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Abstract

In the past few decades, there has been tremendous growth in the scale and

complexity of biological data generated by emerging high-throughput biotechnologies,

including gene expression data generated by microarray technology. High-throughput

gene expression data may contain gene expression measurements of thousands or

millions of genes in a single data set, and provide us opportunities to explore the cell

on a genome wide scale. Finding patterns in genomic data is a very important task

in bioinformatics research and biomedical applications. Many clustering algorithms

have been applied to gene expression data to find patterns. Nonetheless, there are

still a number of challenges for clustering gene expression data because of the specific

characteristics of such data and the special requirements from the domain of biology.

Data noise and data high dimensionality are among the top challenges.

In this dissertation, we propose a novel fuzzy cluster ensemble methodology which

is effective and efficient in addressing the data noise and data high dimensionality

challenges. It consists of an improved fuzzy clustering approach with different initial-

izations as its base clusterings in order to reduce the impact of noises and improve

accuracy and stability in general. The improved fuzzy clustering approach uses new

weighted fuzzy techniques in computing cluster centers and assigning feature vectors,

to avoid or alleviate the effects of noise.

We conducted extensive experiments for our methodology on both real cancer

gene expression data sets and synthetic noisy data sets created by introducing different

percentages of artificial noise to real cancer gene expression data sets. We chose

an external clustering validity measure for evaluating domain meaningfulness. For

experiments on real cancer gene expression data sets, the results were evaluated using

comparisons with numerous benchmark clustering and cluster ensemble algorithms.

We also conducted parameter analysis on various parameters with different settings,

complexity analysis on time cost and space cost, and noise robustness analysis on

synthetic noisy data sets. The results from real cancer gene expression data sets

have proved to be biologically and medically meaningful. Our methodology is the top
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performer on three of the eight data sets, more than any other methods evaluated,

and it performs well on most of the other data sets. Additionally, our methodology

have proved to be stable with varying parameter settings. For complexity analysis on

time cost and space cost, it is computational efficient and scalable to high dimensional

data sets. For noise robustness analysis experiments, the results have proved to be

robust against highly noisy data.



iii

Dedication

For my beloved family and all the people who have inspired me and supported me.



iv

Acknowledgments

I would like to express great appreciation to all the people who supported and

helped me tremendously during my study.

First of all, I would like to thank my advisor Dr. Frederick C. Harris, Jr. Over

the years, I have been very grateful for having his continuous knowledgeable and

experienced guidance, as well as his kind support with patience and a warm heart.

He has been so encouraging and helpful in so many ways, especially during challenging

times. I am truly feeling grateful to have such a supportive advisor. My special thanks

to Ms. Cindy Harris for meticulously reading and editing a very long paper of mine.

She is so kind and really generous.

I would like to thank my committee members, Dr. Sergiu Dascalu, Dr. Dwight

Egbert, Dr. Ania Panorska, Dr. Yantao Shen, and Dr. Tin Nguyen, for their valuable

time and invaluable feedback not only on my proposal and dissertation, but also on

research papers. I would like to thank my M.S. Thesis advisor Dr. Carl Looney for his

knowledgeable and experienced guidance as well as kind support till his retirement.

They are among the most helpful and supportive.

I would like to thank other faculty members and staff in the Computer Science

and Engineering Department for being always helpful and promptly supportive in

various areas during the course of my studies.

I would like to thank my family for all their unconditional love, encouragement,

and support in my pursuits during the long journey. I would also like to thank my

friends for their generous support and help along the way.



v

Contents

Abstract i

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Clustering and Bioinformatics . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Literature Review 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Partitioning Clustering . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Graph-based Clustering . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Distribution-based Clustering . . . . . . . . . . . . . . . . . . 20

2.2.5 Density-based Clustering . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Grid-based Clustering . . . . . . . . . . . . . . . . . . . . . . 23

2.2.7 Clustering High Dimensional Data . . . . . . . . . . . . . . . 24

2.2.8 Other Clustering Techniques . . . . . . . . . . . . . . . . . . . 27

2.3 Applications of Clustering in Cancer Subtyping . . . . . . . . . . . . 35

2.3.1 Clinical Applications . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Computational Experiments . . . . . . . . . . . . . . . . . . . 41

2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Clinical Challenges . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 Computational Challenges . . . . . . . . . . . . . . . . . . . . 45

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Improved Fuzzy Cluster Ensemble Methodology 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vi

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Noise Robustness Problem . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Fuzzy Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Improved Fuzzy Clustering Algorithm . . . . . . . . . . . . . . . . . . 57

3.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 High Level Algorithm and Flowchart . . . . . . . . . . . . . . 62

3.5.3 Iris Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Improved Fuzzy Cluster Ensemble Algorithm . . . . . . . . . . . . . . 67

3.6.1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.2 Ensemble Generation . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.3 Ensemble Consensus . . . . . . . . . . . . . . . . . . . . . . . 69

4 Experimental Results 70

4.1 Experiment Design and Settings . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Cancer Gene Expression Data Sets . . . . . . . . . . . . . . . 70

4.1.2 Comparable Clustering Algorithms . . . . . . . . . . . . . . . 73

4.1.3 Validity Measure . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.4 Number of Clusters . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Validity Measure Comparison . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 N (number of clustering runs) . . . . . . . . . . . . . . . . . . 82

4.3.2 IMT (initial merging threshold) . . . . . . . . . . . . . . . . . 83

4.3.3 M (ensemble size) . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Noise Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Synthetic Noisy Data Sets . . . . . . . . . . . . . . . . . . . . 88

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Conclusions and Future Work 91
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 97



vii

List of Figures

1.1 Bioinformatics and related disciplines [267] . . . . . . . . . . . . . . . 2

1.2 Bioinformatics applications [191] . . . . . . . . . . . . . . . . . . . . . 2

1.3 Clustering in bioinformatics [184] . . . . . . . . . . . . . . . . . . . . 3

2.1 An example of hierarchical clustering applied on gene expression data.
In this example, the rows represent the genes while the columns rep-
resent different samples. The expression values are color coded (from
red to green). The hierarchical clustering are performed on both rows
(genes) and columns (samples). . . . . . . . . . . . . . . . . . . . . . 16

2.2 An example of k-means based clustering [208] on a lung cancer dataset [122].
The data shown in the space of the first three principal components.
Different colors represent different clusters. . . . . . . . . . . . . . . . 19

3.1 Data and signal [256] . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Data and noise [255] . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Fuzzy logic [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Fuzzy logic examples [245] . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Fuzzy membership [224] . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Parameterized fuzzy membership functions [229] . . . . . . . . . . . . 57

3.7 Sigmoid fuzzy membership functions [229] . . . . . . . . . . . . . . . 58

3.8 Left-Right(L-R) fuzzy membership functions [229] . . . . . . . . . . . 58

3.9 Gaussian fuzzy set membership function [3] . . . . . . . . . . . . . . . 59

3.10 Modified weighted fuzzy expected value [174] . . . . . . . . . . . . . . 60

3.11 An example of cluster merging [137] . . . . . . . . . . . . . . . . . . . 62

3.12 Flowchart of IFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.13 Petal and sepal of Iris flower [268] . . . . . . . . . . . . . . . . . . . . 66

3.14 Three species of Iris flower [213] . . . . . . . . . . . . . . . . . . . . . 66

3.15 Spectramap biplot of Fisher’s Iris data set [192] . . . . . . . . . . . . 67

3.16 MWFEV centers of the four Iris features [174] . . . . . . . . . . . . . 67

3.17 IFCE (adapted from [264]) . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Common external validity measures [242] . . . . . . . . . . . . . . . . 75



viii

4.2 Common internal validity measures [242] . . . . . . . . . . . . . . . . 75

4.3 Common relative validity measures [242] . . . . . . . . . . . . . . . . 76

4.4 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM across eight real cancer gene expres-
sion data sets over 50 runs of each algorithm. CA results of MULTI-K,
CCHC, GCC, CSPA, HGPA, MCLA, SL, CL, AL, and KM are adopted
from the study of Iam-on et al. (supplementary data) [124]. . . . . . 78

4.5 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Golub1999v1 over 50
runs of each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, and KM are adopted from the study of
Iam-on et al. (supplementary data) [124]. . . . . . . . . . . . . . . . . 79

4.6 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Golub1999v2 over 50
runs of each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, and KM are adopted from the study of
Iam-on et al. (supplementary data) [124]. . . . . . . . . . . . . . . . . 79

4.7 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Armstrong2002 over 50
runs of each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, and KM are adopted from the study of
Iam-on et al. (supplementary data) [124]. . . . . . . . . . . . . . . . . 79

4.8 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Chowdary2006 over 50
runs of each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, and KM are adopted from the study of
Iam-on et al. (supplementary data) [124]. . . . . . . . . . . . . . . . . 80

4.9 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Nutt2003 over 50 runs of
each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA,
MCLA, SL, CL, AL, and KM are adopted from the study of Iam-on et
al. (supplementary data) [124]. . . . . . . . . . . . . . . . . . . . . . 80

4.10 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Pomeroy2002 over 50
runs of each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, and KM are adopted from the study of
Iam-on et al. (supplementary data) [124]. . . . . . . . . . . . . . . . . 80

4.11 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Chen2002 over 50 runs of
each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA,
MCLA, SL, CL, AL, and KM are adopted from the study of Iam-on et
al. (supplementary data) [124]. . . . . . . . . . . . . . . . . . . . . . 81

4.12 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Khan2001 over 50 runs of
each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA,
MCLA, SL, CL, AL, and KM are adopted from the study of Iam-on et
al. (supplementary data) [124]. . . . . . . . . . . . . . . . . . . . . . 81



ix

4.13 CA of IFCE on Chowdary2006 and Chen2002 with N (number of clus-
tering runs) = 1, 5, 50, 100, 200. . . . . . . . . . . . . . . . . . . . . 83

4.14 Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with N
(number of clustering runs) = 1, 5, 50, 100, 200. . . . . . . . . . . . . 84

4.15 CA of IFCE on Chowdary2006 and Chen2002 with IMT (initial merg-
ing threshold) = 1.0, 2.0, 3.0, 4.0. . . . . . . . . . . . . . . . . . . . . 85

4.16 Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with IMT
(initial merging threshold) = 1.0, 2.0, 3.0, 4.0. . . . . . . . . . . . . . 85

4.17 CA of IFCE on Chowdary2006 and Chen2002 with M (ensemble size)
= 3, 7, 11, 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.18 Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with M
(ensemble size) = 3, 7, 11, 21. . . . . . . . . . . . . . . . . . . . . . . 87

4.19 Noise Robustness with artificial noise% = 0%, 10%, 20%, 30%, 40%,
50% added to Chowdary2006 and Chen2002. . . . . . . . . . . . . . . 90



x

List of Tables

3.1 Fuzzy membership functions . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Cancer gene expression data sets . . . . . . . . . . . . . . . . . . . . 73

4.2 Comparable clustering algorithms . . . . . . . . . . . . . . . . . . . 74

4.3 Comparable cluster ensemble algorithms . . . . . . . . . . . . . . . . 74

4.4 CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM across eight real cancer gene expres-
sion data sets over 50 runs of each algorithm. CA results of MULTI-K,
CCHC, GCC, CSPA, HGPA, MCLA, SL, CL, AL, and KM are adopted
from the study of Iam-on et al. (supplementary data) [124]. . . . . . 77

4.5 CA of IFCE on Chowdary2006 and Chen2002 with N (number of clus-
tering runs) = 1, 5, 50, 100, 200. . . . . . . . . . . . . . . . . . . . . 82

4.6 Run Time (sec.) of IFCE on Chowdary2006 and Chen2002 with N
(number of clustering runs) = 1, 5, 50, 100, 200. . . . . . . . . . . . . 83

4.7 CA of IFCE on Chowdary2006 and Chen2002 with IMT(initial merging
threshold) = 1.0, 2.0, 3.0, 4.0. . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with
IMT(initial merging threshold) = 1.0, 2.0, 3.0, 4.0. . . . . . . . . . . 84

4.9 CA of IFCE on Chowdary2006 and Chen2002 with M(ensemble size)
= 3, 7, 11, 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.10 Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with
M(ensemble size) = 3, 7, 11, 21. . . . . . . . . . . . . . . . . . . . . . 86

4.11 Synthetic noisy data sets created by adding artificial noise% = 0%,
10%, 20%, 30%, 40%, 50% to Chowdary2006 . . . . . . . . . . . . . . 89

4.12 Synthetic noisy data sets created by adding artificial noise% = 0%,
10%, 20%, 30%, 40%, 50% to Chen2002 . . . . . . . . . . . . . . . . . 89

4.13 Noise Robustness with artificial noise% = 0%, 10%, 20%, 30%, 40%,
50% added to Chowdary2006 and Chen2002. . . . . . . . . . . . . . . 89



1

Chapter 1

Introduction

1.1 Clustering and Bioinformatics

Bioinformatics is a relatively new and fast growing field that uses computational

methods to solve biology problems. Its primary goal is to increase our understanding

of biological processes by developing and applying computationally intensive tech-

niques [209]. A working definition of Bioinformatics provided by the Biomedical

Information Science and Technology Initiative Consortium (BISTIC) of the US Na-

tional Institutes of Health (NIH) is ’Research, development, or application of compu-

tational tools and approaches for expanding the use of biological, medical, behavioral

or health data, including those to acquire, store, organize, archive, analyze, or visu-

alize such data’ [247]. Figure 1.1 shows various disciplines involved in bioinformatics.

Figure 1.2 shows applications of bioinformatics tools in various areas of biological

sciences. Figure 1.3 shows an example of clustering in bioinformatics.

The rapid development of biological technologies in the past few decades lead

to the exponential growth of the amount of biological data, including genomic data

and gene expression data [132]. Such enormous amount of biological data raises a

main challenge in bioinformatics: how to intelligently extract useful information from

these data. Solving this challenge requires developing of tools and methods capable

of transforming all these heterogeneous data into biological knowledge [160]. Such

biological knowledge include: time and place of gene expression during development,

and physiological response and disease. Traditional gene-by-gene approaches are not



2

Figure 1.1: Bioinformatics and related disciplines [267]

Figure 1.2: Bioinformatics applications [191]
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Figure 1.3: Clustering in bioinformatics [184]

sufficient [132] or practical anymore. High throughput analysis methods such as

machine learning techniques are increasingly being utilized to address problems in

bioinformatics, and they are producing promising results.

Gene expression is a process through which the coded information of a gene

is converted into structures that operate in the cell [249]. Expressed genes include

genes transcribed into mRNAs and then translated into protein. It also include genes

transcribed into RNA but not translated into protein such as tRNAs and rRNAs [135,

195]. Traditional genomic research focuses on the local examination and collection of

data on single genes [132]. Modern microarray technology can measure the expression

levels of thousands of genes at the same time [226]. DNA microarrays usually consist

of thin glass or nylon substrates containing specific DNA gene samples spotted in an

array by a robotic printing device [119]. After fluorescently labeled mRNA from an

experimental condition are spread onto the array, they binds or hybridizes strongly

with some DNA gene samples but weakly with others depending on the inherent

double helical characteristics. The array and sensors are scanned by a laser to detect
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the fluorescence levels using red and green dyes. Such fluorescence levels indicate how

strong each gene expresses in such experimental condition. The logarithmic ratio of

the intensity of each dye is used as the gene expression value [118].

The gene expression data obtained from a scanning process contains noise. There

are multiple steps to obtain microarray data, due to several system or design issues

each step may introduce noise. The noise can come from five phases of data ac-

quisition: microarray manufacturing, preparation of mRNA from biological samples,

hybridization, scanning, and imaging [49]. And they can be classified into three major

categories: 1) biological. cells from different populations, tissues, conditions, etc. 2)

experimental. defects of the spotting equipment, different hybridization conditions

and dyes, different methods to make the arrays, to culture the cells, to extract mRNA,

etc. 3) processing. errors related to numerical values collection such as fluorescence

scanning, image analysis, and intensity readout [299]. In general, biologic variation

is the major source of variation in gene expression experiments. Noise can obscure

or mislead the underlying biological meanings, which is an important reason why

statistical tools are used to analyze microarray data since they can take the noise or

variations into account. The noise may obscure clustering results especially in those

approaches based on distance functions. Despite many pre-processing techniques can

be utilized to address the noise problem, such as preforming a logarithmic transforma-

tion of each expression level or standardizing the gene expression matrix with a mean

of zero and a variance of one, noise problem remains challenging in bioinformatics

applications [132].

Clustering is the task of assigning a set of objects into groups or clusters, so

that the objects in the same cluster are more similar to each other than to those

in other clusters [106]. Clustering is a type of unsupervised learning, which means

that it does not need predetermined labels and training data set during the learning

process. Clustering has a long history, tracing back to Aristotle, and has been studied

extensively since the 18th century [115]. It has a wide range of applications in natural

sciences, engineering, economics, marketing, medicine, psychology, and many other
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fields. As a consequence, the cluster analysis literature is vast and heterogeneous

with hundreds of papers and books published each year from various communities.

Clustering algorithms draw upon statistics, mathematics, and computer science [115].

Many clustering algorithms use similarity measure to evaluate similarity between

two data objects. Euclidean distance is one of the most commonly used similarity

measure. It is the square root of the sum of the squares or the differences between the

respective coordinates in each of the dimensions. However in the case of gene expres-

sion data, the overall data patterns are more relevant than individual values of each

feature. So each feature vector is standardized or rescaled to have a a mean of zero

and a variance of one before calculating the distance. An alternate similarity measure

is Pearson’s correlation coefficient. It is the covariance of the variables divided by

the product of their standard deviations. It is extensively used and has been demon-

strated as an effective similarity measure for gene expression data. However, previous

studies have shown that it is not robust against noise. After data standardization,

there is consistency between Pearson’s correlation coefficient and Euclidean distance.

Therefore, the effectiveness of a clustering algorithm is expected to be equivalent

when either is chosen as the similarity measure [132].

With gene expression data, clustering either genes or samples is meaningful.

When samples are clustered into groups, each group may correspond to some par-

ticular macroscopic phenotype, such as clinical syndromes including cancer types or

subtypes.

Microarray gene expression data has been used for cancer subtyping [9, 104, 246],

and the results are promising with improved accuracy over traditional methods [246].

This kind of analysis was first employed in [104] and [8]. Since then, clinical decision

support in the form of cancer subtype diagnosis based on microarray data analy-

sis has become an important emerging medical application, and has attracted great

attention [69].

There are several categories regarding clustering on cancer gene expression data.

The first category is: sample-based clustering. It can be used for cancer diagnosis,
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cancer subtype diagnosis. The second category is: gene-based clustering. It can

be used for pathway identification, gene signature discovery. The third category is:

Bi-clustering. It can be used for pathway identification, functional biology.

