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Abstract

There is an abundance of computing power sitting in computer labs waiting to
be harnessed. Previous research in this area has shown promising results networking
clusters of workstations together in order to solve bigger problems faster at a fraction
of the cost for supercomputer time. There are, of course, challenges to using these
sorts of clusters: the communication fabrics linking these machines are not necessarily
high-performance, and the differences between individual machines in the cluster
require careful load balancing in order to efficiently use them. These problems have
only become greater with the introduction of acceleration hardware such as GPUs
and FPGAs; however, that hardware also provides even greater computing power at
an even lower price point for those that can work around their idiosyncrasies. This
dissertation presents an approach to designing software to effectively utilize these
heterogeneous computing clusters in a modular, extensible manner. I apply it to the
development of a large-scale NeoCortical Simulator(NCS) as well as the engineering

of a virtual reality library, caVR.
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Chapter 1

Introduction

Despite the ever shrinking size of the transistor, heat and power consumption prob-
lems have stymied chip manufacturers’ attempts to make a single processing core
faster and more powerful. As a result, manufacturers have shifted towards devel-
oping processors with multiple slower but more energy-efficient cores. With these
architectural changes comes a set of algorithmic challenges in order to fully utilize
these multicore chips [48]. A similar trend can be seen in the evolution of the graphics
processing unit (GPU) because of their original purpose: massive throughput of highly
data-parallel computations [96]. Due to the nature of this task, GPU designers are
able to use extra transistors gained from their increased density for more computation,
resulting in specialized chips whose annual performance increases outstrip gains made
by the more generalized CPU. Furthermore, the introduction of programmability on
the GPU opened the doors to its use in other applications; however, similar to multi-
core CPUs, harnessing a GPU’s full potential comes with its own slew of algorithmic
challenges [58]. Even greater computational capacity can be gained by networking
multiple machines equipped with multicore CPUs and GPUs. This is visible in the
latest supercomputers being built today. That these devices are designed and priced
at commodity levels allows for a significant amount of computation to be relatively
affordable for anyone with a few hundred dollars [72]. Networking cheaply-built com-
puters into Beowulf clusters has been done since the 1990s [14], and the addition of
affordable multicore CPUs and GPUs allow for a great deal of computational power

to applications that are capable of harnessing it. Again, though, effective utilization



of these resources requires algorithmic designs that overcome the additional layers of
inter-node communication and load balancing.

Designing software that runs efficiently on these sorts of systems often comes at
the cost of flexibility. For efficiency’s sake, algorithms are finely tuned to the acceler-
ators that they run on. For example, the memory access and branching patterns on
CUDA devices can greatly affect the resulting performance [92]. Further complicating
matters is the fact that while builders of the world’s largest supercomputers can af-
ford to homogenize their hardware — the Titan supercomputer has 18,688 of the same
CPU and the same number of the same GPU [108] — finding such a homogeneous
system in a common research lab is unlikely. Different accelerators have different
characteristics and APIs, even between the same class of hardware. An an example,
different versions of CUDA hardware have different compute capability levels which
can limit, for example, the type of atomic operations that are available [93]. To make
software accessible to the largest audience, it must be designed to account for all of
these idiosyncrasies.

This dissertation presents an approach to designing software that is both effi-
cient and extensible in light of these challenges. The methodology decomposes a
problem into graph nodes that can be executed in parallel with data being passed via
a publisher-subscriber mechanism. Within each node, a subgraph is formed using a
number of plugin-based extensions in a manner that allows each node of the subgraph
to also execute in parallel. The overall graphs are then linked first across multiple dif-
ferent compute devices on the same machine, and then further linked across multiple
machines. The end result is a highly parallelized piece of software that efficiently uses
whatever resources are available within any given cluster of heterogeneous hardware.

I demonstrate the methodology on two different applications. The first is the
latest version of the NeoCortical Simulator (NCS), a large-scale brain simulator. I
present improvements over the previous version include the utilization of any arbitrary
mix of CPUs and GPUs to accelerate brain computations as well as a set of interfaces

that allow for different neuronal, synaptic, and input models to be used together with



minimal added computational cost. The second application is a virtual reality toolkit,
caVR. Similar to NCS, the design of caVR allows for arbitrary input and rendering
methodologies to be mixed and matched based on availability and the needs of both
the developer and user.

There are several contributions from this work. First, an extensible approach to
simulation systems on heterogeneous hardware is presented. Second, that approach
is demonstrated on the development of a brain simulator. As an added effect, I show
how to efficiently map certain brain computations to CUDA devices, in particular,
those of the previously CPU-specific NCS models. I also show how my design can
allow for models of different levels of biological fidelity and computational load can be
mixed with one another. Finally, I demonstrate the methodology on a much different
application, a VR library.

The rest of this document follows these contributions. Chapter 2 begins by giving
a history of parallel computing, the introduction of accelerators, and developments
in software design that take advantage of these developments. Chapter 3 outlines our
approach to dealing with heterogeneous hardware clusters that allow for extensibility
without sacrificing performance. Chapter 4 illustrates how we apply this approach to
the design and implementation of the most recent version of NCS, the Neo-Cortical
Simulator, while Chapter 5 applies the same process to caVR, a virtual reality library.
Related work and results specific to each of these applications is presented within their

respective chapters. Chapter 6 ends this document with some closing thoughts.



Chapter 2

Background and Related Work

Though the two applications we are targeting have rather disparate purposes, the
targeted hardware is similar: clusters of computers with potentially heterogeneous
hardware. This section outlines the evolution of such systems both from the hardware
side and the supporting software side. We take a bottom up approach, beginning with
the development of various accelerators that have found themselves as the workhorses
in the modern computing cluster and ending with advances on cluster computing in

general.

2.1 Accelerators

Like the math coprocessors that preceded them, a number of different pieces of add-on
hardware have been designed to offload expensive computations from the CPU. While
they have been designed for a multitude of purposes, such as graphics, audio, and
physics [49], the GPU has been the most prevalent source of modern computational
offloading. We also discuss another offloading solution, reconfigurable computing,
that serves as an intermediate between fast hardware-specific solutions and slower

software-specific ones.

2.1.1 The Graphics Processing Unit

Rendering computer graphics using entails the transformation of geometry into pixels

on the screen. For raster-based graphics, geometry is usually represented as trian-



gles. The vertices of these triangles are transformed from the reference frame they
are specified in to a world-space reference frame by multiplying each vertex by a
transformation matrix. They are then moved into a view-space reference frame by
another matrix. Finally, the three-dimensional view of the geometry is flattened into
a two-dimensional image plane by another matrix multiplication. The pixels within
the resulting triangles on the image plane are filled in a process called rasterization,
with colors based on the values interpolated from per-vertex attributes. These pixels,
called fragments, may be blended with existing pixels or discarded entirely based on
the desires of the programmer. Fragment colors could be further augmented through
the use of textures, usually one-, two-, or three-dimensional arrays of color values.
Originally designed to handle rendering tasks instead of the CPU, the graphics
processing unit (GPU) employs a parallel pipeline architecture [6] in order to trans-
form large numbers of vertices and fragments. Figure 2.1 shows such a pipeline.
Vertices of polygons are transformed based on the desired perspective by the vertex
processor. The results are clipped to the boundaries of the viewport before they are
rasterized, converting geometry into actual pixel fragments located appropriately on
the display. The final color of the fragments are computed in the fragment processor
before they are potentially displayed on the screen. It should be noted that in addi-
tion to being pipelined, GPU architectures generally parallelize across each stage of
the pipeline. That is, there may be multiple vertex processors working in parallel on
different vertices in a Single-Instruction Multiple-Data (SIMD) scheme.
Programmer control over the graphics card was handled through a number of
APIs, including OpenGL [102], a cross-platform API, and Direct3D [17], an API spe-
cific to Windows and other Microsoft platforms. Both allowed for certain parts of the
pipeline to be altered, but beyond that, computation through the pipeline was fixed.
For example, lighting could be specified as per vertex or per fragment, and blending
of overlapping fragments could be specified by the programmer; however, vertex po-
sitions would always uniformly be modified by a set of user-specified transformation

matrices to move vertices from object space to the image space.
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This deficiency would be somewhat addressed with the introduction of pro-
grammable shaders. Originally written in assembly [123], shaders wholly replace
parts of the fixed-functionality pipeline, in particular the vertex processor and the
fragment processor. For example, one could offset some vertices based on the current
time and a sine wave in addition to or instead of the matrices. Usability of shaders
would improve over time as each respective API introduced higher level languages to
compose them, with OpenGL adding the OpenGL Shading Language (GLSL) [56],
Direct3D adding the High-Level Shader Language (HLSL) [32], and Nvidia introduc-
ing Cg [83], which could generate GLSL or HLSL based on the platform.

Other developments in GPUs would only further increase their flexibility with
the addition of features such as geometry shaders [90] that allow customized manip-
ulation of whole geometric primitives rather than single vertices, but the addition of
feedback mechanisms such as framebuffer objects [55] and transform feedback [91],
which allowed for pixels to be rendered into readable textures and transformed ver-
tices to be stored into readable buffers, respectively, would pave the way for a whole

set of different problems to be offloaded onto the GPU.

2.1.2 General Purpose Computation on the GPU

With the previously discussed hardware-accelerated ways of retrieving the results of
the now programmable shaders, researchers began experimenting with the graphics
card as a stream processor and general coprocessor [125]. This practice eventually
became known as general purpose computation on GPUs (GPGPU) [58]. From the
more graphical side, simulations of significantly larger numbers of particles could be
done on the GPU — where they would later have to be sent for rendering anyway
— by disguising individual pieces of particle data as colors, storing them in texture
memory, and updating them by reading in that texture memory in a fragment shader
and rendering the updated values into a different texture [79].

Earlier research in this domain typically accelerated solutions to problems that

could be easily mapped to graphics concepts. For example, Liu et al. [82] compute



a fluid simulation on a discretized 3D grid that can be mapped to 2D textures.
Crane et al. [33] simulate fluids in a similar fashion, albeit by using then available
3D texture rendering capabilities to more closely match the problem domain. In the
latter case, the fluid simulation was directly rendered as it was updated; as such, the
GPU solution provides two advantages: not only does the simulation get accelerated,
but the rendering throughput is also increased by removing the need to transfer data
from the CPU to the GPU. A similar boon could be found in the development of
VFire [65], an interactive virtual reality application where wildfire is simulated [67]
and visualized. The spatial domain of the wildfire simulation is easily mapped to
textures which can be quickly visualized as the simulation runs.

While the results of GPU computing were relatively impressive, harnessing it
was cumbersome. Developers needed to not only adapt their algorithms and code to
graphics constructs but also have knowledge of how to use graphics APIs to actually
utilize these constructs. As a result, other APIs, languages, and extensions were
created that tried to abstract away these details. One such work, Brook [26], extended
C to allow for constructs such as data streams and the kernels that operated on them.
Uses of Brook include N-body simulations [43] as well as the computational side of a
ray tracer [69)].

