
University of Nevada, Reno

Smart-Cloud: A Framework for Cloud Native

Applications Development

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Jalal Hasan Ahmed Al Kiswani

Dr. Sergiu M. Dascalu/ Dissertation Advisor
Dr. Frederick C. Harris, Jr./ Dissertation Co-advisor

May, 2019

Copyright © by Jalal Kiswani
All Rights Reserved

We recommend that the dissertation

prepared under our supervision by

JALAL HASAN AHMED AL KISWANI

Entitled

Smart-Cloud: A Framework For Rapid Cloud Application Development

be accepted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

Dr. Sergiu M. Dascalu, Advisor

Dr. Frederick C. Harris, Jr., Co-advisor

Dr. Feng Yan, Committee Member

Dr. Sage Hiibel, Committee Member

Dr. Scotty Strachan, Graduate School Representative

David W. Zeh, Ph. D., Dean, Graduate School

May, 2019

THE GRADUATE SCHOOL

i

Abstract

The development of modern software applications requires the adoption of cutting-

edge techniques, technologies, frameworks, tools, and infrastructure. Even though

there are many options to choose in every category, the common characteristics are

faster-delivery, lightweight and scalable applications, and lower cost. In addition,

the automation of testing, deployment, and operations have become significant. All

of these new characteristics would not be possible without Cloud-Computing, where

services are delivered in three different flavors, Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS). However, developing

high-quality cloud-based software applications that exploit the full benefits of cloud

computing is challenging and costly, since it requires a long learning curve and it is

challenged by the lack of expertise. In this dissertation, we propose Smart-Cloud, a

framework for developing high-quality cloud applications. The primary goals of the

framework are to enable the development of such applications to be more rapid, effi-

cient, reliable, and straightforward. Smart-Cloud consists of a novel combination of

reusable components that includes API’s, services, and application framework. These

components were designed and developed using cutting-edge architectural styles, best

practices, and patterns such as the microservices architectural style and the twelve-

factor-app. The framework adopts the metadata-driven design to enable dynamic

and static generation of single artifacts, end-to-end features, and full applications.

Moreover, it consists of a cloud-based platform that utilizes the model-driven de-

velopment approach to enable the use of the framework without writing code. The

framework also follows the software product lines approach of enabling users to de-

velop new projects efficiently. Furthermore, a PMS case study is presented, which is a

publication management system developed using the framework without writing any

code. Moreover, we discuss the results of the user study that we conducted with 36

experienced professionals from industry and academia, who assessed the framework

and provided their evaluation and feedback.

ii

Dedication

I dedicate this dissertation to my father, my mother, my brothers, my wife, and my

children; without all of them, I wouldn’t be the person that I have become today.

iii

Acknowledgments

I would like to sincerely thank my co-advisers Dr. Sergiu M. Dascalu and Dr.

Frederick C. Harris, Jr. for their continuous guidance and support; I am speech-

less for all what they did for me to be a better person, student, and researcher. In

addition, I would like to thank my committee members: Dr. Scotty Strachan, Dr.

Feng Yan, and Dr. Sage Hiibel for their time and efforts being part of this committee.

This material is based in part upon work supported by the National Science

Foundation under grant number(s) IIA-1301726. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of the author and do

not necessarily reflect the views of the National Science Foundation.

iv

Table of Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 7

2.1 Cloud Computing . 7

2.1.1 History and Evolution . 10

2.1.2 Deployment Models . 14

2.1.3 Service Delivery Models . 15

2.1.4 Cloud Providers . 17
2.1.5 General Benefits of Cloud Computing 19

2.1.6 Challenges, Barriers and Risks 21

2.1.7 Impact on Hardware Business 22

2.1.8 Cloud Adoption . 24

2.2 Software Architecture . 25
2.3 Software Product Lines . 27

3 Literature Review and Related Work 30
3.1 Design Models of Cloud Applications 32

3.2 Application’s Clients . 34

3.3 Cloud vs Traditional On-premise Applications 35

3.4 Design and Architecture of Cloud Applications 36

3.4.1 Monolithic Applications Architecture 37

3.4.2 Service-Oriented Architecture 37
3.4.3 Microservices Architecture . 38
3.4.4 Cloud-Native Applications . 40

3.5 Main Characteristics of Cloud Applications 40

v

3.6 DevOps and Cloud Applications Development Process 44

3.7 Benefits of Cloud Applications . 45

3.8 Challenges of Cloud Applications . 46

3.9 Strategy for Moving to the Cloud and Customer’s Motivation 47

3.10 Industry-based Related Work . 48

3.11 Related Work Discussion . 48

4 Framework Overview 50
4.1 High-level Overview . 50

4.2 High-level Architecture . 52

4.3 Significance . 53

4.4 Features and Characteristics . 54
4.5 Technology . 55

5 Design, Architecture, and Implementation 56

5.1 Framework Architecture . 56
5.1.1 Libraries and APIs . 57
5.1.2 App Logic Services . 63

5.1.3 Cross-cutting Services . 63

5.1.4 Platform Apps (Clowiz Platform) 66

5.1.5 Database Design . 68

5.2 Framework User-Interface . 70
5.3 Framework Implementation . 73

6 Case Study: Publication Management System 74

6.1 PMS Overview . 74
6.2 Implementation . 75

6.2.1 Create PMS Application . 75

6.2.2 Design PMS App . 75

6.2.3 Design PMS Pages . 76

6.2.4 PMS Prview . 78
6.2.5 Download PMS Source Code 79
6.2.6 Import PMS Project into IDE 80

6.2.7 Launch PMS Locally . 80

6.3 PMS Deployment to the Cloud . 81

7 Evaluation and Discussion 87
7.1 User Study . 87

7.1.1 Participants . 87

7.1.2 Methodology . 89

7.2 Results and Discussion . 92
7.2.1 PMS Results and Evaluation 92
7.2.2 Users Study Results . 94

vi

7.3 Discussion . 97

8 Conclusion and Future Work 102
8.1 Research Question Revisited . 102

8.2 An Overall Characterization of Smart-Cloud 102
8.3 Cloud Computing . 103

8.4 Concluding Remarks and Future Work 105

Appendix 106

A User Manual 107
A.1 Introduction . 107
A.2 Home . 108
A.3 Authentication App . 109

A.3.1 Sign Up . 109

A.3.2 Reset Password . 111
A.3.3 Log In . 111

A.4 CodeGen App . 112

A.4.1 CodeGen Metadata . 113
A.4.2 Fields Data Types . 114

A.4.3 Technologies . 115

A.5 FeatureGen App . 124

A.5.1 FeatureGen Metadata . 125
A.5.2 Fields Data Types . 126

A.5.3 FeatureGen Technology . 126

A.5.4 Feature Page Preview . 127

A.5.5 FeatureGen Generated Code 127
A.6 AppGen App . 127

A.6.1 App Manager . 128

A.6.2 App Designer . 131

A.6.3 Page Designer . 133

B Excerpts from Source Code 136

C Clowiz Full Questionnaire 149

Bibliography 155

vii

List of Tables

2.1 Total worldwide spending on cloud services forecast 8

5.1 Metadata API classes . 60
5.2 The list of generators supported by CodeGen 67

7.1 The results of implementing PMS using Smart-Cloud 93

7.2 The results of cloud application questions 94

7.3 The results of Clowiz platform questions 95

7.4 The results of the most significant app in Clowiz question 95

A.1 Fields metadata attributes . 135

B.1 Source code excerpts summary . 136

viii

List of Figures

1.1 Examples of monolithic software systems 2

1.2 Smart-Cloud high-level architecture 5

1.3 Native Cloud Applications Reference Architecture (NCARA) 5

2.1 Simplified cloud infrastructure [52] 9

2.2 Providers and users of cloud services [6] 10

2.3 Mainframes time-sharing [95] . 12

2.4 Cloud computing evolution [80] . 13

2.5 Cloud computing services delivery models [58] 16

2.6 Top cloud services providers [107] . 18

2.7 Automated vs traditional applications scalability comparisons [124] . 20

2.8 Cloud computing barriers ranking by users in 2011 [58] 23

2.9 Cloud computing challenges in 2018[107] 23

2.10 Cloud adoption as of 2017 [58] . 25

2.11 Software product lines and time-to-market [71] 27

2.12 A Software Product Line example . 28

3.1 Cloud computing services worldwide spending [66] 30

3.2 Software taxonomy [28] . 31

3.3 Tenancy-models in cloud applications [54] 33

3.4 A pyramid of modern cloud native applications [31] 39

3.5 Cloud native applications external environment [103] 41

3.6 An example of DevOps team structure [16] 45

4.1 High-level architecture of Smart-Cloud 52

5.1 Medium-level architecture of Smart-Cloud 57
5.2 Metadata API Class Diagram . 59

5.3 Exporter API Package Diagram . 61

5.4 Exporter API Core Package Class Diagram 61

5.5 Exporter API Commons Package Class Diagram 62

ix

5.6 Exporter API Technologies Package Class Diagram 62

5.7 Metadata Service Class Diagram . 64

5.8 DevOps Service Class Diagram . 65

5.9 Metadata Service Class Diagram . 65

5.10 AppGen Development Process . 68

5.11 AppGen Status Workflow . 69

5.12 Entity Relationship Diagram of Smart-Cloud 69

5.13 Clowiz Platform Home Page . 70

5.14 Clowiz Authentication Page . 71

5.15 CodeGen App Page . 71

5.16 FeatureGen App Page . 72

5.17 AppGen App Page . 72

5.18 AppGen App Page . 73

6.1 PMS use case diagram . 75

6.2 PMS class diagram . 76

6.3 PMS project in AppGen manager . 77

6.4 PMS project in AppGen designer . 77

6.5 PMS University page design . 78

6.6 PMS Department page design . 78

6.7 PMS Author page design . 79

6.8 PMS Publication page design . 79

6.9 PMS preview . 80

6.10 PMS Maven import . 81

6.11 PMS project structure . 82

6.12 PMS console output . 82

6.13 PMS Home page . 83

6.14 PMS universities management page 83

6.15 PMS departments management page 84

6.16 PMS authors management page . 84

6.17 PMS publication management page 85

6.18 PMS App on PCF . 85

6.19 PMS MySql Service . 86

6.20 PMS URL Routing . 86

6.21 PMS Production on PCF . 86

7.1 Experience levels of the user study participants 88

7.2 Academic levels of the participants in the user study 88

7.3 Involvement of the participants in software development activities . . 89

7.4 Results of Clowiz usability . 95

7.5 Results of the understanding of AppGen process 96

x

7.6 Results of Clowiz reducing the cost of cloud applications development 96

7.7 Results of generated code quality of Clowiz 97

7.8 Results of using Clowiz in day-to-day work 97

7.9 Results of Clowiz overall quality of generated applications 98

7.10 Shortage in experienced cloud application’s developers 100

A.1 Clowiz Home Page . 109

A.2 Authentication App . 110

A.3 Create an Account . 110
A.4 Sign Up Confirmation . 111

A.5 Reset Password Form . 111
A.6 Login Form . 112

A.7 CodeGen App Page . 113

A.8 CodeGen metadata . 114
A.9 Java Class Exporter in CodeGen . 116

A.10 Java Class with Lombok Exporter in CodeGen 116

A.11 JPA Entity Exporter in CodeGen . 117

A.12 JPA Entity with Lombok Exporter in CodeGen 118

A.13 JSF Managed Bean Exporter in CodeGen 118

A.14 PrimeFaces View Exporter in CodeGen 119

A.15 PrimeFaces with Backend Binding Exporter in CodeGen 119

A.16 HTML Only Exporter in CodeGen 120

A.17 HTML with Bootstrap exporter . 121

A.18 HTML Full Page with Bootstrap Exporter in CodeGen 122

A.19 H2 Database Exporter in CodeGen 122

A.20 MySQL Exporter in CodeGen . 123

A.21 Microsoft SQL Server Exporter in CodeGen 123

A.22 Oracle Exporter in CodeGen . 124

A.23 FeatureGen Page . 125

A.24 FeatureGen Metadata . 126
A.25 Clowiz AppGen Home Page . 129

A.26 AppGen App Designer . 132

A.27 AppGen Page Designer . 133

1

Chapter 1

Introduction

Organizations from all domains implement software applications with different scales

for both internal and external use. For example, governments implement software

systems to enable internal administration management with thousands of users. At

the same time, they might implement an online software system to enable smart-

government online services for citizens and residents. Another example is that a

scientific community may implement a group scoped system for scientific big data

management while enabling visualization features for external entities.

The monolithic approach of software development was the dominant model, in

particular, building software applications as a single deployable unit. In the past,

this approach was practical since software size was relatively small and consisted of

a lower number of software components and functionality. In addition, this approach

was common due to its convenience and ease of development. Moreover, the systems

were only used by a limited number of users, with relatively long-term and stable

requirements. Figure 1.1 shows some examples of monolithic applications.

