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Abstract 

As the amount and variety of data increases through technological and 

investigative advances, the means to analyze and manage this data becomes more critical. 

Unsupervised machine learning algorithms can be used to group large datasets into 

categories, thereby facilitating new insight into similarities in data that would, on the 

surface, appear to be disparate. This dissertation investigates three unsupervised 

clustering algorithms: the self-organizing map, the K-means algorithm, and affinity 

propagation. These three algorithms are applied to large datasets from three different 

domains—organizational management, bioinformatics, and financial markets—each of 

which presents its own challenges in terms of data management and knowledge 

discovery. Specifically, the self-organizing map is used to cluster a variety of academic 

library data to show how it can be used to aid in operational and strategic decision-

making. Both a self-organizing map and the K-means algorithm are used to cluster 

genomic data to show how they can be used to identify possible organisms that are 

present in a metagenomic sample. Affinity propagation is used to cluster stock 

performance data to show how it can be used to aid in making investment decisions. In 

addition, different semi-supervised labeling techniques are employed in combination with 

these clustering algorithms to assist with knowledge discovery in these three areas. The 

applicability of these different labeling techniques for various types of problems is 

discussed, and the success of these combinations in facilitating several types of data 

analysis is explored, providing researchers with guidance about the applicability of these 

strategies.  
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Chapter 1 

Introduction 

 

 Because human investigation of large datasets can be both costly and time-

consuming, new solutions are needed for data analysis. And the problem is not merely 

one of quantity: In a survey of recent advances in clustering, Anil K. Jain observed that, 

"The increase in both the volume and the variety of data requires advances in 

methodology to automatically understand, process, and summarize the data" [34]. 

Fortunately, techniques of artificial intelligence are allowing computers to solve 

otherwise intractable problems with efficiency. 

 One subfield of artificial intelligence is machine learning, which combines 

aspects of probability and statistics with computer science. Machine learning uses 

evolving algorithms that improve their performance on the basis of feedback. The 

techniques used in machine learning focus on making computers adapt over time to be 

more accurate in performing an action, whether this action is the classification of a piece 

of data, the prediction of an outcome, or the making of a decision for some autonomous 

agent. Consider a computer-controlled enemy in a video game that is adapting to the 

behavior it encounters. When the player initially confronts this enemy, he can easily 



2 
 

defeat it. However, on subsequent matches, the computer-controlled enemy has refined 

its technique and become substantially more challenging―if not unbeatable.  

 Machine learning is generally categorized into two separate approaches: 

supervised learning and unsupervised learning. With supervised learning, an algorithm is 

trained against known input-output pairs before being fed unknown inputs. Once trained 

on known data, the algorithm is applied to unknown inputs to elucidate useful 

information. Examples of this include a neural network and a support vector machine 

[50]. Unsupervised machine learning acquires "correct" outputs by adapting the 

algorithm's parameters solely on the input data. That is, the algorithm refines itself in an 

iterative manner based only on the raw data. Similar to supervised learning, this is often 

done in two phases, with a distinct set of inputs for training and a separate set for 

hypothesis testing. Examples of unsupervised learning algorithms include the self-

organizing map (SOM), the K-means algorithm, and affinity propagation [50, 52], 

techniques which will be explored in this dissertation.  

 One common usage of unsupervised machine learning is in clustering complex 

datasets. Unsupervised machine learning can be used with problems in which there is a 

vast amount of data and in which each data point consists of a vector of many features. In 

these cases, a clustering technique can facilitate new insight into the similarity of data 

that would, on the surface, appear to be disparate. Clustering algorithms have been 

successfully applied within many fields, including biology, marketing, and seismic 

analysis. A subcategory of clustering algorithms, semi-supervised clustering, involves 

prior known data observations, which are used to guide the examination of the clustered 

data [11]. This dissertation describes different techniques for using processes for labeling 
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data in a semi-supervised fashion in combination with clustering algorithms, including 

the complete and partial labeling of data occurring at different stages within the 

clustering process. The applicability of these different labeling techniques for various 

types of problems is discussed, and the success of these combinations in facilitating data 

analysis is explored.   

 This dissertation is structured as follows: Chapter 2 presents a discussion of 

unsupervised and semi-supervised machine learning clustering techniques, as well as 

their limiting factors. In Chapter 3, clustering's applications to various domains are 

discussed, and a survey of the related literature is presented. These domains include 

organizational decision-making, bioinformatics, and financial markets. In addition, 

previous work that has led to the use of the original labeling techniques used in this 

dissertation are discussed as well. Chapter 4 presents the use of an SOM to cluster data 

for use in operational decision-making of an academic library. In order to look for areas 

of high performance, analysis of the library data was conducted through the application 

of a “library performance metric” in conjunction with the SOM. Analysis of the map 

provides value in elucidating qualities of libraries that are performing well based on the 

metric. This application of an SOM demonstrates how it can be used to facilitate 

organizational comparisons and potentially lead to more informed decision-making. 

Chapter 5 describes the usage of two clustering techniques, the SOM and the K-means 

algorithm, to cluster data from an environmental sample collected from a hot springs 

habitat and to provide a visual analysis of that data. A project pipeline is described that 

uses an unsupervised clustering algorithm to identify which reference genomes should be 

included for further analysis in determining possible organisms that are present in a 
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metagenomic sample. The labeling is done post-clustering to represent the data in a 

concise manner in order to aid biological investigators. Chapter 6 presents the use of the 

affinity propagation algorithm in the analysis of stock data. Here, the labeling is applied 

to a small subset of the overall data to recognize stocks that cluster with known 

successful investments and to provide a method for possible stock selection. Chapter 7 

contains a comparison of the efficacy of the clustering techniques in combination with 

the various labeling strategies and suggests directions for further research.  
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Chapter 2 

Background 

 

2.1  Unsupervised Machine Learning 

 The goal of unsupervised machine learning is to discover "interesting structure" in 

the provided data [52]. With unsupervised learning there is no preconceived notion of 

what the correct output is in response to a given input; instead, the process is an attempt 

to find previously unrecognized common or interesting features that may be present. This 

type of learning is similar to what is seen in biological organisms, including humans. In 

fact, one technique discussed below, the SOM, was developed when its inventor was 

considering the question of how sensory signals are mapped into the cerebral cortex of 

the brain [50]. Unsupervised techniques can be more easily applied than supervised 

learning since they require no previous domain knowledge to perform this analysis.  

 

2.2  Clustering Techniques  

 Clustering data is a principal application of unsupervised machine learning [52], 

and several algorithms exist to perform this task. Clustering is the process of grouping 

“like” pieces of data into one of several bins. Aggarwal and Reddy succinctly describe 
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the basic problem that clustering addresses: "Given a set of data points, partition them 

into a set of groups which are as similar as possible" [3]. This is often based on overall 

similarity (Euclidian distance or some other metric), but other qualities could also serve 

as the guideline for this binning process [50]. The goal of a clustering algorithm is to 

group raw (unlabeled) data on the basis of some underlying features that are not readily 

apparent. Each cluster represents a collection of like items (data) with similar features, 

whereas some implied dissimilarity exists between items in different clusters. This can be 

used to directly elucidate new patterns in complex data, but may also serve to reduce the 

scope of subsequent analysis, as will be illustrated in Chapter 5. Common problems in 

which clustering is beneficial are as an intermediate step for data mining problems, 

collaborative filtering, customer segmentation, data summarization, dynamic trend 

detection, multimedia data analysis, biological data analysis, and social network   

analysis [3]. In further chapters, some of these problems will be directly addressed, 

including the use of clustering as an intermediate step for data mining and as a tool for 

biological data analysis. 

 In the remainder of this chapter, three techniques will be highlighted that are 

especially promising for working with large datasets: the SOM, the K-means algorithm, 

and affinity propagation. These particular three algorithms have been successfully 

applied in many fields; two of the three represent historically successful algorithms, 

while the third is a more recently developed technique, which provides an interesting 

point of comparison. These techniques have different strengths and levels of 

computational complexity that dictate their usage in regard to specific domains and data 
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sources. In all cases these algorithms are quite scalable, require limited domain 

knowledge, and are capable of evaluating datasets of differing types and sizes. 

 

2.2.1 Self-Organizing Map 

 The SOM was originally developed by Teuvo Kohonen [41], who described it as 

a tool that is "able to convert complex, nonlinear statistical relationships between high-

dimensional data items into simple geometric relationships on a low-dimensional 

display." An SOM is suitable for problems that involve detecting correlations, reducing 

dimensionality, finding hidden patterns, and classifying data [42]. An SOM synthesizes 

data that consists of many variables and produces as its output a simplified view of the 

data that consists of a regular grid or lattice of neurons―usually hexagonal or rectangular 

in structure. In the grid, each piece of data is assigned to the neuron with the weight 

vector that most closely matches the data’s feature vector. Input data items with similar 

features are placed in close proximity on the grid. Often, this proximity on the grid 

illustrates an interesting property of the dataset, so an SOM allows one to see at a glance 

which data items are related in a way that otherwise would not be readily apparent [42]. 

Both Chapters 4 and 5 discuss in some detail the application of this algorithm in two 

distinct domains. 

 An SOM differs from the more traditional supervised neural network models in 

that it requires no pre-training on input-output pairs. As an unsupervised, competitive 

learning algorithm (i.e., in which neurons compete for each input vector and are updated 

based on the data they acquire), an SOM is not attempting to find previously determined 
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“correct” outputs. Instead, the algorithm is used to find similarities between different 

inputs, and these similarities are visualized through the resulting map [42, 50]. 

 An SOM provides a method of mapping data from a higher-dimensional space to 

a lower-dimensional output space (e.g., mapping data with ten features onto a two-

dimensional map). An SOM is most commonly configured as a two-dimensional array of 

neurons because it provides an easy visualization of information for investigation. The 

SOM's neurons are connected to their immediate neighbors in a grid pattern. Figure 2.1 

shows two input data points which are mapped to a rectangular lattice, with each square 

representing a neuron on the map [42, 50].  

 Each neuron’s weight vector (i.e., the collection of numerical data associated with 

a neuron) is modified by the collected numerical data from the input points. Figure 2.2 

demonstrates that the SOM algorithm has relative ordering preservation, which   

Marsland describes as follows: "Inputs should be preserved by the ordering in the 

neurons so that neurons that are close together represent inputs that are close together, 

while neurons that are far apart represent inputs that are far apart" [50]. 
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Figure 2.1: An Illustration Showing the Dimensionality of the SOM Data [22] 
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Figure 2.2: A Schematic Showing the Relationship between the Location of Input Data and 

their Assignment to Proximal Output Neurons in an SOM 

 

 Through a weight vector, each neuron in an SOM is connected to the input layer. 

The dimensionality of the weight vector matches the number of features of the input data. 