GPGPU did not go unnoticed by the hardware manufacturers themselves. Nvidia
would eventually release its first version of its Compute Unified Device Architecture
(CUDA) in 2007 alongside the G80 series of GPUs. CUDA presents the user with a
programming model that can better express the data parallelism inherent to GPGPU.
In such a model, a kernel function can be executed by a large number of threads
(on the order of thousands) concurrently. Threads differentiate themselves and the
data they operate on through a system of assigned IDs. Additional advantages over
then-traditional GPGPU was the ability to access memory in more familiar array
primitives rather than textures as well as the ability for threads within a block to
communicate with one another through shared memory [75]. The G80 series of GPUs

also marked a change in GPU architecture. While the same type of feed-forward
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Figure 2.2: Architecture of the Nvidia GeForce 8800 GPU from Nvidia’s technical
brief [50].
pipeline is employed, the actual processing architecture was unified: instead of specific
circuitry to handle vertices and other circuitry to handle fragments, a set of generic
processors are able to handle all types of shaders. Figure 2.2 shows this architecture,
itself composed of 128 processing cores divided into 16 streaming multiprocessors.
Later improvements to GPU architecture would generally increase the number of
processors, with the latest GTX780 cards containing 2304 processing cores [89].
While programs written in CUDA look more akin to standard C and C++ pro-
grams, programmers must still take care with their programs’ behavior in order to
maximize performance. For example, memory should be accessed in aligned contigu-
ous sections within blocks in order to coalesce them into single memory accesses, and
branching within a warp (a cluster of threads executing in lockstep) would cause a

portion of the warp to stall while the branch was executed [93].
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While CUDA primarily presents a high-performance GPU programming model,
it was designed for Nvidia hardware. Akin to OpenGL, OpenCL was designed as
an open standard alternative to CUDA for parallel programming on not only GPUs
but also CPUs and other architectures. The standard does not promise any sort
of optimality in terms of performance; rather, it guarantees correctness across all

supported device types [115].

2.1.3 Field-Programmable Gate Arrays and Reconfigurable
Computing

Solutions for various applications could be placed on a spectrum. On one end, dedi-
cated hardware could be designed to very efficiently perform a specific task. On the
other end, a very general processor could be used, and software would dictate which
parts of the generalized hardware would be used in which order to accomplish the
same task. Early GPUs could be viewed as belonging to the the hardware end while
CPUs could be placed in the software end. GPUs and other hardware solutions are
unmatched to CPUs in terms of performance due to their very specialized nature;
however, they are not usually applicable to other tasks. CPUs tend to be slower but
more versatile due to their general purpose design.

An intermediate solution to problems exist in the form of reconfigurable comput-
ing, where hardware can be altered after fabrication to tailor it to the task at hand.
One such piece of hardware is the field-programmable gate array(FPGA). Here, parts
of the hardware are controlled by configurable hardware bits; additionally, the rout-
ing circuitry itself is programmable, allowing a customized circuit to be constructed.
Similar to other hardware acceleration solutions, these devices tend to be coupled
with a CPU to handle other tasks such as control of the device itself [31]. The use
of an FPGA can be viewed has moving computation from the temporal domain of
having a linear set of instructions that must be performed to the spatial domain
where computation is performed by some cluster of circuitry before proceeding to

the next cluster of circuitry. The advantage of this transition is the pipelining and
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thus parallellization of computation throughout the hardware, increasing throughput.
Results show improvements ranging from 10 times to 100 times compared to CPU
solutions [39]. A potential drawback to using these types of devices is the large variety
of device types and lack of standardized design methods. Todman et al. [122] give a
survey of many of these architectures and methods while Hartenstein [59] summarizes

a number of more coarse-grain reconfigurable computing projects.

2.2 Parallel and Cluster Computing

There are limits to the amount of computation a single CPU core can do, limiting
the types of problems that can be solved in any reasonable time frame. Fabrication
advancements raised these limits, and for a while, with each new processor gener-
ation, programs written for single-core CPUs grew faster and faster without any
modifications. In 2005, Sutter [117] would declare that ”[t]he free lunch is over.”
Chip manufacturers were shifting to multicore designs, with two or more cores on the
same die. Clock speeds would not increase as drastically as before, so those unaltered
single-threaded programs would gain nothing from the addition of a whole extra com-
puting core. Programs that wanted to take advantage of these developments would
have to be structured with concurrency and parallellism in mind.

The transition to multicore was not the harbinger of the concurrent computing
age; it merely brought it into the limelight. Multiple processors, albeit not on the
same die, could be placed on a single motherboard and communicate via shared mem-
ory long before this. Early research with these systems focused on algorithms [73],
memory consistency [3], and synchronization [84]. Later work would introduce tools
to aid developers in productively utilizing such systems. OpenMP [36] is an API de-
signed to simplify parallel programming on shared memory systems. Code could be
annotated with directives that would allow OpenMP to parallellize constructs such
as loops across a pool of available processors.

Though building shared memory systems is and was certainly possible, it required

more esoteric hardware to facilitate multiple processors sharing that same memory.
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An alternative is cluster computing [8], where multiple independent computers are
networked together and communicate through messages over that fabric. Such sys-
tems became an attractive option for several reasons, including the performance to
price ratio for standalone computers in addition to improvements in networking tech-
nology. Modern supercomputers tend to follow the same format, albeit with more
sophisticated communication fabrics; unfortunately, the design of these systems re-
quires significantly greater engineering effort compared to using an already connected
network of workstations [5].

As OpenMP facilitated parallelization across shared memory systems, the Message-
Passing Interface (MPI) [128] was designed to facilitate communication between mul-
tiple computers. MPI allows nodes in a cluster to communicate with one another by
sending each other point-to-point messages. Additionally, a set of collective opera-
tions, such as broadcasting, where a single computer replicates a piece of data to all
other computers, and reducing, where the results from multiple computers are com-
bined, are also defined. MPI-2 extends this feature set with one-sided communication
methods, such as reading and writing to another machine’s memory without that
machine’s involvement, and dynamic process generation, which allows more processes
to be generated during run-time rather that configuration time [51].

Concurrent and parallel programming across a cluster of computers via message-
passing is arguably more complicated than implementing the same task across a
shared memory system. A middle-ground exists for programs designed for the latter:
distributed shared memory [101]. Such systems tend to physically be structured as
a cluster; however, from the programmer’s point of view, all resources across the
entire cluster appear as a single powerful system image. Memory consistency across
the cluster is a significant problem in these sorts of setups. What to do when two
different nodes read and write to the same piece of memory in the same period of time
depends on the implementation; the choice of consistency model affects the amount

of data that must be passed around as well as assumptions that the programmer can

make [88].
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2.3 Heterogeneous Cluster Computing

The term ”heterogeneous” in this domain is somewhat overloaded but generally refers
to computing clusters constructed out of a diverse set of hardware. In some cases, that
heterogeneity manifests itself as different processor speeds across different nodes in
the cluster. In other cases, the diversity stems from the introduction of accelerators.
In the most extreme cases, both the preceding conditions exist: clusters are composed
of processors with varying performance characteristics along with variety of different
accelerator types. Research has been done across all of these types.

Beaumont et al. [12] provide work that is an example of the first case. The authors
modify the data distribution components of the ScaLAPACK library in order to load
balance linear algebra computations across a heterogeneous cluster of CPUs. They
show that load-balancing matrix operations can be a difficult problem: determining
the optimal grid configuration for a group of heterogeneous processors is NP-complete.
They do, however, provide a heuristic solution. Barbosa et al. [10] also solve linear
algebra problems with a heterogeneous set of CPUs connected together with the
Windows Parallel Virtual Machine.

In both of the preceding examples, matrix operations such as LU decomposition
required solutions that took into account that the problem size would reduce as the
algorithm progressed; in this case, the way in which the problem shrinks can be de-
termined a priori and handled accordingly. For other problems, such a luxury cannot
be afforded. Teresco et al. [119] develop a system that is generally used for adaptively
refined meshes where the initial distribution of data may become unpredictably un-
balanced during each iteration depending on where more refinement is needed. In
such a system, a load-balancing suite redistributes data after each iteration based on
properties collected about each machine in the cluster.

For the second definition of heterogeneous computing, an example can be found in
the Keeneland project [126]. Architecturally, the cluster resembles a supercomputer

with its high-performance communication fabric. The GPUs used across the entire
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cluster are also all of the same model. To help with programmer productivity, a
number of tools are provided, including Ocelot [40], a framework that allows CUDA
programs to be executed on non-CUDA compatible devices as well as CPUs. Efforts
similar to Ocelot can be found in research presented by Lee et al. [80], where the
parallellization through OpenMP is modified to run on CUDA devices instead.

At the more extreme end of heterogeneous computing, projects such as Axel [124]
can be found. Axel itself is a cluster composed of an array of identical nodes; each
node, however, is composed of a CPU, a GPU, and an FPGA. To utilize all the
processing elements in the cluster, a map-reduce framework was employed. A similar
system of identical nodes can be found in the QP cluster [109], where each node is
composed of two dual-core CPUs, four GPUs, and an FPGA and are connected using
Infiniband.

In almost all the discussed systems, tools were developed to accelerate develop-
ment of applications on their respective clusters. In the same vein as Ocelot but more
akin to distributed shared memory systems, Barak et al. [9] implemented an OpenCL
abstraction layer that allows an OpenCL program to use all available devices in a

cluster without knowing it.
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Chapter 3

An Extensible Component-based
Approach to Simulation Systems
on Heterogeneous Clusters

The commonplace computer lab can potentially be rife with computational power;
they can also be rife with diversity as only subsets of these computers get upgraded at
any given point in time. Designing software that performs well on one such heteroge-
neous cluster can be a difficult task, with specially designed software and frameworks
developed just for that architecture. Making that software efficient on other systems
only makes it more challenging.

I propose an approach to engineering simulation systems that is easily extensible
to different types of heterogeneous clusters. These systems are also extensible in
terms of adding new functionality without the need to recompile the simulation core
or expose proprietary code.

The approach can be summarized as follows:

e Decompose the simulation into a graph of computational segments, their inputs,

and their outputs.
e Decompose each computation into a subgraph to support extensibility.
e Replicate this whole resulting graph across all devices within the cluster.

e Connect these graphs with minimal communication.
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e Distribute data based on available resources.

I now go into each of these steps into detail. To illustrate each step, I apply the

approach to a gravitational n-body simulation.

3.1 Flow Decomposition

The approach begins by decomposing the simulation flow into a directed graph, where
nodes represent segments of computation and connections present the flow of data
between computational segments. We allow computation in each node to happen
concurrently with data passed along connections using a publisher-subscriber mech-
anism developed by the author, where a node will subscribe to its necessary inputs
and blindly publish its outputs to any subscribing buffers. We constrain the pub-
lishing mechanism by limiting the number of published buffers that any given node
can have in circulation at any point in time, somewhat similar to many double- and
triple-buffering schemes. This constraint is imposed for two reasons. First, it pre-
vents cannibalization of computing resources on nodes that have no dependencies and
can truly run freely, and second, it provides a natural "resource pool” mechanism,
where memory is not constantly freed and reallocated but simply reused when marked
available. To facilitate this, published buffers must be released by each of their sub-
scribers; upon release from all subscribers, the buffer is automatically added back to
the publisher’s pool of available blank buffers. The basic outline for the classes that
comprises this publisher-subscriber mechanism is shown in Figure 3.1.

