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Abstract

In the past few decades, there has been tremendous growth in the scale and
complexity of biological data generated by emerging high-throughput biotechnologies,
including gene expression data generated by microarray technology. High-throughput
gene expression data may contain gene expression measurements of thousands or
millions of genes in a single data set, and provide us opportunities to explore the cell
on a genome wide scale. Finding patterns in genomic data is a very important task
in bioinformatics research and biomedical applications. Many clustering algorithms
have been applied to gene expression data to find patterns. Nonetheless, there are
still a number of challenges for clustering gene expression data because of the specific
characteristics of such data and the special requirements from the domain of biology.
Data noise and data high dimensionality are among the top challenges.

In this dissertation, we propose a novel fuzzy cluster ensemble methodology which
is effective and efficient in addressing the data noise and data high dimensionality
challenges. It consists of an improved fuzzy clustering approach with different initial-
izations as its base clusterings in order to reduce the impact of noises and improve
accuracy and stability in general. The improved fuzzy clustering approach uses new
weighted fuzzy techniques in computing cluster centers and assigning feature vectors,
to avoid or alleviate the effects of noise.

We conducted extensive experiments for our methodology on both real cancer
gene expression data sets and synthetic noisy data sets created by introducing different
percentages of artificial noise to real cancer gene expression data sets. We chose
an external clustering validity measure for evaluating domain meaningfulness. For
experiments on real cancer gene expression data sets, the results were evaluated using
comparisons with numerous benchmark clustering and cluster ensemble algorithms.
We also conducted parameter analysis on various parameters with different settings,
complexity analysis on time cost and space cost, and noise robustness analysis on
synthetic noisy data sets. The results from real cancer gene expression data sets

have proved to be biologically and medically meaningful. Our methodology is the top



i

performer on three of the eight data sets, more than any other methods evaluated,
and it performs well on most of the other data sets. Additionally, our methodology
have proved to be stable with varying parameter settings. For complexity analysis on
time cost and space cost, it is computational efficient and scalable to high dimensional
data sets. For noise robustness analysis experiments, the results have proved to be

robust against highly noisy data.
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