel can
then positively contribute to the membrane voltage throtghconduction of”a** ions.
This creates an immediate increase in excitability of theapge. In addition, the influx
of Ca®* begins a CaMKIl and PKA initiated signaling cascade thad$et® increased up-
regulation of AMPA glutamate receptors(Purves et al., 20Q0/bng term depression of
synapses is also similarly affected by:?>*, with high concentrations and low synaptic
activity causing a down-regulation of AMPA channels (Pgreeal., 2007).

One of the most popular long-term plasticity rules was disced by Markram et al.
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(1997) and is referred to as spike timing dependent plagt{8TDP). This a Hebbian
learning rule where the arrival of presynaptic APs is coragdp the activity of the post-
synaptic neuron. If the presynaptic spike arrives befoeepibstsynaptic neuron fires, the
connection is potentiated; the presynaptic neuron is iaring positively to the postsy-
naptic neuron’s firing. If the presynaptic spike arrivegathe postsynaptic neuron fires
the synapse is depressed; the presynaptic neuron is noiocimtg.

A version of this rule is for excitatory synapses observedhim cortex (inhibitory
synapses have been shown to follow a different rule) andasgmted here in the form

used by Song et al. (2001). The conductance of a channel aegbdsing the expression
g — g+ Gmae F(AL). (2.20)

WhereAt = t,,. — {05, IS the timing difference between the presynaptic and posfstic
APs. The fractional update is

Al Arso
F(A) = (2.21)

A_e f_j) At <0
if (9 <0)theng — 0
if (9> gmaz) theng — gias
This is a reduced learning rule and only captures some oftieagmena observed ex-
perimentally. However, it is one of the most popular leagmules in large-scale modeling.
As mentioned above, inhibitory synapses follow a compjetifferent STDP rule; as do

some subcortical structures. Exploration of these is tefihé reader.
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2.6 Simple point neuron models

The HH model presented in Section 2.4 is useful for desailine electrical activity of
neurons but is computationally expensive to simulate. Whitah, there is much more to

the dynamics of neurons than just the generation of actitenpials.

2.6.1 Reduced Hodgkin-Huxley neuron

We begin by showing how the dynamics of the HH model can be Iieghthrough as-
sumptions based on the physiology as well as the dynamicsawe talked about pre-
viously. Although exploring the HH equations using dynaamhisystem theory is quite
intractable due to the four-dimensional nature of the systee can characterize them by
their fast and slow dynamics.

The first simplification is based on the assumption tNat™ activation occurs much
faster than its inactivation as well as thie activation. Based on this it can be assumed that
the Na™ activation occurs instantaneously, or that= m.. (V).

The next simplification is based on the dependence betwesrdn. Assuming the

simple linear relationship
h(t) =1 —n(t).

The HH equations can then be reduced to two coupled diff@leaguations

dV
Ly = Cn— + gxn*(V — Ex) + gnam> (1 = n)(V — Eng) + Gi(V — E;) (2.22)
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and

= V)1~ )~ B (V) (2.23)

When compared to the full model, Figure 2.14, it can be olexkthat it is not a great

approximation but for some applications it may be acceptabl

120 2
Simple HH Model Istim = 8 (MA/cm®)

80

D
o

Membre}ge Potential (mV)
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_20 1 \2 - 3\ 1 1 |
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Figure 2.14: Comparison of simple model with the full model.
Returning to the full Hodgkin-Huxley model and plotting th&ting variables as action
potentials are triggered, the relationship betweeand » can be observed more closely

Figure 2.15. This is exactly what was done in some of the easityputer simulations

(Izhikevich, 2007b). These demonstrated that

n+h~0.84
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lstim = 8 (HA/CM?)
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Figure 2.15: Full Hodgkin-Huxley Model. Notice how + h surroundg).84

We can actually compare these directly as in Izhikevich {2)0which reveals that

h =0.89 —1.1n.

Incorporating this relationship into the simplified modesults in a better approximation
to the full HH model, Figure 2.16. The model is still slighdigifted in time but comparing

the aligned action potentials it can be seen how they compdt@.
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lsgim = 8 (MA/CmM?)
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Figure 2.16: Comparison of the improved simple model with the full model.
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Figure 2.17: Comparison of improved simple model with the full model afthifting.

Although the method above improves the computational cerityl of the HH equa-
tions, we can still take this further. The two channels oéiast in the HH model, the fast
sodium and slow rectifyindgd ™ channels, contribute mainly to the action potential genera
tion. As described above, this is an all or nothing event tlcatirs once the threshold has
been reached. Assuming that these channels have minimiibcdion to the subthresh-
old dynamics, we can remove the channels and instead resatémbrane voltage once
the threshold has been reached. The characteristic aatentfal can, and usual is, then
added to the voltage potential using a spike template. Tddg&ian is completely arbitrary

and really only useful for visualization.
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2.6.2 Leaky Integrate-and-Fire Neuron

Probably the most basic spiking neuronal description igrtegrate-and-fire model. With
extensive research dating back as far as 1907, it is a simpteinthat requires limited
computational resources (Koch and Segev, 1998). In they led&grate-and-fire model
(LIF) the neuron sums the input currents to calculate the bmane potential. When the
voltage potential reaches a set threshold an AP is fired. Tddehis created by removing
the Na* and K™ channels. The AP is simulated by reseting the membranegekad

placing the neuron in a forced refractory period; where tleentorane voltage is fixed for a

set period of time. The equation takes the form

dV
Cm% =1- gleak(v - Weak)- (224)

This is sometimes expressed as

A Vi,
Cngr =1 =3 (2.25)

Where
Vio(t) = IRy, (1 _ e(?—,ﬁ)) |
andr,, = R,,C,, is the time constant. This can also be simplified as
v="0b—v, (2.26)

and ifv = 1, thenv = 0.
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20 mv

Figure 2.18: Leaky-Integrate-and-Fire neuron response to excitatgwti

Figure 2.18 demonstrates the response of a typical LIF metorancreasing voltage
stimulus. Note that the spike shapes are created by aftifisitting the voltage t80 mV

when the threshold is reached.

2.6.3 Subthreshold models

The LIF model is capable of capturing only a small subset afoeal dynamics. It works
well as an integrator but the more complex responses, deaistc to many areas of the
nervous system, are lost with this model. One strategy folfa&ing those dynamics is
to add additional currents representing ion channels tieainaolved in the subthreshold
activity of the cells. Here we present three such ionic cus@s an example of how the
dynamics of the LIF model can be altered.

We begin with two currents that contribute to the membraniéage by controlling
spike-frequency adaptation. These are small ionic custdatt have a long period of activ-

ity when the membrane voltage is between rest and threshold.
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The noninactivating muscarini€ ™ current,l,,, is defined by

Iy = gum”® (B, = V). (2.27)

WhereP is the power that the activation variabieis raised to. This is essentially decreas-

ing the slope of the activation variable. The change of tieéivation variable is defined

as

dm My —m

T 2.28

dt Tim ( )
Where

. €
CE) A
e w +e n
and
1
Moo =

=)
1+e §

Here,e is a scale factor, n and¢ are slope factors affecting the rate of change of the
activation variable mV., satisfies the equatian..(V1,) = 0.5.

Adding this current to the LIF model creates the classic aoccommodating gabaergic
interneuron, Figure 2.19. These neurons fire at steadg-atéte onset of a constant current

injection.
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20 mv

—— 100 ms

Figure 2.19: classic non-accommodating gabaergic interneuron modeded) the noninactivating mus-
carinic K™ current.

The other small spike-adaptation contributing currennisfierhyperpolarizatior *
channel. These are voltage independent and regulateddmpahtcalcium. The current is

defined by
Lagp = Gagpm"” (Ep — V). (2.29)

WhereP is the power that the activation variableis raised to. The change of that activa-

tion variable is defined as

dm Mg —m
T 2.30

dt Tim ( )
Where

Tm =

f(Ca)+ b
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___f(ca)
* f(Ca)+ b
e is the scale factol, is the backwards rate constant af(d’«) is the forward rate constant

defined by

f(Ca) = k[Cal;”. (2.31)

Physiologically the calcium concentration of a cell in@es when an action poten-
tial fires. After the action potential has ended the integmaicentration of calcium will
diffuse throughout the cell where it is taken up by numerdugsplogical buffers. This

diffusion/buffering phenomena can be modeled by a simptaylequation defined by

1_dt

TCa

[Cal;(t+ 1) = [Cal;(t) ( ) . (2.32)

Wheredt is the integration time step and, is the time constant for th€a** decay.

20 mv

A

—— 100 ms

Figure 2.20: Bursting non-accommodating gabaergic interneuron resposing small spike-adaptation con-
tributing current is an afterhyperpolarizatiéin™ channel.
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The addition of this channel simulates a bursting non-acoodating gabaergic in-
terneuron, Figure 2.20. These are characterized by a dklse in membrane voltage
after stimulus onset, followed by a period of steady-staiedi

The third channel type is the transient outwafd current ork,,. This channel requires
hyperpolarization for its activation; meaning that therama will open during inhibitory

synaptic input. This is defined by

Ik = gum"hC (B, — V). (2.33)

Where as beforé’ is the power that the activation variable is raised to and”' is the
power that the inactivation variableis raised to. The change of activation and inactivation

variables is defined by

dm Mg —m

T (2.34)
and
% - hmT; n (2.35)
Here
1
e

(V_M/Qm)7
1+e §

whereV.,,,,, satisfies the equation..(Vi.,,) = 0.5 and{ is the slope factor affecting the
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rate of change of the activation variabile and
1

(V_‘/l/gh>’
1+e U

whereV.,,, satisfies the equatidn. (V1.,) = 0.5 andy is slope factor affecting the rate of

heo =

change of the inactivation variabte

20 mv

|

—— 100 ms

Figure 2.21: Delayed non-accommodating gabaergic interneuron modeittda transient outwards
current.

Figure 2.21 is the response of a delayed non-accommodatibgeggic neuron that
results from a transient outwargl* current. The response is a delayed rise in membrane
voltage after stimulus onset, followed by a period of constaing.

As can be seen by the inclusion of these example currentg,|Ehmodel can be em-
ployed for replicating more complex firing patterns. Conations of subthreshold chan-
nels can be included to replicate almost any neuronal respon

An additional technique for extending the LIF neuron is tdile an artificial current
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source that replicates the desired current dynamics. Shised for the Integrate-and-fire-
or-burst model that will be introduced in Chapter 9 as welleasong others, the resonate-
and-fire neuron.

The resonate-and-fire model incorporates a function tipdiceges a low-threshold™*
current. It is important to note that this term can also beahgr current that is partially
activated at rest. The current is defined by the varidblend can be added to the LIF

model by

dV
CE = I - gleak(V - Eleak) - W (236)

The dynamics of are defined by

_ | (2.37)

By changing thé/, and thek terms the resonate-and-fire model can simulated more com-

plex excitability, damped oscillations and rebound spikitCreating an artificial current
term provides more flexibility to the model but this can beetala step further by instead
of directly incorporating the empirical ion channel modéle neuron is treated as a dy-
namical system. The goal is create a spike generating mbderéplicates the relevant

dynamics but may lack biophysical meaning in its parameters

2.6.4 Hybrid neuron models

Hybrid neuron models, as defined here, have a continuous-ggikeration function and
an after-spike reset (Izhikevich, 2010). Like the HH moded spike-generation function

does generate an AP, however it does not reset on its own. Whenodel voltage reaches
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a spike-cutoff it is instead set to a reset value. The firsthrgata of this is the quadratic-

integrate-and-fire neuron. This is created by replacingn Equation 2.26 with/?

d .
d_:f) =b+ 07 if U = Vpear, tNENV <= Vpger. (2.38)

Izhikevich (2003) extended this by including a recoveryatale U which can put the model

into different modes (i.e. resonant or amplifying). Thismdse defined by the system of

equations
Z_‘ZZHU?_U if v > 1, then (2.39)
dU
%:a(bv—u) V<4 cu— u+td. (2.40)

WhereV is the membrane potential abds the recovery variable. The signiofletermines
if U is an amplifying or a resonant variable. In additians the recovery time constant,
vpeak 1S the spike cutoff value and the reset voltage is defined. blyinally, d drives the
after-spike behavior.

Equations 2.39 and 2.40 (5-parameter model) can replicatg mhifferent cortical cell
types (Izhikevich, 2003) but for other cortical and subicattneurons it is sometimes more

powerful to represent the model as

C% =k(v—2v)(v—v) —u+I; if v > 1, then (2.41)
and

aU

— =a{b(v —v,) —u} v cu—u+d (2.42)

dt
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Where(C' is the capacitancé, is related the neuron’s rheobas$e,is the resting membrane

potential, and); is the instantaneous threshold potential.

9 Parameter Izhikevich Model

5 Parameter Izhikevich Model

e

m— 400 Ms

Figure 2.22: Izhikevich neuron. 5-parameter model (top). 9-parametateh(bottom).

It is slightly more expensive to simulate when expressirgrtiodel using Equations
2.41 and 2.42 (9-parameter model). However, it providesval lef control that the 5-
parameter model does not. Figure 2.22 shows the simulat@stoiatal neuron. The firing
characteristics of striatal neurons demonstrate distipeflown states. In the down state
the neurons have significantly reduced excitability. If eglo excitatory input is received
to create an AP, the neuron remains in state of raised dégatian, the up state. In this
increased state of excitability the neuron is more likelyespond to excitatory input with
an AP. The 9-parameter model is capable of replicating tstaes, Figure 2.22 top. The

5-parameter model however, does not demonstrate thidbista
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2.7 Summary

These simple point neuron models represent a simplificatiogality. However, even in
this reduced form, the processing power cannot easily beribes discretely. In some
cases a mixed logic description fits; where the neurons psogdgormation in analog
(membrane voltage) but communicate digitally (APs). Ualik digital computer, these
systems do not read in a set of instructions that describetbdvandle the information
flow. Instead, that processing is built into a constantlyngiag functional anatomy. Even
this analogy falls short when exploring how that informatis represented in a network.
There is currently no consensus on how the brain represamisesses and stores in-
formation. Research has presented examples of many diffgiges of encoding schemes
(Eliasmith and Anderson, 2003). For example, rate basedseptations assume the infor-
mation is encoded in the rate of the neurons in a populatiopoPulation based encoding;
where the activity of an entire population contributes toagting information. There is also
spike-time encoding; where the time between successikes[s used. All of these, and a
few others, have been demonstrated empirically but there &ngle one that can explain
information flow in the brain. It is currently hypothesizdthat the brain incorporates all
or a subset of these in processing and representing infanm@liasmith and Anderson,
2003). Describing this phenomena as a comparatively siogigouter does not to do it

justice.



Part |

Engineering Neural Systems

50



51

Chapter 3

Anatomy of a High-Performance Neural

Simulator

There are many difficulties to overcome in the modeling ofidéascale neural systems.
These inherent difficulties can be further compounded bynded for high-performance
and near real-time simulations. Although the simulatiosmiking neural systems can be
classified as embarrassingly parallel, the models gegedallinot scale linearly with the
number of compute elements. This is due to the computatammaplexity of numerically
integrating the governing equations, as well as efficiecwlyimunicating spiking informa-
tion. This chapter presents some concepts used in desigmaigrn neural simulators.
Here the focus is on network layout, distribution and nuggrintegration. Chapter 4 ex-
pands on this by exploring spike exchange methods on geperpbse high-performance

computing clusters.
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3.1 Introduction

For many researchers the choice of neural simulation emviemt can be extremely diffi-
cult. There is a continuous trade-off between biologicalisen and computational com-
plexity. If access to high-performance computing resalisenavailable, large-scale mod-
eling may be out of reach. In addition, the time investmequineed for installing and learn-
ing a new simulator is a hindrance. With the relatively loesttof GPGPU computing more
researchers now have the ability to explore large-scalestsodHowever, the difficulty in

adopting a new simulation environment remains.

3.1.1 CPU based neural simulators

There are a number of general CPU based simulators that gupme-scale neural mod-
els. NEURON, (Hines and Carnevale, 2007; Hines and Carea¥8P7), and GENESIS,
(Bower et al., 2002; Bower and Beeman, 1998), are two of thstipopular. Both offer
CPU versions for single and distributed computer enviramshe This list also includes
NEST, (Diesmann and Gewaltig, 2002), NCS, (Wilson et alQ13p0and CSIM, (Brette
et al., 2007). Below is a review of some of the more prominddt/Gimulation environ-
ments.

NEURON was started by John W. Moore and Micheal Hines at Dukigdysity (Hines
and Carnevale, 2007; Hines and Carnavale, 1997). Origjinble NEURON simulator
was used for modeling single neurons in high levels of detaihas since been applied
to the study of larger networks of neurons. It is most usefuldimulations where the
neurons of interest are spatially diverse, have complex lon@en@ currents and channel
dynamics, and both intracellular and extracellular iomioeentrations are important (Hines

and Carnavale, 1997).



53

Different mechanisms for constructing cells is providedhs/concept of sections. This
provides a level of abstraction that not only removes theedgihg differential equations
from the user but also separates the cell physiology frormtimeerical solution. Several
solution methods for the differential equations are alswigled. The choice of algorithm
is left to the user and depends on the level of accuracy nesuthe overall complexity
of the model. NEURON has had the benefit of years of developthah has resulted in
a robust tool set that has helped to attract a wide user-Fagarallel implementation is
offered with the current version and can distribute the $athan by neuron or even by
section of neuron.

The General Neural Simulation System (GENESIS) projecabeg California Insti-
tute of Technology by James M. Bower. It was originally agkl for the simulation of large
neural networks (Bower et al., 2002). It has since been usetudies of varying levels
of abstraction and elaboration. The GENESIS design employsbject oriented approach
at the simulator level. Modules within the simulator arecklvoxed; allowing connect-
ing modules the luxury of only needing the associated iaterf This provides modelers
the ability to change and reuse discrete components of thelaior without having to
change unassociated code. GENESIS also offers a paratielation environment allow-
ing researchers to model over networked workstations, @lpbcluster or supercomputer
(Brette et al., 2007; Bower et al., 2002; Bower and Beema88).9

The NeoCortical Simulator (NCS) was developed at The Usityeof Nevada, Reno by
the Brain Computation Lab under the direction of Dr. Phiipodman. From its inception
a heavy emphasis was placed on parallelization and perfarendn addition, mechanisms
for accessing spiking information and injecting stimuluaswalso extremely important.
Despite the focus on performance, NCS provides a numbermdritant biological models.

For a review of what NCS refer to Wilson et al. (2001) and tols®a® NCS compares to
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other neural simulators seeBrette et al. (2007).

NEural Simulation Technology (NEST) (Diesmann and Gewali002) is the result
of the NEST initiative, a collaborative project intendedhtelp extend neural simulator
development. NEST is intended for simulations of large akugtworks consisting of point
neurons and neurons with minimal compartments. It is engalag studies interested in
the dynamics of neural structures Brette et al. (2007); & et al. (1999). Parallelism
is achieved by a combination of multithreading and messagsipg.

Circuit SIMulator (CSIM) (Brette et al., 2007) is a package fmodeling networks
of point neurons. It was designed for studies at the netwevkl] with the intention of
revealing high level network dynamics that are unavailatléne single cell level. The
software itself is a combination of a C++ solution engine Batlab or Python interface.
Currently the implementation includes models for lineakleintegrate-and-fire neurons,
non-linear leaky integrate-and-fire neurons and compantahbased neurons.

XPPAUT (Brette et al., 2007) is a software package for sgdifferential, difference,
delay, functional, and stochastic equations as well as deynvalue problems. While
it was developed as a general numerical tool, its abilityrtalyze a numerical system’s
dependence on specific parameters has made it extremely teseéuroscientists.

SPLIT is an experimental package for modeling large-scalkicompartmental neural
models. Rather than rely on a formal interpreted modelinguage, SPLIT is a kernel that
developers incorporate into custom C++ programs. It hag@tifor parallel computations
that are completely hidden from the user.

Large-scale Edge Node Simulator (LENS) (Peck et al., 2093)simulation environ-
ment developed by the Biometaphorical Computing Group & 1BJ. Watson Research
Center. LENS is considered a “problem solving environméaitlarge neural networks.

It offers researchers unique levels of abstraction thagedrom compartments to global
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brain processes.
Each of these provides a parallel CPU implementation thatei-suited for many

distributed environments. However, they do not yet offelRUZompatible version.

3.1.2 GPU based neural simulators

Given the ubiquity of graphical processing units (GPUs)linast every computing device
today, it is no surprise that they are being exploited foregahpurpose computing. GPUs
have a large number of single-instruction multiple-dat&i{3) processors capable of ef-
ficiently processing huge amounts of data in parallel. Initealg the cost associated in
creating clusters of GPU'’s is considerably lower than CP&kldasuper-computers capable
of similar performance (Fan et al., 2004).

In the computational neuroscience community there have &é&gge number of projects
focused on single or dual-GPUs localized to a single compatke, however there are no
GPU-cluster based neural simulation environments operaiable at the time of writing.

The lack of GPU support in general neural simulation hasltegun a number of
projects focused on creating general environments spégitePU implementations. This
began with Nageswaran et al. (2009) and their release of@ation supporting Izhikevich
neuron models, and a C++ user interface for creating newworkis work was recently
updated by Richert et al. (2011), however, both target dsiG§U.

Thibeault et al. (2011) presented a proof-of-concept saoulthat targeted multiple
GPU’s within a single computer, this is described in Sec8gh A method for distributing
the simulations on multiple nodes was presented as well asel apike message passing
scheme that represented the neuron states using indiodsallzhikevich neurons were
supported along with conductance based synapses and SEB@ fasticity.

Similarly, a number of projects have resulted in model-gmeGPU implementations.
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Scorcioni (2010) presented a single GPU simulator capdini®deling 100,000 Izhikevich
neurons with 100 randomly connected STDP synapses inirsal-t

Tiesel and Maida (2009), created a single planar networktefrate-and-fire neurons
using the OpenGL graphics API. Along the same lines, the wbitan and Taha (2010),
presented a two-layer input-output network specific to ienagognition.

Igarashi et al. (2011) developed a heterogeneous modetiohaselection in the basal
ganglia. Two different neuron types are simulated in the ehddhikevich neurons for the
striatum and Leaky integrate-and-fire with Hodgkin-Hux@dhannels for the other areas.
The simulation was executed on a single CPU-GPU combinatiogal-time.

Richmond et al. (2011) presented a model with 2 layers ofynate-and-fire neurons
with recurrent connections. The resulting code demorestratspeed-up as high as 42x
over the comparable Python implementation. In this cas@éanallelism of the GPU was
exploited for parametric optimization.

Fidjeland and Shanahan (2010) published results for aestBBlJ simulation similar to
the work of Nageswaran et al. (2009). The system demondthagber throughput, defined
as spike arrivals per second, but a lower number of totalameuior real-time simulation.

Yudanov et al. (2010) demonstrated a single GPU simulatblzhikevich neurons in-
tegrated using an adaptive Parker-Sochacki method. Ensphas placed on sub-millisecond
event tracking and accuracy between CPU and GPU implen@matSpeedup of 9x be-
tween a comparable CPU implementation was achieved.

Nere et al. (2011) created an extension to a learning modleéoshammalian neocortex.
The simulation abstracted the neural activity up to thellefeeocortical minicolumns
using a rate-based model. Synaptic plasticity is only &b active columns and follows
a Hebbian learning rule where the weight matrix betweenmahiis increased if the input

is active and decreased if it is not. Simulations were digted between a single CPU and
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either a single GPU card or dual GPU cards. The resultingeamphtation demonstrated a
60x speedup over the single-threaded implementation.

de Camargo et al. (2011) created a GPU simulation of muitigartment conductance-
based neurons. The test network was comprised of excitpyoaynidal cells and inhibitory
cells. Each neuron contained two channel conductancesletbdsing Hodkgin-Huxley
dynamics. Different number of connections, weights andraleactivity were explored

resulting in a speed up of 40x in some cases over the seriali@pldmentation.

3.2 Generic simulator design

The basic steps in a neural simulation are network desigmank construction, integra-
tion, spike exchange and finally reporting. To illustrate #torage containers and basic
concept of spike exchange a simple neural simulator, Nieeydd presented. Neurolite is
a general neural simulator developed by the author to owegcgome of the limitations
present in NCS (i.e. limited channel implementations, clexify of network creation and
difficulty accessing individual neurons). The simulatopgarts single compartment mod-
els that include only the active transmission of electrgighals. Currently model creation

isonly in C++.
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Data Structures

C C
C. C.

Cs nodeConnnection * Cs Synapse Index
localConnection * Propogation Delay

Cell * Local Cell Index

C4 C4
Cs Cs
Cs Ce
(a) (b)
External Message
Messages Processor

Cell Index
Time Fired

(c)
Figure 3.1: Basic cell data structures. (a) Cell Information Structby Fanout Information Structure. (c)
External Message FIFO

The action potential generated by a cell when it fires is greed in the Neurolite simu-
lation as a message. That message will arrive at the regedeih after traveling along the
theoretical axonal connection, a certain amount of timeraftwas sent. In other words
there is a finite amount of time the action potential will néetravel along the axon. This
is known as the propagation delay. The data structures imdNtare designed to store
these messages in a way that utilizes the shared memory adtlerately representing
that propagation delay, Figure 3.1. The intention is to ter@asystem that passes the cell
messages in the most efficient way possible. A high levelrgegm of the design of the

message passing system and data structures is included belo
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This begins by visualizing a group of containers conneatealriow, Figure 3.2, where
each container represents a moment in time. The number ¢dioens in this group is

determined by the action potential that has the longestttaae, as well as the difference

in time between the containers.

[
Maximum Action Potential Travel Time

Figure 3.2: Group of cell containers

Each container in this group will in turn hold another grodgontainers, Figure 3.3.
These hold messages or spiking information about a celhirgarticular moment. There
are identical groups stored in each container of the tramed group. It should be noted
here that once the end of the data structure is reached ttveasefwill simply loop back
to the beginning. This creates what is known as a circulaiebuThese concepts should

become clear below.
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C.
Cz
Cs
Cs
Cs
Cs

Figure 3.3: Cell containers for time T1

Figure 3.4a shows an example of messages contained in thgraep for time T1.
Notice that action potentials can arrive from multiple sedt the same time. Similarly,

Figure 3.4b, shows an example of messages stored at time T3.

C.—M: = M. C | M —| Ms
C. C

C —| M. Cs

Cs Cs

Cs | Ms —| Ms — M Cs —| M.

Ce o

(a) (b)
Figure 3.4: (a) Spiking messages for six cell group at T1. (b) Spikingsagss for six cell group at T3.
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It was mentioned before that the size of the time group wagdarby the maximum
propagation delay of the simulation. This is because wheglldies the simulation will
determine which cells will receive that message. It willrtltace messages in the appro-
priate spots of the structure based on the propagation @ldythe receiving cell. The
resulting structure ends up looking like Figure 3.4a andufgdg3.4b. With this scheme
messages are placed forward in time and the maximum distdneaal is determined by the
largest propagation delay. This is why the time group candmsttucted using a circular

buffer.

3.3 Shared memory design

The generic design of Neurolite lends itself to a number ativare implementations.
Presented here is an example applying these concepts taedsinamory architecture
(NeuroliteSM). The design was completed with Dr. FredefickHarris, Jr., James Frye
and the author, as part of a NCS redesign at The Universityesila, Reno. The target
architecture was the Sun microsystems Sunfire X4600.

The X4600 consists of 8 processing boards linked togethiér avhigh speed physical
bus. Each board has a single processor socket as well as8wslatemory. The memory
on each board is accessible by all of the other processoisibythysically local to one of
the eight processing boards. The memory that is locatedeosame board as a particular
core (processing unit) is considered local. The memory ighaff-board is considered
remote and it requires more coordination between procgedsoaccess. This can affect
performance of the system and must be considered in anyshaged memory design.

With a basic idea of the message data structures defined #iereeare two questions

that need to be explored further. First, how are these strestconstructed? Second,
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how can the construction and processing of the messagesnp@eted faster and more
efficiently on a shared memory architecture? Also of inteaes the problems that occur
when more than one core attempt to access a shared regionnedmme If one core is
writing to a location while another is trying to read it, there reading will not see an
accurate representation of that memory location. This ¢fgentention is handled using a
locking mechanism. The software will in some manner lockeosgtction of shared memory
before reading or writing to it. This can slow down the sintiglas in two ways. The first
is the timing overhead required to set and clear those |ddks second is the time that can
be spent waiting for a locked section of memory that is resfuto continue execution.
The NeuroliteSM design circumvents those issues by crgatitiundant message struc-

tures; one for each core. Figure 3.6 illustrates this idea three core system.

-

Figure 3.5: New message structure representation
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CpPUl CPU2

Figure 3.6: Redundant data structures.

CPU3

During the processing stage of the simulation, a cell or grafucells is assigned to a
core, shown in Figure 3.7. This core will check the contairfer that cell on each of the
redundant message structures. Keep in mind that althowghstaicture is stored locally,

they are globally accessible to the other cores, Figure 3.8.

C—M: —| M.
C
G —| M.
Cs
Cs | Ms —| Ms —| M5
Cs

Figure 3.7: Work distribution.
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Ea i —

CPU2

Figure 3.8: Each structure is globally accessible.

CPU3

The issue of mutual exclusion is avoided by assigning eashagpecific cell to work
on. When a cell fires, the core will store all messages to ttallstructure; once again
avoiding the need to use locks. The passing and processmgsdgages between cores on
the same node becomes a simple local memory operation. Aasicoincept can used for
internode communication but in those instances the stinsrajtthe Infiniband connection
would be emphasized.

This design trades memory usage for speed; because thedesdistructures require
large amounts of memory. With those structures the messaggng can be done in a
very clean and efficient manner; the passing of a messagenescan address change. On
distributed compute clusters the message passing fuatitipobviously changes but the
overall data structures remain similar. This provides alraatsm for code reuse and offers

a high-level of extensibility.
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3.4 Single node GPU simulation

Recently, the utilization of graphics processing units ((SPfor scientific computing has
increased dramatically. Originally intended as a meandftafamling graphics and visual-
ization tasks away from the central processing units (CPtig)single instruction, multiple
data architecture of GPUs lends itself to many scientific patimg problems. As one of
the leaders in graphics chip design, NVIDIA has investedsmearable resources in pro-
viding the scientific community with both hardware and saftevsolutions aimed at lever-
aging their products for just such applications. The Compinified Device Architecture
(CUDA) created by NVIDIA provides developers with a rel&iy simple instruction set
as well as comprehensive tools for working in a GPU enviramime

The proof-of-concept simulation code described here isgaied as an illustration of
both the scalability of the design and the performance piatesf GPUs. As an unopti-
mized prototype, it is in many ways a worst-case scenarioly Gi?Us within a single
compute node are supported. However, even in this immatate, $he design lends itself
to the addition of message passing between compute nodisgrokotype supports a sim-
ple input file format that at present is generated by a separaggram. Once the input file
has been read in, the program executes the steps outlineglirer3.9.

This work was originally published in Thibeault et al. (20Xnd was designed by
Roger Hoang and the author. The development of the simulasrcarried out by Roger
Hoang, while the model construction code and the benchmaeks completed by the

author.
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3.4.1 Design

F

| Swap Fire Bit Vectors |

[]

| Update Pre-Synapses I

—EI

—| Update Post-Synapses |—>| Save Result

Figure 3.9: Simulator Execution Flow

E [

The simulation setup begins with a redistribution of thautnpodel. The neurons are sorted
based on the number of synaptic connections. These are igteibuted to the respective
GPUs in a round-robin fashion; providing a first-pass loaldeng of the model. Once
the neurons have been distributed each GPU forms a locadimgland representation of its
neurons. The new indexing scheme is shared amongst GPUishaed is used to develop
the local neuron structure array and the Cell Firing Bit @decas shown in Figure 3.10. In
this implementation the Cell Firing Bit Vector is a repretsgion of the entire neural model
at the current simulation time tick. In future version thidl We restricted only to Neurons
that are of interest to a particular GPU thread.

The Local Synapse array is constructed in a similar manntr the synapses being
grouped by their presynaptic neural connection. This lapoovides a contiguous region
of memory that can be accessed with minimal overhead witlér@PU architecture.

Finally, the Action Potential Delay Table is constructedisTis a bit vector that pro-
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vides a mechanism for simulating the propagation delay tbagotentials. As seen in
Figure 3.10, the X axis represents the local synapse’s axonaection. The Y axis is a

circular buffer that is the size of the maximum propagatielag.

Local Synapses

O T T T T T TTTT] Bit Vector of Current Cell Firings

Number of Synapses on this GPU

% IMax Delay Action Potential Delay Table

Figure 3.10: System Setup

After setup, the simulation begins by updating (numencaitegrating) the neurons.
The appropriate region of the Action Potential Delay Tablesiad and the number of “1”
bits are noted. In this context, a “1” bit represents an agbatential that has arrived at that
particular synapse. The neuron code then samples theiedcuirrent contributed by that
synapse. After the entire Delay Table for the current tirok bias been read, the voltage
of the cells are computed numerically using a forward Eulethod. If the cell reaches
threshold and fires an action potential, its correspondiniy the Current Cell Firings Bit

Vector is set high.
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I I N N Bit Vector of Current Cell Firings

Local Neurons

Local Synapses

Current Time

Action Potential Delay Table

Figure 3.11: Update Neurons

Once the neurons have been updated and the Cell Firings 8ibMeas been filled in,
the GPU threads will pass a copy of the vector to the other Giréatls. This is illustrated
in Figure 3.12. The layout of this vector for each of the resipe GPUs should be noted.

This was described in the setup above and is a result of th&tnibdtion of neurons.

Total Number of Neurons

Figure 3.12: Swapping of the Current Cell Firings Bit Vector

The synaptic updates begin by reading the respective QudelhFirings Bit Vector,
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shown in Figure 3.13. Negative synaptic learning can bautatled and the Action Potential

Delay Table can be updated at this time.

4]

Bit Vector of Current Cell Firings

Local Synapses

Figure 3.13: Update Pre-Synapses

Shown in Figure 3.14, the Action Potential Delay Table isatpd for the Neurons that

have fired. The appropriate bit, based on the delay speciji¢idomodel, is set high.

OO O O O O T 0T 10707 Bit Vector of Current Cell Firings

Local Synapses

IiHEEEEEEEEEEEEN
INEEEEEEEEEEEEE
ENEEEEEEEEEEEEN

Action Potential Delay Table

Figure 3.14: Update Action Potential Table
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[&]

OO OTOTOTOTTTOTTTOT0TT] Bit Vector of Current Cell Firings

Local Synapses

Figure 3.15: Update Post Synapses

Finally, the synapses sample their post synaptic neuroruaedhe result to calculate
positive learning if needed.

At this point, a producer-consumer thread model will gradbdtirrent cell firings vector
and begin writing it to the output file. Concurrently, if negll the Neuron Update step

starts the process all over again.