There are several steps involved in cluster ensemble. The first step is ensemble

generation. In this step, we generate a number of clustering algorithms. One option

is homogeneous generation which means we use the same algorithm but different

parameters, and another option is heterogeneous generation in which we use different

clustering algorithms. The second step is ensemble pruning. We remove some of the

clustering algorithms that may not be necessary or may not be appropriate. There

are different approaches to remove such algorithms, such as exponential pruning,

randomized pruning, and sequential pruning. The third step is ensemble consensus,

which involve consensus functions, constant weighting or non-constant weighting.

There are many tools that can be used for clustering cancer gene expression data.

For example programming frameworks, such as R and Matlab. And Integrative web-

based tools, such as GEPAS, Expression Profiler, ASTERIAS, EzArray, CARMAweb,

MAGMA, ArrayPipe, RACE, WebArray, MIDAW, ArrayMining etc.

1.2 Motivation

Gene expression microarray data has significant applications in biomedicine. Its enor-

mous quantity require effective analysis approaches. A main technique of microarray

data analysis is clustering such data into biological or medical meaningful groups

based on their pattern of expression. However, due to the specific characteristic of

gene expression data such as noisy and high dimensional, as well as the special re-

quirements from the domain of biology, clustering gene expression data is still facing

challenges. Effective clustering methods have been demanded to overcome the chal-

lenges [297].

Research on gene expression in cancer has been advancing, in particular in in-

vestigating the possibility of using gene expression data to improve the accuracy of

cancer patient classification. The ability to accurately classify cancer patients into
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risk groups, i.e. to predict the prognosis on an individual basis, is a key factor in mak-

ing therapeutic decisions. This is especially critical for cancer therapies due to their

serious side effects. Therefore, the classification of cancer patients into risk groups is

a very active field of research, and it has direct clinical applications [183].

Many clustering methods have been designed and applied to cancer gene expres-

sion data for the purpose of cancer classification. They aim to improve therapeutic

results by diagnosing cancer types or subtypes with improved accuracy in comparison

with traditional methods such as Histopathology or Immunohistochemistry.

Cancer is a leading cause of death worldwide, which accounts for 8.2 million

deaths in 2012 [276]. Annual cancer cases is expected to rise about 50% from 14

million in 2012 to 22 million in the next 20 years. Premature death and disability

caused by cancer has a greater economic impact than all causes of death [252]. De-

spite enormous efforts in combating cancer, survival rates remain low in most forms

of cancers. The problem is that conventional cancer therapy provides treatment ac-

cording to less accurate cancer diagnosis methods i.e. the organ or tissue in which the

cancer originates. Accurate early diagnosis (thus proper early treatment) is crucial

in treating cancer. Traditional cancer diagnosis methods that are based on morpho-

logical appearance of tumors and clinical parameters do not provide enough accuracy

in diagnosis.

DNA microarray technologies produce vast amount of data which are not prac-

tical or even possible to be analyzed manually. Machine Learning (ML) methods

have been used to automatically analyze such microarray data and they are hav-

ing a significant impact on cancer research. A common and exploratory analysis is

to perform clustering on the cancer/patient samples (tissues). The aim is to find

group of samples sharing similar expression patterns, which can lead to discovery

of new cancer subtypes. Such kind of analysis was first carried out in [104] and [8]

with promising results. Since then, clustering methods have become popular in the

gene expression analysis scientific community. In addition, bioinformaticians have

been proposing novel clustering methods that take intrinsic characteristics of gene
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expression data into account, such as noise and high-dimensionality, to improve the

clustering results [36, 170, 189]. However, different algorithms (or even the same

algorithm with different parameters) often provide distinct clusterings. As a result,

it is extremely difficult for users to decide which algorithm and parameters will be

optimal for a given set of data set for a particular task. There is no single clustering

algorithm that can perform the best for all data sets [156], and discovering all types of

cluster shapes and structures presented in data is impossible for any known clustering

algorithm [75, 113]. Cluster ensemble or consensus clusterings recently have emerged

as simple, effective, on-stop methods for improving the robustness and quality of

clustering results.

1.3 Methodology

The proposed clustering method is aimed to address some of the most challenging

issues with gene expression data analysis: noise and high dimensions.

The method takes form as a new type of cluster ensemble. The cluster ensemble

uses an improved fuzzy clustering algorithm with different initializations as its base

clusterings. The improved fuzzy clustering algorithm employs new weighted fuzzy

techniques in computing cluster centers and assigning feature vectors, which is more

suitable for noisy data and high dimensional data in general.

The method uses plurality voting as its consensus function to obtain the final

consensus clustering using clustering results from its base clusterings. With plurality

voting, each data object votes for or is assigned to one cluster in each base clustering,

and the cluster who has more votes (plurality) than any other cluster is the winner.

1.4 Contributions

Our research and this dissertation contribute to the research community in the fol-

lowing areas: 1) proposes an improved fuzzy clustering ensemble methodology in

addressing important challenges in gene expression data analysis: noisy data and
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high dimensional data; 2) provides extensive performance study on both real world

cancer gene expression data sets and synthetic noisy data sets - the experimental

results indicate that our approach is effective; 3) provides comprehensive review of

traditional and state-of-art clustering algorithms; and 4) provides directions for future

research from clustering algorithm perspective and bioinformatics perspective.

1.5 Dissertation Organization

The remainder of this dissertation is structured as follows: Chapter 2 gives rele-

vant background information and literature review on clustering methods and their

applications on gene expression data. Chapter 3 presents the proposed methodol-

ogy: Improved Fuzzy Cluster Ensemble (IFCE). Chapter 4 details experiments and

evaluates the proposed methodology. Conclusions and future research directions are

provided in Chapter 5.
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Chapter 2

Background and Literature Review

2.1 Introduction

Clustering bio-molecular data has been used to improve cancer subtyping [9, 104] over

traditional clinical methods based on morphological appearances. Its aim is to find

groups of patients sharing similar expression patterns or biological attributes. Due to

the amount of data, e.g. large number of dimensions or gene expression data produced

by microarray technology, manual analysis is not possible. Automatic analyzing tools

are needed to discover underlying patterns within the data. Clustering approaches are

suitable to accomplish this goal and have shown promising progress and possibilities

for more accurate and reliable results.

In order to develop clinically successful clustering-based cancer subtyping tools

for microarray data, a solid understanding of clustering and the available clustering

methods is essential. Clustering has a long history, tracing back to Aristotle, and

has been studied extensively since the 18th century [115]. Clustering is the task of

assigning a set of objects into groups or clusters, so that the objects in the same

cluster are more similar to each other than to those in other clusters. It has a wide

range of applications in natural sciences, engineering, economics, marketing, medicine,

psychology, and many other fields. As a consequence, the cluster analysis literature is

vast and heterogeneous with hundreds of papers and books published each year from

various communities.

Cluster analysis algorithms draw upon statistics, mathematics, and computer
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science [115]. Closely related fields are machine learning, pattern recognition, com-

puter vision, image analysis, information retrieval, and bioinformatics. The k-means

algorithm, first proposed in 1957 [171] (it wasn’t published outside Bell Labs until

1982), is one of the most simple and popular clustering algorithms. Thousands of

clustering algorithms in various fields have been published since then. Due to the ill-

posed nature of clustering, i.e. lack of external objective criteria to validate clustering

results, it is difficult to design a general purpose clustering algorithm. Different clus-

tering algorithms or even the same algorithm with different parameters often produce

different results on the same data set. There is no single clustering algorithm that

performs best for all data sets, and discovering all cluster structures in a data set is

impossible for any known clustering algorithm [75, 113].

In order for computational communities to contribute to the cancer subtyping

field, the background and an updated knowledge of cancer subtyping are necessary.

Cancer remains a leading cause of death worldwide largely due to lack of effective

treatment. Personalized treatment based on cancer subtypes improves patient sur-

vival. The goal of cancer subtyping is to identify subtypes within a cancer type, where

patients within a subtype are more similar than patients in other subtypes. The ad-

vent of microarray technology in the 1990s made it possible to assess the expression

of tens of thousands of genes in a single experiment. Microarray gene expression

data has been used for cancer subtyping [9, 104, 246], and the results are promising

with improved accuracy over traditional methods [246, 104, 8]. Since then, clinical

decision support in the form of cancer subtype diagnosis based on microarray data

analysis has become an important emerging medical application, and has attracted

great attention [69].

The high dimensional and noisy nature of gene expression data has given rise to a

wealth of clustering techniques being presented. Much of the early work used methods

developed originally for other domains [8, 28, 30, 44, 78, 104, 159, 167, 244, 294].

Novel algorithms specifically targeting gene expression data and taking its intrinsic

characteristics into account were presented to improve the clustering results [208, 36,
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197].

The main goal of this review is to provide a background of cluster analysis appli-

cation in cancer subtyping, as well as an overview of its current state. It is important

to understand the difference between clustering (unsupervised learning) and clas-

sification (supervised learning). In contrast to classification techniques, clustering

techniques do not require labels which may not be accurate or available. Cluster-

ing results are obtained solely from data. This advantage also enables clustering

algorithms to avoid over-fitting, a potential problem in classification techniques.

Audiences in the medical community may find that the overview of clustering and

literature review in the computational communities will broaden their experimental

possibilities, while the audience in the computational communities may find the cancer

subtyping background and literature review in the clinical community an entry point

for them to start contributing to this application area. Since clustering is a vast and

ever changing field, it is impossible to cover all approaches in a single paper. This

review paper focuses on key clustering algorithms and their novelties. It also covers

important developments applying clustering techniques to cancer subtyping.

The organization of the paper is as follows: Section 2.2 presents a general

overview of clustering, including discussions about issues such as the curse of dimen-

sionality, feature selection, and cluster validity. It then reviews literature regarding

different types of clustering across several disciplines including their variety, uses,

strengths, and limitations. Section 2.3 provides a literature review of clustering ap-

plications on microarray-data-based cancer subtyping. It includes literature in both

the clinical community and the computational community. For each community, the

section discusses literature in two categories: mRNA experiments and miRNA exper-

iments. Section 2.4 examines challenges in microarray-data-based cancer subtyping.

Finally, Section 2.5 concludes the review and points out future directions.
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2.2 Data Clustering

Clustering is an interdisciplinary research topic and is also known by researchers in dif-

ferent fields as unsupervised learning, exploratory data analysis, grouping, clumping,

taxonomy, typology, and Q-analysis [129]. Some of its applications include numeri-

cal taxonomy [125], class discovery [285], and natural classification [129]. Clustering

has become increasingly popular as the society increasingly generates an overwhelm-

ing amount of data, and it is often used as the first step in data analysis or as a

preparation step for experimental work.

There is no universal agreement upon definition of clusters. A cluster is a set

of objects that are compact (or similar to each other) and isolated (or dissimilar)

from other clusters. In reality, cluster definition is subjective, and its significance and

interpretation requires related domain knowledge [129]. Similarity measure is used

by clustering methods to calculate the similarity between two objects. Different sim-

ilarity measures will have different clustering results, as some objects may be similar

to one another using one measure but dissimilar using another. Similarity between

two objects can be measured in different ways, and the three dominant methods are

distance measures, correlation measures, and association measures. Common sim-

ilarity measures include Euclidean distance, Manhattan distance, Maximum norm,

Mahalanobis distance, Pearson coefficient, Spearman’s rank correlation coefficient,

angle between two vectors, and the Hamming distance.

There is no single clustering algorithm that performs best across all problems or

data sets. Therefore, it is important to study the characteristics of the problem and

use an appropriate clustering strategy [285]. Properties to be considered in choosing

a clustering algorithm include [26]: a) feature type (numeric and non-numeric), b)

scalability (large datasets), c) handling high dimensional data, d) finding clusters of

irregular shape, e) handling outliers, f) time complexity of the algorithm, g) data order

dependency, h) assignment type (hard or strict vs. soft or fuzzy), i) prior knowledge

and user defined parameters dependency, and j) interpretability and visulization of
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results.

Clustering techniques can be organized into categories. Different criteria may

result in different categories of clustering algorithms [285]. Furthermore, categoriza-

tion of clustering algorithms is not straightforward or canonical, and categories can

overlap [26]. For convenience, in this review we use the following taxonomy, which is

also widely used in the literature: hierarchical clustering (Section 2.2.1), partitioning

clustering (Section 2.2.2), graph-based Clustering (Section 2.2.3), distribution-based

clustering (Section 2.2.4), density-based clustering (Section 2.2.5), grid-based clus-

tering (Section 2.2.6), clustering high dimensional data (Section 2.2.7), and other

clustering techniques (Section 2.2.8).

2.2.1 Hierarchical Clustering

Hierarchical clustering algorithms organize a data set into a hierarchical structure

according to a similarity measure. These algorithms connect objects based on their

similarity to form clusters, which is usually represented using a dendrogram. Hi-

erarchical clustering algorithms differ in the choice of similarity measures, the link-

age criterion (distance between clusters), and whether the process is agglomerative

(bottom-up) or divisive (top-down). Agglomerative hierarchical clustering starts with

singleton clusters and then recursively merges appropriate clusters, and divisive hier-

archical clustering starts with one cluster containing all objects and recursively splits

appropriate clusters [26, 285].

Two classical divisive approaches are DIANA [142]. DIANA (DIvisive ANAlysis

Clustering) selects in each dividing step the cluster with the largest diameter and di-

vides it into two new clusters. DIANA chooses the object from this largest cluster with

the maximum average dissimilarity and then moves all objects to the cluster that are

more similar to the new cluster than to the remainder. MONA (MONothetic Analysis

Clustering of Binary Variables) can only be applied when the variables are binary, in

which case splits can be made using one variable at a time. MONO takes individual

variables in sequence rather than amalgamating them into an average. Other heuris-
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tic divisive approaches are conceptually more complex than agglomerative clustering

since we needs a second clustering algorithm, such as k-means, to divide the data at

each step. Most divisive approaches can be generalized as a recursive application of

partitioning-based clustering (see Section 2.2.2).

Agglomerative clustering algorithms typically define a linkage (distance between

two clusters) and then selects in each merging step the two clusters that have the

shortest distance. There are many classical agglomerative hierarchical clustering al-

gorithms based on different linkage criterion [251, 289, 200]. The single linkage method

or nearest neighbor methods [105, 243] use the distance between two closest objects

in different clusters. The complete linkage methods [66] use the distance between two

farthest objects in different clusters. The average linkage methods uses average (or

weighted average) distance between two objects in different clusters [253]. The cen-

troid or median linkage methods [251] uses Euclidean distance between unweighted

centroids of different clusters. Ward’s method [275] considers the relationship of all

objects in a cluster. Its objective is to form clusters such that the increase of variance

within each group is minimized.

Figure 2.1 shows an example of hierarchical clustering using single (top panel)

and average linkage (bottom panel) on the same gene expression data. The data

is a numerical matrix where the rows represent different samples (patients) and the

columns represent different genes. A hierarchical clustering can be applied on both

gene and sample space. The structure of the tree, as well as the clustering results, is

highly dependent on the linkage criterion. For example, cutting the tree of the samples

(rows) built for average linkage into two will result in two clusters with approximately

equal sizes. However, cutting the tree build for single linkage will result in a large

cluster (with most samples) and one small cluster with only one sample.

Advantages of hierarchical clustering include: a) good visualization with dendro-

gram representation, b) very informative descriptions with dendrogram representa-

tion, and c) flexibility regarding the number of clusters (the clustering results can be

obtained by cutting the dendrogram at different levels). Disadvantages of hierarchi-
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Hierarchical clustering (single linkage)

Hierarchical clustering (average linkage)

Figure 2.1: An example of hierarchical clustering applied on gene expression data.
In this example, the rows represent the genes while the columns represent different
samples. The expression values are color coded (from red to green). The hierarchical
clustering are performed on both rows (genes) and columns (samples).



17

cal clustering include: a) lacking of robustness and sensitivity to noise and outliers

(small changes in data or linkage might result in completely different results), b) high

computational complexity, which is typically O
(
n3
)

for agglomerative algorithms and

O
(
n2
)

for divisive algorithms, and c) prone to reversal phenomenon, i.e. two clusters

being merged at some step are closer to each other than pairs of clusters merged

earlier.

2.2.2 Partitioning Clustering

Partitioning clustering algorithms divide objects into clusters without hierarchical

structure. Clusters are represented by a central vector. Given the number of clusters,

partitioning clustering assigns the objects to the closest cluster center. Partitioning

algorithms can be grouped into k-means methods and k-medoids methods. k-means

methods use the centroid of objects within a cluster as center. k-medoids methods

use the most appropriate object within a cluster as center.

The k-means clustering [26, 88, 116, 178] is one of the most widely used clus-

tering algorithms. There are many variations of the basic k-means clustering. Clas-

sic k-means reassigns data objects based on minimizing the residual sum of square

(RSS): RSS =
∑k

i=1

∑
x∈Si
‖x− µi‖2 where k is the number of clusters and µi is the

mean of points in cluster Si. Given a predefined number of clusters, the algorithm

starts by choosing k initial centers and assign each object to the nearest center. At

each iteration, the centers are recomputed and reassign each object to the new cen-

ters. The iterations stop when no further update is needed. FORGY [88] reassigns

objects to nearest centroids and recomputes centroids. ISODATA [20] (Iterative Self-

Organizing Data Analysis Technique) splits and merges intermediate clusters based

on a user-defined threshold and iterates until the threshold is reached. It iterates

until a stopping criterion is achieved. Fuzzy c-means [27, 77] assigns fuzzy cluster

membership to each data object, and updates cluster centers and membership after

each iteration. Methods to speed up k-means and fuzzy C-means such as brFCM (bit

reduction by Fuzzy C-Means) [81] replace similar data objects with their centroid
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before clustering.

Variations of k-medoid [142] methods are as follows. PAM (Partitioning Around

Medoids) assigns each data object to the closest medoid and iteratively reassigns

objects and updates medoids to optimize the objective function. CLARA (Clustering

LARge Applications) [142] applies PAM on multiple subsets or samples of the data set,

and selects the best clustering as output. CLARANS (Clustering Large Applications

based upon RANdomized Search) [203] searches a graph where each node is a set of

medoids. It selects a node randomly in search for a local minimum among its neighbor

nodes through iterations and outputs the best node to form clustering results.

Advantages of partitioning clustering include: a) simple, straightforward and

easy implementation, b) fast execution with computation complexity of O
(
n
)
, c)

very suitable for compact and hyperspherical clusters, d) computational rigor (firm

foundation of analysis of variances). Disadvantages of partitioning clustering include:

a) they are still subjective processes that are sensitive to assumptions, b) they re-

quire the number of clusters to be specified in advance, c) they prefer clusters of

approximately similar size, as they will always assign an object to the nearest center,

often leading to incorrectly cut borders in between of clusters, d) they are subject

to easy trapping in local minima and sensitivity to the initial partition (hill-climbing

optimization method).

Figure 2.2 shows an example of partitioning clustering applied on a lung cancer

dataset GSE19188 [122] downloaded from Gene Expression Omnibus (https://www.

ncbi.nlm.nih.gov/geo). The data is visualized in the fist 3 principal components.