However, things have changed, with the Internet, smartphones, big data, cloud

computing, and the startups’ ecosystem. Time to market and response to new re-

quirements have become critical. Scalability has reached limits that were never pos-

sible and required before, with hundreds of millions of concurrent users accessing the

same service at the same time. In addition, the Internet of Things (IoT) has also

affected this wave, which increased the number of devices accessing online services

exponentially.

2

Figure 1.1: Examples of monolithic software systems

With all these factors, the monolithic approach of software applications develop-

ment has become a serious bottleneck. In essence, it may affect an organization’s own

existence. The high-risks produced by following this approach include the high cost of

implementation and scalability, heavyweight testing and deployment processes, and

complexity of development. Moreover, factors such as global software engineering

-where remotely located developers are working on the same project, and the need to

use different technologists in the same project (e.g., Angular for front-end, Python for

presentation tier, and Spring-Boot for backend) increased the challenge of selecting

the monolithic approach, where the same technology is the main theme for most of

the applications. Furthermore, various front-end technologies such as mobile devices,

browsers, desktop applications, and IoT devices requires lighter communication and

full separation between front-end and back-end technologies.

Even with the existence of techniques and concepts such as Object Oriented

Programming (OOP), design patterns, reusable components development, application

framework, and software product lines (SPL), building the modern requirements of a

software system is still challenging.

3

Service Oriented Architecture (SOA) has been an approach of software archi-

tecture and development driven by academia and practitioners. In particular, it is

a software construction model that aims to change how the software systems are

built. Its main idea is based on separating an application into smaller self-contained

components, encapsulated and independently deployable, which communicate over

a standard protocol. The commonly used protocol for SOA is Simple Object Ac-

cess Protocol (SOAP) based web services. However, SOA didn’t get high traction

because of its heavy-weight nature, in particular, communication, development and

configuration complexity, tools and technologies. Moreover, the common use of SOA

applications was for medium to large-scale information systems that require a rela-

tional database as the main persistence mechanism of the application’s data. In fact,

a unified instance of the database was used, which limited flexibility, where developers

were constrained in their design decisions and created a bottleneck on architectural

and database design decisions.

Consequently, a new architectural style has evolved: Microservices Architecture

(MsA). In MsA, a software application is built as small, lightweight, reusable and

self-deployable components that communicate over a lightweight protocol. In fact,

these components can be built using any technology. Moreover, every service has its

own business logic, storage engine, and persistent mechanism. Therefore, developers

have full decision control over the design, technology, and implementation of their

services. The commonly used architectural style in MsA is the Representational

State Transfer (REST) style that operates over HTTP protocol. The components

that are fully comply to the REST style are called RESTful web-services, which was

created as a lightweight alternative of the SOAP web-services. In particular, it works

as a layer that operates directly over the HTTP protocol [40].

Microservices style overcomes many issues and challenges over the monolithic ap-

proach and SOA. However, it requires a careful early architecture and design, mainly

for the services and their interfaces. In fact, these decisions may affect the overall

success of the project.

4

Even though MsA can be implemented in traditional on-site applications, its

full advantage can directly be gained if implemented in Cloud Applications. Cloud

Applications are the applications deployed on Cloud Computing environments such

as Infrastructure as a Service (IaaS) or Platform as a Service (PaaS), and publicly

accessible over the Internet by the intended users. As explained earlier, adopting MsA

on the cloud is more efficient than Monolithic and SOA. In addition, implementing

the quality attributes of scalability, high availability, auditability, monitorability, and

traceability will achieve the full benefits of Cloud Computing. In fact, including

these quality attributes along with MsA in an application is termed as Cloud Native

Applications (CNA).

MsA and CNA are relatively new terms, and we think it’s considered a new

green area for research and development. In fact, having an approach that can enable

building CNA applications based on MsA to be repeatable, reliable, secure and rapid

will open the door for new opportunities and potential. In particular, developing

different types of systems such as Information Systems, big data management or any

other types of cloud applications is becoming more rapid and cost-effective.

However, developing high quality cloud-based applications is challenging and

costly. In particular, (i) the long learning curve, (ii) the lack of special expertise,

(iii) the immaturity of technologies and tools, (v) the limited reusability, (iv) and

portability, are all factors that characterize the risks of developing such applications.

For those reasons, we try to answer the following research question of this disser-

tation: Is there an approach that enables the development of cloud based applications

to be: rapid, efficient, and straightforward?

As an answer for this question we propose Smart-Cloud. In particular, Smart-

Cloud is an architectural and design approach for cloud application development. In

fact, it utilizes concepts from reusable software components, applications framework,

and software product lines (SPL). The high-level architecture of Smart-Cloud is shown

in Figure 1.2.

During the different phases of work presented in this dissertation, best practices,

5

Figure 1.2: Smart-Cloud high-level architecture

patterns, tactics, and techniques of software architecture and design are extensively

used. In addition to the Smart-Cloud framework, we propose a Native Cloud Appli-

cation Reference Architecture (NCARA) for developing Cloud Native Applications

based on Microservices. NSCRA is shown in Figure 1.3.

Figure 1.3: Native Cloud Applications Reference Architecture (NCARA)

6

The proposed work has been fully architected and designed using the Unified

Modeling Language (UML). In addition, components are implemented using Spring

Java technology-based framework. Moreover, Continuous Integration (CI), Test Au-

tomation, Continuous Delivery (CD) implemented using Jenkins [65], Maven [5], JU-

nit [4], and other modern software engineering practices have also been used.

The validation of Smart-Cloud is based on three phases. First, the implementa-

tion of the full backend of Clowiz, where Clowiz is a proposed model-driven develop-

ment platform that enables application developers to build cloud-based information

systems in an interactive approach without any coding needs. Second, the imple-

mentation a PMS case study, which is a publication management system that is fully

developed using the Clowiz platform without writing code. Thirdly, a comprehen-

sive user study that was conducted for more than 30 professional from industry and

academia, which shows how the framework can reduce the development time and

achieve the required quality attributes.

All the implementation artifacts will be published as an open source project on

GitHub. These artifacts include source code, user manual, and application program-

ming interfaces (API) documentation.

This dissertation is organized into eight chapters and two appendices. This chap-

ter covers the introduction. Chapter 2 discusses the background. Chapter 3 presents

the literature review and related work. Chapters 4, 5, 6 present the proposed work,

its design and architecture, and application case study. The evaluation of the work

is discussed in Chapter 7. Chapter 8 concludes the dissertation and identifies several

directions of future work. Finally, several appendices such as User Manual, Excerpts

from the Source Code, and the full questionnaire are all presented in Appendix A, B,

and C.

7

Chapter 2

Background

As discussed in Chapter 1, the work presented in this dissertation is to propose Smart-

Cloud, a framework to enable repeatable, reliable, efficient and rapid development of

native cloud applications. This chapter aims to provide the reader with the required

information to understand the following chapters through background about cloud

computing, software architecture, and software product lines.

2.1 Cloud Computing

Cloud computing has made tremendous changes and improvements in the information

technology industry, where using 1,000 servers on the cloud for one hour is cheaper

than using one server for 1,000 hours [7]. In fact, without cloud computing, many

startup companies would not even exist [112] or would not achieve their current

economies of scale [115]. As shown in Table 2.1, worldwide spending on public cloud

services was almost $210 billion in 2016, and it is expected to reach $383 billion by

2020 according to Gartner news [100] .

Cloud computing is one of the important innovations in information technology.

It changed the way services are delivered to end users and affected almost every in-

dustry and discipline. Startup companies do not need to worry about investing in

large data centers and hardware anymore. Software developers can start building

software applications on top of platforms that can enable rapid-web application de-

velopment, which can be deployed immediately. Enterprise organizations do not need

8

Table 2.1: Total worldwide spending on cloud services forecast

Year Spending (Millions of dollars)

2016 $209,244

2017 $246,841

2018 $287,820

2019 $332,723

2020 $383,355

to buy expensive software that may become stale with time and need large operational

and maintenance costs. In addition, mobile Internet will be 10 times more spread

than the traditional desktop Internet, connecting more than 10 billion devices such

as smart-phones and sensors [11]. Moreover, it will enable saving costs and delegate

liabilities [52].

Cloud computing has opened new opportunities, trends, and needs such as mobile

interactive applications, parallel application processes, the large growth in data size,

the rise of analytics, and the need of putting the data near applications, real-time

decisions, and the Internet of Things.

Even though many definitions introduced in this article are about cloud comput-

ing, we find the following definition to be the most comprehensive:

A large-scale distributed computing paradigm that is driven by economies

of scale, in which a pool of abstracted, virtualized, dynamically scalable,

managed computing power, storage, platforms, and services are delivered

on demand to external customers over the Internet [38].

Cloud computing has five main characteristics: on-demand self-service, broad

network access, resource pooling, rapid elasticity, and measured service [81]. Fig-

ure 2.1 shows the simplified cloud infrastructure.

Even though cloud computing started to get high traction after 2005 [52], the

idea was discussed in the mid of the 20th century as Utility Computing. History

and evolution are presented in Section 2.1.1. Furthermore, the section includes the

9

Figure 2.1: Simplified cloud infrastructure [52]

enablers that caused the massive growth in this technology.

Cloud can be deployed on different models, private cloud, community cloud,

public cloud, and hybrid cloud. The main difference between these deployment models

is the target audience and public accessibility. More details about cloud deployment

models are discussed in Section 2.1.2. However, for the rest of this dissertation, the

focus is on public and community clouds (assuming community is publicly accessible).

With cloud computing, several data centers will be turned into a single pool

of computing utilities, which will enable the illusion of infinite resources. Cloud

computing can deliver services in three different models: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). The sum of

these services, data centers they operate on, and the software that runs and manages

these data centers, is called “The Cloud” [7]. These three service delivery models are

10

discussed in detail in Section 2.1.3.

As shown in Figure 2.2, entities on which providers of cloud services operate are

called cloud providers, and the entities in which users consume those services are

called cloud users. Dedicated discussion about cloud providers, the advantages of

being one, major providers and their classifications are presented in Section 2.1.4.

Figure 2.2: Providers and users of cloud services [6]

Furthermore, and since every technology introduces advantages and befits on

one side, there are disadvantages and challenges on the other side. Benefits of cloud

computing are presented in Section 2.1.5, while challenges, barriers, and risks are

discussed in Section 2.1.6 for both service providers and users.

Impact on the hardware industry is discussed in Section 2.1.7. Finally, the adop-

tion of cloud computing is presented in Section 2.1.8.

2.1.1 History and Evolution

Users of utility services such as electricity and telephones employ services based on a

model called a subscription. In the subscription model, the billing amount is based

on service usage. The usage is measured by specific metrics based on the type of

service. Usage-based billing called the pay-as-you-go model. The rationale behind

this approach of service delivery is based on resources and services shared among

different customers. In particular, this service delivery will reduce the overall cost

11

of resources and services and enable providing services at competitive prices. For

example, the sharing of electrical lines connecting a whole neighborhood can reduce

the cost by having only very short distance of lines to be dedicated for individuals,

which will enable a lower cost of service.e. On the other hand, having an electricity

line for a person who lives in his own large farm may be very expensive, since it may

require dedicated expensive resources.

Offering information technology services on the utility-based subscription model

is not a new idea. In fact, the first discussion about offering computing as a utility

started in 1961 when John McCarthy said that computation might be offered as a

utility someday [38]. Later on, Parkhill discussed in 1966 on how a revolution in

distribution and utilization of computer power may enable social changes and oppor-

tunities of human development [96]. In particular, he discussed benefits, challenges,

and future directions and potential of computing utility. Parkhill said that data

transmission, expensive hardware, and limited hardware capabilities were the main

barriers. Furthermore, he discussed working to overcome these barriers to open the

door for new opportunities of eliminating the need of local storage and allow direct

memory-to-memory communication between two remotely located computers, and

enable faster growth in distributed computing. In addition, this may enable better

teaching and information sharing.

Meanwhile, companies like IBM were working on the time-sharing technique [34]

as shown in Figure 2.3. In time-sharing, an expensive computer such as mainframe

was enabled to share computing resource with many users. However, due to the

limitations described earlier (e.g., expensive hardware), this was not executed on a

large scale and was based on a single organization or community.

As shown in Figure 2.4, the evolution of personal computers in the 1980’s has

made computers available for common people. This was one of the motivations to

create the next big thing, the Internet. In the 1990’s, a global network of networks

was built based on a standard protocol such as TCP/IP, SSL, HTTP, FTP, SMPT,

or POP. This global network was named the Internet and has affected all aspects of

12

Figure 2.3: Mainframes time-sharing [95]

our lives. Meanwhile, the communication technology and hardware were improving

as well, which enabled cheaper and faster computing and data transmission.