Each neuron’s weights are set to an initial random value within a designated range. The 

N-dimensional weight vector is defined as follows: 

    wi = [w1, w2, …, wn]            (1)  

 The SOM is executed in three steps: acquiring and normalizing the data, training 

the SOM on the supplied data, and then gaining insight regarding the data from the 

trained SOM. The training process is iterative, with the assignment of  input vectors 

resulting in adjustments to the map. During the training phase an input vector is selected 
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at random from the training dataset and presented to the map of neurons [41]. The neuron 

whose weight vectors most closely matches the input data as determined by Euclidian 

distance is selected as the winning neuron. This is defined as: 

    winning neuron c = arg min ||x – wi||          (2) 

Once the winning neuron has been selected, the weight vectors of the winning neuron and 

the neurons that reside in its neighborhood are adjusted to more closely match the current 

input. The smaller the Euclidian distance is between the input vector and winning neuron, 

the larger the change to its current weight values:  

  wi(t + 1) = wi(t) +  (t)hci(t)[x(t) – wi(t)]         (3)  

where: 

x(t) is the input vector randomly drawn from the input set at time t 

α(t) is the learning rate function 

hci(t) is the neighborhood function centered on the winning neuron at t 

        

Murtagh describes this process in the following manner: "The SOM method makes the 

surface of neurons resonate . . . in accordance with the outside world as represented by 

the input vectors" [53]. Both the learning rate represented by the size of the change to the 

weight vectors and the neighborhood radius decrease over the number of iterations, 

which is represented through a  Gaussian function:  

  hci(t) = exp  
         

 

      
             (4) 

where: 

      is the width of the Gaussian kernel 

          
  is the distance between the winning neuron c and the neuron 

i with rc and ri representing the two-dimensional positions of neurons 

c and i on the SOM grid 
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Vectors continue to be chosen randomly from the training data, and the steps above are 

repeated until changes to the weight values in a given iteration are below a specific 

threshold [42, 50]. 

 

2.2.2 K-means 

 The K-means algorithm represents the most popular and simplest partitional 

algorithm [34]. It has been in existence for over 50 years and was discovered by several 

different researchers working independently in different fields [34]. It is one of the most 

widely used clustering algorithms due to its "ease of implementation, simplicity, 

efficiency, and empirical success" [34]. It has been widely applied in many fields, and 

represents a type of exclusive clustering that places the data objects into a pre-set number 

of classes. Hartigan and Wong describe the goal of K-means as "to divide M points in N 

dimensions into K clusters so that the within-cluster sum of squares is minimized" [29].  

 Like an SOM, application of the K-means algorithm also proceeds in three main 

phases. The first phase is initialization, which involves choosing the number of clusters k. 

Some extensions to the algorithm include dynamic selection of the number of clusters. 

When employing this technique, Hartigan suggests running the algorithm with differing 

values for k and evaluating the variance in each case to determine the most advantageous 

number of clusters [28]. Once the number of clusters has been determined, k random 

vectors are chosen with the same dimensionality and value ranges as the input data. 

These values are then assigned to serve as the cluster centers uj. The second phase 

represents the unsupervised learning, which involves an iterative process similar to that 

used with an SOM, whereby each input data item xi is compared against the cluster 
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centers and then assigned to the one that it is closest to in terms of Euclidean distance 

(although certain variants of the algorithm use different metrics). As a result of using a 

Euclidian metric, the K-means algorithm finds ball-shaped clusters in data [34]. This is 

represented by: 

     
min ( , )i i j

j
d d x 

           (5) 

As a new data item is assigned to a particular cluster, that cluster center point is 

recalculated as the mean of all currently assigned data items, according to the following 

equation: 

     
1

1 jN

j i

ij

x
N




 
           (6) 

Figure 2.3 provides a graphical representation of the updating of the cluster centers.  

 The process continues until such time that the center values do not update. In the 

final phase of the process, the clustered data that has minimized the sum of the squared 

error over all k clusters can be used for further analysis after the cluster center points have 

stabilized [28, 50]. 
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Figure 2.3: A Graphical Representation of the K-Means Algorithm Showing the Updating of 

Cluster Centers and Subsequent Clusters 

 

 

2.2.3 Affinity Propagation 

Affinity propagation is a clustering technique that was developed by Brendan 

Frey and Delbert Deuck in 2007 and is based on passing information between data points 

[23]. Unlike the K-means and SOM algorithms (where the dimensions of the grid of 

neurons is chosen in advance), the number of clusters does not need to be decided prior to 

application. Similar to the two previous algorithms discussed, this technique relies upon 

randomly selecting initial exemplars and then refining them iteratively to be 



15 
 

representative of the clustered data. The initial exemplars are actual data points rather 

than random weights, as in the example of the SOM [23]. Input is the N x N collection of 

similarity values between each pair of data points. This input collection is created by 

running an all-versus-all comparison as a preprocessing step. 

 One of the limitations of both K-means and the SOM is their sensitivity to the 

initial selection of both the number of clusters and the starting midpoint/exemplar values. 

Affinity propagation takes the approach that simultaneously considers all data points as 

potential exemplars [23]. Each data point is viewed as a network node. Messages are 

recursively transmitted along the network edges until an optimal set of clusters is 

achieved. 

 The input to affinity propagation takes the form s(i,k), which indicates how well 

data point k is as an exemplar for data point i. As stated previously, the number of 

clusters is not pre-specified; instead, preferred data points are selected based on the s(k,k) 

value. 

 The algorithm proceeds by exchanging messages between nodes. Two types of 

messages are sent: responsibility and availability. Responsibility, represented by r(i,k),  

informs candidate exemplar k as to how well-suited it is to serve as the exemplar for data 

point i. Availability, represented by a(i,k) and sent from the exemplar k to data point i, 

states how appropriate it would be for data point i to choose k as its exemplar. Combining 

these messages results in the decisions of which points should be exemplars and, for all 

other data points, which exemplar they should be assigned to. Essentially, each data point 

chooses a data point to serve as its exemplar/centroid. Data points may choose 

themselves, which increases the number of clusters [52]. 
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 Affinity propagation attempts to maximize Formula 7. Let  1,...,ic N  represent 

the centroid for datapoint i: 

          
1 1

( ) ( , ) ( )
N N

i k

i k

S c s i c c
 

    [52]                    (7) 

The first term is a measurement of similarity of each piece of data to the centroid, 

whereas the second term is a choice penalty formally described as: 

         but :

0( ) k ic k i c k

k otherwisec                                (8) 

Figures 2.4 and 2.5 show how the two types of messages are passed along the edges of 

the network.  

 

Figure 2.4: Sending Responsibilities in Affinity Propagation (Adapted from [23]) 
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Figure 2.5: Sending Availabilities in Affinity Propagation (Adapted from [23]) 

 

 

Every data point is represented by a node and through a sequence of message passing, the 

exemplars and corresponding clusters are determined. 

 

2.2.4 Other Clustering Techniques 

 In addition to the techniques highlighted above, several other clustering 

techniques exist with varying strengths and weaknesses. These other clustering 

algorithms include but are not limited to DBSCAN, BIRCH, CURE, and the Fuzzy c-

means algorithm [77]. These techniques can be very broadly categorized into two 

different types: hierarchical clustering and partitional clustering [35, 77]. Jain et al. 

describe these different strategies for approaching the problem of clustering: 

“Hierarchical clustering algorithms produce a nested series of partitions based on a 

criterion for merging or splitting clusters based on similarity. Partitional clustering 

algorithms identify the partition that optimizes (usually locally) a clustering criterion” 

[35]. Other classifications of clustering algorithms exist, such as “soft” (or overlapping), 
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in which data items are partially assigned to multiple clusters as opposed to being placed 

within one (“hard”). The Fuzzy c-means algorithm is an example of a “soft” clustering 

technique.  

 This dissertation will further evaluate the SOM, the K-means algorithm, and 

affinity propagation within different contexts. In terms of their relation to other types of 

clustering, the affinity propagation algorithm demonstrates some hierarchical qualities 

and is often adapted to fall within the hierarchical clustering category, whereas both the 

SOM and K-means are considered to be partitional algorithms.  

 

2.3 Semi-Supervised Approaches 

 Traditionally, unsupervised clustering methods proceed with no outcome measure 

and no previous knowledge about relationships within the dataset [11]. Jain points out 

that the data-driven nature of clustering makes it very difficult to design clustering 

algorithms and that incorporating side information regarding the feature vectors can be 

extremely useful in finding good partitions [34]. Thus, when information is available 

about the clusters, a combined approach can be utilized. Using this additional side 

information represents a semi-supervised type of clustering technique. An example of this 

type of side information are cluster labels of some of the data known ahead of the 

clustering process; Chapter 6 will provide further exploration of this technique. In some 

cases, according to Bair, “one may wish to identify clusters associated with a particular 

outcome  variable” [11]. A semi-supervised approach associated with specific outcome 

variables will be explored in Chapters 4 and 6. For all of the techniques that will be 
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discussed in this dissertation, the clustering itself proceeds in an unsupervised fashion, 

but the subsequent knowledge discovery is enhanced by the addition of labeling. 
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Chapter 3 

Domain Applications 

 

 Clustering techniques have been applied to problems in several different domains.  

Clustering has been used for vastly diverse purposes, from helping to identify and 

eliminate fraud within health insurance claims [58] to aiding in a graduate student's 

selection of which business school to attend [37]. This dissertation will focus on three 

domains where clustering techniques can be particularly beneficial: organizational 

decision-making, bioinformatics, and finance. In additional, the use of labeling, with both 

pre- and post-process methods, is employed to enhance the knowledge discovery step of 

the clustering process.  

 

3.1  Organizational Decision-Making 

 Organizations are complex entities with many operational aspects that can be 

optimized through better decision making. Unsupervised machine learning can assist in 

the analysis of several areas of an organization to help managers minimize human bias 

and make more strategic organizational choices. Studies in this area have used 

unsupervised learning to focus on several aspects of organizational analysis, including 
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customer segmentation [71], business models [38], and product positioning [25].  

Machine learning can even be used to classify organizational characteristics that are not 

easily quantified. For example, Cobo et al. used fuzzy c-means clustering to analyze 

metaphors used in the description of an organization (e.g., organism, political system, 

transformation, etc.) in order to extract knowledge about different aspects of an 

organization [16].  

 One important aspect of organizational management involves attempts to better 

understand customer behavior. For organizations engaged in e-commerce, customer 

behavior in web interfaces can be critical. In this field, the clustering ability of SOMs has 

been used to make web searching more relevant to users' needs. For example, SOMs have 

been used to facilitate greater usability of web directories through subject term clustering 

[82–83], to create more personalized web searches through user profile modeling [17], 

and to create multilingual web directories through webpage hierarchies [79].  

 These techniques are beneficial in that they can simultaneously evaluate a large 

number of organizational characteristics that, on the surface, do not appear to be 

immediately linked. For example, Rutherford et al. used an SOM to highlight differences 

within small businesses in order to identify subcategories of operations that would have 

greater utility for organizational planning [63]. In their analysis they selected features 

such as owner education, owner experience, firm age, type of pension plan, capital 

structure, and source of funding as the profile for the SOM. Their results found that firm 

size as measured by the number of employees is critical in predicting success because it 

is intricately connected to other features that can be isolated and evaluated [63]. 



22 
 

 In Chapter 4 of this dissertation, an SOM will be applied to characteristic data of 

academic libraries to assist in resource allocation and future planning, a project that is 

similar to Rutherford et al.'s analysis of small businesses [63]. Previous work using 

unsupervised learning in libraries has focused largely on collections of materials. 

