
University of Nevada, Reno

Framework for Large Data Processing under

Constrained Resources

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in Computer Science and Engineering

by

Rui Wu

Advisors: Dr. Sergiu M. Dascalu and Dr. Frederick C. Harris, Jr.

May, 2018

c© by Rui Wu 2018
All Rights Reserved

We recommend that the dissertation

prepared under our supervision by

RUI WU

Entitled

Framework for Large Data Processing under Constrained Resources

be accepted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

Sergiu Dascalu, Advisor

Frederick C Harris, Jr., Co-advisor

Lei Yang, Committee Member

Yantao Shen, Committee Member

Sage Hiibel, Graduate School Representative

David W. Zeh, Ph. D., Dean, Graduate School

May, 2018

THE GRADUATE SCHOOL

i

Abstract

Data processing is used to uncover, transform, and classify information inside

of data. Data-intensive research topics, such as environmental parameter prediction

and sensor data imputation, require abundant computing power. To process big data

efficiently, a server cluster is used for most cases. On one hand, a more powerful

server cluster should be better. On the other hand, the powerful cluster will require

a greater budget. How to balance this tradeoff is a challenge. Another challenge

is how to improve communication between different nodes in a server cluster. The

communication is usually through network and transportation speed is very slow.

In this thesis, we propose a data processing framework that can provide sta-

ble service with a limited budget. Stable service means the average waiting time and

queue length do not change massively. The key of this framework control strategy is to

import budget and local server computing power concepts into the M/M/1/1/∞/∞

queue model. To tackle the data communication challenge, data is compressed be-

fore transportation and decompressed when it arrives at its destination. An improved

compression algorithm is proposed for this data transportation workflow, which lever-

ages multiple GPUs and, to the best of our knowledge, is much faster than most other

algorithms. Three data processing services that rely on the proposed framework are

also presented in detail, to illustrate and prove the capabilities of our solution.

ii

Dedication

I dedicate this thesis to my family and my academic family members who have

supported me.

iii

Acknowledgments

I would like to thank my advisers, Dr. Sergiu Dascalu and Dr. Fred Harris,

and my committee members Dr. Lei Yang, Dr. Yangtao Shen, and Dr. Sage Hiibel

for their time and suggestions. Dr. Dascalu and Dr. Harris treated me as their own

family member. They assisted me financially and encouraged me to pursue my dream

to be a professor. I really appreciate that my advisors and Dr. Lei Yang supported

my academic job applications during the last year and I finally obtained my dream

job. I also would like to thank my collaborators Chao Chen, Jose Painumkal and

Moinul Hossain for the initial work on the system that led to the dissertation. Last

but not least, I would like to thank my family and also my academic family members,

such as Connor Scully-Allison, Alex Redei, Vinh Le, and Hannah Munõz, for their

support.

This material is based upon work supported by the National Science Foundation

under grant numbers IIA-1329469 and IIA-1301726.

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of the National

Science Foundation.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures vii

1 Introduction and Background 1

1.1 Overview . 1
1.2 Service Provisioning . 3

1.3 Elastic Server . 5
1.4 Dissertation Structure . 6

2 Related Work 7

3 Optimization of Elastic Servers 12

3.1 Overview . 12
3.2 Queue Master . 12

3.3 Server Master . 19
3.4 Servers . 21
3.5 Feedback Collector . 21

3.5.1 Survey . 21

3.5.2 Sentiment Analysis . 22

3.5.3 Other Possible Methods . 24
3.6 Rule Manager . 24

3.7 Data Transportation Optimization 25

3.7.1 Original GFC Algorithm . 26

3.7.2 Improved GFC Algorithm . 31

3.7.3 Experiments and Result Analysis 34

4 Services 41
4.1 Service 1: Large Datasets Visualization and Interaction 41

v

4.1.1 Overview . 41
4.1.2 Motivation . 41
4.1.3 Proposed Visualization and Interaction Workflow 43

4.1.4 Prototype Service . 47

4.1.5 Results . 49
4.1.6 Conclusion . 54

4.2 Service 2: Model Accuracy Enhancement 54

4.2.1 Overview . 54
4.2.2 Introduction . 55
4.2.3 Modeling Error Learning Based Post-processor Framework . . 60

4.2.4 Results and Analysis . 75

4.2.5 Discussion . 85
4.2.6 Conclusion . 86

4.3 Service 3: Nitrate Prediction Model 86
4.3.1 Overview . 86
4.3.2 Introduction . 87
4.3.3 Prior Work . 88
4.3.4 Methodology . 89

4.3.5 Results and Analysis . 93

4.3.6 Conclusion . 99

5 Conclusions and Future Work 100
5.1 Conclusions . 100
5.2 Future Work . 101

Bibliography 103

vi

List of Tables

3.1 Num plasma Throughputs . 37

3.2 Maximum Throughput . 38

4.1 Calibrated PRMS Model Results Comparisons. 82

4.2 Uncalibrated PRMS Model Results Comparisons. 82

4.3 Calibrated HEC-HMS Model Results Comparisons. 84

4.4 Uncalibrated HEC-HMS Model Results Comparisons. 85

4.5 Results of Different Techniques . 94

4.6 Comparison of Different Selection Strategies 94

4.7 Results of T-TEST . 96
4.8 Means AND Variance . 96
4.9 Parameter Estimates of Big Darby Creek Watershed USGS Dataset . 98

vii

List of Figures

3.1 Architecture design. 13

3.2 Comparison of waiting time of jobs. Waiting time does not change
dramatically with the proposed framework. 16

3.3 Comparison of number of jobs waiting in the queue. Queue length
has consistently low throughout the budget period with the proposed
framework. 17

3.4 Server master. 20
3.5 Data transportation optimization. 25

3.6 GPU structure. 27
3.7 Overview of GFC algorithm warp, block, and chunk assignment. Each

warp is assigned 32 doubles because there are usually 32 threads in
each warp. 29

3.8 GFC compression algorithm. The original file is shrunk by removing
the leading zeros. 30

3.9 If-else statement example. 31

3.10 If else-removal example, less lines but more complex. 32

3.11 If-else-removal in GFC decompress. 33

3.12 If-else-removal time delta. 34
3.13 Multi-GPUs method. 35
3.14 Clzll throughput delta. Most cases on the line charts are above zero.

This means Clzll function can improve the performances. 36

3.15 Multi-GPUs throughput of num plasma. 39

3.16 Speedup of improved GFC algorithm. The speedups of most cases are
above 4 for all the datasets. 40

4.1 Traditional workflow. 44
4.2 Image combination method. 45

4.3 New workflow. 45
4.4 CSV file visualization example. 47

4.5 CSV file visualization example. 48

4.6 Visualization result images created by eight CPU cores. 49

4.7 Users choose an area on the line chart. 50
4.8 Zoomed in Line Chart. 50
4.9 Traditional vs new workflow data visualization time consumption. . . 52

4.10 New workflow time consumptions. 53

viii

4.11 Visualize 560640 records with different number processes. 53

4.12 A traditional calibrated prms model streamflow prediction errors his-
togram (example of the Lehman Creek). 62

4.13 Comparisons between streamflow observations and prediction errors
from a traditional calibrated PRMS model (example of the Lehman
Creek). 62

4.14 Correlations between PRMS inputs (i.e. precip, tmax, and tmin) and
streamflow prediction Errors, during May, June, July, and August
(2011): The diagonal graphs show the variable distributions, the lower
side graphs show the scatter plots between the corresponding row and
column variables, and the upper side values are the correlation values
between the corresponding row and column variables. (precip: precip-
itation; tmax : maximum temperature; tmin: minimum temperature);
errors : streamflow prediction errors. 63

4.15 The diagram of modeling error learning based model post-processor
framework. 65

4.16 Modeling error learning enhanced hydrologic model. 67

4.17 Case study 1 training data autocorrelation values vs lag days: one-year
and two-year can be the data pattern lengths, because these are the
distances between the start point and peaks in the training data. . . . 70

4.18 Case study 1 training data DS vs window size. One-year DS is slightly
less than two-year DS. 72

4.19 Case study 1 testing data RMSE vs window size: the one-year window
size is better than other window size based on rmse value. 73

4.20 Use 10 as threshold: there is a plateau around 2005 june generated.
CFS is short for cubic feet per second 76

4.21 PRMS hydrologic model study area. 79

4.22 Case study 1 final PRMS model improvements. CFS is short for Cubic
Feet per Second . 81

4.23 Case study 2 HEC-HMS PRMS model improvements. CFS is short for
Cubic Feet per Second . 84

4.24 Comparison of the best (year 1996) and worst (year 1997) results. . . 95

4.25 Comparison of the results using original and filled data. 97

4.26 Comparison of the results using original and filled data. 98

1

Chapter 1

Introduction and Background

1.1 Overview

Third party companies, such as Amazon and Microsoft, offer a stable cloud computing

service (virtual machine usage service) based on a pay-as-you-go model [78]. This

makes setting up large scale servers much easier than before. For example, Netflix

leverages Amazon Web Services (AWS) to offer quality service for global users by

renting virtual machines [109]. By using AWS virtual machine rental services, servers

do not require technical hardware maintenance, such as power management and device

management.

However, a company usually rents more resources (virtual machines or storage)

from the cloud computing service companies than actual needed to guarantee the

high-quality services. It is very hard to set up accurate rules to control server sizes

with virtual machine usage service companies. There are two commonly-used control

strategies for this problem:

• Event trigger: if something happens, server sizes will be changed. For example,

when CPU usage is more than 70%, more servers will be added to the cluster.

When network usage is less than 30%, some servers will be removed from the

cluster.

• Schedule trigger: the number of servers are decided by time. For example, based

on log files, there are more users between 10:00 am and 4:00 pm. Therefore,

2

more machines are rented during this time period.

These two control strategies, available from some platforms, such as Amazon Web

Service (AWS) and Azure, are called “auto-scale”. However, these two strategies are

not perfect as explained by our previous research introduced in [95]. The main issues

are:

• When the servers are auto-scaled, it is hard to control the budget. The service

may scale up the servers and go over the budget.

• The auto-scale service can shut down some servers when the CPU utilization or

network utilization are below a threshold. However, these “events” sometimes

cannot truly represent that extra servers are not needed. It is possible that they

are just busy with some low-CPU or low-network jobs.

Thus, the best way should be for the servers to control themselves because no

one knows better than the servers about what is going on inside of the machines.

Therefore, the method proposed in this paper shuts down the servers when they

finish their assigned jobs.

In this dissertation, we propose a framework to change server size based on budget

and user feedback. The framework has five components that provision resources based

on rules set up by system administrators. The main advantages of this framework

are:

• It can provide stable services. The average waiting time and queue length do

not change massively.

• It can control the budget within the plan.

• It is able to show users’ opinions about the current system and suggest to system

administrators how to change rules to increase user satisfaction.

To prove the framework concept, three services are introduced using the frame-

work: Service 1 large datasets visualization and interaction (Chapter 4.1), Service 2

3

model accuracy improvement (Chapter 4.2), and Service 3 nitrate prediction (Chap-

ter 4.3). Service 1 visualizes large datasets in the backend in parallel and presents

visualization results in the frontend. This is different from traditional workflows,

which transfer and visualize data in the frontend. Our proposed method reduces net-

work load and is stable. Service 2 can improve a hydrologic model accuracy based on

the correlation between the model inputs and errors. It also utilizes the “window”

strategy to process non-stationary data. Service 3 can predict nitrate in water with

a prediction model developed by us. The model is tuned with genetic algorithms and

is more accurate compared to other prevelant models.

The services and the framework are integrated as Figure 3.1 shows. It is simple

to extend the framework with other services. A system administrator only needs to

finish some configuration files and prepare a service Docker image.

The rest of this section introduces: service provisioning definitions; what are

elastic servers; what has been done about the elastic servers; and some problems of

current prevalent methodologies.

1.2 Service Provisioning

In our opinion, the size of a server cluster should be updated based on needs. If there

are more nodes rented than the actual needs, extra money will be paid to rent or

maintain the servers. If there are fewer machines than the actual needs, the users

may feel latency or they need to wait in a queue to use the servers.

Many companies, such as Netflix [109] and Expedia [110], choose to use “cloud

provisioning services” of third party companies, which are defined as: Cloud infras-

tructures (for example Microsoft Azure and Amazon Web service) that expose their

capabilities as a network of virtualized IT resources [16]. Cloud provisioning is very

prevalent because the advantages are clear and attractive:

1. Security: Most companies have different security models for different purposes.

For example, Azure [6] does very well as “Infrastructure as a Service. The

4

model does not only protect the platform, it also secures the end user. The

multiple-level security models are very necessary for sensitive projects, such as

financial websites and user information databases.

2. Easy to Scale: Amazon Web Service (AWS) and Azure offer intuitive graphical

user interfaces (GUIs) to scale servers up and down. It is very easy to learn

and understand. The user may take around one hour to read tutorials or watch

Youtube videos to do basic server scale operations.

3. Low Maintenance: Because all the rented virtual machines are set up in the

third-party company physical machines, the maintainer does not need to worry

about the machine power supply, machine security (someone may steal the

machine), or machine damage problems. These are taken care of by these third

party companies.

However, nothing is perfect. There are also some disadvantages with cloud pro-

visioning:

1. Accessibility: When people rent servers, it is hard to control the rented server

physically. If there is something wrong, in most cases the user can only shut

down the machine and spin up a new one.

2. Privacy: It is not possible to keep absolute private information if you rent

servers from a company. The company staff can access the servers if they have

high-level authority.

3. Downtime: Azure provides a 99.95% service level agreement (SLA), which

means there are only 4.38 downtime hours of the whole year [6]. This is better

than most other companies. However, it is still not perfect. Downtime issue

can causes server failures.

We believe it is worthy to use third party companies’ cloud provisioning service

and local machines for storing some sensitive information or if we want to access the

5

physical machine. Therefore, the framework proposed in this dissertation uses both

local and rented servers (hybrid servers). The hybrid servers can change size based

on the user needs and job execution events.

1.3 Elastic Server

Before we discuss further details about how to set up the hybrid servers, it is impor-

tant to understand the definition of elasticity servers. There are many definitions of

elasticity. Here are three of them:

1. Capabilities can be elastically provisioned and released, in some cases, auto-

matically to scale rapidly, outward and inward, commensurate with demand

[84].

2. Provider can dynamically assign the amount of memory, CPU, and disk space to

a specific job and therefore, their performance and capabilities can vary based

on the set up [1].

3. Elasticity is the capacity at runtime by adding and removing resources without

service interruption to handle the workload variation [97].

There are some necessary characteristics based on these three definitions. First,

the server cluster should be able to change its own size based on demand. Second, the

size changing should be based on some events, such as hardware use. Third, during

the size changing phase, the service offered by the server should not be stopped. In

this dissertation, we propose ideas about how to build an elastic server based on these

ideas.

There are two basic ways to scale up or down servers:

1. “Scale up” is also called vertical scaling. The basic idea is to add more resources

into the server. For example, adding more memory and buying a more capable

CPU belong to this category. The user can increase the service tier to scale up

the service.

6

2. ‘Scale down” is also called horizontal scaling. The basic idea is to increase the

number machines in the database system. Then each individual machine needs

to take care of less data.

Most third party companies support both methods and have a different price

for different control strategies. In this dissertation, we only focus on how to use

horizontal scaling to fulfill the actual demand from users. Specifically, we propose an

innovative server-usage optimization approach to facilitate on-demand provisioning

of computing resources to ensure reduced waiting time for jobs consistently over a

predefined period of time within the allocated budget constraints.

1.4 Dissertation Structure

This thesis, in its remaining chapters, is organized as follows: Chapter 2 presents an

overview of the related work; Chapter 3 describes in detail our proposed framework

for optimizing elastic servers; Chapter 4 provides comprehensive descriptions of three

data processing services that rely on our proposed solution; and Chapter 5 contains

our conclusions and outlines possible future works.

7

Chapter 2

Related Work

There are numerous studies conducted in the field of dynamic provisioning of com-

puting resources in a cloud environment. Some of the successful works are briefly

discussed in this section.

Rodrigo et al. [16] proposed an adaptive provisioning of computing resources

based on workload information and analytical performance to offer end users the

guaranteed Quality of Services (QoS). The QoS targets were application specific and

were based on requests, service time, the rejection rate of requests and utilization of

available resources. The proposed model could estimate the number of VM instances

to be allocated for each application by analyzing the observed system performance and

the predicted load information. The efficiency of the proposed provisioning approach

was tested using application-specific workloads, and the model could dynamically

provision resources to meet the predefined QoS targets by analyzing the variations in

the workload intensity. However, the approach offers no control over the expenses as it

does not consider budget constraints and update control strategies while provisioning

resources to ensure guaranteed QoS.

Qian Zhu et al. [140] proposed a dynamic resource provisioning algorithm based

on feedback control and budget constraints to allocate computational resources. The

goal of the study was to maximize the application QoS by meeting both time and

budget constraints. The CPU cycles and memory were dynamically provisioned be-

tween multiple virtual machines inside a cluster to meet the application QoS targets.

The proposed approach worked better than the static scheduling methods and con-

8

serving strategies on resource provisioning. The flaw with this approach was that

it requires the reconfiguration of computing resources within the machine instances,

which is not recommended in the current cloud environment where resources could be

efficiently managed by the addition and removal of virtual machines from the cloud

host providers. Moreover, dynamic allocation of resources based on CPU cycle and

memory usage could become inaccurate more often, as the parameters cannot truly

indicate the need for more resources. There are chances that the virtual machine is

just busy with some low-CPU or low network jobs.

Similar to “dynamic provisioning”, the concept of elastic servers has been intro-

duced recently. Some third-party web service companies such as Amazon provide this

service. Amazon EC2 (Elastic Compute Cloud), is one of the most commonly used

elastic services, updated in December 2016 to support auto-scaling [108]. Previously,

the rented cluster was removed on termination. This means that when a machine is

removed in the cluster, everything will be removed and the project manager will need

to manually scale up and scale down the number of servers. Now, Amazon EC2 Auto

Scaling enables the servers to scale up and scale down automatically. There are two

main methods to achieve this:

• Based on events. For example, if the CPU utilization passes a certain threshold,

Amazon will spin up EC2 instances to lower the CPU utilization and when the

CPU utilization comes down, the EC2 instances will be shut down.

• Based on schedule. For example, when normally most users use a website during

the day and consequently the website manager sets a rule based on time: from

7:00 am to 7:00 pm more servers should be rented.

The Amazon EC2 Auto Scaling is also very easy to use. A project manager

needs to group instances into auto scale groups and set operation rules. However,

this service is not perfect, especially when auto-scaling servers based only on events

or schedules. The main issues are: (1) When the servers are auto-scaled, it is also

hard to control the budget. The service may scale up the servers and go over the

9

budget; and (2) The auto-scale service can shut down some servers when the CPU

utilization or network utilization are below a threshold. However, these events cannot

truly represent that extra servers are not needed (e.g. some low-CPU or low-network

jobs). Besides these two issues, it is very hard to answer the following two questions

using current web services based our knowledge:

• If the budget for one hour is $100, the workload can be estimated based on the

history data, and there are five local host machines. How powerful the server we

can build? Amazon does offer some brief survey about how much is the budget

and suggestion the user some plans (CPU and memory types). However, this

cannot offer an approximate idea about the job waiting time and the queue

length.

• How to adjust the server size based on the user opinions? It is a hard question

because the user may not even know their actual demands sometimes. Even

though the demand is clear, it is hard to decide how to set up rules based on the

feedback. Thus, one appropriate way is that the servers to control themselves

based on the job completion events. Based on this idea, the framework proposed

in this dissertation shuts down servers based upon an evaluation performed when

each job is completed.