Since the late 1990s, businesses, academia, governments, and the general public

started to offer and use services over the Internet. In the beginning, these services

were mainly offering software applications over the Internet. In 2000-2002, Intel

failed to offer computing services for organizations and companies, because it required

negotiations and long-term contracting, which did not enable the growth of their

approach [7].

Meanwhile, grid computing started to gain some traction to utilize the ability

to distribute tasks between commodity computers that are available in different ge-

ographical locations, and offer computing power on demand [20, 38]. In fact, grid

computing was later developed into cloud computing with the support of virtualiza-

tion [14].

13

Figure 2.4: Cloud computing evolution [80]

In 2003, Jim Gray, the manager of Microsoft Research Lab in San-Francisco,

expressed his opinion about the future of distributed computing, where software can

be available in different physical locations and communication with other software

over standard protocols. He discussed how the free services provided by internet

service providers were actually not free and were paid for by advertisements. In

addition, he discussed the high cost of ownership, which reached $1 trillion per year.

An exciting point in his report is that in 2002, at Google, only 25 operation staff

were managing a two-petabyte database and distributed it over 10,000 server using

automation tools. In fact, this was the main reason that Google was generating profits

since they had lower operational costs. This applies also to other giant vendors such

as Yahoo and Hotmail. He discussed how the future of the Internet would depend on

computer-to-computer interaction. However, the advertisement model, which was the

14

main revenue stream at that time, was not sufficient, and companies need to invent

a new business model that leverages the new trend [53].

Later, smart-phones started to be everywhere, which increased the number of

internet users to orders of magnitudes. Sensors and smart-device industries were

growing, and the Internet of Things (IoT) became a major discipline. On the other

hand, the economic crisis in 2008 motivated all type of entities to look into cheaper and

more efficient ways of doing their businesses. Moreover, space has become a serious

issue for corporates, where the quarter of their data centers are out of space [112].

From the technical perspective, the drop-in hardware prices along with the in-

crease in computation power and storage capacity enabled building data centers from

commodity computers [38]. In addition, this was helped by the decrease in the cost

of utilities, and communication of small to medium data centers [112]. Moreover,

the operational cost was reduced due to the availability of automation software tools.

Furthermore, wireless device adoption and smartphones removed the dependency of

poor infrastructure and enabled even developing countries to be part of the revolu-

tion. Moreover, resource pooling using virtualization technology enabled the lower

cost and more scalability [7, 52, 58]. Also, adoption of free open-source software,

global workforces, and agile software processes played important roles in this evolu-

tion [52].

From economical perspectives, customer behaviors have changed from buying ex-

pensive long-term services and assets to subscription low-price services with low com-

mitments. In particular, they were moving from capital and asset expenses (CapEx)

to operational expenses (OpEx). In addition, the economic crisis in 2008 played a

major role where organizations started to look at alternatives to reduce the cost of

doing business [58].

2.1.2 Deployment Models

Cloud computing can be deployed in different deployment models, based on the target

audience and users. These models are (i) private cloud, (ii) community cloud, (iii)

15

public cloud, (iv) and hybrid cloud.

Private cloud is a data center or set of data centers that are provisioned for and

used by only one organization or corporation. The users of this model are the organi-

zation’s internal or external users. In fact, this model is an organization very similar

to a traditional on-premise data-center; however, the utilization of cloud computing

technologies (e.g., virtualization), and the possibility to be run and be managed by

third party organizations are key differences [81]. An example of this type of cloud is

a virtual data center built by a bank to deploy a core banking system.

A community cloud has a broader audience beyond the same organization. It

serves a group of users who share common interests and concerns. For example,

satellite images datasets and tools may be deployed on specific data centers managed

by NASA or the National Science Foundation in the USA, to enable domain and data

scientists to perform big-data analytics on these data sets [81].

In the public cloud, services are open to the general public on the pay-as-you-go

model for open use. An example of this is the public hosting providers, which can

enable businesses to deploy their Internet applications and support rapid scalability

and monitoring [81]. This is the most popular type of cloud deployment models

among individuals and small-medium businesses. On the other hand, hybrid cloud is

more preferred for enterprises [106].

2.1.3 Service Delivery Models

Cloud computing provides services in different service delivery models. Even though

there is a unified classification for these services, for now, we will go through NIST

service models, which are Infrastructure as a Service, Platform as a Service, and

Software as a Service [81]. These delivery models are shown in Figure 2.5.

Infrastructure as a Service (IaaS) provides the lowest level of services from cloud

providers to cloud user (consumers). IaaS includes services such as computation, stor-

age, networks and any other fundamental infrastructure. In this model, cloud users

will be able to install and deploy arbitrary software including operating systems and

16

Figure 2.5: Cloud computing services delivery models [58]

applications. However, users do not have the ability to manage the underline cloud in-

frastructure. In particular, it is a collection of hardware and software that enables the

special characteristics of cloud computing. IaaS includes virtual machines, servers,

storage, load balancer, a network [52], and may include an operating system [106].

On the top of IaaS, Platform as a Service (PaaS) is provided. PaaS is a service

that enables PaaS users to build and/or deploy their applications using language,

libraries, services and tools provided by PaaS providers on a cloud platform. As we

might expect, PaaS users do not have any control over the platform or cloud infras-

tructure. However, they have control over their application’s management [81]. PaaS

may include execution runtime, database, web servers, and development tools [52,

106].

Software as a Service (SaaS) is defined as the applications provided over the In-

17

ternet [7]. Another definition is the capability given by application providers (SaaS

providers) to consumers (SaaS users) to use applications’ running over a cloud in-

frastructure. In this model, SaaS users cannot control the underlying infrastructure,

the platform or the applications; however, a possible configuration for the user’s spe-

cific instances may be provided [81]. A research group that works for IBM argues

that SaaS should be a single instance of a software system, serving a large group

of customers over the Internet, built on top of a multi-tenancy platform [54]. Some

examples of SaaS are CRM, email, virtual desktops, and games [52].

However, many other flavors of services are provided, especially in industry, such

as Container as a Service [106], Testing as a Service, Database as a Service, Security

as a Service, and even Metadata as a Service [27]. All these types of services are

sometimes grouped as to XaaS, where X is anything as a service [7, 108].

2.1.4 Cloud Providers

Low-level service delivery models such as infrastructure as a service require a large

investment in properties, hardware, software, and operations. However, many tech-

nology giants such as Google, Amazon, and Microsoft already had these infrastruc-

tures in their data centers to be able to provide their services to their customers.

The availability of these assets gave those companies an edge over other companies,

by leveraging their current investments and thus getting a higher market share. In

addition, this was one of the main enablers of Cloud computing as discussed in Sec-

tion 2.5. The companies that provide low-level services mainly related to hardware

are called cloud providers. Figure 2.6 shows the list of top cloud providers in 2018,

by RightScale [107].

Being a cloud provider can bring many benefits. Mainly, depending on the

economies of scale concept, long-term financial stability and high revenue are pos-

sible. In fact, based on the dynamics of innovations theory by Utterback [122], being

part of the innovation will give the chance to dominate the market. On the other

hand, new innovations may, directly and indirectly, affect other businesses. For ex-

18

Figure 2.6: Top cloud services providers [107]

ample, after offering the cloud infrastructure for a fraction of the price, hardware

sales started to drop dramatically. In fact, this has forced hardware manufacturers

such as Dell and HP to collaborate with research labs on cloud computing and start

investing in this field to catch the wave.

Choosing a data center’s location to provide low-level cloud services depends on

many factors. For example, choosing locations with low-price property prices, low

labor cost, and lower taxes will ensure offering the service at more competitive prices,

while leveraging higher profit margins. On the other hand, to ensure the reliability

of service, location selection criteria should include the quality of infrastructure and

utilities, such as Internet speed and electricity reliability.

However, based on the physical theories, shipping photons over fibers optics is

cheaper than shipping electricity [7], and cooling is still a challenge and consumes

most of the electricity cost. Many pieces of research are being conducted on this

issue, for example, Google has applied for a patent for a water-based data center.

Their patent application shows data centers on large ships utilizing the sea motion

and water in both electricity generation and cooling [112]. In addition, setting up

the data centers in cold areas might be an option; however, infrastructure availability

may be a limitation. Moreover, current data center’s design for modularity, power,

19

and cooling requires new innovations [56].

2.1.5 General Benefits of Cloud Computing

Cloud computing provides benefits for both service providers and service customers.

A general benefit for service providers is to utilize the economies of scale concept,

which means having a large customer base with recurring revenue.

From the IaaS perspective, as discussed in Section 2.6, the providers can gain

many benefits such as leverage current investments and defend their franchise. From

PaaS perspective, PaaS providers will have higher opportunities of customers lock in,

which will reduce the risk of customers turn-over.

A general benefit for service users is the reduction in the overall cost, and del-

egation of liabilities to service providers [52]. Moving from CapEx to OpEx will get

better tax benefits as well as reducing the operational and administration costs. Li-

ability delegation is achieved by transferring risks such as security, availability (e.g.

DDos attack), and legal liabilities to service providers. In fact, the cost of protecting

the cloud is less than the cost of attacking it, since the attackers will require huge

resources and bandwidth to be able to attack a cloud data center, which results in

not being feasible in most of the cases for the attackers. In addition, it is possible

to reduce the risk of procuring a service that does not achieve the business goals

by leveraging the test-before-you-buy flexibility, since most of the cloud services are

coming with no long-term commitment.

Furthermore, cloud computing can protect against the risk of load mis-estimation.

In fact, the elasticity provided by cloud computing enables efficient scalability, which

can make the service more reliable since the demand of service may be affected by

many uncontrolled events such as news and holidays. Additionally, with cloud com-

puting, there is no need for a large capital investment in hardware or operations,

especially for startup companies. Figure 2.7 shows the difference between automated

elasticity in scalability conditions compared to traditional non-automated solutions,

and how automated elasticity can almost reach the actual demand without consuming

20

higher resources.

Figure 2.7: Automated vs traditional applications scalability comparisons [124]

From an operational perspective, cloud computing can benefit service users by

enabling them to access the service anytime anywhere. In addition, collaboration

and data sharing are easier. However, the risk of data security is discussed in the

challenges which are covered in Section 2.1.6. In addition, having more control over

servers and installed applications, where 30% of on-premise servers for an enterprise

have applications that nobody knows about, and they follow the rule of “Let’s pull

the plug and see who calls” [112].

From a business perspective, since the largest cost for enterprises is people, with

about 1 employee for 100 servers [56], automated elasticity can also contribute to

reducing the operational labor cost.

21

2.1.6 Challenges, Barriers and Risks

Even though cloud computing has many advantages, it comes with challenges and

barriers. One of the disadvantages is that it is a single point of failure, where most of

the cloud providers use the same infrastructure and the same software, in which any

introduced bugs or issues can affect the all service users. Obviously, bugs in large-

scale distributed systems used by cloud providers are hard to debug and fix. Another

disadvantage is performance unpredictability, since shared virtualization resources

and dynamic elasticity may affect the performance of other users. Moreover, the

provision of new services is still not happening in real-time. Finally, technical up-to-

date expertise in cloud technology in general and in cloud services management and

administration in particular, is relatively not easy to find [58, 106].

One of the main challenges of cloud computing is data transfer, which is still

a bottleneck. For example, moving large datasets is still cheaper and faster with

traditional mail service such as FedEx. Moreover, another challenge is internal orga-

nizational and business policies, which enforce usage of internal data centers.

In addition, many customers have concerns in regards to security [24], data lock

in, data confidentiality [45], data auditability, and control loss [52]. In fact, data can

be exposed in multiple scenarios, it can be exposed during upload, while in the cloud,

as well as during backup and restore [67].

From a business perspective, pricing uncertainty and cost model complexity, may

not fit with some organization’s policies such as government. Fate sharing between

service users and service providers is becoming more common, where a failure in the

cloud provider’s service may affect the reputation of service users as well [7]. In addi-

tion, since cloud services are based on heavy marketing campaigns, this may not be

appropriate for some type of businesses such as some scientific disciplines. Further-

more, lowering consultancy revenue is another concern for some service providers.

Some broad license agreements are a critical risk, which may enable service

providers to terminate the service any time for any reason, without any customers

22

communication or feedback [45].

Moreover, politics and regulations can affect the evolution of cloud computing.

For example, Internet neutrality [119], political and governmental conflicts may cause

a suspension of services. In addition, some compliance regulations may put some

special constraints, such as the European Union Data Protection act [42], where all

European customers data should be saved in data centers located in the European

Union [52].