The algorithm, named PINS (Perturbation clustering for data INtegration and disease

Subtyping), is built on the basic k-means algorithm. PINS repeatedly perturbs the

data (slightly change the expression values) and cluster the patients using different

values of k (number of clusters) using Hartigan and Wong’s algorithm [116]. It then

choose the partitioning that is the most robust to data perturbation.
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Figure 2.2: An example of k-means based clustering [208] on a lung cancer
dataset [122]. The data shown in the space of the first three principal components.
Different colors represent different clusters.

2.2.3 Graph-based Clustering

Graph-based clustering algorithms construct a graph/hypergraph from the data and

then partition the graph/hypergraph into subgraphs/subhypergraphs or clusters. Each

vertex represents a data object, and the edge weight represents the similarity of

two vertices [43]. The edges in the same subgraph/subhypergraph should have high

weights, and the edges between different subgraphs/subhypergraph should have low

weights [43]. It is also called spectral clustering [129].

Classical graph-based algorithms are as follows. Chameleon [140] uses a con-

nectivity graph and graph partitioning to build small clusters, followed by the ag-

glomerative hierarchical clustering process. Its key feature is that it considers both

interconnectivity and closeness when merging clusters. CACTUS (Clustering Cate-

gorical Data Using Summaries) [93] detects candidate clusters based on the summary

of the data set and determines the actual clusters through a validation process against

the candidate clusters. It uses a similarity graph to represent the inter-attribute and
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intra-attribute summaries. A Dynamic System-based Approach or STIRR (Sieving

Through Iterated Relational Reinforcement) [100] represents each attribute value as

a weighted vertex in a graph. It iteratively assigns and propagates weights until a

fixed point is reached. Different weight groups correspond to different clusters on the

attribute. ROCK (Robust Clustering algorithm for Categorical Data) [107] repeat-

edly merges two clusters until the specified number of clusters is reached, and it uses

data sampling to improve complexity. It uses a connectivity graph to calculate the

similarities between data objects.

The advantages of graph-based clustering include [43]: a) a graph is an elegant

data structure that can model many real applications, b) it is based on solid mathe-

matical foundations, including spectral theory and Markov stochastic process, and c)

it produces optimal clustering (optimizing a quality measure instead of acting greed-

ily toward the final clustering). The major disadvantage of graph-based clustering

is that it may be slow when working on large scale graphs [43]. In addition, the

partitioning results highly depend on the way the graph is constructed from the raw

data [208].

2.2.4 Distribution-based Clustering

Distribution-based clustering views or assumes that the data are generated by a mix-

ture of probability distributions, each of which represents a different cluster [92, 188].

This way, a cluster can be seen as objects generated by the same distribution. Thus,

a particular clustering method can be expected to produce good results when the

data conform to the method’s distribution model [92]. It is also called model-based

clustering. There are usually two approaches to form the model: the classification

likelihood approach and the mixture likelihood approach [92].

Classical distribution-based algorithms are as follows. The EM (Expectation-

Maximization) clustering algorithm [68] is the most popular method in distribution-

based clustering. It tries to fit the data set into the assumed number of Gaussian dis-

tributions by moving the means of Gaussian distributions toward the cluster centers.
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COOLCAT (reducing the entropy, or COOLing of the CATegorical data clusters)[23]

uses entropy to cluster categorical data. It consists of data sampling and incremen-

tal assignment. STUCCO (Search and Testing for Understandable Consistent Con-

trasts) [24] uses tree searching and significant contrast-sets to find clusters. GMDD

(Gaussian Mixture Density Decomposition) [301] uses a recursive approach and iden-

tifies each Gaussian component in the mixture successively. Autoclass [42] is based

on the classic distribution-based approach and uses a Bayesian method to determine

the optimal clusters. P-AutoClass [221] is a parallel version of Autoclass and can be

used on large data sets.

The advantages of distribution-based clustering include [26]: a) it can be modified

to handle complex data, b) it has a solid theoretical foundation, c) Its results are easily

interpretable, d) it not only provides clusters, but also produce complex models that

capture relationships among attributes, e) results are independent of the timing of

consecutive batches of data, f) it is good for online learning since the intermediate

mixture model can be used to cluster objects, and g) the Mixture model can be

naturally generalized to cluster heterogeneous data. The disadvantage of distribution-

based clustering is the difficulty in choosing the appropriate model complexity (since

a more complex model will usually be able to explain the data better but may cause

an overfitting problem from excessive parameter set).

2.2.5 Density-based Clustering

Density-based clustering defines clusters as dense regions of data objects separated

by low-density regions. A cluster is a connected dense component and grows in any

direction that density leads [92]. Objects in low-density areas which separate clusters

are usually considered to be noise and border points. There are two major approaches

for density-based clustering [26]: the connectivity approach pins density to a training

data point; the density function approach pins density to a point in the attribute

space.

Representative algorithms for the connectivity approach are as follows. DBSCAN
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(Density-Based Spatial Clustering of Applications with Noise) [82] starts by selecting

a data object and tries to find all data objects density-reachable from it to form

a cluster. If none are found, the algorithm selects a new data point and repeats.

GDBSCAN (Generalized DBSCAN) [233] generalizes the concept of neighborhood

by permitting the use of any distance function besides Euclidian distance and allows

other measures besides simply counting the objects to define the cardinality of that

neighborhood. OPTICS (Ordering Points To Identify the Clustering Structure) [13]

is like an extended DBSCAN algorithm. It does not assign cluster memberships but

stores the order in which the data objects are processed as well as the core-distance

and a reachability-distance for each data object. An extended DBSCAN is used to

assign cluster memberships. DBCLASD (Distribution Based Clustering of LArge

Spatial Databases) [288] uses the notion of clusters based on the distance distribution

and incrementally augments an initial cluster by its neighboring points as long as the

nearest neighbor distance set of the resulting cluster still fits the expected distance

distribution.

The advantages of density-based clustering are as follows: a) they can find clus-

ters of arbitrary shapes, in contrast to many other methods, b) their time complexity

is low (linear or O
(
n
)
), c) it is deterministic for core and noise points (but not for

border points) and thus there is no need to run it multiple times. d) they can handle

noise well [92], e) the number of clusters is not required since it finds clusters and the

number of clusters automatically [92], f) results are independent of data ordering [26],

and g) there are no limitations on the dimension or attribute types [26].

The disadvantages of density-based clustering are as follows: a) It is often difficult

to detect cluster boarders when the cluster density decreases continuously (i.e. arbi-

trary borders). b) For a mixtures of Gaussians data set, distribution-based clustering

(e.g. EM) usually outperforms density-based clustering. c) Limitations in processing

high-dimensional data, since it is difficult to distinguish high-density regions from

low-density regions when the data is high-dimensional [129]. d) Most density-based

clustering algorithms were developed for spatial data [92].
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2.2.6 Grid-based Clustering

Grid-based clustering operates on space partitioning instead of data partitioning to

produce clusters [26]. It first creates the grid structure by partitioning the data space

into cells (or cubes) and then clusters the cells based on their densities.

Representative algorithms are as follows. BANG-clustering [26, 235] uses a multi-

dimensional grid data structure to organize or partition the data. It uses the cell in-

formation in the grid and clusters the cells. STING (A STatistical INformation Grid

approach) [273] uses a hierarchical structure of grid cells with a top-down approach.

It labels a cell to be relevant or not at a specified confidence level. Then, it finds all

the regions formed by relevant cells. STING+ [26, 274] uses a similar hierarchical cell

structure as STING and introduces an active spatial data mining approach. OptiGrid

(Optimal Grid) [120] constructs an optimal grid partitioning of the data by finding

the best partitioning hyperplanes for each dimension with projections of the data.

GRIDCLUS (GRID-CLUStering) [234] organizes the space surrounding the clusters

with a grid data structure. It uses a topological neighbor search to cluster the grid

cells. GDILC (Grid-based Density-IsoLine Clustering) [291] is based on the idea that

the density-isoline figure reflects the distribution of data. It uses a grid-based ap-

proach to calculate the density and finds dense regions. WaveCluster (Wavelet-based

clustering) [239] transforms the original feature space by applying wavelet transform

and then finds the dense regions in the new space. It yields sets of clusters at different

resolutions and scales, which can be chosen based on the user’s needs. FC (Fractal

Clustering) [22] adds one data object at a time to one cluster in such a way that the

fractal dimension changes the least after adding the data object.

The advantages of grid-based clustering are as follows: a) it is fast and works

well with large data sets (since speed is independent of the number of objects in the

data) [26, 92]. b) it handles noise well [26]. c) it is independent of data ordering [26].

d) it can handle attributes of different types [26]. e) it can be used as an intermediate

step in many other algorithms such as CLIQUE and MAFIA [26]. The disadvantages
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of grid-based clustering are as follows: a) most algorithms need the user to specify

grid size or density thresholds, which can be difficult (fine grid sizes result in high

computational time, while coarse grid sizes result in low quality of clusters) [92]. b)

some grid-based clustering algorithms (e.g. STING, WaveCluster) are not good at

high dimensional data [92].

2.2.7 Clustering High Dimensional Data

High Dimensional Data clustering refers to clustering on data objects that represent

from a few dozen to thousands or more features. Such high dimensional data are

often seen in areas such as medicine (e.g. microarray experiments), and text docu-

ments (e.g. word-frequency vector methods [40]). Clustering high dimensional data

is tremendously difficult. One problem is that increased irrelevant features elimi-

nate the likelihood of clustering tendency [26]. Another problem is the ‘curse of

dimensionality’, or lack of data separation, in high dimensional space (the problem

becomes severe for dimensions greater than 15) [26]. Performing feature selection be-

fore applying clustering can improve the first problem. Principal Component Analysis

(PCA) [215] is commonly used. However, the dimension may still be high after fea-

ture selection. In this review, we discuss techniques that have been developed to

address such situations: projected clustering, subspace clustering, bi-clustering (or

co-clustering), tri-clustering, hybrid approaches, and correlation clustering.

Projected Clustering:

Projection techniques map data objects from a high dimensional space to a low di-

mensional space, while maintaining some of the original data’s characteristics [15].

Examples are as follows. PreDeCon [29] finds subsets of feature vectors that have

low variance along subsets of attributes. PROCLUS [4] finds the candidate clusters

and dimensions by using medoids. For each medoid, the subspace is determined based

on attributes with low variance. Random projections for k-means clustering [35]

implements a dimensionality reduction technique for k-means clustering based on
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random projections.

Subspace Clustering:

Subspace clustering algorithms identify clusters in appropriate subspaces of the orig-

inal data space.

Examples are as follows. CLIQUE (CLustering In QUEst) [6] partitions the data

space into units and then finds the maximum sets of connected dense units. SUB-

CLU (density-connected Subspace Clustering) [152] adopts the notion of density-

connectivity introduced in DBSCAN (Section 2.2.5) and uses the monotonicity of

density-connectivity to prune subspaces. CACTUS (Clustering Categorical Data Us-

ing Summaries) is covered in Section 2.2.3. ENCLUS (ENtropy-based CLUSter-

ing) [46] finds clusters in subspaces based on entropy values of subspaces. Subspaces

with lower entropy values typically have clusters. It then applies CLIQUE or other

clustering algorithms to such subspaces. MAFIA (Merging of Adaptive Finite In-

tervals) [103] uses adaptive grids in each dimension and then merges them to find

clusters in higher dimensions. OptiGrid (Optimal Grid) is covered in Section 2.2.6.

MrCC (Multi-resolution Correlation Cluster detection) [55] constructs a novel data

structure based on multi-resolution and detects correlation clusters by identifying

initial clusters as axis-parallel hyper-rectangles with high data densities, followed by

merging overlapping initial clusters.

Hybrid Approaches:

Hybrid approaches find overlapping clusters. Some of them find only potentially

interesting subspaces and use full-dimensional clustering algorithms to obtain the

final clusters.

Examples are as follows. DOC (Density-based Optimal projective Clustering) [225]

uses a global density threshold to compute an approximation of an optimal projec-

tive cluster. FIRES (FIlter REfinement Subspace clustering) [153] first computes

one-dimensional clusters and then merges them by applying ‘clustering of clusters’
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based on the number of intersecting points between clusters. P3C (Projected Clus-

tering via Cluster Cores) [196] first computes intervals matching or approximating

higher-dimensional subspace clusters on every dimension and then aggregates those

intervals into cluster cores. The cluster cores are refined and used to assign data

objects.

Bi-clustering:

Bi-clustering is also called bi-dimensional clustering [47], co-clustering, coupled clus-

tering, or bimodal clustering. Bi-clustering is popular in bioinformatics research, es-

pecially in gene or sample clustering. For gene expression data, there are experimental

conditions in which the activity of genes is uncorrelated. This causes limitations for

results obtained by standard clustering methods. So bi-clustering algorithms that

can perform simultaneous clustering on the genes and conditions are developed to

find subgroups of genes and subgroups of conditions in which the genes exhibit highly

correlated activities for every condition [179].

Examples are as follows. CTWC (Coupled Two-Way Clustering) [98] generates

submatrices by an iterative process and considers only those submatrices whose rows

and columns belong to genes and samples/conditions that were in a stable cluster in a

previous iteration. ITWC (Interrelated Two-Way Clustering) [263] clusters the rows

and then clusters the columns, based on each row cluster. It keeps the cluster pairs

that are most dissimilar. Block Clustering [117] sorts the data by row mean or column

mean and splits the rows or columns such that the variance within each ‘block’ is re-

duced. It then repeats and splits rows or columns differently. δ-biclusters [47] or CC

algorithm (Cheng and Church’s) finds biclusters whose rows and conditions show co-

herent values, using mean-squared residue. SAMBA (Statistical-Algorithmic Method

for Bicluster Analysis) [261] uses probabilistic modeling and graph theoretic tech-

niques to find subsets of rows whose values are very different in a subset of columns.

Plaid Models [161] allows biclusters to overlap, i.e. a gene or a sample/condition can

belong to more than one cluster. Information-theoretic co-clustering [70] intertwines
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the row and column clusterings to increase mutual information.

Correlation Clustering:

Correlation clustering uses the correlations among attributes to guide the clustering

process. These correlations may be different and exist in different clusters and cannot

be reduced to uncorrelated ones by traditional global decorrelation techniques. Such

correlations create clusters with different spatial shapes, and local correlation patterns

are used to define the similarity between data objects. Correlation clustering is closely

related to biclustering.

Examples are as follows. ORCLUS (ORiented projected CLUSter generation) [5]

is similar to k-means but uses a distance function based on an eigensystem, i.e. the

distance in the projected subspace. The eigensystem is adapted during iterations

and close pairs of clusters are merged. 4C (Computing Correlation Connected Clus-

ters) [29] takes a density-based approach and uses a density criterion to grow clusters.

The density criterion is the minimal number of data objects within the neighborhood

of a data object. The neighborhood is based on distance between two data objects

in the eigensystems. HiCO (Hierarchical COrrelation clustering) [2] defines the sim-

ilarity between two data objects based on their local correlation dimensionality and

subspace orientation. It takes a hierarchical density-based approach to obtain cor-

relation clusters. CASH (Clustering in Arbitrary Subspaces based on the Hough

transform) [1] is based on the Hough transform [123], which maps the data space

into parameter space. It then uses a grid-based approach to find dense regions in

the parameter space and corresponding data subsets in the original data space. It

recursively applies itself on such corresponding data subsets.

2.2.8 Other Clustering Techniques

Neural Network-Based Clustering:

The neural network approach has been studied intensively by mathematicians, statis-

ticians, physicists, engineers, and computer scientists [155]. A neural network is
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an interconnected group of artificial neurons and an adaptive system for information

processing. Neural-network-based clustering is competitive-learning-based clustering,

not statistical model-identification based clustering. For competitive-learning-based

clustering, the first phase is learning where the algorithmic parameters are adjusted,

and the second phase is generalization [73]. Competitive learning can be implemented

using a two-layer neural network: the input layer and the output layer [73].

Examples are as follows. A SOM (Self-Organizing Map) [150] consists of nodes

or neurons, each of which is associated with a weight vector and a position in the

map space. It creates a mapping from a higher dimensional input space to a lower

dimensional output space. SOM clustering computes the distance of the input pattern

to each neuron and finds the winning neuron. LVQ (Learning Vector Quantization)

or VQ (Vector Quantization) [37, 96] is a classical quantization technique for signal

processing. It models the probability density functions by using the distribution of

prototype vectors. It divides a set of vectors into groups that have approximately the

same number of vectors closest to them. Basic VQ is k-means clustering, and LVQ is a

precursor to self-organizing maps (SOM) [96]. Neural gas [185] is inspired by SOM. It

is a simple algorithm and finds optimal data representations based on feature vectors.

During the adaptation process, the feature vectors distribute themselves dynamically

like a gas within the data space.

Evolutionary Clustering:

Evolutionary computation has many applications in computer science, bioinformatics,

pharmacometrics, engineering, physics, and economics. Evolutionary computation is

inspired by the biological mechanisms of evolution, and uses iterative processes such

as growth or development followed by selection in a population of candidate solu-

tions. Clustering methods that use local search techniques including hill-climbing

approach-based k-means suffer from local minima problems. The recent advance-

ments in evolutionary computational technologies [87] provide an alternate and ef-

fective way to find the global or approximately global optimum [287]. PSO (Particle
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Swarm Optimization) simulates social behavior in nature, such as bird flocking or

fish schooling [146]. ACO (Ant Colony Optimization) algorithms model the behav-

iors of ants in nature [72]. GAs (Genetic Algorithms) [121] mimic natural selection

and use evolutional mechanisms such as crossover, mutation and selection to generate

solutions.

Examples are as follows. PPO (Particle-Pair Optimizer) [74] is a modifica-

tion of the Particle Swarm Optimizer. It uses two particle pairs to search for the

global optima in parallel and uses k-means for efficient clustering. Niching genetic

k-means [241] modifies Deterministic Crowding [180], one of the niching genetic algo-

rithms, and incorporates one step of k-means into its regeneration steps [241]. Evo-

Cluster algorithm [177] encodes cluster structure in a chromosome, in which one gene

represents one cluster or the objects belonging to one cluster. Reproduction operators

are used between chromosomes. GenClust [97] is a simple algorithm and proceeds

in stages. It uses genetic operators and a fitness function to compute partitions in a

new stage based on partitions in the previous stage.

Kernel Clustering:

Kernel-based learning such as Support Vector Machines (SVMs) [57, 236] has had

successful applications in pattern recognition and machine learning and is becoming

increasingly important. Kernel methods [59] perform a non-linear mapping of the

low dimensional input data into a high dimensional space, which becomes linearly

separable. To improve efficiency, they avoid explicitly defining the nonlinear mapping

by using kernel functions, such as polynomial kernels, sigmoid kernels, and Gaussian

radial basis function (RBF) kernels. This is the known as the kernel trick.

Examples are as follows. SVC (Support Vector Clustering) [272, 296] uses SVM

training to find the cluster boundaries and an adjacency matrix to assign a clus-

ter label to each data object [287]. Variations of SVC include Iterative One-Class

SVC [39], and rough Set SVC [214]. Kernel k-means [101] uses a kernel method to

calculate the distance between items in a data set, instead of using the Euclidean
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distance as in regular k-means. Variations include Incremental Kernel-k-means [237].