As an example, Figure 3.2 shows a graph decomposition of an n-body simulation.
There are two primary computations in such a system: the updating of velocities and
the updating of positions. The system in this case is tightly coupled. In order to
update a body’s velocity, both its previous velocity as well as the position of every
body in the system are needed. To update a body’s position, the body’s current
position is required. To illustrate the need for constraining the publisher system, an

additional computation node is added where external forces are applied to the system.
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template<typename PublicationType>
class SpecificPublisher : public Publisher {
public:
unsigned int publish(PublicationType* pub) ;
Subscription<PublicationType>* subscribe();
void addBlank(Publication* blank);
Publication* getBlank();
bool init(unsigned int num_blanks = 3); // triple-buffer
s
private:
std::vector<Subscription<PublicationType>*> subscriptions_;

};

template<typename PublicationType>
class Subscription {
public:
PublicationType* pull();
void pull(PublicationType** location, Mailbox* mailbox);

};

class Publication {
public:

void release(); // signals that we are done with this pub, free it
private:

int ref_count_; // how many subscribers still need to release this pub

};

Figure 3.1: Basic class definitions for the publisher-subscriber system in NCS.
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Figure 3.2: Example graph decomposition of an n-body simulation. The gray boxes
represent computational segments while the orange boxes represent data being passed.
Without the constraints in place, this node is allowed to run as fast as it can since
it does not require any data from another node. In doing so, the node could allocate
and publish buffers faster than subscribing nodes could them, resulting in memory
overuse. Additionally, because nothing can block the node, it would be allowed to
consume all allocated processing time given to it rather than relinquishing that time

to subscribing nodes.

3.2 Extensibility Decomposition

To support extensibility, we decompose each desired computational node into a sub-
graph where each subnode represents a single extension, all of which again run con-

currently using the same described publisher-subscriber mechanism. These extensions
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Figure 3.3: Generalized decomposition of a computation node to achieve extensibility.
The gray boxes represent computational threads while the orange boxes represent the
data passed between them.

take the form of plugins (shared libraries). This decision was made in order to pre-
vent the need to recompile the simulation core while also allowing third parties to
develop proprietary modules without the risk of exposing secret information. Fig-
ure 3.3 shows a generalized decomposition of a node. The execution of the wrapped
publishing command is achieved with the introduction of a prerelease function that
is also executed when a buffer is completely released.

Suppose that input forces in the n-body could be gathered from a number of
different sources, such as a file, a network socket, or random number generation. In
such a case, decomposing the input node into the aforementioned subgraph would

allow all sources to be gathered in parallel.
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3.3 Graph Replication and Communication

A complete, concurrent, and extensible description of the entire simulation in terms
of behavior and data flow is available at this point. We then simply replicate the
graph to all available devices in the cluster, allowing each device to perform a full
simulation of all elements it would be responsible for if all the available data is there.
To facilitate this, we identify any global data that is necessary and connect all of
these replicated graphs with a data exchange node that pushes all local data to other
devices while simultaneously pulling data from every other device. This node itself
can be represented as a subgraph that shrinks or grows based on the number of
machines and devices in the system.

For an n-body simulation, we require the position of every body in the system
in order to gather the total forces acting on any given body. As such, we connect
the replicated graphs with a node that exchanges all body positions with one another

across the cluster. Figure 3.4 shows this modification.

3.4 Distribution

Although a distributed simulation system exists at this point, care must be taken
in distributing simulation elements to devices given potential differences in perfor-
mance characteristics between devices. To achieve this, two things are required: a
description of each device’s capabilities and a description of each simulation element’s
computational requirements.

In the case of the n-body problem, a reasonable description of performance per
device could be estimated or measured computing throughput. The amount of calcu-
lation required per body is roughly the same; thus, a reasonable distribution method-
ology would be to dole out bodies to each device based on their relative performance

estimations during initialization before the processes are allowed to run.
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Figure 3.4: Modification of n-body graph decomposition to facilitate communication.

Gray boxes represent computational processes while orange boxes represent data.
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3.5 The Rest of this Dissertation

The rest of this dissertation is dedicated to demonstrating this approach on two
applications. In the first, we apply this methodology on the latest iteration of the
NeoCortical Simulator (NCS), a large-scale brain simulator. Though previous versions
had already been parallelized across CPU clusters, the alterations in this incarnation
not only allow multiple types of neurons, synapses, and inputs to be modeled in
tandem with one another, but also allow for these elements to be simulated on both
CPUs and GPUs simultaneously. The design of the system also allows for inputs
and reports to be specified at execution time, presenting a robust solution for more
real-time applications.

The second application, the virtual reality library caVR, solidifies the real-time
constraint as a requirement. Here, the heterogeneity stems not only from the variety
of computing hardware but also from the input and output methodologies. While
rendering may need to support different graphics libraries, such as OpenGL and Di-

rectX, this only encapsulates one sense that can be °

‘rendered.” The system must be
designed to support various output libraries from the beginning. In addition, virtual
reality in particular is a field of considerable hardware innovation and experimenta-
tion, so the system must be easily extensible enough to facilitate these needs. Further
confounding matters is the need to also support a wide variety of input devices. In
spite of the hardware heterogeneity, the library must be robust enough such that an
application developer need only specify a small set of functions for a large amount of
hardware to be made functional.

Each of the subsequent two chapters are structured as follows for each respective
application. The problem will be introduced, and then background and previous work
related to that problem will be presented. We then show the design of the system

based on this approach and discuss results and conclusions before ending with some

avenues for future work.



23

Chapter 4

NCS

4.1 Introduction

Understanding the mechanisms that drive the human body is an essential prerequisite
to effectively addressing the myriad of possible maladies that can plague it. Unfortu-
nately, acquiring this knowledge can often times prove impractical or even unethical
with existing technology. This is particularly true in the field of neuroscience. In
these cases, modeling stands out as a potential alternative. However, its application
to neuroscience has its own set of computational hurdles depending on the size and
complexity of the system being modeled.

In this chapter, we present the latest version of the NeoCortical Simulator, (NCS),
an application designed to simulate large-scale models of spiking neurons. In order
to accommodate larger simulations in a reasonable time frame, we have redesigned
NCS to exploit the processing power of GPUs along with CPUs. The remainder of
this chapter is structured as follows: Section 4.2 gives an overview of spiking neural
simulations and related solutions while Section 4.3 describes the design of the new
system. Section 4.4 gives some performance results before Section 4.5 draws some

conclusions and offers some room for future work.

4.2 Background

The subject of neuroscience is a field of study on its own and its complete review

beyond the scope of this dissertation. Instead, I review enough biology for the reader
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to understand the problem domain and the various modeling strategies.

4.2.1 Biological Neurons

The brain is composed of a large number of cells called neurons. In a human brain,
the number of neurons is estimated to be about 100 billion. Figure 4.1 illustrates
the typical structure of a neuron. Branching away from the cell body are a number
of dendrites that can receive signals from other neurons. Also branching away from
the cell body is a generally longer axon through which electro-chemical signals flow
towards the axon endings. These endings connect to the aforementioned dendrites
of other neurons, though not physically; instead, a small gap called a synapse exists.
The number of these gaps is roughly 1000 to 10000 per neuron [18].

The dynamics of this mass of neurons generally operates as follows: Ion channels
alter the amount of electrical charge both inside as well as outside the cell membrane,
the difference of which is called a membrane potential. When the membrane potential
exceeds a threshold voltage, a signal called an action potential is transmitted from the
body through the axon to the axon endings. The axon endings then release chemicals
called neurotransmitters which cross the synaptic gap to another neuron’s dendrites,
where they affect the ion channels of the subsequent cell, altering the voltage of that

body [18].

4.2.2 Modeling Neurons

A number of models have been developed regarding the dynamics of neurons and their
associated ion channels. One of the earliest and most used is the one derived from
experimental results by Hodgkin and Huxley [68]. In this model, both the behavior of
ion channels as well as the membrane potential are governed by a system of differential
equations. Depending on the type of ion channel, the equations controlling it can be
dependent on gating variables.

The previously described equations can be modeled as an electrical circuit. Fig-

ure 4.2 shows one such circuit. The neuron’s membrane potential is the voltage from
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Figure 4.1: Structural illustration of a neuron by Boeree [18].
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Figure 4.2: Equivalent circuit for a neuron by Gutkin, Pinto, and Ermentrout [57].
C is the capitance, while g1, gng, and gx are conductances due to leakage channels,
sodium channels, and potassium channels, respectively. Vi, Vy,, and Vi are the
reversal potentials of their respective channels.

the top of the circuit to the ground. Stored charge is represented by a capacitor while
various ion channels are represented as a voltage source that corresponds to a rever-
sal potential and a potentially variable resistor that affects the amount of generated
current [57].

While the Hodgkin-Huxley model provides an elegant model of neuron behavior,
its complexity does not lend itself to timely simulations of large numbers of neu-
rons. For these larger networks, researchers may be more interested in the neurons’
interactions rather than the precise dynamics of a singular neuron. In such cases,
functional approximations may be appropriate. Two popular options are the leaky
integrate-and-fire (LIF) neuron and the Izhikevich neuron. For the former type, the
neuron essentially accrues (”integrates”) charge until it reaches a threshold voltage,
upon which it fires, resetting the amount of accumulated charge. Charge integrates
as a result of both synaptic currents as well as external input current. Charge is also

dissipated as a result of a leakage current [28].
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The latter approximation, the Izhikevich neuron [71], goes even further in eschew-
ing biological accuracy in favor of performance. The neuron has only two variables
that evolve over time: a membrane potential v and a recovery variable u. Four con-
stants determine the behavior of the neuron in a set of equations that can be very
quickly computed. Based on these constants, a neuron can be modeled to exhibit
a variety of different firing characteristics. The flexibility of these neurons along
with their computational simplicity makes them an attractive option for large scale
simulations of networks of neurons.

The discussed neuron models are only a subset of models that have been proposed;
a number of other hybrid solutions exist, such as the one used by previous versions
of NCS, where the subthreshold dynamics are governed by Hodgkin-Huxley style
equations while the firing mechanism simply follows a templated waveform in order
to save computation [41].

It should also be noted that the models mentioned so far only discuss the dy-
namics of the membrane potential; the dynamics of synaptic transmission have their
own set of models. Some models assume that when an action potential arrives at
a synapse, a constant amount of synaptic current is injected into the postsynaptic
neuron; however, other models may incorporate learning through mechanisms such
as spike-timing dependent plasticity (STDP), where the amount of synaptic current
or weight that is injected is modified over time based on the spike timings of both

the presynaptic and postsynaptic neurons [111].

4.2.3 Simulation Strategies and Tools

A more in-depth survey of simulation strategies and tools can be found in Brette
et al. [24]. The spectrum of approaches is broad, each with its own advantages and
disadvantages. For example, the use of a discrete time grid simplifies the nature of
the computation: for every time step, update every neuron and check for firings. This
sort of algorithm lends itself well to vectorization and parallelization. That simplicity

also has some notable drawbacks: firings are locked to the resolution of the time
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grid, and computation must be done on every neuron at every timestep regardless of
whether they are firing or not. The situation is reversed when using an asynchronous
or event-based simulation strategy. Firings occur precisely where they are calculated
to occur at the cost of a more complicated algorithm that must constantly maintain a
time-sorted list of events in order to figure out which neuron to update next. Further
complicating matters is the possibility that new events can preempt or even cancel
other future events.

Several pieces of software have been developed over the years for the purpose
of simulating networks of neurons, including NEURON [60], GENESIS [20], and
NEST [52]. An in-depth comparison of these tools, along with NCS, is given by
Brette et al. [24]. Though efforts have been mounted on parallellizing each of these
simulators for the sake of improving performance [85, 53, 99], these efforts have fo-
cused primarily on using multiple CPUs, whether in the same machine or networked
together, to reduce processing times and increase problem sizes.

With the advent of CUDA and GPGPU, a slew of research projects cropped up
that mapped neural simulations to the GPU. A number of these projects focus on the
use of the Izhikevich neuron [86, 45, 15, 46]. In many of these cases, the simulation

was also performed on a single GPU.