To deploy services in different nodes, “containerization” techniques are used in

this dissertation. “Containerization” descirbes operating-system-level virtualization

and the node provided by Docker is called a Docker container [85]. Docker is one

of the most prevalent containerization programs [25]. The main reasons why Docker

is very popular are: 1)it is lightweight. Docker containers, running in the same

host, share the same operating system kernel. The containers use less memory and

boot faster than traditional virtual machines. Therefore, Docker containers are more

effective; 2) Docker containers are designed based on open standards. Docker supports

most operating systems and each container is similar to a single machine. Therefore,

10

it is easy to maintain security of each container by adding a layer of application

protections [25].

Because of the huge workload, a project manager always uses more than one

nodes (i.e. Docker containers) to implement a service in a server cluster. To organize

these nodes together, an orchestration tool is needed. Three of the most prevalent

orchestration tools are Docker Swarm, Kubernetes, and Mesos. They all use Docker

containers instead of virtual machines or real machines and they can scale up/down

applications and manage docker containers. Here are detailed introductions between

these three popular orchestration tools:

Docker Swarm: This is provided by the Docker company. Because it uses

standard Docker APIs, it is compatible with most docker tools. Docker Swarm per-

formance won’t be affected by a large number of servers. The Docker company has

done experiments to prove the concept with 50,000 nodes [26]. It is very easy to

mount volumes on Docker containers and customize a Docker network. If one of the

node fails in the Docker Swarm, the orchestration tool can start a new container to

replace the old one. Docker Swarm has a default scheduler and is compatible with

other plugins such as Kubernetes or Mesos [26]. However, Docker Swarm is not per-

fect. For example, the scaling function is not automated. The users can specify the

number of containers in different services. However, if they want to define different

rules about scaling, they need to write their own code.

Kubernetes: This was started by Google and now is supported by Docker and

other companies, such as Microsoft and IBM. Kubernetes does support automatic

scaling. The users can specify resource (such as CPU and memory usage) limits.

The tool can automatically spin up containers based on the resources requirements

and without affecting other containers performance. It is very easy to do horizontal

scaling with Kubernetes. The users can use a UI to change the number of Pods

(Docker container groups). If something goes wrong, the tool can rollback containers

to a previous version. Also, the users can keep private information when they deploy

and update application configurations without rebuilding application images [66].

11

Apache Mesos: This was developed at University of California, Berkeley. It

supports Docker containers and also other prevalent big data cluster frameworks,

such as Apache Spark and Apache Hadoop. This orchestration tool uses a different

method to connect individual containers compared to most other popular tools. It

does not use a Docker overlay network or some third-party networking tools such

as vSwitch [86]. Apache Mesos uses ZooKeeper to handle different containers’ IPs,

ensure container availabilities, and manage failures [141].

We implemented our own orchestration tool because we would like to control the

server size based on job completion events and none of the existing tools or platforms

have this feature based on our knowledge.

Section 3 introduces a framework to improve the communication between dif-

ferent nodes. The key of the framework is to use a fast and data-lossless com-

pression/decompression algorithm. There are many mature and efficient CPU com-

pression algorithms. Some of them are designed for image compressions, such as

JPEG [125], some of them are designed for audio and video compression, such as

MPEG [69], and some of them are for general use, such as LZ4 [22]. Some scientists

tried to take advantage of GPU to increase the speed of CPU compression algo-

rithms. For example, paper [21] tried to improve the Huffman compression algorithm

using a GPU. GPU is short for Graphics Processing Unit. It is originally designed

for computer graphics and image processing, and and have become very popular in

high-performance computing today.

Most of existing compression and decompression algorithms are not suitable for

the data transportation framework introduced in Section 3.7 because they are not

fast enough. For example, LZ4 is around 14.56 gigabits/s [22], which is much slower

than wide-band network speed. In other words, the algorithm will slow down the

throughput of data transportation.

12

Chapter 3

Optimization of Elastic Servers

3.1 Overview

This chapter introduces how we design our elastic servers and manage resources for

each service. The main challenge is how to provide a stable service with a limited

budget. Parts of our previous work has been introduced in paper [52].

Figure 3.1 shows an overview of the whole framework. All the services share the

same Queue Manager, Rule Manager, and Feedback Collector. Each service has their

own Docker container cluster and each container works independently.

3.2 Queue Master

The framework places job requests in different queues. All the user requests are han-

dled by a Docker container named “Queue Master” (see Figure 3.1). This container

classifies the requests into different groups based on the required services, Then dif-

ferent requests go into different queues. For example, if a user wants to execute a

PRMS model, the request belongs PRMS service. Therefore, it enters the PRMS

queue.

Each queue uses a modified queuing method. The original M/M/1/1/∞/∞

can estimate job waiting time by using Equation 3.1 and queue length by using

Equation 3.2. This queuing model represents the following situation, with a Poisson

distribution, where jobs arrive at a rate of λ/hour and the server processes the jobs

at a rate of µ/hour (typically, this is considered exponential). There is one server;

13

Figure 3.1: Architecture design.

the queue length can be infinite, and the population (maximum number of the jobs

at the same time) can be infinite. This model also assumes that λ (job arrivals rate)

is less than µ (server processes rate).

T =
λ

µ2 − λ ∗ µ
(3.1)

L =
λ2

µ2 − λ ∗ µ
(3.2)

The M/M/1/1/∞/∞ queuing model was modified and applied in our prototype

system. The idea is to develop a formula to estimate the average job waiting time

and queue length in a hybrid server environment using the budget amount, budget

period, cost of rented instances, and the average time for job execution. The modified

queuing model processes jobs with owned servers and rented servers. For the given

budget, B, and average job execution time with local servers, Town, the owned servers

can process a maximum of (N0 ∗ Tb)/Town jobs during the budget period Tb, where

No denotes the number of owned servers.

14

If a rented instance costs $P for an hour of usage, then B/(P ∗Trent) is the total

number of jobs that can be processed with rented servers for the given budget amount

B.

To achieve a stable service, the usage of rented servers are distributed uniformly

during the budget time period Tb, which means the project manager should rent a

server at every time interval, Tint = (Tb ∗ Trent ∗ P)/B, if the owned servers are busy.

At every Tint interval, if the owned servers are available (which means the job queue

is empty), then the system needs not spin up a rental server for the incoming job.

The system will also increment a counter variable, so that later, if a job comes in and

the owned servers are busy, the system will rent a server immediately. This way, the

proposed approach ensures that rented workers were utilized judiciously throughout

the entire budget period. During the budget period, the hybrid server system could

process a maximum of (N0 ∗ Tb)/Town + B/(P ∗ Trent) jobs. The modified model is

shown in Equation 3.3 and Equation 3.4. Owned machines do not consume budget

in this model.

L =
λ2

(N0

Town
+ B

P+Trent
)2 − λ ∗ (N0

Town
+ B

P+Trent
)

(3.3)

T =
λ

(N0

Town
+ B

P+Trent
)2 − λ ∗ (N0

Town
+ B

P+Trent
)

(3.4)

Results

The experimental study was conducted on four machines, each with Intel i7 CPU,

16 GB DDR4 RAM, and 256 GB SSD. Multiple threads were used to handle the

continuous monitoring of queue length and job status, the creation of rented workers,

and the simulation of the Poisson job arrival stream. The proposed approach was

evaluated by simulating a Poisson job arrival stream on the job queue. Each job

constitutes one PRMS model run with climate data from NRDC [51]. We have

conducted experiments with different models and input data files, but because of the

15

space limitation only one of them is shown. To execute one job, the worker takes

an average of 34 seconds (this simulates one-month of climate modeling). The initial

execution time is obtained from experience and it is replaced with the average job

execution time after the server starts working. Since the experiment was conducted

with physical machines instead of machine instances from cloud providers, the cost

of the host machine and the budget amount were simulated. For the experimental

study, the system was allocated with a budget amount of $1.63 for a budget period

of 20 minutes and the cost of the rented instance was considered to be $4.256/hour

which is the current cost for a high end computing node on AWS. With the provided

budget and price of instances, a maximum of 40 models could be processed with

rented workers and the time interval Tint was estimated to be 30 seconds. i.e. during

the budget period of 20 minutes, the system would use a rented worker to execute

the job every 30 seconds, provided the owned worker is busy at that time.

Figure 3.2 shows the comparison of the waiting time between the FIFO approach

and the proposed elastic server approach. In the proposed hybrid elastic-server ap-

proach, a rented container will be used only at regular time intervals. Whereas in

the FIFO approach a new rented worker container is created and used to execute the

job whenever the owned worker is busy. The drawback of the FIFO approach was

that the rented workers may not last until the end of the budget period. Therefore,

once the rented models are over, the incoming jobs have to wait longer in the queue

causing a drastic increase in waiting time. By comparison, in the proposed approach,

the rented jobs were used judiciously and hence the waiting time was maintained at

a controlled level throughout the budget period.

Figure 3.3 shows the comparison of the queue length between the FIFO approach

and the proposed approach. In the FIFO approach, all the rented workers were

finished around the 13th minute, which resulted in a steep increase of the queue

length. In contrast, in the proposed approach the queue length was consistently low

throughout the budget period.

The waiting time was calculated as the time taken by the worker to start the

16

Figure 3.2: Comparison of waiting time of jobs. Waiting time does not change dra-
matically with the proposed framework.

17

Figure 3.3: Comparison of number of jobs waiting in the queue. Queue length has
consistently low throughout the budget period with the proposed framework.

18

job once the job is added to the queue. As seen in Figure 3.2, the waiting time of

the jobs showed several fluctuations during the monitoring period, some of which

impacting both the FIFO and the proposed methods. In the experiment, the rented

worker containers were created from scratch using the base image. Depending on

the resource utilization on the host machine, the container creation consumed several

milliseconds to seconds. After the creation of a worker container, the worker took a

few more seconds to establish a connection with the configured job queue and pick

a job from it. We also see fluctuations in the proposed approach since the rented

workers were created at regular time intervals Tint. This would also explain observed

variations in the waiting time.

In the experiment, the FIFO approach ran out of rented workers in 747.1 seconds.

During this period, it finished 54 jobs, with 14 of them being completed by the owned

workers. Therefore, the utilization rate of the owned workers was 25.93%. In the same

time period (747.1 seconds), the proposed system finished 40 jobs, 21 of them being

completed by the owned workers. Thus, the utilization rate of the owned workers

was 52.5%. It is evident from the results that the proposed method had a higher

utilization rate of owned workers and it saved more rented workers for later use.

Based on Equation 3.3 and Equation 3.4, the expected queue length (number of

job arrivals in the queue) was 1.46 and the real queue length was 0.622. Theoretically,

each job needed to wait 0.39 minute and, in fact, each job waited 0.34 minute on

average. This shows that the proposed method worked well in this job queue case.

The time slicing between the different threads could also be a reason for fluctuations

in the queue length and observed waiting time.

The time consumption for starting and stopping a rented instance varies with the

work load and the cloud hosting service. Normally, the starting time of an instance

ranges between 30 seconds to 6 minutes. Since our goal was to prove the applicability

of the proposed approach, the experiment was conducted with comparatively shorter

jobs and hence Tint value is also relatively small (less than a minute). However in

real world scenarios, while dealing with high time consuming jobs, the estimated Tint

19

value would be sufficiently large enough to accommodate the varying VM start time.

3.3 Server Master

The server master Docker container is used to inspect all the host machines’ health

information. For example, the CPU, memory, and network usage percentages. It

can automatically rent another host machine from a third party company, such as

Amazon Web Service. The rented host machine event can be triggered based on the

rules stored in Rule Manager container.

In each host machine, there are worker containers. These worker containers

are arranged into different groups based on the service they provide. For example,

Container 1, 4, 7, and 10 are in the same group as shown in Figure 3.4 because they

provide the same service. All the workers in this group are created with the same

Docker image and they know how to finish their jobs based on configuration files.

For example, the users can run PRMS models in the prototype system. They need

to upload three input files to start a model run. The workers in PRMS service group

obtain the input files from the database based on the job ID and store the model

output files into the database after the job is finished.

To connect different Docker containers in different host machines, we setup a

key-value store node. If Docker containers are in the same host machine, they can

ping each other directly without any further operations. However, a Docker container

cannot ping another if they are in different machines. The key-value store node stores

different host machine IPs, networks, and endpoints. After the node is setup, different

host machines can view each other. Then, it is easy to create a Docker overlay network

across different host machines.

For each group, there should be a task manager node and a feedback collector.

The task manager node is used to create worker containers in different host machines

and delete the worker container after the job is finished. We did not use any orches-

tration tool, such as Docker Swarm and Apache Mesos, because it is not possible to

stop a container in a certain machine with these tools based on our knowledge. These

20

Figure 3.4: Server master.

tools can change the server size based on some events, such as CPU and memory

usage percentages. However, this occurs at a high level (server as a whole). Based

on our experiences, only the worker container itself knows the job status. It is not

reasonable to shrink the server size based on CPU usage or time. Sometimes, the

CPU usage is low and the container is busy. For example, file transportation jobs

mainly use I/O bandwidth instead of CPU or memory. Accordingly, we can stop

the container only when the container finishes the last line of the script. Therefore,

each worker in our prototype system sends a termination request to the task manager

after it finishes the job and then the task manager will stop the container. For a large

cluster, it is possible that many containers report termination events to the server

master container at the same time. It can cause problems if the network bandwidth

is not big enough. There are two solutions for this problem:

• More than one server master containers are set up in the system to process the

reports. Each master container is only in charge a group of containers and this

method reduces the burden.

• Jittering APIs can be applied. Each container does not send the termination

21

information to the server master through the API directly after the container

finish the job; the worker container waits a random time (e.g. 100 ms) and then

send the information. This avoids network congestion.

The feedback collector collects the user opinions and can affect the rules stored

in the rule manager. More details are introduced in Section 3.5 and Section 3.6.

3.4 Servers

Servers are physical machines in the system. These machines are set into different

groups based on the needs of different services. For example, there are more PRMS

model run requests than ISnowbal model run requests. Therefore, more server nodes

are assigned in PRMS service group than in ISnowbal service group. The server

master runs Docker configure files to download Docker images and setup services in

different nodes. The server master may rent more nodes automatically based on the

rules stored in the rule manager.

3.5 Feedback Collector

User feedback is very important for the project manager to set up reasonable rules.

There are different methods to collect the user feedback. In the prototype system

proposed in this dissertation, two methods are used to collect user’s opinions: survey

and comments analysis. Based on these two rules, the system can change the server

size automatically or offer suggestions to the project manager.

3.5.1 Survey

The feedback collector sends a survey invitation to the user after he/she uses the ser-

vice. Each question has a different weight and the options of each questions are worth

different scores. A project manager can set up a threshold for each question. If the

score passes the threshold, it means the project manager needs to do something. Here

is an example: a project manager wants to know a user’s opinion about the service’s

22

performance. Therefore, the project manager puts two questions in the survey: 1)

What’s your opinion about the waiting time? (question weight 0.8) Options: A. Too

long (4 points) B. Long (3 point) C. Not Sure (2 point) D. Short (1 point) E. Very

short (0 points) 2) Do you want to pay more to have a faster service? (question weight

1.2) Options: A. Strongly Agree (4 points) B. Agree (3 point) C. Not Sure (2 point)

D. Disagree (1 point) E. Strongly disagree (0 points). If a user chooses A for the first

question and D for the second question, then it contributes 0.8*4+1.2*(1)=4.4 to

the global feedback score. If the global feedback score passes the threshold it means

the users believe the server is slow and they want to pay more for a faster service.

Therefore, the project manager may need to inform the IT manager to rent more

computational power from cloud computing service companies.

Each service has a feedback collector. The feedback collector contains a survey

predefined by the project manager. Based on the feedback score, the feedback col-

lector can affect rules stored in the rule manager. More details are introduced in

Section 3.6.

3.5.2 Sentiment Analysis

The basic idea of comment analysis is to teach a machine to classify user feedback into

different categories based on the words in the comments. For example, the categories

can be: very bad, bad, intermediate, good, very good. Then, the feedback collector

can change the server size based on the size of different categories. To achieve this

goal, there are two steps: clean the data, and perform the machine learning.

Clean Data

It is essential to clean the data before training the model. This is because noise

data can mislead or confuse computers. Assume the user feedback is The server

performs terribly. I can’t use this. It’s too slow. Here are some steps used

in this phase:

• Remove punctuation (period, comma etc.). The prototype system extracts the

23

words by specifying the separator (usually it is space). If the sentences have

punctuation, these will be mixed in words with this strategy. For example, if

the system extract words from “I love the service.”, the words array will be [”I”,

”love”, ”the”, ”service.”]. The last word is ”service.”, which is definitely not

what we want. Then the feedback turns into the server performs terribly

i can’t use this it’s too slow .

• Lower case all the words. Our prototype system is case sensitive. Lower cases

will not affect the meaning of the sentences for most cases and the machine will

not treat the same word differently for the case problem. Then the feedback

turns into the server performs terribly. i can’t use this. it’s too slow..

• Replace synonyms in the sentences. In fact, machine learning techniques can

detect words with similar meanings. However, this requires enough data to train

the model. This step reduces the burden of the machine learning step. In our

prototype system, we have built a small synonym database and we plan to use

a third party synonyms through RESTful APIs in the future. After this step

the feedback turns into the server performs very bad i not use this it’s

too slow .

• Remove unnecessary words. The main purpose of this step is to keep sentimental

and negative (e.g. not, none, nothing) words. The main purpose of comment

analysis is to analyze the user opinions. Therefore, only the sentimental and

negative words are meaningful. We also have an unnecessary word database in

the prototype system. After this step the feedback turns into performs very

bad not use too slow .

Machine Learning

After the feedback is cleaned, we use different machine learning techniques to create

models and choose the best performed one for the future use.

Here is an example of how the system evaluates a machine learning method. One

24

of the machine learning techniques applied in our prototype system is the decision

tree. The system randomly separates the history data into a training set (70%) and

a testing set (30%). It creates the decision tree using the training set and tests the

performance with the test data. The system repeats the process 30 times and gets

the average error rates to evaluate the performance.

3.5.3 Other Possible Methods

In our opinion, users’ feedback can also be implied by their actions. For example, if

the user quits the queue before the request is handled by the server, it may be because

the user is impatient and unhappy. If an event like this occurs, a brief question can

be provided to the user to ask why he/she quits the queue. For example, if the user

leaves the queue before the services are rendered, in the survey, a question can be

asked if the user misclicks or was unhappy with the waiting time.

To simplify the survey and obtain user feedback in an effective way, we want to

use check boxes (each one has a keyword, such as bad, good, slow) to collect user

feedback. The users need to choose the best words to describe their opinions.

Also different users may have different opinions about the same thing (such as

”bad service”). For example, if a job is finished in 10 seconds, for some users it is

fast. However, others may believe this is very slow. To differentiate between user

expectations, in the future we could create a profile for each users and leverage the

profile to make a more informed decision from each user’s feedback.

3.6 Rule Manager

Queue master and server master follow rules stored in the rule manager. ”Rule”

means the constraints to control a system. For example, a possible rule can be ”at

most, 3 nodes can be rented per hour”. The rules are applied to these two masters

through RESTful APIs. When the project managers want to add a new rule, they

may also need to modify RESTful APIs in the queue master and server master. This

is because the RESTful APIs may not include the functions required in the rules. For

25

Figure 3.5: Data transportation optimization.

example, there is a rule requiring average job waiting time in Service 1 queue should

be 10 seconds. However, the queue master does not have a RESTful API to change

the average job waiting time. Then, the project managers should work on the API

first.

3.7 Data Transportation Optimization

The communication between two workers from two different servers can be very time

consuming because the two workers are connected via network for most cases. For

example, container 1 and container 4 are connected through overlay network in Fig-

ure 3.4. This can be even worse if the two containers process a data intensive project.

To solve this challenge, we used a framework shown in Figure 3.5. Before the data is

tranported to container 2 from container 1, the data is compressed. When the data

arrives container 2, it is decompressed. This idea is inspired by the work of Dr. Holub

and his colleagues. In their paper [50], a method is provided to transmit HD, 2K,

and 4K videos with a low-latency network.