Kernel deterministic annealing clustering [293] uses an adaptively selected Gaussian

parameter and a Gaussian kernel to determine the nonlinear mapping. Kernel fuzzy

clustering [169, 298, 300] applies kernel techniques to fuzzy clustering algorithms by

replacing the original Euclidean distance with a kernel-induced distance. Kernel Self-

Organizing Maps [11, 34] perform self-organizing between an input data object and

the corresponding prototype in the mapped high dimensional feature space or in the

mapped space completely.

Sequential Data Clustering:

Sequential data are sequences of numerical data or non-numerical symbols and can be

generated from speech processing, video analysis, text mining, gene sequencing, and

medical diagnosis. Time series data or temporal data are a type of sequential data,

which, unlike static data, contain feature values that change over time. Since sequen-

tial data usually have variable length, dynamic behaviors, and time constraints [110],

they cannot be represented as points in the multi-dimensional feature space and thus

cannot be analyzed using any of the clustering techniques we have mentioned thus

far [287]. Clustering techniques targeting sequential data have been developed, and

they commonly use three strategies: proximity-based approaches, feature-based ap-

proaches, and model-based approaches.

Proximity-based approaches use proximity information such as the distance or

similarity between pairs of sequences. They then use hierarchical or partitional clus-

tering algorithms to group the sequences into clusters [287]. Examples are as fol-

lows. The Needleman-Wunsch algorithm [201] uses basic dynamic programming and

is a global optimal alignment algorithm. The Smith-Waterman algorithm [248] is

based on Needleman-Wunsch algorithm, and also uses dynamic programming. It

compares multi-lengthed sequence segments using character-to-character pair-wise

comparisons. FASTA (FAST-All) [216] first finds segments of the two sequences that

have some degree of similarity and marks these potential matches. It then performs a
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more time-consuming optimized search approach such as the Smith-Waterman algo-

rithm. BLAST (Basic Local Alignment Search Tool) [10] searches for short alignment

matches between two sequences using a heuristic approach, which approximates the

Smith-Waterman algorithm. GeneRage [80] automatically clusters sequence datasets

by using Smith-Waterman dynamic programming alignment and single-linkage clus-

tering. SEQOPTICS (SEQuence clustering with OPTICS) [45] implements Smith-

Waterman algorithms as the distance measurement and uses OPTICS [13] to perform

sequence clustering.

Feature-based approaches map sequences onto multi-dimensional data points us-

ing feature extraction methods and then use vector-based clustering algorithms on the

data points [287]. Examples are as follows. Scalable sequential data clustering [109]

uses a k-means based clustering algorithm which has near-linear time complexity to

improve the scalability problem. Pattern-oriented hierarchical clustering [198] uses

a hierarchical algorithm, which can generate the clusters as well as the clustering

models based on sequential patterns found in the database. The wavelet-based any-

time algorithm [271] combines a novel k-means based clustering algorithm and the

multi-resolution property of wavelets. It repeatedly uses coarse clustering to obtain

a clustering at a slightly finer level of approximation.

Model-based approaches assume sequences that belong to one cluster are gen-

erated from one probabilistic model [287]. Examples are as follows. Autoregressive

moving average (ARMA) models [18, 283] derive an EM algorithm to learn the mix-

ing coefficients and the parameters of the component ARMA models. They use

the Bayesian information criterion (BIC) to determine the number of clusters. The

Markov chain approach [228] models dynamics as Markov chains and then applies

an agglomerative clustering procedure to discover a set of clusters that best capture

different dynamics. The Polynomial models approach [91] assumes the underlying

model is a mixture of polynomial functions. It uses an EM algorithm to estimate the

cluster membership probabilities, using weighted least squares to fit the models. The

Hidden Markov Model (HMM) [250] is a probabilistic model-based approach. It uses
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HMMs, which have shown capabilities in modeling the structure of the generative

processes underlying real-world time series data.

Ensemble Clustering:

Clustering ensembles have emerged to improve robustness, stability and accuracy of

clustering results [99, 205, 207]. A cluster ensemble combines the results of multiple

clustering algorithms to obtain a consensus result [220]. It can produce better aver-

age performance and avoid worst case results. Other usages of clustering ensembles

include improving scalability by performing clustering on subsets of data in parallel

and then combining the results, and data integration when data is distributed across

multiple sources [128].

There are two main steps in a clustering ensemble: generation and consensus.

In the generation step, several approaches are used [270]: different clustering algo-

rithms, a single algorithm with different parameter initializations, different object

representations, different object projections, and different subsets of objects.

In the consensus step, several approaches are used: relabeling and voting, Mutual

Information (MI), co-association based functions, finite mixture models, a graph/hypergraph

partitioning approach, and others.

The relabeling and voting approach is also called the direct approach. It finds the

correspondence of the cluster labels among different clustering results and then uses a

voting method to determine the final cluster label for a data object. Examples are as

follows. BagClust1 [76] applies a clustering procedure to each bootstrap sample and

obtains the final partition by plurality voting so that the majority cluster label for

each data object determines the final cluster membership. BagClust2 [76] introduces

a new dissimilarity matrix which contains the proportion of time each pair of data

objects were clustered together in the bootstrap clusters. It then performs clustering

on the dissimilarity matrix to obtain the final partition.

The MI approach uses MI to measure and quantify the statistical information

shared between a pair of clusterings. It can automatically select the best clustering
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method from several algorithms. Examples are as follows. A Genetic Algorithm (GA)

clustering ensemble [16] uses a GA to obtain the best partition and the co-association

function as the consensus function. It determines fitness function parameters based

on co-association function values. The information theory based GA clustering en-

semble [176] uses a GA to find a combined clustering by minimizing an information-

theoretical criterion function. The generalized MI clustering ensemble [265] intro-

duces a new consensus function using a generalized mutual information definition.

The consensus function is related to the classical intraclass variance criterion.

The co-association based functions approach is also called the pair-wise approach.

It uses a co-association matrix in the consensus step. Examples are as follows. Clus-

terfusion [144] first generates an agreement matrix with each cell containing the num-

ber of agreements amongst clustering methods and then uses the matrix to cluster

data objects. Voting-k-Means [89] transforms data partitions into a co-association

matrix with coherent association mappings. It then extracts underlying clusters from

this matrix. Evidence accumulation-based clustering [90] maps data partitions cre-

ated by each individual clustering into a new similarity matrix, based on voting. It

then uses the single link algorithm to extract clusters from this matrix.

Finite mixture model approach assumes that the probability of assigning a label

to a data object is based on a finite mixture model or that the labels are ‘modeled

as random variables drawn from a probability distribution described as a mixture

of multivariate component densities’ [270]. It obtains the consensus clustering re-

sult by solving a maximum likelihood estimation problem. Mixture model clustering

ensemble [266] uses a probabilistic model of consensus based on a finite mixture of

multinomial distributions in a space of clusterings. It finds a combined partition by

solving the corresponding maximum likelihood problem with the EM algorithm.

The graph/hypergraph partitioning approach considers the combination problem

as a graph or hypergraph partitioning problem. Methods taking this approach differ

in how they build a (hyper)graph from the clusterings, as well as how they define

the cuts on the graph to obtain the consensus partition [270]. Examples are as fol-
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lows. METIS [141] is a multi-level graph partitioning system. It collapses vertices

and edges of the graph, partitions the resulting coarsened graph, and then refines

the partitions. SPEC (spectral graph partitioning algorithm) [202] tries to optimize

the normalized cut criterion. It treats the rows of the largest eigenvalues matrix as

multiple dimensional embeddings of the vertices of the graph and then uses k-means

to cluster the embedded points. CSPA (Cluster based Similarity Partitioning Algo-

rithm) [259] first creates a graph based on a co-association matrix, and then performs

METIS clustering on the graph. HGPA (Hypergraph Partitioning Algorithm) [259]

uses a hyperedge in a graph to represent each cluster. It then uses minimal cut al-

gorithms such as HMETIS [139] to find good hypergraph partitions. MCLA (Meta

Clustering Algorithm) [259] determines soft cluster membership values for each data

object by using hyperedge collapsing operations. HBGF (Hybrid Bipartite Graph

Formulation) [85] constructs a bipartite graph where data objects and clusters are

both modeled as vertices. It later partitions the bipartite graph with an appropriate

graph partitioning method.

Multi-objective Clustering:

Conventional clustering algorithms use a single clustering objective function only,

which may not be appropriate for the diversities of the underlying data structures.

Multi-objective clustering uses multiple clustering objective functions simultaneously.

Such methods consider clustering as a multi-objective optimization problem [84].

Examples are as follows. FCPSO (Fuzzy Clustering-based Particle Swarm Opti-

mization) [7] uses an external repository to save non-dominated particles during the

search process and a fuzzy clustering technique to manage the size of the repository. It

also uses a fuzzy-based iterative feedback mechanism to determine the compromised

solution among conflicting objectives. Evolutionary Multiobjective Clustering [111]

and MOCK (MultiObjective Clustering with automatic k-determination) [112] use an

evolutionary approach to solve the multi-objective problem in clustering. They are

based on a multi-objective evolutionary algorithm named PESA-II (Pareto Envelope-
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based Selection Algorithm version 2) [56] to optimize two complementary clustering

objectives. Multi-objective real coded genetic fuzzy clustering [199] aims to opti-

mize multiple validity measures simultaneously. It encodes the cluster centers in its

chromosomes while optimizing the fuzzy compactness within a cluster and fuzzy sep-

aration among clusters. EMO-CC (Evolutionary MultiObjective Conceptual Cluster-

ing) [231] combines evolutionary algorithms with multi-objective optimization tech-

niques and relies on the NSGA-II multi-objective genetic algorithm [65]. It can dis-

cover less obvious but informative data associations.

2.3 Applications of Clustering in Cancer Subtyp-

ing

The recently-developed DNA microarray and sequencing technologies [52, 79, 168],

which can measure the expression levels of tens of thousands of genes simultane-

ously, offer cancer researchers novel methods to investigate the pathology of cancers

from a molecular angle. Under such a systematic framework, cancer types or sub-

types can be identified through the corresponding gene expression profiles. Research

on gene expression profile-based cancer type recognition has already attracted nu-

merous efforts from a wide variety of research communities [190, 285]. Investiga-

tions on leukemia [104], lymphoma [8], colon cancer [9], cutaneous melanoma [30],

bladder cancer [78], breast cancer [217], lung cancer [94], and others show very

promising results. Supervised computational methods, such as multi-layer percep-

trons [147], naive Bayes [164], support vector machines [166, 257], semi-supervised

Ellipsoid ARTMAP [284], and k-Top Scoring Paris [260], have already been used in

cancer diagnosis-oriented gene expression data analysis.

In this section, we consider the situation in which we do not have labels for the

cancer samples. This assumption is reasonable with the requirement for discovering

unknown and novel cancer types or subtypes. In this case unsupervised learning

or cluster analysis [285] is required in order to explore the underlying structure of

the obtained data and provide cancer researchers with meaningful insights into the
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possible partitions of the samples.

One of the major challenges of microarray data analysis is the overwhelming

number of measures of gene expression levels compared with the small number of

samples, which is caused by factors such as sample collection and experiment cost.

This problem is well known as the ‘curse of dimensionality’ in machine learning,

which refers to the lack of data separation in high dimensional data space. When the

dimensions are high, the distance from a data object to the nearest neighbor data

object becomes indistinguishable compared with the majority of data objects [26].

There are multiple steps to obtain microarray data, due to several system or

design issues, and each step may introduce noise. Noise can obscure or mislead the

underlying biological meanings, which is an important reason why statistical tools

are used to analyze microarray data, since they can take the noise or variations into

account. The noise can come from five phases of data acquisition: microarray man-

ufacturing, preparation of mRNA from biological samples, hybridization, scanning,

and imaging [50]. And they can be classified into three major categories: biological -

cells from different populations, tissues, conditions, etc. experimental - defects of the

spotting equipment, different hybridization conditions and dyes, different methods

to make the arrays, to culture the cells, to extract mRNA, etc. processing - errors

related to numerical values collection such as fluorescence scanning, image analysis,

and intensity readout [299].

mRNA profiling has demonstrated its effectiveness at subtyping various cancers.

miRNA (short for MicroRNAs) profiling can be more accurate. Researchers have

found links between misregulated miRNAs and the genes that are affected in various

cancer subtypes [212]. miRNAs are small non-protein coding RNAs found in ani-

mals and plants. The first miRNAs were discovered and characterized in the early

1990s [162]. Since the early 2000s, miRNAs have been found to play multiple roles

in negative regulation in cells. The first cancer found to be associated with miRNA

deregulation and deletion was chronic lymphocytic leukemia [38]. Later on many

miRNAs have been found to be related to more types of cancer [33, 41, 51, 126, 134,
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138, 193, 194, 290]. Since multiple subtypes of a disease may have similar patterns

within a single data type (i.e., mRNA or miRNA), both data types can be used

together to improve the accuracy of subtyping.

2.3.1 Clinical Applications

mRNA-based Applications

Golub used mRNA profiling of the expression of 6,817 genes in 72 leukemia samples as

a test case for subtyping [104]. Using self-organizing maps (SOMs), leukemia samples

were successfully grouped into the known subtypes of acute myelogenous leukemia

(AML) and acute lymphocytic leukemia (ALL) without previous knowledge of these

subtypes. The results showed the feasibility of using gene expression alone to classify

cancer and suggested a general approach of classification for other types of cancer

without using previous biological knowledge.

Alizadeh used mRNA profiling to study 128 microarray analyses that contain 1.8

million measurements of gene expression from 96 samples of normal and malignant

lymphocytes [8]. Using the hierarchical clustering approach, two subtypes of diffuse

large B-cell lymphoma (DLBCL) were identified: germinal center B-like DLBCL,

which is diverse in gene expression patterns, and activated B-like DLBCL, which is

distinct at the molecular level. Patients with germinal centre B-like DLBCL had a

significantly better response to current therapy and overall survival than those with

activated B-like DLBCL, which reflects tumor proliferation rate, different state of the

tumor, and different host-patient response.

Armstrong applied clustering technique of PCA on mRNA profiling of 8700 genes

from 72 leukemia samples and discovered mixed-lineage leukemia (MLL), a leukemia

subtype that is distinct from both AML and conventional ALL [14]. MLL is char-

acterized by the mixed-lineage leukemia gene’s chromosomal translocation, and such

patients have a decidedly poor prognosis and often have early relapse after chemother-

apy. The discovery of MLL as a distinct subtype is important to therapeutic success

as well, since molecular markers differentially expressed by MLL compared with both
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ALL and AML immediately suggest new and different molecularly targeted treatment

strategies for this treatment-resistant cancer subtype.

Bittner studied mRNA profiling of 6971 genes from 31 patients with malig-

nant melanoma, for which there were no accepted histopathological, molecular, or

immunohistochemical-marker defined subtypes [30]. Hierarchical clustering (agglom-

erative, average linkage) with Pearson correlation coefficients discovered two potential

subtypes. With in vitro assay experiments, the subtypes were associated with differ-

ent disease tissue invasion potential [182]. However, the patients in this study had

uniformly poor prognosis, and future work is needed to analyze the clinical relevance

of observed subtypes.

Perou analyzed mRNA profiles of 8102 genes of 65 breast tumor specimens us-

ing a hierarchical clustering approach [217]. Three subtypes were discovered in this

clinically highly heterogeneous tumor: the previously known Erb-B2, and two oth-

ers previously unknown, namely ER+(estrogen receptor-positive)/luminal-like and

basal-like. Due to the limited number of tumor specimens in this study, statistically

significant relationships between the discovered subtypes and clinical data are still to

be uncovered.

Lapointe profiled mRNA gene expression of 26,260 genes in 62 primary prostate

tumors and 9 lymph node metastases and identified three robust subtypes of prostate

tumors using a two-way hierarchical clustering technique on 5153 genes based on

distinct gene expression patterns [159]. Subtype I is the clinically least aggressive

subgroup, subtype II is the second clinically aggressive subgroup, and subtype III is

the most clinically aggressive subgroup, including most of the metastasis cases in this

study. These tumor subtypes may provide a basis for improved prognostication and

treatment decision.

Liang performed agglomerative hierarchical clustering on mRNA profiles of 1800

genes from 32 samples including Glioblastoma multiforme (GBM) and normal brain [167].

Two molecularly distinct subtypes of GBM were identified, and their expression

showed an obvious difference in a group of genes correlated with survival. Such finding
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may improve the accuracy of prognostic predictions and facilitate the development of

optimized therapies for each subtype.

Laiho showed that mRNA profiling of 7928 genes from 37 colorectal carcinoma

(CRC) samples separated serrated CRCs and conventional CRCs using hierarchical

clustering [158]. This study was able to provide firm molecular evidence for a previ-

ously underrecognized route leading to CRC, which is a serrated neoplasia pathway.

Much clinical and pathological evidence suggested that serrated CRCs may be more

aggressive than conventional CRCs. Establishing serrated CRCs as a biologically dis-

tinct CRC subtype represents further discovering of the molecular subtypes of CRCs.

In the long term, understanding the molecular basis of serrated CRCs may contribute

to the development of treatment options specifically for this tumor subtype.

Wilkerson detected four lung squamous cell carcinoma (SCC) subtypes from

mRNA expression data totaling 2307 genes from 382 SCC patients using Consen-

sus Clustering in the ConsensusClusterPlus software package by Bioconductor [197,

278, 277]. The four lung SCC subtypes are: primitive, classical, secretory, and basal.

These subtypes were associated with tumor differentiation as well as patient gender.

The primitive subtype had the shortest survival and can be used as an independent

predictor for survival outcome. The expression profiles of the four subtypes showed

different biological processes which may suggest different pharmacologic interventions.

Lei et al. identified 3 major subtypes among mRNA expression data of 35 genes

from 248 gastric tumors using a robust method of unsupervised clustering, consensus

hierarchical clustering with iterative feature selection [163]. The 3 subtypes of gastric

adenocarcinoma are: proliferative, metabolic, and mesenchymal. These subtypes

have differences in molecular and genetic features, and respond differently to therapy.

Thus, such subtyping may be helpful in selecting specific and appropriate treatment

approaches for patients.
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microRNA-based Applications

Lu et al. performed computational analyses on 217 miRNAs from 334 mammalian

samples, including multiple human cancers [175]. Hierarchical clustering with average

linkage and Pearson correlation was performed. Over miRNA profiles of 73 ALL

samples, three groups were separated: BCR/ABL-positive samples and TEL/AML1

samples; T-cell ALL samples; and MLL samples. Subtyping results based on miRNA

profiles on ALL samples and other tumor samples showed higher accuracy when

compared with mRNA profiles. These discoveries demonstrate that using miRNA

profiling for cancer diagnosis is very promising.