Specifically, Linton et al. used an SOM to analyze the abstracts of articles in 

management journals [48] and An et al. used an SOM to analyze the subject terms of 

articles in library and information science journals to determine which journals had the 

most similar content for the purpose of aiding in literature selection [7]. However, no 

previous work has used unsupervised clustering for the purpose of facilitating resource 

management and strategic planning in libraries. 

 

3.2  Bioinformatics 

 Bioinformatics, an interdisciplinary science that uses computational methods to 

investigate problems in molecular biology, is another area in which machine learning 

techniques play a prominent role. Rong summarizes the province of bioinformatics as 

"exploring underlying mechanisms of biological complexes, verifying biological 

hypotheses, and providing evidence through in silico simulation for further theoretical 

development" [62]. It has its origins in the 1960s when the first protein sequence 

databases were constructed [76]. Since then it has continued to grow in utility as DNA 

sequencing technology and the subsequent mapping of organisms' genomes have created 

such vast collections of data that it has moved the information available past the scope of 

a lab investigator.  
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 The "raw material" of bioinformatics consists of both nucleic acids, which are the 

DNA and RNA molecules that contain the genetic instructions for living organisms, and 

proteins, which are the products of nucleic acids that consist of chains of amino         

acids [85]. The sequence data of DNA is comprised of nucleotides, whose bases are 

represented by a single letter (A, adenine; G, guanine; T, thymine; C, cytosine). Often, 

these sequences are millions of characters long and can represent several organismal 

genes. Protein data is the product of expressed genes within an organism. This data is 

also represented as a sequence of characters which are the amino acids present in the 

protein, with each of 20 amino acids being represented by a single or three-letter code, as 

shown in Table 3.1. 

 

Amino Acid 3 Letter 

Code 

1 Letter 

Code 

Amino Acid 3 Letter 

Code 

1 Letter 

Code 

alanine ala A isoleucine ile I 

arginine arg R leucine leu L 

asparagine asn N lysine lys K 

aspartic acid asp D methionine met M 

asparagine  asx B phenylalanine phe F 

cysteine cys C proline pro P 

glutamic acid glu E serine ser S 

glutamine gln Q threonine thr T 

glutamine  glx Z tryptophan trp W 

glycine gly G tyrosine tyr Y 

histidine his H valine val V 

Table 3.1: Amino Acids with Three and Single Letter Codes 

 

 A variety of clustering techniques are commonly applied to analyze not only 

DNA and protein sequence data but other molecular biological datasets as well, such as 

imagery data. SOMs have been used for a number of different functions, such as 
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classifying DNA sequences [54], identifying similarities and differences among protein 

homologs [26], and comparing newly discovered protein sequences with known 

sequences [4]. The K-means algorithm has been employed in the analysis of protein 

sequence motifs [20, 84] and in the classification of ion mass spectrometry images [43]. 

Affinity propagation has been evaluated in the partitioning of protein interaction     

graphs [67].  

 Sequence classification is a recurring theme in clustering's application to 

bioinformatics. This involves identifying similarities in sequences for the purpose of 

determining sequence identity and biological function. Yang et al. describe how 

clustering techniques are essential for protein classification since experimental 

characterization cannot keep up with newly sequenced protein data: "One approach is to 

classify each family into distinct clusters consisted [sic] of functionally related proteins. 

When a new protein is assigned to a cluster, the biological function of this cluster can be 

attributed to this protein with high confidence" [78]. In order to accomplish this goal, 

Yang et al. employed the affinity propagation algorithm to cluster and classify protein 

sequences from three different datasets [78]. With a similar purpose, Naenna et al. used 

an SOM to classify DNA on the basis of a region of the genomic sequences― 

specifically, the splice junctions which are the boundaries between exons and introns, 

which are those sections of the DNA that produce a phenotype and those that do not [54].  

 One subfield of bioinformatics involves the study of metagenomic data, which is 

the collection of genomic sequences present in a given environmental sample. Chapter 5 

will discuss the application of clustering techniques to metagenomic data in the manner 

of the works described above. However, unlike these studies, the work described in 
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Chapter 5 clusters a collection of sequences from a single environment and uses these as 

the basis for the analysis.  

 

3.3  Financial Markets 

 Unsupervised clustering has been applied to many aspects of financial market 

analysis, including bankruptcy prediction [47], credit scoring [47], financial reporting 

[32], accounting [14], and stock performance analysis [39]. A central goal in this area is 

the prediction of future performance, which is critical for the successful management of 

any organization. In a study that used both supervised and unsupervised methods for 

financial forecasting, Powell et al. stated that “Stock forecasting is a major component of 

any finance institution because predictions of future prices, indices, volumes and many 

more values are often incorporated into the economic decision-making process” [60]. 

Traditional stock analysis generally proceeds in two directions: technical analysis, which 

uses past market data in combination with behavioral economics, and fundamental 

analysis, which includes financial information such as earnings, dividends, and cash flow 

as well as external economic factors [5]. Machine learning techniques can remove the 

need for domain expertise in these areas and efficiently facilitate the prediction of stock 

performance on a large scale. 

 Unsupervised clustering techniques have been used for various aspects of market 

prediction in a variety of settings. Pavlidis et al. used unsupervised clustering to perform 

financial forecasting in foreign exchange markets [57]. They used three clustering 

algorithms (Growing Neural Gas, DBSCAN, and k-windows) followed by a feed-forward 

neural network that was trained on each cluster to act as a local predictor of performance 
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(a supervised approach) [57]. Wang used the K-means algorithm to cluster stock data 

from the China Shanghai 180 exchange [68]. Wang focused on several features of the 

equities including profitability, capital expansion, asset management, growth, and 

solvency, finding a positive correlation with investment success [68]. Tsai et al. used an 

SOM with a decision tree to analyze trading preferences among various types of investors 

in the Taiwan stock market [66]. They focused on two factors which affect the portfolio 

choices of investors: stock characteristics (e.g., earnings per share, dividend yield, 

market-to-book) and investor features (e.g., gender, wealth levels) [66].  

 Like the works cited above, Chapter 6 of this dissertation has a similar focus on 

the prediction of the future performance of equities. In that chapter, the affinity 

propagation algorithm is used on a pre-selected subset of stocks traded on the NASDAQ 

in conjunction with historical high-performing stock data. 

 

3.4  Applications in These Domains 

 The remainder of this dissertation focuses on unsupervised clustering’s 

application to specific examples of the three domains described above. All algorithms 

were implemented leveraging the .NET framework. For the work in Chapters 4 and 5, 

SOM and K-means clustering tools were constructed in C#, and for the work in Chapter 

6, an affinity propagation tool was constructed in the functional programming language 

F#. In each chapter different methods of analysis will be explored, and the usage of 

various data labeling strategies will be evaluated in the improvement of knowledge 

discovery of the completed clusters. The work in Chapters 4 and 6 applies a metric-based 

label to the raw data before the application of an unsupervised clustering algorithm. In 
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Chapter 4, all data is labeled with a metric, whereas in Chapter 6, a small subset of the 

data is labeled to track "good" data. These techniques fall within the bounds of semi-

supervised machine learning, but represent an original melding of a distinct pre-process 

metric being applied before cluster analysis is performed. The technique described in 

Chapter 5 uses labeling in a post-clustering process to help an investigator perform a 

quick visual analysis of the genomic data present in the sample and help direct future 

analysis.  
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Chapter 4 

Clustering with a Metric-Based Label for 

Library Management  

 

*Note: The basis for this chapter was previously published as D. Ennis, A. Medaille, T. 

Lambert, R. Kelley, and F. C. Harris, “A comparison of academic libraries: an analysis 

using a self-organizing map,” Perform. Meas. Metrics, vol. 14, no. 2, pp. 118–131, 2013. 

 

4. 1  Introduction 

 Data comparisons among libraries can provide valuable information for making 

choices regarding resource allocations and service provisions. In its "Standards for 

Libraries in Higher Education," the Association of College and Research Libraries 

recommends that academic libraries use external comparisons with their peers for 

benchmarking purposes in order to identify strengths and weaknesses and “to develop a 

more informed picture of institutional standing within the higher education marketplace” 

[8]. In “Determining Quality in Academic Libraries,” Pritchard writes that “The ability to 

make unambiguous and meaningful comparisons is an important issue in assessment”  

[61], and in a discussion of library criteria, Knightly includes comparisons with other 

organizations as one of seven types of measurement, noting that comparisons can reveal 
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both strengths and areas in need of improvement [40]. While library comparison data 

needs to be understood within the context of individual library environments, it can 

inform decision making when used in combination with other data. 

 Cluster analysis is one method that can be used to compare library data. Lorr 

defines clustering as “the grouping of entities into subsets on the basis of their similarity 

across of set of attributes,” and cluster analysis can be especially useful for revealing 

patterns and relationships within complex datasets [49]. In the field of library and 

information science, cluster analysis has been used to study term indexing, web 

searching, journal citations, and user behavior. Cluster analysis has been less frequently 

used to study libraries as a whole; however, in a study of the multiple dimensions that 

comprise academic library effectiveness, McDonald and Micikas used cluster analysis to 

distinguish among five different library groups. Of these groups, the authors identified a 

cluster of “highly effective” libraries that were located at institutions that had good 

financial support, limited enrollments, specialized curricula, and a large ratio of books 

per student [51].  

 One clustering technique that has not yet been used to evaluate academic library 

data is an SOM. For this study, an SOM was used to identify data points that could be 

correlated with high resource and service usage in academic libraries. To choose the 

metrics for analysis, a number of different studies were consulted that describe the value 

of measures such as circulation, attendance, weekly public service hours, building and e-

resource usage, reference transactions, and attendance at instruction sessions, among 

others [18, 31, 56, 59, 70, 73]. When correlated with other data, these metrics have 

provided valuable insights. For example, in analyzing the connection between traditional 
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and newer measures of academic libraries, Weiner found that a significant relationship 

existed among service metrics (numbers of reference transactions and instructional 

presentations, and attendance at instructional presentations) and more traditional library 

measures such as budget, staff, and clientele [70]. Whitmire found that at certain types of 

institutions a positive relationship existed between library resources and students’ gains 

in critical thinking, but a negative relationship existed between library services and 

undergraduates’ library use [73]. Emmons and Wilkinson looked for correlations among 

academic library measures of staff, collection, circulation, and services (number of 

reference questions and percent of students receiving instruction), and institutional 

measures of retention and graduation [21]. They found that a significant relationship 

existed between library staff and both retention and graduation rates. Because of the 

prevalence of service and usage factors in recent library correlation studies, several of 

these oft-cited metrics were selected for analysis using an SOM. 

 The current study sought to answer the following question: Can an SOM cluster 

analysis of complex academic library data be used to reveal meaningful relationships 

among resource and service measures and other library factors—relationships that might 

otherwise be overlooked?  To answer this question, this chapter looked at three 

commonly reported measures of resource and service usage (circulation, attendance at 

instruction sessions, and reference transactions) and used an SOM cluster analysis to 

determine whether correlations could be found with features related to library 

expenditures, personnel, materials, and service offerings—data that is consistently 

tracked by most academic libraries. First, an SOM was used to cluster library data. Then 

the output was analyzed for the purpose of: (1) seeing which libraries clustered together 
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on the basis of their combined features, (2) determining which clusters could be identified 

as “high-performing,” and (3) identifying the distinguishing characteristics of the high-

performing library clusters. It is important to note that while an SOM can be used to 

cluster data and facilitate the discovery of correlations among the data, it cannot provide 

an explanation as to why those correlations exist. However, an SOM mapping and cluster 

analysis can provide a useful starting place for more detailed evaluations.  