The key idea is to choose a fast and data lossless compression and decompression

algorithm. An improved version of GFC algorithm is used in the framework and

here are some reasons that we prefer GFC over of other algorithms. First, original

GFC is one of the fastest existing lossless compression algorithms. The algorithm is

26

75 gigabits/s [94]. It is gigabit, instead of gigabyte, because the core ideas of GFC

algorithm are based on bitwise operations. The speed is much faster than most other

compression algorithms. Second, the original GFC is designed for GPU directly. To

contrast to GFC, most of the GPU algorithms are converted from CPU algorithms,

which means some compromises have to be made and that has a negative impact

on the algorithm performance most of the time. Third, the original GFC aims to

compress large datasets, which is critical for both business and scientific uses. To

further boost the performance, we improve the original GFC algorithm.

Some basic concepts about GPU, such as grid, block, warp, and thread can be

found in [76] and Figure 3.6 displays a common GPU structure that presents the

relations between threads, blocks, and grids. Different GPU video card structures

may be different from each other, but they all share some common features: if users

want their GPU algorithms to perform best, they have to use all the threads in a

warp. If different threads in the same block need to communicate with each other,

programmers can use shared memory; but if different threads in different blocks need

to communicate with each other, programmers can use global memory.

3.7.1 Original GFC Algorithm

GFC is a lossless double-precision floating-point data compression algorithm. It is

designed specifically for GPU computation. By using the GFC algorithm from [59], it

replaces 64-bit floating-point values with 64-bit integers. Therefore, the GFC needs

only integer operations, although it can compress a floating-point dataset.

An overview of warp, block and chunk assignments of GFC are displayed in

Figure 3.7. The uncompressed data is separated into r chunks and each chunk contains

32 doubles. Each chunk is processed by one warp in the GPU. After all warps finish

compressing the assigned chunk, GFC combines all the results together, which is

compressed data. The reason that each chunk contains 32 doubles is that there are

32 threads in each warp for most of GPU video cards and it is most effective when a

program uses all the threads in a warp. Figure 3.8 presents the details about the GFC

27

Figure 3.6: GPU structure.

28

compression algorithm. According to GFC, we need to subtract p, which is in the

previous chunk, from i, which is in the current chunk, and p = 32−(dim−i%dim) [94].

Dim means dimension in this equation. If the subtraction is negative, we need to use

operation “negate” to turn it positive. The key of GFC is the rectangle named

residual in the bottom part of Figure 3.8. By counting the leading zeros of this

part, removing these zeros, and adding the leading zeros metadata, GFC compresses

the original datasets. The most significant theory behind GFC algorithm is that

most scientific datasets interleave values from multiple dimensions [94]. For example,

weather temperature will follow a pattern each year for most of the time, which means

temperature scientific data can have many leading zeros by using GFC compression

algorithm. Users need to find the interleave orders, get the maximum leading zeros

and remove them to have the highest compression ratio.

It is possible that the compressed data is larger than the original data using

GFC compression algorithm if an inappropriate interleave dimensionality is chosen.

For example, all the eight bytes of residuals are non-zeros and it results in the output

sub-chunk being 16 bytes larger than the original chunk, which is 6% larger than

the original part [94]. Before the GFC compression is used, the data should be

proprocessed and find out the suitable data interleave dimensionality to obtain the

best performance.

O’Neil and Burtscher created GFC and published this algorithm on paper [94].

They avoided using long if-else statements and assigned datasets reasonably accord-

ing to the structure of GPU to improve the performance of their algorithm. if-else

statements can slow down a program, especially a GPU program. This is because

of the structure of video cards. Each warp has 32 threads (for most video cards)

and all these threads (in the same warp) must execute the same instruction in one

cycle [76]. When these threads execute if-else statements, some threads may fulfill

the if statement and execute that part of the code, and the remaining threads will

stay idle, which means threads are not fully used. Therefore, GFC avoids using long

if-else statements.

29

Figure 3.7: Overview of GFC algorithm warp, block, and chunk assignment. Each
warp is assigned 32 doubles because there are usually 32 threads in each warp.

30

Figure 3.8: GFC compression algorithm. The original file is shrunk by removing the
leading zeros.

31

Figure 3.9: If-else statement example.

3.7.2 Improved GFC Algorithm

We tried to improve the performance of GFC algorithm with three methods: 1) using

clzll to count the leading zeros; 2) removing if-else statements in the program; 3)

using multi-GPUs.

Clzll

In the summary and conclusions part of [94], the authors mentioned that they wrote

their own function to count the leading zeros because their video card was GTX-285

and it did not support clzll, which is used to count the number of consecutive leading

zeros bits, starting at the most significant bit (bit 63) [91]. They believe GFC could

be improved by using clzll to count the leading zeros to replace their code. We agree

with their idea because professional programmers in Nvidia know how to take the

advantage of their video cards. Therefore, it is not strange that their GPU functions

are more suitable to the structure of video cards and more effective than our code.

The results in Section 5 provide further verification of this idea.

If-Else-Removals

In our opinion, if-else statements can slow down programs, especially for GPU pro-

grams. This is because if-else statements will make some of the threads in a warp idle,

when these threads within the same warp cannot fulfil the if-else statement. Here is

an example presented in Figure 3.9:

32

Figure 3.10: If else-removal example, less lines but more complex.

Each warp has 32 threads for most current video cards. Only the threads that

fulfil the condition, a 6 3, they will execute a = 7. Other threads will be idle until

the whole warp goes through this if-statement.

There are some materials, such as [74], proving long if-else statements will also

have a negative impact on the performance of normal programs. Therefore, we tried

to remove if-else statements in GFC algorithm by using bitwise operations. Here is

an example, as Figure 3.10 displays. >> 31 means a right shift for 31 bits. For most

cases, signed integers have 32 bits and the left most bit is used for a sign (positive

or negative). (b2) >> 31 is −1 when b2 is negative and it is 0 when (b2) >> 31 is

positive. Therefore, the two statements are the same in Figure 3.10.

However, we found when if-else statements are short (for example, there is just

one line of statement under if), the replacement of if-else statements with bitwise

operations will slow down the program. We believe it may be because something

undisclosed in the compiler to optimize the program. The authors of paper [94] also

tried to avoid long if-else statements in their program, except one part in the decom-

press kernel. Therefore, we replaced that part with bitwise operations as Figure 3.11

shows.

But the method cannot guarantee better results all the time. Figure 3.12 dis-

33

Figure 3.11: If-else-removal in GFC decompress.

plays the delta time between the original algorithm and the improved algorithm for a

dataset named obs info. When the line is above zero, it means the improved algorithm

is faster. Even if the improved algorithm is better, the improvement is not really ob-

vious. Therefore, we do not apply this method in the final improved algorithm. In

our opinion, the reasons that this method does not improve the performance are that

each thread needs to spend more time than before because the code is more complex

and the total processing time is worse, even if there are no idle threads in the wrap.

Multi-GPUs

After reading some GPU technique papers, we found that some authors try to improve

the performance of an algorithm by parallelizing the algorithm and others try to

enhance an algorithm by parallelizing tasks. For example, in paper [58], the author

proposed to separate strings and assign a thread for each segment to increase the

speed of Boyer-Moore algorithm. We also found there was a trend that scientists

used multi-GPUs instead of a single GPU to improve their algorithms.

We found the taskcompression is parallelizable. Parallelizable means that we can

separate the task into several parts and each part can be processed independently.

34

Figure 3.12: If-else-removal time delta.

GFC is a GPU algorithm and it uses both blocks and threads. Therefore, we need

to assign a GPU for every segment to enhance the performance. So we tried to use

multi-GPUs instead of single GPU and the basic idea is displayed in Figure 3.13. The

uncompressed dataset is separated into N chunks, each chunk is processed by a GPU,

and each GPU processes the assigned data with GFC algorithm. After all the GPUs

finish their jobs, a CPU will combine the results together, which is the compressed

data.

3.7.3 Experiments and Result Analysis

Our experiments were run on a Cubix machine, which has eight GeForce GTX 780

video cards, Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz, and PCI 3.0.

All the flowing experiment datasets are offered by Martin Burtscher, who is one

of the authors of [14]. The datasets can be downloaded on the website [15]. From our

experience on GPU programming, the best results of different problems need different

numbers of blocks and threads. After experiments with four of these datasets, we

found that we need to use all the threads in the chosen number of blocks to get

35

Figure 3.13: Multi-GPUs method.

the best results (throughput). Therefore, we only did experiments to find the best

number of blocks for each dataset and used all the threads. All the experiments were

ran 11 times and we chose the median value of these 11 results to be the final result.

For example, in multi-GPUs part, we tested different numbers of blocks for a dataset

named obs info. We did the same experiment 11 times and finally found we should

use 51 blocks and all the threads in these blocks to get the maximum throughput

1073.376 gigabits/s.

Because paper [94] mentioned that PCIe bus is too slow for GFC (compression

speed is limited to 8GB/s [34]), O’Neil and Burtscher did not record the time of

transferring data from CPU to GPU. Therefore, we did not do that for all the following

experiments. We also compared decompressed files with original files to make sure

that our methods do not change files.

Clzll

The first improvement is to use clzll(), which is used to count the number of con-

secutive leading zeros bits, starting at the most significant bit (bit 63) of x [91]. The

36

Figure 3.14: Clzll throughput delta. Most cases on the line charts are above zero.
This means Clzll function can improve the performances.

results are presented in Figure 10.

In Figure 3.14, we subtracted original GFCs throughput from improved GFCs

throughput. Most of the time, the deltas are above zero, which means the improved

algorithms throughput are better. This validates the idea that is introduced in Sec-

tion 3.7.2.

Multi-GPUs

We did the experiments with one, two, four, and eight GPUs to study the relation

between the number of GPUs and the speedup. Time consumptions were recorded

of each GPU and we used the maximum time consumption to be the final time

consumption. For example, we used 8 GPUs and GPU1 spent T1, GPU2 spent

T2 GPU8 spent T8. The final time consumption was Max(T1, T2, T8). We

used the maximum time for the final time because we set up a synchronizing point,

which resulted in GPUs waiting for others until all the GPUs finish their jobs. Table

1 displays the throughputs (gigabits/s) of a dataset named num plasma. To save

time, we did not do the experiment with block number from 1 to 1024. The step of

BlockNum in Table 3.1 is int(sqrt(2)).

37

Table 3.1: Num plasma Throughputs
Methods Names P-value T-value
BlockNum 8-GPU 4-GPU 2-GPU 1-GPU
1 159.26 81.40 41.18 21.25
2 304.68 158.78 81.51 42
3 436.46 233.39 120.21 62.06
5 668.01 376.61 196.12 102.86
8 987.06 572.33 304.24 159.44
12 1233.31 804.09 438.55 233.19
17 1214.7 768.86 420.02 219.24
25 1219.77 715.74 386.17 202.43
36 1212.84 803.42 438.75 233.02
51 1268.60 815.37 465.57 250.08
73 1365.97 955.67 541.73 261.71
104 1381.89 876.36 481.61 258.48
148 1312.64 871.23 523.82 264.98
210 1266.23 860.8 500.14 274.39
297 1214.87 838.03 496.44 274.89
421 1170.78 818.49 480.72 266.15
596 1140.8 743.96 457.01 264.19
843 1079.34 715.57 439.54 253.56

38

Table 3.2: Maximum Throughput
Methods Names P-value T-value
Name Max Throughput (gigabits/s) BlockNum Speedup
8-GPU 1381.89 104 5.03
4-GPU 955.67 73 3.48
2-GPU 541.73 73 1.97
1-GPU 274.89 297 1

Table 3.2 presents the maximum throughput of different number of GPUs. From

this table, we can tell that the speedup is better with more GPUs. However, the

relationship between the speedup and the GPU number is not linear. For example,

8-GPU speedup does not equal eight times 1-GPU speedup. In our opinions, this

is because of the more GPUs we have, the more segment file will be generated (our

program will separate the original file into N parts and each GPU is in charge of a

segment). Our program needs to combine all the segment files together to be the final

compressed file in the last compression step, which is done by a CPU sequentially.

This step will use more time if we have more segment files.

Figure 3.15 visualizes the relation between the throughput of each number of

GPUs with a line chart. For each line in Figure 11, we found they went up first

and then went down, which means that too many blocks will reduce the throughputs

(gigabit/s) after a certain threshold. When the blocks number is small, N GPUs

will increase the throughput almost N times. However, when the blocks number is

increased, the speedup is less than N times. We think it may be because of the impact

of blocks, as we just discussed. This negative impact will reduce the gap between each

of the multi-GPUs results. Therefore, the final results are less than N times, when

the blocks number is large.

Final Improved GFC Algorithm

In conclusion, we combined two methods: clzll and multi-GPUs together to improve

the GFC alforithm. We performed experiments on datasets acquired from the web-

site [15] and obtained a significant speedup result (the improved GFC algorithm over

39

Figure 3.15: Multi-GPUs throughput of num plasma.

the original GFC algorithm) as Figure 3.16 presents.

The maximum speedup of the improved GFC algorithm is 8.705 and the max-

imum throughput of the improved GFC algorithm is 2454.603 gigabits/s, which is

much faster than original GFC throughput present in paper [69]. Of course, the good

result is partially because we used better hardware than the original GFC paper.

40

Figure 3.16: Speedup of improved GFC algorithm. The speedups of most cases are
above 4 for all the datasets.

41

Chapter 4

Services

In this chapter, we introduced three services to prove the concept of the proposed

framework. These three services are: Service 1: Large Datasets Visualization and In-

teraction, Service 2: Model Accuracy Enhancement, and Service 3: Nitrate Prediction

Model, which are widely used in the interdisciplinary research.

4.1 Service 1: Large Datasets Visualization and

Interaction

4.1.1 Overview

In this section, we introduce several algorithms to visualize large size datasets through

a client/server architecture and allow for an interactive component with the results.

There are many existing similar algorithms and libraries, but to our knowledge, most

of them consume too long time to finish the job.

4.1.2 Motivation

Interaction and visualization are two significant methods for both business and science

oriented individuals [132, 96, 135, 131] to find interesting features and trends buried

within raw data. These two methods provided in this section can simplify complex

theories and make it easier for people from different research areas to cooperate.

Many prevalent web-based data interaction and visualization tools and libraries are

not as effective as before because of big data. Most of the traditional client/server web

42

application visualization tools and libraries handle the visualization and interaction

aspects on the client side. This workflow requires the server side to transfer data

to the client side. If the data size is very big, such as the case with big data, the

data transferring time is nigh unbearable. In this section, we propose a fast and

new method for client/server web application to interact and visualize big data. The

method visualizes data in the server side with multiple CPU cores and transfers result

images to the client side. The client side collects users interaction information and

the server side updates visualization results based on the interaction information. We

tested the workflow with large volume datasets and it has shown a much faster speed

than traditional workflows.

If users have large datasets, it is inconvenient and sometimes impossible to store

all the data in one computer. The web-based client/server architecture is a good

choice to interact and visualize large datasets. Instead of storing the data on the

client side, users can utilize the storage capabilities of the server for larger datasets.

Despite the abundance of traditional tools and libraries, they are not as effective as

before because of the big data. As [71] points out, the most prevalent visualization

tools and libraries can only be run on the client side, such as Google Chart, Open Flash

Chart (OFC), Adobe Flex, and D3.js. And among those tools and libraries, only a few

choice sections of them can even process large datasets. Generally, the performance

tends to drop dramatically when there are more than 200,000 data points. For Adobe

Flex, the visualization results occasionally stops responding occasionally when there

are more than 50,000 records. To solve this problem, we designed a new workflow to

move as much work as possible to the server side to improve the performance.

Our research aims to help both the business and science communities to interact

and visualize their large volume data more quickly and effectively. In this section, we

showcase our new workflow and a prototype system, as well as some experiments that

compare the performance between our workflow and the traditional workflow systems.

The results proved our workflow is better for big data interaction and visualization.

43

4.1.3 Proposed Visualization and Interaction Workflow

The web-based client/server architecture is used in the proposed workflow. We prefer

to use this architecture because it does not require users to install anything for most

cases. Users only need to open a browser and visit our website. Also, this architec-

ture can always guarantee reliable performance, as long as it is designed reasonably

(allocate most heavy tasks to servers). For example, some websites may offer images

processing services. Users can upload batches of images to the websites and choose

the process methods. After the websites finish the jobs, it sends an alert email to the

users and then the users can download the result images from the website. Users can

also process the images with their own computers. However, the procedure may be

very slow if their computer is not good enough.

Most traditional web-based client/server applications use the workflow as Fig-

ure 4.1 presents [71]. When the client side sends a visualization request to the server

side, the server side will send data to the client side. All interaction and visualization

operations are done in the client side. If we use this workflow to interact and visual-

ize big data, there will be two problems: 1) data transfer time can be unacceptable.

For example, if users have 1TB data and 10MB/s downloading speed, it will take

around a half an hour to transfer data; 2) most traditional tools and libraries load

data into the client machines local memory to guarantee the performance. This does

not work for big data. For example, if the chosen data is 1TB, this would require

the client side machine to have 1TB of available memory spaces. This is impractical

for most machines. We designed an improved workflow to move the interaction and

visualization tasks to the server side that reduce the client side machines burden. We

introduce more details about this workflow in New Workflow section.

The basic idea about the new workflow is that it separates all interaction & visu-

alization tasks into subtasks and arranges as many subtasks as possible in the server

side. The most remarkable difference between the new workflow and the traditional

workflow is that it transfers visualization result images from the server side to the

44

Figure 4.1: Traditional workflow.

client side instead of data. The server side updates the visualization result images

based on the interaction information collected from the client side.

Figure 4.3 displays the workflow details. The server side is a distributed system

containing many nodes. Each node can be a computer or a CPU-core. The large

volume dataset is separated into small pieces. Each node oversees a slice of data and

generates a result image of the assigned data. One of the nodes combines all the

result images as a final result image. The image combination method is shown in

Figure 4.2. This can be done in parallel. In Step 0, we have n images in total. Each

step we use one thread to combine two images. After all the threads combine images,

the next step will be started. The image combination is done in parallel too.

After the server side generates the final result image, it sends the final result

image to the client side. The client side collects users interaction information (such

as mouse coordinates, mouse button click, and mouse button release) and transfers

the information back to the server side. The server side updates the result images

based on the users interaction information.

The new workflow relies more on the server-side machines and that results in

the system performing more steadily. It is hard to predict machines situated on the

client side. If we use traditional workflow and push most of the data interaction and

visualization jobs to the client side, we may have different problems to deal with when

it comes to big data. For example, the client-side machine does not have advanced

hardware and it performs more slowly to interact and visualize large datasets. In

contrast to the traditional workflow, our proposed workflow uses distributed systems

45

Figure 4.2: Image combination method.

Figure 4.3: New workflow.

46

and process data in parallel. Therefore, the new workflow is always faster to deal

with big data. Users do not need to have an advanced computer because the client-

side machine only needs to display result images and collect the user interaction

information.

Interaction can help a user to study further into visualization results. However, it

is not very easy to interact with a large dataset visualization result. To our previous

proposed method, we need to collect the user interaction information and interpret

the information. For example, the most challenging part of enabling the users to

interact with a line chart visualization result on the front end is to convert the users

cursor information into appropriate values. Here are the four basic steps for this

algorithm:

• Convert the cursor coordinates into percentages, which are named as CP. For

example, when the user clicks on the middle part of the line chart, then CP

should be 50% (from the images left side).

• Get the left and right image margin percentages of the whole image. The

left margin is named LMP and the right margin is named RMP. For example,

assume the left margin is 10% of the width of the whole image and the right

margin is 15% of the width of the whole image. Then, in the following LMP is

10% and RMP is 15%.