Blenkiron reported the clustering analysis of miRNA expression in primary hu-

man breast tumors [31]. Hierarchical clustering with average linkage and Pearson

correlation were used: ER- and ER+ tumors were recovered in over 137 miRNAs in

93 primary tumors samples; basal-like, HER2+, luminal A, luminal B or normal-like

were recovered in over 38 miRNAs in 51 tumor samples; luminal A or luminal B

tumors were recovered in over 9 miRNAs in 24 tumor samples. This study is among

the first integrated analysis using miRNA expression, mRNA expression and genomic

changes in human breast cancer. Furthermore, it demonstrates that miRNA expres-

sion profiling has the potential to effectively classify breast cancer into prognostic

molecular subtypes.

Mattie analyzed miRNA profiling of 20 different breast cancer samples in three

common subtypes: ErbB2+/ ER-, ErbB2+/ER+, and ErbB2-/ER+ [187]. Hierar-

chical clustering identified these clinically relevant subtypes based on their miRNA

expression patterns. The ErbB2+/ER+ subtype is a clinically troublesome subtype

and appears to be more resistant to all kinds of endocrine therapy [63]. Successfully

identifying the ErbB2+/ER+ subtype based on miRNA profiling is of substantial

interest since mRNA profiling studies had not previously been able to identify it.

Porkka studied the expression of 319 human miRNAs in samples from prostate

cancer cell lines, prostate cancer xenografts and clinical prostate tissues [223]. Hi-

erarchical clustering with average linkage separated the 9 prostate carcinoma tissue



41

samples into two groups that quite accurately correspond to clinical stage based sub-

types: hormone-naive subtype and hormone-refractory subtype. Such results indicate

that miRNAs profiling has the potential to become a novel diagnostic and prognostic

tool for prostate cancer.

Oberg examined the expression of 735 miRNAs in 52 normal and 263 colon

tumor samples [211]. There were three clinical subtypes in the tumor samples: 41

adenomas, 158 pMMR carcinomas and 64 dMMR carcinomas. Hierarchical clustering

with average linkage and Pearson’s dissimilarity matrix demonstrated that normal

colon tissue and the three tumor subtypes were all clearly separable. It is the first

report to show global miRNA (instead of only a few selected miRNAs) expression

differences can be used for colon tumor subtype diagnosis.

Yang analyzed 219 miRNA-associated genes from 459 ovarian carcinoma (OvCa)

samples [292]. Consensus k-means clustering identified two clusters. One of the two

clusters contained 172 OvCa cases and formed a tight cluster with higher expression

values of the miRNA-associated genes. The majority of patients in this cluster had

advanced stage OvCa and significantly shorter overall survival durations than patients

the other cluster.

2.3.2 Computational Experiments

mRNA-based Experiments

Xing and Karp presented CLIFF (CLustering via Iterative Feature Filtering) [282]

and tested it with mRNA profiles of 72 leukemia samples and 7130 genes [104]. CLIFF

is based on the ‘normalized cut’ concept and iterates between sample partitioning and

feature filtering until converging into an appropriate partition of the leukemia samples

and a set of informative genes. The result produced by CLIFF had high agreement

to the original expert labeling of the leukemia data set. Its final partition had two

clusters. One of the clusters contains 44 ALL samples, and the other cluster contains

25 AML samples and 3 ALL samples.

Tang and Zhang proposed IPD (Iterative Pattern-Discovery) based on iterative
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sample clustering and irrelevant gene pruning [262], and tested it on mRNA profiles

of over 7129 genes in 72 leukemia patient samples [104]. During the initial partition

phase, conventional clustering methods k-means or SOM was used to group samples

and genes into exclusive smaller groups. Based on Rand Index values, the clustering

results obtained by IPD approaches are consistently better than the results obtained

by applying k-means or SOM directly.

Getz et al. proposed CTWC [98] (covered in Section 2.2.7) and applied it to a

leukemia mRNA data set [104] and a colon cancer mRNA data set [9]. The leukemia

data set contains 72 samples; 47 samples are ALL, and the other 25 samples are AML.

The original set contained 6,817 genes. 1,753 genes were selected for the CTWC

experiment. In two iterations, 49 stable gene clusters and 35 stable sample clusters

were obtained. One of the gene clusters contained 60 genes, and when used as the

feature set CTWC was able to separate the samples into AML/ALL clusters. The

colon cancer data set contained 40 tumor samples and 22 normal samples. The

original set contained 6,500 genes. 2,000 genes were chosen for CTWC experiment.

In two iterations, 97 stable gene clusters and 76 stable sample clusters were obtained

by CTWC. Four of the gene clusters can partition the samples into normal/tumor

clusters.

Cheng and Church proposed an efficient biclustering algorithm [47] and applied

it to diffuse large B-cell lymphoma mRNA profiles containing 4026 genes and 96

conditions [8]. The algorithm is based on multiple row/column addition/deletions

and successively extracts biclusters from the raw data matrix until a pre-specified

number of clusters has been reached. In comparison with the results from hierarchical

clustering used by Alizadeh et al., the first 100 biclusters discovered by Cheng’s

biclustering had only 10 conditions/genes exclusively from one or the other primary

cluster from hierarchical clustering.

Iam-on et al. presented LCE (Link-based Cluster Ensemble) [124] and applied it

to several mRNA profile data sets including: leukemia1 [104] (1,877 genes and 72 sam-

ples), leukemia2 [104] (1,877 genes and 72 samples), leukemia3 [14] (2,194 genes and
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72 samples), brain tumor [210] (1,377 genes and 50 samples), central nervous system

(CNS) [222] (1,379 genes and 42 samples), and hepatocellular carcinoma (HCC) [44]

(85 genes and 180 samples). LCE incorporates relations within an ensemble and as-

sociations among clusters to improve clustering results. Based on average validity

measure over three validity indices (Classification Accuracy (CA), Normalized Mu-

tual Information, and Adjusted Rand Index) on the clustering results, LCE regularly

performs better than other clustering methods including MULTI-K [148], consensus

clustering with hierarchical clustering [197], graph-based consensus clustering [295],

Cluster based Similarity Partitioning Algorithm [259], Hyper-Graph Partitioning Al-

gorithm [259], Meta-Clustering Algorithm [259], Hybrid Bipartite Graph Formula-

tion [86], k-means, single-linkage, complete-linkage, and average-linkage. Based on

the CA validity index, LCE achieved over 74% accuracy on leukemia1, over 70% ac-

curacy on leukemia2, over 83% accuracy on leukemia3, over 61% accuracy on brain

tumor, over 63% accuracy on CNS, and over 84% accuracy on HCC.

microRNA-based Experiments

Lock and Dunson proposed Bayesian Consensus Clustering (BCC) [172] and tested it

with miRNA profiles of 348 breast cancer samples and 423 miRNAs [149]. This ap-

proach is a flexible and computationally scalable Bayesian framework, which estimates

the consensus clustering and the base clusterings at the same time. BCC clustering

results vs. TCGA identified comprehensive subtypes matching matrix show that the

two partitions have a significant but weak association.

Li et al. proposed a subtyping method using the CTWC algorithm and Super-

Paramagnetic Clustering (SPC) [165] and tested it with the miRNA profiles of 71

breast cancer patients and 13 miRNAs [31]. This method iteratively partitioned the

sample and feature space using the two-way super-paramagnetic clustering technique

and identifies the final optimal miRNA clusters. Using a subset of the miRNAs as the

feature set, the five subtypes previously classified by mRNA expression profiling [31]

were identified successfully by CTWC. The clinical significance of the identified sub-
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types were verified using Kaplan-Meier survival analysis [151].

2.4 Challenges

Despite many examples of successful applications of cluster analysis, there still remain

many challenges due to the existence of many inherent uncertain factors. The follow-

ing fundamental challenges in clustering are relevant even today [129]: a) definition

of a cluster, b) selection of features, c) normalization of the data, d) outlier detection,

e) definition of pair-wise similarity, f) number of clusters, g) selection of clustering

method, h) existence of clustering tendency, and i) validity of the clusters.

Advances in expression profiling technology and decreasing costs are making gene

expression data increasingly available and affordable. Research has shown that classi-

fying cancers using gene expression can discover previously undetected and clinically

significant subtypes of cancer [269]. However, there are still many challenges.

2.4.1 Clinical Challenges

Complexities in cancers and cancer subtypes Cancers and cancer subtypes are

complicated diseases. Especially for most solid tumors, many different cell types are

involved in a tumor, and tumor cells themselves are morphologically and genetically

diverse [218]. These features may make the conventional clustering approaches prob-

lematic or inadequate, so novel clustering approaches are needed to address such

complexities.

Experimental issues Gene expression studies require careful experimental de-

sign to avoid experimental errors. This is especially important for studying solid tu-

mors. For example, biopsy specimens might have different proportions of surrounding

stromal cells, which may cause clustering results reflecting the stromal contamination,

rather than the underlying tumor. So, additional techniques are needed to improve

such problems. Microscopic examination of tumor samples to make sure that the

tumor cells are comparable and purified is helpful, as well as computational analysis

methods that can exclude surrounding stromal cells.
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2.4.2 Computational Challenges

Curse of Dimensionality Gene expression data sets generally contain small num-

bers of samples (in tens) and large numbers of genes (in hundreds or thousands). Most

conventional clustering techniques need a large number of samples and a small num-

ber of variables to achieve robust performance. Approaches are needed to improve

the clustering results on such sparse data sets.

Noise There are multiple sources of noise introduced in microarray experiments,

including varying cellular composition among tumors, genetic heterogeneity within

tumors due to selection and genomic instability, differences in sample preparation,

nonspecific cross-hybridization of probes, and differences between individual microar-

rays. In general, biologic variation is the major source of variation in gene expression

experiments. The noise may obscure clustering results, especially in those approaches

based on distance functions. Techniques are needed to improve clustering approaches

so that they are more robust to noise.

Number of subtypes For subtyping in clinical studies, the number of subtypes

are unknown or uncertain. However, in many clustering algorithms this number needs

to be specified by the user, so techniques are needed to estimate or infer the number

from the data. Algorithms are needed to identify the number of clusters [208].

Clinical or biologic meanings Gene expression data sets are complex and

may contain hundreds or thousands genes. In a complex data set, many different

relationships and patterns are possible [227]. The patterns discovered by clustering

may not necessarily be clinically or biologically meaningful. Techniques are needed

to uncover and identify clusters of clinical or biologic interest.

Statistical significance An important issue with any analytic approach is the

statistical significance of observed correlations. A typical microarray experiment pro-

duces expression data for thousands of genes from a relatively small number of sam-

ples, thus gene-cluster correlations can be identified by chance alone. Techniques are

needed to determine the statistical significance, such as permutation testing.
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Knowledge integration Knowledge is obtained from multiple test techniques:

some from conventional tests and some from molecular diagnostic tests. However a

single recommendation is needed for the oncologist to treat the patient. Approaches

are needed to integrate these knowledge items to produce an improved single recom-

mendation.

Algorithm selection There are a large number of clustering algorithms available

that may be used for clustering gene expression data, however there is no single

best algorithm that performs best in all aspects. Selecting the most appropriate

algorithm for a given gene expression data set and a given analysis goal is critical in

success application. Without automatic selection of the most appropriate algorithm,

researchers usually select a few promising clustering algorithms and compare their

results. Approaches are needed to improve algorithm selection.

Other challenges Besides the above challenges, researchers are also facing the

following challenges: time variation during specimen preparation, integration of data

sets created by different laboratories using different technologies, overlapping clusters,

presence of irrelevant attributes, and lack of prior knowledge.

2.5 Discussion

In this chapter we reviewed classical and state of the art clustering algorithms in the

communities of computer science, machine learning, statistics, etc. We also reviewed

historic and state of the art cancer subtyping techniques. Clustering algorithms that

have been applied to mRNA or miRNA expression data based cancer subtyping with

promising results, and challenges associated with molecular cancer subtyping were

presented as well.

However, given the many choices of available clustering algorithms, there is no

single algorithm that performs best in every validation matrix. The performance of a

given clustering algorithm and a validation matrix is dependent on data characteristics

and the application [133].

Different granularities Users often desire different cluster granularity for dif-
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ferent subsets of data. For example, users may prefer small and tight clusters for some

genes but need only coarse data structure for other genes. However, most existing

clustering algorithms provide the same cluster granularity for all genes. It would be

more helpful for them to provide a flexible representation of the data cluster structure

and let the user to find the answer based on several different granularity requirements.

Handling high dimensional / low sample data Although many clustering

techniques have been used for gene expression data, most of these techniques perform

well only on data with a large number of samples and a small number of dimensions.

Cancer gene expression data sets generally contain a small number of samples with

a large number of dimensions or genes, since many human cancer studies use costly

or rare clinical specimens and are difficult to repeat. Future advances will require

improved clustering techniques better adapting to this type of data.

Easy to use software In order to make routine clinical use of clustering tools

a reality among medical and biological professionals, the software needs to be easy

to use. For example, the software should be able to determine the number of clus-

ters automatically based on the data properties; the software should avoid needing

other user-specific parameters or should provide effective guidance to determine those

parameters; the software should provide good visualization and domain-specific in-

terpretation for the clustering results; the software should be able to extract useful

and relevant information from the data to solve users’ problems.

Robustness Noise can be introduced in every step of the microarray experiments

due to the nature of microarray technology. It is not realistic to count on the data to

be ‘pure and uncontaminated’. Noise and outliers can be present in the data during

measurement, storage, and processing. The clustering algorithm should be able to

better detect and remove noise and outliers, or not be affected by them.

Arbitrary cluster shapes Many existing clustering algorithms form clusters

with regular shapes, such as hyper-spheres or hyper-rectangles. Gene expression data

generally have complex underlying data structures and are not always regular cluster

shapes. Cluster algorithms should be able to better detect arbitrary natural cluster
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shapes rather than confine the clusters to some particular shape.
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Chapter 3

Improved Fuzzy Cluster Ensemble
Methodology

3.1 Introduction

Many clustering methods have been designed and applied to cancer gene expression

data for the purpose of cancer classification. They aim to improve therapeutic results

by diagnosing cancer types or subtypes with improved accuracy in comparison with

traditional methods such as histopathology or immunohistochemistry.

A common and exploratory analysis is to perform clustering on the cancer or

patient samples (tissues). Such kind of analysis was first carried out in late 1990s

with promising results. In addition, bioinformaticians have proposed novel clustering

methods that take intrinsic characteristics of gene expression data into account, such

as noise and high-dimensionality, to improve the clustering results. However, differ-

ent algorithms (or even the same algorithm with different parameters) often provide

distinct clusterings. As a result, it is extremely difficult for users to decide which

algorithm and parameters will be optimal for a given set of data set for a particular

task. There is no single clustering algorithm that can perform the best for all data

sets [156], and discovering all types of cluster shapes and structures presented in data

is impossible for any known clustering algorithm [75].

Cluster ensembles have recently emerged as simple and effective methods for

improving the robustness and accuracy of clustering results. Cluster ensemble can

perform many algorithms on a data set, and integrate the results to find the best
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clustering.

3.2 Related Work

Clinical researchers usually use simple traditional clustering methods such as hierar-

chical [254], K-Means [238], and SOM [104] for cancer gene expression data cluster

analysis. Such traditional methods have much better availability in standard software

packages and are easy to implement.

Novel clustering methods have been proposed by bioinformaticians to improve

the clustering results on gene expression data to address its intrinsic characteristics

including noisy and high dimensional, such as Non-negative Matrix Factorization

(NMF) method [36]. Such new methods are not getting enough attention from clinical

researchers as they may require particular programming environments or more user-

specified parameters, which is difficult for non-expert users.

Cluster ensembles combine multiple clustering decisions from base clusterings or

ensemble members. There are two main steps in a clustering ensemble: generation

step and consensus step.

In generation step, cluster ensemble methods use a variety of approaches to obtain

diversity in base clusterings. Four ensemble generation methods have been commonly

used: a) using a single clustering algorithm with different initializations [148], b) using

multiple clustering algorithms [157], c) using different subsets of genes [15], and d)

using data sampling techniques [76].

In consensus step, cluster ensemble methods use a variety of consensus func-

tions to combine base clusterings. Four ensemble consensus methods have been com-

monly used: a) using pairwise similarity-based consensus function [148], b) using

graph-based consensus function [259], c) using mutual information-based consensus

function [265], and d) using voting based consensus function [76].

Noise problem remains particularly challenging in clustering applications, even

if there are many pre-processing techniques such as logarithmic transformation or

standardization. For bioinformatics applications, noise can make it difficult to detect
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the true clusters and obscure or mislead the underlying biological meanings.

We present a novel clustering algorithm Improved Fuzzy Cluster Ensemble (IFCE)

to improve robustness against noise.

3.3 Noise Robustness Problem

Noise is the opposite of true signal data objects in a data set, and is meaningless

additional information. Noise can be present in the data during measurement, storage,

processing, and collecting. It is not practical to count on the data to be free of noise.

Figure 3.1 shows data (noise + signal) against signal in a very low signal-to-noise data

set. Figure 3.2 shows data (noise + signal) against noise in a very low signal-to-noise

Figure 3.1: Data and signal [256]

data set.

Noise problem remains challenging in clustering applications, even if there are

many pre-processing techniques such as logarithmic transformation or standardiza-

tion. For bioinformatic applications, noise can make it difficult detect the true clusters

and obscure or mislead the underlying biological meanings. The noise may obscure

clustering or mislead results especially in those approaches based on distance func-



52

Figure 3.2: Data and noise [255]

tions. An ideal clustering algorithm should be able to better detect and remove noise

or not be affected by them [25].

Existing clustering methods that use a distance (e.g. Euclidean distance) as

similarity measure, are not immune to the noise and can cause misclassification.

Distance function combines the feature noises into a single similarity value. and

Significant noise on some feature(s) cause the clustering results misleading [174].

Trimming methods [60, 204, 95] have been proposed to improve robustness. Such

methods discard a predefined noise fraction (e.g. α) of an input data set before

applying a clustering algorithm, which can be effective but suffer from exponential

computational complexities. Since noise or outlier data objects can be considered

as separate clusters, methods [204] have been proposed to increase the number of

clusters when clustering noisy data. However, such methods are not proven for noise

robustness guarantees. [25]

With our proposed algorithm IFCE, new weighted fuzzy techniques are employed

to increase its robustness against noise.
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3.4 Fuzzy Set Theory

Most of traditional methods for modeling, reasoning, and computing are crisp, deter-

ministic, and precise. This means they are dichotomous, yes-or-no instead of more-

or-less. [302] They use traditional Boolean logic, which takes only binary or dual

values of either true or false that are usually denoted 1 or 0 respectively. No values

in between is accepted. In traditional set theory, an element either belongs to a set

of not.

However, reality is not crisp or certain. The problems in the real world are not

always yes-or-no type. Real situations are often more-or-less or vague. So, traditional

Boolean methods mostly not applicable well. Many theories have been developed to

model uncertainties in reality. For a long time, probability theory and statistics have

been the predominant one. However it is based on certain assumptions as traditional

theories, which can be different than reality [302, 136].