4.2.4 NCS and Related Work

With the success found in simulating networks of neurons on single GPUs, it was in
our interest to update NCS in order to use GPUs in order to speed up simulations.
This work was built upon a bit of previously published research, including our at-
tempts to simulate Izhikevich neurons on multiple homogeneous GPUs in the same
machine [120], where we passed a bit vector representing the firing state of every
neuron in the system as the primary form of communication between GPUs. One of
the authors of that previous work, Corey Thibeault, would later expand upon this
with a hybrid communication scheme based on firing rates [121].

The bulk of work done on the previous version of the NeoCortical Simulator,
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NCS5, was done by James Frye [47]. The work focused on the optimization of its
predecessor, NCS3, in order to obtain an order of magnitude performance increase in
terms of speed on a cluster of CPUs.

The confluence of these two strands of research is the latest version, NCS6, a
simulator designed to not only exploit the parallellism of both CPUs and arbitrary
GPUs but also allow for the addition and combination of different neuronal models.
These features are all new and unavailable in NCS5. Additionally, NCS6 uses the
parallel graph structure discussed in Chapter 3, employs a different communication
scheme, and allows for reporting to be dynamically specified at run-time. The rest
of this chapter has been published in Frontiers in Neuroinformatics [66]. Despite
publication, improvements have been added and the text modified to reflect these

alterations.

4.3 Design
4.3.1 Goals

NCS6 was designed with three qualities in mind: extensibility, efficiency, and ap-
proachability. The first, extensibility, is a requirement in order to enable mixed mod-
eling, where parts of the simulation could be computed one way while other parts
are computed another. Enabling this capability would allow more expensive precise
computations to be done in regions of interest while other regions could be approx-
imated with simpler computations. Additionally, it would allow different submodels
created using different components to be combined without the need to convert the
computational models used in one submodel to the computational models used in
another.

The second quality, efficiency, simply stems from a desire to maximize resource
utilization and minimize communication in order to maximize throughput. By max-
imizing resource utilization, we seek to use all available computational devices, not

only the CPUs alone or the GPUs alone but rather all device types working in tan-
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dem. We minimize communication in hopes of ameliorating the necessity of a high-
performance network connecting compute nodes. Though efficiency can be at odds
with extensibility, we arrange our data structures in such a manner as to minimize
the loss of the former while gaining the boons of the latter.

Approachability deals with providing an effective user experience. That is, run-
ning the simulator should be a simple task of executing the simulator program,
perhaps with a few input arguments. Furthermore, the modeling aspect should be
streamlined in a way such that repetitive tasks are reduced without sacrificing the

desired expressions of the user.

4.3.2 Simulation Composition

At its core, every simulation is composed of four elementary parts: Neurons, Synapses,
Stimuli, and Reports. Each of these components is also regarded as a subtype of a
more generic Element type. Neurons and Synapses in this scope are not exact analogs
to their biological counterparts. Neurons are the cell bodies that receive stimulus
currents and clamp voltages and, under some defined circumstance, fire, transmitting
spike signals to their synapses. Synapses represent unidirectional connections from
one neuron to another. When the presynaptic Neuron fires, the Synapse injects
current into the postsynaptic Neuron after some specified delay. Stimuli represent
external inputs that affect Neurons. These can have the effect of either augmenting
the amount of current received by a neuron or clamping the voltage of the Neuron
body to some precise value. The final element, Reports, specify the output component
of the system. Reports take either a collection of neurons or a collection of synapses
and output some desired value to some type of data sink.

The descriptions of the aforementioned elements were intentionally left vague. In
reality, the behavior of each element is governed by a selected computational model,
though some constraints are enforced. For example, one neuron could be simulated
following an Izhikevich model while another could be simulated using an integrate-

and-fire model. While the internal behavior of the two cell types can diverge, both
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are still required to provide two bits of information at each time step: whether the
cell fired and the cell voltage. They are both also provided with the same set of input

data: Stimuli, total synaptic current, and the previous neuron voltage value.

4.3.3 Simulation Environment and Distribution

The initial targeted computing environment for NCS6 was any, potentially heteroge-
neous, cluster of one or more computers composed of some mix of CPUs and CUDA-
capable GPUs. Due to the way NCS is designed, expansion to OpenCL devices would
only require the implementation of certain stub functions. Since all computing devices
can potentially have different performance characteristics, we first assign a relative
computational power rating to each device. The current method for estimating these
values is to multiple each device’s clock speed by its number of compute cores.

Given the relative power of each device, we distribute simulation elements across
them. The rationale behind our distribution method can be traced back to the ex-
pected behavior of Synapses. When a presynaptic Neuron fires, a Synapse will, after
some delay, inject current into the postsynaptic Neuron purely based on the state of
the Synapse itself and the voltage of the postsynaptic Neuron. As such, every Synapse
is distributed with its corresponding postsynaptic neuron in order to minimize the
amount of data that must be passed between devices. With such a scheme, the only
data that must be passed across the cluster during simulation is the firing state of
every Neuron. This state is a boolean true/false value; thus, a single Neuron’s firing
state can be represented by a single bit. Stimuli are similarly distributed. Since each
Stimulus can only affect a single Neuron, stimuli are distributed on the same devices
as their associated Neurons.

As for the distribution method itself, we first estimate the computational cost
of a Neuron and all of the Synapses and Stimuli that affect it. Since the number
of Synapses generally greatly outnumbers the number of Neurons by several orders
of magnitude, we use the number of Synapses that affect a given Neuron as the

Neuron’s computational cost. Neurons are sorted in order of decreasing cost and
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then distributed across all devices in the cluster such that the device with the lowest
load (total cost / device power) receives the next Neuron. Once all Neurons are
distributed, their associated Synapses and Stimuli are placed on the same devices.
All compute Elements on each device are then reordered so that elements of the same
subtype (Izhikevich, LIF, etc.) form contiguous blocks in memory that can later be

consumed by plugins.

4.3.4 Data Scopes and Structures

Due to the distributed nature of NCS6, Elements may be referenced in a number of
scopes that mirror the environment’s hierarchy: plugin, device, machine, and global
(cluster). After the distribution is finished, every Element is assigned a monotonically
increasing ID for each scope. IDs are padded between plugins so that data words for
structures allocated in other scopes are related to only one plugin. In general, this
means that IDs are padded to a factor of 32 (the number of bits in a word) between
plugins. It is important to note that IDs are only unique within the same Element
type; that is, there can be both a Neuron and a Synapse with a global ID of 0.
Figure 4.3 shows an example distribution.

Depending on which elements need access to other elements, certain key data
structures are allocated and accessed using different scopes. Data that is specific to
an Element subtype is stored at the plugin scope. Because Synapses may need to
access the membrane voltage from their postsynaptic Neurons in order to determine
their synaptic current contributions, membrane voltages are stored and accessed using
device level IDs. The reason is all postsynaptic Neurons and the Synapses that affect
them reside on the same device due to the way they are distributed. However, because
the spiking state of a synapse depends on the spiking state of the presynaptic Neuron,
the spiking state of Neurons is accessed using a global level ID when updating synaptic

spiking states.
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User IDs 0 1 2 3 4 5 6 7 8 9 10 | 11 |12 | 13 | 14 | 15

Global IDs 0 1 2 3 4 | 32| 33|34 |64 |65|66 |67 |68 |96 |97 |98
Machine A Machine B

Machine IDs 0 1 2 3 4 0 1 2 |32 (33|34 |35 |3 | 64| 65| 66

CPU 1A GPU 1B GPU 2B
Device IDs 0o|l1]|2]|3]a4 - 0|1 |2|3|4|32]|33]34
Plugin 1Ai Plugin 1Bi Plugin 2Bi Plugin 2Bii
Plugin IDs 0 1 2 3 4 0 1 2 0 1 2 & 4 0 1 2

Figure 4.3: An example of how IDs would be distributed across a cluster for a single
element type. Vertically aligned boxes denote the IDs at different scopes for the same
element. To allow processes to work on wholly separated sections of memory even in
the case of bit-vectors, padding is used at every level.

4.3.5 Simulation Flow

The basic flow of a simulation is as follows: for each time-step, the current from
Stimuli and Synapses is computed and used to update the state of every neuron. The
resulting spiking state of each Neuron is then used to determine the spiking state of
their associated Synapses in later time-steps.

To facilitate maximum utilization of computing devices, the simulation is par-
titioned into several stages that can be executed in parallel as long as the requisite
data for a given stage is ready. Figure 4.4 illustrates this division of work along with
the required data needed to simulate a particular stage and the data that is produced
once that stage has been updated. A publisher-subscriber system is used to pass data
buffers from one stage to the next. During the simulation, a stage attempts to pull all
necessary data buffers from their associated publishing stages. The stage is blocked
until all the data is ready. Once it obtains all the required data buffers, it advances
the simulation by a single time-step and publishes its own data buffer while releasing

all the others that it no longer needs. The stage then attempts to grab the data
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Figure 4.4: Graph decomposition of an NCS simulation. Gray boxes represent com-
puting processes while the orange boxes represent the data that is passed between
them.

needed for the next time step and the process begins again. When all subscribers
to a data buffer release it, the data buffer is added back to its publisher’s resource
pool for reuse. For any given stage, a limited number of publishable buffers are used
to prevent a stage from consuming all computational resources and getting unnec-
essarily ahead of any other stages. For example, without limiting the buffer count,
because the stimulus update stage requires no data from any other sources, the stage
could generate buffers at a rate faster than the neuron updater could consume them,
which would waste extra memory and add latency if the stimulus updating does not
relinquish processing time to the Neuron Update stage.

Within a single stage, further granularity is gained by parallellizing across sub-

types. As an example, if a device simulates both LIF Neurons and Izhikevich Neurons,
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the plugins updating each can be executed in parallel. Due to padding from the ID
assignments, updates should affect completely separate regions of memory, including
operations on bit vectors. Exceptions to this, such as when an stimulus writes to a
device-indexed stimulus current for its target neuron, are handled by using atomic
operations or by aggregating partial buffers generated by each plugin. The method
chosen depends on the type of device and its memory characteristics. While plugins
are allowed to update ahead of one another, the results for from a stage at a given
time-step will not be published to subscribers until all plugins (in that stage) have
updated up to that time-step. This is accomplished by counting the number of plu-
gins operating on a single data buffer. When that number is decremented to zero,
the thread responsible for causing that condition publishes the data buffer out to the

next stage.

Stimulus Update

The purpose of the stimulus update stage is to compute the total stimulus current
to each neuron on the device as well as any voltage clamping that should be done.
The stimulus current is represented by an array of floating point values, one for each
Neuron (including padding) on the device, initialized to zero at the beginning of each
time step. The to which voltage neurons are clamped are stored in a similar fashion
where a bit vector is used to select which Neurons khould actually be clamped.

Stimuli are expected to be updated by stimulus plugins designed to handle their
subtype. Other than the device-level Neuron ID for each Stimulus that is statically
determined at the beginning of the simulation, stimulus plugins rely on no other data
from any other stage of the simulation. As such, they are allowed to simulate ahead
of the rest of the system as long as they have empty buffers that can be written to
and published.
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Neuron Update

Unlike the stimulus update stage, the neuron update stage has two dependencies:
the stimulus current per neuron published from the stimulus update stage and the
synaptic current per Neuron published by the synapse update stage. Given these
two pieces of information, this stage is expected to produce the membrane voltage
and spiking state of every Neuron on the device. Like the stimulus current, the
membrane voltage is represented by an array of floating point values with one value
for each Neuron. On the other hand, the spiking state is represented by a bit vector.

Similar to Stimuli, Neurons are expected to be updated by neuron plugins de-
signed to handle their subtypes. Despite receiving and writing data out into device-
level structures, neuron plugins operate purely in plugin space. This is possible due
to the fact that each plugin is given a contiguous set of device-level IDs during the
distribution. As a result, device-level data passed into each plugin is simply offset

accordingly to yield the appropriate plugin-level representation.