• Obtain the corresponding x-axis values. The minimum value of the x-axis is

named Min and the maximum value of the x-axis is named Max.

• Calculate x, the location of the cursor on x-axis, from the equation:

CP − LMP

x−Min
=

1− LMP −RMP

Max−Min
(4.1)

x is the users cursor x-axis value. (CP-LMP) means the percentage between the

users mouse cursor and Min; (x-Min) means the x-axis value between the users

cursor and Min; (1-LMP-RMP) means the x-axis range percentage; (Max-Min)

47

Figure 4.4: CSV file visualization example.

means the x-axis range. The ratio between percentage and x-axis values should

be the same.

Figure 4.4 shows more details about these steps. More examples are introduced

in Section 4.1.4.

Overall, visualize and interact datasets steps:

• Users choose a file from the server database or upload a file to the server by

themselves.

• The server prepares the visualization result image and sends it to the client

side.

• Users interact with the result image and the client computer collects the inter-

action information.

• The server side updates the visualization result image based on the interaction

information.

4.1.4 Prototype Service

We have created a prototype service with eight CPU cores with the proposed frame-

work introduced in section 3 and the server side can only visualize csv files with

48

Figure 4.5: CSV file visualization example.

line charts for the current version. In this section, we introduce how to zoom in,

zoom out, download the chosen part of data, and add/remove a csv column from the

visualization result image.

Figure 4.5 is a screenshot of a csv file visualization. The line chart part image

is created by merging eight images shown in Figure 4.6. Because each CPU core

generates a result image, we have eight images in total. The procedure is that one

of the CPU-cores separates the chosen csv file into eight parts with the help of a

Python library named Pandas [100]. Then each CPU-core visualizes a sub csv file

with Matplotlib [55]. The result images are named: img0, img1, img2, , img7. In the

image merging stage, the system uses four CPU-cores as seen in Step One. CPU-core

0 is in charge of combining img0 and img1; CPU-core 1 is in charge of combining img2

and img3; ; CPU-core 3 is in charge of combining img6 and img7. Similarly, the final

result image is generated after Step Four. This stage uses the method introduced in

Figure 4.2.

There are some checkboxes below the line chart part in Figure 4.5. Each of the

checkboxes represents a column in the csv file. If the user checks one checkbox, the

system adds the corresponding csv column in the line chart, which includes adding a

line in the line chart and a matching legend in the right top corner of the resulting

image. If the user wants to remove the corresponding csv column, they need to

uncheck the checkbox, which includes removing the line from the line chart and the

49

Figure 4.6: Visualization result images created by eight CPU cores.

matching legend in the right top corner of the final result image.

Users can zoom in the line chart by clicking the mouse left button, dragging along

the line chart, and releasing the mouse left button. The system draws a rectangle

on the line chart as Figure 4.7 shows. After the client side receives the updated

visualization result image from the server side, it displays the updated line chart

image, as Figure 4.8 displays. If users want to zoom out on the line chart, they need

to click the Zoom out button. We implemented the Zoom in function by tracking the

coordinates of users cursors and mouse click and mouse release events. Based on the

information, the client side draws rectangles on the visualization result images and

transfers the coordinates to the server side.

4.1.5 Results

This subsection showcases some experiments that were done to prove that our work-

flow is faster than the traditional workflow. Here are our server and client machines

50

Figure 4.7: Users choose an area on the line chart.

Figure 4.8: Zoomed in Line Chart.

51

hardware and operating system descriptions:

• 8 Intel (R) Core (TM) i7-4770 CPU @ 3.4GHz

• 12.0 GB DDR3 RAM

• Ubuntu 12.04

For our new workflow, we used Flask [39] to build the backend and Matplotlib [55]

to visualize data. Flask is a powerful Python-based microframework and Matplotlib is

an effective Python based 2D data visualization tool. For the traditional workflow, we

used Flask [8] to build the backend and dygraph.js [33] to interact and visualize data

in the frontend. Digraph.js is a JavaScript library that is easy to use and efficient.

There are more details about how we built the traditional workflow system in [133].

All the data files used in this dissertation are generated by a scientific model named

Isnobal [79].

For all of the following experiments, the server and the client are installed on

the same machine. Therefore, the data transfer time is very short for both the

new and the traditional workflows. In real life, data transfer time is one of the

most crucial factors that affects the user experience. For most of the big data cases,

the traditional workflow costs more time than our new workflow. This is because

the visualization result image is usually smaller than the visualized data itself. For

example, 100 MB data can be visualized with a 5 MB jpg file. The image size is

decided by resolutions and image formats. Therefore, the new workflow is faster than

the traditional workflow in data transfer.

Figure 4.9 compares the traditional workflow and our workflow data visualization

time consumptions. When there are less than 100,000 records (floats), the traditional

workflow uses less time than the new one. This is because data size is small and

data transfer time is short for the traditional workflow. The new workflow needs

to separate files into small pieces, visualize each of them, and then merge all the

visualization result images. These steps are not effective for small data files. However,

52

Figure 4.9: Traditional vs new workflow data visualization time consumption.

when data size grows, the traditional workflow turns slower than the new workflow.

Especially when we have more than 290,000 records (floats), the traditional workflow

performance drops dramatically. In fact, when we tried a large file with more than

10,000,000 records, the traditional workflow ran for more than one hour and popped

up an error.

Figure 4.10 presents the new workflow time consumptions. It is almost linear

which means the more data we have, the more time it takes. To improve the perfor-

mance, we want to use Hadoop with more nodes.

We also tested our system with a different number of processes. Figure 4.11

shows that the time consumption goes down first and then goes up, which means

when we used more processes, the performance of the system turns better first and

then turns worse. The system performs best when we used 16 processes. This is

because we used 8 * Intel (R) Core (TM) i7-4770 CPU @ 3.4GHz. The Intel core uses

hyper-threading technique, which allows a computers operating system or hypervisor

to access two logical processors for each physical core [83]. Therefore, the 8 Intel core

equals 16 logical processors.

53

Figure 4.10: New workflow time consumptions.

Figure 4.11: Visualize 560640 records with different number processes.

54

4.1.6 Conclusion

In this section, we proposed a new workflow to interact and visualize big data for

web-based client/server applications. The basic idea is to visualize and update the

visualization results in the server side and only transfer visualization result images

to the client side. This is different from the traditional workflow in that it transfers

data and finishes interaction and visualization tasks in the client side. We did some

experiments that showed that the traditional workflow is better than the new workflow

if users have a small dataset (less than 100,000 floats). If users have a large dataset,

the new workflow performs much better than the traditional workflow. When we used

the traditional workflow to process a very large amount of data, the performance drops

dramatically.

4.2 Service 2: Model Accuracy Enhancement

4.2.1 Overview

This section studies how to improve the accuracy of hydrologic models using machine

learning models as post-processors and presents possibilities to reduce the workload

to create an accurate hydrologic model by removing the calibration step. It is of-

ten challenging to develop an accurate hydrologic model, due to the time-consuming

model calibration procedure and the non-stationarity of hydrologic data. Our find-

ings show that the errors of hydrologic models are correlated with model inputs.

Thus motivated, we propose a modeling error learning based post-processor frame-

work by leveraging this correlation to improve the accuracy of a hydrologic model.

The key idea is to predict the differences (errors) between the observed values and

the hydrologic model predictions by using machine learning techniques. To tackle the

non-stationarity issue of hydrologic data, a moving window based machine learning

approach is proposed to enhance the machine learning error predictions by identify-

ing the local stationarity of the data using a stationarity measure developed based

on Hilbert-Huang transform. Two hydrologic models, the Precipitation-Runoff Mod-

55

eling System (PRMS) and the Hydrologic Modeling System (HEC-HMS), are used

to evaluate the proposed framework. Two case studies are provided to exhibit the

improved performance over the original model using multiple statistical metrics.

4.2.2 Introduction

Motivation

Hydrologic models are commonly used to simulate environmental systems, which help

to understand the water systems and their responses to external stresses. They are

also widely used in scientific research for physical-process studies and environmental

management for decision support and policy-making [35]. One of the most important

criteria for model performance evaluations is prediction1 accuracy. A reliable model is

able to capture the hydrologic features with robust and stable prediction. However, it

is challenging to develop a reliable hydrologic model with low biases and variances. In

this section, we aim to develop a post-processor framework to improve the relability

of hydrologic models.

Hydrologic models are typical environmental models for hydrologic process stud-

ies and water resources evaluations. Among all types of hydrologic models, physically

based parameter-distributed hydrologic models have become increasingly prevalent as

they are able to capture detailed features within hydrologic systems. However, in re-

gions with high hydrologic heterogeneities, a large number of parameters are required

to represent both temporal and spatial variation. This requests a large amount of

computational resources, which substantially increases difficulties in a model devel-

opment, data assimilation, and model calibration [137]. The resulting high cost of

computation makes it challenging to implement data assimilation techniques such as

Ensemble Kalman Filters [73, 113], or use an optimization method such as Shuffled

Complex Evolution [31, 32]. On the other hand, the post-processing methodology

dealing with model results can potentially mitigate such computation requirements

1In the hydrologic modeling results, while the term ”simulations” is widely used for both concepts
of historical records replication and future prediction, the term ”predictions” is used in this study
for the purpose of keeping a consistency with term used in the numerical post processing.

56

and improve the performance [137]. Therefore, the post-processor approach is studied

and used in this section. By studying many hydrologic scenarios, we observe that the

hydrologic model errors often follow some patterns that are highly correlated with

model inputs (see Figure 4.14). Such patterns can be learned via machine learning

(see Section 4.2.3) and applied in predictions. Thus motivated, we propose a machine

learning based post-processor framework that can learn the modeling error to enhance

the prediction accuracy.

Despite the potential improvement brought by machine learning techniques, it

is worth noting that pure machine learning techniques cannot completely replace hy-

drologic models. When we compare the performance of the environmental model

and machine learning methods, it turns out that the accuracy of the Precipitation-

Runoff Modeling System (PRMS) [70, 80, 82] is much higher than that of commonly

used machine learning techniques (e.g. random forest tree [72] and gradient-boosted

tree [48]). Compared to hydrologic models developed using domain knowledge, pure

machine learning models with limited training data cannot accurately characterize

all the features of the underlying physical process. Nevertheless, based on hydro-

logic simulation machine learning approaches are able to further enhance hydrologic

model results, by predicting the original modeling errors via learning the relationships

between model inputs and output simulation results.

Major Contributions

In this section, we develop a modeling error learning based post-processor framework

to enhance the prediction accuracy of hydrologic models. Based on the results in

Section 4.2.4, the proposed framework can ease the parameter tuning processes and

achieve accurate predictions. The key idea is to leverage the correlation between the

hydrologic model inputs and model output errors. There are two main challenges

of building the proposed framework: 1) how to improve the efficiency and accuracy

in a hydrologic model in terms of model simulation and development and 2) how to

deal with the non-stationary hydrologic data. To solve the first challenge, we propose

57

a machine learning based post-processor, which can capture and characterize model

errors to improve hydrologic model predictions. This can help avoid the misleading

effects of irrelevant model inputs. Also, we propose to clean and normalize the data,

which enable better characterization of the correlation. To solve the second chal-

lenge, we propose a window size selection method, which identifies local stationary

regions of the data by using a stationarity measure based on Hilbert-Huang transform

(HHT) [53]. The key idea is to first find all possible window sizes by using data auto-

correlation and then select the best window size, which contains the most stationary

data. The stationarity measure is proposed to calculate the data stationarity within

a window. The two major contributions of this section are summarized as follows:

• A machine learning based post-processor framework is developed to improve

the prediction accuracy and flexibility of hydrologic models. One common issue

of existing hydrologic simulation studies is that the development of hydrologic

models, in terms of calibration processes, often requires long research time cycles

but ends up with barely-satisfied model accuracy. To tackle these challenges, the

proposed framework can significantly simplify the parameter tuning processes by

learning and calibrating the modeling error using machine learning techniques.

Moreover, the proposed framework can use different machine learning methods

for different scenarios to obtain the best results, and the model parameters

can be dynamically updated using the latest data. Our experiment results in

Section 4.2.4 show that our method can significantly improve the prediction

accuracy, compared with the simulation results of existing hydrologic models.

• A moving window based machine learning approach is proposed, which can

enhance the performance of the machine learning technique when dealing with

non-stationary hydrologic data. We observe that the distribution of hydrologic

data changes over time and the data exhibits seasonality (see Figure 4.13). The

proposed moving window based machine learning approach can characterize the

time-varying relationship between the model inputs and model output errors.

58

The key step is to choose a suitable window size, within which the data is

stationary, as most machine learning techniques are designed for stationary

data. By leveraging recent advances in the field of nonlinear and non-stationary

time series analysis, particularly HHT, we propose the degree of stationarity to

measure the local stationarity of the data. Based on the degree of stationarity

and the autocorrelation, we propose a window size selection method to optimize

the performance of the machine learning techniques.

The proposed framework has been evaluated on the basis of different hydrologic

models. The framework can improve the accuracy of the original hydrologic models

and the window selection method can find the data pattern and select a suitable

window size. Moreover, we find that the accuracy of an uncalibrated hydrologic

model is as good as the calibrated one by using the proposed framework, which

indicates that the proposed framework can replace the complicated ”calibration” step

in the traditional hydrologic model developing workflow. Section 4.2.4 introduces

more details of the case studies.

Related Work

An appropriate window size is very important for training a machine learning model to

deal with non-stationary time series data. Most of the existing work on the window

size selection is based on concept drifts and distribution changes. There are some

methods that perform well but can only be applied to a certain machine learning

method, such as [38, 61]. Figuerol, Carles, and Gavaldà in [38] proposed a concept

drift based method to dynamically adapt window size for Hoeffding Tree [28]. To

solve the limitation, some methods are proposed that can be applied to different

machine learning techniques by using statistical techniques to monitor the concept

drifts. In [12, 62, 68], Statistical Process Control (SPC) [92] is leveraged to monitor

the data change rate by using error rate. If the error rate change is larger than a

threshold, it means the data is not stable, and then the window size should be changed.

These methods need to assume that the error rate follows a certain distribution, and

59

then calculate the threshold by using the error confidence interval. Similarly, in [10,

43], window selection methods are proposed based on the concept of context with the

stationary distribution. The proposed methods require the dataset inside a window

to follow a certain distribution, and then calculate the confidence interval by using an

approximate measurement [10, 43]. However, this requirement may not be satisfied

for some hydrologic data because the data distributions may be not known or follow a

certain distribution. Different from these works, we choose the window size based on

the degree of stationarity of the data, based on the proposed stationarity measure (see

Section 4.2.3), which does not assume the data follows any predetermined distribution

and is applicable to different machine learning techniques.

There are many methods to improve the performance of hydrologic model sim-

ulations by reducing uncertainties from various sources: model input pre-processing,

data assimilation, model calibration, and model result post-processing [137]. Model

input pre-processing deals with uncertainties from model input variables such as

establishing precipitation measurement networks or post-processing meteorological

predictions [45]. Data assimilation treats the uncertainties from model initial and

boundary conditions. For instance, the assimilation of snow water equivalence data

can improve initial conditions in a snow or hydrologic model [3, 113]. Model cali-

bration technique reduces the uncertainty from model parameterization [30, 31], such

as using a transformation of model residuals to improve the model parameter esti-

mations [103], or using optimization algorithms to find best parameters that fit the

observations [49, 112]. Post-processing quantifies and reduces the uncertainties re-

lated to model results. Statistical models are usually used for post-processing, which

calculates the conditional probability of the observed flow given forecast flow [107,

137]. Examples include variants of Bayesian frameworks built on model output [65],

the meta-Gaussian approach [87], the quantile regression approach [107], and the

wavelet transformation approach [115]. Because the post-processing methodology

only deals with model results it requires less computations for most cases. Therefore,

we propose to use the post-processing method in this framework.

60

There are many different post-processing approaches being used for hydrologic

modeling. According to Brown and Seo (2013), the existing algorithms generally

varies, in terms of: 1) the source of bias and uncertainties; 2) the way of predictor

developed using prior available data; 3) the assumptive relationship between predic-

tors and model simulations; 4) the uncertainty propagation techniques; 5) the model

method used in spatial, temporal, and cross-dependencies simulation; and 6) the

parameterization means. Specifically, Zhao, Duan, Schaake, Ye, and Xia (2011) in-

troduced a general linear model, which leveraged and removed the mean bias from the

original model outputs, to improve the original model predictions. Quantile Mapping

(MQ) method was used as an effective method, which uses Cumulative Density Func-

tions (CDFs) of observations and simulations to remove corresponding differences on

quantile basis [47, 129]. Based on this, Madadgar, Moradkhani, and Garen (2014)

proposed a couple equations of univariate marginal distributions joint CDFs that fur-

ther improved the representation of the inherent correlations between observations

and simulations, and the separation of the marginal distribution of random variables.

Brown and Seo (2010) designed an advanced data transformation method for non-

parametric data using Conditional Cumulative Density Function (CCDF) [105], which

has been successfully applied to nine eastern American river basins [13]. Krzyszto-

fowicz and Maranzano (2000) proposed a Bayesian based methodology using normal

quantile transform in a Meta-Gaussian distribution as a way to remove model biases.

However, these methods that rely on the original model calibration are limited to the

applied basins [139], variable uncertainties, the static dataset in use, and instabilities

by data outliers and “ancient” dataset [14]. which can substantially reduce the result

performance and reliability of the post-processing algorithms.

4.2.3 Modeling Error Learning Based Post-processor Frame-
work

Hydrologic models are based on the simulation of water balance among principal

hydrologic components. With different study purposes, the selected hydrologic model

61

varies and so as the parameters used in the simulation algorithm. It is challenging

to develop an accurate hydrologic model and traditional hydrologic models can often

have high biases and variances in the outputs. By studying many hydrologic scenarios,

we observed that the hydrologic model errors often follow some patterns that highly

correlate with the model inputs and such patterns can be learned via machine learning.

Thus motivated, we propose a machine learning based post-processor framework that

can learn the modeling error to enhance the prediction accuracy. The details of the

proposed framework are provided in the follow section.

Observations and Motivations

We study the prediction errors of a PRMS model [70, 80, 82] using 10-year historical

watershed data collected from USGS [121]. The study area is the Lehman Creek

watershed in eastern Nevada and the data is collected every 24 hours. Figure 4.12

illustrates the error distribution of streamflow prediction from the PRMS model. The

distribution is very close to a normal distribution with a close-to-zero mean value and

a low variance. However, when taking a closer look at the prediction errors across time

(see Figure 4.13), we observe a large discrepancy between the model outputs and the

ground truths in the middle of each year. It implies that the current PRMS model

cannot accurately characterize the streamflow in the middle of a year. Therefore,

there is a need to better capture the dynamics of the streamflow in this time period.

Intuitively, the prediction errors contain important information, which can be

leveraged to reduce the hydrologic model errors, so as to improve the prediction

accuracy. Therefore, we explore the information contained in the prediction errors

and find that the prediction errors are actually highly correlated with the model

inputs. As shown in Figure 4.14, during May, June, July, and August of the year

2011, the streamflow prediction errors are highly correlated with the temperatures

and time (month and day). The larger correlation values and stars in Figure 4.14 in

the upper side mean the closer relations between two variables. By leveraging the

correlations, we aim to predict the original model errors and thereby improve the

62

Figure 4.12: A traditional calibrated prms model streamflow prediction errors his-
togram (example of the Lehman Creek).

Figure 4.13: Comparisons between streamflow observations and prediction errors from
a traditional calibrated PRMS model (example of the Lehman Creek).

63

Figure 4.14: Correlations between PRMS inputs (i.e. precip, tmax, and tmin) and
streamflow prediction Errors, during May, June, July, and August (2011): The diag-
onal graphs show the variable distributions, the lower side graphs show the scatter
plots between the corresponding row and column variables, and the upper side val-
ues are the correlation values between the corresponding row and column variables.
(precip: precipitation; tmax : maximum temperature; tmin: minimum temperature);
errors : streamflow prediction errors.

prediction accuracy.