3.4.2 Example performance

Speedup vs. Connections/Neuron
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Figure 3.16: Speedup vs. Connections/Neuron
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Figure 3.17: Speedup vs. Number of Neurons (100 Connections per Neuron)

Presented in Figure 3.16 are the speedup results betweesndrngvo GPU simulations.
For networks of only 1000 neurons there is no advantage tangakie simulation off of a
single card. As the network size increases there is a na@adlimcrease in speedup that can
be seen in Figure 3.17. As the Number of neurons and connedtioreases the advantage
of two cards approaches the ideal speedup of two.

Also of note is the amount of data transferred between GPHalsle 3.1 illustrates the
small amount of information required at each time step. Bagethe small bandwidth re-
qguirements of the design and the linear dependence on theerwhneurons, the addition
of hardware should provide a near linear increase in speethip is of course dependent

on the model sizes as illustrated by these benchmarks.
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Table 3.1: Total Data Transfer between GPUs at each time step.

Neurons Data/Time step (Bytes)

1,000 125
10,000 1,250
100,000 12,500
1,000,000 125,000

Figure 3.18 illustrates the real-time capabilities of thetptype simulator. Once again
as the number of connections per neuron is increased thatadeaof multiple GPUs is
enhanced. From this a model with 100,000 Neurons and 50 ctians per neuron can
run at about 1.2 times real time. We are confident with some logsimizations that these

numbers will be drastically improved.
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3.5 Cluster based GPU simulation

Moving neural simulations to high-performance clusteriemments offers the potential
for substantial speedup compared to CPU based clustersniylddat move however, is not
straightforward and there are many different design ctsdicat can affect the performance.
We present here a review of the unique design patterns usadyineral large-scale neural
simulation framework. Named HRLSim, it was designed fothbparallel CPU architec-
tures and parallel General-Purpose Graphics Processind®&mPGPU) super-computers.
In addition, example benchmarks are presented to illesthat potential of the framework.
HRLSim development was started by Aleksey Nogin, Youngk®@ao and Michael J.
O’Brian. This work was then overhauled and extended by K¥ihkovich, who was later
joined by the author in that effort. The motivation for ciagtanother neural simulator
was driven by the need to support the neuromorphic hardwiateedARPA SyNAPSE
project (DARPA, 2012). The goal of which, is to implement isguare cm of CMOS,
10% neurons with10'° synapses and an averagel6f synapses per neuron. Recently, as
part of this effort, a compiler for the automatic translatmf a given neural architecture
into custom neuromorphic hardware was published by Minkoet al. (2012). HRLSIm
was developed to support the neuroscience research of M&RSE project and create the

input into that neuromorphic compiler.
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Controls the simulation Controls the computatlon MPI
A

(Extended by User Experlment
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Called by User Experiment
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Virtual Slave State - CUDA
Environment Mutable \

Figure 3.19: Interactions of the HRLSIim neural simulator modules.

Models in HRLSIim are created in C++ and then compiled intoxatetable. By defin-
ing experiments this way the performance optimizationfefdompiler can be exploited.
Unused code is automatically removed and other optimiaatsnich as loop-unrolling and
value precalculation can be performed.

Figure 3.19 demonstrates the relationship between diffenedules of the simulator. A
simulation begins with the main process instantiating &#sies object, an Input object and
a Master Compute object. The master compute object inataatthe Network and User
Experiment which in turn construct the Network and Netwot&t& objects. The Network
is then split into subnetworks and passed to Slave Computieil@®using Communication
objects.

The flow of the simulation is controlled by the master procebgputs and outputs
are facilitated by calls to virtual functions in the user exment base class. The heavy

lifting of the simulation is done by the slave nodes. The masbde is then responsible for
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performing user supplied task and recording the netwotk sspiking activity and synaptic

weights.

Start Iteration

Presynaptic Send
Update Spikes

Figure 3.20: Flow chart for a single iteration.

Many of the operations of neural simulations can be perfdrmgarallel to each other.
Figure 3.20 illustrates how these bulk tasks are executelRinSim. The individual steps

in a single iteration are

1. The communication thread starts receiving incomingespik

N

The computation threads waits for the synaptic updates the previous iteration
to finish.

The computation thread performs integration to genéns@utgoing spikes.
The communication thread starts transmitting the ouatgepikes.

The computation threads starts the synaptic updates.

o o > W

The communication thread waits for incoming spikes togoeived and the outgoing
spikes to be sent.
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This parallelization maximizes the amount of overlappingiputation and communi-

cation. Additional strategies employed by HRLSim are esgaiicfurther below.

3.5.1 Network layout

Even with the C++ preprocessing, anticipating the netwarkfiguration at that time is
unreasonably complicated. To compensate for this, tha&limetwork is flattened into
vectors occupying contiguous regions of memory. The ndtigareduced to three vectors,
one containing the number of outputs for each neurons, am@icing the indexes into the
synaptic connection vector and a vector describing the-ggsiptic connections of each
neuron. This flattened system allows for optimized memogess and favors synaptic

computations, which take up much of the computational tifreesamulation.

3.5.2 Delayed STDP

There are 1000 times more synapses in the brain than thenearens. The computation
can be dominated by updating synaptic variables. Some o$ltveest synaptic calcu-
lations are the STDP parameters, however they are only deglden a neuron fires an
action potential. Rather than calculating these at each si@p, HRLSIim delays the com-
putation until it is actually required. This avoids havirgupdate synapses at each time
step and removes the simulator’s performance dependenite srumber of synapses. In
CPU simulations this is further optimized by using eithexqumputed values or approxi-
mations to the exponential decay functions. Initial benatks demonstrated3% faster

simulations.
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3.5.3 Dynamic method selection

GPU performance is heavily dependent on memory accessdsr@ance is highest when
those accesses are aligned, so threads access conseartiogynilocks. This is difficult
to predict when memory access is dependent on network igctAm intelligent selection
method was added to HRLSIim to provide a way to switch betweendifferent postsy-
naptic updates, each with performance characteristid¢satieadependent on the activity.
The first one accesses only the neurons that just fired. Tloedeuoethod iterates over the
entire subnetwork of neurons updating only those that juesd fi

To illustrate the benefit of switching between these, a ndtwb100, 000 neurons was
simulated for30 seconds. When only the neurons that fired were accessedhth&ason
completed irk6 seconds. It took67 seconds to complete if the simulation iterates through
all of the neurons. However, when the simulator dynamicsiijtches between the two,

based on the number of neurons that fired, the simulation [iethin21 seconds.

3.5.4 Kernel parallelization

As outline in Figure 3.20, the results of many of the compaiet are not needed until
later in the current iteration or the subsequent iterati@ecause of this, multiple CUDA
streams are used to build queues of required operations.allbws much of the computa-

tion to be completed in parallel by employing the native CUBDAchanisms.

Memory layout

To optimize memory access, data structures are aligned dl28-bits. This is done be-
cause single instruction reads can be up to 128 bits wide iDA&voiding overlapping

memory calls. In addition to this, memory allocations aredzhon assumed sizes, rather
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than the maximum possible. As a result, the memory usagealgreduced and there is

only a minimal overall penalty from rare memory resizes.

3.5.5 Communication message packing

Chapter 4 deals with exchanging spikes but before that cppdmathe message packets
need to be constructed. To optimize the increase in spikesrgted by a GPU simulation
compared to a CPU one, much of the heavy lifting is done on RE.Q\ special kernel is

employed to efficiently pack the spikes.

3.5.6 Example benchmarks
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Figure 3.21: (Top) Two 80%excitatory / 20% inhibitory networks. (BottpRaster plot 02000 neurons for
10 seconds from one of these networks.
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A set of experiments that create an uneven distribution skwi@re created to demonstrate
the capabilities of the HRLSIm environment. The worst casenario for a large-scale
simulation is when one node is doing a disproportionate arnhofiwork. The networks
created for the benchmarks here do exactly that. These ale saaling, in that the number
of neurons and synapses increases linearly with the nuniipedes. Each node simulates
a balanced inhibition network consisting &% excitatory neurons an0% inhibitory
neurons, 3.21 (top). These are connected to other netwatksawprobability of25%.
To avoid the activity of the overall network getting out ofntm! the nodal networks are
connected with a synaptic weight of zero. This forces a sfpkige passed but does not

affect the activity of the network.
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Figure 3.22: GPU Results, 100,000 neurons per node. (a), (b), and (c) $temntime distribution on 4, 16,
and 64 nodes, respectively. (d) shows the linear regrefsigrots (a), (b), and (c). (e) shows the histogram
of maximum spikes per iteration. (f) shows how the runtimedess to network size.
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The difficulty in simulating these networks is that the bahdieing of Figure 3.21
(bottom), is uncorrelated between nodes. Compute nodekmay becomes the most
active of the cluster, slowing down the entire simulationh&f examining the maximum
amount of spikes generated on each node, shown in Figurg&)2Rere is a clear trend
that shows the more nodes being used the more spikes thatrageated (when examining
the maximum spikes generated per iteration). The evaluatas performed on a cluster
of 92 compute nodes, each with two Intel Xeon E5520 2.27GHA<&d two NVIDIA
Tesla C1060 cards, with Infiniband communication.

The benchmarks were run on 2, 4, 8, 16, 32, and 64 GPU cardewheh GPU card
simulated a 100K neuron network. Figures 3.22 (a), (b), apdlgstrate that the total time
(green) scales linearly with the simulation time (red) amel tommunication time (blue)
remains relatively constant.

The penalty from the increase in the number of nodes is obdarvthe trend line of
Figure 3.22 (d). This can actually be explained by the histogin Figure 3.22 (e). As
outlined above, when the number of nodes increases so degsdbability that one of

them is running slowly.
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Figure 3.23: Example timing results for benchmark model execute on 1&aathowing how simulation
time and communication time correlate to the total time. &kecution times were summed across all the
nodes.

Figure 3.23 illustrates how well the computation and comitation tasks are threaded.
When there are a low number of spikes the computation takest gercentage of the total
simulation time and the communication dominates the perémce. However, when the

spiking activity increases the communication cost goesrdsince it can be effectively

overlapped with the increased computation time.

3.6 Discussion

The designs presented here represent the choices madeeialséifferent simulation
projects. They are a sampling of the neural simulator despgate and as such, do not
offer a complete view of the available neural simulators.e Téctors in designing these
environments are dominated by two very important detailse first is the target level of

abstraction. Although some environments, such as NEURQNeg+and Carnevale, 2007)
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and GENESIS, (Bower and Beeman, 1998), cover a large rangbaysiological detail,
most environments target specific segments of neural nmadellThe high-performance
simulators, such as those presented here, are dominatexrityzpuron and sub-threshold
implementations. Performance is less of a concern in treelddtneuron simulators where
only a small number of neurons are modeled.

The second factor is the target hardware infrastructure. GRU based environments
reported here are all exclusive to NVIDIA's CUDA platformhi§ restricts the potential au-
dience of these environments and also helps explain pregimoulator’s specificity to the
designer’s personal project. The CPU based projects are gemeral however, an interest-
ing trend can be seen where many of these are implementifaym@nce optimizations for
specific hardware (Plesser et al., 2007; Hines et al., 20Fhgen creating a new simulator
there are many things that need to be considered. Some ofdfeimportant aspects are

outlined below.

3.6.1 Extensibility

A trend of the models presented here is that the more exterieiddesign, Section 3.2, the
more performance suffers. The GPU simulators, the highesbpning designs, currently
lack scalability. Adding new features to either design édas and difficult to implement.
While porting these implementations to new hardware is atmompletely unreasonable.
The trade-off between performance and scalability is aaehthat either complicate the
design or restrict the environment to specific hardware aatufes.

Projects like OpenCL (Group et al., 2008) can abstract awayesof the hardware
dependence but that comes at cost in performance. Addigptemplate based designs
can improve extensibility but that brings an associatedeiase in code complexity and

again, can introduce decreased performance.



85

The obsession with simulator performance is in direct conflith the need for exten-
sibility. The reality, however, is that users are going totawually request new features and
code bloat is inevitable in any long-life software projebt.addition, the field of neuro-
science continually presents new information on braintienc Extensibility is an absolute

requirement for remaining state-of-the-art.

3.6.2 Model sharing

Learning to use a given neural simulator is surprisinglficift. Many users take the time
to learn the specifics of a single one and stick with that, shrapfamiliarity over features
or performance in some cases. This allegiance to a speatfiglator is not necessarily
bad but sharing models between researchers becomes arpradbdemodel a researcher is
interested in is not implemented on their simulator of chpfmorting it can be an arduous
task. Similarly, validating the results of a simulationdtiare now tied to a single envi-
ronment, preventing others from building on existing reskeaThe numerous simulation
environments are a benefit to the field (Djurfeldt and Lans2@d7), but the lack of model
sharing is not.

Standardized interface projects such as PyNN (Davison.ef@09) and NeuroML
(Crook et al., 2007) are aimed at alleviating some of the lerab with model sharing as
well as the usability of simulators. With a common interfagsearchers can take the time
to learn the idiosyncrasies of a single language but candaess to many different neural
simulation environments. As general simulators are pldrama developed, including one

of the standards is important for improving the chances op#idn in a saturated field.
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Chapter 4

Efficient Spike Exchange in Distributed

Neural Simulation

Efficiently passing spiking messages in a neural model ismgyortant aspect of high-
performance simulation. As the scale of networks has ise@ao has the size of the
computing systems required to simulate them. In additiba,ibformation exchange of
these resources has become more of an impediment to perfoemia this chapter we ex-
plore spike message passing using different mechanismglpobby the Message Passing
Interface (MPI). A specific implementation, MVAPICH, desag for high-performance
clusters with Infiniband hardware is employed. The focusnspooviding information
about these mechanisms for users of commodity high-pegnoasimulators. In addition,

a novel hybrid-method for spike exchange implemented andtbearked.
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4.1 Introduction

The highly distributed nature of the animal nervous systeesgnts a unique challenge
in theoretical and computational modeling of neurobiologthether these models are in-
tended to provide a better understanding of biological fiencor to build more intelligent
agents, the comparatively limited parallelization iniméri@ all modern computing archi-
tectures must be overcome to achieve models that accurafaigsent the highly parallel
nature of biology. The current computing and software pgrad have prevented truly
scalable neural models that can faithfully simulate biglogreasonable amounts of time.
In addition, a compromise between biological realism antbpmance must be made. This
is a concession that is often unacceptable to the overdtnpeaince of the task.

There are two major steps in simulating the nervous systeereimentally solving the
governing equations and communicating the results to qi#wes of the system. We previ-
ously presented ways of improving the performance of theé&wrby parallelizing the com-
putations on clusters of General Purpose Graphical Primgpgsits (GPGPU) (Minkovich
et al., 2012). The purpose of this work is to demonstrate ki spike communication
can be optimized on generic high-performance computingitactures.

The effort to efficiently simulate spiking neural networkasta long history that spans
hardware implementations (VLSI and FPGA) and the more @oighly distributed com-
pute cluster implementations. Although hardware optigasrecreasing in popularity with
projects like SPINNAKER (Furber et al., 2012) and SyNAPSE(MIa et al., 2011; Srini-
vasa and Cruz-Albrecht, 2012), they still cannot competé e practicality and flexi-
bility of generalized simulators. Even the aforementiohaddware options are generally
supported by high-performance distributed simulationremments.

Recently, Hines et al. (2011) explored several differeiitespxchange methods on an
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IBM Blue Gene/P (BP/P) cluster and concluded that poinpaot communication using
the built-in standard Message Passing Interface (MPI) lslooking MPLIsend was the
worst performing method. Of the top performing methods at thiork, the MPI collective
routine, MPLAllgather, was among the best; often with simulation timasparable to the
BP/P specific direct memory access routines.

Hardware such as the BG/P provide unprecedented perfompamnevatt but come with
a price point that can be out of reach to most computationalaseientists. Because of
this, commodity clusters using Commercial Off-The-Sh&O{TS) components are more
prevalent in research labs. With the availability of GPWbig, architecture of COTS clusters
has changed considerably. Unlike the BG/P architecture wesre can be over 100,000
processors linked together, GPU based COTS clusters haste Inngher processing capa-
bilities on a single node that share a common link to the réshe cluster. The dense
parallelization available on a single node allows for a mlacger number of computations
but results in a communication bottleneck as more inforomatust be shared between
nodes.

Morrison et al. (2005) presented a generic architecturdifstributed neural compu-
tation. In that, they contend that the amount of time spertammunication is small
compared to the amount of time required to update the neufidris appears to be a rea-
sonable statement so long as the number of compute nodeslis Bilowever, as both the
number of compute nodes and the number of neurons simulateebises the amount of

time spent in communication becomes significant.
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4.2 Methods

When distributing the network simulation, different ports of the model are simulated by
separate computers in parallel. The neural model is intedrat each iteration, and the
spiking information is sent to all of the neurons connectethbse that fired.

Ideally, when parallelizing the simulation of spiking nalinetworks, the computa-
tional cost of the mathematical integration and synaptiomatations is balanced with cost
of communicating information between nodes (single comsutvithin a cluster). His-
torically, as mentioned above, the communication time wgsificantly lower than the
compute time. With the introduction of higher-performaiacehitectures such as General
Purpose Graphical Processing Units (GPGPU) and spedatearal hardware systems,
this is no longer the case. However, the way spiking inforomais sent has not changed.

Almost all hardware and software simulation environmerss a variant of address
event representation (AER) (Boahen, 2000). The simplestaost efficient form of this is
when a neuron fires an action potential, the neuron’s uniquriiber is sent to all of the
nodes that contain post-synaptic neurons connected tanthéhat fired. In general, all of
the neurons that fire during the current iteration can beectdld and sent as a single packet
to all of the connected nodes.

As the number of neurons that fired increases, the size ofateepghckets correspond-
ingly increase. In this case, the time spent in communinata direct correlation to the
number of neurons that fired. Similarly, as the number of asienpodes increases so does
the number of packets that need to be sent. In some casestfosdftware and hardware

based systems, this can prevent scaling up to desirablel siads.
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4.2.1 Dummy neurons

A.
B. Node 2
Node 1

Figure 4.1: Dummy neurons. A. An example network connection. B. Disilitn of the sample network
among three nodes.

HRLSim uses the concept of dummy neurons to not only redue@nhount of informa-

tion distributed for a spike event but also the complexitypéiating the synaptic weights.

Dummy neurons are essentially copies of pre-synaptic msuttat are located on remote
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compute nodes. These copy neurons receive the spikingnatan from the remote neu-
ron and then relay that to all of the locally connected pgs@agptic neurons. In addition,
the pre-synaptic information is computed at the dummy negirather than on the remote

node. This scheme is illustrated in Figure 4.1.

4.2.2 Rate independent message passing

A. B.
50 APs (AER) 72 APs (Bit Packed)

1205 2005 | ... 11001

2000 Efferents

100 APs (AER)

24 APs (AER)
1000 Efferents

5000 Efferents

® O A
(NS

a%-0
O “

EFGOY G
A i

Figure 4.2: Hybrid message passing. A. The number of neurons that fieededow the threshold. B. When
the number of neurons increases past the threshold theatonalutomatically switches into the bit-packed
mode.

The novelty of the hybrid message scheme lies in its detestigiperformance, ambiguity
to neuron firing rates and scalability greater than tradé@lomessage passing methods.
At its core, the method reduces the firing information dowrsitigle bits in a packet.
Essentially, each output neuron is represented by a singlevhere a '1’ indicates that

neuron fired, 0’ indicates it did not. The key is that this rdyodone when firing rates are
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high enough that it will reduce packet sizes. In additiots tht-packing scheme is only
performed between the nodes that meet the fire rate requiteme

Consider the case shown in Figure 4.2. There are four comqmudes each simulat-
ing a group of neurons. Focusing on node A, suppose that #rer2,000 neurons with
projections to node B, 1,000 neurons with projections toen@gdand 5,000 neurons with
projections to node D. The maximum communication cost agstwith transferring ac-
tion potentials between the populations and the remotesn@aow a function of the
population size. The theoretical cutoff fire rate is alsorection of this as well.

The cutoff rate is the point where it is computationally gherato represent the neu-
rons in a bit-packed notation compared to traditional AERisTransition point is shown
through an example below and in Figure 4.2. Suppose that aie Raat a particular iter-
ation, 50 neurons connected to B fire an action potential,24ans connected to C fire,
and 100 neurons connected to D fire. In this case the AER scisamsed to communicate
between all nodes. If instead, 72 neurons that are connezt®dire and everything else
stayed the same, then the bit-packed scheme is used onlgdretvodes A and B. In this
case, only 63 integers would have to be transferred instiethe G2 with the AER scheme.

A single byte at the beginning of each packet is use to fatdithe dynamic switching
between message packing schemes. For the AER scheme tHer ligde indicates the
total number of firings contained in the current message.th®bit-packed scheme this

will be a negative value signaling the receiving node to pssahe packet as such.
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Figure 4.3: Example message passing.

Consider the action selection model of Thibeault and Sasa(2012), as a motivational
example of a physiologically realistic model where the 4iatlependent message passing
scheme would have a significant performance impact. Thearktmodels three micro-
channels of the basal ganglia using 576 neurons. For thim@eait is assumed that the
192 neurons in the Globus Pallidus External (GPe) are oygpnjéctions whose spiking
information must be passed to another node. Physiologitladl GPe has a basal level
of activity around 30 Hz which is a level where other messagesimg schemes show
performance degradation.

It takes 18 integers to encode all 576 neurons, which is atpntto encoding 3.125%
of the total outputs with AER. Figure 4.3 illustrates the amioof simulation time spent for

the different rates of spiking activity over a 5 second sitioh. This was only the basal
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level of activity and no inputs were given. The results shioat 81% of the simulation time

is spent in the region were more than 18 neurons fire.

4.2.3 Initial characterization

Four possible communication schemes were initially exgdassing a custom C++ code.
Different message sizes, from 8 bytes to 1000 kilobytesew&changed 1000 times. The
total time to send the messages was measured using the LieaixXTine Timers. The

tests were run fod, 8, 16, 32, and64 physical machines with each machine contairiing
processors that are treated as separate nodes by MPI. 8anslaere run multiple times

and the lowest time for each message size was recorded. fddedure was chosen to
eliminate the periodic anomalies, such as scheduler sgnation, package updates or

network file system activity.

4.2.4 Benchmark experiments

Here we explore two different aspects of spike exchange MiBh on general computing
architectures. The first, explained further below, is thpetgf communication mechanism.
The performance between peer-to-peer and collective camuaion using the included
MPI functionality is analyzed to determine if one shows acleenefit. This was completed
for both Infiniband communication fabric and standard Eibkéer

The second aspect explored was both the benefit of bit-pgasnwvell as when in a
simulation to switch from AER. The pivot point is a multipliesed to determine when to
switch to bit-packing. The number of neurons connected &n@ote node that fire during

atime stepF, is compared to the total number of connections to that nddelivided by
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32, the number of bits in an integer, times the pivot point,
N
F<P—. (4.1)

Basically a pivot point ofl would correspond to the point in the simulation when the
number of cells that fire is equal to the horizontal line ofufgy4.3. A pivot point of0
would mean that at every exchange the packets would be ethaoide the bit-packing
scheme. Currently only the Non-Blocking and Alltoall megisans have the option of
bit-packing. Since the initial performance for the nondiimg method was higher than
Alltoall, it was chosen for the bit-packing experiments.ridg the experiments pivot points
of 0, 1, 2, 3, 10, 20 and32 are used.

For each of these, two different types of experiments wertopred: strong scaling
and weak scaling. The strong scaling experiments explaxeanks of the same size dis-
tributed over a larger number of compute nodes. The expetsyae outlines in Table 4.1.
In the weak scaling experiments the size of the network asee in direct correlation with
the number of nodes, this is outlined in Table 4.2. Only comication time is measured

in the benchmarks and each trial was run three times, witlothest trial time recorded.
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Table 4.1: Strong scaling experiments.

Nodes Cells Connections

4 2000000 1000
8 2000000 1000
16 2000000 1000
32 2000000 1000
48 2000000 1000

4 250000 10000
8 250000 10000
16 250000 10000
32 250000 10000
48 250000 10000

Table 4.2: Weak scaling experiments.

Nodes Cells Connections

4 2000000 1000
8 4000000 1000
16 8000000 1000
32 16000000 1000
48 24000000 1000

4 250000 10000
8 500000 10000
16 1000000 10000
32 2000000 10000
48 3000000 10000

425 Hardware

The Infiniband fabric is a hardware level communicationeysspecifically designed for
high-performance applications. It offers low-latency dngh-bandwidth over short dis-
tances. In contrast, Ethernet hardware is a ubiquitousit#ogy found on most modern

computing architectures. It is primarily used for locat@rconnections and includes the
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physical and data link layers of the Open System Intercaroremodel. Although in high-
performance systems, hardware communication fabricgniikeiband are more prevalent,
evaluating the lower bandwidth and lower latency mechasisimportant for both remote
applications (i.e. robotics), as well as inexpensive HRGtelrs.

The benchmarks presented here were completed on a clus® admpute nodes,
each with two Intel Xeon E5520 2.27GHz CPUs and two NVIDIA [&e€1060 cards,

with Infiniband and Gigabit Ethernet communication baclend

4.2.6 Testsuite

w100 MsS 1.0

Figure 4.4: Example activity of 200 neurons from& Hz Poisson network. A. Fire rate of the network
calculated using a Gaussian window. B. Neuron spike fregykistogram. C. Raster plot of spiking activity
for 1 second. D. Coefficient of variation for the 200 neuroispldyed in C.



98

A software suite was developed to facilitate the benchmarhke suite consisted of network
generation, neuron spike generation, and spike exchamgéemin C++, along with job
submission, results analysis and plotting, written in BithT' he network is split randomly
with each node simulating the same number of neurons. Theeotions are randomly
selected from a uniform distribution. The neural activiygenerated by a Poisson random
point process with the center at the target frequency. Farget frequencies were used,
10 Hz, 30 Hz, 50 Hz and80 Hz. The spike exchange was then controlled by one of three
mechanisms, described below. Simulations are run f&cond simulation time. The Non-
blocking and Alltoall code was written by the author and theecking and bit-packing code

was co-written by the author and Kirill Minkovich while at HR.aboratories LLC.

4.2.7 MPI communication mechanisms

The simulations were performed using MVAPICH 1.7. MVAPIGHbuilt on the MPICH2
libraries by The Network-Based Computing Laboratory at TGieo State University. It
is developed specifically for Infiniband architectures wohtimizations that exploit the
Infiniband hardware. There are a number of options for mésgg@assing provided by the

standard. Four of those were explored in this project; taeselescribed in detail below.

Point-to-point communication

The blocking P2P communication is accomplished with séparalls toMPI_Isendand
MPI_Recv TheMPI_Isendcommand is a non-blocking function that takes in, as argisyen
a buffer with the data to send, how much data to send and wioidé im the cluster to send
it to. The receiving node will first call the functidviP1_Probeto determine how much data
the sending node has. It will then ugk’1_Recvto copy the data to a local buffaviPI_Recv

will block until the sending node has completed its corresig call toMP1_1Send
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Similar to the blocking communication, the non-blockingpeme uses calls Pl _-
Isendbut it uses the non-blocking call tdPI_Irecv. This method allows the underlying
communication to be handled by the MPI threads.

Both point-to-point communication schemes requires a nodall MPI_Isendfor each
node it sends data to, as welld&I_ProbeandMPI_Recvfor each node it is receiving data
from. As a consequence of this, even if a node does not havedatayto send, a dummy
message must be sent to keep the receiving nodes from loakithgvaiting for data that

will never arrive.

Collective communication

The MPI standard provides broadcast functions that allevetkchange of data to multi-
ple nodes using a single optimized routine. The motivatiehitd these functions is to
reduce code complexity while allowing developers of the Middleware to optimize the

communication at the device level. To use the commands,dheection information as

well as the send and receive buffers are setup the same aw/éhneyfor the peer to peer
communication above. A single call to the Alltoall functioompletes the exchange. Two
methods employing these functions in neural simulatiorevdeveloped and tested.

The collective operations use either a fixed buffer sizes iththe case witthMPI_All-
toall, or variable size buffers, used withP1_Alltoallv. To the user, the execution is similar
to the P2P methods described above except there is no ddRPtd°robeg instead a single
byte header is used at the beginning of each message totmdioa much information
was sent. Each sending node has a local buffer that is thesaenas the receiving node’s.
If the amount of data the sending node has exceeds the bifiégrasresizing of the buffer
is completed. The sending node will then send the maximunuataf data the receiving

node can hold. However, the header will indicate the totadamh of data the sender actual
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needs to transmit. The receiving node then performs a rasid@ peer to peer ISend/Recv
is completed to transmit the remaining information. Gelhgrthere are very few resizes
and the initial buffer size can be made sufficiently largeugytoto reduce the likelihood of
needing them.

Collective communication calls block processing so no otieenputations can be per-
formed while spikes are exchanged. In order to allow for camication and the spike
computations to occur in a parallel, the spike exchangesdthective communication is
threaded. There is a cost associated with sending and imegsignals from the communi-

cation thread but ideally that is minimal compared to theghién

4.3 Results

4.3.1 Initial characterization

In a neural simulation it is unlikely a single node would passessage of MB. Even a
200 kB message under the AER scheme would meamth&00 neurons on that node had
fired. Figure 4.5 illustrates the results of the initial MRperiments. For most cases the
point-to-point mechanism are more efficient than the ctille@perations. The exceptions
are for Alltoall for 64 and 128 nodes on Infiniband. This is particularly obvious fi@8
nodes; which is not an unexpected result. The Network-B&msdputing Laboratory at
The Ohio State University has put considerable effort inte funing the Alltoall algorithm
in particular (Sur et al., 2005). The results of that effoerevlower latencies compared to
other methods.

The full characterization results are present in Figure it& most interesting of these,

are the noticeable step jumps in communication time. Fdiee&thernet experiments and



101

almost all Infiniband experiments there is discontinuitythe timing curves. Why this
is present is unclear. Preliminary investigations intoMéAPICH source code revealed
switches in methodology as message sizes changed but wiethet that is the cause is

unknown at this time.
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Figure 4.5: Communication characterization (small)
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4.3.2 Communication method
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Figure 4.7: Results for communication method experiments on Infinib&oing the x-axis are the different

communication methods for the different number of computgas. The letters correspond to B-blocking,
N-Non-blocking, A-Alltoallv. The subplots are, A. Strongading for 1,000 efferent synapses. B. Strong
scaling for10, 000 efferent synapses. C. Weak scaling 19000 efferent synapses. D. Weak scaling for
10, 000 efferent synapses
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The strong scaling results shown in Figures 4.7A and B reaeahteresting trend in the
cost of increasing the distribution of a network. In the@y,a network is distributed over
more compute nodes, the performance will increase. This isfiect of reducing the
amount of computational work required by each node. Howeillustrated here, the
communication cost increases with a corresponding inereesompute nodes. This is an
important consideration for balancing the number of nesimer node with the number of
nodes. Unless the network activity and the number of compades is low, the simulations
would be unable to run in real-time. The real-time mark israpartant measurement for
neural simulation. Models that can be run in real-time oteiagre required for embodied
modeling; something that is important to the work preseirigtis paper.

Another interesting trend can be seen in the blocking comeation results of Figure
4.7A. At first these were assumed to be anomalies. Howewer, rainningl2 extra simu-
lations for8, 16 and32 nodes at both0 and80 Hz firing rates the results stayed consistent.
It is still unclear why there is a drop in simulation timetdtnodes compared t& 16 and
32.

The benefit of dummy neurons is illustrated in Figure 4.7Bhaligh there is a clear
penalty to encoding more spike messages it is not dependéirirg as in Figure 4.7A.
This likely due to the smaller number of neurons.

The weak scaling experiments shown in Figures 4.7C and D $toowan increase in
both neurons and nodes can affect the overall performansappointingly, the correlation
between the two is not linear; instead following a more exgmtial trend instead.

Overall on infiniband hardware the choice of communicatiethnad seems to favor
the non-blocking method. This is slightly surprising in ttantext of the results of Section
4.3.1, where the blocking and non-blocking methods appetarée identical. The non-

uniform nature of the Poisson network is the likely explésrafor the difference. The
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non-blocking code allows message processing to happenf autier, favoring those that

are sent earlier. There is obviously less time wasted wpitinmessages to arrive in order.
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Figure 4.8: Results for communication method experiments on Ethereng the x-axis are the different
communication methods for the different number of computgas. The letters correspond to B-blocking,
N-Non-blocking, A-Alltoallv. The subplots are, A. Strongading for 1,000 efferent synapses. B. Strong
scaling for10, 000 efferent synapses. C. Weak scaling 190000 efferent synapses. D. Weak scaling for
10, 000 efferent synapses.
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The strong scaling experiments on Ethernet hardware inr&igl8A show a similar in-
crease to that seen on Infiniband. However, the Alltoall métbhows an advantage for
higher rates of activity and lower number of nodes. Why tlapgens is again unclear,
as is the step increase in communication time@orand 96 nodes. When the number
of efferent connections is increased 1t®, 000, a surprising plateau in the blocking and
non-blocking schemes emerges betwéémnd96 nodes. The Alltoall scheme however,
continues to trend upwards.

For the weak scaling experiments, Figures 4.8A and B, thwalllscheme actually
performs considerably worse than the other two methodsh W& Non-blocking scheme

generally demonstrating better timings throughout thekvgealing experiments.



4.3.3 Bit-packing
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Figure 4.9: Pivot results: Infiniband. The number of nodes are listedi@lihe x-axis. The markers indi-
cate the pivot point that resulted in the best performandee dize of the markers are proportional to the
performance benefit compared not bit-packing (Piv@2¥ This is in reference to the marker size in the
legend. The subplots are A. Strong scalingfap00 efferent synapses. B. Strong scaling T6r 000 efferent
synapses. C. Weak scaling foro00 efferent synapses. D. Weak scaling for 000 efferent synapses.



109

The bit-packing experiments on Infiniband hardware showleardrend towards an opti-
mal pivot point, Figure 4.9. On these plots the size of thekexaris directly proportional
to the increase in performance when compared to using the ZdBBme exclusively. Al-
though there is a benefit to bit-packing, that advantagergisingly small. This may be

due to the the low-latency, high-bandwidth charactesspicthe Infiniband fabric.
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Figure 4.10: Pivot results: Ethernet. The number of nodes are listedgalbe x-axis. The markers indi-
cate the pivot point that resulted in the best performandee dize of the markers are proportional to the
performance benefit compared not bit-packing (Piva2¥ This is in reference to the marker size in the
legend. The subplots are A. Strong scalingfap00 efferent synapses. B. Strong scaling f6r 000 efferent
synapses. C. Weak scaling foro00 efferent synapses. D. Weak scaling f0r 000 efferent synapses.