Vector Exchange

The result of the neuron update stage is the firing state of every Neuron residing
on the device. However, synapses are distributed purely based on the postsynaptic
neurons and as such the presynaptic neurons could possibly reside on a different de-
vice. Thus, to determine synaptic spiking, the state of every neuron in the simulation
must be gathered first. Again, the publisher-subscriber scheme is used to pass data
asynchronously. However, rather than passing data between stages, it is used to pass
data between different data scopes.

Figure 4.5 shows the flow of the neuron spiking information across a cluster.
When the device-level vector exchanger receives a local firing vector, the data is
published to the machine-level vector exchanger. Within this exchanger, the local
vector is copied into a global vector allocated in the system memory. Once all local
device vectors are copied for a single time step, the complete machine-level vector

is broadcast using MPI to all the other machines in the cluster. This condition is



37

detected by the broadcaster receiving a signal from each copier signifying that its
copy is complete. After all machines in the cluster finish broadcasting, the complete
global firing vector is published back to the device-level vector exchangers where it is
copied back into the appropriate type of device memory before being published out

to any subscribing stages.

Firing Table Update

With the firing state of every Neuron in the simulation, a device can determine when
all of its Synapses will receive the firing based on a per-Synapse delay value. Given
the potential range of delays, this information is stored within a synaptic firing table.
A row of the table is a bit vector representing the firing state of every Synapse on the
device. The number of rows in the table depends on the maximum delay of all local
synapses. If M is the maximum delay in time steps, then the table must contain at
least M + 1 rows in order to record all potential future firings from the current time
step. When this stage receives the global neuron fire vector, each Synapse checks
its associated presynaptic Neuron for a firing state. If it is firing, the Synapse adds
its delay to the current time-step to determine the appropriate vector which is then
modified by setting its bit to 1. Figure 4.6 illustrates this dynamic.

After updating the table for a single time-step, the table row associated to that
step can be published. However, up to N time-steps ahead of the current time can be
published, where N is the minimum delay across all local synapses, since all firings
up to that point are guaranteed to have been propagated. This allows devices to
simulate ahead of one another to a point rather than being completely locked in step.
Additionally, the publication of these extra buffers at the beginning of the simulation
allows the data to start flowing through the simulation. As rows are released back to

the updater, they are repurposed as future rows in a circular indexing fashion.
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Figure 4.5: NCS communication graph. Gray boxes represent processes while orange
boxes represent data. The black arrows indicate the flow of data from process to
process while the red arrows indicate the flow of an empty buffer used as a signaling
mechanism.
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Figure 4.6: An illustration of how the firing table works in NCS6. Data highlighted
in bright red denote changes that occur due to neuron firings during the current time
step.

Synapse Update

Given the firing state of each Synapse on the device, the Synapses themselves can
be updated. Like the stimulus update stage, the synapse update stage produces the
total synaptic current per device-level Neuron also represented by an array of floating
point values. In terms of operating spaces, synapse plugins update Synapses that
operate at both the plugin and device levels, reading from the synaptic fire vector

while writing to the synaptic current vector.

4.3.6 Reporting

Reports gather information regarding some aspect of the simulation. They are spec-
ified by the user as a set of Elements of the same subtype along with the value that
should be extracted from them as the simulation progresses. Because these Elements
can be scattered across multiple devices across different machines and because the
data required can reside on one of several different scopes, every machine, device, and

plugin are given a unique identifier. Following distribution, every Element that must
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be reported on can be located by the appropriate ID based on data scope as well as
the identifier of the data source.

With these two values, the appropriate data can be extracted during simulation.
To accomplish this, a single Reporter is instantiated on each machine that contains
at least one Element that should be collected. A Reporter then subscribes to each
publisher of the data that it is interested in through a more generalized publisher-
subscriber interface. This interface allows a Reporter to access data arrays along with
the memory type using a string identifier. At each time step, the Reporter extracts
data from all of its subscriptions and aggregates them as necessary. A separate MPI
communication group is then used to further aggregate this data across the entire
cluster asynchronously before being written out to a file or some other data sink.

In previous versions of NCS, desired reports needed to be specified in the con-
figuration files. In NCS6, reports are instead specified during runtime. The rationale
behind this change was to allow users to arbitrarily connect to a running simulation,
select a desired set of elements to report on, receive those reports, and disconnect
from the simulation while allowing it to continue.

The first iteration of NCS6 implemented a plugin-type interface that was devised
in order to provide flexibility in terms of data extraction, aggregation, communication,
and output techniques without overly complicating the resulting code. For example,
a Reporter that counts the number of Neuron firings may choose to minimize data
bus traffic on CUDA devices by implementing the count directly on the device and
retrieving the single value rather than by downloading the entire buffer to system
memory first before operating on it. Implementations of the Reporter interface are
given access to an MPI communication group along with the Element IDs and source
identifiers with which to accomplish the aforementioned tasks.

Upon further inspection, it was noted that there were very few realistic extraction
and aggregation tasks; users would usually want to extract the precise values of a
set of elements or find some count or aggregation of a set of elements. Internode

communication of this data was similar for both tasks. What did differ, however, was
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the sink to where all of this data was being delivered. Thus, we removed the plugin
type for Reporters and instead created a single Reporter built-in to NCS6. For other
data sinks, it is up to the developer to implement the appropriate DataSink interface
only.

The structure of a Reporter connected to the simulation looks like a tree con-
nected to the requisite computational nodes of the cluster. Tear-down of the tree
occurs when one of two events occur: either the simulation is destroyed, or the data
sink is destroyed. In the former case, the extractor nodes will receive null pointers
when they request data from their publishers. This in turn causes the extractor nodes
to delete themselves, signaling nodes closer to the root of the tree to also terminate.
This process repeats itself until the data sink itself receives a null pointer, at which
point it does any necessary 1/O cleanup before destroying itself. The latter case for
termination begins with the destruction of the data sink. Nodes publishing to it will
realize that nothing is subscribed to its messages and as such will destroy themselves,

resulting in a reversed cascading effect.

4.3.7 CUDA Details

Every CUDA plugin in any stage of the simulation flow uses a separate CUDA stream
to enqueue work for the GPU, sleeps while waiting for kernel execution to finish, and
publishes the results to subscribing stages when the results are ready. Each stream
operates independently on separate pieces of data, allowing the CUDA scheduler to
execute kernels from different streams concurrently in order to maximize hardware
utilization.

Implementation of some model plugins for NCS were rather trivial; for example,
Izhikevich neurons as described in Subsection 4.2.2 could be simulated using a simple
array of data for each of the six variables that specify each neuron. A similar practice
allows for the implementation of an impulse style synaptic connection with STDP
learning rules as described by Song, Miller, and Abbott [111]. There are, however,

some non-trivial techniques that were used in implementing some other models, most
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notably the NCS rendition of an integrate-and-fire neuron, its associated synapse
type, and the classical Hodgkin-Huxley neuron. I detail any novel details regarding

each in the following subsections.

The NCS LIF Neuron and Synapse in CUDA

Unlike the computationally-straightforward Izhikevich model, the LIF model as spec-
ified by NCS [66] presents a number of challenges when implementing it in CUDA. To
begin with, LIF neurons can be composed of multiple compartments that affect one
another and have different synaptic connections. To maintain minimal data transfer,
all compartments of a single LIF neuron are decomposed into neuron-like objects that
must be distributed to the same device, localizing cross-compartment interactions to
that device. Since each compartment is modeled like a neuron, synaptic connections
to specific compartments are realized as well.

An additional complexity of the LIF neuron comes from the ability for a com-
partment to have one or more channels that alter its current based on a number
of different attributes such as the membrane voltage or the calcium content of the
cell. The solution to this comes from applying the simulation flow breakdown to this
smaller subproblem. Each unique channel type is implemented as a plugin to the
larger LIF plugin in order to minimize branching within a single kernel. At each time
step, the channel plugins concurrently modify an ion channel current buffer. This
buffer is then published to the compartment updater, which in turn publishes the
compartments newly updated state for use by the channel plugins in the subsequent
time step. Figure 4.7 illustrates this dynamic.

A final challenge to modeling NCS neurons is due to the behavior of firings.
Rather than sending a single impulse across a synapse when the neuron fires, a wave-
form is sent over a potentially large number of time steps. Repeated firings over a
short time period produce multiple waveforms that are summed together. To enable
this memory of firings in CUDA, the synaptic update plugin behavior is decomposed
into a few steps. A synapse begins by checking the fire table to see if a firing has
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Figure 4.7: Graphical breakdown of NCS neuron update.

been received. If so, it pushes the event composed of a waveform iterator onto a list.
A waveform iterator consists of a pointer to a waveform and the current position of
the iterator along that waveform. Both the newly generated iterators as well as the
iterators generated from previous time steps are then updated, computing the total
synaptic current for a single neuron at the same time. If an iterator has not yet
iterated across its entire waveform, it is pushed onto a new list that is published for

the next time step.
The Hodgkin-Huxley Neuron in CUDA

While the NCS LIF neuron uses Hodgkin-Huxley-like mechanisms for its subthreshold
dynamics, it simply follows a templatized spike shape upon crossing that threshold.
Iterating through potentially arbitrary spike shapes stored on the GPU requires a level
of pointer indirection and extra variables for each neuron; thus, in hopes of improving
performance by reducing the number of memory accesses, we also implemented a
pure Hodgkin-Huxley model, which inherently accounts for the hyperpolarization
dynamics.

Implementation of the Hodgkin-Huxley neuron [68] follows a similar structure as
that of the NCS LIF neuron with the cell updating and channel updating structured

as two separate subnodes within the plugin. We generalize the channel currents to
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be based off of a single generic equation whose variables are specified by the user:

B A+ Bz
~ C+exp((z+ D)/F)

y (4.1)

This equation can also be found in GENESIS [1]. Depending on which values are
chosen for A, B, C, D, and F, a variety of behaviors can be generated including the
parameters of a Hodgkin-Huxley neuron.

A drawback of the classical Hodgkin-Huxley model is its numerical instability
when using a forward Fuler integration scheme. As such, a much smaller time step
on the order of 0.0lms must be used instead of the 1ms time step that can be used
with other models. Its integration into a system that often uses a 1ms time step
for NCS LIF neurons is simplified by allowing the subgraph decomposition of the
Hodgkin-Huxley neuron to run a far larger number of iterations (100 in this case)
before the cell updating node actually publishes a result out to the higher neuron
updater node. It should be noted for future developers that in these cases, it would
be important to weight the computational cost of a Neuron based on its type in order
to reflect the amount of computation needed. An alternative method to addressing
this instability is to use the exponential Fuler method for integration, which is the
default integration method for GENESIS [19]. This method is implemented in NCS6

as a different plugin.

4.3.8 pyNCS: Improving Quality of Life for Configuration

While simulation tools are handy for experimentation, they are often difficult to
wield with domain-specific languages or configuration files. There have been efforts
on several fronts to deal with this problem, many of which provide Python interfaces
as a more user-friendly way to specify models [44, 37, 54]. NCS is no stranger to
error-prone configuration files; the configuration file used in NCS5 could get quite
large depending on the size of the model; moreover, large portions of those files were
simply copies of one another with some minor change in some parameter value. Any

mistake could potentially be replicated a number of times, making maintenance of
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larger models untenable. As such, NCS6 also takes an exodus from configuration files
to Python.