Along this line, we propose to use machine learning techniques to learn the mod-

eling errors by leveraging the strong correlations between the prediction errors and

the model inputs, in order to improve the accuracy in streamflow predictions. The

proposed framework is illustrated in Figure 4.15. It mainly consists of three steps:

• Step 1: Develop a hydrologic model, such as PRMS. The model can generate

predictions (e.g., streamflow prediction) based on the inputs (e.g., temperature,

time, and precipitation).

• Step 2: Obtain the hydrologic model errors. By comparing the ground truths

with the hydrologic model predictions, the framework can collect historical hy-

64

drologic model errors.

• Step 3: Preprocess history errors and build a machine learning model. The

hidden correlations between the model errors and the model inputs can be

enhanced after preprocessing and be characterized by a machine learning model.

After these three steps, the trained machine learning model is integrated with

the original hydrologic model to enhance the prediction accuracy. It produces the

improved results by adding the predicted errors with hydrologic model predictions.

Different methods in each ”Preprocessor”, ”Machine Learning Model”, and ”Hydro-

logic Model Errors” component can be selected based on the needs of applications.

The details of each component as shown in Figure 4.15 are described in the following

sections.

Remarks: In practice, the development of a hydrologic model needs to be cali-

brated based on hydrogeologic conditions and meteo-hydrologic characteristics. The

calibration procedure is a process that finalizes parameters used in the model numer-

ical equations that determining the hydrologic process simulation. With temporal

and spatial heterogeneity, these parameters could either be characterized with both

these features, such as in a physically based parameter-distributed hydrologic model

PRMS, or be averaged to represent a mean level while still maintaining the capability

of capturing the streamflow variation, such as in the Hydrologic Modeling System

(HEC-HMS). In this study, the default values of each parameters are used in the un-

calibrated cases as to compare with the calibrated cases from traditional hydrologic

calibration and post-processor methods. As demonstrated in Section 4.2.4, the pro-

posed framework provides a better prediction accuracy with high processing efficiency

when compared with the traditional hydrologic calibration method.

Modeling Error Learning enhanced hydrologic Model

The detailed workflow of the designed modeling error learning enhanced hydrologic

model is illustrated in Figure 4.16. The basic idea is to use predicted error to calibrate

65

Figure 4.15: The diagram of modeling error learning based model post-processor
framework.

66

original hydrologic model’s predictions as shown in Equation (4.2)

p̂t = f(xt) + g(xt) (4.2)

where p̂t denotes the improved prediction at time t; xt denotes the model inputs (i.e.,

temperature, time and precipitation) at time t; f(·) denotes the hydrologic model,

which generates predictions based on xt; and g(·) denotes the error prediction model

learned in the ”Machine Learning Model” component, which generates hydrologic

model prediction error based on xt.

As illustrated in Figure 4.16, there are basically three steps to build an enhanced

hydrologic model:

• Step 1: Calculate the hydrologic model errors. We calculate errors using differ-

ences between the observations and model predictions in the ”Hydrologic Model

Errors” component.

• Step 2: Enhance the correlation between hydrologic model errors and inputs.

This step contains two sub-steps: ”scale model error” and ”data transforma-

tion”. ”Scale model error” is used to scale error into a certain scope (e.g.

between 0 and 1) and ”data transformation” is used to normalize hydrologic

model errors and stabilize the variances of hydrologic model errors.

• Step 3: Build a machine learning model. The scaled and transformed original

hydrologic model errors and model inputs are used to train a machine learn-

ing model to predict the hydrologic model errors. The predicted errors need

to be back-transformed and back-scaled before being used to compensate the

hydrologic model results.

More details of the framework components (rectangles in Figure 4.16) and steps

(arrows in Figure 4.16) are introduced in the follow sections.

67

Figure 4.16: Modeling error learning enhanced hydrologic model.

68

Preprocessor Component

The ”preprocessor” component preprocesses the hydrologic model errors, and the out-

puts of this component are used to train a machine learning model in the ”Machine

Learning Model” component. The objective of the ”preprocessor” component is to

normalize errors and reduce error variances. In other words, this component is used

to make it easier for the ”Machine Learning Model” component to characterize corre-

lation between the hydrologic model inputs and errors. Specifically, this component

scales and transforms the hydrologic model prediction errors using Equation (4.3)

et = tr(αe) (4.3)

where et denotes preprocessed error; tr(·) denotes transformation function, α denotes

the scaling factor; e denotes the original hydrologic error. Based on the case studies

in Section 4.2.4, a good scaling factor is often between zero and one.

Note that in this framework different functions can be selected based on the

dataset characteristics. For example, if the dataset is positively skewed, log-sinh

transformation [126] could be helpful. If the dataset has a large variance, boxcox

transformation [127] may be applied. In Section 4.2.4, Case Study 1 uses the log-sinh

transformation (see Equation 4.14) and Case Study 2 uses the boxcox transformation

(see Equation 4.16). These transformation functions can improve the hydrologic

model outputs, as shown in Section 4.2.4.

Remarks: The ”Preprocessor” component should be repeated multiple times to

find out the best-performed scaling factor and data transformation parameters. For

example, %-time cross validation can be used to test all possible parameter combina-

tions’ performance [64]. The performance can be measured by using RMSE (Equa-

tion 4.9), PBIAS (Equation 4.10), NSE (Equation 4.11), or CD (Equation 4.12). After

a good parameter combination is chosen, it will be used in both the ”Preprocessor”

component and the ”Back-transform and Back-scale” step.

69

Machine Learning Model Component

The ”Machine learning model” component aims to predict the transformed hydrologic

model error ĝ(xt), using the hydrologic model input xt. To obtain the original model

prediction error g(xt), ĝ(xt) needs to be transformed back using the inverse of the

transformation function, which is discussed in Section 2.2.4. In what follows, we

discuss how to find ĝ(·) using machine learning techniques.

There are many machine learning techniques that can be applied in this compo-

nent, such as Support Vector Regression (SVR) [7] and gradient boosted tree [48].

Most of them are designed for stationary environments, in the sense that the under-

lying process follows some stationary probability distribution. However, hydrologic

processes are often non-stationary. As illustrated in Figure 4.13, the streamflow shows

seasonality in the sense that the patterns of streamflow in each year are similar but

change over time. To address this challenge, we propose to use a moving time window

to adapt to the changes due to hydrologic data variations.

The basic idea is to set up a time window and train the machine learning model

using the data within the window, which moves over time. By using the time win-

dow, we are able to track the changing dynamics of hydrologic data. However, it is

challenging to find an appropriate window size. If the window size is too large, it

increases model training complexity and the model is not able to quickly adapt to the

changes of the hydrologic data. Even though a model with a large window size may

generate accurate results during the training phase, it is possible that the accuracy

of the model using the test dataset could be very poor, which is due to overfitting

issue [27]. If the window size is too small, the model may not be able to capture the

pattern of the hydrologic model errors.

In this section, the window size selection is based on the pattern and the degree

of stationarity of the data, which can not only capture the data pattern, but also

ensure the data stationarity within the window.

To find the data pattern, we leverage the autocorrelation of the data. Due

to the seasonality, the autocorrelation shows a peak every year (see Figure 4.18)

70

Figure 4.17: Case study 1 training data autocorrelation values vs lag days: one-year
and two-year can be the data pattern lengths, because these are the distances between
the start point and peaks in the training data.

and the distance between two peaks indicates that the pattern repeats during this

period. However, as illustrated in Figure 4.18, there are several peaks, and it remains

challenging to determine the window size, i.e., ”how many peaks should be chosen?”

To address this challenge, we further calculate the degree of stationarity of the

data in a given window size and use this to determine the window size. Specifi-

cally, the degree of stationarity (DS) is defined by leveraging recent advances in the

field of nonlinear and non-stationary time series analysis, particularly Hilbert-Huang

transform (HHT) [53]. DS is defined as:

DS(T) =

∑
ω D̂S(ω)n(ω)

nsum
(4.4)

D̂S(ω) =
1

T

T∑
t=0

(1− H(ω, t)

n(ω)
)2dt (4.5)

71

n(ω) =
1

T

T∑
t=0

H(ω, t) (4.6)

where DS(T) denotes the data stationarity value of window size T (Equation 4.4),

D̂S can characterize the variation of the data in a certain frequency (ω) bin over time

(Equation 4.5), n(ω) is the average amplitude of the frequency (Equation 4.6).

In Equation 4.4, nsum =
∑

ω n(ω). DS(T) sums D̂S value of each frequency and

weights each of them by using n(ω). This ensures that small, relatively insignificant

oscillations do not dominate the metric. nsum in the denominator part normalizes

DS(T) and allow different DSs to be comparable. Note that the larger DS, the more

non-stationary the data, and we prefer a small DS in a given time window.

In Equation 4.5, H(ω, t) denotes the Hilbert spectrum, which is a frequency-time

distribution of the amplitude of the data. A large D̂S indicates large variations in

the bin, which means non-stationary behavior. A close-to-zero D̂S indicates small

variations in the bin, which means stationary behavior.

The D̂S concept is first introduced in section [53] but it only considers the data

stationarity of a certain frequency bin and does not characterize the entire time series

data stationarity. To improve the D̂S concept, we propose DS that calculates the

whole dataset stationarity.

After the possible data patterns are chosen based on autocorrelation, the data

pattern that has the minimum DS (the most stable) is chosen to be the final window

size.

Figure 4.18 illustrates the values of DS under different window sizes for Case

Study 1 in Section 4.2.4. The DS value increases as the window size grows, which

means the data becomes more non-stationary when the window size grows. As the

one-year DS is smaller than two-year DS, the one-year window size is chosen for the

Case Study 1, because it is one of the data patterns and this window size has the

minimum DS value. Figure 4.19 compares the prediction performance using different

window sizes for Case Study 1. It shows the one-year window size has the best

performance. In contrast, the 4.5-year window size is more accurate than one-year

72

Figure 4.18: Case study 1 training data DS vs window size. One-year DS is slightly
less than two-year DS.

window size with the training dataset but the performance is worse with the testing

dataset, which means a larger window size can cause overfitting issues.

Back Transform and Back Scale

The predicted errors generated from the ”Machine Learning Model” cannot be used

directly because the machine learning model is trained with the preprocessed errors.

The predicted errors need to be back preprocessed using the corresponding prepro-

cessor methods to obtain the real predicted hydrologic model errors.

Let tr−1 denote the inverse of the transformation function. g(xt) can be computed

as follows:

g(xt) = tr−1(ĝ(xt))/α (4.7)

73

Figure 4.19: Case study 1 testing data RMSE vs window size: the one-year window
size is better than other window size based on rmse value.

And the prediction p̂t can be given as:

p̂t = f(xt) + tr−1(ĝ(xt))/α (4.8)

Discussion of Proposed Methods

The ”Modeling Error Learning” is the key component of the framework. If it is able to

predict the hydrologic model errors, the framework works. If not, then the framework

cannot improve a hydrologic model performance. Therefore, the question ”when the

framework does not work” equals ”when the ’Modeling Error Learning’ component

cannot predict errors accurately”. Because this component leverages the relations

between the model inputs and model errors, the component can work when the model

inputs are correlated to the model errors. Therefore, a modeler can calculate the

correlation values between each model inputs and the preprocessed model errors of

the historical data to test if the proposed framework can work. If some model inputs

are correlated with the preprocessed model errors, then the proposed framework is

74

able to improve the hydrologic model accuracy and vice versa.

”How the framework can perform better” is another important question. It de-

pends on the chosen machine learning techniques used in the ”Modeling Error Learn-

ing” component. The errors contain biases and variances. Based on bias-variance

tradeoff theory [42], when bias decreases, variances will increase and vice-versa. Dif-

ferent machine learning techniques have different characteristics. For example, a

boosted tree has a high bias, low variance, and performs well when dimensionality

is low; A random forest has a low bias, high variance, and performs well when di-

mensionality is high [17]. Thus, the selection of machine learning method should be

determined by study needs and data characteristics.

However, it is hard to determine which machine learning technique works better

for a certain problem before performing tests. We suggest to do a pre-test to exam

which machine learning technique could work and perform better. The pre-test data

should be part of historical data and the size is decided by the data cycle, such as a

week, month, and year. For example, the temperature is high in summer and low in

winter. Therefore, a ”year” can be a cycle. The first two years temperatures of the

historical data are chosen to be the pre-test data. The first year temperature values

are used in the training phase, and the second year temperature values are used in

the testing phase.

Hydrologic data can vary dramatically in a short time period, which is hard to be

captured by a hydrologic model. It is also difficult for the ”Machine Learning Model”

component to accurately predict the hydrologic model errors. To address this issue, we

propose a smooth prediction method to regulate the hydrologic model errors are less

irregular and therefore enhance the performance of the ”Machine Learning Model”

component. Figure 4.13 is an example of dramatically-changed streamflow. The

streamflow observations grow rapidly in the middle of each year and the vibrations

generate small spikes along the uphills and downhills. The original PRMS model

cannot characterize the spikes and generate irregular errors. Because the ”Machine

Learning Model” component is built based on these errors, the framework cannot

75

perform very well in the middle of every year and generate unnecessary peaks. We

propose a method to smooth the hydrologic model predictions to avoid the spikes,

which contains three steps:

1. Choose a threshold T, which should be between the maximum and minimum

value.

2. Smooth the hydrologic model predictions by using T. If the difference between

the previous prediction and current prediction is higher than T, then we use

the previous prediction to replace the current prediction.

3. Check if the current T avoid peaks. If the current T cannot avoid any peaks,

then choose a smaller T, and then go to Step 1. If there is a ”plateau” (flat

peak) as Figure 4.20 displays, then choose a larger T.

When an fitting T is finalized, it is used both in the training phase and in the

test phase for the hydrologic model predictions. In the training phase, it can help

to choose more appropriate scale factors, transformation parameters, and window

size. In the test phase, it can to avoid original hydrologic model severe vibration

predictions.

4.2.4 Results and Analysis

Experiment Design

Each dataset is separated into training dataset (50%) and testing dataset (50%).

We use the quantitative statistics to perform the statistical evaluation of modeling

accuracy in the testing step: RMSE, PBIAS, NSE, and CD. The statistical parameters

are defined by the following equations:

RMSE =

√√√√ 1

N

N∑
i=1

(Pi − Ai)2 (4.9)

76

Figure 4.20: Use 10 as threshold: there is a plateau around 2005 june generated. CFS
is short for cubic feet per second

PBIAS =

N∑
i=1

(Ai − Pi)100

N∑
i=1

Ai

(4.10)

NSE = 1−

N∑
i=1

(Ai − Pi)2

N∑
i=1

(Ai − Ā)2
(4.11)

CD =

{ N∑
i=1

(Ai − Pi)(Pi − P̄)(N∑
i=1

(Ai − Ā)2
) 1

2
(N∑
i=1

(Pi − P̄)2
) 1

2

}2

(4.12)

where Pi and Ai represent the simulated and observed values respectively; Ā is

the mean of the observed values and P̄ is the mean of simulated values for the entire

evaluation period.

77

RMSE measures how close the observed data are to the predicted values while

retaining the original units of the models output and observed data. Lower values of

RMSE indicate a better fit of the model. RMSE is one of the important standards

that defines how accurately the model predicts the response and it is commonly used

in many fields.

PBIAS is a measure to evaluate the model simulations. It determines whether the

predictions are underestimated or overestimated, compared to the actual observations.

If the PBIAS values are positive, the model overestimates the results; otherwise, the

model underestimates the results by the given percentage. Therefore, values closer to

zero are preferred for PBIAS.

The Nash-Sutcliffe Efficiency (NSE) is a normalized statistic assessing the models

ability to make predictions that fit 1 : 1 line with the observed values. The values for

NSE range between −∞ and 1. For acceptable levels of performance, the values of

NSE should lie close to one, and the higher NSE indicates the better results.

CD stands for coefficient of determination, calculated as the square of the cor-

relation between the observed values and the simulated values. The values for CD

ranges between 0.0 and 1.0 and correspond to the amount of variation in the simu-

lated values (around its mean) that is explained by the observed data. Values closer

to one indicate a tighter fit of the regression line with the simulated data. Similar to

NSE, the higher CD values indicates the better results.

In the following case studies, we also provide Prediction Interval (PI) which offers

the possible prediction range. The PI is calculated using Equation 4.13, where X̄ is

the sample mean, n is the number of samples, Ta is student’s t-distribution percentile

with n− 1 degrees of freedom. PI is described with upper bound and lower bound.

PI = X̄n ± Tasn
√

1 + (1/n) (4.13)

78

Case Study 1

The PRMS Hydrologic Model

The Precipitation-Runoff Modeling System (PRMS) was developed by U.S. Geologi-

cal Survey in the 1980s, which is a physically based parameter-distributed hydrologic

modeling system [70, 80, 82]. The PRMS model used in this study was developed

by Chen, Fenstermaker, Stephen, and Ahmad [19] in the study area of Lehman Creek

watershed, eastern Nevada. The watershed is located in the Great Basin National

Park, occupying an area of 5,839 acres of the southern Snake Valley [99, 123]. More

than 78% of land cover were evergreen forest, deciduous forest, and mix forest, 2%

of shrubs, 2% were perennial snow and ice, and 17% were barren land [19, 117]. The

streamflow is mainly composed by snowmelt, which sourced from the high elevated

area in the west, flowing over the large mountain quartzite and recharging the ground-

water system through alluvial deposits and karst-limestone in the east [20]. These

high hydro-geography variations made it appropriate to use PRMS model to describe

the spatial heterogeneity of hydrologic processes. Figure 4.21 displays the study area.

On a grid-based simulation, the Lehman Creek watershed was delineated by

96 columns and 49 rows using 100 x 100-meter cell/grid. A total number of 4074

grids were formed, and based on which, the combinative effects of canopy inter-

ception, evapotranspiration, infiltration, overland runoff, and subsurface flow were

simulated. The parameter estimation is one of the most critical and challenging

parts of the PRMS model development. They were estimated for model algorithms

and determining the model performance, using land cover land use, soil informa-

tion or through literatures for each hydrologic component on each of 4704 units [19].

Among all the parameters required for model runs, some parameters are specifically

sensitive and have great influences on the model simulation results. Such as pa-

rameters that determine the temporal and/or spatial distribution of precipitation,

requires specification on every one of 12 months and/or every one of 4704 cells (e.g.,

tmax allsnow, monthly maximum air temperature when precipitation is assumed to

be snow; snow adj/rain adj, monthly factor to adjust measured precipitation on each

79

Figure 4.21: PRMS hydrologic model study area.

80

HRU to account for differences in elevation, and so forth; tmin lapse, monthly values

representing the change in minimum air temperature per 1,000 elev units of elevation

change).

One station meteorologic data were used as the driving forces to the developed

model in the study area of Lehman Creek watershed. Daily precipitation, maximum

temperature, and minimum temperature from October 1, 2003 to September 30,

2012 were collected from the meterologic station (#263340, Great Basin NP). Daily

streamflows at the Lehman CK Nr Baker gauging station (#10243260) were collected

for model calibration and validation [19].

Results

First, the training dataset is transformed by using log-sinh transformation, which is

introduced in [126]. Equation 4.14 is the transformation equation and Equation 4.15

is the back transformation equation.

ŷ =
log(sinh[a+ by])

b
(4.14)

y =
sinh−1(10ŷb)− a

b
(4.15)

where a and b are transformation parameters. By using log-sinh transforma-

tion, the original randomly distributed errors are normalized for the convenience of

correlation characterization.

During the training process as evaluated by using cross validation, we found the

best scale factor α is 0.5, the best transformation parameter a is 0.0305 and b is

0.0605, where α is used in Equation 4.3; a and b are used in Equation 4.14. Gradient

Boosted Trees [48] is used in the ”Machine Learning Model” component and the

initial window size is one-year.