On the lower performance Ethernet hardware bit-packingrsffmportant performance

gains. The strong scaling results displayed in Figure 4,1w that as both the rate
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and number of nodes increases so does the benefit of emplaydpgcking. This trend is
slightly less obvious for the case tf, 000 efferents, Figure 4.10B but returns for the weak

scaling experiments, Figures 4.10C and D.
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4.3.4 Bit-packing vs. AER
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Figure 4.11: Bit-packing vs. AER: IB. Along the x-axis are the differeatd different pivot points for the
different number of compute nodes. The letters corresporibit-packing, N-No packing. The subplots
are, A. Strong scaling for, 000 efferent synapses. B. Strong scaling for 000 efferent synapses. C. Weak
scaling forl, 000 efferent synapses. D. Weak scaling for 000 efferent synapses.



113

A. B
I 10 Hz
601 8 |mm 30Hz
7k 3 50 Hz
50} . 80 Hz
6,
a0t
s °
()] - L
g 30 4
}—
3,
20
2,
10} A

C. D.
7001 2501
600}

200}
500}

@ 400} 150r

£

= 300 100}
200}

50F
100}
0 0
PN PN PN PN PN PN PN PN PN PN

8 16 32 64 96 8 16 32 64 96

Figure 4.12: Bit-packing vs. AER: Ethernet. Along the x-axis are theetiént two different pivot points for
the different number of compute nodes. The letters cormdpmP-bit-packing, N-No packing. The subplots
are, A. Strong scaling for, 000 efferent synapses. B. Strong scaling f6r 000 efferent synapses. C. Weak
scaling forl, 000 efferent synapses. D. Weak scaling for 000 efferent synapses.

In Figures 4.11 and 4.12 we compare the experiments fordukipg during every spike
exchange with those always using the AER scheme. In the Ibafii case, Figure 4.11,

using a scheme that packs every spike transfer is less effitian always using an AER

scheme. However, the opposite result is found for the Ettease.
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4.4 Discussion

Past research in spike exchange methods has been notispaldg. Many groups present a
single communication mechanism with minimal justificationits selection. The majority
of general simulation environments use the point-to-pblotking mechanisms in MPI
(Wilson et al., 2001; Morrison et al., 2005; Pecevski et2009). Morrison et al. (2005)
combined that with the Complete Pairwise EXchange (CPE¥Qradhm. At the time this
was selected based on the assumption that it was more robusever it was later stated
that the collectiveMPI_allgather, was more efficient on certain hardware (Eppler et al.,
2007); benchmarks were not presented to support that clRGEIM also uses blocking
communication with the CPEX algorithm (Pecevski et al.,200

The NEURON simulation environment is one of the few that ineedollectiveMPI_-
Allgather as opposed to the point-to-point methods (Migliore et &Q6). This decision
is based on the simplicity of the implementation and thatgbédormance of NEURON
is dominated by the more complex models that are its nicheveder, the use of NEU-
RON on the BG/P Supercomputer was the motivating factor farkvpresented in Hines
et al. (2011). This is the most current analysis of differgrike-exchange methods but is
unfortunately specific to the BG/P hardware. The work presgehere is the first analy-
sis aimed at the COTS hardware more readily available todhgatational neuroscience

community.

4.4.1 Choosing a communication mechanism

Selecting a spike exchange method is still a difficult probl&he type of hardware as well
as the configuration can create situations where one methadycoutperforms. The re-

sults of this work suggest that a safe pick for COTS architestwould be the non-blocking
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point-to-point communication methods. This is contraatigtto the results found for In-
finiband backend in Eppler et al. (2007), and the BG/P hardwaHines et al. (2011).
This analysis will need to be repeated as new hardware asawaetore optimized commu-
nication methods are released. Ideally, we will packageralahse this work to provide
an automated mechanism for selecting the highest perfgrodmmunication method for

a given hardware setup.

Why not Alltoall?

The results of the initial characterization of Section 4ggest that for truly large-scale
simulations, using the basic Alltoall mechanism would offaeuch higher performance. In
the MVAPICHZ2 implementation this has been optimized for wgé Infiniband hardware
(Sur et al., 2005). The motivation behind the function isedduce code complexity while
allowing developers of the MPI middleware to optimize thedtions at the device level.

The Alltoall collective requires that all nodes send theotxame amount of informa-
tion to each node in the simulation. So message packets raudstdal size and overflow
of those must be handled by a separate mechanism. For nstwidtk high-activity and
large size, at least large enough to justi®g nodes, this may prove beneficial. An Alltoall
implementation was completed during development cyclhisfdroject. When included in
the HRLSIim code the results for all test models was so muckewvitran the other methods
that the code base was later abandoned. These results stiggekere may in fact be an
important place for the method in the simulator. In the fatwe plan to update the original
code base and rerun the benchmarks completed here to segeifghin fact a niche for the
Alltoall method.

Another possible benefit of this method that was not tesseithe reduced overhead in

creating the spiking messages. In the methods describeck aaxch node keeps a local
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buffer that is filled with spiking information. These are tignous in memory and require
some form of locking to prevent multiple compute threadgingito the same location.
With the fixed message size scheme, each thread can be abkaigaetion of the buffer. It
can then be guaranteed that no other thread will be writingabbuffer. This would allow

the removal of thread-blocking which may provide anothenpof optimization.

4.4.2 Hybrid message passing

With software simulation environments there is generalipmputational cost associated
with packing the spike message. In most cases it is insigmifior can be reduced by
using GPGPU’s which are designed for just such parallelstaske hybrid spike passing
scheme has already proven effective in large-scale clbhasad neural simulations by HRL
(Minkovich et al., 2012).

In addition to large-scale simulations, this techniqueaan improve the performance
of communication between neuromorphic architecturess&have traditionally used AER
schemes. Take for example SpiNNaker (Khan et al., 2008);iwivas designed to use an
AER communication to simulate a neural network with a firiagerof 10Hz. The final
hardware was theoretically able to simulate networks fidpgo77.5 Hz (Navaridas et al.,
2009). Once the network is firing above this rate either spikeuld have to be dropped
or the whole system slowed down. The problem is that in bickgystem, even though
the firing rate is on average) Hz, there are times and regions, when the firing rate goes
beyondl100 Hz. Using the hybrid encoding scheme presented in this wawol)d allow for

scaling to any firing rate.
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4.4.3 Model complexity

The conclusions of this work are based on the idea that theonend synaptic computa-
tions are completed relatively quickly. Additionally, & assumed that a single node can
process a large number of neurons. This is the case for mipdtrairon implementations
but as the complexity of the neuron model increases the tpeatan numerical integra-
tion correspondingly increases. The cost associated wike £xchange is then less of a

performance bottleneck and the benefit of optimization bexonegligible.
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Chapter 5

Embedding Neural Models in Virtual

Environments

5.1 Introduction

The concept of neurorobotics is dependent on the abilitynimeérse an embodied agent
into an real or virtual world. Although it has been argued tigang a physical environment
is vital to creating intelligent systems (Krichmar, 2008jjs is often impractical. Further-
more, this can create unnecessary complications duringetielopment of novel neural
theories. Employing a Virtual Environment (VE) howevergents its own unique issues.
One that is often a hindrance to rapid model developmentrf®meance. The emphasis
on creating detailed but slowly executing visual environteeuns counter to the high-
performance neural models of software simulators and nemently of high-performance
neuromorphic processors.

With traditional game and VE software development the fasws graphical rendering

of the environment. Developing new worlds or elements meguireating a visual repre-
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sentation of it; introducing both development and perfarogabottlenecks. This work is
aimed at reducing these bottlenecks. By removing the o#istni of creating and rendering
the visual representation, researchers can focus on hoanthnment will influence the
entity and its sensing systems. This can reduce developimentvhile increasing perfor-
mance. In addition, a system that can interact with bothvaarel and software models,
without concerns for visualization, are extremely usefulthe testing and development of

neuromorphic models. The motivations for this developnasat

e A system that can interact at fast and slow speeds withowsras for visualization
are extremely useful for testing and development of neurpirio models.

e The SyNAPSE hardware runs at different speeds, both fasteslawer than real-
time.

e Designers can focus on the important interactions ratfaer the minutia of creating
compelling visible environments.

e Results can be plotted roughly during testing and latereeeaiin more detail for
publishing and presentation.

The development of a virtual environment is similar to dregat level in a video game.
Because of this similarity we decided to search for a desajtem from video game de-
velopment. There are a remarkably large number of game enlgisign patterns available
and there is no apparent consensus on where each one is agerophis made selecting
a pattern to apply to this project a surprisingly difficulsika Here we present an simple
virtual environment, a classic Pong style game. Its impletaigon using object-oriented
design is presented first. This works well for basic tasksftwutarger environments the
complexity of the element interactions makes it undes@gaflhe lack of scalability and
code reuse was the motivation for the entity-system desagieqm that is then presented.
Finally, we demonstrate how the Pong environment would peesented using the entity-

system design paradigm.



120
5.2 Playing games

5.2.1 Object-oriented design

Object-oriented design is based around the concept ofeabisiyy aspects of a software sys-
tem into logical and reusable components. These compgrantdjects, can be dynam-
ically created, or instantiated, in the software systentdoesdata, perform computations
and interact with other system components. As an examplsid@na code that would
represent a wheel. It would contain all of the data (i.e.usgdwidth, or weight) and com-
putations (i.e. torque, friction or distance traveled} ieaequired to represent that wheel.
To create a car object we would now instantiate four sepanatances of a wheel but,
in the program all would use the same code that describestieelvobject. This allows
larger software systems to be constructed of smaller abjbet can be tested separately
and reused throughout the project.

An additional layer of complexity that this introduces i®tboncept of inheritance.
This allows class objects to extend an existing object byiining its data and function
interface. This is a complex concept and is hot completelead here, but as an example
consider a class that describes a shape. Imagine that ttegrsysing this class wants to
get the shape’s area; a calculation that is obviously degp@rah the type.

One way to handle this would be to instantiate different cisjecircles squares and
triangles. The problem, is that the main system has to keak of all of these objects
and store them separately. If the designers later want t@dwkagon all of these storage
containers must be redesigned, coded and tested.

Inheritance provides a way for the main system to simplyestinjects that are of type
shape. The shape base class provides a function for cahguthe area of a shape, we will

call it getArea The different types of shape classes will then inherit fribva base class.
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That inheritance creates a contract with the rest of theesygromising that this class will
provide an implementation of tlgetAreamethod specific to that shape. The main program
can then create one storage container for shape objectdféerdrt shape classes can be
be instantiated and passed to that container. When the al@dations are required the
main project simply call the shape objeajstAreamethod and the appropriate calculation
is performed by the class.

When employed appropriately this pattern works well for gnapplications. To il-
lustrate how to apply this to a virtual world we present anneple of interfacing neural
models to a simple Pong game. In this, a puck is given basisiphiyvhere it will move
linearly through the game board and bounce off of the leghtrand top walls. The player
controls a paddle at the bottom of the board and must useaheti¢ct the puck and keep
it on the board. If the puck gets past the paddle the playesladife. Keep in mind that
we are only creating the game elements, controller andfateito the neural model. The
visualization is done after the simulations have been cetaglby a separate program that

simply renders the script output from this environment.



braingame::Pong
# players_
# initialized_
# iteration_
# stimMap_
std::vector< playerStruct * > # centers_
# boardWidth_
== = == cloments < 1 # boardHeight
I elements # gaussA -
players._ I # gaussC_
I #rng_
I # numPlayers_
I # batWidth_
I # batHeight
| #bat 1.3
I #bat 2 3_
| #ball_
V I ERa braingame::StimMap
# ballHeight_
braingame::playerStruct braingame::BGEntity I # ballYResetPoint_ - stimMap_
# outFile. - numChannels,
+ bat - width_ | # scoreFile_ - width_
+ batTarget - height_ - height
ight_
+ misses ~ centerX_ I + Pong() - gaussA_
+ saves ~ centerY__ + Pong() - gaussC_
+ nextsStim - xSpeed_ I + Pong() stimMap_
- ySpeed_ + Pong() e + StimMap()
I + ~Pong() + ~StimMap()
I + BGEntity() + initialize() + getStim()
+ BGEntity() I + simulate() + getStims()
I + BGEntity() + getStimulus() + getNumChannels()
+ ~BGEntity() I + setBatTarget() + getWidth()
I +move() + setBallRect() + getHeight()
+move() I + setBatRect() + getGaussA()
I bat + moveX() ball_ + setBoardRect() + getGaussC()
— — —> + moveY() — — + setGaussA() - fillMap()
+ reverseXSpeed() + setGaussC()
+ reverseYSpeed() + getBallWidth()
+ setSpeed() + getBallHeight()
+ setXSpeed() + getBatWidth()
+ setYSpeed() + getBatHeight()
+ getLeft() + getBoardWidth()
+ getRight() + getBoardHeight()
+ getTop() + getGaussA()
+ getBottom() + getGaussC()
+ getWidth() # getClosestChannel()
+ getHeight() # checkBallBatCollisions()
+ getCenterX() # checkBallPastBat()
+ getCenterY() # checkBallWallCollision()
+ getXSpeed() # moveBat()
+ getYSpeed() # resetBall()
# reflectOffBat()
# initializeStateFile()
# writeGameState()
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Figure 5.1: Pong class layout.

The objects for this system are relatively simple and thesothagram outlining each of
the properties and functions is presented in Figure 5.1.BGEntity class is used to rep-
resent the different elements that make up the game. IndBis that is the player’s paddle
and the puck. The StimMap class is used to encode the game spameural stimulus

based on the position of the puck. Finally, the controllertfee game is implemented in
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the Pong class.

This is a relatively simple environment with a small numbg&imteracting elements.
However the Pong class is responsible for much of the hedtiggli such as collision
detection, input and output processing, and game physiosaBmall code base this is
reasonable, but as the complexity of the task increasesdlé@sgn pattern will quickly

become unmanageable. Details of the implementation akedein Chapter 8.

5.2.2 Braingames

To support a reduction in VE development time, we proposengrieémentation of the
Entity System Paradigm (ESP) (West, 2007). Unlike hieraathdesign patterns, most
notably the object-orient design pattern presented ald68€, provides better code-reuse
and extensibility that is required in research and devekgmrraditionally, ESP has been
used exclusively in video game development, however, ihiglaal solution for a generic

VE engine. The features of this design are:

¢ A headless framework for creating high-performance viraravironments capable
of interfacing with neural simulations and neuromorphicheare.

e Written in C++ with comprehensive unit test suite.

e Generic reusable components for simple environment ggoera
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5.2.3 Entity System Design

World

-entityManager_: EntityManager

-dt_: int

-componentTypeManager_: ComponenetTypeManager
-systemTypeManager_: SystemTypeManager
-systems_: vector<SystemPtr>

+World()

+getEntityManager(): EntityPtr
+getDt(): int
+createEntity(): EntityPtr
+deleteEntity(eId:EntityId): void 1
+refreshEntity(eId:EntityId): void
+getEntity(eId:EntityId): EntityPtr
+loopStart(): void 1
+getComponentTypeManager(): ComponentTypeManagerPtr
+registerSystem(system:SystemPtr): void

1

1
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BaseSystem

*
#world_: World

-typeBits_: long
-systemBits_: long
-entities_: EntityMap
-typeInfo_: type_info
-typeldStr_: std::string

+BaseSystem(): void

+~BaseSystem()

+addComponentType(cType:ComponentType): void

+process(): void

+change(entity:EntityPtr): void
+initialize(componentTypeManager:ComponentTypeManagerPtr): void
+processEntities(): void

+getType(): std::string

-add(entity:EntityPtr): void

-remove(entity:EntityPtr): void

EntityManager

-entities_: EntityMap

-maxEntityId_: EntityID

-availableEntities_: vector<EntityPtr>
-components_: ComponentMap
-componentTypeManager_: ComponentTypeManagerPtr

+EntityManager(componentTypeManager:ComponentTypeManagerPtr)
+~EntityManager()

+createEntity(): EntityPtr

+createEntity(name:std::string): EntityPtr
+setEntityName(eID:EntityId,name:std::string): void
+getEntityName(eID:EntityId): std::string
+killEntity(eID:EntityId): void

+addComponent (eID:EntityId, component:ComponentPtr): void
+removeComponent (eID:Entity, compType:ComponentType): void
+getComponent (eID:EntityID,CType:ComponentType): ComponentPtr
+getComponents(): ?

-removeComponentsofEntity(eId:EntityId): void

0 1

1

ComponentTypeManager

-componentTypes_: ComponentTypeMap
-nextId_: int
+getTypeFor(typeName:std::string): ComponentType

1
0..*
ComponentType
-bit_: long = 0

-id_: int
-nextId_: static int
-nextBit_: static long
+ComponentType ()
+~ComponentType()
+getBit(): long
+getId(): int

Entity

-id_: EntityId

-typeBits_: long

-systemBits_: long

-world_: WorldPtr

-entityManager_: EntityManagerPtr
+Entity(world:WorldPtr,id:EntityId)
+~Entity()

+getId(): EntityId

4« [tsetId(newId:EntityId): void
getTypeBits(): long

+setTypeBits(typeBits:long): void
+addTypeBit(bit:long): void
+removeTypeBit(bit:long): void
+getSystembits(): long

+addSystemBit(bit:long): void
+removeSystemBit(bit:long): void
+setSystemBits(systemBits:long): void
+addComponent (component:ComponentPtr): void
+removeComponent (component:ComponentPtr): void
+getComponent (cType:ComponentType): Component *

-initialize(): void
1

*

ComponentMapper

-type_: ComponentTypePtr

-eManager_: EntityManager

+ComponentMapper<T>(cType: ComponentType,
world:World)

+~ComponentMapper<T>()

+get(eID:EntityId): <T>

0..*

Component

-typeInfo_: type_info
-typeldStr_: std::string

+getType(): std::string

+removeComponent (cType:ComponentType): void

SystemTypeManager

SystemType

1 [+systemTypes_: SytemTypeMap

-bit_: long = 0

+SystemTypeManager ()
+~SystemTypeManager ()

+getTypeFor(typeName:std::string): SystemType

-nextBit_: static long

+SystemType()
+~SystemType()

+getBit(): long
-initialize(): void

Figure 5.2: BrainGames Framework.
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Component based design offers a way to decompose the diffierectional domains of
the VE entities into their constituent components. In additit provides a means for lay-
ered abstraction without the negative impacts on perfoomamd extensibility that many
hierarchical object-oriented designs impose.

Entities represent groups of components; here every VEaleis an entity. The com-
ponents themselves do not contain any logic. Instead, aditsten approach is taken and
the components are nothing more than collections of data exposed getter and setter
functions. The control logic is implemented by the systeBystems encapsulate the up-
date functions for each of the components. The systems apsmsible for modifying
the data contained within the components. The differertesys contain references to the
components they are interested in. In fact, the systemg hewe a need to reference the
entity object itself. This allows the addition and subti@ctof systems in a clean and un-
obtrusive way. The removal of a component from an entity dossresult in a broken
hierarchy. Instead the systems previously using the coemsrof that entity simply re-
move the references to it. The addition or modification ofesys works exactly the same

way; essentially creating a run-time plug-in interface.
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World

Create System

Create System

/ \
{Wses} \ {Uses}
\

\

Add System Type

1%

Add Component Type

Initialize System

Y

Create Entity

T

Delete Entity

—f

Initialize System

Environment
Refresh Entity

Create Mapper

/)
o

Figure 5.3: Basic virtual environment use cases with the world classraffBames.

Entity

Add Component

Figure 5.4: Basic virtual environment use cases with the Entity objeEBrainGames.

Create Mappers

Add Component Type
System \
Process Entities

Figure 5.5: Basic system use cases.
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The design for a C++ realization of this idea is presentedgure 5.2. Use case dia-

grams for this concept are presented in Figures 5.3, 5.4 &nd’ Ge use cases themselves

are provided in Appendix A. This represents a minimal aegitral design based on the

ideas presented in Bilas (2007) and the framework of ArediGosta (2012). Unlike game

engines, this implementation focuses on the specific ndetle aeurorobotics community.

Mainly, many parallel sensory and motor loops that are thienlaak of most neurally in-

spired designs.

Pong using ESP

Once an ESP framework is in place, creating the componenteéd®ong game becomes

relatively simple. Consider this from the point of view o&tmain code. The world object

is instantiated first along with the system objects, Listnb

world

1|/l Create the world.

= new World () ;

3|// Create the systems.
world .
sl\world .
world .
7|world .
world .

registerSystem (new
registerSystem (new
registerSystem (new
registerSystem(new
registerSystem(new

MovementSystem () );
CollisiontSystem () );
StimOutputSystem () );
InputControlSystem () );
RecordingSystem () );

The Puck and the Paddle are then the only entities added tedité, Listing 5.2.

Listing 5.1: Instantiate the world and the required systems.
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I/l Create the puck.

Entity puck = world. createEntity () ;
puck.addComponentfhew Position () );
puck.addComponentfew Velocity() );
puck.addComponentfpew Collidable () );
puck.addComponentfpew Stimulus () );
I/l Create the paddle.

Entity paddle = world.createEntity ();
paddle.addComponentfiew Position () );
wo|paddle.addComponentfew Velocity () );
paddle.addComponentfiew Controllable () );

N

IN

(<))

e

Listing 5.2: Create the Pong entities and add the components to them.

The environment then loops until an end condition is reléasée implementation for
each of the system objects defines the logic for the world. Siis¢ems loop through the
entity references that contain all of the required comptsien

The motion of each of the entities is handled by the movemesiem. It uses the po-
sition and velocity components to determine the change &itipa. The collision system
is then responsible for all objects in the game that moverat@nd can collide with other
game elements. In this case that is only the puck. The in@tie¢Byis responsible for gath-
ering the input information from the neural model, procegst and updating the control
system for the paddle. This could be further separated gparate input and control but
would require a component to maintain the input informatidhe stim output system is
used to create the neural stimulus based on the positioregfutbk. Finally, the recording
system will collect the current state of the environment sawnk it for rendering off-line.

In the transition to the BrainGame architecture, the codesgmted in Figure 5.1 is
moved into the separate system classes. In the ESP howesecade becomes cleaner
and is logically abstracted, rather than contained in alsimgpnolithic class. In addition,
switching out systems to perform different tasks or additaygrs and entities is not as

simple as adding a new entity.
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5.3 Discussion

5.3.1 Similar Work

CASTLE (SET Corporation, 2012) provides a generic virtualimnment that offers ca-
pabilities similar to those presented here. However, k$anechanisms for running simu-
lations faster than real-time or without rendering the grepto the screen. These restrict
the performance of the neural models and their use in diggthcomputing. The latter
is important not only for parameter searches but for stgtanalysis of deployable sys-
tems. Entities and environments are created in Blendersupiport for other 3D modeling
software planned in the future.

Similarly, Webots (Michel, 2004) offers a comprehensivaual environment along
with a number of different modes, including a headless mattevever, Webots was not
developed specifically for neurorobotics, and adaptatmgeural applications requires
custom software modules. In addition, the software reguir@hysical license for each
instance; making distributed execution unreasonable.

Unlike the environments presented above, this design caonrgiled directly into the
simulation environment or it can be instantiated remotélgditionally, the inherent sup-
port for parallel and distributed hardware further seprdtfrom existing generic virtual

environments.

5.3.2 Benefits of ESP

A difficult problem to address in the design of these typegysfesns is the communication
between components. One option for addressing this would lgése each entity a ref-

erence to those it needs to send messages to. The probleis ¢sdhites a tight coupling



130

between components and changing any of those becomes ektréifficult. Another ap-
proach has been to create a message passing system. Fosiaigens this can become
complex and again the coupling of components can be an iF$weadvantage to ESP is
that the systems take care of all communication betweerctshj@hey can easily access
different classes of components associated with an enfitye system does not need to
know everything about the entity, only that it contains tbenponents it requires to do its
update. Similarly, a component does not need to know anythibout the other compo-
nents in the entity, or anything about the entity itself toattmatter.

The logic for the environment is contained entirely in theteyn objects. If designed
correctly, those systems will essentially be autonomoits.uGhanging one will not affect
the others. In addition, the components essentially domextge. Combined, these provide
a level of code reuse that is important in the rapid develogroEneurorobotics.

Development and Testing also becomes more straightforindE&GP systems. In par-
ticular, multi-developer projects become more tractabke developers can work on in-
dependent system objects. The common components are thagpéct that need to be

enforced.

5.3.3 Real vs. virtual worlds

In Krichmar and Edelman (2005) it is argued that simulatedrenments introduce un-
wanted biases to the model. These are a product of the attifiaiure of the input stimu-
lus. In addition, they contend that simulated environmeatmot compete with the noisy
stimulus of the real world and cannot support many imporamérgent properties.

The chaotic nature of the real world is no doubt difficult tmslate however there
are benefits to constraining initial model development ttuail worlds. The first is the

time intensive nature of dealing with physical robots. Degenent of novel neural models



131

becomes extremely time consuming as repeating experimamnts be completed in real
time. Using a high-performance environment such as the oomgoped here, models can
be rapidly developed and tested. The tests can be automatelearesults can be validated
over multiple simulations in a realistic amount of time. Tdwmplexity of the worlds can
also be increased providing a process for building up antberg the unique properties
of a given model.

Virtual worlds also provide a sense of control to the experits. Different networks
can be immersed in a common environment, allowing for a diigoie comparison be-
tween them. As models are developed and refined, they carb#reiit from the type of
embodying championed by Krichmar and Edelman (2005). Tttaalienvironments then

become a compliment to their real-world counterparts.
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Chapter 6

Analyzing Large-Scale Spiking Models

The additional performance provided by high-performarmeral environments allows for
very large neural simulations. However, this increase in@hsize includes a correspond-
ing increase in data size. In order to not only process theased amount of data in a
reasonable amount of time, but also provide a rich and usssrdiy interface, a new set of
analysis tools is presented here. These were develope@poguhe modeling efforts of

both the projects presented in this paper and the SyNAPJEgbias a whole.

6.1 Introduction

The HRLAnalysis package is an implementation of off-linsualization of spiking and
network data for use with HRLSim. The emphasis is on proogssie information of
large-scale models as efficiently as possible while progdi rich feature set to users.
To balance efficiency with usability, the extraction andlgsia of the simulation data is
performed with C++ and the plotting and further manipulati® handled in Python. The

C++ code is interfaced directly with Python through the Bqeeckage and can be called
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as a normal python library, so from the users perspective keo distinction between the

packages. The analysis capabilities include:

Individual cells

¢ Individual cell spike count averages over the given timerivul.
e Binned counts of the number of neurons within ranges of sirikey.
o Coefficient of variation for cells in the given interval.

Populations

e Extraction of spike times and cell indexes within the giveteival.
e Average spike rates for the population. Currently, rectdenrgand Gaussian window
functions are supported.

Network analysis

¢ Visualization of the network at the population level in thea@viz DOT format.
e Average synaptic weights between populations.
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6.2 Design and use

hrlAnalysis::hrlSpikeAnalysis

- spikeActivity_
- cellActivity_

- paramslin_

+ hrISpikeAnalysis()
+ ~hrlSpikeAnalysis() hrlAnalysis::params
+ buildDataStructures()

+ startTime
+ dumpSpikeActivity() endTime
+
+ dumpCellActivity() startldx
+

+ calcCellRates() <>_ endldx
4

+ calcCellRates() offset
+

+ calcRateBins() sampleFreq
+

+ calcWindowRate() + isDataCompiled

+ calcGaussWindowRate()

+ calcSpikeRaster()
+ calcCOV()
+ calcRatesWithBins()

- clearDataStructures()
- processFile()

- processLine()

- calcMaxRate()

Figure 6.1: Spiking analysis class library.

Figure 6.1 illustrates the main spike analysis class. ThHergpinformation is read in and
processed by the library. The exposed methods are acceg$®dhon and the resulting
information is passed around using STL vectors wrapped #soRylists. The network
analysis library is handled in a similar way. Figure 6.2 imgt$ the methods exposed by the

library.
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hrlAnalysis::hriNetworkAnalysis

- numReal_ hrlAnalysis::populationinfo
- numTot_

- synMax_ + strName

- synTot_ + size

- inputOffset_ + startldx

- numlinputs_ + endldx

- prelndex_ + inhibitory

- plasticlnputs_ + dummy

- plasticOutputs_ + excConnectionCount
- inhibitoryList_ + inhConnectionCount
- populations__

+ hriNetworkAnalysis() o-

+ ~hrINetworkAnalysis()
+ buildNetwork()
+ outputGraph()

+ outputWeights() hrlAnalysis::synapticinfo

+ addPopulation() + connectionCount

+ addDummyPopulation() + avgWeight

+ getWeights()

+ setLogToStd()

+ setLogToFile()

- readNetwork()

- buildPopulationStats()

+ synapses
+ synStartldx
+ synEndldx

- getSynapseCount()
- binaryConnectionSearch()

Figure 6.2: Network analysis class library.

6.2.1 Use within an experiment

The utility of HRLAnNalysis lies in its integration with theRLSim user experiments. When
enabled, a configuration file is output based on the setuprvitie experiment. A call to the
Analyzefunction with the experiment instructs it to output infortiea about a particular

population. For example:

[N

I/l Create the population.

E = build_net.NewPopulation(1400,NeuronKind() . Setlzhikevichgac,d));
/I Tell the simulator to create the analysis code for this pobaption.
E—Analyze(std:: string'(CA1"));

w

Where “CALl” is the name used for that population. When theusation is executed a
python file will be placed in the Data directory. For this simpxample, that Python file

will be:
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#

# This file was automatically generated by the hrlAnalysis f8ware.
#

N

def getCellGroups():

6 cellGroup = []
cellGroup.append{"'name" :"CA1" ,"startldx" :0 ,"endldx"  :1399})
8 cellGroup.append{"name" :"CA2" ,"startldx" :1400 'endldx" :2799})
return cellGroup
10
if __name_ == " _ main_"
12 print getCellGroups()

This file can then be used by the provided analysis code oruin @on analysis code, to
inform the HRLAnNalysis package about the populations cérest. The purpose of using
an external file is to avoid the need to recalculate the lonattithin the network of the
populations of interest whenever a network is modified.

Users are also given the option of grouping together pojmmathat are defined con-
secutively. This will create a single analysis group witll oelexes spanning all of the
given model populations. At this time nonconsecutive papohs are not supported. To

use this feature you would give the same name in the calls &dy&a. For example

I/l Create the populations.
StriatumD1 = buildnet.NewPopulation(

NUM, NeuronKind() . Setinhibitory (). Setlzhikevich(a,lb,d));
StriatumD2 = buildnet.NewPopulation (

NUM, NeuronKind() . Setinhibitory () . Setlzhikevich(a,lb,d));
6|SNr = build_net.NewPopulation (
NUM, NeuronKind() . Setinhibitory (). Setlzhikevich(a,lb,d));
8|STN = build_net.NewPopulation (
NUM, NeuronKind() . Setlzhikevich(a,b,c,d));
10|GPe = buildnet.NewPopulation (
NUM, NeuronKind() . Setinhibitory () . Setlzhikevich(a,b,d));
12|// Tell the simulator to create the analysis code for the artigroup
StriatumD21—>Analyze (std :: string'(Channel" ));
1|StriatumbD2—>Analyze (std :: string{Channel" ));
SNr—>Analyze (std :: string (Channel" ));
16|STN—>Analyze (std :: string(Channel" ));
GPe—>Analyze(std :: string'{Channel" ));

N

IN
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The resulting configuration file would look like:

1|#
# This file was automatically generated by the hrlAnalysiofSvare.
3|#

def getCellGroups():

cellGroup = []

cellGroup.append{("name" :"Channel" ,"startldx" :320 "endldx" :639})
return cellGroup

o

~

if __name_ =="_main_"
u| print getCellGroups|()

6.2.2 HRLAnalysis

Once the simulation has completed and the configuration &éas denerated the analysis

can be completed off-line using the python interface. Nio& the use of the configuration

file and the support scripts provided here is completelyomgati. The user only needs to

tell python where the HRLANalysis libraries are located artre the simulation output

files are. At that point how the analysis is completed and whdbne with it are up to the

user. Provided below is an example of how the provided sctipé the configuration files

and plot the results of the analysis.

Setup

The path and library can be imported using

# Add the library include path
sys.path.append(options.includePath)
# import the analysis library

import libHRLANalysis

[N

w

Similarly, using the generated configuration file Pythorndsde know where that is located



and dynamically import it. This can be done using:
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# Import the configuration module.

(dir ,fileName) = os.path.split(options.configFileName
sys.path.append(dir)

N

altry :
exec('from %s import *' 9% fileName)
s|except:
print "Error: Cannot find the requested configuration file: "
fileName
8 raise

The configuration file provides one function that will ret@mlictionary containing infor-

mation on all of the requested cell populations. Once thadilmported it can be called

using:

# Get the cell groups and the parameters
cellGroups = getCellGroups()

N

The list of binary files can be extracted directly from thesgivirectory using the following

filter and regular expression code:

# Search for binary files in the search path.
binFiles = os.listdir (options.searchPath)
filterTest = re.compile'{spikes" , re .IGNORECASE)
binFiles = filter(filterTest.search, binFiles)

N

IS

e|for i in xrange(len(binFiles)):
binFiles[i] = os.path.join(options.searchPath,h binFsle])

# Sort the list of files.
wo|binFiles.sort ()

Finally, the analysis can be done each of the populationsged by the configuration file.

for cells in cellGroups:
analyzeData(cells ,options , binFiles)

N




Running the spike analysis
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After collecting the cell group information and the full patto the binary files, the analysis

object for a particular cell group can be constructed:

analysis = libHRLAnalysis. hrlSpikeAnalysis ()

N

binFiles),options.startTime , options.endTime, cell @i startldx’
cellGrouplendldx 1)

analysis.buildDataStructures (libHRLANalysis. phist_to_vector_string(

1.

The resulting analysis object can be used to fill in the ddsarealysis data structures. The

spike raster data will fill two arrays, one containing a spikee and the other containing a

cell index. Keep in mind there will be redundant spike timEsis was originally intended

for use in plotting the spiking activity as a raster plot. 1 collected using:

N

IS

# Create the vectors to hold the spike timing information
times = libHRLAnalysis.vectorint ()

spikes = libHRLAnNalysis.vectorint ()

# collect the information
analysis.calcSpikeRaster (times ,spikes)

The population level average spiking activity can be coraguising:

-

w

# Get the Cell Rates.
windowRates = libHRLAnalysis.vectadouble ()
if options.windowRateType ==hinned"

StepSize)
else:

analysis.calcGaussWindowRate(windowRates , optionsnd@ivSize ,
options . StepSize)

analysis.calcWindowRate (windowRates , options . WindozeS options .

There are several functions for getting individual celbimhation either separately or in a

single call. Here the runAnalysis.py script is gathering #iverage spike count rate over
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the given interval as well as using that information to aedans of cell counts with activity

in spike rate ranges.