NCS6’s approach to providing simpler interfaces focuses on decoupling compo-
nents and allowing users to connect them as they see fit. The simulation core of NCS6
is written using C+-+11. though not as a program but rather as a library. Developers
instead write their own programs that call library functions to run a simulation. A
Python interface was automatically generated using SWIG [13], and a more user-
friendly interface was wrapped around that. A built-in configuration file was done
away with. Users can instead implement models directly in Python or C++-, or they
can read externally-designed configuration files if a converter exists. An example of
a simple brain specification is shown in Figure 4.8.

An example of this workflow is an ongoing project that stores models in JavaScript
Object Notation (JSON) [34]. Models are constructed in a custom-built program and
then exported into JSON. The JSON files are read in via a Python script, which
then converts the input data into the appropriate structures for NCS6, which then

simulates them.

4.4 Results

Two types of experiments were run to gauge the performance of the simulator. In
the first, several sets of Izhikevich neurons were modeled. The size of these models
ranged from 100k to 1 million cells in increments of 100k cells. In each case, 80% of
the cells were modeled as excitatory cells while the remaining 20% were modeled as
inhibitory cells. Excitatory cells are configured such that the result of a excitatory
presynaptic cell firing will raise the voltage of the postsynaptic cell while inhibitory
cells are configured to lower the voltage of the postsynaptic cell when the presynaptic
cell fires. Each cell has 100 outgoing synaptic connections that use a simple synapse
which implements STDP, resulting in 10 million to 100 million synaptic connections
total. For the second experimental setup, a model of NCS LIF cells developed by

neuroscientists was used. To explore the effects of simulation size on performance,
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import sys
import ncs

def run(argv):
sim = ncs.Simulation()
bursting_parameters = sim.addModelParameters("bursting",
"izhikevich",

{

"a": 0.02,

"b": 0.3,

"c¢": -50.0,

"d": 4.0,

"u": -12.0,

"v": -65.0,

"threshold": 30,
b

group_1 = sim.addCellGroup("group_1",1,bursting_parameters,None)
if not sim.init(argv):

print "failed to initialize simulation."

return

input_params = {
"amplitude": 18,
"width": 1,
"frequency": 1

3

sim.addInput("rectangular_current", input_params, group_1, 1, 0.01, 1.0)

current_report=sim.addReport("group_1","neuron","synaptic_current",1.0)

current_report.toStdOut ()

voltage_report=sim.addReport("group_1","neuron","neuron_voltage",1.0)

voltage_report.toAsciiFile("./bursting_izh.txt")
sim.step(1000)

if __name__ == "__main__":

run(sys.argv)

Figure 4.8: An example NCS6 configuration written in Python.
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the number of neurons in the model were scaled to various levels while maintaining
the same level of connectivity; that is, the number of synapses affecting a single
neuron remain constant despite scaling. For all experiments, a simulation timestep
of 1 millisecond was used.

Experiments were run on a cluster of eight computers in a graphics lab, each
equipped with two CUDA-capable graphics cards as listed in Table 4.1. It should be
noted that the cards are of varying computational capability in terms of core count
and clock speed. The machines are interconnected using gigabit Ethernet, though
jumbo frames were not used due to administrative constraints. For each combination
of machine count and synaptic count, ten runs were timed and averaged for both 1

second and 10 second simulations.

Table 4.1: Simulation environment.

Machine | Device 0 | Device 1
slurms GTX 480 | GTX 480
kif GTX 480 | GTX 460
nibbler GTX 480 | GTX 480
hypnotoad | GTX 480 | GTX 480
clamps GTX 460 | GTX 570
bender GTX 480 | Tesla C2050
robotDevil | GTX 460 | GTX 570
wernstrom | GTX 480 | GTX 480

The results of the Izhikevich model tests are shown in Figure 4.9 and Figure 4.10
for 1 and 10 second simulations respectively. For a single machine, models failed to
run for synapse counts greater than 60 million as a result of memory limits; thus,
for failed runs, a value larger than the maximum recorded time was used to denote
this. This can be seen as the sharp points in the upper left corner of each plot. The
flattened region on lower synaptic counts despite the increase in machine count can be
explained by nodes becoming starved for work, resulting in internode communication
consuming most of the execution time.

For the NCS model tests, results are shown in Figure 4.11 and Figure 4.12. Due
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Figure 4.9: Execution time vs number of nodes for a 1 second simulation of Izhikevich

neurons. Each line uses a different number of synapses.
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Figure 4.10: Execution time vs number of nodes for a 10 second simulation of Izhike-

vich neurons. Each line uses a different number of synapses.
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Figure 4.11: Execution time vs number of nodes for a 1 second simulation of NCS

LIF neurons. Each line uses a different number of synapses.
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Figure 4.12: Execution time vs number of nodes for a 10 second simulation of NCS

LIF neurons. Each line uses a different number of synapses.
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to the large amount of memory a single NCS synapse consumes compared to the ones
used for the Izhikevich model, fewer synapses could be allocated on a single card,
resulting in the larger plateau area.

The 10 second results appear similar to the 1 second results, showing that execu-
tion time scales linearly with simulation time. Also of notable interest are the upward
trends on execution times with the Izhikevich neurons as the number of machines is
increased, particularly when an eighth one is added. These trends can be explained as
a limitation on the message-passing technique used in conjunction with the selected
network fabric. For gigabit Ethernet, a theoretical 1 billion bits can be transferred
per second to and from a machine. Using a 1 ms time step, the amount of data that
can be transferred for a single time step in real-time is reduced to 1 million bits that
correspond to the firing states of 1 million neurons; however, the number of nodes
that any individual node must broadcast to must also be considered. In the case of
two nodes, each node can possibly simulate up 1 million neurons and broadcast that
data to the other node without oversaturating the network. That number is cut in
half when dealing with three nodes as each node must send twice as much data out.
Table 4.2 shows the theoretical limits for simulation sizes for up to eight machines
with gigabit Ethernet. These numbers scale up or down depending on the network
fabric. Note that this is not a problem exclusive to Izhikevich neurons; rather, it is a

limitation of the bit-vector messaging scheme that was used.

Table 4.2: Theoretical limits for the number of neurons per machine for real-time
simulation.

Machines | Neurons Per Machine | Total Neurons
2 1M 2M

3 500k 1.5M

4 333k 1.333M

5 250k 1.25M

6 200k 1.2M

7 166k 1.162M

8 143k 1.114M
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4.5 Conclusions and Future Work

In this chapter, I presented the latest version of the NeoCortical Simulator, NCS6.
Capable of producing results at near real-time for large spiking neural networks on the
order to ten to a hundred million synapses on a relatively small cluster of machines
as exemplified by the dark blue line in Figure 4.9, NCS6 can provide a simulation
solution using readily-available computing resources. It allows for submodels to be
repurposed and reused with minimal effort by allowing for different simulation models
to be combined and is extensible enough that new simulation models can be added
into the system without the need to rebuild the rest of the system.

Though designed for increased user productivity, NCS6 is not without its short-
comings, many of which should be addressed in future work. Omne that has been
addressed by other research is the message-passing scheme whose drawbacks were
made apparent in the results in Section 4.4. Thibeault et al. [121] uses a hybrid
scheme that switches between the currently-implemented bit vector scheme and a
more traditional address event representation depending on the amount of firing that
is actually occurring. Implementation of this in NCS6 would require the replace-
ment of the communication node of the simulation flow graph with a similar one that
accounts for the firing rates of all the neurons in the system.

While the implementation of more models is an obvious direction for future work,
the workflow for implementing these plugins can prove to be tedious. The general
structure for many neuron models is a set of equations that are used to update their
states. To implement this relatively small set of equations, however, requires a large
deal of boilerplate code to initialize arrays, execute CUDA kernels, and parse input
parameters. Creating tools that can interpret these equations and automatically
generate the necessary plugin code would enhance NCS6’s use as an experimental
platform.

In general, more tools to aid users would be beneficial. There has been some

work done already on visualization tools [29] as well as ongoing efforts to create web-
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based model repositories and model builders. Finally, while the results presented here
were performed on a small heterogeneous cluster of GPUs, more performance char-
acteristics would be interesting to collect on much larger clusters with more diverse

hardware characteristics.



95

Chapter 5

caVR

5.1 Introduction

As modeling allows users to study things that would be impractical or even impossible
to study otherwise, virtual reality brings the promise of granting users experiences oth-
erwise burdened by similar impracticalities. Though the concept has been around for
quite a while, with Ivan Sutherland in 1965 describing systems that ” [w]ith appropri-
ate programming... could literally be the Wonderland into which Alice walked” [116],
we are not there yet. In fact, the area is an active playground for experimentation
as both researchers and commercial companies alike search for that "ultimate dis-
play.” Recent advances in rendering and computing technology has only expanded
that playground.

caVR is a library designed to allow developers to quickly design virtual reality
applications by providing a common interface for both input and output method-
ologies. It is extensible enough that new input and output modalities can be added
to the library without need to rebuild the core of caVR or programs that use it in
most cases. The rest of this chapter is structured as follows: Section 5.2 gives some
background on virtual reality both in terms of hardware and software. Section 5.3
discusses the design of caVR while Section 5.4 discusses a few projects and appli-
cations that use it or its predecessor Hydra. I conclude in Section 5.5 with closing

remarks and future work.
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5.2 Background

Virtual reality is somewhat of a nebulous term, often defined by the presence of
certain pieces of hardware. A more appropriate definition may be found by Steuer:
7 A ‘virtual reality’ is defined as a real or simulated environment in which a perceiver
experiences telepresence,” where telepresence ”is the experience of presence in an
environment by means of a communication medium” [113]. I can divide the subject
into three intertwining components: the communication medium, applications that
try to expose telepresence, and the software toolkits that allow those applications to

run on all of this medium. I now delve into each of these topics individually.

5.2.1 Communication Medium

A common misconception about virtual reality is that it is primarily about hard-
ware [113]; however, there is truth in it: a great of hardware has been developed and
experimented with in order to increase a user’s sense of telepresence. Hardware is
usually purposed for either outputting information to the user or receiving input from
that user, though that line is occasionally blurred.

Arguably the most developed space in terms of virtual reality hardware would
be visual rendering technology. In addition to advancing graphics technology, various
display technologies have been developed to better immerse the user. Amongst them
are large screen displays and head-mounted displays. Examples of the former include
literal large screens [30] and walk-in environments such as the CAVE [35]. Examples
of each of these are shown in Figure 5.1 and 5.2 respectively. These devices increase
immersion by attempting to maximize their presence in the user’s field of view. Ad-
ditionally, many of these devices use passive or active stereoscopy in order for users
to perceive depth. With passive stereo systems, the left and right eyes are displayed
on a surface simultaneously; however, each image is polarized in a different manner.
Glasses with corresponding polarities are used to force each eye to see only their

appropriate images. On the other hand, active stereo systems work by alternating
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Figure 5.1: An example of a large screen display [87].

between the two eyes. A different pair of specialized glasses shutters out the correct
image in a synchronized manner [30]. Meanwhile, head-mounted displays, like the
one shown in Figure 5.3, are worn on the user’s head. While earlier versions were
plagued by weight limitations and other factors [42], recent developments such as the
Occulus Rift [127] are introducing this technology to a much wider audience.

While visual hardware development has been in the limelight, the other senses
have not gone completely ignored. In the audio domain, 3D sound can be presented
using earphones or loudspeakers. Each has its own advantages and disadvantages.
Earphones present sound directly to the user and can block out outside interference
but cannot simulate vibrations in the body that can be felt when low frequency sounds
are generated. Loudspeakers, on the other hand, have difficulty handling interference

as well as conveying spatial information as a cost for being able to generate the
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Figure 5.2: A CAVE-like environment [38].