Note that we find that the improved PRMS model predictions do not well fol-

low the observations during the water recession period after the peak flow. This is

81

Figure 4.22: Case study 1 final PRMS model improvements. CFS is short for Cubic
Feet per Second

caused by unstable historical data. By using the smooth method introduced in Sec-

tion 4.2.3, the RMSE is further improved to be 2.032 with T = 10. The comparisons

between parts of the data are shown in Figure 4.22. It is clear that the improved

predictions are closer to the ground truths than the original PRMS predictions. All

the statistical measurement results summarized are shown in Table 4.1. As results

show, the improved predictions have lower RMSE indicating they are closer to the

observed data. The PBIAS value is larger than the original PRMS model suggesting

an over-estimation compared with the observations. The NSE value is closer to one,

which means the improved model has a more acceptable level of performance. The

CD value is closer to one means the improved model fits more to the observations.

As suggested by the comparison results of model performance evaluation indicators,

the proposed framework can improve the original PRMS model’s results.

As suggested by statistical measurement comparisons in Table 4.2, our proposed

framework can also improve uncalibrated PRMS model predictions. With the same

PRMS model and input data, the RMSE is improved from 8.439 to 3.092 by using

82

Table 4.1: Calibrated PRMS Model Results Comparisons.
Indicators

Model RMSE PBIAS CD NSE
Original PRMS 4.585 7.205 0.769 0.768

Improved PRMS 2.032 10.808 0.936 0.926

Table 4.2: Uncalibrated PRMS Model Results Comparisons.
Indicators

Model RMSE PBIAS CD NSE
Original PRMS 8.439 -82.658 0.001 -0.292
Improved PRMS 3.092 3.054 0.837 0.826

1.0, 0.0905, 0.0805, and 10 for α, a, b, and the smooth threshold respectively. The

RMSE is very close to the improved calibrated model RMSE (2.032), which indicated

the proposed framework can be an effective replacement the traditional complex time-

consuming calibration procedure, providing a competitive level of model performance.

Case Study 2

Hydrologic Modeling System

The Hydrologic Modeling System (HEC-HMS), released by U.S. Army Corps of En-

gineers in 1998, is designed to simulate the hydrologic processes of dendritic water-

shed system [8, 104]. Different from the PRMS model that focuses on the hydro-

logic components based on user-defined unit, the HEC-HMS uses a dendritic-based

precipitation-runoff model with integrations in water resources utilization, operation,

and management [104]. The case study of HEC-HMS was the Little River Watershed,

which is an example application model in HEC-HMS program for the demonstration

of the continuous simulation with the soil moisture accounting method [9]. As intro-

duced by Bennett and Peters [9], the Little River Watershed is a 12,333-acre (19.27

m2) basin near Tifton, Georgia. More than 50% of the land is covered by forest with

remaining land used for agricultural purposes [120]. The annual precipitation is 48

inches [18].

One single-station data of precipitation observation were used, which was from

83

the Agricultural Research Service (ARS) rain gauge (#000038) [44]. The precipitation

records were on a 15-min basis for the same model running period of January 1 1970-

Jun 30 1970. The streamflow observations were from ARS gauge #74006 [44] on an

hourly basis, which were used for the calibration and validation of this hydrologic

model performance.

Results

In case study 2, we use Boxcox transformation [127] to transform the dataset and

choose decision tree in the Machine Learning Model component to improve the hy-

drologic model accuracy. Boxcox transformation is simple but efficient method and

able to reduce dataset variances. A decision tree consumes much less time than most

machine learning methods (such as gradient boosted trees) with the same inputs in

the training phase. Equation 4.16 is the Boxcox transformation equation and Equa-

tion 4.17 is the back Boxcox equation function.

ŷ =
yλ − 1

λ
(4.16)

y = λ
√
ŷλ− 1 (4.17)

where λ is the transformation parameter. During the training process as indicated

by using cross validation, the best α is 0.3 and the best λ is 9.0 for this case study.

The window size of one-week is selected. By using our proposed method, the RMSE

is 39.844 compared to 44.9833 resulting from the original HEC-HMS PRMS model.

Figure 4.23 shows the prediction comparisons of parts of the data between the lower

bound, upper bound, improved prediction, ground truth, and original prediction.

Clearly, the improved prediction is more accurate than the original hydrologic model

predictions.

As summarized in Table 4.3, RMSE of the improved model is 39.844 and it

is lower than the original HEC-HMS RMSE (44.983), which means the outputs are

84

Figure 4.23: Case study 2 HEC-HMS PRMS model improvements. CFS is short for
Cubic Feet per Second

Table 4.3: Calibrated HEC-HMS Model Results Comparisons.
Indicators

Model RMSE PBIAS CD NSE
HEC-HMS 44.983 4.657 0.842 0.808

Improved HEC-
HMS

39.844 8.590 0.884 0.850

closer to the observed data. PBIAS (4.657) of the original model is closer to zero than

the improved HEC-HMS PBIAS (8.590), which means the improved method over-

estimates the observations. The NSE and CD values (0.850 and 0.884) of the improved

HEC-HMS are closer to one than the original HEC-HMS values (0.808 and 0.842),

which means the improved model has a more acceptable level of performance and fits

more to the observations. The smooth method, which is introduced in Section 4.2.3,

cannot improve the results. This because there are not many spikes along the uphills

and downhills.

As suggested by the statistical measurement comparisons in Table 4.4, the pro-

posed method can also improve the uncalibrated HEC-HMS model. By inputting the

85

Table 4.4: Uncalibrated HEC-HMS Model Results Comparisons.
Indicators

Model RMSE PBIAS CD NSE
HEC-HMS 134.610 45.943 0.768 -0.716
Improved HEC-
HMS

89.882 29.876 0.823 0.235

same data, the RMSE is reduced from 134.610 to 89.882 by using 0.8 and 11 for α

and λ respectively. The time window is one-week.

4.2.5 Discussion

The current study used two typical hydrologic models, PRMS and HEC-HMS, and

demonstrated the performance of the proposed post-processing framework. To have a

comprehensive evaluation, these two models are selected as representations from hy-

drologic models categories that differentiate in terms of simulation scopes, structures,

and applications. As a representation of physically-based parameter-distributed hy-

drologic models, PRMS is widely used for research purposes, which requests large

sets of parameters to simulate the physical processes; comparatively, as a represen-

tation of empirical-based lumped-parameter hydrologic models, HEC-HMS is widely

used in industrial engineering purposes, which conceptualized physical bases towards

result-oriented simulation.

While implementing the pre-developed hydrologic simulation, the calibrated hy-

drologic models were restored to the original uncalibrated status for a comparison

purpose. During the restoration, the calibrated parameters were adjusted to default

values either from program manuals or authors personal suggestions. This may lead to

a varying restoration status of uncalibrated model performance depend on parameters

suggested. However, in this study, the main goal for the development of uncalibrated

hydrologic models is to compare model simulation/post-processing performance in a

qualitative sense. Thus, the detail of uncalibrated model development is not the main

focus in the study.

There is one thing should be aware of in the PRMS simulation of the Lehman

86

Creek watershed. According to Prudic, Sweetkind, Jackson, Dotson, Plume, Hatch,

and Halford (2015), during 2011 summer, the peak flow observation was under-

recorded due to the large overland flow bypassing the gauge station. The actual

peak flow rate should be as great as the peak flow rate in 2005, since the precip-

itation in these two years are comparable. However, the current calibrated PRMS

model was not able to capture the actual high peak flow but the observed peak flow.

Nevertheless, this results in a better fitness with observations instead of over esti-

mation and making the fitness evaluation in PRMS model and post-processor more

comparable.

4.2.6 Conclusion

In this section, a post-processor framework is proposed to improve the accuracy of

hydrologic models with a window size selection method embedded to solve the non-

stationary concern in hydrologic data. The proposed post-processor framework lever-

ages machine learning approaches to characterize the role that the model inputs play

in the model prediction errors so as to improve hydrologic model prediction results.

The proposed window size selection method enhances the performance of the pro-

posed framework when dealing with non-stationary data. The results of two different

hydrologic models show that the accuracy of calibrated hydrologic models can be

further improved; without efforts of the calibration, the results of uncalibrated hy-

drologic models using the proposed framework can be as accurate as the calibrated

ones by leveraging the proposed framework, which means that our proposed methods

are able to ease the traditional complex and time-consuming model calibration step.

4.3 Service 3: Nitrate Prediction Model

4.3.1 Overview

In this section, the nitrate prediction service is introduced. The key of this service

is to use an accurate nitrate prediction model. Instead of leveraging existing nitrate

87

prediction models, we built a model by ourselves. This is because most nitrate pre-

diction models are not very accurate based on our survey. Our collaborators from

University of Nevada, Reno Hydrology Department built the initial model and we

tuned the model parameters using genetic algorithms (GAs) [136].

4.3.2 Introduction

Nitrogen is a major nutrient that is essential for plant and animal growth. Although

nitrogen is often a limiting nutrient, an abundance of inorganic species such as ni-

trate (NO3) causes excessive growth among primary producers that often results in

low levels of dissolved oxygen, fish kills, toxic algal blooms, and toxicity to aquatic

organisms. [11, 88, 101]. Nutrient enrichment from nonpoint sources, such as fertilizer

runoff, was identified as one of the largest impairments to surface water quality in

the United States [36]. Daniel et al. suggest 70% of the fertilizers and feed applied to

farms in the US are either lost to soil storage or transported to surface or groundwa-

ter [24]. Additionally, sewage effluent, burning of fossil fuels, energy production, and

industrial activities also can lead to increased nitrate in the environment [5, 29, 106].

Nitrate is mobile in groundwater, and drinking nitrate contaminated water has been

linked to infant methemoglobinemia (MetHb), among other human health issues [54,

63]. For these reasons, it is critical to measure and predict nitrate loads in rivers to

better inform governmental and non-governmental agencies such as policy makers,

environmental groups, and water suppliers.

There are different models utilized by hydrologists to determine nitrate content in

water. These prediction models use other constituents present in water to predict the

NO3 content. The models mainly differ from each other in the number of constituents

they need to make the predictions. In this paper, an improved nonlinear prediction

model is developed by using a GA to predict the NO3 content in water. The proposed

model uses six constituents - organic nitrogen, orthophosphate, pH level, dissolved

oxygen, temperature, and discharge to make the predictions on NO3 content. The

model contains 12 parameters that need to be calibrated effectively to improve the

88

accuracy of the predictions. Due to the nonlinearity of the model, the calibration of

the model parameters is highly complex.

GA is powerful adaptive search techniques that use the concepts of natural se-

lection to mimic the process of biological evolution to efficiently solve optimization

problems [46]. When searching over a large multidimensional state space, GAs can

outperform conventional search techniques due to simplicity, effectiveness, versatil-

ity, and robustness of GA [75]. For the calibration of the proposed model, a GA was

found to be a feasible approach due to the following reasons: 1) the nonlinearity of the

model, 2) presence of many parameters, 3) vast search space, and 4) high possibility

of convergence towards optimal values for the parameters.

To evaluate the performance of the proposed approach we compared results from

the GA-tuned model with the prevalent environmental tool, LOADEST applied for

predicting nitrate loads in Hellbranch Run, which is a protected stream in central

Ohio [124]. LOADEST is a software tool offered by the United States Geological

Survey (USGS), and is widely used by hydrologists to estimate the constituent loads

[M/T] [102]. The results of the GA were compared with four other regression methods:

generalized linear regression, gradient boosted tree regression [41], random forest

regression [72], and decision tree regression [40].

4.3.3 Prior Work

Much research has been done to study how effectively nitrate content in water can

be predicted. Almasri et al. proposed the use of Modular Neural Networks (MNN)

to predict the nitrate distribution in water [2]. The MNN-based approach was simple

and economical. Although it could efficiently predict the distribution of nitrate con-

centration in water, its performance deteriorated drastically with noisy data due to

high sensitivity to errors in the input data. Yesilnacar et al. used an Artificial Neural

Networks (ANN)-based approach to predict the nitrate concentration in 24 observa-

tion wells in the Harran Plain, located in Turkey [138]. The developed model was

cost-effective and gave a satisfactory fit to the experimentally obtained nitrate data.

89

Poor et al. proposed the use of tree analysis to improve the predictions of low-flow

nitrate in Willamette River [98]. Although regression tree analysis greatly improved

the predictability compared to multiple linear regression, the results show that this

approach was highly inaccurate with smaller datasets and shows an inconsistent re-

lationship between nitrate and some other parameters. Arabgol et al. proposed the

use of Support Vector Machine (SVM) models in predicting the nitrate concentration

in ground water resources [4]. SVM models were fast, reliable and cost-effective. The

prediction accuracy of SVM was better than ANN. However, the prediction accuracy

of SVM models with noisy data has not yet been proven. To acquire more accurate

results, we proposed a numerical equation and tune the parameters with GA in this

paper.

The four objectives of our study are: 1) Use GA to optimize the parameters of the

nonlinear NO3 prediction model 2) Evaluate the performance of GA with the results

from LOADEST software. 3) Compare the performance of GA approach with four

other machine learning techniques such as gradient boosted tree regression, random

forest regression, decision tree regression and generalized linear regression. 4) Deal

with missing fields in the dataset and evaluate how it affects the prediction capability

of the model.

Our results show that our GA-based approach produced nitrate level predictions

that were closer to the observed values than LOADEST and statistically significantly

(t− test, p = 8.19 ∗ 10−47) different from LOADEST predications. Furthermore, the

GA-tuned model performed better than the four other estimation methods described

earlier. Therefore, using our proposed approach hydrologists can make more accurate

predictions of nitrate content in water.

4.3.4 Methodology

We used a GA with rank based selection. “Two-point crossover” was used as the

crossover technique, and “bit-wise mutation” was used as the mutation strategy. We

also compared the performance of rank based selection strategy with other prominent

90

selection techniques used in the GA. The results of the comparison between different

selection strategies are given in Section 4.3.5. The proposed NO3 prediction model

uses six constituents present in water to make predictions on the NO3 level. Or-

ganic nitrogen, orthophosphate, pH level, dissolved oxygen, temperature, and flow

rate (discharge) are the six constituents required by the model. The model main-

tains a nonlinear quadratic relationship with the various constituents and contains

12 parameters whose value lies in [-10.24,10.24]. The proposed model is represented

as below:

Ψ = a0 + a1 ∗ LnQ+ a2 ∗ (LnQ)2 + a3 ∗ sin(2 ∗ dtime) + a4 ∗ cos(2 ∗ dtime)+

a5 ∗ dtime+ a6 ∗ dtime2 + a7 ∗DO + a8 ∗ T + a9 ∗ON + a10 ∗OP + a11 ∗ TP
(4.18)

where Q denotes discharge; DO denotes dissolved oxygen; T denotes temperature;

ON denotes organic nitrogen; TP denotes pH level; OP denotes orthophosphate;

dtime (decimal time - center of decimal time); Ψ denotes nitrate load at dtime.

Decimal time (calculated as decimal years in LOADEST) is an important explanatory

variable for load modeling. In the LOADEST model, the third and fourth terms

represent a first-order Fourier series in dtime to capture seasonal variations and the

fifth and sixth terms in dtime are meant to capture linear and quadratic temporal

trends [11]. Decimal time is the decimal equivalent of the date and time. To convert

the date and time to its decimal equivalent, one year is represented as one revolution

around the unit circle. Therefore, the values within a year are converted to their

respective values between 0 and 2π. Center of decimal time is the average of all the

decimal equivalents for the entire time period.

The objective function in the GA for the estimation of optimal parameters (a0 to

a11) in the proposed nonlinear NO3 prediction model is taken as minimizing the mean

square root of sum of squares between the observed and predicted nitrate content in

91

water and is given by:

minRMSE =

√√√√ 1

n

n∑
i=1

(Pi − Ai)2 (4.19)

where Pi and Ai represent the predicted and observed values of nitrate content re-

spectively and n is the total number of observations. In GAs, the fitness function

often defined for the canonical GA. To meet this requirement, the fitness function is

represented as the reciprocal of the objective function. Therefore, the RMSE values

will be minimized on maximizing the fitness function.

A string length of 11 was chosen to represent each variable encoded as binary

digits. This is because the value of each variable lies in [-10.24, 10.24] and the precision

is 0.01, which means there are 211 possible numbers in total. Since there were 12

variables, from a0 to a11, the total chromosome length of the individual was 132. The

population size was chosen as 200 and the number of generations was fixed to 500.

A mutation probability (Pm) of .01 and a crossover probability (Pc) of 0.9 were used

in the GA to estimate the optimal values of the variables in the proposed nonlinear

nitrate prediction model. After many experiments were done, we found these chosen

GA parameters guarantee good results for this problem. The GA was ran 30 times

with different random seeds. The best (minimum) RMSE of the 30 runs was selected

as the solution to the problem.

There are some existing hydrologic tools or libraries that can predict NO3 con-

tent in water based on the available constituent details. However none of them can

guarantee accurate predictions. To evaluate the performance of the model, several

quality metrics were used. RMSE, percent bias (PBIAS), and Nash-Sutcliffe efficiency

(NSE) are some of the popular quantitative statistics used to perform the statistical

evaluation of model accuracy. These parameters have been introduced in Section 4.2.

The dataset used in the study was collected from the United States Survey for Big

Darby Creek Watershed in Ohio. The dataset comprised 435 water samples monitored

during the period of 20 years between December 1, 1996 and August 25, 2016. There

92

were two challenges faced with this dataset. 1) cleaning the data and 2) filling the

missing fields in the dataset. The dataset contains many constituent details that are

not relevant for the proposed model. Finding the required constituents information

and removal of unwanted constituent details from this USGS dataset was the first

challenge. Out of the 435 water samples, only 140 samples had the measurements for

all the constituents required by the model. For the remaining 235 samples, at least

one of the constituent readings were missing. Missing fields in dataset is a common

issue with environment data and researchers have employed various strategies to deal

with the problem; artificial neural networks, support vector machines, interpolation

or regression techniques, Bayesian approaches, and multiple imputations are a few

of them. However, for this experimental study, simple linear regression was used to

fill the missing fields. When using a deterministic linear regression approach it is

easy to pinpoint whether possible issues lie in the data or the GA approach. We

chose to include incomplete samples because we wanted to test if the linear regression

technique works well for this problem. It is very common that there are some missing

data in the real world environmental observations. Thus, these incomplete samples

can be very important to studies.

The proposed approach was compared with the results from LOADEST, which

is a prominent load estimation tool used by hydrologists. On specifying the input

constituents, LOADEST performs its own calibration and estimation procedures us-

ing several statistical estimation methods and forms a regression model to predict

the estimated constituent. Besides LOADEST, the results of the GA were compared

with four other machine learning techniques: generalized linear regression, gradient

boosted tree regression, decision tree regression, and random forest regression. Linear

regression is a popular modeling technique used to estimate values for an unknown

parameter [67]. The data for the known variables (features) are used to map a linear

relationship with the parameter to be estimated. Linear regression is not suited for

problems that maintain a nonlinear relationship between predicted parameter and

features. Generalized linear regression is more accurate than linear regression, as it

93

allows transform predictors and interactions [90]. Decision tree regression uses deci-

sion tree as the predictive model and is widely used in data classification research [93].

It breaks down data into smaller datasets by incrementally developing an associated

decision tree. Random forest regression is similar to decision tree regression, where

random forest regression uses multiple decision trees to improve the regression re-

sults [72]. Gradient boosted tree regression is another machine learning technique

that follows a stage-wise fashion to build an additive prediction model using the com-

bination of other predictive models [41]. It is a popular technique that is used by

Google and Yahoo for page ranking in search engine.

In the next section, we have done several experiments to compare the perfor-

mances of the introduced six methods and analyze the results.