Fuzzy set theory is also one of those theories and was introduced in 1965. It uses

fuzzy logic, which is a many-valued logic and takes the values as any real numbers

between 0 and 1. It was initially intended to be an extension of traditional Boolean

logic and traditional set theory. It provides a natural way of dealing with problems

that do not have sharply defined criteria of set membership. It describes mathemat-

ically the vagueness or imprecision. It is strict mathematical method in which vague

situations can be precisely and rigorously studied. Although there is imprecision,

humans can still make sensible decisions. The interests of this theory grew slowly till

its first successful practical applications in fuzzy control systems in later 1970s and

further many successful applications in 1980s. Ever since, it has been developed to

be a powerful method and can often model reality better than traditional theories.

It was expected to have the potential of a wider scope of applicability, particularly

in the fields of pattern classification etc. [302, 136] Figure 3.3 shows an example of

fuzzy logic. Figure 3.4 shows examples of fuzzy logic applications.

Gene expression data contains imprecise information. Crisp or hard clustering
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Figure 3.3: Fuzzy logic [17]

Figure 3.4: Fuzzy logic examples [245]

methods such as K-means and SOM are not suited to the analysis of such data because

the clusters of genes frequently overlap. Fuzzy set theory has many advantages in

dealing with data containing imprecision. Fuzzy clustering approaches use fuzzy set

theory which takes this imprecision into consideration in analyzing gene expression

data [67].

With fuzzy clustering, a cluster is viewed as a fuzzy set. Thus, each feature
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vector has a membership value with each cluster, which is the degree of belonging to

each cluster. Figure 3.5 shows an example of fuzzy membership.

Figure 3.5: Fuzzy membership [224]

A membership function is a function that maps each point in the input space to

a fuzzy membership value between 0 and 1 representing degree of membership. For a

input point, the value 0 means it is not a member of the fuzzy set. The value 1 means it

is fully a member. The values between 0 and 1 means it is a fuzzy member and belongs

to the fuzzy set only partially. There are many fuzzy membership functions. Some

of them are formed using straight lines such as the triangular membership function

and the trapezoidal membership function. They are simplest. Gaussian membership

functions are built on Gaussian distribution curve. The generalized bell membership

function has one more parameter than the Gaussian membership function that defines

its slope. These two achieve smoothness, but they are unable to specify asymmetric

membership. Sigmoidal membership function is either open left or right, suitable

for asymmetric membership. Polynomial membership functions are based on various

Polynomial curves. Left-Right or L-R membership function uses both a left function

and a right function which are monotonically decreasing functions. Also, there are

2-D membership function and composite of non-composite membership functions.

[130, 181, 232, 229] Common fuzzy membership functions are presented in Table 3.1.
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MF&Reference Definition Notes

Triangular [130,
229]

Simple formulas and
computational effi-
ciency. Not smooth at
the corner points.

Trapezoidal
[130, 229]

Simple formulas and
computational effi-
ciency. Not smooth at
the corner points.

Gaussian
[130, 229]

Smoothness and con-
cise notation. Unable
to specify asymmetry.

Generalized Bell
[130, 229]

Smoothness and con-
cise notation. Unable
to specify asymmetry.

Sigmoidal [130,
229]

Asymmetric: open
right or left, or close.

Left-Right(L-R)
[130, 229]

Extremely flexible.
Unnecessary complex-
ity.

Table 3.1: Fuzzy membership functions

Figure 3.6 shows examples of four classes of parameterized MFs: (a) triangle

(x; 20, 60, 80); (b) trapezoid (x; 10, 20, 60, 95); (c) Gaussian (x; 50, 20); (d) bell (x;
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Figure 3.6: Parameterized fuzzy membership functions [229]

20, 4, 50) Figure 3.7 shows close and asymmetric MFs based on sigmoid functions:

1(a) shows two sigmoid functions y1 = sig(x; 1, -5) and y2 = sig(x; 2, 5); a close

and asymmetric MF can be obtained by taking their difference |y1 − y2|, as shown

in 2(b). 2(c) shows an additional sigmoid MF defined as y3 = sig(x; -2, 5); another

way to form a close and asymmetric MF is to take their product y1y3, as shown in

2(d). Figure 3.8 illustrates two Left-Right(L-R) MFs specified by LR(x; 65, 60, 10)

and LR(x; 25, 10, 40) [229].

3.5 Improved Fuzzy Clustering Algorithm

3.5.1 Description

The base clustering of IFCE is the Improved Fuzzy Clustering (IFC) algorithm. IFC

is described below.

In IFC, it first generates a large number (twice of the total existing feature

vectors) seed cluster centers in the feature space. It then eliminates those that are
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Figure 3.7: Sigmoid fuzzy membership functions [229]

Figure 3.8: Left-Right(L-R) fuzzy membership functions [229]

too close to obtain a reduced but uniformly distributed set of initial seeds. For

elimination, it uses the average distance between centers as a threshold, so half of the

seeds are eliminated [174]. For a clustering problem, the number of clusters of a data

set is often unknown. A general method starts with a large number of seeds (initial

cluster centers) which include all the existing feature vectors and some randomly

generated ones in the feature space [174].
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After IFC obtains the initial cluster centers, it applies K-Means clustering (to-

gether, it is called Improved K-Means [173]). The K-means algorithm is used to

partition a given set of observations into a predefined amount of K clusters. The

algorithm as described by [178] starts with a random set of K center-points (µ).

During each update step, all observations x are assigned to their nearest center-point

(see equation 3.1). In the standard algorithm, only one assignment to one center is

possible. If multiple centers have the same distance to the observation, a random one

would be chosen. Traditional K-Means is given by the following two equations:

S
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤ ∥∥xp − µ(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k
}

(3.1)

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (3.2)

IFC uses fuzzy clustering techniques. In non-fuzzy clustering (also called crisp

clustering or hard clustering), data is divided into distinct clusters and each data

object can only belong to exactly one cluster. In fuzzy clustering, each data object

can potentially belong to multiple clusters. It uses membership grades to indicate

the degree to which data objects belong to each cluster. Data objects on the edge

of a cluster has lower membership grades, and is in the cluster to a lesser degree

than data objects in the center of cluster with higher membership grades. Figure 3.9

shows Gaussian fuzzy set membership function. Gaussian fuzzy membership function

Figure 3.9: Gaussian fuzzy set membership function [3]
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is given by the equation:

f(x‖µ, δ2) = (
1√

2πδ2
)exp[−

(x(p)− µ)2

(2δ2)
] (3.3)

µ is the mean or expectation of the distribution, δ is the standard deviation, and δ2

is the variance. Fuzzy C-Means clustering is given by the equation [174]:

J(wqk, c
k) =

Q∑
q=1

K∑
k=1

(wqk)
m||xq − ck||2 (3.4)

wqk =
( 1
(||xq−cr||)2 )

1
p−1∑K

r=1(
1

(||xq−cr||)2 )
1

p−1

, k = 1, ..., K, q = 1, ..., Q, (3.5)

ck =

Q∑
q=1

Wqkx
q, k = 1, ..., K; (3.6)

Wqk =
wqk∑Q
r=1wrk

, q = 1, ..., Q (3.7)

IFC uses the modified weighted fuzzy expected value (MWFEV) method for

computing the cluster centers [174]. Figure 3.10 shows Modified Weighted Fuzzy

Expected Value. The Modified Weighted Fuzzy Expected Value (MFWEV) is given

Figure 3.10: Modified weighted fuzzy expected value [174]

by the equation [174]:

~µ(r+1) =
P∑
p=1

α(r)
p xp (3.8)
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Where,

α(r)
p =

exp[− (x(p)−~µ(r))2

(2δ2)(r)
]∑P

m=1 exp[−
(x(m)−~µ(r))2

(2δ2)(r)
]

(3.9)

(δ2)(r+1) =
P∑
p=1

α(r)
p (xp − ~µ(r))2 (3.10)

After a number of IFC clustering iterations, it converges to many relatively small

clusters ready for merging. In order to produce more natural shapes clusters as the

results instead of forcing them into normed balls due to using the distance func-

tion, IFC merges the closest clusters until the Xie-Beni validity measure does not

decrease anymore or until the number of clusters is reduced to two. It finds the two

clusters with the minimum distance between their centers, calculates a new center

with the average of the two centers. It then reduces the number of clusters by one

accordingly [174].

Cluster merging [154] was proposed as a way to select the number of clusters.

After the data set is partitioned into a relatively large number of clusters, similar

clusters are merged based on a given criterion until no more clusters can be merged.

This way, the number of clusters is reduced dynamically. There are various methods

for cluster merging, including a compatible cluster merging method for clustering [154,

83], and the fuzzy inclusion similarity measure based method for an extended FCM

algorithm [143]. In addition, some methods merge two clusters that has the largest

pairwise linkage among all pairs of clusters. They use linkage functions such as the

single linkage, the complete linkage, the average linkage, and the MinMax linkage [71].

Similarity-Driven cluster merging method for unsupervised fuzzy clustering was also

proposed [283]

The Xie-Beni validity measure [281] measures the compactness and separation of

the clustering results. It is the ratio of compactness-to-separation and defined by

XB =
( 1
K

)
∑K

k=1 δ
2
k

D2
min

(3.11)
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Where,

δ2k =

Q∑
q=1

wqk||xq − ck||
2
, k = 1, ..., K. (3.12)

D(min) is the minimum distance between cluster centers, and bigger value means

greater separation. Each δ2k is a fuzzy weighted mean-square error for the kth cluster,

and smaller value means more compact clusters. Thus, a lower value of Xie-Beni

means more compactness and greater separation [174].

Figure 3.11 shows an example of cluster merging.

Figure 3.11: An example of cluster merging [137]

3.5.2 High Level Algorithm and Flowchart

The high level of IFC algorithm is given below, where S = x(q) : q = 1, ..., Q are

input feature vectors, and x(q) = (x1(
q), ..., xN(q)); c(k) : k = 1, ..., K are cluster cen-

ters [174].

Step 1: Generate a large number of 2Q of seed cluster centers c(k) : k = 1, ..., 2Q and

eliminate cluster centers that are too close to another to obtain a reduced set of K

initial seed cluster centers.

Step 2: Assign each of the Q feature vectors x(q) to a cluster center c(k) based on

minimum Euclidean distance via clust[q] = k to form K clusters.
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Step 3: Eliminate all seed cluster centers that have no feature vectors assigned to

them (empty clusters) and re-index the cluster membership assignments accordingly

to obtain K clusters.

Step 4: For each of the K clusters, compute the modified weighted fuzzy expected

value [174] of all feature vectors in that cluster to be the new cluster center (c(k) for

k = 1,...,K.

Step 5: If first pass, then go to Step 2;

else-if any clusters have changed, then go to Step 2;

else exit this part.

Step 6: Zero out all clust[q]; q = 1,...,Q

Step 7: Zero out all count[k]; k = 1,...,K

Step 8: For each q of the Q feature vectors do Find the nearest c(k) to q

Put clust[q] = k

Put count[k] = count[k] + 1

Step 9: If any cluster k0 is empty, eliminate it by eliminating its cluster center c(k0)and

re-indexing the remaining cluster centers c(k) and the cluster counts (use clust[q] =

k - 1 for all k where k ¿ k0). Repeat this for each empty cluster.

Step 10: For each of the K clusters, compute the modified weighted fuzzy expected

value vector of all feature vectors in that cluster.

Step 11: If any cluster has changed on this iteration, then go to Step 6.
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Step 12: Save this clustering and exit this part.

Step 13: Find the two clusters that have the minimum distance between their cluster

centers, replace the cluster center with the average of the two centers, re-index the

cluster centers and reduce K accordingly.

Step 14: Do Steps 6 through 10 above to obtain a new clustering with one less cluster.

for the new K clusters.

Step 15: Compute the Xie-Beni clustering validity value for the new K clusters.

Step 16: If the new Xie-Beni value is lower than the previous Xie-Beni value and K

> 2 then go to Step 13

else keep the previous clustering and stop.

The flowchart of IFC is given in Figure 3.12

3.5.3 Iris Data Set

Iris data set is a famous data set used for testing clustering and other learning algo-

rithms. It is known to be noisy and inseparable [145]. It contains 150 feature vectors.

Each feature vector is 4-dimensional representing the 4 iris features: petal width,

petal length, sepal width, and sepal length. These feature vectors were labeled into

3 clusters, or species, which are Sestosa, Versicolor and Virginicus.

Figure 3.13 shows the petal and sepal of Iris flower. Figure 3.14 shows the three

species of Iris flower. Figure 3.15 displays the spectramap biplot of Fisher’s iris data

set.

Figure 3.16 displays the Modified Weighted Fuzzy Expected Values (MWFEV)

of each feature for each cluster. It shows that there is much overlapping of the second
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Figure 3.12: Flowchart of IFC
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Figure 3.13: Petal and sepal of Iris flower [268]

Figure 3.14: Three species of Iris flower [213]

feature values that do not differentiate the 3 clusters well. It shows that the third

feature and the forth feature are the best separators, and the first feature is good

separator [174].
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Figure 3.15: Spectramap biplot of Fisher’s Iris data set [192]

Figure 3.16: MWFEV centers of the four Iris features [174]

3.6 Improved Fuzzy Cluster Ensemble Algorithm

3.6.1 Diagram

Our proposed IFCE methodology is illustrated in Figure 3.17 (adapted from [264]).

It includes two major steps: ensemble generation step generating base clusterings to
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Figure 3.17: IFCE (adapted from [264])

form a cluster ensemble; and ensemble consensus step producing the final clustering

result using a consensus function.

3.6.2 Ensemble Generation

In ensemble generation step, diversity is often artificially introduced in order to im-

prove the output results of an ensemble. In homogeneous ensembles, based cluster-

ings are created using a single clustering algorithm. In heterogeneous ensembles, base

clusterings are created using different clustering algorithms. IFCE is a homogeneous

ensemble, and its three base clusterings are Improved Fuzzy Clustering (IFC) using

Modified Weighted Fuzzy Expected Value (MWFEV) [174] with different initializa-

tions.

With IFC, first a large number (twice the total existing feature vectors) seed

cluster centers are generated in the feature space. Then those that are too close to

obtain a reduced but uniformly distributed set of initial seeds are eliminated. For

elimination, IFC uses the average distance between centers as a threshold, so that

half of the seeds are eliminated. After IFC obtains the initial cluster centers, it applies



69

K-Means clustering (together, it is called Improved K-Means [173]).

After applying the Improved K-Means clustering, we use the MWFEV method

for computing the cluster centers.The MWFEV is given by the equation [174]:

~µ(r+1) =
P∑
p=1

α(r)
p xp (3.13)

Where,

α(r)
p =

exp[− (x(p)−~µ(r))2

(2δ2)(r)
]∑P

m=1 exp[−
(x(m)−~µ(r))2

(2δ2)(r)
]

(3.14)

(δ2)(r+1) =
P∑
p=1

α(r)
p (xp − ~µ(r))2 (3.15)

After a number of iterations, IFC converges to many relatively small clusters

ready for merging. In order to produce more natural shapes clusters as the results

instead of forcing them into normed balls due to use of the distance function, IFC

merges the closest clusters until the Xie-Beni validity measure does not decrease any-

more or until the number of clusters is reduced to two. It finds the two clusters with

the minimum distance between their centers, calculates a new center with the average

of the two centers. It then reduces the number of clusters by one accordingly [174].

3.6.3 Ensemble Consensus

After diverse clustering results have been produced by the multiple base clustering al-

gorithms, they need to be integrated into a single result. Voting method is commonly

used as the consensus function in integrating clustering results for ensemble. IFCE

uses plurality voting as its integration function to obtain the final clustering using

clustering results from its three base clusterings. With plurality voting, each feature

vector votes for or is assigned to one cluster in each base clustering, and the cluster

who has more votes (plurality) than any other cluster is the winner. It is different

than majority voting, with which the winner polls more than half of the votes.
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Chapter 4

Experimental Results

In this chapter, we first describe our experimental design and settings including data

sets, clustering validity measure, and other experimental conditions. We then present

the experimental results on clustering criteria comparison analysis, parameters anal-

ysis, complexity analysis, and noise robustness analysis.

4.1 Experiment Design and Settings

The goal of our experiments is to compare the performance of IFCE to a number of

clustering algorithms. We measure the performance in terms of clustering criteria,

parameter sensitivities, complexity, and noise robustness. We choose eight real can-

cer gene expression data sets and ten synthetic noisy data sets for our comparison

experiments.

4.1.1 Cancer Gene Expression Data Sets

We chose eight cancer gene expression data sets to evaluate our proposed cluster

ensemble method, and they are described below.

Golub1999v1 data set contains the expression of 1,877 genes in 72 leukemia sam-

ples, with labels for 2 subtypes [104]. Golub1999v2 data set contains the expression of

1,877 genes in 72 leukemia samples, with labels for 3 subtypes [104]. These two Golub

data sets are the most studied and cited microarray data set. Each of them contains 47

acute lymphoblastic leukemia (ALL) patients and 25 acute myeloid leukemia (AML)
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patients. All the 72 patients had their bone marrow samples obtained at the time of

diagnosis. The samples were assayed with Affymetrix Hgu6800 chips, and 7129 gene

expressions (Affymetrix probes) were observed. Since ALL arises from two different

types of lymphocytes (T-cell and B-cell), Leukemia1 can be considered containing

three subtypes: AML, ALL-T, and ALL-B, as labeled in Leukemia2. [102].

Armstrong2002 data set contains the expression of 2,194 genes in 72 leukemia

samples, with labels for 3 subtypes [14]. Initially, samples of 20 patients with con-

ventional ALL (ALL) but without MLL translocation were collected. Then, samples

from 17 patients with the MLL translocation (MLL) were collected. These samples

were obtained from the peripheral blood or bone marrow of the patients at diagnosis

or relapse. All these ALL and MLL patients were diagnosed as CD19+ B-precursor

ALL by pathologists at the institution where the samples were collected [102].

Chowdary2006 BCT (Breast-Colon tumors) data set contains the expression of

182 genes in 104 samples, with labels for 2 subtypes [48]. It contains pairs of snap-

frozen and RNAlater preservative-suspended samples from 30 such paired lymph

node-negative breast cancer patients and 21 such paired Dukes’ B colon cancer pa-

tients, as well as triplication of six stage II colon cancer patient samples.

Nutt2003 Brain Tumor data set contains the expression of 1,377 genes in 50 sam-

ples, with labels for 4 subtypes [210]. Samples were primary rumors and collected

before therapy. They were reviewed by board-certified neuropathologists at the col-

lecting hospital as 50 high-grade glioma samples: 28 glioblastomas and 22 anaplastic

oligodendrogliomas. They were also reviewed by two additional neurologists for di-

agnostic confirmation. Classic glioblastomas were characterized by having irregularly

distributed, pleomorphic, and hyperchromatic nuclei and sometimes with conspicu-

ous eosinophilic cytoplasm. Anaplastic oligodendrogliomas were designated as having

classic histopathology exhibiting relatively evenly distributed, uniform, and rounded

nuclei and frequent perinuclear halos.