Figure 5.3: A user with a head-mounted display [105].
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aforementioned vibrations [42]. On the topic of vibrations, difficulties in accurate
audio output also include the problem of generating the correct sound base on the
virtual environment being conveyed; real-world effects such as echoes can become
computationally expensive to simulate [107].

Other senses, such as touch and smell, have also received some attention. The
former is provided via haptic devices such as exoskeletal gloves or vibrating motors.
Like head-mounted displays, haptic devices suffer from causing fatigue due to the
additional weight [27]. Olfactory displays can generate smells, though this form of
hardware appears to be custom-built for research purposes [132, 133].

The devices discussed so far only facilitate communication in one direction: from
the application to the user. Equally important is communication from the user back
to the application. Input devices for virtual environments go beyond the standard
keyboard and mouse. Given the 3D nature of many output devices, input devices must
also be usable in a 3D space. These devices involve tracking parts of the body includ-
ing the hands, the head, and the eyes. A number of solutions exist that balance cost
with accuracy and precision. Ultrasonic and inertial trackers, such as the Intersense
[S-900 [131], provide information on all six degrees of freedom for any given tracker.
The wand input held by the hand additionally provides button and joystick inputs.
The downside to these trackers is their prohibitive cost; however, developments in the
videogame industry may be ameliorating this problem with more affordable options
such as a Nintendo Wii controller [130] and the Razer Hydra [11], both of which
provide wand-style inputs and can be augmented to only provide 6-DOF tracking.
Tracking can also be achieved via computer vision, and like the previous two exam-
ples, new products like the Microsoft Kinect [94] and Leap Motion Controller [129]

mark an increase in affordability and availability. increased availability.

5.2.2 Applications

There is a large variety of virtual reality applications that have been created over the

years. The purpose of these applications ranges from testing new interaction methods
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to training users in otherwise impractical environments to testing the effects of virtual
environments themselves. I present a few examples of each of these application types.

In the domain of interaction methodologies, the extra dimension leads to poten-
tially more intuitive or more cumbersome interfaces. Stoakley et al. [114] present a
method for navigation in which the users have access to a miniature version of the
virtual world that they are able to manipulate in order to perform tasks or even
move themselves by picking up their avatars and placing them elsewhere. Poupyrev
et al. [100] present an interaction method in which the user’s hand is tracked. In
order to manipulate nearby objects, users can simply grab or touch them; however,
to manipulate objects out of their physical reach, virtual hands are rendered based
on the direction of their actual hands.

Virtual reality training applications are in no short supply, with a tall order found
just within the medical domain. Ahlberg et al. [4] researched the use of virtual reality
to train residents to perform laparoscopic cholecystectomies. Their findings show a
reduction in error rate when residents were trained in a simulator before performing
a set of real cholecystectomies. Seymour et al. [103] found similar results for the same
task.

There are numerous risks and design considerations that must be addressed with
virtual reality technology. Systems must be designed given the limitations of the
individual senses. A review of these concerns can be found by Stanney et al. [112].
A very real concern is simulator sickness, a phenomenon similar to motion sickness,
though it can occur without actually moving the user [77]. Applications have been
developed to measure the extent of these problems as a function of other variables

such as field of view [81].

5.2.3 Toolkits

Facilitating the development of applications without the need for information about
the underlying hardware are virtual reality toolkits and libraries. A review of many

of these tools can be found by Bierbaum et al. [16].
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For shared memory machines, FreeVR [104] is an open-source VR library written
in C. Designed to be a low level library, FreeVR abstracts away input and output
details but little else in terms of managing or providing content, though a number
of other libraries have been used in conjunction with it to fill in this gap [106]. The
deficiencies found by Bierbaum et al. [16] led to the creation of VRJuggler. Similar to
FreeVR, it is designed to be low-level and non-intrusive. Additionally, later versions
are able to run on clusters [2].

Unlike the previous two examples, VRUI [78] was designed as a high-level VR
library. A consequence of this is that VRUI applications tend to have the same look
and feel. Higher level concepts like navigation are automatically handled by VRUI.
VRUI is also capable of running in clustered environments.

While many toolkits handle both input and output abstraction, VRPN [118] was
deliberately designed to only handle inputs. The design of VRPN employs a server
daemon that abstracts away input details. Applications then connect over a network

pipe to the server in order to query for updates regarding any particular input.

5.3 Design

The author’s first attempt at a VR library, Hydra, came about from the limitations
brought on by FreeVR. The low-level design allowed for rapid development of ap-
plications; however, the lack of cluster support reduced portability as hardware was
being upgraded from shared memory machines to distributed systems.

caVR is considered to be an upgraded version of Hydra. The goals when designing
both were to create a VR library that was easy to use for developers and users,
extensible to new devices and input paradigms, and could be used on a large variety
of hardware configurations. Several quality-of-life improvements were made in order
to allow developers to more rapidly write programs and users to more quickly configure
their environments. Structurally, the two systems are very similar otherwise; I now

delve into the design of that structure.
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Figure 5.4: The three core subsystems of caVR and their interactions.

5.3.1 Subsystems

At the most basic level, a VR program collects inputs, updates itself based on those
inputs, and outputs information back to the user. To facilitate all of these activities,
caVR provides three core subsystems: a callback subsystem, an input subsystem, and
a plugin subsystem. The relationship between the three subsystems are visualized in
Figure 5.4.

The callback subsystem allows application developers to customize the behavior
of their programs. Developers register a set of callbacks to a set of strings; caVR
will then call the appropriate callbacks if and when they are needed. Some callbacks,
such as the "update” callback, will most certainly be used by caVR itself; others
such as ”gl render” will only be called if an OpenGL renderer is configured to call it.
Developers need only specify callbacks for the types of inputs and outputs that they
wish to support. The design is reminiscent of GLUT [74].
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Within any of these callbacks, developers have access to the input subsystem
that provides details on the current state of every registered input such as whether a
button is pressed or where in physical space a 6-DOF tracker is positioned at a given
point in time. caVR abstracts all inputs into three categories: Buttons, Analogs, and
SixDOFs. Buttons as an input mirror their physical world counterparts; they behave
as a two-state toggle that can be pressed, held, released, or left open. Analogs are used
for inputs whose value resides within a continuous scale; they return a normalized
value between -1 and 1. Finally, SixDOFs represent the position and orientation of a
tracker in space. It should be noted that developers access inputs using alias strings
such as "exit” or "head”; the rationale behind this decision is to further separate the
developer from the underlying devices that may be driving the system.

The last component, the plugin subsystem, allows devices to interact with the
program. Plugins have access to both the input and callback subsystems. Its access
to the former subsystem allows plugins to alter the state of any input at any point
in time, facilitating the use of input devices. In these cases, plugins access these
inputs via their device names rather than their functional aliases. The plugin subsys-
tem’s access to the callback system allows plugins to call the appropriate callbacks
to drive output devices. For example, an OpenGL renderer would call a registered
7gl init_context” to initialize OpenGL-specific data, ”gl update_context” to update
that data before each frame, and ”gl render” to render to each surface that it is re-
sponsible for. Two different plugins might use the same set of callbacks; in the case of
OpenGL callbacks, suppose that a rendering plugin was developed for X11 windows
when running under Linux and a different plugin was developed using WGL to open

windows under the Windows operating system.

5.3.2 Execution Flow

At the start of a program that uses caVR, a configuration file is read that specifies
the machines involved in the system along with a set of plugins that should be loaded

on each machine. A separate input mapping file is also loaded that binds a device
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name that an input plugin would access to a functional alias that is accessed by
the application developer. The machine that originally executes the application is
deemed the master and is responsible for collecting all inputs. The master machine
forks a copy of the application to every other machine involved in the system via ssh;
these worker machines in return form a master-slave configuration by subscribing to
updates published by the master. Plugins on every machine are then configured, and
each begins executing in an endless loop in its own thread.

A main loop also begins to execute, repeatedly calling the registered ”"update”
callback. Before each update call, the current state of every input is locked by the
master; this locked state is the state that is actually visible to the developer during
the execution of the "update” callback. This state is published to every other machine
in the system along with a time delta. Workers take this state and force the locked
state of their individual input subsystems to be exactly the same as the master’s.
The overall effect of this scheme is that every machine in the system is updated the
same way, resulting in the same application state to be stored on every machine in
order to prevent desynchronization.

An additional step found in caVR but not Hydra is the execution of a ”pub-
lish_data” callback by the master after each call of "update” and the execution of a
"receive_data” callback before the "update” call on each worker. The addition of this
behavior allows for programs to take a split-middle approach to application design;
instead of recomputing information on every machine or perhaps receiving that in-
formation from some external source for every machine, only the master is allowed to
compute this data and then publish it out to subscribing worker nodes to use. The
benefit of this approach is that worker nodes need not be as computationally powerful
as the master node.

Execution of the program stops when the developer calls a specially-defined
"shutdown” function within the "update” callback, at which point all threads will
break out of their loops and rejoin the main thread. Plugins on each machine are

torn down before the remote processes themselves are destroyed. Finally, the master
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process terminates.

5.3.3 Extensions

The design of caVR leaves the core incredibly lean and portable; however, it comes
with the drawback of providing little functionality on its own. For example, for
an OpenGL render callback to function properly, the developer needs access to the
transformation matrices required to render the scene properly. Incorporating access
to these structures in the caVR core means that caVR now has a direct dependency
on OpenGL. Instead, a middle ground approach is taken by incorporating extensions.
The caVR GL extension provides this functionality through its own set of thread-local
variables and function calls. Plugin developers who need to expose GL properties to
application developers use this interface to communicate these details. Both the
plugin and application link to the extension’s library to harness this functionality.
This approach allows caVR to be extensible without being weighed down by more

and more dependencies as new APIs start being used.

5.3.4 Implementation Details and Differences from Hydra

Unlike Hydra which was written in C4++, caVR is written in C++11. The primary
boon gained from the language update is simplification of the callback subsystem
as constructs such as lambdas can be used. Threading constructs are also built-
in, increasing ease of portability. A templatized mathematics library is also provided
with swizzle semantics similar to that of GLSL, and some basic geometry and graphics
libraries were created to replace the legacy fixed functionality lost in recent versions
of OpenGL.

While networking in Hydra was also specified using plugins that could allow it to
form networks using anything from TCP to Morse code, it was deemed cumbersome
and superfluous for the user to configure for very little gain. The networking structure
was replaced with a single networking library, ZeroMQ [61], that makes the underlying

communication transparent to the user.
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import("defaults.cfg");
self = {
hostname = HOSTNAME;
ssh = HOSTNAME;
address = "tcp://" .. HOSTNAME .. ":8888";
plugins = {
x11_renderer = x11_renderer;
vrpn = vIpn;
+;
};

machines = { self; };

self .hostname = QOVERRIDE_NAME ;

Figure 5.5: An example configuration of a caVR system in Lua.

Further simplifying the configuration of systems is the new configuration file
scheme. Hydra used a custom-designed configuration language that would most likely
be described akin to JSON. While simple enough for users to understand, it lacked
the ability for users to embed logic within those files, resulting in the use of multiple
sets of files based on whether the user wanted a certain parameter to be enabled or
not. To ameliorate this situation, the configuration files now use Lua [70] instead.
While remaining readable, the Lua configuration files allow for logic to be employed
and precise parameters to be overrode later on through table accesses (overrides in
Hydra usually required respecification of entire sections). Configuration files are also
separated into two sets of files for similar reasons. The first file specifies only the
machines (which can be seen in Figure 5.5) and their plugins while the second file
specifies the input mapping between device names and functional names as the second
file represents input bindings that are usually highly specific to the application while
the first file can be reused for all applications running on a given system.