# Get the Window Rates and the Binned Rates
2|cells = libHRLAnNalysis.vectorint ()

rates = libHRLAnNalysis.vectaordouble ()
4lcounts = libHRLAnalysis.vectorint ()

fregs = libHRLAnalysis.vectordouble ()
s|lanalysis.calcRatesWithBins(cells ,rates ,freqs, couit30)

The coefficient of variation is calculated using:

# Get the COV analysis.

covCells = libHRLAnNalysis.vectorint ()
COV = libHRLAnNalysis.vectordouble ()
analysis.calcCOV (covCells ,COV)

N

IN

Running the network analysis

The network analysis can be completed by constructing @septation of the populations.

networkAnalysis = libHRLAnalysis. hrINetworkAnalysis ()
2
numOutputs = 3;
4 numlinputs = 4;
outputStart = 0;
6 inputStart = 210;
8 for i in range(10):

networkAnalysis.addDummyPopulatiofcéx_%i" %(i+1), inputStart

+(numlnputsi), inputStart+(numlinputsi)+numlinputs — 1)
10

for i in range(10):
12 networkAnalysis.addPopulationdtr %i" %(i+1), outputStart+(
numOutputsi), outputStart+(numOutputs )+numOutputs— 1)

14 networkAnalysis. buildNetwork'Data/net.bin’ )
networkAnalysis.getWeights (fileName)
16 networkAnalysis. outputWeightsdopulationNames.dat’ ,'weights.dat’ )

networkAnalysis. outputGraphrnetwork.dot’ )




6.2.3 Plotting the results
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There are several examples of plotting the calculated mm&tion provided by the suite.

The main two use either the Python Biggles library or the Nédlip library. The Biggles

plots are simpler but the library is efficient. Unfortungtélis also less flexible as far as

options and output formats are concerned. An example aoihgathe provided Biggles

interface is:

import hrlAnalysisPlthbiggles

plotter = hrlAnalysisPltbiggles.spikePlotterBiggles (cellGroumpme’
],options.startTime ,options.endTime, cellGrougtértidx’ ],cellGroup
['endldx’ 1)

plotter.plotRaster(times , spikes)

plotter.plotWindowRate(windowRates)

-

w

if len(COV) > 0:
plotter.plotCOV(covCells ,COV)

~

©

plotter.savePlot(os.path.join(options.outputPathllGgoup[name’ ]+’
png’ ))

The results of this command for the sample data provided thighpackage is shown in

Figure 6.3.

The second plotting interface uses the Matplotlib librdiyis can be called using:

import hrlAnalysisPIt
plotter = hrlAnalysisPlIt.spikePlotter(cellGroumpme’ ], options.
startTime ,options.endTime, cellGrousfartidx’ ],cellGroup[endldx
D
plotter.plotRaster(times , spikes)
plotter.plotWindowRate(windowRates)
if len(COV) > 0:
plotter.plotCOV(covCells ,COV)

[N

w

(4]

plotter.plotCellRates (cells ,rates)
plotter.plotSpikeBins(freqs ,counts)

©

u|plotter.savePlot(os.path.join(options.outputPathliGgoup[name’ ]+’
png’ ))
plotter.closePlot ()
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The resulting plot is presented in Figure 6.4.
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Figure 6.5: Example of overlaying raster activity with spike rate.

Since the returned data is treated in Python as lists, usensad restricted to the ex-
amples provided here. Figure 6.5 is an example of overlagiragter plot with spike rate
information. Similarly, the suite has been used for livenaations of neural activity as well

as for the construction of off-line animations and pubimatjuality plots.
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Figure 6.6: Example graph produced by graphviz.

The network analysis can return information about the ayeesynaptic weight between
populations as well as a graphical representation of thearktat the population level.
The network output uses the dot format of the Graphviz paekddpere are a number of
free interpreters and converters for this format so usemsatso leverage other network
analysis tools. Figure 6.6 illustrates a network creatadguSraphviz. Notice the number
of connections and the average synaptic efficacy is incluaethe edges. The synaptic
weights between populations can also be returned by theonletmalysis code. Figure 6.7

is an example of this.



145

=
(=)

0.90
0.85

b
0.805,

ko]
0.75

=
0.70 U

g
0.65 2
0.60 S,

()]
0.55
0.50

output
= N W S U1 OO 0 O

1 2 3 4 56
input

Figure 6.7: Example average synaptic weights.
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6.3 Discussion

Although this work is geared towards processing data faeddily HRLSim, adapting it to
other formats is simply a matter of overloading the inputctions. The core analysis and
high-level python code can all remain the same. Using thigpert for other simulators
will be added as needed.

Analyzing large data sets is a problem in numerous reseagels ghere are entire fields
dedicated to processing “big data.” In computational necience there is a continual
trend towards larger and more complex models. Currentg/tdols for analyzing these
models do not exist. Researchers are left to their own tgclesiand utilities for processing
results. The HRLAnNalysis package does handle large dadasatasonable time scales.
Processing 0 seconds of results from a network with0, 000 neurons can take minutes
in MATLAB as opposed to a few seconds with HRLAnalysis. Theluled tools however,
are still derived from theories based on small-scale ndtwaarlysis. Fortunately, adding
functionality to the HRLAnNalysis libraries is straightfeard. The comprehensive unit test

suite that is included can shield existing functionalitgrfr additions users make to the
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software. This helps ensure the package remains exterasititee HRLSIim environment

matures.
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Part |l

Modeling the Basal Ganglia
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Chapter 7

Background

7.1 The basal ganglia
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Figure 7.1: Basal ganglia box and arrow diagram.
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The Basal Ganglia (BG) is a phylogentically ancient streetgpanning the telencephalic
and mesencephalic regions of the nervous system. Thisatibat structure plays a role
in a number of cognitive and behavioral phenomena that dechction-selection, action-
gating, timing, reinforcement-learning, working memoigtigue, apathy, goal-oriented
behavior and movement preparation. In addition, it is thieesger of a number of neu-
rological disorders that include Parkinson’s Disease andtifgton’s Disease as well as
psychiatric disorders such as schizophrenia and obsessiveulsive behavior. Like many
sub-cortical structures the BG has a topographic orgaoiz#itat is maintained throughout
the nuclei that compose it. This organization has been thedation on which most BG

theories are grounded. However, new findings have reveatedra complex functional

anatomy than previously believed.
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Figure 7.2: Basal ganglia nuclei in a coronal brain slice.

7.1.1 Anatomy
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Historically there are six nuclei in models of the BG, assthated in Figure 7.1. These are

the Striatum, the external segment of the Globus PallidiejXhe internal segment of the

Globus Pallidus (GPi), the Subthalmic Nucleus (STN), thbssania Nigra pars compacta

(SNc), and the Substania Nigra pars reticulata (SNr). Th@muaput into these nuclei

come from a large number of cortical areas. In fact, almastyehayered neocortical region

contain outgoing connections from layer V into the striatnfithe BG (Bolam et al., 2000;
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Gerfen and Bolam, 2010). The output connections are splitlgneetween the brainstem
and thalamus. Figure 7.2 shows the physical relation oktkasictures in a coronal slice

of a fictitious mammalian brain.

Multiple pathways

There is a separation of the functional anatomy of the BGenuleht forms parallel paths
through the organ. These paths have been defined as thet*diatlbway, so named be-
cause the input neurons directly connect to the output nule&“indirect” pathway, named
as such due to the elongated path through the inner BG nankkthe “hyper-direct” identi-
fied by cortical innervations directly connecting to thethiatamic nucleus. The functional
significance of these paths is still debated however thestexce is not. Historically the
pathways have been functionally separated as the “go’dilied the “no-go” (indirect)
pathways (O’Reilly, 2006; Cohen and Frank, 2009; Shounb,&2@09; Chakravarthy et al.,
2010; Krishnan et al., 2011). However, the role of the “hygeect” pathway is gaining

more interest. We describe the major BG anatomy below.

Striatum

In primates the striatum can be separated into two functi@ggons, the caudate and the
putamen. The caudate is primarily innervated by prefroradiical connections. Whereas
the putamen receives afferents preferentially from theomahd somatosensory regions
(Gerfen and Bolam, 2010), they are often included as a singjlesince there is no clear
demarcation between the two. In addition, there are oveitaportical input to the puta-
men (Gerfen and Bolam, 2010).

The recipients of the cortical inputs are medium-size s@#BAergic neurons that

comprise about 95% of the striatum (Oorschot, 2010). Thegjegtion neurons are sepa-
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rated based on the subcortical targets they project to. dinect” pathway neurons directly
innervate the output nuclei of the BG. Those neurons thapecs@the “indirect” pathway
connect to the intermediate structures as described aldidweremaining 5% of neurons

are interneurons that do not project beyond the boundafibe striatum.

Globus Pallidus External

The external segment of the Globus Pallidus (GPe) is coresideart of the indirect path-
way and is composed mainly of spontaneously active inhipiheurons that utilize GABA
for neurotransmission. In the traditional BG models thauispnto the GPe are GABAer-
gic inhibitory connections from striatum as well as glutaen@c excitatory inputs from
the subthalamic nucleus. The major output targets are &&donnection to the subtha-
lamic nucleus and a forward connection to the globus palidternal segment. However,
in addition to these the GPe also contains projections tsubstania nigra and back to the

striatum.

Globus Pallidus Internal

The internal section of the Globus Pallidus (GPi) is one efitajor output nuclei of the
BG. This area contains mostly inhibitory neurons with a Heytel of basal activity ( 30Hz)
(Humphries et al., 2006). The major input connections ahgbitory innervations from
the GPe and the striatum as well as excitatory innervatiam the subthalamic nucleus.
The GPi innervates the thalamus and among other things adves in limb and trunk

movements.
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Subthalamic Nucleus

The Subthalamis Nucleus (STN) appears to contain only queay neuron that is excita-
tory and releases glutamate (Gerfen and Bolam, 2010). inputhe STN arise from the
GPe but also directly from the cortex. The latter innervagibave been labeled by some

as the “hyperdirect” pathway since this avoids the striatlinectly.

Substania Nigra pars compacta

Included here only for completeness, the Substania Nigra gampacta (SNc) is at the
core of the dopaminergic system of the midbrain. These msuace spontaneously active
and provide tonic and phasic releases of dopamine at adeni{Cohen and Frank, 2009).
The neurons of the SNc are densely connected and principalput to the patch/matrix

layout of the striatum. The ventral region of the SNc conséatsmall islands or patches
spatially segregated in the striatum. Whereas the neurfdine alorsal SNc project to the
regions surrounding the patches, referred to as the m&@exfén and Bolam, 2010). The

functional implications of this organization is still unduwn.

Substania Nigra pars reticulata

The Substania Nigra pars reticulata (SNr) is the other dutpalei of the basal ganglia
and is responsible for head, neck and eye movements. ThesShniprised mainly of
GABAergic inhibitory neurons and similar to the GPi it hasighhbasal level of activity.

The SNr receives inputs from STN and striatum and outputiséstiperior colliculus, the

thalamus and the pedunculopontine nucleus.
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Thalamus

The primary role of the thalamus is believed to be to modwdateprocess the information
entering the cortex (Sherman and Guillery, 2002). The dutpurons of the BG play are
prominent in modulating thalamic activity. A model thalacodtical relay neuron is used
here to model that influence. These are bimodal neurons lieahae between a tonic
firing mode and a burst firing mode depending on the voltagetiamel dependent’a®*

T-current (Sherman, 2001).

7.1.2 Neurocomputational modeling of the basal ganglia

Computational models of the basal ganglia provide a mesharor generating novel
hypothesis about BG function as well as providing direceriptetation of empirical re-
sults (Cohen and Frank, 2009). These computational moedalsat only bridge the high-
level behavioral studies with the low-level electrophysiical experiments but also create
novel working theories that are directly applicable tofenil intelligence. There are a
number of BG models presented in the literature, each ometsgy a different level of
biological realism depending on the question begin askedelAction of relevant publi-
cations that pertain to action-selection and reward-legrare presented here. Since the
majority of BG models deal with disease states, a number afatsahat deal with Parkin-
son’s disease are given as well. These models present thyttamics and functional
anatomy that this proposal is concerned with. Only the nmedevant literature is presented

so this list is necessarily incomplete.
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7.1.3 Action selection

The model of Gurney Gurney et al. (2001) utilized rate basadons to demonstrate ac-
tion selection in the basal ganglia. This was later exteridathe spiking domain by
Humpbhries et al. (2006). This work is explained further kelorhe contraction model
of Girard et al. (2008) created an action selection networkute in embedded robotics.
The network was constructed using a dynamical theoreticoggh and rate coding. The
resulting model was integrated into a robot as an actiorcsefemechanism for decid-
ing between seven possible actions during a survival tabkuiso et al. (2009) and later
Igarashi et al. (2011) designed a model of binary channet&eh and output timing. The
resulting network demonstrated probabilistic action&@@ and timing that they consid-

ered important for promoting behavioral variability dugiexploration and exploitation.

7.1.4 Reward learning

Izhikevich (2007b) solved the problem of credit-assigntigncombining dopaminergic
modulation with an eligibility trace that could reward nens that fired in appropriate
temporal-patterns. This mechanism allowed a test netwmt&arn stimulus-specific re-
sponses. Chorley and Seth (2011) combined that mechanignthei dual path model of
Tan and Bullock (2008). The resulting network demonstratedmber of physiologically
relevant dopamine responses that the Izhikevich (2007lehdid not explore. For a re-
view of reinforcement learning models refer to Cohen (2@G08) Cohen and Frank (2009).
In addition, Atallah et al. (2004) presents a review of eariomputational models of the
basal ganglia with a focus on interactions between the lu@mppus, cortex and BG as it

relates to a number of functions including stimulus-reggdearning.
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7.1.5 Combined models:

Brown et al. (2004) combined the frontal cortex with the BGl&monstrate how primates
can integrate reactive and planned behaviors in a ratedbasgvork. The simulations
predicted how dopaminergic signals could guide the legroinrsaccadic eye movements.
The model of Stewart et al. (2012) was based on the rate médalimey et al. (2001).
It employed LIF neurons and the neural engineering framkyBliasmith and Anderson,
2003) to convert the variables of the original model into yagons of spiking neurons.
Although this model was capable of learning the desired timuiput functions, it was
not done through classical reinforcement learning. Inktdas was accomplished using
a feedback function that would compare the error betweemib@el output and desired

output.

7.2 Parkinson’s disease

Parkinson’s disease is a neurodegenerative disorderatbarad by a marked loss of
dopaminergic neurons in the SNc. The fundamental symptdiarkinson’s disease are
tremor: the involuntary movements of the body and limbsdriyg: stiffness in the muscles,
bradykinesia: slowed movement, and postural instabitiifficulty maintaining an upright
position (Bezard et al., 2010). In addition, there are a nemolb secondary and non-motor
symptoms that may be present. With no known cause or curkinBan’s disease affects

tens of millions of people throughout the world (Bergmanletz910).
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Figure 7.3: Parkinsonian Basal Ganglia

The loss of constant inhibitory influence on the striatummfrthe SNc results in an
increased level of activity throughout the BG, Figure 7.38.islstill unclear how these
increases in activity correspond to the symptoms of PD. Desbis gap in knowledge,
there have been some therapeutic options that have demtaasarbenefit in alleviating the
symptoms of PD. The reality however, is that there is no knaxay to stop the disease’s
progression.

Treatments of PD generally begin pharmacologically; dapameplacement using lev-
odopa is one such early treatment option. Unfortunatelyonly is the the dosing schedule
difficult and its benefit eventually deteriorates completalt there can be negative side-
effects, such as dyskinesia: impediment of voluntary mau@nor hypertonia: increased
muscle tone (Fahn et al., 2004). As the clinic benefit of ddpameplacement is lost many

patients are treated with deep brain electrodes that authssimulate the BG.
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7.2.1 Deep brain stimulation

Figure 7.4: Example deep brain stimulation electrode placement.

Deep brain stimulation (DBS) was first reported in the eaigytees but did not become a
serious treatment option until a decade later (Montgon9$2). Prior to this, other than
pharmacological treatments, PD patient’s only other optias surgical ablation (Purves

et al., 2007). DBS consists of two bilateral electrodes ang#d in the deep structures of
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the BG. Figure 7.4 illustrates how the path of the electrod@snnecting wires are then
implanted subcutaneously to the patients shoulders wtedterfp and open-loop control
electronics are located.

There is an immediate clinical benefit associated only withglacement of the elec-
trodes, this is referred to as the microthalamotomy eff€ttafig et al., 2009). A high-
frequency electric pulse is then applied to the electrodessgting an electric field within
the target region of the brain. Clinicians will generallypeximent with the frequency and
amplitude of the electric pulse to find the region of highestddit. Finding that point is an
inexact science and periodic adjustments throughoutfétentie of the patient are required;
as that point moves as compensatory mechanisms in the BGdtte regulate the activity.

Despite the proven clinical benefit of DBS, there is no cleg@tanation for that benefit.
This has been the focus of a number of research projects img ebthe most compelling

theories have come from computational studies of the BG.

7.2.2 Computational models of Parkinson’s disease

Rubin and Terman (2004) offered the first explanation forghedoxical therapeutic ef-
fects of deep brain stimulation (DBS) in a Parkinsonian B@isTwas utilized by Feng
et al. (2007) to explore feedback control of the DBS protec@8imilarly, it was extended
by Pirini et al. (2009) to include the striatum and sensotonagortices. In Pascual et al.
(2006) the overall usefulness of this and any model of Padqis disease was explored.
Although the result was that this type of modeling can beulseére should be taken when
making specific claims about model results and predictioftse work of Frank (2005)
looked at dopamine modulation and the cognitive deficitsad im medicated and non-
medicated Parkinson’s disease. Hahn and Mcintyre (201flpeed a network of the sub-

thalamopallidal (STN,Thalamus,GPe,GPi) network undepdgrain stimulation. Leblois
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et al. (2006) created a model of the BG without the GPe butidedd a feedback from the
thalamus into the cortex. The resulting model explored ané/direct and hyper-direct
pathways in action selection. The network demonstratedsadbaction selection capabil-
ities as dopamine input was reduced and predicted that tioisre before the oscillatory

patterns associated with Parkinsonianism were present.
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Chapter 8

Reward-Learning and Action-Selection

In an Embodied Agent

Adding value to action-selection through reinforcemesarhing provides a mechanism for
modifying future actions. This behavioral-level modubatis vital for performing in com-
plex and dynamic environments. In this chapter we focus andtasses of biologically in-
spired feed-forward spiking neural networks capable abaeselection via reinforcement-
learning. These networks are embodied in a minimal virtgahdand their ability to learn
two simple games through reinforcement and punishmentgkoed. There is no bias or
understanding of the task inherent to the network and ahefiynamics emerge based on
interactions with the environment. Value of an action tatkesform of reinforcement and
punishment signals assumed to be provided by the environaomemuser. The variation
in the four classes arises from different levels of netwarkplexity based on differences
in network architecture, the nature of network interadiortluding the interplay between
excitation, inhibition and reinforcement, and the degrebio-fidelity of the model. The

models obey the constraints of neuromorphic hardware tieatarently being developed,
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including the DARPA SyNAPSE neuromorphic chips for very lpawer spiking model
implementations. The simulation results demonstrate énfopnance of these models for
a variant of classic pong as well as a first-person shootee résults suggest that these
models could serve as a building block for the control of mmmplex robotic systems

that are embodied in real and changing environments.

8.1 Introduction

The combination of action-selection and reinforcemeatd@g in biological entities is
essential for successfully adapting and thriving in comglevironments. This is also im-
portant for the effective operation of intelligent ageriswever, strategies for embedding
artificial intelligence have resulted in agents with linditeemonstrable emergent proper-
ties. Because of this, it is still unreasonable to deploy@or@botic entity and expect it
to learn from and perform in its environment the same waydgi@ial entities can. Simi-
larly, neural models require complex and varied input dgyiraorder to accurately repli-
cate the activity observed experimentally. One strategyifeating this complex stimuli
is through immersing a model in a real or virtual environmeggpable of providing the
feedback necessary for the model to extract value and oitagpropriately. These are
part of the motivations for the DARPA SyNAPSE program. Tlglothe creation of low-
power neuromorphic architectures both suitable for effictemote operation and capable
of replicating many of the biologically salient featuresngfural systems, the program can
reduce the technological and theoretical barriers of engolotiodeling.

Action selection is the appropriate negotiation of conmpgsignals. In the mammalian
nervous system the complex circuitry of the Basal Gangli@)(i active in gating the

information flow in the frontal cortex by appropriately sgiag between input signals.
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This selection mechanism can affect simple action all thg wato complex behaviors
and cognitive processing (Cohen and Frank, 2009). Althangly simplified, it can be
helpful to relate the BG to a circuit multiplexer, activelyrmecting inputs to outputs based
on the current system state.

Reinforcement or reward learning (RL) is the reinforcenudractions or decisions that
maximizes the positive outcome of those choices. This idaito instrumental condition-
ing where stimulus-response trials result in reinforceihuémesponses that are rewarded
and attenuation of those that are not (Chakravarthy et@L0R Reinforcement-learning
in a neural network is an ideal alternative to supervisethiag algorithms. Where super-
vised learning requires an intelligent teaching signai thast have a detailed understand-
ing of the task, reinforcement learning can develop inddpahof the task without any
prior knowledge. Only the quality of the output signal inpesse to the input signal and
current contextual state of the network is needed.

In this work we focus on three different classes of smalldgatally inspired feed-
forward spiking networks capable of action-selection agitiforcement-learning while
immersed in a virtual environment. Each is suitable forizaéion on the neuromorphic
hardware developed under the SyNAPSE project and provite=oaetical framework for
testing future novel reinforcement-learning algorithikese networks are embodied in a
minimal virtual agent and their ability to learn a simplegipong game through reinforce-
ment and punishment is explored. There is no bias or unaelisiga of the task inherent
to the network and all of the dynamics emerge based on irtengovith the environment.
Value of an action takes the form of simple reinforcement umtishment signals.

This concept is then extended by exploring how these netvcak be combined to
perform more complex actions. Towards this goal, a firss@ershooter was developed.

A model combining multiple RL networks was then construaed trained to target and
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shoot the most appropriate enemy.
Beyond supporting hardware validation, the resulting niedee ideal for simple robotic
embodiments. In addition, these are capable of demonsgireginforcement-learning and

action-selection in different ways.

8.2 Design and Methods

8.2.1 Neuron model

The neural model supported by the initial SyYNAPSE hardwsitbée Leaky-Integrate and
Fire (LIF) neuron. The LIF model is defined by

dVv
Cm% = _gleak<v - Erest) + I (81)

Where
C,,  isthe membrane capacitance.

1 is the sum of external and synaptic currents.
Jiear  CONductance of the leak channels.

E... Isthe reversal potential for that particular class of syeap
As the current input into the model neuron is increased thalpnane voltage will pro-

portionally increase until the threshold voltage is reach this point an action potential
is fired and the membrane voltage is reset to the resting vheneuron model is placed
in a refractory period for 2 milliseconds where no changes\@mbrane voltages are al-
lowed. If the current is removed before reaching the thriestiee voltage will decay to
E,..:. The LIF model is one of the least computationally intensigaral models but is still

capable of replicating many aspects of neural activity K&tjr2006).
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The connections between neurons are modeled by condudbasee synapses. The

general form of that influence is defined as

Isyn = Gmazx " Yeff * (V - Esyn)- (82)

Where
Imas 1S the maximum conductance for that particular class of ggea

gess IS the current synaptic efficacy betwel@nge s -

E,,, isthe reversal potential for that particular class of syeap
To simulate the buffering and re-uptake of neurotransmsittée influence that a presy-

naptic action potential has on a neuron can be decayed basedpecified time constant.

This process is abstracted using

dgfyn syn
Tsynw = —giy + Z Wﬂé (t — tj) . (83)

An Euler integration method is used with time step- 1ms.
Learning at the synaptic level is achieved through the spikeng dependent plasticity

rules defined by Sonet al. Song et al. (2000).
Geif = Gefs + Gef fmax k' (AL)

Where
At = tpre — tpost

A7)

F(At) = A_J%)
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if (geff < 0) thengeff — 0

If (g > geffmam) thengeff — geffmam

The global parameter values used in this study are preseniedble 8.1.

Table 8.1: Global model parameters.

Parameter Value

Cn 1. (pF)
Tge 5. (ms)
Tyi 100. (ms)
Eea:c 0. (mV)
Ei.n —80. (mV)
V;est 0. (mV)
Ay 0.025

A_ 0.026

Ty 20. (ms)
T_ 20. (ms)

8.2.2 Networks

Three possible embodiments of this idea are presented hatilly, each of these net-
works have no knowledge or inherent understanding of theirenment. The behavior
is learned through feedback from the environment in the fofmeward and punishment
signals encoded as either random or structured spike ev&hese signals strengthen or
weaken the synaptic connections between neurons; reinfptite appropriate action.
Although a technological breakthrough, the initial SyNAPBardware has limited
functionality. This has direct implications on the typeshelral networks it can support.
There are two phase 1 chips that have been developed, edch wammon set of limita-
tions. The most significant is the lack of fixed weight synap#dl connections, including
those coming from dummy neurons, are plastic. This presemiisnber of problems but the

most egregious is that it effectively eliminates the usenbibitory neurons. In addition,
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each neuromorphic processor (NP) has very different tinpirogerties, number afferent

inputs, and number of usable neurons.

Excitatory only network

1‘
/\\:
A

|

Input
Populations

2‘ ... N

Output
Populations

Reward
Modulation
Figure 8.1: Excitatory neuron only network.

Table 8.2: Parameters for the excitatory only network.
A. Neuron parameters

Neural Region Neurons

J Per Channel
Input 3
Output 3
Reward 1

B. Connections

Source—s Destination Synaptic Conductance Number of Incoming

(9maz) - (Gers) Connections (total)
Input — Output (10.0) - (0.25) 15
Reward— Input (10.0) - (1.0) 1

The first model explored was a simple feed-forward netwosk tlonsists entirely of exci-

tatory neurons, Figure 8.1. This network is compatible whi first phase neuromorphic
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processors of the SYNAPSE project. Notice that the inputray divided into channels
represented by a population of neurons. The parametergesered in Table 8.2. The
total size of the network i80 neurons. Note that each output neuron receives a maximum
of 16 inputs. These connections are randomly created from theeenput population to
ensure that there is no bias between input and output clenhfleé connections between

the reward populations are focused projections within achh

Lateral-inhibition network

Input
Populations

Reward

Output
Populations

Figure 8.2: Lateral-inhibition network.
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Table 8.3: Parameters for the lateral-inhibition network.

A. Neuron parameters

Neural Region Neurons
Per Channel
Input 3
Output 3
Inhibition 3
Reward 1

B. Connections

Source—s Destination Synaptic Conductance Number of Incoming

(9maz) - (ers) Connections (total)
Input — Output (10.0) - (0.25) 15
Output— Inhibition (10.0) - (1.0) 15
Inhibition — Output (10.0) - (1.0) 15
Reward— Input (10.0) - (1.0) 1

As an extension of this idea, lateral inhibition betweendh#ut populations is added, as
shown in Figure 8.2. This creates an on-center off-surra@tadlork where the most active
population suppresses the other output populations. Ngtisrthis a more biologically
realistic network but it also offers more control in the séilen process. The parameters
of this model are included in Table 8.3. A key aspect of thisvoek are the diffuse con-
nections of the inhibitory interneurons. These populaiproject to every other output

population; excluding the channel of which they are a part of
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Basal ganglia direct pathway

Cortex

Striatum

Figure 8.3: basal ganglia direct pathway network.

Table 8.4: Parameters for the basal ganglia direct pathway.

A. Neuron parameters

Neural Region Neurons
g Per Channel

Cortex (Ctx) 4

Striatum (Str) 3

Substania Nigr

pars reticulata?SNr) 3

Excitatory 9

Reward 6

B. Connections
Source—s Destination Synaptic Numbgr of Incoming

Conductance Connections (per channel)

Ctx — Str 0.1 4
Str— Str (diffuse) 10.0 3
Excitatory— SNr 0.08 3
Str— SNr 10.0 3
Reward— Str 10.0 6
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The third network presented is an implementation of thectlpathway of the Basal Gan-
glia (BG), Figure 8.3. This network emulates the physiatagactivity of the BG direct
pathway where the neurons of the SNr are tonically activegfiaround30 Hz. This basal
activity is suppressed by the inhibitory afferents of thiasim, resulting in a dis-inhibitory
mechanism of action. Learning occurs between the cortextandeurons of the striatum
to develop the appropriate input-output channel combonati

Physiologically neurons in the SNr are tonically active.eTHF neuron however, is
not capable of replicating that spontaneous activity. Tmpensate, a Poisson random
excitatory inputis injected into the SNr populations. ldléidn, low-level uniform random

noise is injected into the network.

Combined reward learning network

Black Blue

Saliency

Figure 8.4: FPS Control Network

Although simple, these networks are capable of distingngslcompeting inputs under
noisy conditions. They can also be used as building blockettorm more complex tasks.

To illustrate this concept we combine three of the latemaibition networks of Section
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8.2.2. Each of the networks is divided into multiple chasmeith the outputs of two of the
channels directly connecting to the corresponding inpanakel of the third, Figure 8.4.
The connections are made one-to-one at a weightmiwith output channel connected
to input channel, output channe? to input channe?, and so on.

As illustrated in Figure 8.4, each of the three networksivesea different input signal.
Through reinforcement the network can learn to approgyiatspond to different com-
binations of inputs. In this case, these are used to play tapirson shooter, described

below.

Stimulus learning

Learning in these networks is driven by a conditioned stumuhjection. Stereotyped spik-
ing signals sent to an input population and all of the rewarpypations. The timing of

the signal is delayed for the target channel so the synag#ining between the input pop-
ulation and the desired output populations is potentiatdile all other channels are de-

pressed. The stimulus period lasts for eits@& or 500 m.s.
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8.2.3 Games

Pong

Figure 8.5: Pong game mock-up.

To illustrate the capabilities of these networks a pongestyttual environment was imple-
mented. Figure 8.5 is a mock-up of that environment. Thisigerof the game has a single
player controlling the paddle at the bottom of the board. giek bounces off of the left,
right and top walls with minimal physics that change the gpefethe puck based on the
angle of incidence with the wall. The player has to move ttadfeto block the puck from
falling through the bottom of the game board.

The game was developed in different stages. First, A moc8ftipe game was created
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in Python using PyGame (Shinners, 2012). A game controléey thhen developed in C++
using the concepts of Section 5. The C++ controller has naalimation capabilities. It
compiles directly into the HRLSIim experiment and provides virtual environment for
the networks. The output of the environment is recorded byctntroller and can then be
played back by the Python visualizer.

The game engine was extended to support multiple playerghedse instances two
players control paddles on opposite sides of the board. peplscores a point when the
puck gets past the opposing players paddle. Using this thed”hexcitatory network and
the Phase 2 lateral-inhibition networks competed agaamst ether.

In addition, a live real-time version was developed with ekeb server to support con-
nections from an external player. This embodiment doesyrattsonize with the external
player so both the game and the network can run at differeee#dg The board is sam-
pled by the player and commands to control the paddle areafienfprocessing. This was
created for coupling with the neuromorphic processors.

The position of the puck in the game space is sent to a humbeisofetized neural
channels. Each of these channels represents a verticahioadli the game board. The
input signal is Poisson random spike events with a rate uhied by a Gaussian curve,
described below. This provides a noisy input signal withragbetween channels. The
networks signal, through a winner-takes-all mechaniseptbsition of the paddle.

The stimulus into the network is determined by the locatibitne puck relative to each
of the spatial channels. The location of the puck on the mé&graenes the peak amplitude

and center of a Gaussian function defined as

ch<X*> _ ae—((XC7x*)2/2c2> (84)



175

Where

Peak amplitude of the Gaussian function.
Center of the Gaussian function.

Spatial width oro of the Gaussian
function.

X. The non-dimensional location of the
channel.

S Q

The peak amplitude and Gaussian center are defined as

a = Y* . Rmax (85)
b= X* (8.6)
Where

Y Non-dimensional location of the puck in
they dimension.

Rpee  Maximum input stimulus irfpikes/,

CN Non-dimensional location of the puck in
thex dimension.

This is visualized in Figure 8.6 for the three different splatvidths, ¢, used for the
experiments presented here. The reward or punishment toetiweork arrives when the

puck reaches the bottom of the game board.
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Figure 8.6: Pong game board disrectizations for(achannel network. Three different spatial widthsare

used for these experiments025 (left column),0.035 (middle column),0.045 (right column). In the top
row are the stimulus maps for changdbr each of the spatial widths. The middle row illustrates tverlap
between two consecutive channels. The bottom row shows hewotation of the puck (top) translates to
input stimulus for each of th&) channels (bottom).

8.2.4 Pong controller

The paddle in the simulated pong environment is controlied bimple proportional con-
troller. The environment receives discrete locations ftbmneural network. The location
on the screen that the paddle has to move to is calculated bagéese discrete locations.

Its velocity in theX direction is defined by
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Ve = Vinas - P. (8.7)

The variableP is the output of the proportional controller defined by

P=k-e. (8.8)

Wherek is the gain variable anelis the error between the target and current locations

e = Xpocation — XTarget (89)

The output of the proportional controlle?, is a piecewise linear function that is dependent

on the distance from the target.

This ensures that the speed of the paddle does not exceedatimum defined velocity.
The pivot point% is calculated by setting- e = 1. In addition, the proportionality constant

k is less than to ensure that the paddle slows down as it gets closer tagstta

Neuralstein first-person shooter

The first-person shooter (FPS), Neuralstein, is similarrte of the original FPS games,
Wolfenstein (id Software, 2012). This implementation isad-shooter where the player

moves along a specified path. The player controls its forwiaogement along that path,
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where it is aiming and when to take a shot. Similar to the pamgrenment described
above this was implemented at different levels of abstractirhe game engine and visu-
alization was developed in Python, with the latter using &y® (Shinners, 2012) and the
Pyggel library (Pyggel group, 2012). The game engine israbistd away from the visu-
alization to facilitate faster simulations. Communicatiwith the simulations is provided
through a socket server. The engine and the simulation arehsynized so the perfor-

mance is determined by the slowest component.

(@) (b) (€)

@ )

Figure 8.7: FPS Discretization. (a) A rectangular frame is taken from liemispherical point-of-view
(POV) of the player. (b) The POV space is discretized intoaégagments (channels). (c) The resulting
frame segments the players view of the world. (d) Each of tiennels is centered along equal angular
steps about the space with arc-lengths defining the stinrelyime for that channel. (e) The channels are
constructed with overlapping stimulus regions to createiai@r environment for the networks to negotiate.
() The stimulus space for a single channel is defined by a Sagunction that is railed to the segment
boundary.

The game board is discretized based on the players persgpedthe hemispherical
point-of-view (POV) for the player is partitioned into a taogular region, Figure 8.7 (a).
The POV is then segmented into discrete channels with ceatezqually spaced angles

along the hemisphere, Figure 8.7 (b). This defines the cémteach of the channels that

are represented by the network, Figure 8.7 (c). The chamneddes a pie shaped region
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of interest, Figure 8.7 (d), which have arc lengths withDé; overlap between channels,

Figure 8.7 (e). Each of the segments defines that channmlsles map, which is described

by a Gaussian function, Figure 8.7 (f).

fo.(0%) = ae~((ee-0772) (8.10)
Where
a  Peak amplitude of the Gaussian function.
b Center of the Gaussian function.