  

4. 2  Methodology 

4.2.1 Data Used 

 Library data were collected from U.S. and Canadian academic libraries that are 

members of the ACRL by using the ACRL Metrics data portal [8]. Fifteen library 

features for the fiscal year 2010 were selected for analysis in an SOM and are listed with 

their definitions in Table 4.1. These features consist of a combination of resources such 

as collections, staffing, and expenditures, and activities such as giving presentations to 

groups and staffing service desks. These particular features were selected because they 

were consistently reported among the majority of libraries in the data portal and they 

covered a broad range of library features.  

  



32 
 

 

Table 4.1: Library Features Used in the SOM 

 

4.2.2 SOM Process 

 An SOM was constructed according to the specifications described in the 

previous section. Prior to running the data through the SOM, the data were examined for 

Feature Definition  

Volumes in Library   Total number of physical units that have been 

cataloged, classified, and made ready for use 

Total Serials  Total number of unique serial titles 

Monographs Annual monograph expenditures 

Current Serials  Annual serial expenditures 

Other Library Materials Annual expenditures on items other than monographs 

and serials such as backfiles of serials, charts and 

maps, audiovisual materials, and manuscripts 

Miscellaneous Expenditures Annual expenditures on items other than library 

materials such as expenditures for bibliographic 

utilities, literature searching, and security devices 

Salaries and Wages of 

Professional Staff 

All salaries and wages of professional staff, excluding 

fringe benefits 

Salaries and Wages of Support 

Staff 

All salaries and wages of support staff, excluding 

fringe benefits 

Salaries and Wages of Student 

Assistants 

All student wages, regardless of budgetary sources of 

funds 

Professional Staff  Number of FTE staff that the library considers 

professional, such as librarians, computer experts, 

systems analysts, and/or budget officers 

Support Staff  Number of FTE staff that are not included in the count 

of professional staff, excluding maintenance and 

custodial staff 

Student Assistants  Number of FTE student assistants employed by the 

library 

Staffed Service Points Number of staffed public service points in main and 

branch libraries 

Weekly Public Service Hours Total hours that the library is open per typical full-

service week 

Presentations to Groups Total number of presentations made as part of 

bibliographic instruction programs and through 

other planned class presentations, orientation 

sessions, and tours 
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outliers that suggested mistakes or inaccuracies. These included values well outside 

expected category ranges—for example, smaller institutions with reported reference 

transactions that were orders of magnitude larger than major research universities. These 

outliers were removed, leaving data from a total of 1,395 libraries. The data were then 

normalized according to the number of full-time equivalent (FTE) students enrolled at the 

institution. Finally, the data were run through the SOM and fed to a 44 x 44 neuron map, 

a size which was selected because it was large enough to accommodate the data and 

resulted in a graphic that facilitated the analysis. 

 The resulting SOM visualization was then analyzed for common features among 

the clusters. The analysis was conducted by computing a library performance metric 

(LPM) that was based on three features that represent usage of the library: total number 

of reference transactions, total participants in group presentations, and total circulation 

transactions (Table 4.2). The three features that comprise this metric were selected 

because they have consistently been employed to measure library usage in a number of 

studies [21, 70, 73]. While other usage metrics—such as the number of database logins, 

website visits, or full-text article downloads—would have provided both interesting and 

valuable information as well, these data were either tracked too inconsistently or were not 

provided by a significant number of libraries. The three LPM values were combined so 

that they had equal weight in the final score and were normalized according to the 

number of students (FTE) at each institution. 
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Metric Definition  

Reference Transactions Total number of reference transactions, both in person 

and through virtual means 

Participants in Group 

Presentations 

Total number of participants in presentations made as 

part of bibliographic instruction programs and 

through other planned class presentations, 

orientation sessions, and tours 

Circulation Transactions Total number of items lent, including renewals 

Table 4.2: Items Used to Compute the LPM 

 

4.3  Results and Analysis 

 The library SOM is displayed in Figure 4.1. Data were clustered according to the 

features listed in Table 4.1, and each library is represented numerically by its LPM. 

Figure 4.1 shows how the libraries clustered according to the fifteen features, with 

libraries with similar characteristics grouping together at different locations on the map. 

Once the libraries had clustered, the high-LPM libraries were identified through the 

application of the LPM label, and the features of the high-LPM libraries were then 

analyzed to determine what led to their locations on the map. Thus, the LPM was used 

only as a label on the visualized map and had no bearing on the actual cluster position 

within the map. 
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Figure 4.1: SOM Output with Libraries Represented by Their Colored LPM Labels.  

Colors indicate the following: red = high, orange = middle, and green = low. 

 

 

 Analysis of the SOM revealed a number of different characteristics. One 

characteristic of the map is that many resource variables (i.e., greater expenditures, 

greater numbers of materials, and higher numbers of staff; calculated as a ratio to student 

FTE) increase when descending on the map. Thus, those libraries with greater material 
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and staff expenditures and greater numbers of staff tended to collect along the bottom of 

the map, while those libraries with lower resources tended to collect along the top part of 

the map. Moving horizontally on the map revealed variations in terms of other features, 

including number of presentations to groups and number of public service hours. Those 

libraries that offered greater numbers of presentations and public service hours per 

student FTE generally collected on the right side of the map, while those with lower 

numbers collected on the left. 

 In Figure 4.1 the LPM is represented on the SOM by color. Those libraries with a 

high LPM are colored in red, a medium LPM in orange, and a low LPM in green. Figure 

4.2 shows the same SOM with the neurons colored according to the average LPM of the 

libraries assigned to that neuron, with the lowest-scoring libraries in dark green and the 

highest-scoring libraries in dark red. In showing the LPM average of all libraries that 

were placed at a particular neuron on the map, Figure 4.2 provides a clearer visualization 

of the different clusters. In looking at the color locations on the map, it appears that most 

of the low LPM libraries (green) appear in the upper portion of the map, while a greater 

number of the middle and high LPM libraries (orange and red, respectively) appear in the 

lower portion.  
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 Figure 4.2: SOM Output with the Color Dispersion as Determined by the Average LPM per Neuron 

 

 Although the diverse features of the libraries resulted in a variety of placements 

on the map, three areas emerged of particular interest, and these areas are outlined and 

labeled in Figure 4.3. First, an area of low-performing libraries appears in the upper left 

corner of the map. An analysis of their common features reveals that these libraries are 
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generally low in resources such as expenditures and staff; thus, this area has been labeled 

as Lower Resource, Low Performing in Figure 4.3.  

 Two high-performing library areas (outlined in Figure 4.3) emerged in the lower-

left and upper-right portions of the map. An analysis of the common features of libraries 

in the lower-left area reveals that these high performers have greater numbers of 

resources (i.e., larger budgets, more materials, and higher numbers of staff), and this area 

has been labeled as Higher Resource, High Performing in Figure 4.3. This area includes 

libraries at research universities such as the University of North Carolina, the University 

of Southern California, and Johns Hopkins University, among others. Thus, for this group 

of libraries, greater numbers of resources per student FTE can be correlated with better 

library performance, as measured by the LPM.  
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 Figure 4.3: SOM Output Showing the Three Library Areas 

 

 The third area of interest in the upper-right area of the map also contains several 

high-performing libraries (outlined in Figure 4.3). Unlike the high-resource area in the 

lower-left, an analysis of the common features of this high-performance area in the 

upper-right reveals that these libraries are generally low in resources (i.e., smaller 

budgets, fewer materials, and lower numbers of staff). This area includes libraries at 
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institutions such as Florida Keys Community College and Tougaloo College and has been 

labeled as Lower Resource, High Performing in Figure 4.3. An analysis of the features of 

the libraries in this area reveals that these libraries give greater numbers of presentations 

to groups, offer a greater number of public service hours, and have greater numbers of 

staffed service points per student FTE. Thus, it would appear that their high LPM scores 

can be correlated to these higher service features rather than to greater numbers of 

resources.  

 It is significant, although perhaps unsurprising, that libraries with greater numbers 

of resources (in the Higher Resource, High Performing area) achieve higher levels of 

performance, as measured by the LPM. However, the implications of those libraries in 

the Lower Resource, High Performing area are also significant. In offering greater 

numbers of these services, the Lower Resource, High Performing libraries may be 

achieving higher levels of performance by a means other than through greater numbers of 

resources. It may be, for example, that by offering greater numbers of group 

presentations, these libraries are educating their users about library resources, which in 

turn leads to greater numbers of circulation transactions, or they are educating their users 

about the assistance available in the library, which in turn leads to greater numbers of 

reference transactions. In addition, by being open for longer hours, libraries are making 

their collections more readily available for checkout.  
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4.4  Conclusion and Suggestions for Further Study 

 An SOM can provide considerable value in its ability to cluster large library 

datasets and to facilitate comparisons among libraries. In this study, an SOM has been 

used to cluster library features such as resources, staff, and expenditures, but it could 

easily be used to facilitate the analysis of other types of library data as well. While a 

cluster analysis technique such as an SOM cannot provide a holistic picture of the state of 

a single library, it can be used to help one to quickly ascertain data similarities among 

several features at large numbers of libraries. In this chapter, the SOM used in 

combination with the LPM labeling has elucidated relationships among certain library 

features with regard to performance, but it cannot explain why those correlations exist. 

This is just the starting point for further evaluation. Future research could delve into the 

demographic characteristics and other features of the high-performing libraries in order to 

arrive at a more detailed picture of how these libraries achieve high usage rates. 

 Certainly, the metrics chosen for the LPM used here offer only a partial picture of 

how libraries are being used. For example, total circulation transactions represent only 

some use of library collections and do not represent factors such as in-library usage of 

material, database usage, or article downloads. In addition, the fifteen library features 

used in this SOM were selected for visualization because of their recurrence as typical 

points of library comparison, but other library features would provide for a fruitful 

comparison as well. In addition, a different library performance metric could be 

constructed from different outputs, such as building usage or e-resource usage. 
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 For this analysis, data were normalized on the basis of student FTE, but this 

choice does not account for all of the factors that could influence the results, such as 

institutional type, budget, sources of funding, consortial agreements, etc. In addition, it 

was felt that the greatest insights would come from using the largest set of library data 

possible in order to find relationships that were not easily discernible by obvious or pre-

existing classifications. However, future work might involve the identification of library 

groups that cluster within certain parameters, such as size (e.g., small, medium, and large 

libraries), budget, funding support, institutional mission, etc. In fact, this approach to 

cluster analysis could aid in the identification of peer groups. Academic libraries 

typically turn to their institutional administrative offices for an official list of peer 

institutions [9], but libraries on these official lists can differ greatly. Pritchard writes that 

“It is possible that the peer institutions used by the administration for strategic planning 

will not each have a library that functions comparably” [61]. An SOM can be used to 

cluster similar libraries and identify library peer groups; libraries could then look to the 

high performers within the same cluster to see what kinds of choices these libraries are 

making.   