Another barrier may be the rejection from freeware and privacy advocates such

as Richard Stallman, founder of the Free Software Foundation [43] and the creator of

the computer operating system GNU [49]. In his interview with the Guardian in 2008

[55], he argued that cloud computing is a trap for enforcing people to buy proprietary

licenses, and the main reason for its adoption is the marketing campaigns.

In addition, availability is still a challenge, as services issues such as service

suspension by Amazon and Google [37, 38, 112] add some concerns. Furthermore,

disasters may destroy infrastructure and interrupt service for days or perhaps weeks.

On the other hand, service suspension may be caused by the unavailability of Internet

access for some special places like underground halls or airplanes.

Figure 2.8 show the barriers ranking for cloud users based on a study done in

2011 by Morgan Stanley financial services firm [58]. Based on this study, data security

is the main concern, followed by cost uncertainty, loss of control, regulatory or com-

pliance requirements, reliability, data portability/ownership, software compatibility,

performance, and finally lock-in. Even after 7 years from that report, and as shown

in Figure 2.9, a report by RightScale published in 2018 shows many similarities in the

challenges with the dramatic arise of lack of resources and expertise challenge [107].

2.1.7 Impact on Hardware Business

Cloud computing has affected many businesses directly and indirectly. Computer

hardware industry has directly been affected in many aspects. In particular, the be-

havior changes of customers toward OpEx instead of CapEx has affected hardware

23

Figure 2.8: Cloud computing barriers ranking by users in 2011 [58]

Figure 2.9: Cloud computing challenges in 2018[107]

sales [58]. Customers now prefer virtual infrastructure instead of physical hardware

for many reasons. Reasons include the illusion of infinite resources available on de-

mand and eliminating upfront investments [7]. On the other hand, cloud provider’s

orders of hardware have increased and are sold by a scale of containers. For example,

24

about 2,500 servers were delivered by a 13-meter shipping container, then they were

installed in a new Microsoft data center in Chicago and the center was up and run-

ning in only four days, including electricity and water supply for cooling and network

setup [112].

In the hardware labs, power saving features are now one of the leading topics,

to reduce the operational cost of data centers. In addition, more compatibility and

utilization with virtualization technology is required. Furthermore, improving com-

munication technologies in both the routers and media connections is important.

2.1.8 Cloud Adoption

As discussed in the previous sections, cloud computing has many benefits that can

reduce risks and increase profits. In fact, cloud computing utilization is highly recom-

mended over private data centers in many scenarios, in particular when the demand

of service varies with time. This allows a benefit from elasticity and ensures effi-

cient utilization of resources. In addition, cloud computing is recommended when

the demand of service is not known in advance, such as the growing demand of new

service or needs of startup companies. Furthermore, cloud computing is preferred

with batch analysis jobs, which most likely will get results faster. Moreover, running

out of space for new data centers may be a strong motivation to adopt the cloud.

Finally, resource limitations such as the inability to provide extra utility power for

cooling [112] is another motivation to move to cloud computing.

Based on the cloud maturity model of Rightscale [106], cloud users are classified

in four categories: (i) cloud watchers, (ii) cloud beginners, (iii) cloud explorers, and

(iv) cloud focused. Cloud watchers still have not adopted any cloud technologies yet

and are still in the evaluation phase; however, they are planning a cloud strategy. On

the other hand, cloud beginners started to do some experiments for cloud services such

as proof of concepts or running these services on a small scale. The third category is

cloud explorers, consisting of the users who have adopted cloud computing in serious

work for multiple projects, and they have the required expertise to use and manage

25

their cloud services. However, they are still exploring new opportunities to expand

their business on the cloud. Finally, there are focused users, where the business is

heavily based on cloud computing, and they work on cost and optimization for their

cloud infrastructure. Figure 2.10 shows the cloud adoption percentage as of 2017.

Figure 2.10: Cloud adoption as of 2017 [58]

2.2 Software Architecture

Bridging the gap between software system requirements and the final product is the

main problem that the software engineering discipline tries to solve [47].

In any medium-to-large scale software system, the architecture of any system may

dramatically affect its success or failure. In fact, developing good architecture can help

achieve the project’s overall success, and it can be disastrous if done incorrectly [46].

Software architecture is a set of structures which allow you to think about a sys-

tem, which comprises software elements, relationships among them, and their proper-

ties [47]. Software architecture is significant for achieving the desired software quality

attributes [15]. Quality attributes is a new term for non-functional requirements [113].

Most of the quality attributes are emergent properties (i.e., can be detected and arise

only after putting the system into the final operational environment). Decompos-

26

ing the system into smaller components is a key activity in the architectural design

process. In fact, it is significant for achieving important quality attributes such as

modifiability, availability, reliability, scalability, and security [21]. Moreover, the ar-

chitecture can define what changes and modifications can be made on the system and

what can not be done.

Software architecture is used for many purposes. It can be used as part of the

design process in the Software Development Life Cycle(SDLC) in the so-called Archi-

tectural Design [21]. In this case, the output of architectural design is an input for

the construction phase. Moreover, architecture can be used for documenting software

systems. In particular, diagrams and figures are easier and more efficient to com-

municate with other entities such as stakeholders. Also, it can be used for training

and knowledge transfer. In addition, it can explain the rationale behind the chosen

architectural and design decisions. Furthermore, it can be used to evaluate current

systems and their qualities [15].

Even though software architecture is relatively not a new topic, it is still consid-

ered an immature field [46]. In particular, its implementation is still challenging for

many reasons. Some of these reasons are expertise, high initial cost, and management

awareness of the long-term value of implementing it.

The software architecture process can be classified into three categories: Informal,

Semi-Formal, and Formal. Informal architecture is mainly having the minimum pro-

cess, which includes architecture and design of the most significant components using

non-standardized diagramming techniques (e.g., white-board sketches) with minimal

documentation. On the other hand, the Formal has a complete process following a

standard diagramming and documentation. Moreover, in between, is the Semi-Formal

one.

Implementing software architecture appropriately in the SDLC can bring many

benefits. It can enable a better understanding of the system and supports reusing the

of system’s components. Furthermore, it can enable more efficient and higher quality

construction and development. Moreover, the evolution of software and software

27

management can be more effective.

2.3 Software Product Lines

Software product lines (SPL) is an approach in software development that can cut-

down cost, increase quality, and reduce risks. It is based on building common assets

that can be used for building software products that share common attributes and

behaviors. In fact, SPL can reduce the software development cost for similar products

for more than 90% [71]. In fact, as shown in Figure 2.11, SPL can reduce time to

market dramatically after developing and maturing the core assets.

Figure 2.11: Software product lines and time-to-market [71]

SPL development process includes: defining the commonality across different

software products to be developed by an organization, architecture, and develop-

ment of these functionalities, and keeping the door open for customization through

parameterization or inheritance.

An example of SPL is shown in Figure 2.12 built from Financial, Reporting

Management, and Collaboration systems developed by the same organization. In

this example, all the commonalities of the three systems are extracted into a separate

project in what is called the Core Assets. While every project is developed by its

own team, core assets are developed and maintained by a dedicated team, the Core

28

Team.

Figure 2.12: A Software Product Line example

The importance of SPL in software engineering is that it can support its main

objectives of reducing the gap between the requirements and final deliverables while

maintaining the quality attributes.

There are many challenges faced by researchers working in this field. First, there

is a need for reducing the cost of collecting commonalities across common products

to be developed in advance. In addition, there is a lack of architects’ expertise in

terms of who can analyze, design and develop such product lines. Moreover, there is

a need for awareness by top management and stakeholders to invest in product-line

asset development as a long-term investment, and how to reduce the time to market.

To standardize SPL and make it more implementable by organizations, SPL

framework was presented by SEI (SPLFw) [76]. In particular, the framework covers

many aspects of SPL, such as the value of adopting software product lines, best

practices, recommendations, and challenges.

According to SPLFw, the SPL approach is “a set of software-intensive systems,

sharing a common, managed set of features that satisfy the specific needs of a par-

ticular market segment or mission and that are developed from a common set of core

assets in a prescribed way” [76]. Based on the framework, SPL development can pro-

29

duce many benefits from different perspectives, which include large-scale productivity,

improved time to market, and reduced risk of unavailability of human resources, and

the ability to have customization features relatively quickly and with lower cost while

maintaining the quality attributes.

The framework acts as one-stop-shop for all required information about soft-

ware product lines research. In fact, it is based on information from collaboration

partners, surveys, and intensive-continuous research. In particular, it includes the

purpose, definition, benefits, and costs of product line development. Moreover, it

includes the essential activities, best practices, technical management, and organiza-

tional management.

30

Chapter 3

Literature Review and Related
Work

This chapter includes the literature review for the work presented in this dissertation.

In particular, it includes an intensive review of cloud applications and the industry

related work such as NetFlix and Cloud-Foundry.

Software as a Service (SaaS) is one of the service delivery models of cloud com-

puting. In fact, SaaS is projected to have 54% spending share from cloud computing

services by 2020 [66], as shown in Figure 3.1.

Figure 3.1: Cloud computing services worldwide spending [66]

31

As shown in Figure 3.2 software is a very generic concept, which can include op-

erating systems, programming languages, tools, and applications [28]. Hence, these

different categories of software can be part of any cloud service delivery model (i.e.

IaaS, PaaS, and SaaS), in this dissertation Software as a Service term is used in-

terchangeably with Cloud Applications. In fact, a discussion about a proposed new

taxonomy for service delivery is presented in the discussion and future work section.

Figure 3.2: Software taxonomy [28]

Generally, cloud applications are defined as applications delivered over the In-

ternet [7]. Cloud applications are most likely to run over PaaS (discussed in Section

2.1.3) [118]. A more detailed definition is the functionality provided over the Internet

for a large group of clients, based on multi-tenant platform, with a single instance of

software [54]. In fact, the multi-tenant support can also be provided at the applica-

tion level. The design models of cloud applications are discussed in more details in

Section 3.1. Section 3.2 presents the different types of clients that can access cloud

services. Cloud applications are different from traditional on-premise applications in

many aspects, and these differences are discussed in Section 3.3. The design and

architecture of cloud applications are presented in Section 3.4. New patterns and

techniques for developing cloud applications are required and give advantages over

traditional monolithic applications, as discussed in Sections 3.4.3 and 3.4.4. Benefits

of cloud applications are discussed in Section 3.7, and related challenges are presented

32

in Section 3.8. A strategy for moving to the cloud is presented in Section 3.9.

3.1 Design Models of Cloud Applications

Most Cloud applications are designed based on the economies-of-scale model, where

many users use the same applications, in what is multi-tenant applications [19, 58,

72]. Cloud applications can be categorized based on their multi-tenancy nature into

four design models:

1. Single Instance Single Tenant (SIST): In SIST, every tenant (i.e. client)

has a dedicated separate instance of the application, including any files and

database schema. In this case, billing and instance realization of the application

are managed by the underlying platform or batch executions jobs. This separate

instance for every client approach comes with the main benefits of development

simplicity and reducing risks of data consistency. However, scalability cost and

ability, operations and support for different clients in different instances. In

addition, different versions for different clients can increase the probability of

losing control on upgrades and features road-maps.

2. Single Instance Multi Tenant (SIMT): SIMT, is maybe the most popu-

lar model because it can gain higher benefits and lower operation and support

costs. In this approach, application providers build one system that is used by

all clients at the same time, support one version, and utilize fewer resources

for operations. In this approach, all clients also use the same database or data

repository, which can enable enhanced reporting and statistics for future deci-

sion making by service providers. On the other hand, building such application

adds complexity to the software development process, debugging is harder and

introduces common risks to all clients, such as quality of service for one client

may affect other tenants, which can dramatically affect a service provider’s rep-

utation, and fate sharing [74]. In fact, it can reach the point where it can

be a maintenance nightmare [19]. Generally, SIMT is appropriate for small to

33

medium business clients [54], and it can achieve economies of scale with exten-

sive resource sharing. However, multi-tenant for mission and business -critical

systems (e.g. core banking) is very risky, since the disadvantages of multi-tenant

design discussed earlier may produce higher risks that are hard to recover from

business and reputation perspectives. For example, if an upgrade caused a data

corruption or inconsistency, it may result in producing invalid financial results

and transactions, something that can not be forgiven in the financial industries.

3. Multi Instance Single Tenant (MIST): MIST maybe implemented for re-

sellers or corporates where every subsidiary company or division is considered

a separate entity as well as a separate customer.

4. Multi Instance Multi Tenant (MIMT): MIMT can be used as a mix of the

previous design models. Figure 3.3 shows the differences between SIMT and

MIMT.