Spatial width oro of the Gaussian
function.

The non-dimensional angular location of
the channel.

The peak amplitude and Gaussian center are defined as

a=1"" R

b= X"

Where

Rma:c
@*

(8.11)

(8.12)

Non-dimensional location of the puck in
the radial dimension.

Maximum input stimulus irfrikes/s,
Non-dimensional angle of the puck.
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Figure 8.8: Example stimulus encoding and FPS game board. (a) Enemy(bhknemy and friend.

The overall arena is a square track with equal width, Figuge Bs the player moves
through the environment game elements enter into the viaweoplayer. Elements in the
players POV are picked up and their location in that viewta®#he input stimulus injected
into the saliency channels of the network.

There are two types of game elements right now. The primatdgk characters are
considered dangerous and the characters with blue acgesrénconsidered innocuous.
Each of these creates a different input into the black and bhannels respectively. It is
assumed that a separate mechanism identifies the elemedetarchines which channel
is stimulated. For this implementation the game enginectirthe stimulus. Figure 8.8
(a) illustrates the stimulus for a black element in the ptay®OV. Figure 8.8 (b) illustrates

what the stimulus for two different game elements would be.
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8.3 Results

8.3.1 Excitatory only network

Basal activity
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Figure 8.9: Basal activity of the excitatory only network. Notice thiaéttime is moving from the top of the
chart down. The x-axis is the respective input or output clehand the rate is normalized based on the peak
output of the network.

Initially all of the networks are randomly constructed witb intentional bias between
channels. Figure 8.9 illustrates the random response ofxeitatry only network to

changing input channels. Raster plots of this activity sspnted in Figures 8.10 (a) and
(b). The plot in Figure 8.10 (c) is the average synaptic efficaalue between input and
output channels. Figure 8.10 (d) highlights the input/atifgair with the highest average
synaptic weight. Theoretically this marks the output pagioh that should be maximally

activated when that input population is activated. Thismpartant for identifying how
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well the networks are learning.
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Figure 8.10: Results of 20s of Basal level activity. (a) Input raster. Chitput raster. (c) Average synaptic
weights for each of input-output pairs. (d) Location of nmauim average synaptic weight between each pair.

Learning capabilities

An important characteristic of this class of networks isalslity to learn arbitrary out-

put responses. The random initial weights can be driveoutiir the stereotyped reward
feedback, to desired values. Here we demonstrate the retwability to learn one set of
associations and later learn whole new set of associatibimis. scenario is illustrated by
the spiking activity presented in Figure 8.11 (a). The stagearked by the letters in the

center are:

A. The network is initialized with all input/output connems have a synaptic USE
value of 0.25; as illustrated in Figure 8.12a by the heat nfapeaverage weights

between input/output populations.
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B. A Poissonrandom inputisinjected into consecutive cleésior 10 seconds to estab-
lish the basal activity of the network. The resulting averagnaptic weight matrix

is shown in Figure 8.12b
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Figure 8.11: Excitatory network: reward-learning scenario. (a) Adtiviate map of the example scenario.
Activity was calculated using a moving Gaussian weightentdeiv. (b) Spike raster of the input populations.
(c) Spike raster of the output populations.

C. Alternating reward signals are sent to establish singdat/output pairs. The weight

matrix is now dominated by the diagonal shown in Figure 8.12c

D. The repeated Poisson input signals from B are injected @oseconds. After this,
the weight matrix shown in Figure 8.12d demonstrates furffmeentiation of the

established input/output pairs and a continued depreséitire other connections.

E. An opposite set of input/output associations are estaddi using alternating reward

signals. For stable retraining of the network the rewardqual needs to be about



184

twice as long as the original training. The new weight maisishown in Figure
8.12e.

F. 10 seconds of the repeated Poisson inputs illustrateetivly restablished input/out-

put pairs, Figure 8.12f.
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Figure 8.12: Average and maximum synaptic weights between input/oytpiss after learning correspond-
ing to Figure 8.11. (a) 0 sec (b) 10 sec (c) 11 sec (d) 21 se@(sg@ (f) 33 sec
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Figure 8.13: Example of the excitatory network learning a one-to-one fat pong.

When immersed in the pong virtual environment, the exaiyatmly network learns the
correct input/output pairs to play the game, Figure 8.14thla case the game requires
that the network move the paddle to the channel that mattieeltation of the puck, a
one-to-one association. Figure 8.13 illustrates the nét\earning this. The rules of the
game can then be changed, as they were in the learning exabwpte. The network now
has to associate the location of the puck with the oppositellpaocation, a one-to-ten

association, Figure 8.15.
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Figure 8.14: Excitatory network pong game play. The input signal coroesfs to the position of the puck.
Notice that the time course runs along the y-axis from topttdm. The x-axis is the corresponding channel.
(a) 0 — 20 seconds. The network has minimal responds8(b} 100 seconds. As the network receives feed-
back from game the required input/output pairs begin to fdigh180 — 200 seconds. The pair correlations
become more defined. (d30 — 500 seconds the pairs are completely defined and the outputlglifelbows

the input.
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Figure 8.15: Example of the excitatory network learning a new set of parigs: This time a one-to-ten
input/output rule is required.

Pong performance analysis

There are a number of factors that determine how well the orétwerforms in the game
task. The first is the spatial width of the Gaussian stimuluse, c. This affects the
overlap between channels, the larger the valuetbé larger the overlap between channels.
We use three spatial widths025, 0.035, 0.045. The next factor is the peak of the Gaussian
stimulus curve. The larger the value the more active thetiopannels become. Two input
peaks,R, ..., are used]0 Hz and40 Hz. Finally, the length of reward is an important factor.
This determines how long a stimulus lasts for. Two valueshosen for this analysi8)0
ms andb00 ms.

For each combination of these parametérsmulations 000 seconds were run. The

accuracy(saves/opportunities) - 100, is computed foR5 second blocks. The average and
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standard deviation of these blocks is plotted below.
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Figure 8.16: Excitatory network pong performance f800 ms reward. The y-axis is the accuracy of the

network. A value ofl00 means the network blocked all of the pucks in thatsecond block. The column

titles correspond to the spatial width of the input stimullise row labels indicate the Gaussian peak value.
Figure 8.16 presents the results when the rewasd(sns long. The network struggles

to perform when the input stimulus is too high0(Hz results). For the lower activity

stimulus this network has very similar performance thraughhe different spatial widths.
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Figure 8.17: Excitatory network pong performance f8600 ms reward. The y-axis is the accuracy of the
network. The column titles correspond to the spatial widtthe input stimulus. The row labels indicate the
Gaussian peak value.

This network benefits most from a longer reward period. N&t does the variability in
the 10 Hz peak input results go down but the overall performancedeeiased throughout
the spatial widths. As the peak input stimulus is raised,réseilts forc = 0.025 are

comparable to the lower input stimulus. However, this panance is lost as the spatial

width is increased.
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8.3.2 Lateral inhibition network
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Figure 8.18: Basal activity of the LI network. Notice that the time is mogifrom the top of the chart down.

As with the excitatory only network there is no bias betwedamnels in the lateral-
inhibition (LI) network. The basal activity of a sample neftk is presented in Figure
8.18, with the rasters and synaptic weights presented ur€&ig.19. The interneurons sup-
press the overall activity of the output populations ra@sglin lower rates and more control
than the excitatory only network. This directly affects ttienges in the output weights,

which are much smaller than in the excitatory case.
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Figure 8.19: Results of 20s of Basal level activity for the lateral intidmh network. (a) Input raster. (b)
Output raster. (c) Average synaptic weights. (d) Locatibmaximum average synaptic weights.

Learning capabilities

Similar to the excitatory only case, Figure 8.20 demonstraltie LI network’s ability to

learn different channel associations. The stages matde ttiscussed in Section 8.3.1.
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Figure 8.22: Lateral-inhibition network learning a one-to-one rule fang.

Comparing the example game playing of the excitatory ndtwoiFigure 8.14, with the
LI network in Figure 8.22, reveals the stability the intarrans provide. The output pop-
ulations begins to track the input populations much eantighe experiments. Similarly,

Figure 8.22 demonstrates a clear diagonal in the synaptghtgeand the new set of asso-

ciations is learned with clear stability, Figure 8.24.
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Figure 8.23: LI network pong game play. The input signal correspondseaitsition of the puck. The time
course runs along the y-axis from top to bottom. (&) 20 seconds. (b30 — 100 seconds. (c)80 — 200
seconds. (d¥80 — 500 seconds.
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Figure 8.24: Example of the LI network learning a new set of pong rulessTinie a one-to-ten input/output
rule is enforced.
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Figure 8.25: LI network pong performance f@00 ms reward. The y-axis is the accuracy of the network.
The column titles correspond to the spatial width of the trgtimulus. The row labels indicate the Gaussian
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Figure 8.25 presents the results when the rewaglisms long. For thel0 Hz stimu-

lus the network performs considerably better than the atany network results of Figure

8.16. The variability in the standard deviation is much loaed the overall performance

is higher. However, when the peak input stimulus is highemt@rformance drops consid-

erably. Although peak accuracy is slightly higher than thatatory network, the standard

deviations are larger in both cases.
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Figure 8.26: LI pong performance: 500 ms reward

When the reward time is increased@) ms the overall performance throughout the
parameter space is surprisingly consistent. The slopdimadcuracy curves are slightly

different but all approach an accuracyl®f% with relatively small standard deviation.
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Excitatory network vs. LI network
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Figure 8.27: Excitatory network (Phase 1) vs. Lateral-inhibition netkw(Phase 2) in pong.

These results illustrate how the addition of inhibitoryeimteurons provide a mechanism
for channels to actively suppress the surrounding channifss creates a more stable
configuration at the relatively low-cost of thirty extra mens. As a toy example of this,
the excitatory network is set against the LI network in poRigure 8.27. As would be
expected, the LI network consistently beats the excitatetwork. However, this paradigm

does create an interesting test-bed for future network eoisgns.
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8.3.3 Basal ganglia direct pathway

Basal activity
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Figure 8.28: Basal activity of the BG Direct network. (a) (b) (c)

The basal output of the BG direct pathway is a tadticdHz firing from the SNr inhibitory
neurons. A channel is activated through disinhibitionlfeated by the Str neurons. This

basal activity is illustrated in Figure 8.28.
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The ability of the BG direct pathway to learn a particulara@hput/output pairs is similar
to the other models, Figure 8.29. It should be noted thatéhsark is capable of relearning

but the time course is longer than in the Excitatory and Livogks.
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Figure 8.30: BG Direct network pong game play. The input signal corresigdn the position of the puck.
The time course runs along the y-axis from top to bottom.0(a)20 seconds. (b0 — 100 seconds. (c)
180 — 200 seconds. (d)80 — 500 seconds.
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When immersed in the pong environment the BG direct netwsdapable of tracking the

input stimulus, Figure 8.30.

Pong performance

120f
100f
80f
60
401
20f

50Hz

120f
100f
801
601
40y
20f

80Hz

Fh}1ﬂhh}+ﬁﬁ¢ﬁ“*&”

0

0

100 200 300 400 500 O
Time (s)

100 200 300 400 500 O
Time (s)

100 200 300 400 500
Time (s)

Figure 8.31: BG Direct pong performance f&00 ms reward. The y-axis is the accuracy of the network.
The column titles correspond to the spatial width of the trgtimulus. The row labels indicate the Gaussian
peak value.

The peak value of the input stimulus for the BG direct netwaekds to be higher than the

other networks to sufficiently activate the desired chanfleé low rate is set t60 Hz and

the high is set t80 Hz. With a300 ms reward period the BG direct network performs well

for small spatial widths, Figure 8.31. As the overlap is @xged however, the performance

degrades quickly.



Time (s)




205

8.3.4 First-person shooter
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Figure 8.33: Basal activity of FPS network.

The combination of three LI networks allows for more complexision making. The net-
works can learn to weight different classes of input infatiorabased on reward feedback.
The basal activity of FPS network is presented in Figure .8B&ch of the subnetworks
has9 channels, with the Black and Blue subnetworks both feeditg the action selec-
tion (AS) subnetwork. The AS subnetwork also receives sajienformation from the

environment.
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Figure 8.34: FPS network learning capabilities.

Using the same stereotyped reward mechanisms, the FPSrketam be trained to

perform more complex action selection tasks, Figure 8.84his case the Black and AS
subnetworks have learned a one-to-one correlation, whideBilue subnetwork has been

effectively disconnected. The result is that the salienégrmation alone is not enough to
cause the AS network to cross the selection threshold. A mgntary input is required

from one of the other subnetworks, in this instance only albame element can con-

tribute, Figure 8.35. The resulting network learns to ignttre innocuous blue elements

while focusing on the dangerous Black ones.
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Figure 8.35: FPS single channel activity after training. The salien@uiralone is not enough to push the AS
subnetwork above the selection threshold (dashed gray lifke addition of a blue stimulus is ignored and
thus does not contribute to the AS subnetwork activity. Wadtack element stimulus is added the activity
of the AS subnetwork is driven passed the selection limittaatichannel is selected.
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Figure 8.36: FPS Game Play. The network appropriately targets and stumtnemy player.
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Figure 8.37: FPS Game Play. Although the blue character is more salighgiplayer’s field of vision the
network appropriately targets and shoots the enemy player.

When placed in the Neuralstein environment the network cawenthrough the envi-
ronment and target enemies when in view, Figure 8.36. Int@ddiwhen presented with
both types of game elements, the network can appropriagédgisthe black element, even

when the blue one is closer to the player, Figure 8.37.

8.4 Discussion

8.4.1 Similar Work

Wiles et al. (2010) developed a spiking neural model to @@trat animate performing
phototaxis. The network was constructed to perform thesasKar to a Braitenberg vehi-
cle. Burgsteiner (2006) created a liquid state machinegusirecurrent network with fixed
internal synapses and plastic output synapses that learsietilar task.

The model of Arena et al. (2009) consisted of three layersbikevich neurons to
control a virtual robot with several sensory modalities.eTrretworks were constructed

with an initial understanding of how to process low-levelser input such as proximity
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and contact sensors as well as visual cues. These were ud@edbthe robot through
the environment. Simultaneously, the network learns tdoper this navigation using a
range-finding sensors. The inherent low-level sensorsalfsirain the network on how
to respond to the high-level sensors.

Florian (2006) evolved a fully recurrent spiking neuralwetk to control a simple
virtual agent to seek out, push and the release balls in visagrment. An evolutionary
algorithm was used to calculate the synaptic weights of éteork to accomplish the task.

Barr et al. (2007) implemented a mode of the basal ganglia meuaal processor ar-
ray. Although not directly demonstrated in the hardware@ngation the original software
neural model was capable of performing action selectionvé¥er, there are no inherent
mechanisms for reinforcement-learning and the micro-ohknof the basal ganglia were
predefined by the network.

Merolla et al. (2011) presented a neuromorphic processmalda of playing a game
of pong against a human opponent. This description was éatended by (Arthur et al.,
2012). The network was constructed off-line and once prograd on the hardware re-
mained static. In that, a neural network, consistin@®f neurons, that could also play a
pong style game was created. The network was constructda@tind was demonstrated
on a neuromorphic processing core. The training of the nétwwolved teaching the net-
work to predict different patterns of motion by the puck. lRatthan simply tracking it, like
the networks here, the model would plan where the paddle bmuptaced. The resulting

networks however, are specialized for that task and candagitdo changing environments

once embodied in hardware.
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8.4.2 Playing games
Pong

The learning of channel associations is somewhat arbitnethye examples presented here.
The correlation between input and output populations cafaéh be engineered to have
more complex relationships than a simple pair. As illugtildty the FPS network results,
other combinations can be created as well as mechanismsoi@ imtricate information
processing as well.

The tracking of the puck in the pong networks is reactivehwibvements made based
on the current position in the game. In the future this coheelbbe extended to include
predictive control of the paddle. A recurrent network cdpaif learning these kinds of
associations could be included along side the reactivearksapresented here to achieve
this.

Initially all of the weights would be random. Through thedback mechanisms demon-
strated here the reactive networks can be trained to traclpadiition of the puck. This

learned behavior can then be used as an training signal frékéctive networks.

Neuralstein

First-person shooters have been extremely popular in éigifintelligence (Al) research.
The complex interactions between the environment, gammeegles and multiple players,
challenge non-player controllers in unique ways. This pexpty has even led to competi-
tions, such as the Botprize, where the goal is to create ttst fhoman like” Al controller
(BotPrize, 2012).

Due to the different strategies required to successfully pl modern FPS, traditional

Al domains have dominated (van Hoorn et al., 2009; SchrumMirikulainen, 2010). It
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is the complexity of the task that makes it attractive to edidd modeling. The approach
taken here relies on abstracting some of that complexityyawa the networks become

more capable other aspects of the FPS paradigm can be added.

8.4.3 Future work

These simple feed-forward networks are a satisfactory gisgmploying the SyNAPSE
neuromorphic architecture in embodied modeling. Aloneytban be utilized as config-
urable controllers but their real potential lies in theie @s building blocks in more complex
control systems. We have already demonstrated how thedaecemnnected together in a
simple configuration but in the future these will be combimétth more sophisticated net-
works. For example, recurrent networks can provide, thindegdback, state information
of the system. This basic form of short-term memory can m®tee temporal aspects of a
system’s inputs and allow for more intelligent processing.

Although the performance of the BG direct pathway is slighglver than the LI net-
work for the tasks presented here, it is still an extremebfulsbuilding-block for future
models. Physiologically the mammalian basal ganglia aglsiaction-gating by removing
its inhibitory influence on thalamocortical relay neuronghis allows information from
higher-cortical areas to pass through the thalamus to btiaén areas. This type of action-
gating is replicated by the BG model presented here and adorpea similar function in
larger neural models.

Finally, the feedback for these networks was dependent ndittoned input stimulus
to the reward modulation populations. The games playeddleeaf the critic. In the
future, more sophisticated reward and punishment sigsats) as those in Florian (2007)
and Friedrich et al. (2011), will be implemented to find a geneeward critic and more

efficient controllers.
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Chapter 9

Models of The Basal Ganglia For

Neuromorphic Hardware

The basal ganglia plays a central role in many associatiséemand limbic functions. In
addition, it is an important clinical target in several nogical disorders. While its func-
tional significance is a topic of ongoing research, our auromderstanding has facilitated
the creation of computational models that have contribatacel theories, explored new
functional anatomy and demonstrated results complimgrghysiological experiments.
The utility of these models however, extends beyond thepécagions. In particular in
neuromorphic engineering, where the basal ganglia’s fonalk role in computation is im-
portant for applications such as power efficient autononaments and model-based con-
trol therapies. The neurons used in existing computatiom@dels of the basal ganglia
however, are not amenable for many low-power hardware im@fations.
In this chapter we explore some of these networks using thelsilzhikevich hy-

brid neuron (lzhikevich, 2003). Capable of replicating mar the known dynamics of

the basal ganglia nuclei, hybrid neurons are computatipedficient compared to con-
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ductance based counterparts. Four published models, iggasingle neuron and small
networks of the basal ganglia are created using the simgiachpeuron. These models
successfully replicated the results of the original wopksyiding validation for the hybrid

neuron in biologically faithful models of the basal gangdiad creating a foundation for

future neuromorphic hardware implementations.

9.1 Introduction

Computational models of the BG have proved useful in mang&smpf neuroscience; in-
cluding developing novel theories of Parkinson’s diseaskdeep brain stimulation (Rubin
and Terman, 2004) or testing novel functional anatomy wvegin action selection (Gurney
etal., 2001). Given its prominent role in behavioral fuontas well as its clinical relevance,
models of the BG are important to many different aspects ofaseience application and
research. One of particular importance to this work, is aewarphic engineering.
Neuromorphic engineering is a bottom-up approach to nenoaleling where the sin-
gle neuron dynamics are implemented in hardware specifiatiand analog circuits. The
neurons are then connected to each other through diffexeelslof communication fabric
to create large neural simulations. These low-power agiptio specific options offer not
only a mechanism for simulating large-scale neural modéialso a means of embodying
them in mobile agents. First introduced by Mead (1989), modeanufacturing processes
with higher yield and transistor density have resulted irmairssance for neuromorphic
engineering. This is evidenced by a number of projects sscRACETS/BrainScaleS
(Schemmel et al., 2010), SpiNNaker (Furber et al., 2012)yrdgrid (Gao et al., 2012),
and SyNAPSE (Merolla et al., 2011; Srinivasa and Cruz-Albte2012). Each of these

have different methods of simulating and abstracting nedethe nervous system. How-
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ever, they share the common goal of creating large-scaleahmodels of the nervous
system.

One possible application for these low-power neuromoracessors is in neural
control engineering. The work of Voss et al. (2004) demaitstt one of the first examples
of combining dynamical control theory and electrophysiglavhere the state of a reduced
neuron model was estimated using an unscented Kalman filkes. helped establish the
strategies for observing and controlling the highly noretir dynamics of neural systems.
Although that original application contained only a singéiron and merely estimated the
missing model parameters, subsequent work has shown thstnass of this strategy in
a number of control and estimation paradigms (Abarbanel.e2@08; Ullah and Schiff,
2009, 2010; Schiff, 2010, 2012; Aprasoff and Donchin, 2012)

Closed-loop control of deep brain stimulation (DBS) hagadly proven to be more
effective in the treatment of late-stage Parkinson’s disghen open-loop configurations
(Rosin et al., 2011). Model-based control strategies caenpially provide further clinical
benefit as well as improved power efficiency. A key componepiower-efficiency lies in
the neuromorphic hardware discussed above. In additiergadmputational models of the
basal ganglia capable of capturing the important dynanfi€adinson’s disease need to
be further developed along with more hardware friendly iee1s of those networks.

The individual neurons that comprise the subcortical stimes of the BG have distinct
firing characteristics that are thought to be essential toflinction. These firing pat-
terns are too complex for simple neuron models such as tkg-lagegrate-and-fire (LIF)
(Dayan and Abbott, 2005) and the more complex conductaneedoaodels are difficult
to implement in hardware (Rangan et al., 2010). In order tisfgethe firing requirements
and facilitate the realization of these models in hardwaseeave proposing the use of the

simple hybrid neuron of I1zhikevich (2003).
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Simultaneously lauded for its ability to replicate a muitie of neuronal dynamics
(Izhikevich, 2007a) and criticized for its lack of stabjlifTouboul, 2009), the Izhikevich
simple hybrid neuron appears to be an ideal candidate fpescale biologically realistic
models of the BG. However, its use in existing spiking modiels been sparse and when
employed, only the fast-spiking and regular-spiking moalesused. To justify its use in
developing novel BG theories as well as its inclusion in featneuromorphic hardware,
four published models of the BG are explored using the hybridlel. The focus is on
faithfully replicating both the single neuron and overattwork dynamics while staying
as close to the originally published architectures as ptessAn additional motivation is
to create a foundation for models amenable to both hardwapéementations as well as

model-based control systems.

9.2 Materials and methods

9.2.1 Simple Izhikevich neuron

Hybrid neuron are characterized by a set of continuous m&at spike functions and a
discontinuous after-spike reset. These are derived fronamhycal system theory and are
capable of replicating the firing activity of many corticaurons (Izhikevich, 2007a). The

model is expressed by the simple membrane voltage equation,

dv
o 0.04V2 + 5V + 140 —u + I, (9.1)

a recovery variable,
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and the spike reset equations

) Ve
if V > 30, then

u 4 u+d.

The current/ represents the sum of the total synaptic and externallyiepplrrents.

The synaptic influence on the cell is defined by
Isyn = gzsyn : (Esyn - V) (93)

Whereyg is the synaptic conductance afgl,, is the reversal potential of the synapse. After

the arrival of a spike the synaptic currents are decayeduase

B = g 4 S Wb (- 1), (0.4
In all of the simulations presented here a Euler integratiethod is used with time step
T = 1ms. Often such a large time step can have undesired effectseosidiver recovery
variable. To avoid instability in the model the precise tithe membrane voltage crosses
the peak of30 mV is calculated using the linear interpolation formulanfrézhikevich
(2010):

30 — V(¢)
V{t+m) - V()

tpeak =1+ (95)
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The recovery variabl& updated usingt,... — t) instead ofr. This increases the computa-
tional cost when a spike occurs but maintains an approprjadate ofU/ that is particularly

important in some of the bursting neuron types found in tteabganglia.

9.2.2 Integrate-and-fire-or-burst model

20 mv

MR — 15pA
100 ms

Figure 9.1: Thalamocortical neuron response using IFB model.

The integrate-and-fire-or-burst (IFB) model neuron is gotgnmodel capable of capturing
the burst responses of thalamacortical neurons. The msedkdfined by the differential

equation

dV
m—:I_Iea — I ) 9.6
C dt leak T ( )

and the leak current

Ileak = Gleak (V - Eleak) , (97)
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and the T-type calcium channel current

Ip=gr-hr-H(V = Ey) - (V = Ece+) .- (9.8)

H is the Heaviside function and: is the inactivation variable defined by

hr

When the membrane voltage goes abbyan action potential is fired and the neuron
is reset td/,.. The model is then placed in a refractory periodfons.

The inactivation variablé, controls the burst response of the mode. When the mem-
brane voltage is hyperpolarizéd- deinactivates with timescalg”. When the neuron is
depolarized/r is immediately activated due to the Heaviside function aegirfs to in-
activate with timescale, . This allowsh to essentially build during periods of sustained
hyperpolarization and when depolarized again facilitatests of action-potentials. An

example thalamocortical neuron model is presented in Eigt.
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9.2.3 Modeling basal ganglia nuclei

STN
[ ]
GPe u
TC
R
sl T ;J
SNr
|20 mv
[ ]
120 pA

05s
Figure 9.2: Basal Ganglia neurons. Many of the firing characteristibgeiant to neurons of the BG nuclei
are captured by the simple hybrid model. The model parametszd to achieve these patterns are STR:
(@ = 0.02,b = 0.2,c = —65.0,d = 8.0), STN: (@ = 0.005,b = 0.265,c = —65.0,d = 2.0), GPe: ¢ =
0.005,b = 0.585,c = —65.0,d = 4.0), TC: (@ = 0.002,b = 0.25,c = —65.0,d = 0.05), SNr: (@ = 0.005,b =
0.32,c = —65.0,d = 2.0). Note that the GPi response is not shown here but has sifiniteg characteristics
to the GPe neurons only with a higher basal level of firing.

As described in Chapter 7 there are six nuclei in historicatlets of the BG that can be
separated into multiple pathways. Here, the dual pathwayetis used. These dual path-

ways play an important role in the action selection modeds@nted. Using the Humphries
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et al. (2006) terminology the direct pathway acts as theé@an” mechanism and the
indirect pathway as the “Control” mechanism. Below we diégcthe fire patterns for the

nuclei modeled in this chapter.

Striatum

For the models described here we selected parameters thdtedahe the medium-size
spiny neurons of the striatum. The neurons in Figure 9.2oms$po increases in depolariz-
ing inputs with an increase in firing rate. Notably absentftbe single cell response is the
presence of bistable behavior. Found in vitro, the neurahgal into, the “up-state” and
the “down-state.” These contribute to the responses tadeping currents and in particu-
lar, the long-latency spike-discharges. The simple hytmadiel used here is not capable of
replicating those dynamics, although there are versioristbét can (I1zhikevich, 2007a).
Despite this, the model is still suitable as the bistablipswietermined to be unnecessary

for the networks replicated here (Humphries et al., 2006).

Globus Pallidus External

The GPi neuron model presented in Figure 9.2 are intrirlgieaktive and respond to hy-
perpolarizations with a decrease in tonic firing. Unlike thedels of Rubin and Terman
(2004) the simple hybrid model is unable to replicate theditgon from tonic firing to
bursting in response to sufficient hyperpolarizations sTHawever, did not appear to be a

necessary property to replicate the dynamics of the model.

Globus Pallidus Internal

The firing patterns of the GPi neurons employed here matcbetlod the GPe neurons

presented above. However, they have a higher level of bataitya (Rubin and Terman,
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2004).

Subthalamic Nucleus

The neurons of the STN model used here have spontaneougyacfia around5 — 10
Hz. Physiologically this is due to voltage activatd@ ™ channels. In addition, when a
depolarizing current is applied the STN model responds aitigh-frequency tonic firing
with a quiescent period after sustained depolarizatiore mbdel will fire rebound bursts
in response to hyperpolarizations that are sufficient iretemnd magnitude, Figure 9.2.
Missing from this model are the spontaneous bursts in theralesof inputs as well as
plateau deploarizations as observed experimentally. ifgls hybrid model is incapable
of including all of the STN cell dynamics. However, the firipgoperties of the model

neuron is sufficient to encompass all of those included irotiggnal models.

Substania Nigra pars reticulata

The neuron model firing patterns are similar to those of thE 8Uit with higher level of

basal activity (see Figure 9.2).

Thalamus

The model parameters were selected to have firing patteansratch those of Sherman
(2001). They do not fire spontaneously but when in the tonidenghow an increase in
firing rate in response to larger depolarizing currentshinlbdurst mode when subjected to
sustained hyperpolarizing input the model neurons respetitperiods of bursting that is

dependent on the strength and duration of the applied duigea Figure 9.2).
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9.2.4 A physiologically plausible model of action selectio

Conceptually, action selection is the arbitration of cotmgesignals and the role of the
BG is to select the most appropriate one. The complex cicoit the BG is active in

gating information flow in the frontal cortex and the selestmechanism can affect simple
action all the way up to behaviors and cognitive processiolged and Frank (2009). To
explore that mechanism in a physiologically meaningful vitymphries et al. (2006) con-
nected populations of realistic “spiking neurons” confggliusing the functional anatomy
of Gurney et al. (2001). The biological fidelity of the modelswalidated at the population
level as well as single-unit recordings from networks regting anesthetized or lesioned
conditions. The ability of the model to replicate single reeudynamics under normal con-
ditions similar to Rubin and Terman (2004) or the simulagipresented in Figure 9.2 was
not presented but descriptions of the included dynamice wluded in the appendices.

This was the first network model created for this work.

Selection Striatum Control
Pathway Caudate/Putamen Pathway

.m
Subthalamic Globus Pallidus -
® Nucleus External

Figure 9.3: Action selection network model (Humphries et al., 2006).

The model exploited the concept of competing anatomicahicbis within the BG.
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Three separate channels were constructed using the netivéigure 9.3. Each popula-
tion consisted of 64 neurons with the parameters of Tabla.9Vlost connections of the
model were focused projections where post-synaptic cdinmscwere randomly sampled
within a channel using the probabiligy. = 0.25. However, the diffuse projections listed
in Table 9.1B, spanned all channels and the connection pilitgy. was divided among
each of those. This is consistent with the more diffuse dastfpam the STN (Haber, 2010).

Cortical inputs to the striatum were simulated as Poissodam spikes.



Table 9.1: Parameters for the model of action selection.

A. Neuron parameters

. Lopp
Neural Region a b d (PA)
STR 0.02 0.2 —65.0 8.0 0.0
SNr 0.005 0.320 —65.0 2.0 25.0
STN 0.005 0.265 —65.0 2.0 20.0
GPe 0.005 0.585 —65.0 4.0 5.0
B. Connections
L Synaptic
Source— Destination Conyduc?ance Delay (ms)
Cortical Input— STR 0.2 11
Cortical Input— STN 0.2 6
Striatum D1— SNr 0.12 6
Striatum D2— GPe 0.1 6
GPe— STN 0.025 6
GPe— GPe 0.025 2
GPe— SNr 0.015 6
SNr— SNr 0.015 6
STN — SNr Focused 0.075 2
STN — SNr Diffuse 0.35 2
STN — GPe Focused 0.075 2
STN — GPe Diffuse 0.35 2

C. Synaptic parameters

Parameter Value

Tge 5 (ms)
Tyi 100 (ms)
Eeye 0 (mV)

‘/rest 0 (mV)

224
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9.2.5 The parkinsonian BG and deep brain stimulation

The modeling study of Rubin and Terman (2004) presented tsieeikplanation for the
mechanism of action of deep brain stimulation. In Parkirsdisease there is a marked
loss of dopaminergic cells in the Substania Nigra pars catapd he reduction in tonic and
phasic dopamine onto the BG nuclei results in, among marsr @ihenomena, a rhythmic
synchronization of the major output nuclei of the BG. Witthie computational model this
resulted in a decrease in the ability of thalamocorticalraes to respond to depolarizing
cortical inputs. It was hypothesized that this loss of rdldglity is one of the underlying
causes for many clinical Parkinsonian symptoms.

A. B.
Input DBS

| | S
® ) ® !
el Globus Pallidus Subthalmic @
External Nucleus
° o by o
() x8
(o) (m)
'0
@ Input
Input

Figure 9.4: (A) Network layout of Rubin and Terman (2004). (B) Individm&uron connections.

®( Globus Pallidus |@®

Internal

The network of Rubin and Terman (2004) (RT Model), illustchin Figure 9.4A, con-
sists of four populations: the GPe, STN, GPi and thalamusth \Wie exception of the
thalamus, that contains 2 neurons, each population hasuréme Unlike the action se-
lection model presented above, the RT model maintainedstens network connectivity

that was exactly the same used by Rubin and Terman (20040re=®y4B illustrates the
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connectivity patterns for individual neurons of the netkvor

Table 9.2: Model parameters for Parkinson’s disease model.

A. Neuron parameters

. 1
Neural Region a b C d apPp

J (PA)
GPe 0.005 0.585 —65.0 4.0 5.0
GPi 0.005 12  —65.0 4.0 7.0
STN 0.005 0.265 —65.0 2.0 15.0
TC 0.002 0.25 —65.0 0.05 0.0

B. Connections

Synaptic Conductance Range

Source— Destination Low High
GPe— GPe 0.1 0.2
GPe— STN 0.1 0.2
GPe— GPi 0.3 0.4
STN— GPe 0.2 0.3
STN— GPi 0.5 0.6
GPi— TC 0.02 0.0225

C. Input Parameters

Parameter Value

LM 30 (pA)
dsm 3 (ms)
pPsm 25 (ms)
ipBS 130 (pA)
dpBs 1 (ms)
PDBS 8 (ms)

The parameters used for the neurons of the RT model are list&édble 9.2A. The
synaptic conductances were randomly selected from a natistaibution with the ranges

specified in Table 9.2B. There are two sources of depolayimput current used in this
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model. Both follow an equation of the form

I=i,-H (sm@) . <1 —H (smM)) , (9.9)
Px Px

whereH is the Heaviside function and € {SM, DBS}, SM andDBS, are somatomo-
tor and deep brain stimulation respectively. The valuesl iseeach of these currents is
presented in Table 9.2C. The synaptic delay, imposed byirthdator, was2 ms.

The role of the STN and GPe in this model is to create the pettef activity within
the GPi that are observed experimentally. As discussedealtios GPi is the major output
nuclei and is responsible here for appropriately contigliihe activity of the thalamic
neurons. The role of the thalamus in this case is simplifiedlarrelay station; responsible
for appropriately relaying depolarizing signals from séomaotor inputs.