 Although the SOM analysis provided here cannot answer all of the questions 

prompted by the clustering of the high performers, the analysis does have implications for 

libraries seeking to improve their performance. In times of decreasing budgets, libraries 

that want to improve their outputs may be unable to achieve this result through increasing 

their resource expenditures or hiring more staff. This cluster analysis suggests that 

libraries may be able to improve their performance by putting a greater emphasis on the 

services they offer to their users, whether it be through providing greater numbers of 
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staffed service points and public service hours or providing greater numbers of 

instruction sessions and outreach opportunities. Future research could analyze the 

common features among these libraries that are not apparent in the data points examined 

in this dissertation. 
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Chapter 5 

Facilitating Metagenomic Analysis Using 

Clustering 

 

5.1  Introduction 

 Metagenomics, a relatively new field within biology, involves the classification of 

DNA sequence fragments from environmental samples consisting of diverse microbial 

populations.  Research in metagenomics focuses on both the classification of organism 

types and the functions of sequences that are present in environmental samples. The latter 

method essentially treats the metagenome as a single genomic item which can provide 

information about metabolic processes within the habitat [27]. Because metagenomics 

research involves vast amounts of data, its analysis calls for the use of tools that can 

facilitate the process with efficiency. This type of large-scale analysis of genomic data 

falls within the interdisciplinary field of bioinformatics, which is a merging of molecular 

biology, probability, and computer science. Clustering techniques within the field of 

machine learning provide excellent methods for analyzing metagenomic data.  

 A number of approaches have been used to analyze DNA sequences in 

metagenomic data, including sequence similarity searches, sequence composition 

methods, and phylogenetic methods [12]. A Basic Local Alignment Search Tool 



45 
 

(BLAST) search provides one type of similarity comparison, wherein a query sequence is 

compared against a library of known sequences in order to find similar sequences that fall 

within a designated threshold limit [6]. An example of a sequence composition method is 

a Markov model, which is a probabilistic-based model of the composition of the likely 

DNA sequence. A Markov chain model assigns the current nucleotide base a probability 

based on the composition of the preceding nucleotides [36]. Phylogenetic techniques use 

an evolutionary relationship model to locate where the query sequence most likely fits. 

Applications may even employ a combination of these techniques to perform sequence 

classification.  

 Several studies have investigated methods for better facilitating the analysis of 

metagenomic data. Ghosh et al. developed a method for rapidly determining sequences in 

a metagenomics habitat. Their technique, called HabiSign, focuses on finding habitat-

specific oligonucleotide usage patterns to differentiate between metagenomes which have 

variations at phenotypic, species, and biome levels [24].  Abubucker et al. developed a 

method which uses short DNA reads to analyze both the presence and abundance of 

microbial communities within the host environment [1]. Their system, HMP Unified 

Metabolic Analysis Network (HUMAnN), profiles the metabolic potential of microbial 

communities by using a series of steps that involve gene and pathway-level 

quantification, noise reduction, and smoothing of data [1]. 

 Clustering methods are also used to facilitate metagenomic analysis [12, 45]. 

These methods include CD-HIT, which orders genomic sequences by length and then 

assigns the longest ones as cluster seeds. It then compares the reads against the existing 

clusters by using a greedy incremental algorithm, a type of algorithm that makes the local 
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optimal choice at each decision point [46]. CD-HIT is less computationally intensive than 

several other methods that compare every sequence against all the others present in the 

sample [46]. Uclust, another greedy algorithm-based method, differs from CD-HIT in 

that it uses heuristics to facilitate faster sequence comparisons [19]. 

 The field of machine learning offers clustering techniques that have not yet been 

widely applied in metagenomics research. Machine learning clustering techniques use 

computer algorithms that adapt to the data presented, and they can be categorized into 

two varieties: supervised and unsupervised. A supervised algorithm relies upon 

previously evaluated data to create a classification system, whereas an unsupervised 

algorithm can be used to group unknown data into collections of similar items, also 

known as binning [50]. Thus, machine learning techniques can effectively cluster 

extremely large quantities of data with some or no training, a quality which makes them 

well-suited to metagenomics analysis. 

 Two types of unsupervised algorithms that offer great potential for metagenomic 

analysis are the SOM and the K-means algorithms. Both techniques have been 

successfully applied in other fields but have had only limited application in 

metagenomics. Of note, however, is a study by Weber et al. which employed a machine 

learning algorithm in the analysis of five metagenomes of medium complexity. The 

authors created an application, called TaxSOM, that uses a self-organizing map to plot 

unknown genomic signatures against known types in order to provide taxonomical 

classification [69].  

 The work described in this chapter applies the SOM and K-means algorithms to 

the analysis of metagenomic data collected from a sample from the Great Boiling Springs 
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Habitat in Nevada. The typical approach to metagenomic analysis centers on taxonomical 

classification, generally proceeding in one of two directions: either by comparing the 

complete sequences or by focusing on the 16sRNA genes present in the sample. The 

16sRNA genes comprise the DNA sequence that specifies the small ribosomal subunit 

and is often used for species identification [24]. The approach taken here uses a variation 

of the former and attempts to identify possible candidates to serve as reference genomes 

for use in further analysis. A reference genome is a documented collection of nucleotide 

sequences and protein products from a specific species, often documented from multiple 

samples. These sequences, which are often annotated by domain experts, can serve as 

points of comparison to unknown or novel sequences. 

 This chapter attempts to answer the question: Can the use of machine learning 

clustering techniques provide a guideline as to which reference genomes should be 

included for further analysis in determining possible organisms that are present in a 

metagenomic sample? This chapter does not attempt to directly taxonomically classify 

organisms present in the sample, but rather “pre-bins” the data so as to provide a method 

to streamline future analysis. The unsupervised techniques discussed here can serve as a 

launching point for elucidating protein sequences that could serve as possible reference 

comparisons to a specific metagenomic sample and lead to further study, possibly by 

using supervised learning or even domain-expert analysis. 
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5.2  Methodology 

 This study was conducted in three phases. First, an algorithm was used to cluster 

metagenomic reads. The clusters are composed of similar sequences, most likely from 

related genes. These clusters, in turn, can be used to ascertain what functionalities are 

present within the given sample habitat by using the consensus sequences within the 

clusters to perform a BLASTX similarity search (BLASTX compares a nucleotide query 

sequence translated in all reading frames against a protein sequence database [13]. This is 

similar to the goal of the HUMAnN system [1]; however, the pipeline described here 

does not focus on functionality. In the second phase the estimated midpoints of the 

clusters were used as the basis for BLASTN searches, which allowed for the quick 

identification of likely genomes present (BLASTN compares a nucleotide query sequence 

against a nucleotide sequence database) [13]. In the third phase, a visual representation of 

the clustered data + BLAST results is produced, which demonstrates the frequency of 

each projected organism. These phases together could also serve as the start of a pipeline 

to quickly identify good choices to use as reference genomes for further analysis. Figure 

5.1 provides a flow chart representing the process. 
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Figure 5.1: Metagenomic Data Processing Pipeline 

 

5.2.1 Data Used 

 Any collection of mostly non-ambiguous FASTA sequences (ATCG only; N is 

supported as well) could be used in the first phase of this process. FASTA is a text format 

for both nucleotide and protein data which includes a descriptive line and the single-letter 

code representation of either nucleotide or protein sequences. The data used in this study 

consisted of the Great Basin Boiling Springs, Nevada habitat sample, collected on 

December 1, 2008. The sample data were obtained from the Integrated Microbial 

Genomes with Microbiome Samples website [33]. The sample is an aquatic thermal 

springs ecosystem with temperature ranges as high as 90°C. The sequencing technology 

used on the project was Roche 454 Titanium. The estimated size of the data is 6,283,876 

kilobases.  
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5.2.2 Clustering Pipeline 

 C# software applications were developed which are capable of selecting a FASTA 

formatted reads file and clustering the reads either within an SOM or via the K-means 

algorithm. The SOM program shows a small grid representation of the clustering (which 

serves as the first visualization of the clustered sequences) and outputs an XML file 

listing each read and its assigned location on the map. After the initial clustering run, the 

results are carried forward in a simple XML format, which is illustrated in the Appendix. 

A second XML file is generated which displays the neuron weight sequences, as well as 

the consensus sequence of the neurons with the highest number of mapped sequences. 

The XML output files were used for the last two parts of this project. A screenshot of the 

application in action is shown in Figure 5.2. 

 A selectable number of encoded partial sequences were used as input vectors to 

both the map and K-means clusters. The neuron with the closest weight vector to the 

input is assigned that particular input vector and has its weights updated to more closely 

match the assigned input vector. Other nodes within the winning neuron's neighborhood 

have their weights updated as well to a lesser amount. This continues to happen in an 

iterative process until the weight updates fall below an assigned threshold, at which point 

the map is essentially complete with similar sequences being assigned in close proximity 

to each other.  
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Figure 5.2: 100-Base Read SOM with a 30 x 30 Grid of Neurons 
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 It was necessary to employ an encoding scheme that avoided prejudicing the 

clustering algorithms. A naive encoding scheme could result in the middle two nucleotide 

values appearing closer to each other. This issue was avoided by encoding each base as 

four values (e.g., A = 1,0,0,0), which essentially represents each nucleotide at an equal 

distance from each other in three-dimensional space. However, this did increase the 

encoded input vector by a factor of four from the single-character representation to the 

four-character vector. Using this encoding scheme, the clustering results were promising 

based on the close similarity of the decoded neuron weight sequences versus the 

consensus sequences built from all of the sequences assigned to that particular neuron. 

See Table 5.1 for a comparison of the calculated consensus sequence against the cluster 

center weight vector. 

 

Weight Sequence Consensus Sequence 

AAAGAGAAAAGATTAAAAAGAAAA

TAAAAAAAAAAGAAATGAATTAAG

AGAAAATGAGAATGGTGAAGAATA

AGAATATTAAAAGATATAAAAAAA

AATA 

AAAGAGATAAGAGAAATAAATAAA

GCTAAAAAGAAGGAAATGGTTATAA

GAAAATAAGAATGAAGAAGAGAAA

GTTTATAAAAAGCTATAGAAAAAAA

TA 

The table demonstrates a comparison of a sample neuron weight sequence vs. the 

consensus sequence generated from the collection of reads assigned to that neuron. The 

sequences' close similarity (based on a character-by-character analysis) serves to validate 

the process. 

Table 5.1: Comparison of a Sample Neuron Weight Sequence Vs. the Consensus Sequence 

 

 The next step involved processing the XML results file that was generated from 

the clustering algorithms to find likely represented genomes (partial). The consensus 

XML file with the neuron weight sequences was used as the basis for this phase. Manual 

BLASTN queries were performed using the microbial genome database at the National 
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Center for Biotechnology Information [13]. The standard settings were used with the 

exception of reducing the word size down to seven based on the short length of the 

sequences. Promising results from the top several “center” sequences were manually 

added to the consensus XML file, while weight sequences that produced no acceptable 

matches were removed, as shown in the Appendix. 