The same style of Lua files are also used to define the configuration file schemas
themselves. The advantage of this is that configuration files can be validated without
running the program itself. This is particularly advantageous for the configuration

of plugins; a validated configuration file will be guaranteed to successfully configure
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import ("plugin.lua")
machine = {
hostname = {
type = "string";
required = true;

description = "hostname as specified by the environment variable
HOSTNAME";
}; -- hostname
ssh = {

type = "string";
required = true;
description = "ssh address to machine; assumes shared keys";
}; -- ssh
address = {
type = "string";
required = true;
description = "zeromg-style address of the machine for communications";
}; -- address
plugins = {
type = "list";
required = true;
subtype = plugin;
}; -- plugins
}; -- machine

Figure 5.6: A caVR schema for the specification of a "machine” in Lua.

a plugin, which reduces the amount of boilerplate error checking that must be done.
Additionally, the schema files are available outside of the program, allowing config-
uration tools to be more easily developed. An example of a schema file is listed in
Figure 5.6.

Both versions of the VR library come with some simulator tools to aid in devel-
opment. Particularly, all X11 rendering plugins come with the capability to capture
keyboard input from the window itself. Additionally, a flag can be set that forces the
window to entire a simulator state where developers have access to a set of dummy
Analogs and SixDOFs. The ability to open multiple windows allows developers to
check whether their rendering algorithms are correct or not. Figure 5.7 shows the

simulator running on a very simple test application.
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Figure 5.7: A caVR application running with simulator windows to test behavior.

5.4 Results

caVR is the latest iteration on the development of a VR library that began with Hy-
dra. Over the years, a number of projects have successful used Hydra to create VR
applications, the first of which was VFire [65], a wildfire simulation and visualization
tool. The application allows users to load terrain information about an area including
vegetation and moisture details and simulate wildfire spread using that data. Param-
eters such as wind speed and direction can be altered on the fly, and the effects of
adding barriers can also be visualized. Figure 5.8 shows VFire running in a CAVE-like
environment.

Another application developed in the same environment was the Radiological
Immersive Survey Training (RIST) tool [76]. RIST places Civil Support Team mem-
bers into a virtual environment where some radioactive source has been placed. The
system mimics the real-world task of CST members, where they must havigate the

environment and locate the source without exposing themselves to too much radi-
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Figure 5.8: VFire, a Hydra application, running in a CAVE-like environment [65].



Figure 5.9: RIST, a Hydra application, running in a CAVE-like environment [76].

ation in the process. Shielding models are provided, and the system also employs
a unique multiperspective rendering technique since survey teams generally work in
pairs. Figure 5.9 shows RIST running in a CAVE-like environment.

For the purposes of improving immersion in virtual environments, Hydra was also
used in researching global illumination performance in those environments. While
real-time performance is already a difficult problem in a regular desktop setting, find-
ing an adequate solution for a clustered, multi-screen environment only complicates
matters. Two techniques were implemented with markedly different performance and
image quality characteristics [62]. An example of one of the techniques running in a
CAVE-like environment is seen in Figure 5.10.

On the plugin developer front with experimental outputs, remote streaming plu-
gin was successfully added that allowed for images to be rendered by a more pow-
erful server machine and then streamed to less powerful devices such as tablets and
smartphones. This allows any device with a screen to be used as an output device
regardless of whether the application itself is installed or whether it has adequate
rendering power to render images. As an example, Figure 5.11 shows VFire running
on a smartphone.

Beyond its use for research project, Hydra has been employed in teaching a class
about virtual reality. Students successfully created applications such as immersive

paint programs, planetary simulators, molecular visualizers, and games.
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Figure 5.10: Experimental global illumination techniques being tested in a CAVE-like
environment [62].
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Figure 5.11: An Android phone being used as a rendering surface with Hydra [63].



74

5.5 Conclusions and Future Work

In this chapter, I presented caVR and its predecessor Hydra. The design of caVR
allows it to be flexible for the application developer, the plugin developer, and the
end users. The flexibility also extends to the hardware on which applications using
caVR can run, from shared memory machines, to Beowulf clusters made from ordinary
computers in graphics labs, to powerful dedicated clusters driving CAVE-like systems.
I discussed a variety of applications that have used Hydra in order to create new
virtual environments, explore rendering techniques, and experiment with new output
devices.

While these results are promising, there is nevertheless room for improvement.
Beyond the obvious need for more applications and plugins, there are other less
apparent areas for future research. For example, while the input subsystem allows
for inputs of three specific types, it could be restructured to support any arbitrary
combination of input types by combining the concept of extensions with the new
callbacks that allow for user data to be broadcast across all nodes in the system.
Explained in depth, each input type could be an extension that registers itself with
caVR. The input synchronization step would then have each input extension serialize
its own data to be published to the worker nodes, where those same extensions would
be responsible for deserializing and updating its own data on the remote machines.

Along the same vein, a layer of software could be built on top of caVR to acceler-
ate development. In particular, one could imagine an API that allows parameters of
various types to be specified by the developer along with the names, descriptions, and
default values of these parameters. These same parameters would then be available
to plugins that could automatically generate the correct interfaces, such as an HTML
page accessible by any device with a web browser. Analog values could be represented
by sliders, buttons by checkboxes, and string inputs by text boxes. Changing these
values would automatically be reflected in the application as well as any other auto-

matically generated interfaces. Forseen difficulties include automatic generation of a
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reasonable mapping given the characteristics of a parameter. For example, a floating
point value that scales from 1 to 10000 may not be effectively presented as a small
linear slider between the two values; it may be more advantageous to provide a slider
with a logarithmic mapping.

Finally, on the topic of inputs, the newly designed schema files allow for config-
urations to be validated externally. And while the switch to Lua goes a long way
in increasing the power and simplicity of configuration files, they still require an end
user to understand the programming language and all its idiosyncrasies. A more
reasonable approach would be to provide configuration tools through some sort of
graphical user interface as valid values for each parameter are also specified within
the schema. Once the user configures their system in this more intuitive interface, the

configuration tool can automatically generate the appropriate configuration files.
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Chapter 6

Conclusions

This dissertation presents a method for dealing with clusters of heterogeneous hard-
ware in an efficient, extensible fashion. I apply this approach to two very different
applications: a throughput-critical neuron simulator and a latency-critical virtual re-
ality library. In the former application, I developed NCS6, a neocortical simulator
capable of harnessing all available hardware in a cluster. It allows multiple models
to be connected and simulated together, and I show how certain non-trivial models
to CUDA devices. For the latter application, I designed a library that accounts for
the ever-shifting input and output devices and paradigms found in virtual reality re-
search. I discussed improvements made to the library and presented various projects

that have successfully applied the library.
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Appendix A

Publications

This appendix details the various publications and projects with which the author
has been involved. Though there is a bit of overlap on a few publications, they
can be categorized into four particular areas: virtual reality, wildfire visualization
and simulation, GPU computing, and neural simulation. Table A.1 provides these

publications in chronological order along with the areas that they are categorized in.

A.1 Virtual Reality

Work in virtual reality actually began with work in wildfire visualization in the origi-
nal VFire project [97], which visualized precomputed wildfire simulations in a CAVE
environment using FreeVR with a shared memory computer driving the rendering.
Early work focused on improving the rendering quality [64] and incorporating real-
world data such as tree positions derived using supervised tools [25].

The installation of a six-sided CAVE-like environment served as impetus to the
development of Hydra as the number of graphics cards required to drive up to twelve
displays simultaneously made a shared-memory system impractical. VFire was even-
tually modified to run using Hydra [65] with run-time simulation capabilities incor-
porated from some interim research [67], marking its transition from solely a visu-
alization tool to an interactive simulator. Hydra was also used for the RIST [76], a
project designed to train civil support teams to perform radiological surveys in vir-

tual environments. In order to test the performance of various global illumination
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techniques in virtual reality, Hydra was also employed [62].

During this time, the author was also involved in a set of side projects, one devel-
oping a GPU-based particle system that could run in an environment with multiple
rendering contexts such as the CAVE [110], and another developing Scrybe, an exten-
sion to Hydra that allowed remote devices to become interfaces for a corresponding
Hydra application [63]. SUNPRISM [95] is a project that employs Hydra in order to

visualize climate change data in virtual environments such as the CAVE.

A.2 Wildfire Visualization and Simulation

The VFire project originally attempted to provide realistic visualizations of wildfires
in a CAVE [97, 64]. Tree positioning using a developed computer-vision tool was
later added [25]. VFire’s sole purpose as a visualization tool that could only show
data that took too long to process made it less effective as a tool for experimentation
and real-time use; as such, research was done to create a wildfire simulator that could
execute on the GPU; the advantage of this approach was the exploitation of the
GPU’s data parallellism as well as the instant availability of that data for rendering
afterwards [67], a system that would be later incorporated into the newly Hydra-
driven VFire [65], which provided interactive tools to users to allow them to start
fires, manipulate weather conditions, and test the effects of various countermeasures

such as fire breaks.

A.3 GPU Computing

The majority of publications discussed in this appendix are related in some way to
GPU computing. In addition to the previously described GPU implementations of a
fire simulator [67] and a particle system [110], a GPU algorithm was developed for
comparing nucleotide sequences was also developed using CUDA [23]. The global
illumination application also employed some GPU ray-tracing as a component of one

of its algorithms [62]. The author’s involvement in all of the publications discussed
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in the next section about neural simulation can be attributed to some form of GPU

computing used in each one.

A.4 Neural Simulation

The version of NCS6 [66] described in Chapter 4 was the capstone to a body of work
in neural simulation. The idea for using bit vectors as the primary communication
message between devices was originally developed in a prototype Izhikevich simulator
that could run on multiple GPUs [120]. A visualization application for the output of
NCS6 was developed by another group of students [29].

Before work began on NCS6, a CUDA implementation of a gabor filter was devel-
oped to assist with research using NCS5, particularly in modeling trust and the neu-
rotransmitter oxytocin [7, 21]. Additionally, it was used in the simulation of a brain

architecture that could successfully navigate virtual environments [22].
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Table A.1: Publications sorted chronologically with subject areas.

Publication

Virtual
Reality

Wildfire

Simulation

GPU
Computing

Neural
Simulation

Managing data and computational
complexity for immersive wildfire
visualization[97]

X

X

VFire: virtual fire in realistic envi-
ronments [64]

Wildfire simulation on the GPU [67]

A dynamic multi-contextual GPU-
based particle system using vector
fields for particle propagation [110]

Scripted Artificially Intelligent Ba-
sic Online Tactical Simulation [98]

Scrybe: a tablet interface for virtual
environments [63]

An application for tree detection us-
ing satellite imagery and vegetation
data [25]

Exploring global illumination for
virtual reality [62]

VFire: Immersive wildfire simula-
tion and visualization [65]

RIST: Radiological immersive sur-
vey training for two simultaneous
users [76]

Modeling oxytocin induced neuro-
robotic trust and intent recognition
in human-robot interaction [7]

A novel multi-GPU neural
simulator[120]

Real-time humanrobot interaction
underlying neurorobotic trust and
intent recognition [21]

Goal-related navigation of a neuro-
morphic virtual robot [22]

A GPU algorithm for comparing nu-
cleotide histograms [23]

SUNPRISM: An approach and soft-
ware tools for collaborative climate
change research [95]

Design and implementation of a
graphical visualization tool for
NCS [29]

A novel CPU/GPU simulation envi-
ronment for large-scale biologically
realistic neural modeling [66]