Under the normal mode of operation the nuclei of the BG predtregular firing pat-
terns and the thalamus is capable of relaying somatomotomiation reliably. In the
Parkinsonian state the GPe and STN nuclei have more regulenionized firing rates and
the thalamic relay fidelity is greatly diminished. Similarthe original work the Parkinso-
nian mode is accomplished by reduciid’e — G Pe to 0 as well as reducing the current
I.pp 1o —19. This follows the procedure of Rubin and Terman (2004) arlzhied on the
activity patterns of Terman et al. (2002). Finally, the éggion of DBS to the STN is used
to restore relay capabilities while in the Parkinsoniatesta

To quantitatively evaluate the performance of the modehbicheof the three states, an

error index measure was introduced in Rubin and Terman {200vs is defined as

E] — mTer (9.10)
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wherem, representing misses, is the number of somatomotor sigrtis/ere not relayed,
b, bad, is the number of responses that result in multipleespénd: is the total number
of stimulus inputs. The error index evaluation was compldtg running20 simulations
of the model in each of the modes described above. Each rutigésn different results
due to the randomly selected connection weights describ&dhle 9.2B. The error index
was calculated for each of the TC cells and a box and whiskeémwsre created to compare

with Rubin and Terman (2004).

9.2.6 Restoring action selection in the Parkinsonian basaglanglia

In addition to exploring different sites of DBS applicatjdhe work of Pirini et al. (2009)
divided the RT model into 2 distinct control channels andeatld striatal current into the
GPi, representing the direct pathway discussed above. Thelnwas capable of demon-
strating simple two channel action selection by way of digition. The successful switch-
ing between channels was lost under Parkinsonian condibiahcould be restored by the
application of DBS into the STN.

The exact two channel network from Pirini et al. (2009) wasstaucted here. The
network layout and individual neuron connections matchexse¢ of Figure 9.4 and the
parameters of Table 9.2 were used with some modificationartdla the change in network
configuration as well as the stochastic input pattern. Tineasomotor input into the TC
cells was reduced t4.5 pA and the durationjs,, was changed td ms. In addition, the
pulse times were randomly selected from an exponentialloligion with a mean ot5 Hz.
The DBS current was reduced 6 pA and the perioghpzs was reduced t@ ms to more
closely match the original work.

The action selection mechanism signaled by the striatunodeted as a current input

into the GPi nucleus. Under normal conditions the currehtesarelo, = 0 pA and
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Iof; = 27 pA. For the Parkinsonian condition the values are sefdp = 0 pA and
Iosr = 22 pAto represent the loss of striatal inputs into the GPi. Estate lastg s before

switching.

9.2.7 Thalamic relay fidelity between the BG and thalmus

Cortex

Globus Pallidus
Internal

Figure 9.5: Correlation network configuration (Reitsma et al., 2011).

Correlated firing in neuronal ensembles is important in hotterstanding informa-
tion encoding and in interpreting functional anatomy (Qohad Kohn, 2011). Correlated
activity in many brain regions has been linked to stimulusodiéng and discrimination,
attention, and motor behavior (de la Rocha et al., 2007). dbfiteon, highly correlated
firing has been associated with pathological conditionghénbasal ganglia in particular,
correlated activity of globus pallidus internal (GPi) nens is associated with Parkinson’s
disease or pharmacological agents causing Parkinsomarcdinditions (Reitsma et al.,
2011).

Reitsma et al. (2011) explored the implications the tempetationships that emerge
from the GPi have on the relay fidelity of the thalamic neurtmsy innervate. In the
Parkinsonian BG the firing patterns become increasinglylagry with pronounced burst-
ing. This synchronous fire rate can have deleterious eftecthe functionality of the BG.

The effect of those patterns of activity have on thalamacalrtelay fidelity was explored
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through correlation analysis of a computational model. I&xpg single cell responses
to correlated inputs is important in understanding how pegpan level effects translate
down to single cells. In addition, this helps in the eludidiabf the important properties of
correlations (Cohen and Kohn, 2011).

One conclusion of that work was that the integrate-andefirburst (IFB) neuron model
demonstrated similar firing patterns and correlation fierts that of a conductance-based
model. This not only strengthened the overall conclusidrib@study but also motivated
the authors to suggest the IFB model as a suitable replacdorahe conductance-based
model in correlation studies. Here, we explore if a simitgult can be accomplished with
the hybrid neuron.

The IFB model achieves the bursting dynamics of TC cellsughothe inclusion of a
T-type calcium channel. When the membrane voltage is hyperiged the inactivation
gate of the channel begins to deinactivate. When the meralm@atage is depolarized the
channel remains activated until the gate is reinactivatédlike the IFB model, the hy-
brid neuron used here does not have an explicit bursting amésim. Instead the recovery
variable is used to put the neuron with the bursting regimehefphase-portrait (Izhike-
vich, 2007a). Reitsma et al. (2011) demonstrated thatadthohe T-current is required to
replicate the physiological spike patterns, it is not neetdedemonstrate transfer of cor-
relations. However, our goal here was to replicate both thysiplogical spike patterns of
the thalamocortical neurons as well as the correlatiorsfeain

The model consists of two spiking thalamocortical (TC) m&srsubjected to inhibitory
input from an engineered GPi signal as well as an excitatgpyti representing cortical
innervations. This is illustrated in Figure 9.5. Each TC noeureceives independently
generated 20Hz Poisson random excitatory inputs. The GRe $mins are generated

by inhomogeneous Poisson rate functions defined(as with a fraction,c, of spikes
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overlapping between each TC neuron. For values of 0 a single spike train with rate
A(t)/c is constructed. Each cell then samples from this spike ttim probability c. For
¢ = 0 two Poisson random spike trains are generated using a comatefunction\(¢).

The model and corresponding analysis was computed usimgitherical programming
language Octave (Eaton et al., 2008). Table 9.3 presentmtlaeneters used in the model.
The simple hybrid neuron of Equation 9.1 is used howevendoeiase the stability of the
simulations under the increased synaptic activity of the & hybrid solution method
from Izhikevich (2010) was used along with the spike peakct&in presented in Equation
9.5. The hybrid numerical method treats the synaptic inffteemplicitly resulting in a

linear dependence on the future value of the membrane el equation is

V() +0.04V2+ 5V + 140 —u+ g(t)E(t) + I

Vit+1) = 9.11
(t+1) e (0.11)
Where the total conductance is

g(t) =>_gi(t) (9.12)

and the total reversal potential is

Et)=)_ %. (9.13)
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Table 9.3: Parameters for the model of correlation transfer.

Parameter Value
a 0.002

b 0.25

c —65.0

d 0.05

Je 0.12

Te 6.0 (ms)
Ve 0.0 (mV)
Ji 0.09

Ti 15.0 (ms)
V; —85.0 (mV)

IFB model

The IFB neuron model was also developed for comparison \Wwetotiginal work. Using

Equation 9.6 and the parameters of Table 9.4 the procedtireezliabove was repeated.
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Table 9.4: Parameters for the model of correlation transfer.

Parameter Value

C., 2. uF/em?
Lopp 0.89 nA/cm?
Gleak 0.035 mS/cm?
gr 0.07 pF/cm?
9i 0.024 uF/cm?
e 0.06 wuF/cm?
Eleak —65.0 mV
Ec, 120.0 mV

E, 0. mV

E; —85. mV

Vh —70. mV

T,j 100. ms

T, 20. ms

V. —68. mV

Vo —50. mV

Te 4. ms

T 15. ms

Input patterns

Consistent with the original work, four different GPi infpatterns are constructed to em-
ulate normal and Parkinsonian conditions observed exgatatly. Samples of the rate
functions are illustrated in Figure 9.6A. The normal inpsitai constan?0 Hz Poisson
random spike train. Similar to the original work the first IRasonian pattern, labeled
oscillatory, is constructed as a sum of 21 sine waves. Theithdhl sine waves have fre-
guencies ranging fromh Hz to 15 Hz with step changes @f.5 Hz between them. These
are weighted by a Gaussian distribution with a meamn(oHz and a variance of.5 Hz;
resulting in thel0 Hz component dominating the rate function. The phase ofitieavgaves
are then randomly shifted and summed together. The reguliimction is then amplified

by 50 Hz and shifted up byl50 Hz. Any negative values are railed to zero. Although



234

constructed differently than those described in Reitsn84 @2, Reitsma et al. (2011), the
resulting function qualitatively matches the samples gmésd there. In addition, the re-
sulting functions exhibited a distinct peakl&t Hz, see Figure 9.6A below, similar to the
original work.

The third pattern, labeled Bursty, consists of a basal leigfing at 70 Hz interrupted
by random bursts stepping4@0 Hz. The duration of each burstis selected from a Gaussian
distribution with a mean 080 ms and a variance afd ms. The time between bursts is
selected from a Poisson distribution with a meann@®ms. The final GPi pattern, labeled
Oscillatory Bursty, is constructed similar to the burstge&owever, the inter-burst-interval
is selected from a Gaussian distribution with a meas0ohs and a variance af) ms. This

results in more periodic bursts.

A . .
Normal Oscillatory Bursty Oscillatory Bursty

80 400 - 500 500

70

GPI firing rate (Hz)

60 0 0 0

GPi Spike Train

v (mv)

W
-80 & ! ) ! ) ! ) ! )

0 500 1000 O 500 1000 O 500 1000 O 500 1000
time (ms) time (ms) time (ms) time (ms)
Figure 9.6: Example GPi spike patterns and TC cell responses for eatteddtr modes for the Izhikevich
model. (A) Example input rate functions. Resulting GPi sgitains, (B), and TC Cell responses, (C).




235

These rate functions are then used to generate Poissonmasyke trains. For the
Izhikevich model examples of these spike trains are preseint Figure 9.6B with the
corresponding TC neuron response in Figure 9.6C. For thentiBBel examples of the
spike trains are presented in Figure 9.7B with the corredipgrresponse of the inactivation
variableh in Figure 9.7C and the TC neuron response in Figure 9.7D.elpatserns were
selected by the authors to replicate firing patterns andathagike rates found in the GPi

under parkinsonian conditions (Reitsma et al., 2011).
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Figure 9.7: Example GPi spike patterns and TC cell responses for eatte ddur modes for the IFB model.
(A) Example input rate functions. (B) Resulting GPi spilarts, (C) Response éfr. (D) TC Cell responses.

TC model spike response

Both interspike interval (1SI) distributions and power sfpa were computed on the model

TC cells for comparisons with the original work. The poweedpa was computed for



236

the TC model spike response as well as the corresponding @Reatical inputs using
the point process multi-taper spectrum analysis from th@Qix software package (Bokil

et al., 2010).

Correlation calculations

The measure of correlation is calculated using the Peasonfelation coefficient. This is
a spike count measurement that compares the number of spiesccur over a window

of lengthT" defined as
cov(ny (T),na(T))

- . 9.14
plt) war(ny(T)) - var(na(T))] 2 (9-14)

Wherecov is the covarianceyar is the variance and, (7') andn.(7") are spike counts at
windowT'.

The correlation coefficient is used to calculate the cotimlasusceptibility. This is
used to quantify the degree to which correlations are teaadfthrough the model. This is

found using the equation

pout(T> = S(T>pm<T) — k. (915)

Wherep;, andp,,; are the GPi input correlation coefficient and the TC outputetation
coefficient respectively.

To demonstrate how sensitive the TC neurons were to coecelaput the correlation
coefficients were calculated fer = 0,0.25,0.5,0.75,1.0 and similar to Reitsma et al.
(2011) a sample bootstrap method was used to generate cadioieervals on the analysis.

For each value of, 30 simulations of were run far00 s each. This resulted itb0 pairs
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of correlation coefficients. A straight line was then fit beem the values qf;,, andp,,,; to

find the correlation susceptibility based on the slope of the line. This was completed over
a range of window sizeg. The150 pairs were then sampled with replacement to generate
a new set correlation coefficients afidalues. This resampling was completed 1000 times

to generat®8% confidence bands for each valuelof

9.2.8 HRLSIm

With the exception of the correlation study, all of the madelere simulated using the
HRLSim neural simulator package (Minkovich et al., 2012Rt$im is the first distributed
GPGPU spiking neural simulation environment. It curresilypports two different point
neuron implementations, the Leaky Integrate-and-Fir&)lohodel and the simple hybrid
Izhikevich model. With an emphasis on high-performance LBigh was developed to
support the modeling efforts of the SYyNAPSE project andagst members. It has also
proven extremely useful in general neural simulation ssidSrinivasa and Cho, 2012;

O’Brien and Srinivasa, 2013).
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9.3 Results

9.3.1 Action selection

40 r STN
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Figure 9.8: Basal activity of the model of action selection. Upper I¢fiie mean rates for the STN, GPe and
SNr qualitatively match the simulated and experimentallte®f Humphries et al. (2006). Remaining plots:
the spike rasters for each of the nuclei are overlaid wittctireesponding spike-count firing rates.

The action selection model of Figure 9.3 was first tuned tochéte original model of
Humphries et al. (2006). Using the model-as-animal styatégsimulations were com-
pleted with different randomly connected networks. Frorwheaf those simulation3 cell
indexes were selected from a normal distribution and theadivectivity rate of the las$
seconds of simulation were computed for those neurons. Tdenmates ané5% confi-
dence intervals were then computed to ensure the activisyinvene ranges as Humphries
et al. (2006). This is presented in Figure 9.8. In addititve, $pike rasters and binned

spike count rate functions are included. The overall meamgfirate results are in good
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agreement with the original work as well as the experimeaesllts referenced there.
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Figure 9.9: Action selection performance. The model is capable of gmjeite selecting the most salient
input between two competing channels (A) as well as threepetimg channels (B).

Using the protocol of Humphries et al. (2006) the abilitylué inodels to appropriately
select the most salient input was first simulated using twthefthree channels. Figure
9.9A illustrates the two channel action selection resutigially the network is at its basal
level of activity with a3 Hz Poisson input. At second the input for channgis increased
to 20 Hz, causing, through disinhibition, the selection of thadrnel. At2.5 seconds d0

Hz cortical input is injected into Channgl The activity of channel is pushed up to its
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basal level of activity and the chanrizbutput is inhibited causing it to be selected. This
selection mechanism is more decisive then the one presentednphries et al. (2006). In
the original work the previously selected channel had areemse in activity that was only
slightly above the selection limit. To build on this resukt tested the selection capabilities
of all three channels, something that was not part of tharaigvork. The results of this
are presented in Figure 9.9B as well as in Figure 9.10 whersyilke rasters of the model
nuclei are plotted with the overlaid spike count rate fumas$i. This is an encouraging result
and suggests that the functional anatomy of the originakwan be extended to more than

three channels.
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STR

GPe

STN
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Figure 9.10: Network response to competing inputs; spike rasters of thmmnuclei of the BG action
selection with the spike count rates overlaid.
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9.3.2 The Parkinsonian BG and deep brain stimulation

Figure 9.11: Simulated recovery of TC relay fidelity. (A) Under normal B&igity the thalamus is capable
of relaying somatomotor inputs. (B) Under parkinsonianditbons the BG nuclei fall into oscillatory firing
patterns TC relay capabilities are greatly diminished. A@Bplication of DBS to the STN restores lost TC
relay fidelity.
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In the normal mode the BG nuclei have irregular firing patemith interspike interval
coefficients of variatior> 1.0. With this irregular pattern of activity the thalamus is abfe
of reliably transmitting the somatomotor signals (see Fegu11A).

In Parkinson’s disease the firing pattern of the BG neurore baen reported to have
regular synchronous firing patterns (Walters and Bergst&@h0). In Figure 9.11B it can
be seen that the BG nuclei begin to fire synchronously. Theomsuof the STN sepa-
rate into two distinct populations with different phasesafsting. The periods of burst-
ing oscillate around Hz which is consistent with synchronous oscillations obsérin
the parkinsonian BG (Walters and Bergstrom, 2010). Thislssonous activity results a
marked loss of thalamic relay. As noted by Rubin and Term@042the GPi activity is
affected by the periods of bursting in the GPe, where the GRidwtherwise fire tonically.

The application of DBS to the STN results in an increaseddirate and a disruption
of the synchronous oscillations of the BG nuclei. This daien in the oscillatory activity

is sufficient to restore the relay fidelity of the thalamuse(Eegure 9.11C).
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Figure 9.12: Error index statisitcs. Allowing the network connectionigies to randomly change over 20
simulations results in the Normal and DBS modes operatitig ss errors then the PD mode.

The results of Figure 9.11 are quantified in Figure 9.12. Heeenormal and DBS
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modes of the model result in EI medians that are comparabligno¥gh the spreads are
somewhat dissimilar neither overlaps with the much higladues measured in the Parkin-

sonian state.

9.3.3 Restoring action selection in the Parkinsonian basaglanglia
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Figure 9.13: Parkinsonian fire patterns result in a loss of accurate @tecapabilities.

The modified RT network of Pirini et al. (2009) puts the theioed concepts of the previous
sections into a dynamical model of action selection. Thelte®f this experiment are
shown in Figure 9.13. Once again the loss of faithful relay ba alleviated with the

application of DBS to the STN.
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9.3.4 BG correlation transfer
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Figure 9.14: Correlation analysis. Spectral power of the GPi input pai€A), excitatory input (B) and
corresponding TC cell response (C). (D) ISI profile of the TEHIE (E) Correlation susceptibility fof =
95ms (F) SusceptibilityS of the TC cells based on the analysis windbw

Firing patterns

Validating the generated GPi input spike trains was coreglél the spectral power anal-

ysis presented in Figure 9.14A. As in Reitsma et al. (2014 Qkcillatory and Oscillatory
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Bursty patterns have clear spectral peak)diiz, while the Normal and Bursty cases have
no obvious peak. As expected the cortical inputs lack a pedke frequency range of
interest (see Figure 9.14B).

The parameters for the model were selected based on the ®Jidah patterns and
spectral analysis. Although the Normal and Bursty spegivalers do peak arourid) Hz
there are oscillations present in both (see Figure 9.14i@3%.i$ contrasted with the cleaner
peaks of the Oscillatory and Oscillatory Bursty cases. ®&hwwever, consistent with the
spectral analysis reported by Reitsma et al. (2011). Therepancies are likely due to
analysis parameters and the way GPi inputs were generatéddaissed below.

There is a clear bimodality to the interspike interval hggton of Figure 9.14D, which
is consistent with the original work. However the first peati0 ms, is lower than th80
ms peak described by Reitsma et al. (2011). This may be a gradwhat model using
a refractory period of ms, possibly resulting in slower bursts. It may also be a pcod
of the way the dynamical correlate of the T-current is predblin the hybrid model. This
would cause the inputs to recruit the bursting regime of tbel@hin a different or perhaps
less efficient way than the IFB or conductance based modetsinReitsma et al. (2011).

Despite the slight differences the firing patterns of therltyimodel in this network
are still in general agreement with Reitsma et al. (2011)that work it was stated that
without the T-current these firing characteristics weré. I8siggesting that the mechanism
for bursting in the hybrid model is sufficient to reveal thebaracteristics. In addition,
the power spectrum peaks suggest a frequency selectiatystiobserved in experimental

paradigms and was suggested to be dependent on the T-diRegtsima et al., 2011).
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Correlation susceptibility

The general susceptibility analysis, Figure 9.14F, qaly matches the results of Re-
itsma et al. (2011) however, the magnitude of the steadg-stdues are consistently lower
than the original work. Similar results were found for ouplementation of the IFB model,
Figure 9.15, suggesting that the discrepancy in the magmuaéithe susceptibility may arise
due to differences in the way the input signals are generdibd correlation coefficients
for T = 95 ms, Figure 9.14E, when fit with a linear curve illustrates difeerent slopes
produced by the four input patterns tested. The Bursty arull®ery Bursty cases here
have input correlation coefficients that are always greatar zero, even when= 0. This
is a product of generating the spike trains using a commoea-tlependent rate function.
In the work of Reitsma et al. (2011) the susceptibility valveach an asymptote around
T = 200 ms. Here for the Normal and Oscillatory cases that plateaaashed much
earlier, around’ = 100 ms. The implications of this are unclear but they do not apfmea
affect the conclusion that the bursty inputs cause an isereacorrelation susceptibility.
In addition, this further supports the conclusion that theelation results of Reitsma et al.
(2011) are independent of model details. That combinedtivdHire pattern results above,

helps validate the use of the simple hybrid model in cori@testudies.
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IFB Response
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Figure 9.15: IFB model correlation analysis. Spectral power of the GBuirpatterns (A), excitatory input
(B) and corresponding TC cell response (C). (D) ISI profilehaf TC Cells. (E) Correlation susceptibility
for ' = 95ms (F) SusceptibilityS of the TC cells based on the analysis windbw

Using the same parameters of (Reitsma et al., 2011) for B@é&tiron model and the input

patterns presented here, we were unable to recreate thespaateal and ISI patterns as

the original paper Figure 9.15B and C. It is unclear wheredifference arises from and
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communications with the original authors did not reveal asea Despite these different
responses, the correlation susceptibility results, Eiguit4 E and F, were extremely close

to the Izhikevich model results as well as the original work .

9.4 Discussion

9.4.1 Previous BG models utilizing the hybrid neuron

There are number of spiking neural models of the basal ganglowever, only a small
subset of those make use of the simple hybrid model and nanparameters that produce
dynamics faithful to the nuclei they are modeling. For exbartpe model presented by
Igarashi et al. (2011) utilized the hybrid model for neurongy in the striatum. However,
they use the expanded form of the hybrid equation. The otli@&mBclei are modeled
using a conductance-based integrate-and-fire model. Madall. (2007) incorporated the
simple Izhikevich neuron into a population based model batrteuron parameters were
selected to achieve single neuron dynamics within the t@gitne described by Izhikevich
(2003). Latteri et al. (2011) explored the synchronizatbaracteristics of a population
of coupled neurons. A single type of Izhikevich model wasdus&th the simulations
matching both experimental results and model results basdtie Morris Lecar neuron
model. Although this model has been shown to phenomendatgieplicate the spiking
dynamics of most neuron types, there have been no spikingimotithe basal ganglia that
attempt to use the hybrid model parameters that produckesiegron dynamics of the BG

nuclei.
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9.4.2 Physiological model of action selection

An interesting result of this work that was absent from Hungshet al. (2006) was the
use of a neuron model that could replicate experimentalmyesat both the single neuron
and population levels. Even with the added current soured_tR neuron employed by
Humphries et al. (2006) is unable to completely replicate cbmplex fire patterns pre-
sented in Figure 9.2. It was argued that the most relevardrdigs are included and given
that the model of Humphries et al. (2006) was able to re@ieaperimental results, it can
be argued that the individual neuron dynamics may not bessacg However, as illus-
trated by the results in Figure 9.9, the model presentedwiaseable to not only selected
the most salient input but also drive the activity of the ppagly activated channel clearly
away from the selection limit. The selection results présgiy Humphries et al. (2006)
as well as by independent testing of the model (not presgdedonstrated a sufficient but
modest increase in the activity of the previously selectehoel. The increased activity
of our model is large enough to push the previous channel tueitk basal level of firing;
reducing the possibility of selecting undesired or muétiphannels. The mechanism for
the improved selection capabilities is unclear and remaiftsus of future studies. In ad-
dition, in the future this model will be extended to includ@eger number of channels to
determine how feasible it is to scale beyond the three pteddrere.

The original rate based model of Gurney et al. (2001) was edes into the spiking
domain by Stewart et al. (2010) using LIF neurons and the &letingineering Frame-
work (Eliasmith and Anderson, 2003). It was then expandeddinde both action selec-
tion and reward learning (Stewart et al., 2012). The conthlinaof action-selection and

reinforcement-learning is another aspect of this model \ae o explore.
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9.4.3 The Parkinsonian BG

Rubin and Terman (2004) offered the first explanation forghedoxical therapeutic ef-
fects of DBS in a Parkinsonian BG. The simplicity of the mocdembined with the com-
prehensive mathematical analysis has made it a seminaliwd® modeling. The data
driven extension of this work presented by Guo et al. (2008h&r supported these results
and linked its theories to experimental recordings. A sam@xtension was performed by
Meijer et al. (2011) where the relay fidelity of a single TC r@uin response to differ-
ent DBS parameters was explored. Similarly, Dorval et @1 used the RT model to
compliment human subject experiments exploring the regylaf DBS inputs.

The majority of these studies supported the theory thatlasay inputs into the tha-
lamus from the GPi negatively affect relay fidelity of thelt#maus. In addition, constant
inputs from the GPIi, arising from DBS application, resultmmore effective relay in the
thalamus (Rubin et al., 2012).

There have been a number of studies that have extended theoB8l o explore the
therapeutic effects of different DBS locations, protocatsl strategies (Hahn and Mcin-
tyre, 2010; Guo and Rubin, 2011; Agarwal and Sarma, 2012)eflsas closed loop con-
figurations (Feng et al., 2007) and medicated states (FE00§). Similarly, the inverse
relationship between frequency and stimulus amplitudémically effective DBS has been
explored with the RT Model (Cagnan et al., 2009). In additibe effects of Parkinsonian
symptoms and reduced levels of dopamine on action selelctiva been researched with

the RT model (Leblois et al., 2006; Pirini et al., 2009).
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Future Work

Figure 9.16: Simulated recovery of TC relay fidelity with 6Hz Parkinsangctivity. (A) Under normal BG
activity the thalamus is capable of relaying somatomotpuis. (B) Under Parkinsonian conditions the BG
nuclei fall into oscillatory firing patterns TC relay capltiés are greatly diminished. (C) Application of
DBS to the STN restores lost TC relay fidelity.
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Preliminary searches of the parameter space have revéaethts model can replicate a
number of different states that match experimental resuttsout modification to the net-
work structure. Figure 9.16 demonstrates a model with lasicihs around Hz. The error
analysis, Figure 9.17, reveals similar results to4héz model presented here. The con-
cept that the parameter choice can move this model intardiffgoathological conditions is
novel in basal ganglia modeling. We plan to explore thisiertin future studies. The re-
sults of which could in fact merge previously divergent thie®of the nature of Parkinson’s

disease or possibly reveal serious deficiencies in thesenemodels.
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Figure 9.17: Error index statisitcs for 6Hz model. Allowing the networdnmection weights to randomly

change over 20 simulations results in the Normal and DBS sogerating with less errors then the PD
mode.

9.4.4 Thalamic relay fidelity between the BG and thalamus

The correlation study of Reitsma et al. (2011) highlighteat ta number of point neuron
models were capable of demonstrating how the pattern ofyfinnthe GPi could affect
correlation transfer in the thalamus. With this aspect efdtudy a similar result, that firing
patterns observed in the Parkinsonian BG result in incokasgrelation susceptibility of

the thalamus was found. This could provide an explanatiosdme of the pathological
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hallmarks of Parkinson’s disease.

Although it was shown that the T-current, required for TCnoeubursting, is responsi-
ble for the spike pattern of the model, it does not appearve ha effect on the correlation
transfer (Reitsma et al., 2011). Here however, we were abteeonstrate both similar
spiking patterns as well as similar correlation susceliiftas the models with higher bi-
ological fidelity. These results open up a number of futuueliss employing the hybrid
model. This includes a frequency space analysis of the latioe transfer as well as a
more thorough mathematical analysis of the relationshigwéen GPi inhibition and spike

correlation.

9.4.5 BG models in neuromorphic hardware

The complexity of the neuron models explored in the origstaties require a level pop-
ulation specificity that is undesirable in generic hardwarplementations. Although the
LIF neurons of Humphries et al. (2006) are ideal for neurgrhir hardware the gated
synaptic currents as well as the piecewise calcium curkeotsd require circuitry specific
to a nuclei type and would greatly diminish the utility of athaare system.

The motivations for embedding BG models in hardware sysigoniseyond the obvi-
ous applications to intelligent agents and neurorobotidsas been shown that the model
based control concepts introduced in Section 9.1 have a euoflxlinical and practical
applications (Schiff, 2012). In addition to the control &ya computations are the numer-
ical calculations required for simulating the model aspégd¢he observer. Combining the
control system with neuromorphic hardware, perhaps in tesy®n chip, would greatly
reduce the power consumption and provide a solution apiategor portable realization.
As emphasized in Schiff (2010), even if the results of clggime loop are a significant

reduction in battery life the model-based paradigm wouldéeeficial. 1deally, extended
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battery life will be accompanied by clinical improvementsiastudies cited here support

the presence of both in closed-loop strategies.
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Figure 9.18: Simplified example of how these models fit in a model basedrobBBS paradigm.

Model based or model predictor control systems work as sstienators where the
dynamics of the model are used to predict the state of thewusystem. That prediction
is then corrected with new measurements. These allows uedoporate the predictions
of the system’s state as well as sensor estimates with theeaaor information to get
a better estimate of the actual state. Figure 9.18 is a diegploverview of how these
models would fit into such a control system. This is a briefnegle of how these models
and neuromorphic hardware fit in with model based contratsgies, for a more extensive
review see Schiff (2012).

To quantify the energy efficiency of neuromorphic hardwagreyer estimates were

computed for the models presented here. The details of hesetlwere computed are
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included in Appendix 1. The comparison with three commeiadfathe-shelf components,
Figure 9.19, illustrates the tremendous energy advantagemorphic hardware has over

the current hardware.
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Figure 9.19: Power estimate for a model on a particular hardware, top.rgyneger spike for the model,
bottom. (A) Estimates for Action selection model of Sectth@.4. (B) Estimates for Parkinsonian model
of Section 9.2.5. The hardware used for comparison was atdruentral processing unit (CPU), field pro-
grammable gate arrays (FPGA),graphical processing uiit)Gind sample neuromorphic hardware (NH).
The neuromorphic hardware is consistently lower in bothmder and and energy per spike for both neural
models. The details for this are included in Appendix B.

There are a number of issues, however, beyond implementiffaulties that need to
be resolved before model-based control strategies willeorseful. The level of realism
required in the neuron model is still unclear at this poirthi (2010) was able to demon-
strate model-based control of DBS using the simple neurgaleémentation of Rubin and
Terman (2004). Although computationally cheaper than thlecbnductance based mod-

els this still suffers from the problems discussed aboveodichl next step in this work
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will be to show that the simple hybrid neuron can also be &ffeecn model-based control
strategies of DBS.

These strategies may also prove efficacious in brain compuefaces (BCl). Rather
than contributing to the dynamic changes in brain dynanB€3, applications would be
used in estimating state and decoding measurements. Thisdscept that, although
promising, has proven difficult to achieve (Schiff, 2012pw-power realizations of these
systems, as suggested here, offer a cost-effective otiBCatheories mature.

Finally, the most important point on the study of neural colrgngineering is that often
the best model is not the most physiological one, but the lnetebiest reduces error (Schiff,
2012). This is important because focusing too much on madiedj@acy may take away
from the more important task of producing better therapies.important question that
will need to be answered in this case is, how detailed does a&®ork model need to
be in order to prove effective in estimating pathologicatditions? The next step in this
work is to begin developing strategies based on the theselsiadd the control theoretic
approaches of Voss et al. (2004), Schiff (2010), and Schifi).

Ultimately, until models are capable of predicting theratpeoutcomes, either through
realistic biological results or through a dimensionaliégguced interpretations, the patho-

logical BG models will remain just a compliment to physialoa) experiments.

9.4.6 Conclusions

The models utilizing the simple hybrid neuron presente Imealy offer a mechanism for
revealing mathematical details of BG function and dysfiamcthat are hidden by the com-
plexity of other models. An immediate extension that hights that concept is in the
parameter exploration of the RT model. The computatiorfadiefcy of the network pre-

sented in Section 9.2.5 has allowed us to begin exploringpirameter space using a
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commodity computing cluster. Sweeps can be completed irshamiopposed to months of
computing it would take to explore the original RT Model. Wepke to present details of
this in future publications.

Using the simple hybrid neuron in such small networks and/oey biologically sig-
nificant meaning from them can be unreliable. Care must bentakhen interpreting the
results in the context of both pathological conditions a8 aclinical therapies. The tra-
ditional niche for the simple model has really been in lasgale modeling. The more bio-
logically realistic conductance based neuron models anergly recommended for single
and small-scale network studies (Izhikevich, 2007a). kiitawh to those presented above,
one of the primary motivations for using the simple modelti¢he intention to construct
large-scale models of the BG. This work presents the foumasfor those future studies
and the results demonstrate that the hybrid model is cadloi@pturing many of the rel-
evant BG responses and dynamics. These studies are meamptiroent experimental

research as well as the more detailed modeling efforts.
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Chapter 10

Discussion and Future Directions

Future extensions of this work will focus on exploring hove tanatomy that has been
historically ignored in basal ganglia models can influereereward related firing leading
to dynamic models of action-selection. This includes thetext specific firing of the
pedunculopontine tegmental nucleus onto the dopamingygiems of the basal ganglia as
well as a new theories of the functional anatomy of the basaglip. The combination of

theories that will be integrated are outlined below.

10.1 The role of dopamine as a neuromodulator

At the D1 receptors dopamine plays a contrast enhancersopgressing activity in less
active cells while enhancing activity in already activds€€Cohen and Frank, 2009). How-
ever, at D2 type receptors dopamine has an inhibitory effébe SNc has a tonic level
of activity that creates a constant release of dopamine erstiiatum. That release is
phasically enhanced by unexpected reward and reduced wherpected reward does

not arrive (Schultz et al., 1997). One theory for how theseattyic changes in dopamine



259

release can affect reward learning rely on the parallelvpayis of the traditional model
(Cohen and Frank, 2009). Considering this, during an urnergdereward the phasic in-
crease in dopamine will enhance the response of active ngeumdhe “Go” pathway, thus
encouraging long-term potentiation through Hebbian stiogasticity. While the less ac-
tive neurons of the D1 “Go” pathway will be further depres®gdong-term depression
mechanisms. Similarly, during drops in dopaminergic naewactivity the neurons of the
“No-Go” pathway will have a reduction in dopamine modulaitgtibition at D2 receptors.
This increase in activity promotes long-term potentiation

There are a number of inconsistencies in the current uradetstg of dopamine’s role
in RL. Two in particularly are relevant here. (i) The steygued response and latency of
phasic dopamine release has an on-rate and duration tlzestés than it takes to both at-
tend to and appreciate a rewarding stimulus (Redgrave,&Cdl0). This implies that the
dopaminergic response will have finished before the rewgrdtimulus can be acknowl-
edged. (ii) Dopamine neurons also produce a phasic responseexpected stimuli that,
although novel, have no reinforcement consequences (Reglgt al., 2010). In addition,
the afferent information from the superior colliculus magyletter suited for assessing the
agency of a stimulus as well as the novelty of the actionsrésilted in an unpredicted
stimulus, rather than a processed representation of it(lRed and Gurney, 2006). Given
that sensory information, and the level of processing theesar colliculus is capable of
providing to the the midbrain dopaminergic neurons, it igenikely that they will be no-
tified that an event has occurred as opposed to the detaliabévent. This theory implies
that the BG is involved in predicting the error in sensorpmfation and whether or not the
agent was responsible for a discrepancy in that prediciibe.concept of “sensory predic-
tion error” places less burden on the sensory processitas déinan the “reward prediction

error” hypothesis.
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10.2 New functional anatomy

The early models of the BG organized the flow of informationlosed parallel paths. The
BG was considered a pass-through structure where infoosma#s processed and returned
to the signaling cortical area. Recent studies have shoamntiie BG can no longer be
thought of this way (Obeso and Lanciego, 2011). This is supddoy the acceptance of
the hyper-direct pathway and the subcortical innervatwescribed below. In addition,
recent experimental evidence has shown that the connedtiom STN to GPi may not
have the sharpened projections that are a hallmark of thgitnaal BG model. Rather then
the GPe transmitting its influence by way of the STN it is nowdwed that information is
translated directly to the GPi through more focused effiecennections. In addition, the
STN influence on the GPi is now believed to act as a global nadutue its more diffuse
projections to GPi (Cohen and Frank, 2009). The dopamioe&fjerents into the other
structures of the BG also runs counter to the traditional B&leh (Obeso and Lanciego,

2011).