 The updated XML file, including the labeled BLASTN results, was fed to a 

Python application, using the Matplotlib library. The results represented the frequency of 

the likely genomes, as well as the overall clustered map of sequences. A visualization 

resembling a heat plot was used to show the frequency of sequences at each position on 

the map, with the labeled sequences provided by the BLAST results serving as guide 

locations.  

 The Python script expects two XML files matching the project's proprietary 

formats as input. The first portion of the script reads in and parses the two XML files, 

generating a count of assigned sequences at each neuron location (x,y). In addition, it also 

parses the updating consensus XML file for the names of the likely reference sequences 

which will serve as labels within the frequency map. 

 

5.3 Results and Analysis 

 The clustering phase of the pipeline was executed several times with various 

sequence lengths, numbers of reads, and map sizes for the SOM, as well as several 

different cluster counts for the K-means algorithm. The BLASTN comparisons were 

made using varying sequence lengths, but in the end the visualization phase was initiated 



54 
 

with only the 100-base results, which can be seen in Table 5.2. The table shows selected 

neuron weight vectors which were used as the BLAST query sequence generated from 

the trained SOM, the most similar result as returned by BLAST, the associated E-value 

(the expected chance of randomly seeing a match to the query sequence), and the percent 

of the query sequence that matched the top result. Table 5.2 shows the possible organisms 

present in the metagenomic sample which could be used as reference sequences and 

warrant further investigation. In particular, the Thermoanaerobacter siderophilus result is 

especially promising, in that it is a thermophilic, anaerobic, spore-forming bacterium that 

has been found in hydrothermal vents. This genome is a likely candidate for this 

environment and therefore can be used as a reference genome. 
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Neuron Weight Sequence Top BLAST Result E-Value % Identity 

TTTTTGAGAAAAAGAAAAAG

AAGATAAAAAAAAAAAAAA

AGAATGAAGATAGAAGAAG

AATTGAGAGGAGTAAGGGAA

AGGGTTAAGAAAGTTAATAA

AA 

NC_018664.1 

Clostridium acidurici 9a 

chromosome, complete 

genome 

9e-07 88% 

TTTCTTTTTTGAACTTTACCTT

TTGCTACTTTGGAACTTTTTA

AAACACCTAGAGCATTAACA

ACAAACCCTTCTACTGTTTCT

TTTAAATCTTCTACCT 

BAFA01000036.1   

Staphylococcus aureus 

PM1 DNA, contig: 

PM1contig00036 

0.019 89% 

TTTGGAAGAGATTTGAAAGA

AGAAAGATAGAAAAAACTTA

GGAACTAAAGAAATAAGAGC

GCATAAGAGAAACAAGAAA

AAAAAAAGAGATTTTTTGGA

A 

AKXG02000035.1  

Leptospira interrogans 

serovar Grippotyphosa 

0.068 89% 

TTTTGAGGAAAATAGAAAGG

TAAAAGGAAAAATGTAGTAA

TTAGTTAAAGAAAAAAGAAA

GGGTGTGAGAAAAAAAATAA

AAAAAATAGAAAATATGGAA 

ADEJ01000237.1  

Clostridium difficile 

6534 contig_237, whole 

genome shotgun 

sequence 

5e-04 83% 

GTAAAGAATGTTTTTAGATAT

ACGAAGAAAAATTAGTAAAA

AAAAAAAAAAAAAAAAAAA

ATTATAAAAAAAAAAAAAAA

AAAGAAATTAAAAAAGCAAA 

AJUD01000013.1  

Thermoanaerobacter 

siderophilus SR4 

6e-15 88% 

Table 5.2: 100-Base Sequences BLASTN Results 

 

 A demonstration of the efficacy of either of these clustering techniques can be 

seen in the comparison of the consensus sequence from the largest cluster of the K-means 

algorithm with the results of the SOM. The largest cluster of sequences in the 100-base 

K-means run produced the same top result as the consensus weight sequence from the 

SOM application. Table 5.3 shows that the top BLAST result for the K-means algorithm 
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was also Thermoanaerobacter siderophilus SR4. However, the identity percentage and E-

value are less significant than the SOM results. 

 

Neuron Weight Sequence Top BLAST Result E-Value % Identity 

TTATAAAAGATATGAAGATA

GGTTAGGAGATTTTTGAGAA

GGCTAAAACAGTAGAATTTT

CTTAAGGATTATCAGAAAAA

TAAAAAAAAAAGGAATTTAA 

AJUD01000013.1  

Thermoanaerobacter 

siderophilus SR4 

0.004 78% 

Table 5.3: Top K-Means 100-Base Sequence Result 

 

 Figure 5.3 shows the results of the final phase of the processing pipeline and 

provides an illustration of the clustering of the sample sequences. Color positions on the 

map represent the abundance of sequences similar to that particular cluster center. 

Several cluster centers are labeled with the corresponding top BLAST results to give an 

investigator a visual overview of the abundance and possible types of sequences present 

in the sample. This representation demonstrates the applicability of the system and shows 

the benefit of refining and proceeding with this clustering technique. 

 The previously discussed CD-HIT application [19] was employed to attempt to 

validate the techniques used here. The metagenomic data used in the development of the 

described pipeline was subjected to the CD-HIT-454 application for clustering. These 

results were fed to the consensus building program, CD-HIT-CONSENSUS, which 

creates a set of consensus sequences from the clusters provided by CD-HIT-454. 

However, this provided a limited point of comparison as almost no reduction in data was 

found when evaluating mapped reads against reference genomes.  



57 
 

 

The key shows that color positions on the map represent the number of sequences 

assigned to that location. Clusters are shown in the light blue, yellow, and red areas. 
 

Figure 5.3: SOM Data Visualization with BLASTN Results Labeled 

 

 The pipeline described here could be adapted to work in a fashion similar to the 

HUMAnN system described in Abubucker et al., which seeks to determine the 

functionalities present in the metagenomic sample [1]. This direction would involve 

finding similarities in the consensus (or weight) sequences within the map versus known 

pathways to elucidate possible functionalities. 

 The complete pipeline was executed using only the first 100 (a configurable 

parameter) bases of each read as the input vectors to the SOM and K-means algorithms. 

A future project could involve the construction of the map that uses the entire read 

sequences as input. 
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5.4 Conclusion 

 This work attempts to solve a problem similar to that addressed by the TaxSOM 

application, a tool that trains an SOM on the basis of known genomic signatures and then 

maps metagenomic reads to the pre-calculated map [69]. The pipeline presented in this 

chapter uses the metagenomic reads themselves to train the clustering technique as a first 

step. The metagenomic data are then clustered using the trained algorithm—either the 

SOM or the K-means algorithm. This technique is both applicable and advantageous 

because it involves no initial preparation, attempting to reduce the data from the raw 

reads without reference to an outside source for comparison. The clustered sequences can 

then be used to reduce the amount of data to carry forward for downstream analysis.  

 The techniques employed in this chapter form the starting point in a metagenomic 

analysis pipeline. The clustering algorithms used in conjunction with the visualization 

tool allow a researcher to rapidly move to a more directed investigation of a metagenomic 

sample.  The overarching goal of this pipeline is to provide a quick visual guide to an 

investigator as to what may be present in a habitat's sample and to identify which 

reference genomes may be selected for further analysis. Figure 5.3 illustrates how an 

investigator can use the visualization to see the amount of sequences that share 

similarities with the cluster labels. The clustering performed here was limited to a small 

subset of a much larger metagenomic data file in order to validate the functionality of the 

method. Future work could use the pipeline to cluster larger metagenomic datasets. In 

addition, in this study the connectivity between the clustering, BLAST, and visualization 

was user driven, but in the future these steps could all be rolled into a single tool. Finally, 
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the system described here could be enhanced to go in several different directions, 

including the classification of taxonomies present in a sample, the clustering of 

metagenomic reads for a reduction in computational requirements, or even as an 

evaluator of functional pathways that are likely to exist in a sample. 
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Chapter 6 

Labeled Affinity Propagation to Predict 

Stock Performance 

 

6.1 Introduction 

 Fundamental analysis is a method of equity prediction based on evaluating core 

company parameters such as revenue, expenses, assets, and liabilities, as well as certain 

ratios such as a company’s net profit margin (net income/sales). According to Chavan 

and Patil, "Fundamental analysis mainly depends on statistical data of a company. It may 

include audit reports, financial status of the company, the quarterly balance sheets, the 

dividends and policies of the companies whose stock are to be observed. It also includes 

analysis of sales data, strength and investment of company, plant capacity, the 

competition, import/export volume, production indexes, price statistics, and the daily 

news or rumors about company" [15]. Augmenting the fundamental analysis of stocks 

with the use of machine learning techniques has shown promise because it allows 

researchers to quickly process large collections of stock data.  

 Several different machine learning approaches have been employed in the area of 

stock performance prediction, including linear regression, artificial neural networks, 

genetic algorithms, support vector machines, case-based reasoning, and others [81]. 
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Using an artificial neural network to perform a fundamental analysis of stock returns, 

Yildiz and Yezegel found an average increase of 22.32% on returns when accounting for 

market risk and other effects [80]. In addition, they noted that strong evidence exists that 

the relationship between fundamental ratios and stock returns is non-linear and requires 

more complex techniques than linear estimation [80]. Wong et al. used a fuzzy neural 

system to address some of the shortcomings of a standard neural system; they used a 

conglomeration of the different techniques of expert systems and fuzzy reasoning in 

conjunction with a neural network [74]. Xia et al. used a support vector machine to build 

a regression model of historical time series data in an attempt to predict future trends of 

stock prices [75]. Although a number of different machine learning techniques have been 

used for stock prediction, the use of clustering algorithms has not been commonly applied 

for stock prediction. Specifically, affinity propagation does not appear to have been 

employed in this domain. 

 Parameters selected for these algorithms often follow the common financial ratios 

associated with fundamental analysis. For example, Kryzanowski et al. used an artificial 

neural network that was focused on a set of financial ratios, such as debt-to-equity and 

return on total assets [44]. In a study that used more traditional methods, a similar set of 

ratios was used for forecasting [64]. 

 In this chapter the affinity propagation clustering algorithm is used in conjunction 

with pre-process performance information to attempt to predict future equity trends. The 

overall goal of this chapter is similar to the literature cited above, but the methodology is 

distinct. The question addressed here is whether the affinity propagation algorithm can be 

used to cluster historical stock data, including fundamental characteristics, in such a way 
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that future price performance can be predicted. The inclusion of a known high-

performing stock is used to augment the predictive efficacy of the technique.  

 

6.2 Methodology 

 For this chapter, fundamentals for a random set of companies were collected from 

January through December 2011 and corresponding company stock data were collected 

from January 3, 2012. In addition, specific data was collected regarding a known 

successful stock to serve as the pre-clustering process label. Netflix was selected because 

of its substantial rise over this period. For each stock (company) selected, an associated 

vector was created from the designated parameters. These vectors were then compared 

for similarity against each of the others (ALL versus ALL) using Euclidian distance. 

From these similarity comparisons, a matrix was constructed which served as the data to 

be fed forward to the affinity propagation application.  