Figure 3.3: Tenancy-models in cloud applications [54]

The number of users, business-size (i.g. small, medium, or enterprise), and do-

main (i.e. government, telecommunications, financial, etc.) of customers are im-

portant factors to consider in designing a model to implement. If a low-number of

large-enterprise customers are targeted, single SIST may be taken into consideration

and can be profitable, since this type of a client can pay a higher subscription, and

can not sacrifice or compromise quality, security, and risks. On the other hand, as

application for a large-number of Small-Medium Enterprises (SME), SIMT may be

34

preferred [18]. Furthermore, the level of configurability and customizability has a

significant impact on the chosen solution [84].

Obviously, a small number of users from small-size companies may not be appro-

priate for cloud applications to generate profits since the economies-of-scale factor is

not available in this case. In addition, these categories of customers are not willing to

pay higher prices compared to enterprise customers. However, it may work for non-

profit organizations such as research-oriented and scientific applications if funded by

organizations such as NSF [88].

Whenever the model is used, it should be fully transparent to the customers.

Based on the framework presented by an IBM team in 2007, they proposed that the

cloud applications should provide the isolation of (i) security, (ii) performance, (iii)

availability, and (iv) administration [54].

3.2 Application’s Clients

Most cloud applications consist of server-side components (i.e. application backend)

and client-side components (e.g. front-end). Since the beginning of cloud evolution,

HTML -Internet standard front-end technology- was the main used technology. In-

ternet browsers have been the most widely used HTML clients to communicate with

application backends. Desktop widgets became another form of clients [112]. Mean-

while, and with the rise of mobile devices and Internet of Things, new browsers,

desktop applications, and sensors applications were added to the client’s stack. Con-

sequently, the complexity of building Internet-based applications has increased, and

the need for more sophisticated front-end, a new term was introduced: Rich-Internet-

Applications (RIA).

RIA is commonly based on utilizing client-side features that depend on JavaScript,

HTML5, and CSS3. In particular, the Asynchronous JavaScript And XMLHttpRe-

quest technology (AJAX) is the main enablers for modern interactive web-based ap-

plications. Even though it has been the common approach, the user-experience of

browser-based applications was not sufficient for scaling cloud applications and could

35

not be used by non-technical people, which forced the way to native applications. In

particular, native applications are developed using a programming language to build

applications that can utilize native platform components. An example of native appli-

cations are applications built using the Java programming language to create Android

platform apps. Another example is using Objective-C or Swift to build Apple IOS

apps.

Another form of application clients is desktop widgets that communicate with

back-end cloud services, such as weather or stock widgets [112].

The new trends of having different front-end clients require new architecture,

design patterns, and tactics [57]. Design and Architecture of cloud applications are

discussed in Section 3.4.

3.3 Cloud vs Traditional On-premise Applications

On-premise traditional applications are the software application instances that are

designed to be installed on a client’s environment (e.g. local data centers or com-

puters) on the client’s premises. The local installation of these applications includes

all the application dependent artifacts and software systems, such as web servers,

application servers, and databases. In on-premise applications, dedicated support for

clients is provided, with different versions installed in every client’s environment. In

addition, there is no resource or access sharing with other clients. However, some

form of integration with other systems, and external access to the client’s services

may be provided from that on-premise deployment.

The common licensing model for traditional applications is perpetual-licensing,

where clients can use the software without any time limitations, and cost can be a

one-time cost [23]. In this model, the cost can be accurately estimated from the

beginning. In addition, in this approach, clients have almost full control over the

applications and its data. On the other hand, cloud applications can be licensed on

pay as you go or rental licensing models [77, 90, 125].

There are many disadvantages and challenges for on-premise applications. Firstly,

36

clients pay a relatively large amount of money for licensing compared to cloud ap-

plications. Secondly, on-premise applications require special upfront consulting and

implementation costs [58]. In addition, long implementation time is one of the main

risks. In particular, hardware procurement and installation, software environment

configurations and setup, application deployment, and on-site implementation are all

causing implementation delays. Moreover, most of the time support and upgrades

are not included in the initial cost of the system.

Although cloud applications sound tempting, they are not fit for all types of

applications [77]. For example, the traditional approach is more appropriate for real-

time stock trading which requires microsecond precision [7], since performance is

not guaranteed like on-premise deployment because of the sharing nature of cloud

applications [58].

Adding to that, the on-premise approach can make a perfect sense in organiza-

tions working in sensitive domains, such as governmental or financial organizations.

In fact, some domain compliance regulations and procedures require only the internal

existence of their applications. For example, central banks in some countries enforce

the core-banking to be locally installed and managed to ensure availability and data

privacy.

On-premise software is normally built in a monolithic fashion. However, cloud

applications are designed and built based on self-independent services [112], in what

is called Microservice architecture [10]. A comparison between Monolithic vs Mi-

croservices architectures is discussed in Section 3.4.3.

3.4 Design and Architecture of Cloud Applications

In all categories of software engineering processes (i.e. waterfall, agile or component-

reuse), the design is a significant phase [113]. Architecture is the core part of the de-

sign. Software architecture is an abstract, technology-neutral, representation of soft-

ware systems elements, their relations and how they interact with each other. More-

over, architecture is important to deliver the quality attributes (i.e. non-functional

37

requirements) of software systems [15]. Furthermore, the architecture can be used as

an input for development, documenting, and evaluating software [46].

This section discusses the evolution of cloud applications, starting from Mono-

lithic applications, followed by Service Oriented Architecture (SOA), then Microser-

vice architecture, to cloud native applications.

3.4.1 Monolithic Applications Architecture

Since the beginning of computer software development disciplines, building applica-

tions was mainly done using the monolithic approach. In particular, in the monolithic

approach all the components of a software application are built as a single unit that

should be compiled and deployed as a single instance on the edit-compile-link con-

cept [120], and most likely with the same programming language or technology. Even

though this type of software architecture is easier for software developers to under-

stand, develop, deploy and operate, it has many disadvantages. These disadvantages

include: full system compilation is required for any change, having all the team-

work on same technology or programming language, and harder horizontal scalability

because of the application’s heaviness. Another major issue with the monolithic ar-

chitecture is that the system is a single point of failure, where a single error in the

application can take the whole system down.

3.4.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an approach used to overcome some of the

monolithic application’s limitations [120]. In particular, SOA is about decomposing

applications into smaller-unit (services) that integrate and are composed at runtime

with each other using a standard protocol. Various XML based web-services protocols

are used as standard protocols, including SOAP, WSDL, and UDDI [75]. Even though

it was an elegant approach based on standard technologies, it didn’t get high-traction

from small-medium organizations because of its complexity, protocol overhead, and

heaviness of the final full system. In addition, having remotely located services was

38

not practical since the units of most SOA applications were communicating with the

same data stores (e.g. database), which caused many performance and reliability

issues.

With all the limitations and issues discussed, new factors led to new require-

ments being needed. These factors include: (i) smart-phones and IoT require new

lightweight yet interactive front-end technologies, (ii) entrepreneurship-wave and startup

companies require faster time-to-market and lower development cost, (iii) cloud com-

puting requires economies of scale models and scalability with minimal hardware and

infrastructure cost. All these factors caused the innovation of many new technologies

that have disrupted the software industry. Those new technologies have also created

another issue of lack of human-resources.

On the other hand, there is a conflicted misunderstanding about the relationship

between SOA and SaaS. In fact, SOA is a software construction model, while SaaS is

a software delivery model [75, 118].

3.4.3 Microservices Architecture

To overcome all the constraints, limitations, and disadvantages of the monolithic ap-

proach and SOA, and to achieve the requirements enforced by the discussed new

trends, Microservices architecture was innovated. As shown in Figure 3.4 the mi-

croservices architecture is a modern way of building cloud-based software applications,

in which software applications are decomposed into small light components (services)

that communicate with each other over light protocols and light messages exchange.

The most commonly used protocol is Representational State Transfer (REST), which

is a light-weight text-based solution over the HTTP protocol [36]. JavaScript Object

Notation (JSON) is the common message format used by inter-services and service

to front communications [26]. In Microservices, every service may be developed using

different technology, must access its own data-store, and may not access any other

service’s data-stores directly, only over the exchange protocol. In fact, directly access-

ing other service’s data-store directly will increase coupling and reduce the service’s

39

portability. Moreover, these services are also independently deployable [41]. Also,

horizontal scalability of Microservices is light and more efficient than other architec-

tures. In fact, scalability is performed on the service level, where the service which

has more load will be replicated on another instance, and there is no need to replicate

the whole system. Application containers such as docker are the main enablers for

this feature.

Figure 3.4: A pyramid of modern cloud native applications [31]

Furthermore, the microservices-based architecture can also come with other “div-

idends”, such as enabling innovations for developers, since they have full control over

the design of their microservice, they can easily replace components and enable free-

dom of testing [68].

Even though the microservices style is similar to SOA in many aspects, such

sa decomposing software into smaller-deployable parts and communicating over a

standard protocol [124], the lightness of communication based on REST, messages

based on JSON, and separate data stores, might be the main differences.

40

Even though the microservices architecture solves many issues and problems, and

creates potential for new opportunities, it introduces new complexity issues. In par-

ticular, special expertise is required to design and architect software solutions based

on the microservices architecture. In addition, there is a complexity of integrating

the services, testing, and deploy them. Moreover, monitoring and supporting ser-

vices at runtime by the operations and support team is harder than supporting single

processes applications such as the monolithic-based applications.

To reduce some of the risks of microservices architecture, intensive automation is

required. In particular, automation can be achieved by applying automation software

infrastructures such as Continuous Integration (CI), Continuous Delivery (CD), Test-

Driven-Development (TDD), standard projects structure, and other [70].

3.4.4 Cloud-Native Applications

The complexity introduced by the microservices architecture is discussed in Section

3.4.3, has led to a new term: Cloud Native Applications (CNA). CNA are portable

applications that exploit the full benefits of cloud computing without being depen-

dent on a specific cloud provider or infrastructure [103]. Features such as services

scalability, registry, binding, orchestration, and monitoring are supported out of the

box. However, a platform is required to act as middle-ware and application server for

those services.

In addition, as shown in Figure 3.5, cloud-native applications integrate well with

CD, Microservices, DevOps, and Containers.

3.5 Main Characteristics of Cloud Applications

Cloud applications have special characteristics that make them different from tradi-

tional applications in many aspects [118]. These main characteristics are:

1. Scalability up & down (Elasticity): In traditional applications, the scala-

bility requirement includes scaling-up, so that a system should be able to handle

41

Figure 3.5: Cloud native applications external environment [103]

a larger number of users if required, without modifying the software’s code. This

was normally achieved by vertical scalability [111]. In particular, vertical scal-

ability is achieved by increasing systems resources, such as memory, storage or

computing power [123]. On the other hand, horizontal scalability is widely used

by enterprises, by adding extra nodes to the application cluster [38], but it is

not common in small-medium organizations and businesses since it is relatively

expensive, and not easy to configure and manage.

Even though scaling-up is important in cloud applications to utilize large data

volumes and a vast list of services [46], scaling down is also significant, because

it will minimize resource utilization, which reduces the cost for service users [7,

124]. In addition, horizontal scalability is lighter and more cost-effective than

vertical-scalability. In fact, application containers such as Docker [62] are the

main enablers for lighter and more cost efficient horizontal scalability. These

new trends (horizontal scalability and application containerization) led to the in-

42

novation of a new architecture, microservices architecture, which was discussed

in Section 3.4.3.

Designing an application for exact scalability needs is still a challenge, where

having under-utilization, even with a small percentage, increases the cost more

than actually needed, and over-utilization makes the services slower, and cause

service users to look for alternatives [33]. Furthermore, in-advance testing and

benchmarking of the cloud-application scalability can reduce the risk of down-

time or load mis-estimation [44, 117].

2. Support for different front-end technologies: Currently, trends such as

IoT and mobile devices have created the need for supporting widely different

types of application clients (e.g. smart-phones, smart-cars, smart-televisions).

A special design and architecture should be taken into consideration to support

different types of front-ends without the need of modifying the back-end.

3. Usage Metrics: Since most cloud applications are based on subscriptions and

pay-as-you-go models, usage metrics should be taken into consideration from

the beginning since they will be the base for financial billing [7, 112].

4. Monitoring: Application monitoring is required to directly ensure that ex-

pected quality attributes are being met at runtime, especially in non-normal

scalability conditions, such as holidays for e-commerce platforms, or breaking

stock market news for real-time trading applications. It may include frequent

health checks, heart-beats, and resources visualizations.

5. Offline support: Even though Internet services have become more accessible

and reliable over the years, customers still have access difficulties to the Internet

in many locations and places (e.g. airplanes, underground floors, trains). In

addition, with the rise of IoT, scientific devices and sensors may be deployed

in some remote locations (e.g. deserts, mountains, oceans), which also may

not have an available or reliable Internet connection. Consequently, an offline

43

support feature is important. Having this feature gives service users the ability

to use the service while disconnected from the Internet, which can be synchro-

nized -once re-connected- later with the server. The offline support feature is

critical for many applications, such as word editing tools, projects management

applications, and IoT devices.