Pomeroy2002 CNS (central nervous system) data set contains the expression of

1,379 genes in 42 samples, with labels for 5 subtypes [222]. Patients include 10
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medulloblastomas, 10 malignant gliomas (WHO grades III and IV), 5 AT/RT, 5 re-

nal/extrarenal rhabdoid tumors, 8 supratentorial PNETs, and 4 normal cerebella).

All samples were obtained at initial surgery prior to treatment. Affymetrix scan-

ners were used to scan the arrays and the gene expression values were calculated

by Affymetrix GENECHIP software. A variation filter was applied to exclude genes

showing minimal variation across the samples. The data were also normalized by

standardizing each sample to mean 0 and variance 1.

Chen2002 HCC (hepatocellular carcinoma) data set contains the expression of

85 genes in 180 samples, with labels for 2 subtypes [44]. It includes 102 primary HCC

(from 82 patients), 74 nontumor liver tissues (from 72 patients), seven benign liver

tumor samples (three adenoma and four FNH), 10 metastatic cancers, and 10 HCC

cell lines. Each sample was independently reviewed by two pathologists. The array

was scanned using GenePix 4000A microarray scanner by Axon Instruments.

Khan2001 SRBCT (small, round blue-cell tumors) data set contains the expres-

sion of 1,069 genes in 83 samples, with labels for 4 subtypes [147]. It contains gene

expression profiles of four types of childhood SRBCT: neuroblastoma (NB), rhab-

domyosarcoma (RMS), Burkitt lymphoma (BL), a subset of non-Hodgkin lymphoma,

and the Ewing family of tumors (EWS). All the histological diagnoses were made at

hospitals extensively experienced in diagnosing pediatric cancers. Standard NHGRI

protocol was followed to obtain expression images, which were then analyzed by

DeArray software39. Each sample was normalized across all experiments. The natu-

ral logarithm (ln) of was applied to obtain the value of the expression levels.

The eight real cancer gene expression data sets used for experiments are summa-

rized in Table 4.1. They are filtered data sets from the empirical study of de Souto

et al. [64] with uninformative genes removed. They were originally obtained from

published microarray studies.
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Data Set Cancer Type Samples Genes Clusters Chip

Golub1999v1 Leukemia (bone marrow) 72 1,877 2 Affy.
Golub1999v2 Leukemia (bone marrow) 72 1,877 3 Affy.
Amstrong2002 Leukemia (bone marrow) 72 2,194 3 Affy.
Chowdary2006 Breast-Colon Tumors (breast and colon) 104 182 2 Affy.
Nutt2003 Brain Tumor (brain) 50 1,377 4 Affy.
Pomeroy2002 Central Nervous System (brain) 42 1,379 5 Affy.
Chen2002 Hepatocellular Carcinoma (liver) 180 85 2 cDNA
Khan2001 Small, Round Blue-cell Tumors (multi-tissue) 83 1,069 4 cDNA

Table 4.1: Cancer gene expression data sets

4.1.2 Comparable Clustering Algorithms

The algorithms used for comparison are as follows: a) four traditional or simple clus-

tering algorithms: KM (K-Means), SL (Single-Linkage), CL (Complete-Linkage), AL

(Average-Linkage), and b) six state-of-the-art cluster ensemble methods: MULTI-

K, CCHC (Consensus Clustering with Hierarchical Clustering), GCC (Graph-Based

Consensus Clustering), CSPA (Cluster-Based Similarity Partitioning Algorithm), HGPA

(Hyper-Graph Partitioning Algorithm), MCLA (Meta-Clustering Algorithm).

MULTI-K and CCHC was designed for analyzing low-sample and high-dimensional

gene expression data with high level of accuracy compared with k-means or hierarchi-

cal clusterings [148]. GCC was the first time in which graph-based cluster ensemble is

applied to cluster discovery for microarray data with better performance than most

existing algorithms [295]. CSPA, HGPA and MCLA are well-known graph-based

cluster ensemble benchmarks in the literature [279].

Kim et al. developed MULTI-K, which combines multiple K-Means runs with

varied number of clusters. It uses the single link agglomerative hierarchical clusterings

as the consensus function [148]. Monti et al. proposed CCHC (consensus clustering

with hierarchical clustering) method that uses the average link agglomerative hier-

archical clusterings as the consensus function [197]. Yu et al. designed graph based

consensus clustering (GCC) that repeats subspace generation and subspace cluster-

ing to obtain different clusterings for calculating the final consensus clustering [295].

Strehl and Ghosh proposed three methods that use a graph partitioning algorithm
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called METIS [140] to partition a similarity graph (or hyper-graph, meta-level graph)

to obtain final consensus clustering [259]. Cluster-based Similarity Partitioning Algo-

rithm (CSPA) constructs a similarity graph where vertices represent samples and edge

weights represent similarity based on a co-association matrix. HyperGraph Partition-

ing Algorithm (HGPA) constructs a hyper-graph where vertices represent samples and

the hyper-edges (same-weighted) represent clusters in the ensemble. Meta-Clustering

Algorithm (MCLA) constructs a meta-level graph where vertices represent clusters

in the ensemble and edge weights represent binary Jaccard measures [127].

Four comparable clustering algorithms used in experiments are presented in Ta-

ble 4.2.

Six comparable cluster ensemble algorithms used in experiments are presented

in Table 4.3.

Algorithm Acronym&Reference Category Time Complexity

K-means KM [258] Partitioning clustering O(N)
Single-linkage SL [105] Hierarchical clustering O(N2)
Complete-linkage CL [66] Hierarchical clustering O(N2 logN)
Average-linkage AL [61] Hierarchical clustering O(N2 logN)

Table 4.2: Comparable clustering algorithms

Algorithm Acronym& Consensus Time
Reference Function Complexity

Multi-K Multi-K [148] Pairwise Similarity O(KNM)
Consensus Clustering with Hierarchical Clustering CCHC [197] Pairwise Similarity O(N3M)
Graph-based Consensus Clustering GCC [295] Pairwise Similarity O(KNM)
Cluster-based Similarity Partitioning Algorithm CSPA [259] Graph-based O(N2KM)
HyperGraph Partitioning Algorithm HGPA [259] Graph-based O(NKM)
Meta-Clustering Algorithm MCLA [259] Graph-based O(NK2M2)

Table 4.3: Comparable cluster ensemble algorithms

4.1.3 Validity Measure

Evaluating the quality of a clustering result is difficult and ill-posed. Unlike super-

vised learning, clustering tasks usually do not have cluster labels of the data objects

available. Thus, determining which clustering result is better becomes difficult.
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Clustering validity measure shows how well the clustering performs in detecting

the underlying patterns of the data objects, possibly with respect to the hidden

true labels on these data objects when they are available. A number of objective

measures can be used to quantify the quality of the clusters obtained by different

clustering methods [286, 113]. Intrinsic validity measures evaluate the result based

on information intrinsic to the data alone. External validity measures evaluate the

result based on previous knowledge about the data. Some common external validity

measures are shown in Figure 4.1. Some common internal validity measures are shown

in Figure 4.2. Some common relative validity measures are shown in Figure 4.3.

Figure 4.1: Common external validity measures [242]

Figure 4.2: Common internal validity measures [242]

To evaluate the clustering results of IFCE against the other clustering algorithms,

external clustering validity measure of Classification Accuracy (CA) [206] is chosen
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Figure 4.3: Common relative validity measures [242]

because of the importance of domain meaningfulness. CA calculates the percentage

of accurately clustered data objects among all data objects clustered. Let Q be the

number of total clustered objects, and a be the number of accurately clustered objects.

CA is defined by the equation:

CA =
a

Q
∗ 100% (4.1)

Higher value of CA means higher clustering accuracy.

CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL, AL, and

KM from the study of Iam-on et al. (supplementary data) [124] are adopted for

evaluating against CA results of IFCE.

Cluster labels are available in the data sets, but they are not used in any clus-

tering process in the experiments. Cluster labels are only used to calculate CA after

clustering is finished.

We run IFCE over the data sets. The outputs include cluster assignment for each

data object and the CA value for each run.

Except for the experiments of parameter analysis on ensemble size M, each clus-

tering method repeats for 50 runs and the average of CA values is adopted. This

approach helps to reduce the effect of stochastic variation with clustering methods
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Data Set IFCE MULI-K CCHC GCC CSPA HGPA MCLA SL CL AL KM

Golub1999v1 0.743 0.656 0.726 0.738 0.686 0.716 0.718 0.667 0.653 0.653 0.731
Golub1999v2 0.625 0.544 0.673 0.693 0.612 0.710 0.685 0.542 0.542 0.542 0.669
Armstrong2002 0.627 0.607 0.780 0.820 0.770 0.775 0.821 0.403 0.472 0.403 0.761
Chowdary2006 0.923 0.654 0.654 0.683 0.860 0.875 0.898 0.606 0.606 0.606 0.654
Nutt2003v2 0.557 0.602 0.619 0.619 0.622 0.597 0.644 0.360 0.480 0.360 0.613
Pomeroy2002 0.403 0.536 0.595 0.640 0.581 0.579 0.540 0.333 0.405 0.333 0.581
Chen2002 0.799 0.581 0.587 0.608 0.836 0.834 0.821 0.581 0.581 0.581 0.599
Khan2001 0.543 0.457 0.433 0.434 0.443 0.462 0.457 0.373 0.349 0.361 0.443

Table 4.4: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM across eight real cancer gene expression data sets
over 50 runs of each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA,
MCLA, SL, CL, AL, and KM are adopted from the study of Iam-on et al. (supple-
mentary data) [124].

and achieve consistency in clustering results.

4.1.4 Number of Clusters

For each of the six cluster ensembles chosen to evaluate against IFCE, fixed number

of clusters (K) with full space data is used. For IFCE, automatic calculated K with

full space data is used. IFCE uses Improved K-Means method that can find K au-

tomatically by reducing a large initial K via merging small clusters. IFCE no longer

needs a user specified fixed K to perform clustering as many other clustering methods

require.

4.2 Validity Measure Comparison

The CA results of IFCE and other investigated clustering algorithms on real can-

cer gene expression data sets are presented in Table 4.4 and Figure 4.4 through

Figure 4.12.

As we mentioned earlier, CA results of MULTI-K, CCHC, GCC, CSPA, HGPA,

MCLA, SL, CL, AL, and KM from the study of Iam-on et al. (supplementary

data) [124] are adopted for evaluating against CA results of IFCE.

Figure 4.4 illustrates that IFCE is the top performer on three of the eight data

sets, more than any other methods examined. Also, it performs well on most of the
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Figure 4.4: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM across eight real cancer gene expression data sets
over 50 runs of each algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA,
MCLA, SL, CL, AL, and KM are adopted from the study of Iam-on et al. (supple-
mentary data) [124].

other data sets.

Figure 4.5 illustrates that IFCE is the top 1 performer with CA value of 0.743

for data set Golub1999v1 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL,

CL, AL, and KM.

Figure 4.6 illustrates that IFCE is the 6th performer with CA value of 0.625

for data set Golub1999v2 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL,

CL, AL, and KM. The top 1 performer is HGPA with CA value of 0.710.

Figure 4.7 illustrates that IFCE is the 7th performer with CA value of 0.627 for

data set Armstrong2002 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL,

CL, AL, and KM. The top 1 performer is MCLA with CA value of 0.821.

Figure 4.8 illustrates that IFCE is the top 1 performer with CA value of 0.923

for data set Chowdary2006 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA,

SL, CL, AL, and KM.

Figure 4.9 illustrates that IFCE is the 8th performer with CA value of 0.557 for

data set Nutt2003 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL,

AL, and KM. The top 1 performer is MCLA with CA value of 0.644.

Figure 4.10 illustrates that IFCE is the 9th performer with CA value of 0.403

for data set Pomeroy2002 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL,
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Figure 4.5: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Golub1999v1 over 50 runs of each
algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL,
AL, and KM are adopted from the study of Iam-on et al. (supplementary data) [124].
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Figure 4.6: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Golub1999v2 over 50 runs of each
algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL,
AL, and KM are adopted from the study of Iam-on et al. (supplementary data) [124].
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Figure 4.7: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Armstrong2002 over 50 runs of each
algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL,
AL, and KM are adopted from the study of Iam-on et al. (supplementary data) [124].
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Figure 4.8: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Chowdary2006 over 50 runs of each
algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL,
AL, and KM are adopted from the study of Iam-on et al. (supplementary data) [124].
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Figure 4.9: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Nutt2003 over 50 runs of each algorithm.
CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL, AL, and KM
are adopted from the study of Iam-on et al. (supplementary data) [124].

IFCE MULI-KCCHC GCC CSPA HGPA MCLA SL CL AL KM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
A

Figure 4.10: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Pomeroy2002 over 50 runs of each
algorithm. CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL,
AL, and KM are adopted from the study of Iam-on et al. (supplementary data) [124].
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CL, AL, and KM. The top 1 performers are CCHC and GCC both with CA values

of 0.640.

Figure 4.11 illustrates that IFCE is the 4th performer with CA value of 0.799 for

data set Chen2002 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL,

AL, and KM. The top 1 performer is CSPA with CA value of 0.836.
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Figure 4.11: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Chen2002 over 50 runs of each algorithm.
CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL, AL, and KM
are adopted from the study of Iam-on et al. (supplementary data) [124].

Figure 4.12 illustrates that IFCE is the top 1 performer with CA value of 0.543

for data set Khan2001 among MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL,

CL, AL, and KM.
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Figure 4.12: CA (Classification Accuracy) of IFCE, MULI-K, CCHC, GCC, CSPA,
HGPA, MCLA, SL, CL, AL, KM for data set Khan2001 over 50 runs of each algorithm.
CA results of MULTI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL, AL, and KM
are adopted from the study of Iam-on et al. (supplementary data) [124].
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4.3 Parameter Analysis

IFCE provides the option of defining the values of multiple parameters. The initial

values we define in our experiments are based on empirical experience or general

estimation, and they work well on our data sets. However, in an explorative study,

it is helpful to experiment with various values. This way, we can assess if IFCE has

high degree of dependency on any particular values of some parameters. We can also

find out the relation between IFCE and its parameters.

To evaluate IFCE’s performance on various parameter values, parameter analysis

are examined next. We choose two of the eight data sets for parameter analysis due

to paper space constraints. Based on Figure 4.4, we select data set Chowdary2006

because IFCE produces the highest CA value on it. In addition, we select data set

Chen2002 because IFCE produces one of the relatively average CA values on it.

4.3.1 N (number of clustering runs)

The first parameter examined is the number of clustering runs N. Smaller number of

runs saves computing time, however it may not be enough runs to achieve the desired

accuracy due to stochastic variation. Larger number of runs have the potential to

increase clustering accuracy, but it increases the expense in run time. Therefore,

various values of N are chosen. CA results with N = 1, 5, 50, 100, 200 for data sets

Chowdary2006 and Chen2002 are presented in Table 4.5 and Figure 4.13. Run Time

(Sec.) results are presented in Table 4.6 and Figure 4.14.

Data Set N(1) N(5) N(50) N(100) N(200)

Chowdary2006 0.913 0.923 0.923 0.924 0.930
Chen2002 0.782 0.798 0.799 0.797 0.797

Table 4.5: CA of IFCE on Chowdary2006 and Chen2002 with N (number of clustering
runs) = 1, 5, 50, 100, 200.

Table 4.5, Figure 4.13, Table 4.6, and Figure 4.14 show that CA values of

IFCE are relatively stable with varying N values. They also show that higher N values
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Data Set N(1) N(5) N(50) N(100) N(200)

Chowdary2006 58 282 2,846 5,672 11,326
Chen2002 134 688 6,991 13,087 26,296

Table 4.6: Run Time (sec.) of IFCE on Chowdary2006 and Chen2002 with N (number
of clustering runs) = 1, 5, 50, 100, 200.
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Figure 4.13: CA of IFCE on Chowdary2006 and Chen2002 with N (number of clus-
tering runs) = 1, 5, 50, 100, 200.

usually produce small increase in clustering accuracy while increase run time.

4.3.2 IMT (initial merging threshold)

The second parameter examined is the initial merging threshold (IMT) used to merge

small clusters. Theoretically, when the IMT is small, clusters with shorter distance in

between are merged while clusters with longer distance in between are not. Although

the merging threshold increases during next clustering iteration to merge clusters

with longer distance, the run time is longer than if we had chosen a larger initial

merging threshold. However if we use a larger value as the initial merging threshold,

we may risk missing small clusters by merging them at the beginning. Therefore,

various values of IMT are chosen. CA results with IMT = 1.0, 2.0, 3.0, 4.0 for data

sets Chowdary2006 and Chen2002 are presented in Table 4.7 and Figure 4.15. Run
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Figure 4.14: Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with N
(number of clustering runs) = 1, 5, 50, 100, 200.

Time (Sec.) results are presented in Table 4.8 and Figure 4.16.

Data Set IMT(1.0) IMT(2.0) IMT(3.0) IMT(4.0)

Chowdary2006 0.923 0.921 0.918 0.926
Chen2002 0.799 0.796 0.800 0.800

Table 4.7: CA of IFCE on Chowdary2006 and Chen2002 with IMT(initial merging
threshold) = 1.0, 2.0, 3.0, 4.0.

Data Set IMT(1.0) IMT(2.0) IMT(3.0) IMT(4.0)

Chowdary2006 2,846 2,820 2,879 2,848
Chen2002 6,991 6,633 6,613 6,519

Table 4.8: Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with
IMT(initial merging threshold) = 1.0, 2.0, 3.0, 4.0.

Table 4.7, Figure 4.15, Table 4.8, and Figure 4.16 show that CA values of

IFCE change within about 0.008 and run time values are relatively flat with varying

IMT values.
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Figure 4.15: CA of IFCE on Chowdary2006 and Chen2002 with IMT (initial merging
threshold) = 1.0, 2.0, 3.0, 4.0.
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Figure 4.16: Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with IMT
(initial merging threshold) = 1.0, 2.0, 3.0, 4.0.

4.3.3 M (ensemble size)

The third parameter examined is the ensemble size (M), or the number of base clus-

terings. From past studies [114], increasing ensemble size leads to increased clustering

accuracy, although it is possible that the improvement becomes plateau when ensem-
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ble size reaches certain value. Larger ensemble size also causes longer run time. A

balance is desired between accuracy and run time. Therefore, various values of M are

chosen. CA results with M = 3, 7, 11, 21 for data sets Chowdary2006 and Chen2002

are presented in Table 4.9 and Figure 4.17. Run Time (Sec.) results are presented

in Table 4.10 and Figure 4.18.

Data Set M(3) M(7) M(11) M(21)

Chowdary2006 0.923 0.932 0.942 0.942
Chen2002 0.799 0.793 0.800 0.816

Table 4.9: CA of IFCE on Chowdary2006 and Chen2002 with M(ensemble size) = 3,
7, 11, 21.