 

6.2.1 Data Used 

 Data was obtained from the Wharton Research Data Services database, which is 

available from the Wharton School at the University of Pennsylvania and provides both 

financial and market data for more than 13,000 international companies [72]. The 

database has access to a number of different datasets, but the Compustat dataset from 

Standard & Poor's was used to collect the necessary company and stock information. 

Compustat provides both current and historical information on publicly held companies 

in the United States and Canada, and contains annual and quarterly data items from 
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company income statements, balance sheets, statements of cash flow, and securities [72]. 

Within Compustat, data was drawn from the Fundamentals Annual module and the 

Security Daily module. 

 Data was collected that represented each company's financial profile for January, 

2012, a date which was selected to correspond to Netflix’s strong positive trend. In order 

to obtain company financials for this date within the Fundamentals Annual module in 

Compustat, annual data was selected using the dates of January 2011 through December 

2011, and companies were searched by ticker symbol. Parameters were selected based on 

previous literature [44], which included important balance sheet and income statement 

items. However, unlike the studies cited above, these parameters were used directly 

without being combined into ratios. Within the Security Daily module, closing stock 

prices were obtained for the data of January 3, 2012, which was the first business day of 

the year. Table 6.1 shows a listing of parameters used for each equity's data vector. 

 

Abbreviation Parameter 

AT Assets - Total 

DLTT Long-Term Debt - Total 

LCT Current Liabilities - Total 

SEQ Stockholder's Equity - Total 

ACT Current Assets - Total 

LT Liabilities - Total 

BKVLPS Book Value Per Share 

SALE Sales/Turnover (Net) 

NT Net Income (Loss) 

PRCCD Price - Close - Daily 

Table 6.1 Parameters Used for Each Equity's Data Vector 
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 Data was collected for Netflix and other companies that are listed on the 

NASDAQ. A complete listing of 2,905 companies that are currently in the NASDAQ was 

obtained from its website [55]. A pseudo-random number generator was used to select 50 

companies; however, some company parameters were not reported for the chosen time 

period. Eight companies with missing parameters were removed, resulting in a total of 42 

companies for the analysis. Table 6.2 shows the final listing of the companies used in this 

study. 

 

6.2.2 Functional Programming F# 

 An affinity propagation application was developed using the functional 

programming language F#. The paradigm switch from imperative languages to a 

functional language involves the realization that variable values should not be changed 

and are, in fact, immutable [30]. This feature especially enables high levels of 

concurrency with no specific need for the locking of variables [30]. 

 Functional programming is frequently employed in the financial industry [10]. Its 

clarity in terms of representing mathematical models in a concise fashion makes it a good 

choice for computationally intensive algorithms. The concept of higher-order functions 

(i.e., functions that take other functions as parameters) is extremely beneficial in 

implementing complex models while maintaining modularity and maintainability. A 

specific advantage of F# is the inclusion of type providers, which allows for the quick 

integration of information sources (in this case, stock data) into a strongly typed data 

structure [65]. This work was developed in F# in order to make it accessible and 

extensible by those in the financial industry. 
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Ticker 

Symbol Company 

Ticker 

Symbol Company 

AAR American Airlines Group Inc MEOH Methanex Corp 

ADBE Adobe Systems Inc MKSI Mks Instruments Inc 

ANAC Anacor Pharmaceuticals Inc MPAA Motorcar Parts Of Amer Inc 

BLKB Blackbaud Inc NFLX Netflix Inc 

EPAY Bottomline Technologies Inc NUVA Nuvasive Inc 

CVCO Cavco Industries Inc PEBK Peoples Bancorp Nc Inc 

PLCE Childrens Place Inc PHIIK Phi Inc 

CTAS Cintas Corp PCH Potlatch Corp 

CRUS Cirrus Logic Inc PLPC Preformed Line Products Co 

CLCT Collectors Universe Inc QGEN Qiagen Nv 

CRVL Corvel Corp ROLL Rbc Bearings Inc 

DNKN Dunkin' Brands Group Inc REMY Remy International Inc 

FNGN Financial Engines Inc RGEN Repligen Corp 

FFIN First Finl Bankshares Inc SCHL Scholastic Corp 

GRMN Garmin Ltd SMTC Semtech Corp 

HSKA Heska Corp SWKS Skyworks Solutions Inc 

AWAY Homeaway Inc SLRC Solar Capital Ltd 

IIIN Insteel Industries TTWO Take-Two Interactive Sftwr 

ITRN Ituran Location & Control TREE Tree.Com Inc 

LORL 

Loral Space & 

Communications UBSI United Bankshares Inc/Wv 

MATW Matthews Intl Corp   WFM Whole Foods Market Inc 

Table 6.2 Company Names and Ticker Symbols for the Final Data Clustering 

 

6.2.3 Affinity Propagation Process  

 As described previously, affinity propagation is a modern clustering algorithm 

that has been shown to outperform many other algorithms in the field. The F# application 

expects two .CSV files—one representing the ALL versus ALL similarity matrix and the 

second is the preferences for each data item in terms of initial exemplar selection. The 

matrix was built in Microsoft Excel. The Euclidian distance for each stock vector was 

calculated. The entirety of this data was formatted as a collection of three columns 
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representing the similarity matrix, with the first two parts being the row/column label and 

the final being the similarity score between those particular stock vectors. A subset of the 

42x42 similarity matrix is shown in Table 6.3. 

 

 

1 2 3 4 5 6 7 

1 0 46535.41187 47924.2079 42895.628 47882.3918 47129.89579 47144.63765 

2 46535.41187 0 2623.16441 4225.3858 2593.22523 1858.602999 2249.753049 

3 47924.20791 2623.164407 0 6531.7843 180.119814 1012.482554 852.0179886 

4 42895.62838 4225.38584 6531.78435 0 6484.72924 5573.578734 5851.429608 

5 47882.39177 2593.225228 180.119814 6484.7292 0 1009.358568 840.6018729 

6 47129.89579 1858.602999 1012.48255 5573.5787 1009.35857 0 445.7413542 

7 47144.63765 2249.753049 852.017989 5851.4296 840.601873 445.7413542 0 

Table 6.3: Subset of the 42 x 42 Similarity Matrix 

 

 Validation of the F# affinity propagation tool was accomplished by using Frey 

and Deuck's online clustering tool [2]. Results from an initial subset of nine companies 

were indistinguishable, which was expected since the source code for the C 

implementation of the algorithm was used as the basis for the F# development.  

 

6.3 Results and Analysis 

 Multiple iterations of the process were undertaken. The test run of the application 

used a single label (Netflix: known price increase) and the first nine randomly selected 

stocks. This run served only as a validation of the correctness of the application. 

 The first run using the initial data collection used Netflix as the known 

outperforming stock. For this primary run 41 additional stocks were included. Eleven 

clusters were generated from this collection of 42 stock feature vectors. Analysis of these 
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clusters showed that the initial random draw of stocks resulted in limited predictive value. 

Since the stocks were selected from the NASDAQ in a random fashion, several had 

features that led directly to their clustering together. For example, several small 

companies with stock prices under $5 clustered together. The initial price data of the 

companies in each cluster were compared to current stock prices drawn from August 22, 

2014 to see how they performed. Netflix was clustered singly during this first full run of 

the application and had the highest percent price increase of 563%.   

 A second approach in regard to data selection seemed advisable. For this 

approach only companies with somewhat similar qualities were used. These stocks were 

still randomly pulled from the NASDAQ index, but were only added to the collection of 

stocks presented to the application if they fell within a certain threshold of the label 

companies’ parameters. Specifically, these companies needed to have a stock price of $15 

or more and have meaningful asset levels.  

 The clustered results of the second run are illustrated in Figure 6.1. 

Coincidentally, 11 clusters were again produced, with seven stocks clustering singularly. 

Of the remaining 35 stocks, 17 clustered with the exemplar Cavco, seven clustered with 

the exemplar Phi Inc., seven clustered with the exemplar Take-Two Interactive, and 

finally, the remaining four clustered with the exemplar Methanex. This time, Netflix did 

not cluster singly and instead it was included in the Methanex cluster.  

 To determine a performance metric, the current price information was compared 

against the historical price information. Closing stock prices were again obtained for 

August 22, 2014 and compared against the data from January 3, 2012. The mean cluster 

price change is indicated below each cluster in Figure 6.1. In addition, in the Netflix 
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cluster the mean of the three other stocks was calculated excluding Netflix from the 

calculation. The three stocks in this cluster—Methanex, Cintas, and Qiagen—showed an 

average increase of 114%. Since the NASDAQ Composite index rose only 71% over the 

same period of time, these three stocks outperformed the NASDAQ Composite. This 

indicates that if this technique had been used in stock selection over this time period, it 

would have outperformed the NASDAQ Composite, resulting in a greater rate of return 

on the buyer's investment. However, it should be noted that this data consisted of a small 

sample set, and therefore additional iterations of the process would be necessary to refine 

and validate the technique. 
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Figure 6.1: Clusters from the Second Data Run with the Mean Cluster Price Change Indicated  
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6.4 Conclusion 

 The naive approach attempted in the first run of this study showed a limited 

correlation to the prediction of the success of these stocks (in terms of rising price). 

However, with refinement of the initial vector selection to involve some additional 

analysis, a more predictive outcome could be achieved. The second approach in which 

stocks were chosen based on similarity to the label stock resulted in more intrinsic 

predictive value. The cluster including the label stock Netflix is considered the "winning" 

cluster for this analysis. In this case, winning is defined as the prerequisite inclusion of 

the label stock and each member in the designated cluster out-performing the market. The 

inclusion of Netflix with the three other stocks points to possible fundamental factors that 

may lead to market out-performance. It is worth nothing that one of the singleton clusters 

(American Airlines) performed better than the labeled cluster, and a second one (Adobe) 

also out-performed the labeled cluster when the calculation excluded Netflix. 

Nonetheless, these singleton clusters do not detract from the successful clustering of the 

label stock with other out-performers.  

 This tool, like similar methods, would be best used in conjunction with traditional 

analysis. The technique described herein was a limited investigation into its efficacy; 

possible extensions to the technique could involve a pre-process analysis to better select 

included features. Based on the initial results, another approach would be to use the initial 

clusters of the random collection as the basis for an additional run of the algorithm. For 

example, if in an initial run produced a cluster of low asset companies, then the 

companies in this cluster could be used as the basis for a more targeted clustering run. 
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This, in effect, combines the two approaches described above without requiring the need 

for filtering the selection of stocks.  

 Ultimately, the goal of the technique described here is to help elucidate a pattern 

of company fundamentals that may lead to better stock performance. When assessing the 

strength of a company, a potential investor could factor hundreds of different data points 

into an analysis—data that come from company balance sheets, income statements, audit 

reports, dividends, news stories, and other sources. Which fundamental data points are 

most critical? And which combination of these factors may correlate to success? A 

clustering tool such as the one described here could be refined to help investors make 

these determinations. 
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Chapter 7 

Conclusions and Future Work 

7.1  Conclusions 

 As the amounts and complexity of data continue to surge, analysts are challenged 

to evaluate data effectively and to make decisions in a timely manner.  It often becomes 

necessary to greatly automate the process of analysis by pairing down the collection of 

data before individual investigation can proceed.  This work shows how the application 

of clustering algorithms can greatly enhance this process in a variety of fields. In 

addition, this work demonstrates that pre-process information can be used in conjunction 

with a clustering algorithm to enhance and direct the research process. 