6. Configurability: In multi-tenant cloud applications, clients should have the

illusion of separate application instances, while service providers may, and most

likely should, maintain single instance to be able to maintain only one version

and to achieve economies of scale. Designing the applications to be configurable

and parameterized at runtime is important. In fact, having the quality attribute

of configurability can reduce support cost, and give more customization and

preference features for clients, which can increase customer traction and reduce

their turn-over [75]. Furthermore, variability modeling from Software Product

Lines (SPL) [71] can also be implemented to achieve the configurability quality

attribute [83][85].

7. Data locality: The decision on whether to pull or keep data on the cloud

requires special attention and balance between performance, data transfer cost,

and usability. In particular, data locality is important to improve performance.

For example, keeping data on a server may be efficient for server-side processing

(e.g. search, filters), however, it might be more efficient to pull data to client-

side for visualization applications. Nevertheless, in general, data-locality can

achieve better usability and processing performance [53].

8. Quality of Service: Finding a way for separating the quality of service for

multi-tenant services is important to ensure a reliable service and the separation

of the shared-fate issue discussed in Section 2.1.6.

The dynamic nature of cloud computing and the difference between physical environ-

ments and virtualized cloud environments plays an important role in distinguishing

between the architectures of traditional and cloud applications [124].

44

3.6 DevOps and Cloud Applications Development

Process

Developing and managing cloud applications has caused a serious issue of mis-coordination

between development and operation. In fact, the microservices architecture is a main

reason for the increase in this issue, as discussed in Section 3.4.3. To overcome this

issue and conflicts a new term was created: DevOps. The main concept about De-

vOps is that “you built it, you run it”, where application/service developers are also

responsible for supporting and maintaining their applications/services while in pro-

duction [59] and reducing the friction that appears while in deployment and operation

phases [9]. Another approach of DevOps is that the development and operation teams

work closely with each other to reduce the gap and taking ownership of the project

overall success [21]. In addition, this decreases the time between changing a system

and reflecting that change into the live environment [16]. As of 2018, 84% of enter-

prises are adopting this approach. In fact, 30% of these companies implement this

approach on a company-wide policy [106].

In reference to the high diversity of roles involved in cloud application devel-

opment (e.g. security, networks, business), DevOp has four main perspectives: (i)

culture of collaboration where all team members from the different project life cycle

stages have the required knowledge about the project, (ii) automation, continuous

delivery, and deployment pipelines, (iii) high-level and accessible measurement and

metrics, and (iv) and sharing of knowledge, development, tools, techniques and other

aspects that can enable the required understanding for the system [60, 61]. Moreover,

the knowledge, skills, and ability used in developing modern web-based applications

were discussed in what is called “grounded theory” [12]. Figure 3.6 shows how DevOps

changed the traditional structure of software development teams.

Moreover, the cloud has changed the role of the System Administrator to a

Virtual System Administrator, where there is no need for any cabling/wiring, or

server installation required or any other manual activity, it is all now done through

45

Figure 3.6: An example of DevOps team structure [16]

a web console that enables the network and the system to be administrated and

managed virtually. This led to software developers and systems administrators being

more collaborative and having more interaction [124].

Since DevOps is considered a culmination for what the agile method started [87],

with both encouraging running software over writing-documentation [113], the main

disadvantages of applying this approach is the risk produced when the developer

leaves and not enough documentation is available.

3.7 Benefits of Cloud Applications

The general benefits of cloud computing were discussed in Section 2.1.5, which also

apply to cloud applications. However, in this section, benefits of cloud applications,

in particular, are presented for both service providers and service users.

Common advantages are the almost zero upfront investment, just-in-time infras-

tructure, and reduced time to market [124].

For service providers, running single versions will simplify maintenance, and lower

customer support consequently reduces the cost of operations; also, it can reduce the

research cost. Furthermore, this will give the ability for small non-risky updates.

46

From an operational perspective, service installation and deployment are easier, es-

pecially when utilizing the appropriate software infrastructure [70]. On the other

hand, and from an economic perspective, since organizations are not willing to pay

a large amount of money for software anymore [112], providing applications on the

cloud will enable application providers to take advantage of this change in customer

behavior to make more traction and profit. Moreover, software piracy is impossible,

which is another major advantage for service providers [90].

The utilization of cloud applications can bring many advantages to service users.

Firstly, low cost may be the first important factor. Secondly, data security may be

better than on-premise applications especially in small businesses, where most likely

there is no dedicated support team to operate and support on-premise applications.

Furthermore, in general, cloud applications have better quality than on-premise ap-

plications and you always have access to the latest stable version of the system [23].

In fact, SaaS providers should invest in building higher quality software to ensure the

increase of customers retention [48, 79].

3.8 Challenges of Cloud Applications

Cloud applications have many advantages; however, it also introduces many chal-

lenges and issues. Debugging a cloud application is not as easy as traditional applica-

tion debugging. In addition, the support of multi-tenant discussed in Section 3.1, and

adopting cloud native applications properties discussed in Section 3.4.4 introduce an

extra complexity for the application development, deployment and management [54].

Furthermore, even though building cloud applications based on economies of scale

model sounds tempting, marketing cost is the main challenge for customer acquisition.

In fact, in 2012, even though with 90K customers, and a revenue of $2.3 billion per

quarter, their profit margin for SalesForce was negative because of the high cost of

sales and marketing to attract and keep customers [52].

Furthermore, the competition between service providers makes the customers

more selective and the decision to switch to another service provider is easier than

47

ever. Increasing the service cancellation cost of customers may be a solution, how-

ever, customers will not continue if the service is poor, or may sacrifice that extra

cost if they found better quality elsewhere, so working on the application quality is

significant to reduce customer turnover [79]. In fact, service providers need 12 months

subscription on average to cover the expenses of a single customer [48].

Moreover, data integration and interoperability are challenging and include many

concerns. These concerns and challenges include difficulty in large data transmission,

from both security and bandwidth perspectives; data integrity and support of trans-

action across the cloud; expensive data change detection; controlling data quality;

and determining the original source of data [78].

3.9 Strategy for Moving to the Cloud and Cus-

tomer’s Motivation

Cloud applications are widely used; however, as discussed in Cloud Adoption in Sec-

tion 2.1.8, cloud watchers and cloud explorers need a strategy to move to the cloud.

A proposed migration strategy is discussed in this section.

Moving applications to the cloud may involve multiple phases: (i) migrating

non-mission critical software such as CRM, payroll, and recruitment, (ii) transaction

between buyers and suppliers such as procurement, logistics, and supply chain, (iii)

business critical such as startup financial applications and software development, and

(iv) software as a service which may include spam-filters, and integration with on-

premise software. Characteristics of this type of applications are low data security

and low privacy concerns, little integration, and customization.

Encouraging customers who use on-premise applications to move to the cloud

may not be easy. So special pricing and campaigns may be a good technique to

follow. Because of lean regulations and policies, small to medium businesses may be

a better target for cloud applications. In addition, changing the attitude towards

more and enhanced customer care and service is very important.

48

3.10 Industry-based Related Work

Companies such as NetFlix and Pivotal led the cloud application development porta-

bility by adopting microservices architecture. They created many open source projects,

tools, and API’s that have been widely used in the industry. For example, NetFlix

created Eureka [86], which is currently used by Amazon Web Services (AWS) to locate

services and support load balancing and failover. Other examples are Spring Boot

and Spring Cloud created by Pivotal [102, 114]. For simple application development,

Dropwizard is used to create high-performance, lightweight microservices and back-

end applications that support configuration, metrics, logging and operational tools

out of the box [29].

In regards to multi-tenancy support, it is most likely implemented in code like

techniques such as Hibernate Interceptors [63]. However, this approach is generally

designed for other purposes such as logging and auditing.

Some platforms such as Pivotal Cloud Foundry try to enable portable support

for cloud applications across different IaaS providers [101]. These platforms provide

many services out of the box, such as metrics and monitoring.

3.11 Related Work Discussion

Based on the intensive review presented in this dissertation, many limitations and

issues surround web application development. Mainly, there is the requirement for

special expertise to be able to architect, design and develop such applications. In ad-

dition, there is a long learning curve to understand the concepts, tools, and techniques

especially by junior to mid-level developers. Moreover, features such as multi-tenant

support, auditing, metrics, and services register and lookup are distributed across

different tools, which may cause consistency and portability issues.

To the best of our knowledge, no comprehensive framework that enables easy to

learn, rapid, and portable cloud application development is available. In addition,

we could not find any approach in which the user-interface dynamic generation is

49

supported or adopted in developing microservice based information systems.

We think that the availability of a framework that can enable building high-

quality cloud-based applications with a minimal learning curve will be beneficial for

both industry and academia. In addition, utilizing the metadata driven dynamic user

interface generation, especially in cloud-based information systems, in a portable way

will help organizations move to the cloud faster, and will help reduce both develop-

ment and operational costs.

50

Chapter 4

Framework Overview

This chapter includes an overview of the proposed framework, Smart-Cloud. It starts

with a high-level overview, followed by the high-level architecture. Furthermore, the

main features and characteristics are discussed. Finally, the software infrastructure,

technology-stack, and tools that have been used are all presented.

4.1 High-level Overview

Smart-Cloud is an application development framework that enables rapid applica-

tion development of data-intensive cloud-based applications. It could be adopted in

both the monolithic or the microservices architectural-style based applications. The

framework is designed as a set of APIs, components, services, and cloud-apps that

integrate with each other to provide general features for data-intensive application’s

development in general, and cloud-based applications in particular.

The proposed services in the framework are designed to be served as both mi-

croservices or APIs. In particular, every service could be reused as an independent

self-deployable unit that manages its own data storage, or could be served directly

through API calls within the same process. The rationale behind this design decision,

and as discussed in Sections 3.4.3 and 3.4.1, choosing between the microservices or the

monolithic approaches depends on many factors and constraints, however, designing

the applications based on only one of them is risky, since changing the style in an

advanced phase in the project may require significant changes to the whole system.

51

In fact, a recommendation by Martin Fowler is to start by the monolithic architecture

approach, then enhance to the microservices one. Based on his article, he says:

As I hear stories about teams using a microservices architecture, I’ve

noticed a common pattern. 1- Almost all the successful microservice sto-

ries have started with a monolith that got too big and was broken up.

2- Almost all the cases where I’ve heard of a system that was built as a

microservice system from scratch, it has ended up in serious trouble [39].

One of the significant features of Smart-Cloud that it enables rapid application

development (RAD). RAD is achieved by utilizing the model-driven development

approach combined with a metadata-driven one.

The adoption of the metadata-driven approach in Smart-Cloud to develop cloud-

based data-intensive applications, where most of the user-interface and back-end func-

tionalities are designed to manage application’s data, is due to the repetitive nature

of such applications. In particular, the process of developing data-management func-

tionality is a straightforward process and most likely will be repeated across most

of the application’s functionalities, but for different set of data. That consumes a

lot of time, and may cause consistency and reliability issues, especially for large-scale

enterprise level applications. To overcome these issues, the metadata-driven approach

is used, where a single metadata entry for an entity is used to generate the full arti-

facts required by the application without writing code. The generated artifacts follow

the Model-View-Controller MVC design pattern. These artifacts include: the user-

interface (view), model, and controller, along with the database script required for

the persistence of the data to be managed.

However, the metadata-driven approach alone is not enough, since the manage-

ment of these metadata is also a time-consuming process, and error-prone, and may

cause another issue of the maintainability of these metadata. That is where the

model-driven development approach comes.

In Smart-Cloud, the model-driven development approach was implemented to

52

enable efficient creation and management of the metadata required for artifacts gen-

eration. Where users will be able to generate single artifacts, end-to-end artifacts, or

end-to-end full applications with few clicks. The model-driven approach in Smart-

Cloud has been implemented under the umbrella of Clowiz platform, the cloud wizard.

Clowiz platform is a cloud-based platform the enable software engineers, full-

stack software developers, and even non-programmers to create software artifacts

or full applications without writing code. Clowiz consists of three apps: CodeGen,

FeatureGen, and AppGen.

The CodeGen app is used by software developers to generate a single unit of

artifacts, such as Java class, HTML page, or SQL create-table script. On the other

hand, FeatureGen is designed to generate an end-to-end feature that includes all

the MVC artifacts to make a page fully functional. Finally, AppGen, is designed

to enable, theoretically, anybody with or without technical programming skills to

develop cloud-based applications using cloud-based model-driven design tools.

4.2 High-level Architecture

This section presents the high-level architecture of the Smart-Cloud framework which

is shown in Figure 4.1.