4.3.5 Results and Analysis

We used three performance measurements (RMSE, PBIAS, and NSE) to compare the

six approaches. The six prediction methods are a generalized linear regression, gra-

dient boosted tree regression, random forest regression, decision tree regression, GA,

and LOADEST. LOADEST contains many methods and we chose the best results to

compare with other methods. We tested these methods with 30-fold cross-validation

and used 70% of the data for training and used 30% of the data for testing. Further-

more, the models have been run 30 times and the average values are used as the final

result. Some interesting phenomena are found from these results.

Table 4.5 displays our results from all six methods. From the table, it is clear

that the random forest regression has the lowest RMSE, which means this regression

method prediction is closest to the observed values. GA has the best PBIAS, which

shows that GA overestimates or underestimates at least compared to other methods.

The gradient boosted tree regression has the best NSE. This means the method is

more efficient and its prediction fits 1:1 line with the observed values. The GA is not

as good as other machine learning methods, but it is slightly better than LOADEST

based on RMSE and much better based on PBIAS and NSE. However, this does not

94

Table 4.5: Results of Different Techniques
Name of the method RMSE PBIAS NSE
Generalized linear regression 2.020 2.356 0.275
Gradient boosted tree regression 1.961 1.974 0.730
Random forest regression 1.894 1.808 0.587
Decision tree regression 1.953 2.250 0.551
GA 2.036 -0.801 0.376
LOADEST 2.890 59.958 -0.474

Table 4.6: Comparison of Different Selection Strategies
Selection strategy RMSE(Average of 30 runs)
Fitness proportionate selection 2.077
Truncation selection 2.925
Tournament selection 2.191
Rank based selection 2.036
Elitism 2.100

mean GA is less useful. The best result of the 30 GA model runs RMSE is only 2.036,

which is better than most other methods. This means GA can obtain good results

but it is not very robust.

Different selection strategies were tried to improve the execution of the genetic

algorithm. We compared the performance of rank based selection with other pop-

ular selection strategies such as truncation selection, fitness proportionate selection,

tournament selection, and elitism. For truncation selection, the candidate individuals

were sorted in the decreasing order of their fitness value, and the individuals were

picked from the first half of the population to generate offspring. To perform tour-

nament selection, a set of 40 individuals were randomly selected from the population

and the individual with the best fitness was chosen. To implement elitism, the fittest

25 individuals in the population were copied to the next generation and thus ensure

that the best chromosomes are not being lost during the evolution process. Table 4.6

shows the results obtained with different selection strategies. Among the five selection

strategies implemented, rank based selection performed the best, whereas truncation

selection was the worst.

Different years have different characteristics. Some years are very dry (droughts)

95

Figure 4.24: Comparison of the best (year 1996) and worst (year 1997) results.

96

Table 4.7: Results of T-TEST
Methods Names P-value T-value
GA vs LOADEST 8.19*10−47 1.648
GA vs random forest 0.026 1.648
GA vs generalized linear regression 0.102 1.648
GA vs decision tree 0.274 1.648
GA vs gradient boosted tree 0.486 1.648

Table 4.8: Means AND Variance
Methods Names Mean Variance
GA 2.458 4.250
LOADEST 4.082 11.585
Random forest 2.621 2.492
Generalized linear regression 2.545 1.279
Decision tree 2.515 3.536
Gradient boosted tree 2.461 4.317

and some years are very wet (floods). Even though the year information is built

in dtime in our fitness, the GA model performs different year by year. Figure 4.24

shows the best and worst results of year-wise comparison. This means that the year

information is not well-built in the current fitness function. We have run the GA

model with and without year information. The result shows that the year information

can improve the results (with year RMSE is 2.035 and without year RMSE is 2.145).

To prove that GA method is significantly different from the LOADEST estima-

tions, the one-tailed T-Test has been done and the p-value obtained was 8.19*10-47,

which shows that the predictions of these two methods are significantly different. Also

from Table 4.7, it is clear that even though some methods, such as gradient boosted

tree, have better RMSE and NSE, their T-Test values show that the predictions of

these methods were not significantly different from GA predictions. Therefore, it is

wrong to state that the performance of those techniques was superior to GA approach.

Table 4.8 contains more statistics results of the introduced methods.

Some other fitness functions were also tried. However, most of them did not

perform very well. For example, one of the fitness function is created with the as-

sumptions that the nitrate has non-linear quadratic relations with all the parameters.

97

Figure 4.25: Comparison of the results using original and filled data.

The results show that this assumption cannot guarantee good results for all the occa-

sions and, in most cases, it can lead to a worse result than the previously introduced

fitness functions. This experiment shows that professional knowledge of the target

problem is very necessary to build a good fitness function.

For all the experiments mentioned above, we used the original observed dataset

from USGS and filled the missing data gaps using linear regression. To test the

accuracy of data filling original dataset and the modified dataset. From Figure 4.25,

it is evident that the performance of GA deteriorated with the filled data values. Thus,

we could conclude that linear regression is not a reliable technique for filling missing

data fields in environmental datasets and could be replaced with other efficient data

filling techniques.

98

Figure 4.26: Comparison of the results using original and filled data.

Table 4.9: Parameter Estimates of Big Darby Creek Watershed USGS Dataset
Parameter GA LOADEST
a0 1.26 2.625
a1 -6.06 0.263
a2 3.15 -0.003
a3 0.72 0.695
a4 0.43 0.333
a5 -0.17 -0.036
a6 2.95 0.004
a7 -0.02 -0.151
a8 0 -0.100
a9 1.28 -0.034
a10 6.61 5.363
a11 -5.55 -1.714

99

Table 4.9 shows the parameter estimations of our GA model and LOADEST

model for the Big Darby Creek Watershed. Figure 4.26 compares the LOADEST

predications, GA predictions, and the observed data. Only two methods results are

shown in the graph because it is clearer than crowding all the results in a single graph.

From the comparisons, we can tell that GA predictions are closer to the observed than

the LOADEST predications. However, GA method generates some predictions below

zero and NO3 values cannot be negative. In the future, we plan to set some extra

rules to make predications more accurate, such as turn negative value into zero to

make the results more accurate.

4.3.6 Conclusion

In this section, we have proposed a GA method to calibrate the parameters of an

improved nonlinear hydrologic nitration prediction model. From RMSE, PBIAS, and

NSE, the GA method is better than LOADEST. GA predictions are significantly

different from the LOADEST predictions based on T-test p-value (< 0.001). We

have also used some other popular machine learning techniques (generalized linear

regression, gradient boosted tree regression, random forest regression, and decision

tree regression) to predict nitrate content with the same dataset. The results show

GA has the best PBIAS value than other methods. This means GA does least over-

estimates and underestimate compared with other six introduced methods. GAs best

results are as good as random forest regression predications based on RMSE.

100

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we have proposed a new framework for elastic server optimization

that changes a server size semi-automatically. It contains a queue model to estimate

queue lengths and waiting time. The model includes a schema for elastic scale hybrid

servers that are a combination of owned and rented servers. The experimental results

showed that our proposed approach was more stable than the traditional FIFO queue

model in regards to the average waiting time and the expected queue length. We

also proposed an improved compression and decompression algorithm, named GFC,

to increase data transportation speeds. The algorithm is used to improve the data

transportation between different nodes. Based on our experiment results, the im-

proved GFC is 8.7 times faster than the original algorithm. Three services were also

presented to prove the capabilities of the proposed framework. These three services

are: large dataset visualization and interaction, model accuracy enhancement, and a

nitrate prediction model. We proposed new solutions for each of these services. Ac-

cording to the experimental results, a large dataset can be visualized and interacted

with a much shorter delay; a hydrologic model accuracy can be improved and the

calibration step can be replaced with our proposed new methods; nitrate prediction

results can be more accurate than those obtained using LOADEST, one of the most

prevalent prediction tools currently available.

101

5.2 Future Work

The current prototype system can shut down the rented servers when they finish their

jobs to avoid unnecessary budget spending. However, the project manager still needs

to change the budget based on the user’s feedback. In the future, we plan to use

machine learning techniques to improve this part. We will also improve our current

queue model by specifying the virtual machine starting time, which is very important

in the real world.

Furthermore, we plan to use Hadoop with more nodes to improve the new work-

flow performance presented in Service 1. Also, we would like to use GPUs in each

of the nodes to further accelerate the server’s performance. As most of our collab-

orators in the past have been environmental scientists, they often utilize both CSV

and NetCDF files for most environmental readings. Therefore, we should improve

our system to support more scientific data file types, such as NetCDF.

Two case studies are described in Service 2 and we will examine the framework

with other models and study fields. Also, it is interesting to study the peak values

and better prediction algorithms for them in the future. The key idea is to separate

the peak values and then apply another model for them. Extreme-value-theory-based

methods are widely used to separate the peak values. However, the results are not very

accurate based on our experiments. Thus, we would like to develop better algorithms

in the future to address this problem.

For the nitrate model parameter calibrations introduced in Service 3, GA is not

perfect. From the experiments, it is clear that the year information is not well-built

into the model. In the future, we plan to modify our fitness function to improve the

“dtime”. Also, based on the results obtained, it is clear that data filling using linear

regression can make the predictions less accurate. This means the linear regression

method is not very good for this problem. Therefore, we plan to replace it with other

methods, such as neural networks and compare their performance. Last but not least,

we want to add some other useful limitations or customize some conditions to obtain

102

better results. For example, the predictions should always be positive, as they express

stream values.

103

Bibliography

[1] F. Aisopos, K. Tserpes, and T. Varvarigou. Resource management in soft-
ware as a service using the knapsack problem model. International Journal of
Production Economics, 142(2):465–477, 2011.

[2] M. N. Almasri and J. J. Kaluarachchi. Modular neural networks to predict the
nitrate distribution in ground water using the on-ground nitrogen loading and
recharge data. Environmental Modelling & Software, 20(7):851–871, 2005.

[3] K. M. Andreadis and D. P. Lettenmaier. Assimilating remotely sensed snow
observations into a macroscale hydrology model. Advances in Water Resources,
29(6):872–886, 2006.

[4] R. Arabgol, M. Sartaj, and K. Asghari. Predicting nitrate concentration and
its spatial distribution in groundwater resources using support vector machines
(svms) model. Environmental Modeling & Assessment, 21(1):71–82, 2016.

[5] B. Arheimer and R. Liden. Nitrogen and phosphorus concentrations from agri-
cultural catchmentsinfluence of spatial and temporal variables. Journal of Hy-
drology, 227(1-4):140–159, 2000.

[6] Microsoft Azure. Microsoft azure: cloud computing platform & service. url:
https://azure.microsoft.com/en- us/?wt.mc_id=AID529439_SEM_

YlMuLt4h & gclid = CjwKEAiA8JbEBRCz2szzhqrx7H8SJAC6FjXXjLdPe _ dzC1 -

AHXipf-Dd0_gLs2uUd_EIHVpqEw5msxoCdRLw_wcB. [Accessed on 8 April 2018].

[7] D. Basak, S. Pal, and D. C. Patranabis. Support vector regression. Neural
Information Processing-Letters and Reviews, 11(10):203–224, 2007.

[8] T. H. Bennett. Development and application of a continuous soil moisture
accounting algorithm for the hydrologic engineering center hydrologic modeling
system (hec-hms). Thesis (M.S.), University of California, Davis, 1998.

[9] T. H. Bennett and J. C. Peters. Continuous soil moisture accounting in the
hydrologic engineering center hydrologic modeling system (hec-hms). World
Environmental and Water Resources Congress., 8806(1):110, 2004.

[10] A. Bifet and R. Gavalda. Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM International Conference on Data
Mining, pages 443–448. SIAM, 2007.

https://azure.microsoft.com/en-us/?wt.mc_id=AID529439_SEM_YlMuLt4h&gclid=CjwKEAiA8JbEBRCz2szzhqrx7H8SJAC6FjXXjLdPe_dzC1-AHXipf-Dd0_gLs2uUd_EIHVpqEw5msxoCdRLw_wcB
https://azure.microsoft.com/en-us/?wt.mc_id=AID529439_SEM_YlMuLt4h&gclid=CjwKEAiA8JbEBRCz2szzhqrx7H8SJAC6FjXXjLdPe_dzC1-AHXipf-Dd0_gLs2uUd_EIHVpqEw5msxoCdRLw_wcB
https://azure.microsoft.com/en-us/?wt.mc_id=AID529439_SEM_YlMuLt4h&gclid=CjwKEAiA8JbEBRCz2szzhqrx7H8SJAC6FjXXjLdPe_dzC1-AHXipf-Dd0_gLs2uUd_EIHVpqEw5msxoCdRLw_wcB

104

[11] B. J. F. Biggs. Eutrophication of streams and rivers: dissolved nutrient-chlorophyll
relationships for benthic algae. Journal of the North American Benthological
Society, 19(1):17–31, 2000.

[12] A. Bouchachia. Fuzzy classification in dynamic environments. Soft Computing,
15(5):1009–1022, 2011.

[13] J.D. Brown and D.J. Seo. A nonparametric postprocessor for bias correction
of hydrometeorological and hydrologic ensemble forecasts. Journal of Hydrom-
eteorology, 11(3):642–665, 2010.

[14] J.D. Brown and D.J. Seo. Evaluation of a nonparametric postprocessor for bias
correction and uncertainty estimation of hydrologic predictions. Hydrological
Processes, 27(1):83–105, 2013.

[15] M. Burscher. Martin burscher/fpdouble. url: http://cs.txstate.edu/

~burtscher/research/datasets/FPdouble/. [Accessed on 8 April 2018].

[16] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual machine provisioning based
on analytical performance and qos in cloud computing environments. In 2011
international conference on Parallel processing (ICPP), pages 295–304. IEEE,
2011.

[17] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised
learning algorithms using different performance metrics. In Proceedings of 23
rd International Conference on Machine Learning (ICML06), pages 161–168,
2005.

[18] Southern Regional Climate Center. Southern regional climate center. 1998.
url: http://www.srcc.lsu.edu/srcc.html/. [Accessed on 8 April 2018].

[19] C. Chen, L. Fenstermaker, H. Stephen, and S. Ahmad. Distributed hydrological
modeling for a snow dominant watershed using a precipitation and runoff
modeling system. World Environmental and Water Resources Congress :2527–
2536, 2015.

[20] C. Chen, A. Kalra, and S. Ahmad. A conceptualized groundwater flow model
development for integration with surface hydrology model. World Environ-
mental and Water Resources Congress :175–187, 2017.

[21] R. L. Cloud, M. L. Curry, H. L. Ward, A. Skjellum, and P. Bangalore. Accel-
erating lossless data compression with gpus. arXiv preprint arXiv:1107.1525,
2011.

[22] Y. Collet. Lz4-extremely fast compression algorithm. url: https://code.
google.com/p/lz4/. [Accessed on 8 April 2018].

[23] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R., Simakov, E. Soroush,
P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D.
Maier, S. Madden, J. Patel, M. Stonebraker, and S. Zdonik. A demonstra-
tion of scidb: a science-oriented dbms. Proceedings of the VLDB Endowment,
2(2):1534–1537, 2009.

http://cs.txstate.edu/~burtscher/research/datasets/FPdouble/
http://cs.txstate.edu/~burtscher/research/datasets/FPdouble/
http://www.srcc.lsu.edu/srcc.html/
https://code.google.com/p/lz4/
https://code.google.com/p/lz4/

105

[24] T. C. Daniel, A. N. Sharpley, and J. L. Lemunyon. Agricultural phosphorus
and eutrophication: a symposium overview. Journal of Environmental Quality,
27(2):251–257, 1998.

[25] Docker. Docker-build,ship, and run any app, anywhere. url: https://www.
docker.com/. [Accessed on 8 April 2018].

[26] Docker. Docker swarm — docker. url: https://www.docker.com/products/
docker-swarm. [Accessed on 8 April 2018].

[27] P. Domingos. A few useful things to know about machine learning. Commu-
nications of the ACM, 55(10):78–87, 2012.

[28] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 71–80. ACM, 2000.

[29] C. T. Driscoll, G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan,
C. Eagar, K. F. Lambert, G. E. Likens, J. L. Stoddard, and K. C. Weathers.
Acidic deposition in the northeastern united states: sources and inputs, ecosys-
tem effects, and management strategies: the effects of acidic deposition in the
northeastern united states include the acidification of soil and water, which
stresses terrestrial and aquatic biota. AIBS Bulletin, 51(3):180–198, 2001.

[30] Q. Duan, J. Schaake, V. Andreassian, S. Franks, G. Goteti, H.V. Gupta, Y.M.
Gusev, F. Habets, A. Hall, L. Hay, and T. Hogue. Model parameter estimation
experiment (mopex): an overview of science strategy and major results from
the second and third workshops. Journal of Hydrology, 320(1):3–17, 2006.

[31] Q. Duan, S. Sorooshian, and V. Gupta. Effective and efficient global op-
timization for conceptual rainfallrunoff models. Water Resources Research,
28(4):1015–1031, 1992.

[32] Q. Duan, S. Sorooshian, and V.K. Gupta. Optimal use of the sce-ua global
optimization method for calibrating watershed models. Journal of Hydrology,
158(3):265–284, 1994.

[33] Dygraphs. Dygraphs.com. url: http://dygraphs.com/. [Accessed on 8 April
2018].

[34] A. Eirola. Lossless data compression on GPGPU architectures. arXiv preprint
arXiv:1109.2348, 2011.

[35] EPA Environmental Protection Agency. Environmental modeling — US EPA,
2017. url: https://www.epa.gov/modeling. [Accessed on 8 April 2018].

[36] EPA. National water quality inventory: Report to Congress. Technical report,
Washington, DC: Environmental Protection Agency, 2009.

[37] A. M. Fan and V. E. Steinberg. Health implications of nitrate and nitrite
in drinking water: an update on methemoglobinemia occurrence and repro-
ductive and developmental toxicity. Regulatory Toxicology and Pharmacology,
23(1):35–43, 1996.

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm
http://dygraphs.com/
https://www.epa.gov/modeling

106

[38] B. Figuerol, A. Carles, and M. R. Gavaldà. Adaptive parameter-free learning
from evolving data streams, 2009.

[39] Flask. Welcome — FLASK (a Python microframework). url: http://flask.
pocoo.org/. [Accessed on 8 April 2018].

[40] M. A. Friedl and C. E. Brodley. Decision tree classification of land cover from
remotely sensed data. Remote Sensing of Environment, 61(3):399–409, 1997.

[41] J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics :1189–1232, 2001.

[42] J. H. Friedman. On bias, variance, 0/1loss, and the curse-of-dimensionality.
Data mining and knowledge discovery., 1(1):55–77, 1997.

[43] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detec-
tion. In Brazilian Symposium on Artificial Intelligence, pages 286–295. Springer,
2004.

[44] Georgia. Agricultural research service hydrology laboratory. 2007. url: https:
//hrsl.ba.ars.usda.gov/wdc/ga.htm.

[45] B. Glahn, M. Peroutka, J. Wiedenfeld, J. Wagner, G. Zylstra, B. Schuknecht,
and B. Jackson. Mos uncertainty estimates in an ensemble framework. Monthly
Weather Review, 137(1):246–268, 2009.

[46] D. E. Goldberg and J. H. Holland. Genetic algorithms and machine learning.
Machine Learning, 3(2):95–99, 1988.

[47] T. Hashino, A. A. Bradley, and S. S. Schwartz. Evaluation of bias-correction
methods for ensemble streamflow volume forecasts. Hydrology and Earth Sys-
tem Sciences Discussions, 3:561594, 2006.

[48] T. Hastie, R. Tibshirani, and J. H. Friedman. Boosting and additive trees. The
Elements of Statistical Learning (2nd ed.) New York: Springer.:337384, 2009.

[49] L. E. Hay and M. Umemoto. Multiple-objective stepwise calibration using luca,
open-file report. US Geological Survey.:20061323, 2007.