Data Set M(3) M(7) M(11) M(21)

Chowdary2006 58 139 216 411
Chen2002 134 314 494 940

Table 4.10: Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with
M(ensemble size) = 3, 7, 11, 21.
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Figure 4.17: CA of IFCE on Chowdary2006 and Chen2002 with M (ensemble size) =
3, 7, 11, 21.
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Figure 4.18: Run Time (Sec.) of IFCE on Chowdary2006 and Chen2002 with M
(ensemble size) = 3, 7, 11, 21.

Table 4.9, Figure 4.17, Table 4.10, and Figure 4.18 show that CA values of

IFCE are relatively stable with varying M values. They also show that higher M

values produce small increase in clustering accuracy while increase run time.

4.4 Complexity Analysis

To evaluate IFCE’s performance on various complexity conditions, time and space

complexity analysis are examined next.

Let Q be the number of examples in the data set, N be the number of dimensions

in the data set, K be the number of clusters, and M be the number of base clusterings.

4.4.1 Time Complexity

When we examine time complexity, IFCE involves three stages. Stage 1: initializa-

tion with I iterations of Improved K-Means. One vector distance costs O(N), and

complexity for KQ distances is O(KQN). Complexity for I iterations is O(IKQN).

Stage 2: three base clusterings. One vector distance costs O(N), and complexity for

KQ distances is O(KQN). Cost for computing the weights for K cluster centers is
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O(KQ). The complexity for M base clusterings is O(MKQN). Stage 3: relabeling

and plurality voting ensemble. Relabeling and voting approach is proved to be O(K3)

[76]. The time complexity of IFCE is O(IKQN)+O(MKQN)+O(K3). So, IFCE’s

time complexity converges to O(N).

4.4.2 Space Complexity

When we examine space complexity, for each base clustering, the cost of storing

a matrix of QxN in memory is O(QN). For M base clusterings, the total cost is

O(MQN). The cost of storing relabeling matrix is O(K2). The space complexity of

IFCE is O(MQN)+O(K2), and converges to O(N).

4.5 Noise Robustness Analysis

To examine the boundaries of IFCE’s ability to maintain homogeneous clusters under

conditions involving high noise-to-signal ratio data sets, we have created ten synthetic

noisy data sets. The clustering process is repeated 50 times on each data set and the

resulting clusterings at different noise levels were examined.

4.5.1 Synthetic Noisy Data Sets

The ten synthetic noisy data sets are based on real data sets Chowdary2006 and

Chen2002 with increasing noise-to-signal ratios. Noise is incorporated by adding a

constant (the maximum value in the gene) to the expression of cancer samples for

that gene, such that the percentage of cancer samples with such added noise is 10%,

20%, 30%, 40%, 50%. Such cancer samples represent outliers in the data sets. The

ten synthetic noisy data sets used for experiments are summarized in Table 4.11 and

Table 4.12.

4.5.2 Results

The performance of IFCE on synthetic noisy data sets are presented in Table 4.13

and Figure 4.19.
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Data Set Noise% Samples Genes Clusters

Chowdary2006 10p 10% 104 182 2
Chowdary2006 20p 20% 104 182 2
Chowdary2006 30p 30% 104 182 2
Chowdary2006 40p 40% 104 182 2
Chowdary2006 50p 50% 104 182 2

Table 4.11: Synthetic noisy data sets created by adding artificial noise% = 0%, 10%,
20%, 30%, 40%, 50% to Chowdary2006

Data Set Noise% Samples Genes Clusters

Chen2002 10p 10% 180 85 2
Chen2002 20p 20% 180 85 2
Chen2002 30p 30% 180 85 2
Chen2002 40p 40% 180 85 2
Chen2002 50p 50% 180 85 2

Table 4.12: Synthetic noisy data sets created by adding artificial noise% = 0%, 10%,
20%, 30%, 40%, 50% to Chen2002

Data Set Noise
0% 10% 20% 30% 40% 50%

Chowdary2006 0.923 0.892 0.879 0.877 0.893 0.890
Chen2002 0.799 0.771 0.780 0.793 0.774 0.775

Table 4.13: Noise Robustness with artificial noise% = 0%, 10%, 20%, 30%, 40%, 50%
added to Chowdary2006 and Chen2002.

Table 4.13 and Figure 4.19 show that IFCE demonstrates robustness to highly

noisy data sets. It maintains cluster classification accuracy above 0.870 for Chowdary2006

and above 0.770 for Chen2002 even when signals are reduced by 50%.

4.6 Conclusion

We have presented a new fuzzy cluster ensemble method IFCE. We have also evaluated

IFCE through comparisons with numerous existing benchmark ensemble clustering

and simple clustering methods on eight real cancer gene expression data sets. IFCE

is the top performer on three of the eight data sets, more than any other methods
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Figure 4.19: Noise Robustness with artificial noise% = 0%, 10%, 20%, 30%, 40%,
50% added to Chowdary2006 and Chen2002.

examined. Also, it performs well on most of the other data sets. IFCE is relatively

stable with varying parameter values and is robust to highly noisy synthetic data

sets. Moreover, IFCE is computationally efficient.
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Chapter 5

Conclusions and Future Work

In this dissertation, we have presented a new fuzzy cluster ensemble method IFCE.

We have also evaluated IFCE through comparisons with numerous existing bench-

mark ensemble clustering and simple clustering methods on eight real cancer gene

expression data sets. IFCE is the top performer on three of the eight data sets, more

than any other methods examined. Also, it performs well on most of the other data

sets. IFCE is relatively stable with varying parameter values and is robust to highly

noisy synthetic data sets. Moreover, IFCE is computationally efficient.

For future work, we can extend our work in the following two perspectives: clus-

tering algorithm and bioinformatics.

5.1 Conclusions

In the past few decades, the emerging breakthroughs in biotechnology such as mi-

croarray produced enormous amount of various types of large scaled biological data,

including genomic data and gene expression data. As a result, bioinformatics faces

a substantial challenge: how to extract meaningful knowledge from these data. One

particular area of interest is extracting or finding cancer subtypes from gene expres-

sion data. Cancer subtyping can drastically improve patient treatment selection and

outcome. Cancer subtyping can be done by clustering gene expression data samples.

Various clustering algorithms have been applied, however most of them may not be

effective to address two of the top challenges of noisy data and high-dimensional data
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that are inherently characteristics of microarray experiments.

This dissertation proposes a noise robust fuzzy cluster ensemble IFCE to address

the above two important challenges. IFCE uses the Modified Weighted Fuzzy Ex-

pected Value (MWFEV) method for computing cluster centers instead of the average

or the mean method commonly used by other clustering approaches. The MWFEV

method weighs outlier data objects less than more densely distributed data objects,

and provides a more accurate center for a cluster [174]. Whereas, the average and

the mean methods are sensitive to outliers, and may produce a less accurate and

problematic cluster center. IFCE is a fuzzy or soft clustering algorithm. It uses fuzzy

membership method in computing cluster centers and assigning feature vectors. In

contrast, crisp or hard clustering uses Boolean method and are often highly sensi-

tive to noise. While fuzzy clustering is more robust against noise thus pre-filtering

of features can be avoided. This prevents the exclusion of domain objects relevant

features for clustering and the data analysis [186]. IFCE is a cluster ensemble. It em-

ploys multiple base clusterings of IFCs to form a final consensus. Clustering ensemble

improves robustness, stability and accuracy of clustering results. IFCE incorporates

user interactivity functions. It provides users with the option of defining multiple

parameters or thresholds. This way, users can optimize the clustering results of any

particular data set. IFCE’s time and space complexity converge to O(N). Whereas,

most clustering and cluster ensemble algorithms have higher order of complexities

especially regarding to the cost of time. IFCE’s excellent efficiency in complexities

makes it scalable and practical to very large scale data including high dimensional

data.

We have conducted a comprehensive study on numerous data sets: the classical

Iris data set, eight real cancer gene expression data sets, and ten synthetic noisy

data sets. Real cancer gene expression data sets include cancers of breast, colon,

prostate, blood, brain, bladder, and liver. During the experiments on eight real

cancer gene expression data sets, we compared IFCE with ten existing benchmark

ensemble clustering and simple clustering algorithms for CA validity measure, which
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are: MULI-K, CCHC, GCC, CSPA, HGPA, MCLA, SL, CL, AL, and KM. The

experimental results have shown that our algorithms are robust against noise and

scalable to large data sets. More specifically, IFCE is the top performer on three of

the eight data sets, more than any other methods examined. Also, it performs well

on most of the other data sets. During the experiments on varying parameter and

threshold values, the performance of IFCE is relatively stable. This proves IFCE

to be a suitable and easy to use tool as it has relative consistent performance over

various settings of important parameters or threshold. During the experiments on ten

synthetic noisy data sets, IFCE is robust even to highly noisy data, the top challenges

in cancer gene expression data.

Clustering cancer gene expression data is important. It is used in cancer subtyp-

ing and accurate cancer subtyping is crucial to treatment success. Traditional clinical

data based cancer type diagnosis and treatment are based on the organ or tissue

in which the cancer originates. A huge obstacle for effective treatments for cancers

is that patients with similar cancer types respond differently to similar treatments.

[108]. Cancer develops as a result of multiple genetic defects. Individuals with the

same type of cancer often have dissimilar genetic defects in their tumors. Each patient

should be treated according to the specific genetic defects in the tumor. Molecular

data based cancer subtyping finds smaller groups or subtypes that a type of cancer

can be divided into, based on certain characteristics of the cancer cells. These char-

acteristics include DNA and/or other molecular changes of the cells. It is based on

biomarkers including gene expression signatures. IFCE excels at addressing the chal-

lenges in clustering cancer gene expression data such as: noise, high dimensionality,

accuracy and reliability, time complexity, and space complexity.

5.2 Future Work

We can extend our work in the following two perspectives for future work: clustering

algorithm and bioinformatics. For clustering algorithm, we will discuss clustering

and cluster ensemble. For bioinformatics, we will discuss incorporating biological
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knowledge in clustering, additional biological data sets, biological based similarity

measures, biological based validity measures, and time-series gene expression data

clustering.

5.2.1 Clustering Algorithm

In the future, we could consider adopting different methods to compute cluster cen-

ters and different similarity measures or techniques to assign data objects to clusters.

In the future, we could consider incorporating additional clustering algorithms to be

the base clusterings of the ensemble. Additionally, we could experiment with differ-

ent consensus functions in the ensemble including pairwise similarity-based consen-

sus functions, graph-based consensus functions, mutual information-based consensus

functions, and other types of voting-based consensus functions.

5.2.2 Bioinformatics

Clustering algorithms are unsupervised learning approaches, which means no prior

knowledge is used. Fortunately, for gene expression data sets, some prior domain

knowledge is often available. For example, some genes are known to be function-

related. In the future, integrating such domain knowledge into the clustering process

may improve the results substantially [132]. Gene Ontology (GO) can be used as

prior domain knowledge to improve the performance of clustering methods [240]. GO

is one of the rapidly increasing functional annotation resources. It is the framework

for the model of biology. It defines concepts or classes used to describe gene function,

and relationships between these concepts or classes. It classifies gene functions along

three aspects: molecular function covers molecular activities of gene products, such

as binding or catalysis; cellular component covers where gene products are active,

such as the parts of a cell or its extracellular environment; biological process covers

pathways and larger processes made up of the activities of multiple gene products,

pertinent to the functioning of integrated living units such as cells, tissues, organs,

and organisms [54]. GO annotations is the model of biology. Annotations are state-
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ments describing the functions of specific genes, using concepts or classes in the Gene

Ontology. Each statement is based on a specified piece of evidence. The simplest and

most common annotation links one gene to one function [53].

There are many types of cancers and the amount of gene expression data sets

generated for them are continuously increasing especially with new biotechnologies.

The experimentation results of our IFCE look promising in the data sets we chose.

In the future, we could experiment with additional data sets.

In addition, we could design or choose different similarity measures that are

better suit for high-dimensional data as well as biological data. For example, Spear-

man correlation is more robust to noise than Pearson and Euclidean distance. LSS

(Local Shape-based Similarity) [19] is based on the observation of biological rela-

tionships between genes [131]. The similarity measure [280] that uses an estimate

of the GO-based similarity between two genes [32]. IBSA (Intrinsic Biological Sep-

aration Ability) method [131] employes semantic similarities among genes extracted

from the GO, and uses the Best-Match Average of the Resnik measure [230, 219] as

its biological proximity measure between genes.

Also, We could design or choose different validity measures that takes into ac-

count known biological knowledge, instead of simple external, internal, or relevant

validity measures [124]. This way, the performance of IFCE is evaluated in terms of

its ability to produce biologically meaningful clusters. For example, BSI (Biological

Stability Index) [62] evaluates the stability of a clustering result through the removal

of features [131]. BHI (Biological Homogeneity Index) [62] assesses the homogeneity

through the biological terms extracted from the GO [131]. The validity measure that

is based on the selection of relevant and non-redundant terms from GO [58, 131]. The

validity measures that is based on semantic similarities from the GO [32, 131].

Biological processes are often dynamic, and researchers need to monitor them

continuously or at multiple time points. Time-series gene expression data contain

abundant information about such dynamic activity. Such data identify activated

genes in a biological process, their rates of activity, their order, and their causal
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effects. At any given time a cell only expresses a small fraction of all the genes in the

organism’s genome. Expressed genes reflect the cell’s functional capacities and ability

to respond to external stimuli. There are several categories of time-series experiments

such as developmental processes, cyclic processes, and response to an external signal.

Time-series gene expression data sets, including single-cell measurements and next-

generation sequencing technologies, provide new opportunities while also raise new

computational analysis challenges such as potential increased noise [21, 12]. In the

future, we could apply IFCE to time-series gene expression data for capturing the

temporal and multidimensional dynamics of complex cancer subtypes.
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et al. Machine learning in bioinformatics. Briefings in bioinformatics, pages
86–112, 2006.

[161] Laura Lazzeroni and Art Owen. Plaid models for gene expression data. Statistica
Sinica, 12(1):61–86, 2000.

[162] Rosalind C. Lee, Rhonda L. Feinbaum, and Victor Ambros. The C. elegans
heterochronic gene lin-4 encodes small RNAs with antisense complementarity
to lin-14. Cell, 75(5):843 – 854, 1993.

[163] Zhengdeng Lei, Iain Beehuat Tan, Kakoli Das, Niantao Deng, Hermioni
Zouridis, Sharon Pattison, Clarinda Chua, Zhu Feng, Yeoh Khay Guan,
Chia Huey Ooi, et al. Identification of molecular subtypes of gastric cancer
with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroen-
terology, 145(3):554–565, 2013.

[164] H. Li, K. Zhang, and T. Jiang. Minimum entropy clustering and applications
to gene expression analysis. Proceedings IEEE Computational Systems Bioin-
formatics Conference, pages 142–151, 2004.

[165] Li Li, Chang Liu, Fang Wang, Wei Miao, Jie Zhang, Zhiqian Kang, Yihan Chen,
and Luying Peng. Unraveling the hidden heterogeneities of breast cancer based
on functional miRNA cluster. PLOS ONE, 9(1):e87601–v, 2014.

[166] T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and
multiclass classification methods for tissue classification based on gene expres-
sion. Bioinformatics, 20(15):2429–2437, Oct. 2004.

[167] Y. Liang, M. Diehn, N. Watson, A. W. Bollen, K. D. Aldape, M. K. Nicholas,
K. R. Lamborn, M. S. Berger, D. Botstein, P. O. Brown, and M. A. Israel.
Gene expression profiling reveals molecularly and clinically distinct subtypes



111

of glioblastoma multiforme. Proceedings of the National Academy of Sciences
USA, 102(16):5814–5819, 2005.

[168] R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart. High density
synthetic oligonucleotide arrays. Nature genetics, 21(1 Suppl):20–4, Jan. 1999.

[169] Jingwei Liu and Meizhi Xu. Kernelized fuzzy attribute C-means clustering
algorithm. Fuzzy Sets and Systems, 159(18):2428–2445, 2008.

[170] L. Liu, D. M. Hawkins, S. Ghosh, and S. S. Young. Robust singular value
decomposition analysis of microarray data. Proceedings of the National Academy
of Sciences USA, 100(23):13167–13172, 2003.

[171] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28, 1982.

[172] Eric F. Lock and David B. Dunson. Bayesian consensus clustering. Bioinfor-
matics, 29(20):2610–2616, 2013.

[173] Carl G. Looney. Pattern Recognition Using Neural Networks: Theory and Al-
gorithms for Engineers and Scientists. Oxford University Press, 1997.

[174] Carl G. Looney. Interactive clustering and merging with a new fuzzy expected
value. Pattern Recognition, 35(11):2413 – 2423, 2002.

[175] Jun Lu, Gad Getz, Eric A Miska, Ezequiel Alvarez-Saavedra, Justin Lamb,
David Peck, Alejandro Sweet-Cordero, Benjamin L Ebert, Raymond H Mak,
Adolfo A Ferrando, et al. Microrna expression profiles classify human cancers.
nature, 435(7043):834–838, 2005.

[176] Huilan Luo, Furong Jing, and Xiaobing Xie. Combining multiple clusterings
using information theory based genetic algorithm. In Computational Intelligence
and Security, 2006 International Conference on, volume 1, pages 84–89, Nov
2006.

[177] P.C.H. Ma, K.C.C. Chan, Xin Yao, and D.K.Y. Chiu. An evolutionary clus-
tering algorithm for gene expression microarray data analysis. Evolutionary
Computation, IEEE Transactions on, 10(3):296 – 314, june 2006.

[178] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability. University of California Press., 1(14):281297, 1967.

[179] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological
data analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
1(1):24–45, 2004.

[180] S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 1995.

[181] Satyendra Nath Mandal, J Pal Choudhury, and SR Bhadra Chaudhuri. In
search of suitable fuzzy membership function in prediction of time series data.
International Journal of Computer Science Issues, 9(3):293–302, 2012.



112

[182] Andrew J Maniotis, Robert Folberg, Angela Hess, Elisabeth A Seftor, Lynn MG
Gardner, Jacob Pe’er, Jeffrey M Trent, Paul S Meltzer, and Mary JC Hen-
drix. Vascular channel formation by human melanoma cells in Vivo and in
Vitro: Vasculogenic mimicry. The American journal of pathology, 155(3):739–
752, 1999.

[183] Elena Marchiori and Jason H Moore. Evolutionary Computation, Machine
Learning and Data Mining in Bioinformatics: 5th European Conference, Evo-
BIO 2007, Valencia, Spain, April 11-13, 2007, Proceedings, volume 4447.
Springer Science & Business Media, 2007.

[184] Shawn Martin. Machine learning based bioinformatics algorithms: Application
to chemicals, 2010. URL http://www.cs.otago.ac.nz/homepages/smartin/
publications_long.php. Accessed April 2018.

[185] Thomas M. Martinetz and Klaus J. Schulten. A “neural gas” network learns
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