10.3 Subcortical connections

There are large number of subcortical connections with {Geliat have historically been
neglected in neurocomputational models. Decerabratewdisre the entire brain behind
the superior colleculus is removed, still exhibit simplé@t selection; such as performing
coordinated feeding movements Humphries et al. (2007 d¢tion selection capability in
the absence of the major BG afferents suggests that thesalacertical correlates to simple
action selection. In addition, the role of other subcotiicuences has been demonstrated

empirically Winn et al. (2010); Norton et al. (2011)
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10.3.1 Pedunculopontine tegmental nucleus

The pedunculopontine tegmental nucleus (PPN) is a sulzabstructure often associated
with orienting movement(Gerfen and Bolam, 2010). It hasnemtions to both the brain-
stem and the basal ganglia (Winn et al., 2010). The recipamaections to the BG are
made to the striatum by way of the different thalamic nucte ¢he dopaminergic nuclei
of the VTA and SNC, as well as directly to the BG nuclei thatude, SNr, STN, GPe and
GPi. The PPN has been shown to encode reward stimulus inxtatépendent manner
(Norton et al., 2011). However, unlike the VTA and SNc the RRi¢s not appear to en-
code the prediction of a reward but rather its consumptiarti®h et al., 2011). In addition,
the duration of PPN reward response can be as long as 1000npswed to the 70-100ms
bursts observed in the SNc and VTA (Norton et al., 2011). Bsponse of PPN neurons
also appears to be dependent on the context transmittechbgryesystems (Norton et al.,

2011).

10.3.2 Lateral habenula

The lateral habenula (LHb) is an epithalamic structure thassociated with the negative
control of motivation (Bromberg-Martin and Hikosaka, 201avezzi and Zahm, 2011).
Appropriately, the LHb shows a decrease in basal levels ioigfin response to rewards
and reward-predicting cues and increases firing in resptingexious or omitted stim-
ulus (Bromberg-Martin and Hikosaka, 2011; Lavezzi and ZaBf11). Neurons in the
LHb has been shown to respond to the prediction of rewamimétion sensory cures as
well as errors in primary rewards themselves (BrombergtiMand Hikosaka, 2011). In
addition, it has been shown that LHb neurons would increaseity when it was learn-

ing that a reward was being withheld (Bromberg-Martin anklddaka, 2011). It has long
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been theorized that the inhibitory projection neurons eflthib supress the activity of the
dopaminergic neurons of the midbrain (Lavezzi and Zahm,1pOHowever, there are a
number of timing and response characteristics that runteoto that theory. In addition,
the majority of LHb neurons that do project to the midbraia glutamatergic (Lavezzi
and Zahm, 2011). It wasn't until the discovery of the mesap@restromedial tegmental

nucleus that these observations had an explanation.

10.3.3 Mesopontine restromedial tegmental nucleus

The mesopontine restromedial tegmental nucleus (RMTgewglyndiscovered structure
located behind the VTA. It is densely packed with GABAergitibitory neurons that

receive dense glutamatergic connections from the LHb. Téjemoutput projections of the
RMTg are to the VTA and SNc. In addition, there are robust eations to the PPN, dorsal
raphe nucleus, pontine and medullary reticular formatlaavézzi and Zahm, 2011). The
current theory is that the RMTg acts as a functional inhilgit@lay for the LHb, among

other areas. This is support by investigations demonsgrdtiat the RMTg responds to

adverse stimuli but does not respond to rewarding stimavézzi and Zahm, 2011).

10.3.4 The agency hypothesis in reward learning

The idea that the BG is involved with reinforcement learniRg) is most often attributed
to the seminal work of Schultzt al. (1997)(Schultz et al., 1997). In that work the phasic
changes in tonic firing of dopaminergic neurons in responsenexpected, noxious or
expected but absent stimuli, was observed in the superilicidas. This has become an
accepted basis of RL in neuroscience (Redgrave et al., 20d6)vever, Redgrave and

colleagues argue that there is enough contradictory egedemsupport a reevaluation of
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that idea(Redgrave and Gurney, 2006; Redgrave et al., 2008)

The agency hypothesis, discussed above, proposes thaGtlogdiitry is more suited
to determining if the agent is the likely cause of the unpresdi event. Then through neural
plasticity the appropriate novel actions can be reinfor@@edgrave et al., 2010). In this
theory there are three afferent signals to the striatunSgijsory information is projected
to both the SNc as well as the striatum by way of the thalamuger@Ghe timing of these
two signals they should converge on the striatum. (ii) Cetote information is sent from
the higher cortical structures to communicate the currexté ©f the agent. (iii) There is a
motor-copy that is sent via fibers that connect to motor anehpotor areas in the medulla
and spinal cord.

This hypothesis fits with the well known timing of dopaminéeese in the BG. How-
ever, it fails to provide a satisfactory answer for wheredhmp in dopamine activity initi-
ated during harmful or noxious stimuli. Part of this futurenwis to explore the possible
role of the subcortical structures described above to sieyfcan fill this theoretical gap

in the agency hypothesis.

10.4 Bringing sensory information together

In the traditional model of the basal ganglia sensory feeklsacommunicated through the
SNc only. However, this can only account for phasic respptseinexpected rewarding
stimuli. By introducing the sub-cortical structures reveel above this aim is attempting to
elucidate the neural mechanisms behind those unexplagspdnses. Given the reliance
of the agency hypothesis on sensory information and theraapevidence that the sub-
cortical structures described above all participate inréiaying of sensory information,

the overall performance of the RL/AS system should be imgadoVT his evidence can be
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summarized as:

e The LHb responds to errors in the prediction of reward-imfation in sensory cues
Bromberg-Martin and Hikosaka (2011).

e RMTqg relays the error information from sensory cues proegsy the LHb (Lavezzi
and Zahm, 2011).

e The reward correlates of the PPN appear to be sensory basewiit al., 2011).

The usefulness of this is supported by the reliance the ggeypothesis has on sen-
sory feedback. The combination of the proposed functionalamy, as well as subcortical
connections, with novel theories of reward-learning igqueito this project. The computa-
tional complexity of the agency hypothesis is not only cetsit with current understand-

ing of RL but also facilitates using this model in an embodigént.

10.5 The Integration of action-selection and
reinforcement-learning

These concepts will be incrementally merged with the mogledsented in this paper. First
the model of Section 9.2.4 will be modified to emphasize the fenctional anatomy
described above. The more prominent roles of the GPe and BdNdsimprove the overall
stability and extensibility of the model.

The simple models from Chapter 8 will then be extended toa®rghe agency hypoth-
esis. Although these models ignore the full structure ofBlethe integration of sensory,
motor and contextual information can be included. Such Emmdels will make the task
of exploring, tuning and validating the agency hypothesisariractable.

The subcortical afferents of the LHb, RMTg and PPN will ireggd into both of these
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modeling tasks. This will provide increased stability adlwas a neural correlate for pun-

ishment signals; improving overall task performance.



266

Bibliography

Abarbanel, H. D. I, D. R. Creveling, and J. M. Jeanne (2088).JEstimation of parame-
ters in nonlinear systems using balanced synchronizalbgs. Rev. E 77016208.

Agarwal, R. and S. Sarma (2012). The effects of dbs patterimmeal ganglia activity and
thalamic relayJournal of Computational Neuroscience,3%1-167.

Aprasoff, J. and O. Donchin (2012). Correlations in statesgran cause sub-optimal adap-
tation of optimal feedback control modeldournal of Computational Neuroscience, 32
297-307.

Arena, P., L. Fortuna, M. Frasca, and L. Patane (2009, febgrning anticipation via spik-
ing networks: Application to navigation controNeural Networks, IEEE Transactions
on 2Q2), 202 -216.

Arent, A. and T. Costa (2012). Artemis entity system frameawo http://www.
gamadu.com/artemis/ . Accessed: 8/15/2012.

Arthur, J., P. Merolla, F. Akopyan, R. Alvarez, A. CassidyChandra, S. Esser, N. Imam,
W. Risk, D. Rubin, R. Manohar, and D. Modha (2012, june). &uigy block of a pro-
grammable neuromorphic substrate: A digital neurosyoagare. InNeural Networks
(IJCNN), The 2012 International Joint Conference pp. 1 —8.

Atallah, H. E., M. J. Frank, and R. C. O'Reilly (2004). Hipmwapus, cortex, and basal
ganglia: Insights from computational models of compleragnkearning systemd\eu-
robiology of Learning and Memory 82), 253 — 267.

Barr, D., P. Dudek, J. Chambers, and K. Gurney (2007, augipldmentation of multi-
layer leaky integrator networks on a cellular processayarin Neural Networks, 2007.
IJCNN 2007. International Joint Conference,@p. 1560 —1565.

Bergman, H., A. Zaidel, B. Rosin, M. Slovik, M. Rivlin-Etzi9 S. Moshel, and Z. Israel
(2010). Pathological synchrony of basal ganglia-cortieivorks in the systemic mptp
primate model of parkinson’s disease. In H. Steiner and K.séng (Eds.)Handbook
of Basal Ganglia Structure and Functipxolume 20 ofHandbook of Behavioral Neu-
rosciencepp. 653 — 658. Elsevier.



267

Bezard, E., G. Porras, J. Blesa, and J. A. Obeso (2010). Guwapey mechanisms in
experimental and human parkinsonism: Potential for newagties. In H. Steiner and
K. Y. Tseng (Eds.)Handbook of Basal Ganglia Structure and Functidelume 20 of
Handbook of Behavioral Neurosciengg. 641 — 652. Elsevier.

Bilas, S. (2007). A data-driven game object systehitp://scottbilas.com/
files/2002/gdc%5Fsan%5Fjose/game_objects_slides.pdf . Accessed:
8/15/2012.

Boahen, K. A. (2000). Point-to-Point Connectivity Betwddauromorphic Chips Using
Address-EventsEEE Transactions on Circuits and Systems ()7 416—-34.

Bokil, H., P. Andrews, J. E. Kulkarni, S. Mehta, and P. P. ®i{2010). Chronux: A
platform for analyzing neural signaldournal of Neuroscience Methods 12, 146 —
151.

Bolam, J., J. Hanley, P. Booth, and M. Bevan (2000, MAY). $iitaorganisation of the
basal gangliaJOURNAL OF ANATOMY 19Bart 4), 527-542.

BotPrize (2012). The 2K BotPrizehttp://botprize.org/index.html . Ac-
cessed: 10/16/2012.

Bower, J. and D. Beeman (1998)The Book of GENESIS: Exploring Realistic Neural
Models with the GEneral NEural Simulation Syst@hed.). New York: Springer-Verlag.

Bower, J., D. Beeman, and M. Hucka (200Zhe Handbook of Brain Theory and Neural
Networks Chapter GENESIS Simulation System, pp. 475-478. CaméyibitA: The
MIT Press.

Brette, R., M. Rudolph, T. Carnevale, M. Hines, D. BeemarBawer, M. Diesmann,
A. Morrison, P. Goodman, F. Harris, M. Zirpe, T. Natschlager Pecevski, B. Er-
mentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vievill&. Muller, A. Davison,
S. El Boustani, and A. Destexhe (2007). Simulation of neksaf spiking neurons:
a review of tools and strategie¥ournal of computational neuroscience(33 349-398.

Bromberg-Martin, E. S. and O. Hikosaka (2011). Lateral imalteeneurons signal errors in
the prediction of reward informatioNat Neurosci 1), 1209 — 1216.

Brown, J. W., D. Bullock, and S. Grossberg (2004). How laminantal cortex and basal
ganglia circuits interact to control planned and reactaecadesNeural Networks 1{#@),
471 -510.

Burgsteiner, H. (2006). Imitation learning with spikingunal networks and real-world
devices.Engineering Applications of Artificial Intelligence @@, 741 — 752.



268

Burkitt, N. (2006, June). A review of the integrate-and-filauron model: I. homogeneous
synaptic inputBiol. Cybern. 951-19.

Cagnan, H., H. G. E. Meijer, S. A. Van Gils, M. Krupa, T. Heidd, Rudolph, W. J.
Wadman, and H. C. F. Martens (2009). Frequency-selectifitythalamocortical relay
neuron during parkinsons disease and deep brain stimajadccomputational study.
European Journal of Neuroscience(3), 1306-1317.

Chakravarthy, V., D. Joseph, and R. Bapi (2010). What do éisalganglia do? a modeling
perspectiveBiological Cybernetics 1037-253.

Chang, S.-Y., Y. M. Shon, F. Agnesi, and K. Lee (2009, septlicrothalamotomy effect
during deep brain stimulation: Potential involvement oéiagisine and glutamate efflux.
In Engineering in Medicine and Biology Society, 2009. EMBC20&nhnual Interna-
tional Conference of the IEEpp. 3294 —3297.

Chorley, P. and A. K. Seth (2011). Dopamine-signalled remaedictions generated by
competitive excitation and inhibition in a spiking neuratwork model. Frontiers in
Computational Neurosciencé®.

Cohen, M. (2008). Neurocomputational mechanisms of retefment-guided learning in
humans A reviewCognitive, Affective, & Behavioral Neurosciencel83—-125.

Cohen, M. R. and A. Kohn (2011, Jul). Measuring and interpgeteuronal correlations.
Nat Neurosci 147), 811-819.

Cohen, M. X. and M. J. Frank (2009). Neurocomputational nedebasal ganglia func-
tion in learning, memory and choicBehavioural Brain Research 1@9), 141 — 156.

Crook, S., P. Gleeson, F. Howell, J. Svitak, and R. SilveD730 Morphml: level 1 of the
neuroml standards for neuronal morphology data and moeeifsgation. Neuroinfor-
matics §2), 96-104.

Cruz-Albrecht, J., M. Yung, and N. Srinivasa (2012, june).neEy-efficient neuron,
synapse and stdp integrated circuitBiomedical Circuits and Systems, IEEE Trans-
actions on §3), 246 —256.

DARPA (2012). Synapse broad agency announcement (baaljaBa https://www.
fbo.gov/spg/ODA/DARPA/CMO/BAA08-28/listing.html

Davison, A. P, D. Brderle, J. M. Eppler, J. Kremkow, E. MullB. Pecevski, L. Perrinet,
and P. Yger (2009). Pynn: a common interface for neuronalorét simulators.Fron-
tiers in Neuroinformatics@.1).



269

Dayan, P. and L. F. Abbott (2005Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systemghe MIT Press.

de Camargo, R. Y., L. Rozante, and S. W. Song (2011). A mpilti-glgorithm for
large-scale neuronal network€oncurrency and Computation: Practice and Experi-
ence 28), 556-572.

de la Rocha, J., B. Doiron, E. Shea-Brown, K. Josic, and AeR¢2007, Aug). Correlation
between neural spike trains increases with firing rikature 4487155), 802—806.

Demirkol, A. and S. Ozoguz (2011, june). A low power visi implentation of the izhike-
vich neuron model. IMNew Circuits and Systems Conference (NEWCAS), 2011 IEEE
9th Internationa) pp. 169 —172.

Diesmann, M. and M. Gewaltig (2002). Nest: An environmemtrfeural systems sim-
ulations. Forschung und wisschenschaftliches Rechnen, &gtizum Heinz-Billing-
Preis 5843-70).

Diesmann, M., M.-O. Gewaltig, and A. Aertsen (1999). Stadstgpagation of synchronous
spiking in cortical neural network$Nature 402 529-533.

Djurfeldt, M. and A. Lansner (2007). Workshop report: 1stfiworkshop on large-scale
modeling of the nervous systervailable from Nature Precedings

Dorval, A. D., A. M. Kuncel, M. J. Birdno, D. A. Turner, and W. NGrill (2010). Deep
brain stimulation alleviates parkinsonian bradykinesiadgularizing pallidal activity.
Journal of Neurophysiology 102), 911-921.

Duan, B., W. Wang, X. Li, C. Zhang, P. Zhang, and N. Sun (20%t,)d Floating-point
mixed-radix fft core generation for fpga and comparisorhvgpu and cpu. IrField-
Programmable Technology (FPT), 2011 International Cosfee onpp. 1 —6.

Eaton, J. W., D. Bateman, and S. Hauberg (208U Octave Manual Version Bletwork
Theory Limited.

Eliasmith, C. and C. H. Anderson (2003)leural engineering: Computation, representa-
tion, and dynamics in neurobiological syster@ambridge, MA: MIT Press.

Eppler, J., H. Plesser, A. Morrison, M. Diesmann, and M.-@waltig (2007). Multi-
threaded and distributed simulation of large biologicalne@al networks. In F. Cap-
pello, T. Herault, and J. Dongarra (EdRecent Advances in Parallel Virtual Machine
and Message Passing Interfadélume 4757 ot ecture Notes in Computer Scienpg.
391-392. Springer Berlin / Heidelberg.



270

Fahn, S., D. Oakes, |. Shoulson, K. Kieburtz, A. Rudolph, Ang, C. Olanow, C. Tan-
ner, and K. Marek (2004). Levodopa and the progression dfipson’s diseaseNew
England Journal of Medicine 3%24), 2498-2508.

Fall, C., E. Marlan, J. Wagner, and J. Tyson (20@29ymputational Cell BiologylAM.

Fan, Z., F. Qiu, A. Kaufman, and S. Yoakum-Stover (2004, n@pu cluster for high per-
formance computing. ISupercomputing, 2004. Proceedings of the ACM/IEEE SC2004
Conferencepp. 47.

Feng, X.-J., E. Shea-Brown, B. Greenwald, R. Kosut, and HitR42007). Optimal
deep brain stimulation of the subthalamic nucleusa contipot study. Journal of
Computational Neuroscience 2365-282.

Fidjeland, A. and M. Shanahan (2010, july). Acceleratedusittion of spiking neural
networks using gpus. INeural Networks (IJCNN), The 2010 International Joint Con-
ference onpp. 1 -8.

Florian, R. (2006). Spiking neural controllers for pushigjects around. In S. Nolfi,
G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco, Méyer, O. Miglino, and
D. Parisi (Eds.)From Animals to Animats,90lume 4095 ot ecture Notes in Computer
Sciencepp. 570-581. Springer Berlin Heidelberg.

Florian, R. V. (2007, 6). Reinforcement learning throughduation of spike-timing-
dependent synaptic plasticitieural Computation 1®), 1468—-1502.

Frank, M. J. (2005). Dynamic dopamine modulation in the bgaaglia: A neurocom-
putational account of cognitive deficits in medicated andmedicated parkinsonism.
Journal of Cognitive Neuroscience (I}, 51-72.

Friedrich, J., R. Urbanczik, and W. Senn (2011, 06). Spaimporal credit assignment in
neuronal population learning?LoS Comput Biol (6).

Furber, S., D. Lester, L. Plana, J. Garside, E. Painkras, esple, and A. Brown
(2012). Overview of the spinnaker system architect@emputers, IEEE Transactions
on PR99), 1.

Gao, P., B. V. Benjamin, and K. Boahen (2012). Dynamicaleysguided mapping of
guantitative neuronal models onto neuromorphic hardw@ireuits and Systems I: Reg-
ular Papers, IEEE Transactions on F99), 1.

Gerfen, C. R. and J. P. Bolam (2010). The neuroanatomicanmgtion of the basal
ganglia. In H. Steiner and K. Y. Tseng (Ed$dandbook of Basal Ganglia Structure and
Function Volume 20 ofHandbook of Behavioral Neurosciengp. 3 — 28. Elsevier.



271

Girard, B., N. Tabareau, Q. Pham, A. Berthoz, and J.-J. i&cf2008). Where neuro-
science and dynamic system theory meet autonomous robdiaontracting basal
ganglia model for action selectioNeural Networks 2), 628 — 641. Robotics and
Neuroscience.

Group, K. O. W. et al. (2008). The opencl specificatidnMunshi, Ed

Guo, Y. and J. E. Rubin (2011). Multi-site stimulation of guddamic nucleus diminishes
thalamocortical relay errors in a biophysical network moddeural Networks 2(),
602 — 616.

Guo, Y., J. E. Rubin, C. C. Mcintyre, J. L. Vitek, and D. Ternm{darch 2008). Thalamo-
cortical relay fidelity varies across subthalamic nucleesbrain stimulation protocols
in a data-driven computational modéburnal of Neurophysiology 99), 1477-1492.

Gurney, K., T. J. Prescott, and P. Redgrave (2001). A contiput model of action selec-
tion in the basal ganglia. ii. analysis and simulation ofdebur. Biological Cybernet-
ics 846), 411.

Haber, S. N. (2010). Integrative networks across basall@gacigcuits. In H. Steiner and
K. Y. Tseng (Eds.)Handbook of Basal Ganglia Structure and Functidelume 20 of
Handbook of Behavioral Neurosciengg. 409 — 427. Elsevier.

Hahn, P. and C. Mcintyre (2010). Modeling shifts in the rabel @attern of subthala-
mopallidal network activity during deep brain stimulatiodournal of Computational
Neuroscience 28125-441.

Han, B. and T. M. Taha (2010). Acceleration of spiking neuralwork based pattern
recognition on nvidia graphics processofgqpl. Opt. 4910), B83—-B91.

Hille, B. (2001, July).lon Channels of Excitable Membrangsed.). Sinauer Associates.

Hines, M. and N. Carnevale (2007). Translating network netteparallel hardware in
neuron.J. Neurosci. Methods 16425-455.

Hines, M., S. Kumar, and F. Schurmann (2011). Comparisoreofonal spike exchange
methods on a blue gene/p supercompuiemtiers in Computational Neurosciencéd}.

Hines, M. L. and N. T. Carnavale (1997). The neuron simutagavironment. Neural
Computation §6), 1179-12009.

Holden, R. (1986). The contagiousness of aircraft hijagkihmerican Journal of Sociol-
ogy, 874-904.



272

Humphries, M., K. Gurney, and T. Prescott (2007). Is thergaanktem substrate for
action selection? Philosophical Transactions of the Royal Society B: BiatadjiSci-
ences 36¢1485), 1627-1639.

Humphries, M. D., R. D. Stewart, and K. N. Gurney (2006). A siblogically plausible
model of action selection and oscillatory activity in thesalbganglia. The Journal of
Neuroscience 260), 12921-12942.

id Software (2012). Wolfenstein 3D.http://www.idsoftware.com/games/
wolfenstein/wolf3d . Accessed: 11/2/2012.

Igarashi, J., O. Shouno, T. Fukai, and H. Tsujino (2011).lH&e®e simulation of a spiking
neural network model of the basal ganglia circuitry usingegal purpose computing on
graphics processing unitleural Networks 2@), 950 — 960.

Izhikevich, E. (2003). Simple model of spiking neuron&EE Transactions On Neural
Networks 146), 1569-1572.

Izhikevich, E. M. (2007a).Dynamical Systems in Neuroscienc€ambridge, MA: The
MIT Press.

Izhikevich, E. M. (2007b). Solving the distal reward prahbléhrough linkage of STDP and
dopamine signalingCerebral Cortex 1710), 2443—-2452.

Izhikevich, E. M. (2010). Hybrid spiking model®hilosophical Transactions of the Royal
Society A: Mathematical,Physical and Engineering Scisrd&§1930), 5061-5070.

Keener, J. and J. Sneyd (2008Ylathematical Physiology: I: Cellular Physiology/ol-
ume 1. Springer.

Khan, M., D. Lester, L. Plana, A. Rast, X. Jin, E. Painkrasl @nFurber (2008). Spinnaker:
mapping neural networks onto a massively-parallel chiptipnadcessor. IrNeural Net-
works, 2008. IJCNN 2008.(IEEE World Congress on Computatimtelligence). IEEE
International Joint Conference opp. 2849-2856. IEEE.

Koch, C. and I. Segev (Eds.) (1998Methods in Neuronal ModelingCambridge: The
MIT Press.

Krichmar, J. (2008). Neurorobotickttp://www.scholarpedia.org/article/
Neurorobotics

Krichmar, J. L. and G. M. Edelman (2005, jan). Brain-basediaes for the study of
nervous systems and the development of intelligent mashiréf. Life 11(1-2), 63—78.



273

Krishnan, R., S. Ratnadurai, D. Subramanian, V. Chakrayadnd M. Rengaswamy
(2011). Modeling the role of basal ganglia in saccade géioerds the indirect pathway
the explorer”Neural Networks 2(8), 801 — 813.

Latteri, A., P. Arena, and P. Mazzone (2011). Characteagideep brain stimulation effects
in computationally efficient neural network modelonlinear Biomedical Physicyb),
2.

Lavezzi, H. N. and D. S. Zahm (2011). The mesopontine rosthah tegmental nucleus:
An integrative modulator of the reward systeBasal Ganglia {4), 191 — 200.

Leblois, A., T. Boraud, W. Meissner, H. Bergman, and D. H&(&@06). Competition be-
tween feedback loops underlies normal and pathologicahuehyecs in the basal ganglia.
The Journal of Neuroscience @), 3567—-3583.

Markram, H., J. Lbke, M. Frotscher, and B. Sakmann (1997)guReion of synaptic
efficacy by coincidence of postsynaptic aps and epSpgnce 276297), 213-215.

Markram, H., Y. Wang, and M. Tsodyks (1998). Differentiasaling via the same axon of
neocortical pyramidal neuronBroceedings of the National Academy of Sciencé€8)95
5323-5328.

Mead, C. (1989)Analog VLSI and neural systemReading: Addison-Wesley.

Meijer, H. G. E., M. Krupa, H. Cagnan, M. A. J. Lourens, T. Heidd. C. F. Martens,
L. J. Bour, and S. A. van Gils (2011). From parkinsonian tima¢aactivity to restoring
thalamic relay using deep brain stimulation: new insighast computational modeling.
Journal of Neural Engineering(8), 066005.

Merolla, P., J. Arthur, F. Akopyan, N. Imam, R. Manohar, and\Ibdha (2011, sept.).
A digital neurosynaptic core using embedded crossbar memibh 45pj per spike in
45nm. InCustom Integrated Circuits Conference (CICC), 2011 IERE 1 —4.

Michel, O. (2004). Webots: Professional mobile robot siaioh. International Journal
of Advanced Robotic Systen{d )l 39—-42.

Migliore, M., C. Cannia, W. Lytton, H. Markram, and M. Hine&006). Parallel network
simulations with neuronJournal of Computational Neuroscience, 21.9—-129.

Minkovich, K., N. Srinivasa, J. Cruz-Albrecht, Y. Cho, and Mogin (2012, june). Pro-
gramming time-multiplexed reconfigurable hardware usingcalable neuromorphic
compiler. Neural Networks and Learning Systems, IEEE Transaction230®), 889
-901.



274

Minkovich, K., C. M. Thibeault, M. J. O'Brien, A. Nogin, Y. @) and N. Srinivasa (2012).
HRLSim: High-performance GPGPU based spiking neural samoulfor GPGPU clus-
ters.In Submission to Neural Networks and Learning Systems, [ERESactions on

Modolo, J., E. Mosekilde, and A. Beuter (2007). New insigtftered by a computational
model of deep brain stimulatiodournal of Physiology-Paris 11-3), 56 — 63. Neuro-
Computation: From Sensorimotor Integration to Compurtetid-rameworks.

Montgomery, E. (2012). The epistemology of deep brain dtnn and neuronal patho-
physiology.Frontiers in Integrative Neurosciencg ).

Morrison, A., C. Mehring, T. Geisel, A. Aertsen, and M. Dieamn (2005, August). Ad-
vancing the boundaries of high-connectivity network siatioih with distributed com-
puting. Neural Computation 1(B), 1776—-1801.

Nageswaran, J. M., N. Dutt, J. L. Krichmar, A. Nicolau, andVAVeidenbaum (2009). A
configurable simulation environment for the efficient siatidn of large-scale spiking
neural networks on graphics processofseural Networks 2(-6), 791 — 800. Ad-
vances in Neural Networks Research: IJCNN2009, 2009 latenmmal Joint Conference
on Neural Networks.

Navaridas, J., M. Lujan, J. Miguel-Alonso, L. A. Plana, &d-urber (2009). Understand-
ing the interconnection network of spinnaker. Rroceedings of the 23rd international
conference on SupercomputjngS '09, pp. 286—295. ACM.

Nere, A., A. Hashmi, and M. Lipasti (2011, may). Profiling éretgeneous multi-gpu
systems to accelerate cortically inspired learning atgors. InParallel Distributed
Processing Symposium (IPDPS), 2011 IEEE Internatiomal 906 —920.

Norris, G. (1996) Boeing 777 Zenith Press.

Norton, A. B. W., Y. S. Jo, E. W. Clark, C. A. Taylor, and S. JMzumori (2011). Inde-
pendent neural coding of reward and movement by peduncotomotegmental nucleus
neurons in freely navigating rat&uropean Journal of Neuroscience(28), 1885—-1896.

NVIDIA (2012). Whitepaper nvidia geforce gtx 68Mttp://www.geforce.com/
Active/en\_US/pdf/GeForce-GTX\-680-Whitepaper-FINAL pdf .

Obeso, J. A. and J. L. Lanciego (2011). Past, present angefafuhe pathophysiological
model of the basal gangli&rontiers in Neuroanatomy(80039).

O’Brien, M. J. and N. Srinivasa (2013). A spiking neural mioie stable reinforcement
of synapses based on multiple distal rewaitdsural Computation 25123-156.



275

Oorschot, D. E. (2010). Cell types in the different nucleihe basal ganglia. In H. Steiner
and K. Y. Tseng (Eds.Kandbook of Basal Ganglia Structure and Functi®lume 20
of Handbook of Behavioral Neurosciengp. 63 — 74. Elsevier.

O'Reilly, R. C. (2006). Biologically based computationabdels of high-level cognition.
Science 3146796), 91-94.

Pascual, A., J. Modolo, and A. Beuter (2006). Is a computationodel useful to under-
stand the effect of deep brain stimulation in parkinsonsedse?Journal of Integrative
Neuroscience @), 541 — 559.

Pecevski, D., T. Natschlger, and K. Schuch (2009). Pcsinarallel simulation environ-
ment for neural circuits fully integrated with pythofrontiers in Neuroinformatics@®).

Peck, C., J. Kozloski, A. Rao, and G. Cecchi (2003). Simatfaitnfrastructure for modeling
large scale neural systemBroceedings of the International Conference on Computer
Science (ICCS) 2003127-1136.

Pirini, M., L. Rocchi, M. Sensi, and L. Chiari (2009). A contptional modelling approach
to investigate different targets in deep brain stimulatmmparkinsons diseasdournal
of Computational Neuroscience ,261-107.

Plesser, H., J. Eppler, A. Morrison, M. Diesmann, and M.-@waltig (2007). Efficient
parallel simulation of large-scale neuronal networks arstgrs of multiprocessor com-
puters. In A.-M. Kermarrec, L. Bougé, and T. Priol (Ed€yro-Par 2007 Parallel
ProcessingVolume 4641 ol_ecture Notes in Computer Scienpg. 672—-681. Springer
Berlin / Heidelberg. 10.1007/978-3-540-74466-b.

Purves, D., G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.taMantia, J. O. McNamara,
and L. E. White (2007)Neuroscience, 4th editiomNew York, NY: Sinauer Associates.

Pyggel group (2012). Pyggel. http://www.pygame.org/
project-PYGGEL-968-.html . Accessed: 10/22/2012.

Rangan, V., A. Ghosh, V. Aparin, and G. Cauwenberghs (20AGubthreshold visi im-
plementation of the izhikevich simple neuron model.BHngineering in Medicine and
Biology Society (EMBC), 2010 Annual International Confex of the IEEEpp. 4164
—-4167.

Redgrave, P., V. Coizet, and J. Reynolds (2010). Phasicndioyasignaling and basal
ganglia function. In H. Steiner and K. Y. Tseng (Ed$iandbook of Basal Ganglia
Structure and Functiorivolume 20 ofHandbook of Behavioral Neurosciengs. 549 —
559. Elsevier.



276

Redgrave, P. and K. Gurney (2006). The short-latency dapasignal: a role in discover-
ing novel actionsNat Rev Neurosci(22), 967 — 975.

Redgrave, P., K. Gurney, and J. Reynolds (2008). What isoei@d by phasic dopamine
signals?Brain Research Reviews &9, 322 — 339.

Reitsma, P. (2010). The transfer of correlations from bgaaplia to thalamus in parkin-
son’s disease. Master’s thesis, University of PittsbuRjtisburgh, PA.

Reitsma, P., B. Doiron, and J. E. Rubin (2011). Correlatrangfer from basal ganglia to
thalamus in parkinson’s diseade&ontiers in Computational Neuroscienc€0).

Richert, M., J. M. Nageswaran, N. Dutt, and J. L. Krichmarl(20 An efficient simulation
environment for modeling large-scale cortical processifgntiers in Neuroinformat-
ics 519).

Richmond, P., B. Lars, G. Michele, and V. E. Richmond (201), Memocratic popula-
tion decisions result in robust policy-gradient learnidgparametric study with GPU
simulations.PLoS ONE €5).

Rosin, B., M. Slovik, R. Mitelman, M. Rivlin-Etzion, S. Hahe. Israel, E. Vaadia, and
H. Bergman (2011). Closed-loop deep brain stimulation igesior in ameliorating
parkinsonismNeuron 7Z2), 370 — 384.

Rubin, J. and D. Terman (2004). High frequency stimulatibthe subthalamic nucleus
eliminates pathological thalamic rhythmicity in a comgigaal model.Journal of Com-
putational Neuroscience 18), 211-235.

Rubin, J. E., C. C. Mcintyre, R. S. Turner, and T. Wichmannl@0 Basal ganglia ac-
tivity patterns in parkinsonism and computational modgbhtheir downstream effects.
European Journal of Neuroscience(2§, 2213-2228.

Schemmel, J., D. Bruderle, A. Griibl, M. Hock, K. Meier, &dMillner (2010). A wafer-
scale neuromorphic hardware system for large-scale newadéling.Proceedings of the
2010 IEEE International Symposium on Circuits and Systé8GAS10)1947-1950.