Figure 4.1: High-level architecture of Smart-Cloud

The framework consists of the following layers:

53

� Libraries and API’s: This layer includes a set of reusable API’s that are used by

the other layers and components to reduce the development time, and increase

software quality by providing a set of encapsulated and well-tested components,

such as commons utilities, data access, web components, and metadata man-

agement functionalities.

� Cross-Cutting Services: These services include generic services that are re-used

by the other application’s services, such as security, account management, and

logging.

� App Logic Services: These services include the services related to the core logic

of the framework, which includes metadata and DevOps services.

� Clowiz Platform: This includes the apps that included Clowiz platform’s apps,

which are CodeGen, FeatureGen, and AppGen.

4.3 Significance

In Smart-Cloud, we aim to reduce the development time of building cloud-based

applications. In addition, we aim to reduce the risk of failure of such application’s

projects by eliminating the dependency on highly skilled developers or software archi-

tects who have particular expertise in developing such applications. Moreover, we aim

to give developers the ability to focus only on the domain business logic, by re-using

the ready-made software API’s, components, and services provided by Smart-Cloud

out of the box. Furthermore, Smart-Cloud shall encourage organizations to consider

migration from legacy on-premise information systems to native cloud applications

early, in order to utilize the full benefits of cloud computing, increase work efficiency,

and reduce the cost.

54

4.4 Features and Characteristics

Smart-Cloud has many features that can be beneficial for researchers and practi-

tioners. These features are categorized into architecture, development, quality, user-

experience, and operational.

From an architectural perspective, the proposed framework can be the base of

various data-driven cloud-based applications. In fact, it can also be used for other

categories of cloud applications. In addition, the reuse of the API’s, components,

and services from Smart-Cloud can enable more effective architecture by adopting

the “don’t reinvent the wheel” concept.

From a development perspective, focusing on programming the domain business

logic only, by generating most of the required artifacts, and providing features out of

the box, such as multi-tenant support and auditing will increase developers’ produc-

tivity and reduce the overall cost of software development and the risk of failure.

On the other hand, having ready-made tested components that were built based

on the test-driven development approach can ensure higher-software quality. Further-

more, the generation of the software artifacts using Clowiz platform, provide a higher

consistency and centralized bug-fixing and features enhancements.

From a user-experience perspective, the consistency achieved by the generation

of the user-interface enhances the user-experience for the users of developed-systems.

In particular, having all the views appear in the same layout, same theme, and same

validation using the same alerts messages enable a faster learning curve and more

usage efficiency.

From an operational perspective, enabling auditing and logging features, addi-

tional to providing out-of-the-box dashboards, will support a real-time monitoring

and actions from the operation team.

On the organization’s wide point of view, Smart-Cloud enables building high-

quality cloud-based software systems with a lower-cost and minimal resources.

55

4.5 Technology

Cutting-edge technologies, platforms, tools, and techniques were adopted in the de-

velopment of Smart-Cloud framework. From technology point-of-view, the following

have been used: JavaSE, JSF, PrimeFaces, SpringBoot, Spring Framework, JPA,

Hibernate, HTML5, CSS3, and Bootstrap. Spring-Tools-Suite (STS) has been the

used IDE, and Maven as the standard project model. MySQL has been used as

the database management system. For diagramming and modeling, we used Visual-

Paradigm community edition. For the version control and source code management,

GitHub has been used. For the test-driven development, Mockito, JUnit, and Se-

lenium were extensively used. The API’s and components artifacts have been pub-

lished to the Maven central repository, to enable easier dependency management and

re-usability. Pivotal Cloud Foundry (PCF) was the selected platform to host the pro-

duction version of Clowiz platform. PCF was chosen after extensive proofs-of-concept

and testing on different hosting providers, which are Amazon Web Services, Heroku,

and PCF. The primary reasons for choosing PCF are: ease of configuration and de-

ployment, transparent scalability, pricing model, and the reliable integration with STS

IDE. For Continuous Integration and Continuous Delivery (CI/CD), pipelines were

implemented on Travis-CI online platform, to deploy to the production directly from

the source code after a comprehensive pipeline that ensures full unit and integration

testing on the staging environment, followed by the deployment to the production

one. Finally, AsciiDoctor was used to write the online user-guide and user-manual of

Clowiz, and TexStudio has been used to write this dissertation.

56

Chapter 5

Design, Architecture, and
Implementation

In the previous chapter, we introduced Smart-Cloud framework, its high-level archi-

tecture, features and characteristics, significance, and the technologies and infrastruc-

ture adopted in all the phases of the implementation.

This chapter includes the medium and low-level architectural design of the frame-

work. In particular, we present a comprehensive discussion about the Libraries, APIs,

services, apps, their internal design, and how they compose the framework as a whole.

UML diagrams are extensively used to model the architecture. Furthermore, we dis-

cuss the implementation, followed by samples of the framework user-interface.

5.1 Framework Architecture

The Smart-Cloud framework consists of different layers, where every layer composes

the components that fall under the same category. As discussed in Section 4.2, these

layers are Libraries and APIs, Application Logic Services, Cross-cutting Services, and

Clowiz Platform apps. As shows in Figure 5.1, the Libraries and APIs layer consist

of reusable components that are used across the whole framework. These libraries

include util, data, web, metadata, and exporter API’s. The Application Logic layer

composes the services required for the core logic of the platform; these services are

the Metadata and DevOps services. Cross-cutting Services layer includes the services

that are utilized by the other services; these services include Security, Accounts man-

57

agement, Logging, and Notifications. Finally, Clowiz Platform layer includes the apps

that enable the end-users of the platform to generate code, features, or full applica-

tions without writing code, using the metadata-driven combined with model-driven

approaches.

Figure 5.1: Medium-level architecture of Smart-Cloud

5.1.1 Libraries and APIs

This layer of the framework consists of reusable libraries that increase developers

productivity. In addition, it reduces the risk of failure, which has been achieved by

58

implementing the test-driven development approach for these components.

Util Library

This library includes a set of generic-level reusable components, classes, and meth-

ods that could be reused in any application that uses the Java technology. It in-

cludes more 20 packages that serve different purposes such as compression, valida-

tion, templates, caching, security, mail, and testing. Most of these utilities provide

functionalities through a single call to a single utility method. For example, com-

pressing and uncompressing files are provided through simple calls to public static

void unzip(InputStream in, String destDirectory) and public static Path

unzip(InputStream in) respectively.

Data Library

This library is designed and implemented to enable easier and more efficient develop-

ment of applications that require persistence and retrieval of data from a relational

database. In particular, it includes utilities that support reliable and efficient sup-

port to plain SQL development inside Java applications (JDBC), and other utilities

that support the Object Relational Mapping (ORM), where normal classes can be

mapped directly with database tables without the need of writing SQL code inside

Java code. This library solves common problems that face developers who develop

such components. These problems include the absence of a common configuration file

for both techniques and unified resources pooling; in addition, it solves the problem

of resource management, where many developers forget or do not know how to release

database resources properly.

Metadata API

This API includes the metadata API and its related components. This API is the

core of the metadata-driven functionalities provided by the whole framework.

As shown in Figure 5.2, the metadata API consists of classes which represent the

metadata required for generating the end-to-end artifacts of software applications.

59

Figure 5.2: Metadata API Class Diagram

The description of the classes shown in the Metadata class diagram is shown in

Table 5.1.

Exporter API

This API includes a set of classes that export metadata instances, which shall be cre-

ated by the framework users using the metadata API, into the final software artifacts.

The package diagram of this API is shown in Figure 5.3.

The core package in the API is shown in Figure 5.4. This package includes the

60

Table 5.1: Metadata API classes
Class Description

ApplicationMetadata This class contains the application level metadata such
as name, status, home page, locale. Also, it is the root of
the module’s metadata. Instances of this metadata class
are used to generate full applications and artifacts.

ModuleMetadata Contains the metadata of a module (subsystem). A mod-
ule is the container of view-groups metadata. This meta-
data is used to generate the tabbed modules menu in the
generated applications. In addition, it is important in
classifying and building the tree of artifacts to follow a
convenient structure.

ViewGroupMetadata View group metadata class contains metadata of a col-
lection of views (e.g., pages). Instances of View groups
are rendered as menu-bars in the final application gener-
ation.

ViewMetadata This metadata includes an individual view metadata. In-
ternally, it composes an entity metadata, that is required
to generate the MVC artifacts for this view.

EntityMetadata This metadata is general purposes metadata instance
that could be exported various formats of source-code
artifacts. These artifacts maybe views, controllers, mod-
els, database tables, and others. EntitMetadata consists
of a list of metadata fields and Id-field.

FieldMetadat This class contains the metadata for individual fields that
included in an entity metadata. It consists of the field
name, datatype, null-ability, and many others.

UISpec This class includes the metadata required for user inter-
face artifacts generation. This metadata includes width,
height, background color, and foreground color.

JKType This class encapsulates the information of datatype map-
ping for an individual datatype. For example, it may
contain the mapping code for SQL datatype of varchar2,
and the String class datatype in Java.

JKTypeMapping This class includes the mapping registry of all the data-
types that are used with converting a datatype to another
one in all the supported technologies in the framework.

primary classes of the exporters, such as ApplicationExporter and EntityMeta-

dataExporter interfaces. These classes should be implemented to enable exporting

the metadata into new applications for a specific technology stack, and their internal

61

Figure 5.3: Exporter API Package Diagram

artifacts.

Figure 5.4: Exporter API Core Package Class Diagram

The commons package of this API includes the common exporters, that are

shared in different technologies, and how they are related to the core package. The

details of this package are shown in Figure 5.5. Every exporter in this package is used

to generate individual software artifacts, such as Java class, HTML page, or SQL

create script.

62

Figure 5.5: Exporter API Commons Package Class Diagram

As shown in Figure 5.6, the technologies package includes exporters that gener-

ate end-to-end applications for a specific technology stack. This package currently

supports generating applications in JavaEE and Spring framework.

Figure 5.6: Exporter API Technologies Package Class Diagram

63

5.1.2 App Logic Services

App Logic Services layer consists of services that are required by the higher-level

applications of the framework. These services include the Metadata and DevOps

services.

Metadata Service

This service provides full management of all the categories of metadata, synchronizing

it with a relational database engine, and exposing its functionalities either as a high-

level API or a microservice. The details of this service are shown in Figure 5.7.

To provide apps with the ability to use this service without persisting information

to the database, FakeMetadataService class was designed, where it extends the

MetadataService class, and override some methods to change its behavior into an

in-memory data-structure instead of relational database persistence. This class is

used in the unit testing and in the guest-mode support, where users can try the full

functionality without the need of signing in or register to Clowiz platform.

DevOps service

This service includes the features that enable the generation and management of the

applications created by the end users. In particular, it includes the functionality

required to generate, download, or preview applications. The DevOps service class is

shown in Figure 5.8. The service is currently used by the AppGen app.

5.1.3 Cross-cutting Services

This layer includes the services that are not coupled to a specific functionality or

layer and could be reused across any other service in any layer. In addition, it could

also be reused by other applications in other domains, since they are not domain-

specific services. These services include security, accounts management, logging, and

notifications.

64

Figure 5.7: Metadata Service Class Diagram

Security Service

This service includes the security, authentication, and authorization functionalities.

It also contains token management to enable authentication in different security con-

texts, and wrappers to the accounts service for the actual user’s management.

Account Service

The account service includes features that enable users to create accounts, reset their

passwords, and manage their information. The details of the accounts service are

shown in Figure 5.9. In the current design of the framework, the accounts service is

used by the security service, where every account represents an authenticated person

65

Figure 5.8: DevOps Service Class Diagram

Figure 5.9: Metadata Service Class Diagram

who is allowed to access the system.

Logging Service

This service includes features that enable tracking and statistics of the system wide-

usage. The information collected by this service will help to identify the users-

behavior in using the apps of this framework.

Notification Service

The notification service currently provides email notifications for the users about

their important activities working on the system. For example, it is used to send the

66

required authentication information for the end users when they sign-up or reset their

passwords.

5.1.4 Platform Apps (Clowiz Platform)

To enable the end users to fully utilize the features of the framework in a user-friendly

and an efficient way, model-driven development apps were created to enable metadata

management, and software artifacts generation through a cloud-based web interface.

These apps are CodeGen, FeatureGen, and AppGen.

CodeGen

CodeGen enables users to create source code for a single artifact. The app currently

supports more than 15 generators that export the metadata into cutting-edge arti-

facts. These artifacts include Java classes, JPA Entities with Lombok support, full

HTML pages with Bootstrap support, and full database script for some of the most

popular database engines, Oracle, SQL Server, and MySQL. The list of generators

supported by CodeGen are shown in Table 5.2.