 The applications described in this work show how the use of three different 

clustering tools can be used to augment a decision-making process, and each algorithm 

provides its own strengths in relation to the problem to be solved. The SOM inherently 

serves as an excellent decision-making tool with its natural representation of a visual 

map. It is flexible with a wide variety of datasets, such as those ranging from 

organizational parameters  to metagenomic reads, as has been demonstrated here. K-

means, as the seminal clustering algorithm, is a viable choice in many situations as well, 

although it does not produce the same relational output that is the staple of the SOM. 
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Both the SOM and the K-means are flexible in that they can accommodate extremely 

large datasets. The affinity propagation algorithm does have some constraining 

limitations on dataset sizes due to its use of an N x N matrix, which results in a O(n
2
) 

memory requirement. However, its ability to cluster effectively is well documented and 

shown here as well. With very large datasets, accommodations to the affinity propagation 

process must be made to allow a researcher to proceed with the algorithm [23]. In 

general, the three algorithms presented herein have different computational complexities 

as well as usage requirements.  

 This work has demonstrated the feasibility of using these techniques in various 

domains. The use of clustering as a decision-making tool has been rarely applied in 

library management specifically and in organizational management generally. Using 

machine-learning-driven quantitative analysis in conjunction with traditional operations 

planning (i.e., staff planning, asset allocation, budgeting) has enormous potential. As 

shown in Chapter 4, a cluster of high-scoring libraries (LPM) was found to have 

attributes other than those usually thought to have an impact on successful performance. 

 As has been demonstrated in previous research, clustering is well-suited to the 

burgeoning field of bioinformatics but its applicability to the subfield of metagenomics 

has had only limited exploration. Because data is so vast and diverse in the field of 

metagenomics, a researcher has no choice but to rely on the sorts of tools described in 

Chapter 5. Because metagenomics researchers are evaluating both the species present in 

samples and the biological mechanisms functioning within samples, they can greatly 

benefit from a robust clustering tool which directs them to a targeted subset of data for 

further investigation. The Thermoanaerobacter siderophilus bacterium found through a 
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BLAST similarity comparison with the consensus sequence of one of the cluster centers 

illustrates the effectiveness of the technique in quickly leading a researcher to focus his 

analysis.  

 Although various machine learning techniques have been used to facilitate stock 

performance analysis, no previous study has applied affinity propagation in this manner. 

In this study, the use of the label stock led to the rapid identification of other stocks that 

outperformed the NASDAQ Index. This not only represents a different approach but also 

shows that the technique can be used effectively in combination with company 

fundamentals. Similar to the strategy employed with the library study, the stock analysis 

employed in Chapter 6 shows the effectiveness of using a clustering tool in conjunction 

with traditional, domain-specific analysis.  

 This work not only demonstrates the applicability of various clustering techniques 

to different domains, but it also shows that the addition of various targeted labeling 

strategies, applied in a method that is a variation of semi-supervised learning, can 

augment the process of data analysis. Previous studies in the fields investigated here have 

not combined a calculated metric label before clustering. These results have shown this 

combination method to be successful in the rapid identification of critical values (e.g., 

high performers, representative organisms). With the library analysis, a label was applied 

to every data point and was used to determine clustered areas of successful libraries on 

the SOM. The library performance metric calculated for each institution provided a novel 

way of locating and interpreting the SOM results. Comparable performance metrics could 

be developed for several domains to enhance the knowledge discovery step of a 

clustering algorithm. With the metagenomics analysis, labeling was applied after the 
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clustering process to provide a researcher with a quick overview of possible reference 

genomes. With the financial analysis, a single known high-performer was included in the 

data collection to track the winning cluster (with "winning" defined as the prerequisite 

inclusion of the label stock and each member in the designated cluster out-performing the 

market). The diverse labeling strategies presented in this work can be used as a guide for 

future research by illustrating different ways in which labeling can be integrated into the 

clustering process to enhance knowledge discovery, a process which is dependent upon 

the goals of the project and the features of the data. 

 The applications described here do present some limitations. Each of these tools 

focuses on a subset of a larger collection of data as well as a limited number of available 

features. To truly embrace the full potential of these techniques, the applications would 

need to support all available data in an unfiltered manner. In addition, some of the 

correlations have not been analyzed in the full context of their domains. The data points 

for each application were selected because they frequently recurred in the literature as 

common points of analysis, but if trained to use these types of tools, domain experts 

could potentially incorporate more and varied data points. Finally, additional iterations 

employing these tools would be required to refine them and to increase their efficacy. 

  

7.2  Future Work 

 Each of the applications described herein provide future opportunities to advance 

research in the domain. The work on organizational decision-making described in 

Chapter 4 could be expanded by conducting further analysis on the features of the high-
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performing clusters or by identifying organizations that cluster within certain pre-

established parameters. Both of these techniques might help leaders to arrive at a more 

detailed understanding of their organizational effectiveness and to identify similarly 

categorized organizations that can be used for benchmarking purposes. Chapter 5 offers a 

complete pipeline for metagenomic analysis, but future work could incorporate the 

pipeline into a single tool to be used by an investigator. This metagenomic tool was used 

to help an investigator quickly determine possible candidates to be used as reference 

genomes, but it could also be developed to focus the analysis in a number of different 

directions, including classification of sequences and the discovery of functional 

pathways. The affinity propagation-based technique described in Chapter 6 could be 

extended by focusing on company fundamentals that contribute the greatest to 

determining stock over-performance. The tool itself could be used in a multi-iterative 

process to group peer stocks and then subsequently to filter out high performers. 

 The major contribution of this work is that it provides researchers with guidance 

about both the applicability of clustering algorithms to problems in different fields and 

the use of labeling strategies to enhance knowledge discovery in these domains. 

Essentially, this work can be conceptualized as a matrix of clustering algorithms and 

problem domains, with the type of clustering algorithm occupying one axis and the 

domains occupying the other. A future expansion of this matrix could be greatly 

beneficial in determining both the efficacy of clustering in additional domains and the 

particular algorithms most applicable to specific fields.  
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Appendix. XML File Formats 

 

MappedSequences.xml 

 

<?xml version="1.0" encoding="UTF-8"?> 

-<MappedData>  

<Data 

Squence="CATTCTTATATCTCTTGTTCCGCCTTCATAATCTTACACCTGGCCTTC

CTCCTATTACGAACCTTCCACCGCGTAATTTACCTCTTACAGAACTCAAACA">

GCXNWHH02GP572,18,22,TTTTGCTTTATATTTTTCTTTATCTTCAAATTTAAGT

TTTTCATTTTTTTCCACTAAATCTATTACCACTTCTAAGTAAATAACTTTAAGA

AGTTCGACT</Data>  

<Data 

Squence="GAACGTCATTAGGATACCGACTACGCAGAAGAGATGACAACTTCA

CCAACTACAATAAGATGCAGTCCACTATAGCTATGTTGGCGCAGGCGAACGC

ATT">GCXNWHH02HND40,25,9,AAAGAGAAAAGATTAAAAAGAAAATAGAAA

AAAAAAAAAACGATGAAGATAAAATGAAAATGGTAAACAATAAAAATATTG

AAAAAGATAAAAAAAAAAA</Data>  

<Data 

Squence="TTTACAGATATGCGCTCCTGCTCTATTCCCAAAGCAAGGAAGATTC

TGTATTATCTTGTTTTGATAGGTGCAATCTTTGGCTCGTCTGCAATTAAAGTGC

">GCXNWHH02HFAV5,27,29,TTTTAGAACCTTACTTTTTTCTTTGTTTTTACTAA

TGTAAAACATTTTTGAGCTATTTTTTTTCATCCTTTTATTAATTCTTGTCTTATC

CATACTATCA</Data>  

<Data 

Squence="CTCATTATTCAGACTTCTGGATCCTTGATATATGGAGCTATGTGTCC

ATTCTCTCTTATAGGTGTTGCAATCCAGTATTTCCGTTAGTTGGCACCGAGGC"

>GCXNWHH02FVWJK,7,11,TTTTTTATAAAGTCTTAAAAATTGTCTATGGTTTT
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CTTGGATTTTCACTATATTACCAAGAAAAGGAGTTACTAAAGTTTATCTTTGT

AAGAATTAATGA</Data> 

... 

 

 Labeled ConsensusSequences.xml 

 

<?xml version="1.0" encoding="UTF-8"?> 

-<ConsensusSequences>  

<Sequence> <Location>0,10</Location> <Count>28</Count> 

<Weights>TTTTACTTCATTTTCCAATTACTTAAAGCTTTATTATTCTTTTTTCTC

TATTCTTTCCATATTATTTTTTATATTCTCTACTTTTTTTTTGTATTTTTTT</Wei

ghts>  

<Consesus>TTTTGAATTCTTTTCCATATTGACTAAGAGCTCATTGTGTTTCGTCT

TCATAGTTCCCATTATCTAATCTATAACCTTTACTTTTTTTTCCTATTTTTTT</C

onsensus> </Sequence>  

<Sequence> <Location>24,7</Location> <Count>29</Count> 

<Weights>TTTTTGAGAAAAAGAAAAAGAAGATAAAAAAAAAAAAAAAGAAT

GAAGATAGAAGAAGAATTGAGAGGAGTAAGGGAAAGGGTTAAGAAAGTTAA

TAAAA</Weights> 

<Consesus>GATTTTGGAAAAAGATTGCGAAGAAAAGAAAGAAAAAGAAGAGT

AAATGTATATGATAAAAAGGTAAAGGTAGAGGAAAGGGTTAATAATGTACCT

ATTA</Consensus> <TopBlastResult>NC_018664.1 Clostridium 

acidurici</TopBlastResult> </Sequence>  

<Sequence> <Location>16,11</Location> <Count>29</Count> 

<Weights>TTTCTTTTTTGAACTTTACCTTTTGCTACTTTGGAACTTTTTAAAACA

CCTAGAGCATTAACAACAAACCCTTCTACTGTTTCTTTTAAATCTTCTACCT</

Weights> 

<Consesus>TTTCAGTTTTGACCATCATCCTTTACTATTTTCGTACTTTTCTCAAC

TCCAACAGCAATGAAAGCAAACATTTAAGCAGTTTCTTTTAAATCACCTTCTT

</Consensus> <TopBlastResult>BAFA01000036.1 Staphylococcus 

aureus</TopBlastResult>  
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</Sequence> -<Sequence> <Location>29,0</Location> <Count>30</Count> 

<Weights>TTTGGAAGAGATTTGAAAGAAGAAAGATAGAAAAAACTTAGGAAC

TAAAGAAATAAGAGCGCATAAGAGAAACAAGAAAAAAAAAAGAGATTTTTT

GGAA</Weights> 

<Consesus>TTTGGAAGGTATGTTAAAAAAGAAAAAAAGAAAATACGTAGGAA

TAACTATAATAAGACCTCATAGTATAAACCAGGGAAAAATAGGAATTTTTAT

GGAT</Consensus> <TopBlastResult>AKXG02000035.1 Leptospira interrogans 

serovar Grippotyphosa</TopBlastResult> </Sequence> 

... 
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