[50] P. Holub, M. Šrom, M. Pulec, J. Matela, and M. Jirman. Gpu-accelerated
dxt and JPEG compression schemes for low-latency network transmissions of
hd, 2k, and 4k video. Future Generation Computer Systems, 29(8):1991–2006,
2013.

[51] M. Hossain, H. Munoz, R. Wu, E. Fritzinger, S. M. Dascalu, and F. C. Harris.
Becoming dataone tier-4 member node: Steps taken by the Nevada Research
Data Center. In Optimization of Electrical and Electronic Equipment (OPTIM)
& 2017 Intl Aegean Conference on Electrical Machines and Power Electronics
(ACEMP), 2017 International Conference on, pages 1089–1094. IEEE, 2017.

[52] M. Hossain, R. Wu, J. T. Painumkal, M. Kettouch, C. Luca, S. M. Dascalu,
and F. Harris. Web-service framework for environmental models. In Internet
Technologies and Applications (ITA), 2017, pages 104–109. IEEE, 2017.

http://flask.pocoo.org/
http://flask.pocoo.org/
https://hrsl.ba.ars.usda.gov/wdc/ga.htm
https://hrsl.ba.ars.usda.gov/wdc/ga.htm

107

[53] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen,
C. C. Tung, and H. H. Liu. The empirical mode decomposition and the hilbert
spectrum for nonlinear and non-stationary time series analysis. In Proceed-
ings of the Royal Society of London: Mathematical, Physical and Engineering
Sciences, volume 454 of number 1971, pages 903–995. The Royal Society, 1998.

[54] P. F. Hudak. Regional trends in nitrate content of Texas groundwater. Journal
of Hydrology, 228(1-2):37–47, 2000.

[55] J. D. Hunter. A 2d graphics environment. Computing in Science and Engi-
neering, 9(3):90–95, 2007.

[56] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast ac-
curacy. International Journal of Forecasting, 22(4):679–688, 2006.

[57] Google Inc. Statisticsyoutube. url: https://www.youtube.com/yt/press/
statistics.html. [Accessed on 8 April 2018].

[58] M. Jaiswal. Accelerating enhanced boyer-moore string matching algorithm on
multicore gpu for network security. International Journal of Computer Appli-
cations, 97(1), 2014.

[59] W. Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture
Notes on the Status of IEEE, 754(94720-1776):11, 1996.

[60] S. Karlin and J. McGregor. Many server queueing processes with poisson input
and exponential service times. Pacific J. Math, 8(1):87–118, 1958.

[61] R. Klinkenberg and T. Joachims. Detecting concept drift with support vector
machines. In ICML, pages 487–494, 2000.

[62] R. Klinkenberg and I. Renz. Adaptive information filtering: learning in the
presence of concept drifts. Learning for Text Categorization:33–40, 1998.

[63] L. Knobeloch, B. Salna, A. Hogan, J. Postle, and H. Anderson. Blue ba-
bies and nitrate-contaminated well water. Environmental Health Perspectives,
108(7):675, 2000.

[64] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In IJCAI, volume 14(2) of number 2, pages 1137–1145.
Stanford, CA, 1995.

[65] R. Krzysztofowicz and C.J. Maranzano. Bayesian system for probabilistic stage
transition forecasting. Journal of Hydrology, 299(1):15–44, 2004.

[66] Kubernetes. Kubernetes production grade container orchestration. url: https:
//kubernetes.io/. [Accessed on 8 April 2018].

[67] M. H. Kutner, C. Nachtsheim, and J. Neter. Applied linear regression models.
McGraw-Hill/Irwin, 2004.

[68] C. Lanquillon. Enhancing text classification to improve information filtering.
PhD thesis, Otto-von-Guericke-Universität Magdeburg, Universitätsbibliothek,
2001.

https://www.you tube.com/yt/press/statistics.html
https://www.you tube.com/yt/press/statistics.html
https://kubernetes.io/
https://kubernetes.io/

108

[69] D. Le-Gall. MPEG: a video compression standard for multimedia applications.
Communications of the ACM, 34(4):46–58, 1991.

[70] G. H. Leavesley, R. W. Lichty, B. M. Troutman, and L. G. Saindon. Precipitation-
runoff modeling system: User’s manual. USGS Washington, DC, 1983.

[71] Jo-J. Y. Lee S. and Y. Kim. Performance testing of web-based data visualiza-
tion. In 2014 IEEE International Conference on Systems, Man and Cybernetics
(SMC), pages 1648–1653. IEEE, 2014.

[72] A. Liaw and M. Wiener. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

[73] Y. Liu, W. Wang, Y. Hu, and W. Cui. Improving the distributed hydrological
model performance in upper huai river basin: using streamflow observations
to update the basin states via the ensemble kalman filter. Advances in Mete-
orology, 61(5):1–14, 2016.

[74] S. Loinel. Does a lot of if else statements slow down the code? url: https:
//software.intel.com/en-us/forums/topic/283268. [Accessed on 8 April
2018].

[75] C. B. Lucasius and G. Kateman. Understanding and using genetic algorithms
part 1. concepts, properties and context. Chemometrics and Intelligent Labo-
ratory Systems, 19(1):1–33, 1993.

[76] J. Luitjens and S. Rennich. CUDA warps and occupancy. GPU Computing
Webinar, 11:2–19, 2011.

[77] S. Madadgar, H. Moradkhani, and D. Garen. Towards improved postprocessing
of hydrologic forecast ensembles. Hydrological Processes, 28(1):104–122, 2014.

[78] J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and A. Halevy.
Web-scale data integration: you can only afford to pay as you go. In CIDR,
2007.

[79] D. Marks, J. Domingo, and J. Frew. Software tools for hydro-climatic modeling
and analysis: image processing workbench, ars-usgs version 2t. ARS Tech. Bull,
99(1), 1999.

[80] S. L. Markstrom, R. G. Niswonger, R. S. Regan, D. E. Prudic, and P. M.
Barlow. Gsflow coupled ground-water and surface-water flow model based on
the integration of the precipitation-runoff modeling system (PRMS) and the
modular ground-water flow model. Water-Resources Investigations Report.,
2005.

[81] S. L. Markstrom, R. S. Regan, L. E. Hay, R. J. Viger, R. M. Webb, R. A.
Payn, and J. H. LaFontaine. Prms-iv, the precipitation-runoff modeling sys-
tem, version 4. US Geological Survey Techniques and Methods :6–B7, 2015.

https://software.intel.com/en-us/forums/topic/283268
https://software.intel.com/en-us/forums/topic/283268

109

[82] S. L. Markstrom, S. Regan, L. E. Hay, R. J. Viger, R. M. T. Webb, R.
A. Payn, and J. H. LaFontaine. the Precipitation-Runoff Modeling System.
Version 4. U.S. Geological Survey Techniques and Methods, Book 6, Chap.
B7, http://doi.org/http://dx.doi.org/10.3133/tm6B7. Clarendon Press, 2015,
page 158.

[83] D. Marr. Hyper-threading technology in the netburst microarchitecture. 14th
Hot Chips, 2002.

[84] P. Mell and T. Grance. The NIST definition of cloud computing. National
Institute of Standards and Technology, 6(50):53, 2009.

[85] D. Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239):2, 2014.

[86] Apache Mesos. Apache mesos. url: http://mesos.apache.org/. [Accessed
on 8 April 2018].

[87] A. Montanari and A. Brath. A stochastic approach for assessing the uncer-
tainty of rainfallrunoff simulations. Water Resources Research, 40(1):W01106,
2004.

[88] R. B. Moore, C. M. Johnston, K. W. Robinson, and J. R. Deacon. Estima-
tion of total nitrogen and phosphorus in new england streams using spatially
referenced regression models. US Geological Survey Scientific Investigations
Report, 5012:1–42, 2004.

[89] J. Nelder and R Wedderburn. Generalized linear models. Journal of the Royal
Statistical Society, 135(3):370–384, 1972.

[90] John Ashworth Nelder and R Jacob Baker. Generalized linear models. Wiley
Online Library, 1972.

[91] NuDoq. Nudoq cudafy.net. url: http://www.nudoq.org/#!/Packages/
CUDAfy.NET/Cudafy.NET/IntegerIntrinsicsFunctions/M/clzll. [Ac-
cessed on 8 April 2018].

[92] J. S. Oakland. Statistical process control. Routledge, 2007.

[93] C. Olaru and L. Wehenkel. A complete fuzzy decision tree technique. Fuzzy
Sets and Systems, 138(2):221–254, 2003.

[94] M. A. O’Neil and M. Burtscher. Floating-point data compression at 75 gb/s on
a gpu. In Proceedings of the Fourth Workshop on General Purpose Processing
on Graphics Processing Units, page 7. ACM, 2011.

[95] J. Painumkal, R. Wu, S. Dascalu, and H. Frederick. Self-managed elastic scale
hybrid server using budget input and user feedback. Workshop on Feedback
Computing, 2017.

[96] L. Palathingal, R. Wu, R. Belkhatir, S. M. Dascalu, and F. Harris. Data pro-
cessing toolset for the virtual watershed. In Collaboration Technologies and
Systems (CTS), 2016 International Conference on, pages 281–287. IEEE, 2016.

http://mesos.apache.org/
http://www.nudoq. org/#!/Packages/CUDAfy.NET/Cudafy.NET/IntegerIntrinsicsFunctions/M/clzll
http://www.nudoq. org/#!/Packages/CUDAfy.NET/Cudafy.NET/IntegerIntrinsicsFunctions/M/clzll

110

[97] F. Perez-Sorrosal, M. P. Martinez, R. Jimenez-Peris, and B. Kemme. Elastic si-
cache: consistent and scalable caching in multi-tier architectures. International
Journal of Production Economics, 20(6):841–865, 2011.

[98] C. J. Poor and J. L. Ullman. Using regression tree analysis to improve pre-
dictions of low-flow nitrate and chloride in willamette river basin watersheds.
Environmental Management, 46(5):771–780, 2010.

[99] D. E. Prudic, D. S. Sweetkind, T. L. Jackson, K. E. Dotson, R. W. Plume,
C. E. Hatch, and K. J. Halford. Evaluating connection of aquifers to springs
and streams. Eastern Part of Great Basin National Park and Vicinity, Nevada
2015.

[100] Python. Python data analysis librarypandas. url: http://pandas.pydata.
org/. [Accessed on 8 April 2018].

[101] A. C. Redfield. The biological control of chemical factors in the environment.
American Scientist, 46(3):230A–221, 1958.

[102] R. L. Runkel, C. G. Crawford, and T. A. Cohn. Load Estimator (LOADEST):
A FORTRAN program for estimating constituent loads in streams and rivers.
Technical report, 2004.

[103] A. Safari and F. De Smedt. Improving the confidence in hydrologic model
calibration and prediction by transformation of model residuals. Journal of
Hydrologic Engineering, 20(9):04015001, 2015.

[104] W. A. Scharffenberg and M. J. Fleming. Hydrologic modeling system hec-hms:
user’s manual. US Army Corps of Engineers, Hydrologic Engineering Center.,
2006.

[105] F.C. Schweppe. Uncertain dynamic systems. Prentice-Hall, 1973, page 576.

[106] SP Seitzinger, GP Asner, CC Cleveland, PA Green, EA Holland, DM Karl, AF
Michaels, J. H. Porter, A. R. Townsend, and C. J. Vorosmarty. Nitrogen cycles:
past, present, and future. biogeochemistry 70: 153226gan hj, zak dr, hunter md
(2013) chronic nitrogen deposition alters the structure and function of detrital
food webs in a northern hardwood ecosystem. Ecol Appl, 23:13111321, 2004.

[107] D. J. Seo, H. D. Herr, and J. C. Schaake. A statistical post-processor for
accounting of hydrologic uncertainty in short-range ensemble streamflow pre-
diction. Hydrology and Earth System Sciences Discussions, 3(4):1987–2035,
2006.

[108] Amazon Web Service. Aws — auto scaling. url: https://aws.amazon.com/
autoscaling/. [Accessed on 8 April 2018].

[109] Amazon Web Services. Netflix case study. url: https://aws.amazon.com/
solutions/case-studies/netflix/. [Accessed on 8 February 2017].

[110] Expedia Web Services. Netflix case study. url: https://aws.amazon.com/
solutions/case-studies/expedia/. [Accessed on 8 February 2017].

http://pandas.pydata.org/
http://pandas.pydata.org/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/solutions/case-studies/netflix/
https://aws.amazon.com/solutions/case-studies/netflix/
https://aws.amazon.com/solutions/case-studies/expedia/
https://aws.amazon.com/solutions/case-studies/expedia/

111

[111] K. Sierra and B. Bates. Head first java. ”O’Reilly Media, Inc.”, 2005.

[112] B. E. Skahill, J. S. Baggett, S. Frankenstein, and C. W. Downer. More ef-
ficient pest compatible model independent model calibration. Environmental
Modelling & Software, 24(4):517–529, 2009.

[113] A. G. Slater and M. P. Clark. Snow data assimilation via an ensemble kalman
filter. Journal of Hydrometeorology, 7(3):478–493, 2006.

[114] Apache Spark. Spark programming guide - spark 2.2.0 document, 2017. url:
https://spark.apache.org/docs/latest/rdd-programming-guide.html#

resilient-distributed-datasets-rdds. [Accessed on 9 April 2018].

[115] A. K. Srivastava, M. Rajeevan, and S. R. Kshirsagar. Development of a high
resolution daily gridded temperature data set (19692005) for the indian region.
Atmospheric Science Letters, 10(4):249–254, 2009.

[116] M. Stonebraker, J. Becla, D. J. DeWitt, K. Lim, D. Maier, O. Ratzesberger,
and S. B. Zdonik. Requirements for science data bases and SciDB. In CIDR,
volume 7, pages 173–184, 2009.

[117] Study of Lehman Creek watersheds hydrologic response to climate change us-
ing downscaled cmip5 projections. World Environmental and Water Resources
Congress :508517, 2016.

[118] R.S. Sutton. Learning to predict by the methods of temporal differences. Ma-
chine Learning, 3(1):9–44, 1988.

[119] Stanford University. Fortran 77 tutorial. url: https://web.stanford.edu/
class/me200c/tutorial_77/. [Accessed on 8 April 2018].

[120] USDA. Agricultural research service hydrology laboratory. 1997. url: http:
//hydrolab.arsusda.gov/.

[121] USGS. Usgs.gov — science for a changing world, 2017. url: https://www.
usgs.gov/. [Accessed on 8 April 2018].

[122] P. Vagata. and K. Wilfong. Scaling the facebook data warehouse to 300 pb.
url: https://code.facebook.com/posts/229861827208629/scaling-

the-facebook-data-warehouse-to-300-pb/. [Accessed on 8 April 2018].

[123] J. M. Volk. Potential effects of a warming climate on water resources within
the lehman and baker creek drainages. Great Basin National Park, Nevada.,
2014.

[124] J. M. Volk. Spatial and temporal variations of water quality in hellbranch run:
a historical perspective. Senior Honors Thesis, 2011.

[125] G. K. Wallace. The JPEG still picture compression standard. IEEE Transac-
tions on Consumer Electronics, 38(1):xviii–xxxiv, 1992.

[126] Q. J. Wang, D. L. Shrestha, D. E. Robertson, and P. Pokhrel. A logsinh trans-
formation for data normalization and variance stabilization. Water Resources
Research, 48(5), 2012.

https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://web.stanford.edu/class/me200c/tutorial_77/
https://web.stanford.edu/class/me200c/tutorial_77/
http://hydrolab.arsusda.gov/
http://hydrolab.arsusda.gov/
https://www.usgs.gov/
https://www.usgs.gov/
https://code.facebook.com/posts/ 229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/ 229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/

112

[127] Q. J. Wang, D. L. Shrestha, D. E. Robertson, and P. Pokhrel. An analysis
of transformations. Journal of the Royal Statistical Society Series B (Method-
ological):211–252, 1964.

[128] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101, 1996.

[129] A. W. Wood and D. P. Lettenmaier. A test bed for new seasonal hydrologic
forecasting approaches in the western united states. Bulletin of the American
Meteorological Society, 87(12):1699–1712, 2006.

[130] J. P. Wu and S. Wei. Time series analysis. Hunan Science and Technology
Press, ChangSha, 1989.

[131] R. Wu. Environment for Large Data Processing and Visualization Using Mon-
goDB. University of Nevada, Reno, 2015.

[132] R. Wu, C. Chen, S. Ahmad, J. Volk, C. Luca, F. Harris, and S. M. Dascalu.
A real-time web-based wildfire simulation system. In Industrial Electronics
Society, IECON 2016-42nd Annual Conference of the IEEE, pages 4964–4969.
IEEE, 2016.

[133] R. Wu, S. Dascalu, and F. Harris. Environment for datasets processing and
visualization using scidb. In the 24th International Conference on Software
Engineering and Data Engineering (SEDE 2015), pages 223–229, 2015.

[134] R. Wu and J. T. Painumkal. Model accuracy improvement system. url: https:
//github.com/ruiwu1990/machine_learning_prms_accuracy. [Accessed
on 8 April 2018].

[135] R. Wu, J. T. Painumkal, N. Randhawa, L. Palathingal, S. Hiibel, S. M. Das-
calu, and F. Harris. A new workflow to interact with and visualize big data
for web applications. In Collaboration Technologies and Systems (CTS), 2016
International Conference on, pages 302–309. IEEE, 2016.

[136] R. Wu, J. T. Painumkal, J. Volk, S. Liu, S. J. Louis, S. Tyler, S. M. Dascalu,
and F. Harris. Parameter estimation of nonlinear nitrate prediction model
using genetic algorithm. In Evolutionary Computation (CEC), 2017 IEEE
Congress on, pages 1893–1899. IEEE, 2017.

[137] A. Ye, Q. Duan, X. Yuan, E.F. Wood, and J. Schaake. Hydrologic post-
processing of mopex streamflow simulations. Journal of Hydrology, 508:147–
156, 2014.

[138] M. I. Yesilnacar, E. Sahinkaya, M. Naz, and B. Ozkaya. Neural network predic-
tion of nitrate in groundwater of harran plain, turkey. Environmental Geology,
56(1):19–25, 2008.

[139] L. Zhao, Q. Duan, J. Schaake, A. Ye, and J. Xia. A hydrologic post-processor
for ensemble streamflow predictions. Advances in Geosciences, 29:51–59, 2011.

https://github.com/ruiwu1990/machine_learning_prms_accuracy
https://github.com/ruiwu1990/machine_learning_prms_accuracy

113

[140] Q. Zhu and G. Agrawal. Resource provisioning with budget constraints for
adaptive applications in cloud environments. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, pages 304–
307. ACM, 2010.

[141] Apache Zookeeper. Apache zookeeper - home. url: https://zookeeper.

apache.org/. [Accessed on 8 April 2018].

https://zookeeper.apache.org/
https://zookeeper.apache.org/

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction and Background
	Overview
	Service Provisioning
	Elastic Server
	Dissertation Structure

	Related Work
	Optimization of Elastic Servers
	Overview
	Queue Master
	Server Master
	Servers
	Feedback Collector
	Survey
	Sentiment Analysis
	Other Possible Methods

	Rule Manager
	Data Transportation Optimization
	Original GFC Algorithm
	Improved GFC Algorithm
	Experiments and Result Analysis

	Services
	Service 1: Large Datasets Visualization and Interaction
	Overview
	Motivation
	Proposed Visualization and Interaction Workflow
	Prototype Service
	Results
	Conclusion

	Service 2: Model Accuracy Enhancement
	Overview
	Introduction
	Modeling Error Learning Based Post-processor Framework
	Results and Analysis
	Discussion
	Conclusion

	Service 3: Nitrate Prediction Model
	Overview
	Introduction
	Prior Work
	Methodology
	Results and Analysis
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