Schiff, S. J. (2010). Towards model-based control of pairs disease.Philosophi-
cal Transactions of the Royal Society A: Mathematical, Rtlaysand Engineering Sci-
ences 368.918), 2269-2308.

Schiff, S. J. (2012)Neural Control Engineering The Emerging Intersection lestw Con-
trol Theory and Neuroscienc& he MIT Press.

Schrum, J. and R. Miikkulainen (2010). Evolving agent bétiawn multiobjective domains

using fitness-based shaping. Pnoceedings of the 12th annual conference on Genetic

and evolutionary computatiqpp. 439-446. ACM.



277

Schultz, W., P. Dayan, and P. R. Montague (1997). A neuradtsate of prediction and
reward.Science 276306), 1593-1599.

Scorcioni, R. (2010, may). Gpgpu implementation of a syicafly optimized, anatomi-
cally accurate spiking network simulator. Biomedical Sciences and Engineering Con-
ference (BSEC), 201pp. 1 -3.

Scott, A. (2002).Neuroscience A Mathematical Neuroscienbdiew York, NY: Springer-
Verlag.

SET Corporation (2012). Castlehttps://project.setcorp.com/castle/
index.html

Sherman, S. (2001). Tonic and burst firing: dual modes oathatortical relayTrends in
Neurosciences 42), 122 — 126.

Sherman, S. M. and R. W. Guillery (2002). The role of the timala in the flow of infor-
mation to the cortexPhilosophical Transactions of the Royal Society of Lon@&®ries
B: Biological Sciences 351428), 1695-1708.

Shinners, P. (2012). Pygamiattp://pygame.org/ . Accessed: 10/22/2012.

Shouno, O., J. Takeuchi, and H. Tsujino (2009). A spikingraeumodel of the basal gan-
glia circuitry that can generate behavioral variability.Jl Bures, I. Kopin, B. McEwen,
K. Pribram, J. Rosenblatt, and L. Weiskranz (EdBhe Basal Ganglia I)XVolume 58 of
Advances in Behavioral Biologpp. 191-200. Springer New York.

Song, S., L. Abbott, et al. (2001). Cortical development aghapping through spike
timing-dependent plasticitiNeuron 322), 339-350.

Song, S., K. D. Miller, and L. F. Abbott (2000). Competitiveldbian learning through
spike-timing-dependent synaptic plasticiature Neuroscienc), 919-926.

Srinivasa, N. and Y. Cho (2012). Self-organizing spikingna¢ model for learning fault-
tolerant spatio-motor transformation®eural Networks and Learning Systems, IEEE
Transactions on P@9), 1.

Srinivasa, N. and J. Cruz-Albrecht (2012, jan.). Neurorharmdaptive plastic scalable
electronics: Analog learning systenfRulse, IEEE 81), 51 —56.

Stewart, T., X. Choo, and C. Eliasmith (2010). Dynamic bétavof a spiking model
of action selection in the basal ganglia. 1@th International Conference on Cognitive
Modeling pp. 235-240.

Stewart, T. C., T. Bekolay, and C. Eliasmith (2012). Leagrtmselect actions with spiking
neurons in the basal gangliérontiers in Neuroscience(60002).



278

Sur, S., U. K. R. Bondhugula, A. Mamidala, H.-W. Jin, and D.R&nda (2005). High
performance rdma based all-to-all broadcast for infinibelndters. InProceedings of
International Conference On High Performance ComputintP(E).

Sussillo, D., T. Toyoizumi, and W. Maass (June 2007). Selirtg of neural circuits
through short-term synaptic plasticitjournal of Neurophysiology 98), 4079-4095.

Tan, C. O. and D. Bullock (2008). A local circuit model of lead striatal and
dopamine cell responses under probabilistic schedulesaafrd. The Journal of Neuro-
science 2840), 10062—-10074.

Terman, D., J. E. Rubin, A. C. Yew, and C. J. Wilson (2002) Mt patterns in a model for
the subthalamopallidal network of the basal gandliae Journal of Neuroscience ¢3,
2963-2976.

Thibeault, C. M., R. Hoang, and F. C. Harris Jr. (2011, Marchhovel multi-gpu neural
simulator. INNISCA’s 3rd International Conference on Bioinformatics &wmputational
Biology (BICoB '11), New Orleans, Louisiana

Thibeault, C. M. and N. Srinivasa (2012). Physiologicaltgpired models of the basal
ganglia for embedding in neuromorphic hardware: a modedtagy. In Submission to
Journal of Neural Engineering

Tiesel, J.-P. and A. S. Maida (2009). Using parallel gpuiaecture for simulation of planar
i/f networks.Neural Networks, IEEE - INNS - ENNS International Joint Gvehce on 0
3118-3123.

Touboul, J. (2009). Importance of the cutoff value in thedyatic adaptive integrate-and-
fire model.Neural Computation 2B), 2114 — 2122.

Ullah, G. and S. J. Schiff (2009, Apr). Tracking and contrbheuronal hodgkin-huxley
dynamics.Phys. Rev. E 19), 040901.

Ullah, G. and S. J. Schiff (2010, 05). Assimilating seizuggamics. PLoS Comput
Biol 6(5), €1000776.

van Hoorn, N., J. Togelius, and J. Schmidhuber (2009, setiieyarchical controller learn-
ing in a first-person shooter. omputational Intelligence and Games, 2009. CIG 2009.
IEEE Symposium gmpp. 294 —301.

Voss, H. U., J. Timmer, and J. Kurths (2004). Nonlinear dyicairsystem identification
from uncertain and indirect measuremertsl. Bifurcation and Chaqsl905-1933.

Walters, J. R. and D. A. Bergstrom (2010). Synchronousig¢tivbasal ganglia circuits. In
H. Steiner and K. Y. Tseng (EdsHandbook of Basal Ganglia Structure and Function
Volume 20 ofHandbook of Behavioral Neurosciengp. 429 — 443. Elsevier.



279

West, M. (2007, January). Evolve your hierarchytp://cowboyprogramming.
com/2007/01/05/evolve-your-heirachy/ . Accessed: 8/15/2012.

Wiles, J., D. Ball, S. Heath, C. Nolan, and P. Stratton (208pjke-time robotics: A rapid
response circuit for a robot that seeks temporally varytimgudi. Australian Journal of
Intelligent Information Processing Systemg1)1

Wilson, E. C., P. H. Goodman, and F. C. Harris Jr. (2001). ém@ntation of a biologically
realistic parallel neocortical-neural network simulatBroceedings of the Tenth SIAM
Conference on Parallel Processing for Scientific Computiigrch 12-14, 200,11-11.

Winn, P., D. I. Wilson, and P. Redgrave (2010). Subcorticanections of the basal gan-
glia. In H. Steiner and K. Y. Tseng (EdsHandbook of Basal Ganglia Structure and
Function Volume 20 ofHandbook of Behavioral Neurosciengp. 397 — 408. Elsevier.

Xilinx (2009). Vertex 5 family overview. http://www.xilinx.com/support/
documentation/data\_sheets/ds100.pdf

Yudanov, D., M. Shaaban, R. Melton, and L. Reznik (2010,)jul@pu-based simulation
of spiking neural networks with real-time performance atmigh accuracy. INeural
Networks (IJCNN), The 2010 International Joint Confereanepp. 1 —8.



280

Appendix A

Communication Experiment Results
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Table A.1: Communication Scheme Experiments: IB, 10Hz Activity.

Strong Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 0.16 0.18 0.27
8 2000000 1000 0.21 0.22 0.31
16 2000000 1000 0.33 0.30 0.64
32 2000000 1000 0.52 0.47 1.27
48 2000000 1000 1.23 1.24 2.16
4 250000 10000 0.04 0.04 0.06
8 250000 10000 0.14 0.09 0.15
16 250000 10000 0.15 0.21 0.33
32 250000 10000 0.32 0.32 1.07
48 250000 10000 1.21 1.22 1.98

Weak Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 0.16 0.18 0.19
8 4000000 1000 0.40 0.41 0.43
16 8000000 1000 1.06 1.16 1.22
32 16000000 1000 2.71 2.61 3.25
48 24000000 1000 5.40 5.37 5.53
4 250000 10000 0.04 0.03 0.05
8 500000 10000 0.13 0.15 0.17
16 1000000 10000 0.22 0.22 0.60
32 2000000 10000 0.46 0.50 1.26

48 3000000 10000 1.38 1.45 2.21




Table A.2: Bit-Packing Experiments: IB, 10Hz Activity.

Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 0.75 0.17 0.16 0.18 0.18 0.17
8 2000000 1000 0.87 0.21 0.23 0.24 0.23 0.22
16 2000000 1000 090 034 0.38 0.33 0.34 0.33
32 2000000 1000 1.32 055 049 0.52 0.46 0.50
48 2000000 1000 201 126 124 123 1.20 1.21
4 250000 10000 0.14 0.04 0.05 0.04 0.04 0.04
8 250000 10000 0.18 0.09 0.09 0.08 0.10 0.10
16 250000 10000 0.26 0.18 0.21 0.17 0.21 0.20
32 250000 10000 0.37 029 0.35 0.33 0.35 0.32
48 250000 10000 1.20 119 1.20 1.24 1.18 1.18
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 0.77 0.17 0.18 0.19 0.17 0.17
8 4000000 1000 2.04 0.43 0.41 0.43 0.46 0.44
16 8000000 1000 432 1.01 1.11 1.00 1.07 1.00
32 16000000 1000 995 3.06 2.67 258 272 234
48 24000000 1000 2156 5.28 521 545 536 5.37
4 250000 10000 0.13 0.04 0.06 0.03 0.04 0.04
8 500000 10000 0.27 0.11 0.11 0.12 0.13 0.07
16 1000000 10000 0.50 0.27 0.30 0.21 0.22 0.26
32 2000000 10000 1.03 050 054 048 051 0.53
48 3000000 10000 255 138 144 140 1.47 1.46
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Table A.3: Communication Scheme Experiments: IB, 30Hz Activity.

Strong Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 0.70 0.50 0.55

8 2000000 1000 0.61 0.62 0.60
16 2000000 1000 0.94 0.76 0.90
32 2000000 1000 0.87 1.15 1.47
48 2000000 1000 1.88 2.06 2.35
4 250000 10000 0.08 0.10 0.10

8 250000 10000 0.13 0.16 0.19
16 250000 10000 0.26 0.26 0.48
32 250000 10000 0.33 0.35 1.03
48 250000 10000 1.21 1.19 2.06

Weak Scaling Communication Scheme

Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 0.68 0.51 0.56
8 4000000 1000 2.08 1.31 1.26
16 8000000 1000 5.15 3.15 3.11
32 16000000 1000 11.47 7.99 7.99
48 24000000 1000 20.92 14.57 17.77

4 250000 10000 0.08 0.08 0.10

8 500000 10000 0.21 0.20 0.24
16 1000000 10000 0.40 0.41 0.70
32 2000000 10000 0.81 0.87 1.43

48 3000000 10000 2.33 2.49 2.61




Table A.4: Bit-Packing Experiments: IB, 30Hz Activity.
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Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 144 052 051 051 052 0.50
8 2000000 1000 140 065 063 063 062 0.68
16 2000000 1000 143 094 071 0.75 072 0.76
32 2000000 1000 162 121 107 108 1.01 0.85
48 2000000 1000 3.36 216 205 200 212 1.97
4 250000 10000 0.18 0.10 0.08 0.08 0.10 0.11
8 250000 10000 0.26 0.19 0.14 014 0.15 0.12
16 250000 10000 0.35 029 021 020 0.27 0.27
32 250000 10000 045 040 033 033 030 0.35
48 250000 10000 1.28 1.15 120 121 122 1.20
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 1.37 053 053 053 050 053
8 4000000 1000 305 130 133 131 136 1.30
16 8000000 1000 7.13 319 344 3.21 3.17 3.28
32 16000000 1000 1586 793 792 795 8.10 8.18
48 24000000 1000 59.47 15.09 14.39 14.93 14.48 14.21
4 250000 10000 0.21 0.11 0.09 0.07 0.08 0.12
8 500000 10000 0.41 025 0.20 021 0.21 o0.18
16 1000000 10000 0.77 058 041 048 047 0.43
32 2000000 10000 157 115 083 082 081 0.86
48 3000000 10000 334 275 274 268 276 253
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Table A.5: Communication Scheme Experiments: IB, 50Hz Activity.

Strong Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 1.13 0.83 0.84
8 2000000 1000 1.69 1.05 1.05
16 2000000 1000 1.36 1.25 1.16
32 2000000 1000 1.67 1.54 1.85
48 2000000 1000 2.75 2.71 2.87
4 250000 10000 0.12 0.12 0.11
8 250000 10000 0.16 0.15 0.30
16 250000 10000 0.25 0.27 0.55
32 250000 10000 0.35 0.39 1.16
48 250000 10000 1.17 1.17 2.05
Weak Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 1.07 0.82 0.81
8 4000000 1000 3.06 2.19 2.12
16 8000000 1000 7.37 5.25 4.63
32 16000000 1000 17.14 12.66 17.22
48 24000000 1000 32.65 22.54 30.39
4 250000 10000 0.10 0.13 0.11
8 500000 10000 0.25 0.28 0.31
16 1000000 10000 0.56 0.57 0.79
32 2000000 10000 1.36 1.35 1.76

48 3000000 10000 3.85 3.90 3.53




Table A.6: Bit-Packing Experiments: IB, 50Hz Activity.
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Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 208 212 087 082 085 0.85
8 2000000 1000 208 210 106 108 104 1.06
16 2000000 1000 217 213 126 136 129 1.47
32 2000000 1000 218 225 155 154 153 1.58
48 2000000 1000 5,62 557 277 276 295 287
4 250000 10000 0.28 0.27 011 0.10 0.15 0.12
8 250000 10000 034 033 018 014 0.17 0.15
16 250000 10000 043 041 0.26 024 0.27 0.27
32 250000 10000 049 054 037 036 035 0.38
48 250000 10000 1.30 130 1.18 1.21 1.20 1.17
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 207 206 082 096 0.82 0.83
8 4000000 1000 447 450 222 219 218 231
16 8000000 1000 1048 9.76 6.71 529 534 533
32 16000000 1000 23.85 2400 1284 12.64 14.61 15.13
48 24000000 1000 96.84 96.90 22.84 2252 23.15 21.48
4 250000 10000 0.27 0.27 0.12 0.12 0.11 0.13
8 500000 10000 0.57 056 026 0.25 0.30 0.25
16 1000000 10000 1.08 106 059 066 0.57 0.67
32 2000000 10000 222 216 172 126 131 1.37
48 3000000 10000 431 446 392 393 395 391
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Table A.7: Communication Scheme Experiments: IB, 80Hz Activity.

Strong Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 1.81 1.51 1.30
8 2000000 1000 2.54 1.77 1.69
16 2000000 1000 3.58 2.08 2.23
32 2000000 1000 2.64 2.54 2.84
48 2000000 1000 4.05 4.05 4.21
4 250000 10000 0.17 0.17 0.21
8 250000 10000 0.21 0.24 0.33
16 250000 10000 0.31 0.31 0.55
32 250000 10000 0.48 0.47 1.24
48 250000 10000 1.20 1.26 2.00
Weak Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 1.78 1.52 1.32
8 4000000 1000 5.74 3.76 3.15
16 8000000 1000 15.48 8.81 10.08
32 16000000 1000 36.77 20.11 23.19
48 24000000 1000 54.08 35.16 47.50
4 250000 10000 0.16 0.17 0.18
8 500000 10000 0.37 0.40 0.44
16 1000000 10000 1.18 1.11 1.00
32 2000000 10000 2.70 3.05 3.03

48 3000000 10000 5.58 5.34 5.57
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Table A.8: Bit-Packing Experiments: IB, 80Hz Activity.

Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 3.33 3.30 3.36 143 145 1.45
8 2000000 1000 3.37 3.38 3.35 181 1.78 1.80
16 2000000 1000 3.39 3.47 3.41 199 202 207
32 2000000 1000 3.63 3.40 3.49 262 278 2.70
48 2000000 1000 10.02 10.00 9.98 3.88 395 391
4 250000 10000 0.37 0.37 0.37 0.17 0.17 0.18
8 250000 10000 0.47 0.55 0.53 0.22 024 0.23
16 250000 10000 0.65 0.61 0.63 0.32 0.33 0.33
32 250000 10000 0.62 0.63 0.70 0.46 0.48 0.46
48 250000 10000 1.39 1.40 1.37 1.27 127 1.24
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 3.29 3.35 328 145 143 1.46
8 4000000 1000 7.14 7.13 728 3.76 3.88 4.15
16 8000000 1000 15.31 15.36 1540 8.77 8.85 9.00
32 16000000 1000 40.52 40.11 40.01 20.68 19.75 20.47
48 24000000 1000 163.72 163.65 163.69 33.63 32.90 35.69
4 250000 10000 0.36 0.37 0.37 0.16 0.20 0.18
8 500000 10000 0.84 0.84 0.84 0.39 0.40 0.39
16 1000000 10000 1.70 1.73 1.69 1.09 1.05 1.02
32 2000000 10000 3.55 3.51 3.57 245 2.73 2.58

48 3000000 10000 5.96 5.73 559 548 565 548
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Table A.9: Communication Scheme Experiments: Ethernet, 10Hz Agtivit

Strong Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 1.84 1.84 3.61
8 2000000 1000 5.32 5.43 5.09
16 2000000 1000 5.67 5.69 9.47
32 2000000 1000 6.65 6.33 16.74
48 2000000 1000 7.34 7.64 24.66
4 250000 10000 0.41 0.40 0.54
8 250000 10000 3.38 3.40 3.56
16 250000 10000 3.47 3.45 6.86
32 250000 10000 3.74 3.69 13.82
48 250000 10000 4.15 4.18 23.54
Weak Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 1.83 1.95 3.18
8 4000000 1000 8.03 8.30 6.94
16 8000000 1000 15.19 15.49 13.89
32 16000000 1000 49.33 53.29 35.13
48 24000000 1000 92.64 79.04 235.38
4 250000 10000 0.38 0.34 0.60
8 500000 10000 3.71 3.68 4.07
16 1000000 10000 4.36 4.38 8.20
32 2000000 10000 6.22 6.43 19.51

48 3000000 10000 9.35 9.42 28.76
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Table A.10: Bit-Packing Experiments: Ethernet, 10Hz Activity.

Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 562 206 192 187 194 1.85
8 2000000 1000 1157 536 535 545 533 549
16 2000000 1000 1243 571 570 569 583 571
32 2000000 1000 16.17 6.39 6.62 6.24 6.39 6.33
48 2000000 1000 1826 756 742 7.44 7.38 7.58
4 250000 10000 0.85 0.40 0.38 0.39 0.37 0.39
8 250000 10000 3.92 3.38 3.37 338 329 340
16 250000 10000 413 345 348 346 345 3.47
32 250000 10000 4.44 3.70 3.68 369 372 3.73
48 250000 10000 5.06 410 423 408 4.12 4.12
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 578 190 192 194 190 1.89
8 4000000 1000 2192 8.15 7.89 8.12 7.84 7.89
16 8000000 1000 55.24 15.64 17.35 17.26 15.47 19.01
32 16000000 1000 132.93 40.14 39.65 38.31 3991 39.20
48 24000000 1000 226.11 77.33 80.05 80.55 79.42 79.37
4 250000 10000 0.87 038 037 0.38 034 0.37
8 500000 10000 493 3.74 353 372 3.71 3.75
16 1000000 10000 821 437 437 432 438 4.40

32 2000000 10000 1550 6.34 6.60 6.47 6.37 6.35
48 3000000 10000 2718 952 967 9.62 9.74 954
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Table A.11: Communication Scheme Experiments: Ethernet, 30Hz Agtivit

Strong Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 5.38 5.46 4.20
8 2000000 1000 10.68 11.31 8.22
16 2000000 1000 11.96 13.94 12.24
32 2000000 1000 15.30 15.52 21.20
48 2000000 1000 18.85 19.11 34.36
4 250000 10000 0.82 0.81 1.10
8 250000 10000 3.88 3.99 4.30
16 250000 10000 4.05 4.07 7.47
32 250000 10000 4.37 4.43 17.00
48 250000 10000 4.90 491 23.91
Weak Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 5.32 5.29 4.11
8 4000000 1000 21.03 22.12 12.67
16 8000000 1000 70.41 64.25 29.45
32 16000000 1000 194.21 146.62 232.97
48 24000000 1000 364.11 245.22 377.52
4 250000 10000 0.86 0.82 1.14
8 500000 10000 4.80 4.82 4.92
16 1000000 10000 7.67 7.09 9.95
32 2000000 10000 25.29 15.23 25.61

48 3000000 10000 29.76 28.80 38.97
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Table A.12: Bit-Packing Experiments: Ethernet, 30Hz Activity.

Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 6.19 5.53 5.44 5.30 5.43 5.48
8 2000000 1000 11.63 12.34 1061 1197 10.52 9.90
16 2000000 1000 13.52 13.84 14.18 13.09 12.75 12.68
32 2000000 1000 16.12 237.04 25.30 15.27 19.07 242.93
48 2000000 1000 18.33 17.66 19.60 18.84 18.68 18.78
4 250000 10000 0.93 0.78 0.85 0.85 0.84 0.76
8 250000 10000 412 3.96 3.79 3.99 3.98 3.99
16 250000 10000 4.20 3.98 4.04 4.04 4.07 4.06
32 250000 10000 4.75 4.43 4.33 4.38 4.43 4.44
48 250000 10000 5.32 5.05 4.97 4.94 4.89 5.06
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 6.41 5.49 539 5.36 5.34 5.30
8 4000000 1000 2258 21.04 2352 21.48 23.36 25.03
16 8000000 1000 5485 62.73 57.29 66.67 98.17 72.82
32 16000000 1000 133.43 165.18 152.16 158.69 236.06 191.45
48 24000000 1000 286.30 252.61 253.78 241.15 262.10 256.16
4 250000 10000 0.95 0.82 0.80 0.80 0.85 0.83
8 500000 10000 5.37 4.73 4.81 4.79 4.83 4.84
16 1000000 10000 8.34 9.68 9.44 7.04 6.97 7.14

32 2000000 10000 26.97 159.68 26.40 234.89 16.91 22.33
48 3000000 10000 28.29 25,79 2952 2847 30.03 29.87
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Table A.13: Communication Scheme Experiments: Ethernet, 50Hz Agtivit

Strong Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 8.64 9.11 6.76
8 2000000 1000 17.18 17.14 10.91
16 2000000 1000 24.86 23.41 15.51
32 2000000 1000 29.22 23.86 26.61
48 2000000 1000 27.95 29.11 39.58
4 250000 10000 1.18 1.27 1.41
8 250000 10000 4.52 4.53 5.17
16 250000 10000 4.73 4.74 8.00
32 250000 10000 4.92 5.25 14.99
48 250000 10000 5.83 5.95 24.61
Weak Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 9.18 9.06 6.25
8 4000000 1000 39.77 31.73 18.84
16 8000000 1000 109.70 95.48 213.88
32 16000000 1000 272.96 293.19 425.38
48 24000000 1000 419.45 376.31 630.91
4 250000 10000 1.21 1.22 1.19
8 500000 10000 5.99 5.97 5.76
16 1000000 10000 11.54 10.73 11.52
32 2000000 10000 34.41 23.52 28.32

48 3000000 10000 45.67 47.20 48.82




Table A.14: Bit-Packing Experiments: Ethernet, 50Hz Activity.
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Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 7.11 6.78 8.94 9.17 8.94 8.96
8 2000000 1000 1191 1234 1824 16.80 17.04 16.15
16 2000000 1000 1416 14.30 24.19 22.23 23.80 20.15
32 2000000 1000 16.22 16.26 26.62 25.21 28.08 25.18
48 2000000 1000 18.15 17.32 30.53 30.20 32.29 30.91
4 250000 10000 1.00 0.99 1.21 1.22 1.24 1.21
8 250000 10000 422 1.59 4 .50 4 55 4.49 1.55
16 250000 10000 4.30 4.29 5.59 4.75 4.65 470
32 250000 10000 454 4.45 5.26 5.09 5.19 5.08
48 250000 10000 4.97 5.01 5.81 5.78 5.90 5.91
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 6.80 6.78 8.59 8.82 8.98 9.41
8 4000000 1000 2248 23.16 35.23 35.71 38.12 33.55
16 8000000 1000 56.46 55.87 110.51 113.05 110.06 116.20
32 16000000 1000 132.68 133.80 260.28 251.28 257.27 253.73
48 24000000 1000 201.72 197.08 392.48 395.30 382.98 360.71
4 250000 10000 1.00 0.99 1.22 1.21 1.21 1.23
8 500000 10000 5.27 5.05 5.91 5.97 5.12 5.97
16 1000000 10000 9.55 8.02 11.48 9.94 1241 10.33
32 2000000 10000 16.67 1659 2464 2430 24.31 25.39
48 3000000 10000 28.01 28.70 47.11 48.44 48.63 47.85




Table A.15: Communication Scheme Experiments: Ethernet, 80Hz Agtivit

Strong Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 16.20 14.01 9.78
8 2000000 1000 29.16 24.48 16.63
16 2000000 1000 39.14 36.98 21.38
32 2000000 1000 46.83 43.75 44.42
48 2000000 1000 62.37 51.28 52.45
4 250000 10000 2.05 1.91 2.06
8 250000 10000 5.01 5.47 5.01
16 250000 10000 5.75 6.75 9.64
32 250000 10000 6.31 6.52 16.86
48 250000 10000 7.19 7.35 23.19
Weak Scaling Communication Scheme
Nodes Cells Connections Blocking Non-Blocking Alltoall
4 2000000 1000 14.94 15.69 10.22
8 4000000 1000 56.78 60.68 78.58
16 8000000 1000 197.00 216.01 570.75
32 16000000 1000 555.59 481.38 942.53
48 24000000 1000 956.47 673.16 1445.66
4 250000 10000 1.93 1.83 1.74
8 500000 10000 9.32 10.96 7.09
16 1000000 10000 22.39 21.04 167.58
32 2000000 10000 48.50 40.44 201.09

48 3000000 10000 86.21 73.22 238.44

295
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Table A.16: Bit-Packing Experiments: Ethernet, 80Hz Activity.

Strong Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 8.03 7.76 797 15.38 15.63 14.33
8 2000000 1000 13.69 1364 1260 27.06 29.19 26.91
16 2000000 1000 16.85 16.89 14.40 42.47 52.34 41.32
32 2000000 1000 16.76 16.27 16.81 4556 46.33 65.91
48 2000000 1000 15.34 1844 18.04 51.73 52.85 51.69
4 250000 10000 1.07 1.13 1.13 1.94 1.86 1.89
8 250000 10000 4.32 4.31 4.30 5.53 5.65 5.36
16 250000 10000 477 4.36 4.36 5.70 7.27 5.74
32 250000 10000 4.84 7.04 470 6.37 6.32 6.34
48 250000 10000 5.22 5.22 5.20 7.34 7.45 7.40
Weak Scaling Pivot Point
Nodes Cells Connections 0 1 2 3 10 20
4 2000000 1000 7.51 7.71 7.83 15.08 15.47 15.78
8 4000000 1000 2357 2441 2425 5464 58.78 66.61
16 8000000 1000 55.00 62.10 56.10 180.90 210.29 205.21
32 16000000 1000 134.76 135.33 13590 412.85 514.29 351.14
48 24000000 1000 209.46 209.46 207.97 759.45 765.08 685.88
4 250000 10000 1.15 1.08 1.18 2.02 1.97 1.87
8 500000 10000 5.49 5.69 5.43 9.72 8.79 9.54

16 1000000 10000 10.46 8.43 1493 21.76 57.27 20.55
32 2000000 10000 16.52 16.65 16.18 48.21 48.43 47.04
48 3000000 10000 27.78 28.16 2765 77.37 7648 74.80
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Appendix B

BrainGames Use Case Diagrams
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Use Case Lreate System

Description  Create a system object that implements the BaseSystenfarcderThe
unique bit id for this system will be registered.
Assumptions The world object has been instantiated successfully.
Preconditions This System has not been registered before.
PostconditionsThis System will be registered and available.
Actors e World
e BaseSystem

Steps 1. The environment will instantiate the new System with de-
fault parameters.
2. The environmentregisters the new System with the world.
3. The world assigns this System a Bit Id.
4. The system is added to the System Container.

Extensions 2. A system of this type has already been added.
2.1 The program raises an exception.
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Use Case 2nitialize System

Description  Loop through the Systems and initialize their data membErseeded,
the components the system needs will be added.
Assumptions The System objects have been created and registered witkidhe.
Preconditions All systems have been created and registered.
PostconditionsThe System’s components will be registered and its mapp#irbencre-
ated.
Actors e World
e BaseSystem
e ComponentTypeManager

Steps 1. The world asks the System to initialize itself giving a&xe
to the componentTypeManager.

1l.a The System gets the IDs for the component classes
it needs.

1.b The System compiles its ComponentType bit string
based on the IDs.

1.c The System instantiates its vector mappers.

Extensions 1.a A component of this type has already been added.
1l.a.1 The program raises an exception.
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Use Case Add System Type

Description  Add a new SystemType to the SystemTypeManager
Assumptions RTTI can get the type information.

Preconditions This System has not been registered before.
PostconditionsThis System will be registered with the manager.
Actors e SystemTypeManager

Steps 1. The SystemTypeManager searches for the typeldStr of
the System in the data structure.
2. A new SystemType object is instantiated.
3. A SystemTypePtr is added to the data structure.

Extensions 1. The SystemType exists in the structure.
1.1 The program raises an exception.

3. Insertion of the SystemTypePtr into the structure fails.
3.1 The program raises an exception.

Use Case /Add Component Type

Description Add a new ComponentType to the ComponentTypeManager
Assumptions RTTI can get the type information.

Preconditions This Component has not been registered before.
PostconditionsThis Component will be registered with the manager.

Actors e ComponentTypeManager

Steps 1. The ComponentTypeManager searches typeldStr of the
Component in the Data Structure.
2. A new ComponentType object is instantiated.
3. A ComponentTypePtr is added to the structure.

Extensions 1. The ComponentType exists in the structure.
1.1 The program raises an exception.

3. Insertion of the ComponentTypePtr into the structure
fails.

3.1 The program raises an exception.
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Use Case Xreate Entity

Description  Create an empty entity and return a pointer of it to the caller
Assumptions The entity manager has created a list of available Entities.
Preconditions The World has been created and initialized
PostconditionsA new Entity will be created and placed active.
Actors e World

e EntityManager

e Environment

Steps 1. The Environment requests a new Entity object pointer
from the World.
2. The request is passed to the EntityManager that will cre-
ate the Entity.

2.a The next available Entity is removed from the avail-
able list.

2.b The Entity is added to the active list and returned to
the caller.

Use Case Delete Entity

Description  Remove an entity from the active world.
Assumptions The
Preconditions Stuff that must be set before
PostconditionsStuff that will be changed
Actors e Environment

e World

e EntityManager

Steps 1. The World asks the Environment to remove the provided
Entity

. The EnvironmentManager Sets the typeBits to 0.

. The Entity is then updated/refreshed on all of the systems

. The associated Components for this Entity are removed
from the ComponentMap.

5. The Entity is moved from the active list to the available

list.

A OWN

Issues The container objects are still unclear.
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Use Case Refresh Entity

Description ~ Something within the entity has changed so the systems ondael hade
aware of that.
Assumptions The entity has changed type or system bits
PostconditionsThe systems that are interested in this entity have beerneghda
Actors e World
e EntityManager
e BaseSystem

Steps 1. Loop through each of the Systems notifying them that a
change was made.

1.a Compare the Entities System and Type bits for com-
patibility.
1.b Add or Remove this entity as needed.

Use Case #Add Component

Description  Add a component to and Entity
PostconditionsThe component will be associated with this Entity.
Actors e Environment

e Entity

e EntityManager

Steps 1. Get the ComponentType for the Component to be added.
2. Add the Component to the ComponentMap and associate
it with the Entity.

Extensions 1.a The Component has not been register with the Compo-
nentTypeManger

1.a Follow Use Case B.4

2.a The Component does not have an entry in the Compo-
nentMap

1l.a Add a new entry to the ComponentMap using the
ComponentTypeld as the key.
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Appendix C

Hardware efficiency analysis

For comparison with the neuromorphic hardware (NH) threeroercial off-the-shelf (COTS)
components were selected, standard central processihgGril), field programmable
gate arrays (FPGA) and graphical processing unit (GPU).HEnéware analysis was con-
structed to give the COTS components an advantage over theshiidates. The NH val-
ues were selected based@m M CMOS processes while the COTS components all used
40nM or smaller. The NH estimates were made based on SyNAPSE asrdmd pub-
lished VLSI level models of the simple hybrid neuron.

The estimates begin with the floating point operations (F&Qfer second for the neu-

rons in a particular modek;,.....», is defined as

Fneuron = Mfsgn (Cl)

Where M is the total number of neurong;, is the integrations steps per second gpd
are the floating point operations per neuron. The synapt@fs per second;s,,qptic, 1S

calculated using
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Fsynaptic = Nfsgsynapse- (C2)

WhereN is the Total number of synapses afigh,q,s. is the number of FLOPS per second
for the synapses. The total FLOPs per second for a model sutheof neuron and synaptic
FLOPs per second.

Using the power, in Watts, required for a model can be eséchhy

F
Pmodel = mﬁodela (C3)

and the estimated energy per spike is

P, model
f model N

Emodel - (C 4)

Where( is the FLOPS per watt for the particular hardware gng.; is the average firing

rate of the model. Table C.1 presents thealues used for each of the COTS components.

Table C.1: FLOPs per wattjs for the COTS calculations.

Component B Source
CPU 0.18-10° Duanetal. (2011)
Duan et al. (2011)
109
FPGA L9107 vilinx (2009)
GPU 15.85-10° NVIDIA (2012)

The theoretical neuromorphic hardware comparisons aedboasthe SyNAPSE hard-
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ware of Srinivasa and Cruz-Albrecht (2012). The power negment estimates were calcu-

lated using

Pmodel =11 [MPneuron + N (Psynapse + Prefresh)] . (C5)

WhereP, c.ron and P45 are the power estimates for neurons and synapses respective
P tresn 1S the power for memory refreshes required in the hardwaree that the power
estimate is scaled bly1 to include costs associated with routing and switching. dirergy

per spike was calculated using

P, model

Emodel = (C . 6)

Table C.2: Power estimates for neuromorphic hardware.

Variable Power Source

Rangan et al. (2010)
Demirkol and Ozoguz (2011)
Cruz-Albrecht et al. (2012)

Personal communication

PTLSUTOH 20 nW

Poynapse 2.4 nW
Prefresh 18 pW
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Table C.3: Parameters used for each of the models.

Action Selection Model Parkinsonian Model

Variable - Description Section 9.2.4 Section 9.2.5
M Total number of neurons 1,152 50

N Total number of synapses 25,124 160
Frmodel Average firing rate of the model 20 80

fs Integration steps per second 1,000 1,000

In FLOPS per neuron 13 13
Jsynapses FLOPS per neuron 1 1