FeatureGen

FeatureGen enables users to generate end-to-end features based on the MVC design

pattern. The generated artifacts consist of the view, model, controller, and database

script. The FeatureGen generates artifacts for the supported technology-stacks in the

framework, which currently are JavaEE and Spring Framework.

AppGen

AppGen enables the user to create, design, preview, download, and deploy cloud-

based applications without writing code. Users can fully design all the application’s

aspects as metadata. The process of building applications using AppGen is shown in

the activity diagram shown in Figure 5.10.

Applications created using AppGen start with In Development Phase status.

When a user deploys one of his/her apps, the app status will be updated to Deployed.

67

Table 5.2: The list of generators supported by CodeGen
Generator Description
JPA Entity Java class that has the Java Persistence API annotation

for database mapping.
JPA with Lombok Java class that has the Java Persistence API. In this

generator, Lombok is used to reduce the size of gen-
erated code by avoiding the need of generating setters
and getters, which are generated by Lombok processor
at compile time.

JSF Managed Bean Java class that contains Java Server Faces Controller
functionality.

Java Class Normal Java class with setters and getters.
Java Class with Lombok Normal Java class without setters and getters, sup-

ported by the Lombok library.
PrimeFaces View Only JSF view based on PrimeFaces widget components. This

code doesn’t include binding with back-end controller.
PrimeFaces with Binding JSF view based on PrimeFaces widget components in-

cluding back-end binding with a JSF controller.
HTML Full Page Generates full HTML page including the commons css

and JavaScript frameworks such as bootstrap, jquery,
Google fonts, and fonts-awesome.

HTML Only Generates HTML code only that contains input fields
and labels for the designed metadata, however this
doesn’t include any styles.

HTML with Bootstrap Generates HTML form with all input fields and labels.
In addition, it includes Bootstrap framework styles.

H2 SQL Structure Generates create table SQL statement for H2 database.
SQL Server Structure Generates create table SQL statement for Microsoft

SQL Server database.
Oracle SQL Structure Generates create table SQL statement for Oracle

database.
MySQL Structure Generates create table SQL statement for MySQL

database.

Users can un-deploy apps so that they will return to the In Development Phase

status. Apps could also be archived, un-archived, and permanently deleted. The Full

workflow is shown in Figure 5.11.

A full-detailed user-guide for the framework apps is provided in Appendix A.

68

Figure 5.10: AppGen Development Process

5.1.5 Database Design

To enable users to have their work persisted, the different services are designed to

communicate with a relational database through the data API in the Libraries and

APIs layer. The current implementation uses MySQL as the database management

system. However, any database that supports Java Database Connectivity (JDBC)

specifications can be used without changing code. The complete Entity-Relationship

Diagram (ERD) of Smart-Cloud framework is shown in Figure 5.12.

69

Figure 5.11: AppGen Status Workflow

Figure 5.12: Entity Relationship Diagram of Smart-Cloud

70

5.2 Framework User-Interface

The user interface-views of the Smart-Cloud framework is provided as part of in

Clowiz platform. As shown in Figure 5.13, the home page of the platform has main

links to CodeGen, FeatureGen, and AppGen apps. In addition, it includes links to

the documentation and accounts management.

Figure 5.13: Clowiz Platform Home Page

Figure 5.14 shows the authentication page of the platform. It consists of the

Login, Sign up, and Reset Password features.

The CodeGen page is shown in Figure 5.15, where the users can configure the

metadata of the artifacts followed by selecting the desired code-generator (exporter).

Then the generated code will be shown in the middle center of the view.

FeatureGen is shown in Figure 5.16. In this app, users shall input the metadata

of the pages that would like to generate full feature to; then a full page preview is

71

Figure 5.14: Clowiz Authentication Page

Figure 5.15: CodeGen App Page

shown. Also, the end-to-end MVC source code for that page is shown at the bottom

of the view.

AppGen is shown in Figure 5.17, where users can apply the actions discussed in

the AppGen process in Section 5.1.4.

72

Figure 5.16: FeatureGen App Page

Figure 5.17: AppGen App Page

73

5.3 Framework Implementation

As discussed in Section 4.5, different technologies from the Java ecosystem were used,

specifically, JavaSE, JSF, PrimeFaces, SpringBoot, Spring Framework, JPA, Hiber-

nate. Spring-Tools-Suite (STS) was used as the integrated development environment

for the implementation of the framework components, and Maven as the standard

project object model. Figure 5.18 shows the project structure of Smart-Cloud imple-

mentation.

Figure 5.18: AppGen App Page

74

Chapter 6

Case Study: Publication
Management System

As a case study of Smart-Cloud framework, the chapter includes a full implemen-

tation of a Publication Management System (PMS) using Smart-Cloud framework.

PMS was entirely designed using Clowiz platform, the model-driven app-suites of the

framework. In particular, all the artifacts were designed and generated using the

cloud-based design tools without writing any line of code.

The following sections include the requirement and design of PMS system, fol-

lowed by a step-by-step implementation, starting from the application creation to the

final deployment to Pivotal-Cloud Foundry.

6.1 PMS Overview

PMS is an application that enables authors, mainly in the academia and the research

fields, to manage their publications more effectively, by providing more convenient

access to their publications information and resources. PMS is considered a data-

intensive application (i.e., information system), where data management is the core

functionality of the system.

Figure 6.1 shows the Use-Case diagram of PMS, which includes the management

of Publications as main use case, which requires the management of Universities,

Departments, and Authors data as sub-use cases.

As shown in Figure 6.2, the data model of PMS is designed as a UML class

75

Figure 6.1: PMS use case diagram

diagram. The diagram includes all the required classes covered by the use cases

diagram, which include University and Department, Author, and Publications.

6.2 Implementation

The process of PMS development on the platform starts follows the proposed process

discussed in Section 5.1.4.

6.2.1 Create PMS Application

The process starts by creating a new application on AppGen, where users navigate to

the AppGen URL at https://www.clowiz.com/app-manager/, followed by clicking

on Created New Software Application button. The created application is shown in

Figure 6.3.

6.2.2 Design PMS App

After the application is created, the high-level artifacts of the application were de-

signed using the application-designer of AppGen. In particular, it includes creating

the menus and the pages. We create two page-groups, Config and Authors. In the

Config page-group, we added two pages, University, which manages the universi-

https://www.clowiz.com/app-manager/

76

Figure 6.2: PMS class diagram

ties data, and Department, which manages the Departments data.In the second view

group, Authors, two pages were created, Author and Publications. The Author page

manages the authors’ data, and the publication page manages all the publications

information. The pages and pages-group design is shown in Figure 6.4.

6.2.3 Design PMS Pages

The pages design of University, Department, and Author are shown in Figures 6.5, 6.6,

and 6.7 respectively. Even though the University and Department pages only include

a field for the name, which could be simply replaced by a field with List of Values in

the Publication page, this design is more generalized and flexible to allow using the

system without frequent changes to the code, thus making it highly configurable.

The design of the publication page consists of many advanced metadata con-

77

Figure 6.3: PMS project in AppGen manager

Figure 6.4: PMS project in AppGen designer

figurations. As shown in Figure 6.8, it consists of a List of Value attribute for the

Category field, that shows a list contains Conference, Journal, Book, or Talk. In

78

Figure 6.5: PMS University page design

Figure 6.6: PMS Department page design

addition, it consists of Binary fields such as the Final Version and the Full Source.

Moreover, it consists of relations with all the other pages, that includes University,

Department, and Author.

6.2.4 PMS Prview

After the pages-design of the system, users can return to the AppGen home page and

preview a static prototype for the application, which does not include any function-

ality or data, as shown in Figure 6.9.

79

Figure 6.7: PMS Author page design

Figure 6.8: PMS Publication page design

6.2.5 Download PMS Source Code

To download the full source code of the PMS application, users shall click on the

Source Code icon in the AppGen home page; this will trigger generating the full

software artifacts, compressing it, then downloading it to the user machine as a com-

pressed file named publication-management-system.zip.

80

Figure 6.9: PMS preview

6.2.6 Import PMS Project into IDE

When the application was downloaded to our local file system, we extracted the

compressed file, then imported it as Java Maven project using Spring-Tool-Suite

(STS) IDE, an Eclipse based IDE. Figure 6.10 shows the Maven import view from

STS.

After importing the project, the structure of the generated projects shows con-

figuration files, Java, and web artifacts. The artifacts are shown in Figure 6.11.

6.2.7 Launch PMS Locally

For a smooth and straightforward execution, the generated code includes a Main class

that includes a call to an embedded java web-server that is bundled in the framework.

Running this class as a stand-lone application will initialize the framework, launch

the web server, and launch a browser window for the applications. The console output

of the running application is shown in Figure 6.12.

When the application is launched, the home page of the PMS system is shown,

which consists of the product-name, version, summary, header, and footer. In addi-

tion, it includes a menu bar and menu items that include links to all the other pages.

The home page of PMS is shown in Figure 6.13.

In the Config menu, when clicking on the university or departments menu items it

81

Figure 6.10: PMS Maven import

will show full management pages that manage their information. The design including

a demo data are shown in Figures in 6.14 and 6.15.

Under the Authors menu, Author and Publication management pages can be

accessed. The full design and dummy data of these pages are shown in Figures 6.16

and 6.17.

Note: The implementation of Address, City, State, and Country classes were

not included for the sake of simplicity in documentation and the reader.

6.3 PMS Deployment to the Cloud

After the full testing of the PMS system, we used STS IDE to deploy PMS system to

Pivotal Cloud Foundry (PCF). The live version of PMS can be accessed at https:

//pms.clowiz.com.

As shown in Figure 6.18, PMS currently deployed on a single instance with 1GB

https://pms.clowiz.com
https://pms.clowiz.com

82

Figure 6.11: PMS project structure

Figure 6.12: PMS console output

of memory and 1GB of storage. Processing power is transparent from developers and

handled internally by the Cloud Foundry platform.

Based on the 12-factors-app recommendations, resources should be attached at

83

Figure 6.13: PMS Home page

Figure 6.14: PMS universities management page

84

Figure 6.15: PMS departments management page

Figure 6.16: PMS authors management page

run-time by the hosting environment, and since Smart-Cloud follows the 12-factors

app, MySQL instance is attached to the application at run-time as shown in Fig-

ure 6.19.

85

Figure 6.17: PMS publication management page

Figure 6.18: PMS App on PCF

Deploying to PCF should include routing configurations, to be able to access apps

and services externally. Figure 6.20 shows the configured routings for PMS, which are

http://pms.clowiz.com and http://pms2.cfapps.io. The final deployed version

of PMS is shown in Figure 6.21.

http://pms.clowiz.com
http://pms2.cfapps.io

86

Figure 6.19: PMS MySql Service

Figure 6.20: PMS URL Routing

Figure 6.21: PMS Production on PCF

87

Chapter 7

Evaluation and Discussion

This chapter includes the evaluation and discussion of Smart-Cloud framework, which

are based on a user study conducted for 36 professionals from industry and academia,

and the case-study presented in Chapter 6.

7.1 User Study

To evaluate Smart-Cloud framework, we designed and conducted a user study that

involved academics from the software engineering discipline and professionals from

the software industry field. The main goals of the study were to answer the following

three questions:

� Does the work presented in this research solve a significant problem which are

worth attention?

� Does the work presented here contribute to solving this problem?

� What have been missed in this work, and what could be done better?

7.1.1 Participants

The user study is based on an experiment conducted between the period of Monday

24 to 31 December, 2018. It included 36 software technologies practitioners and

academics with various seniority levels, positions, and education. In addition, the

participants come from different regions all-over the world. As shown in Figure 7.1,

88

the survey included a wide range of participants with different professionalism levels.

In addition, participants come from different academic backgrounds, as shown in

Figure 7.2. Moreover, Figure 7.3 shows the participants day-to-day involvement in

software development projects activities.

Figure 7.1: Experience levels of the user study participants

Figure 7.2: Academic levels of the participants in the user study

89

Figure 7.3: Involvement of the participants in software development activities

The job titles of the participants included: Solution Managers, System architects,

Associate and Assistant Professors, IT Directors, System Analysts, Ph.D. Students,

Implementation Managers, Services Manager, Integration Specialist, Technical Team

Leader, Head of QA, Software Engineers, Senior Software Engineers, and Software

Development Consultants. The total years of experience of the participants range

from 3-20 years of experience.

7.1.2 Methodology

The experiment consists of three instructions the participants shall follow: (i) reading

an online tutorial about Clowiz platform, (ii) implementing the steps in the tutorial

or trying the platform randomly, then (iii) completing an online survey.

To measure and evaluate the user’s behaviors, all the transactions and actions

performed on the platform were recorded automatically for every participant. These

transactions were later used in the analysis to map the user responses with the actual

experiment of the system.

90

Clowiz Tutorial

The first instruction in the user study was to read an online tutorial about Clowiz plat-

form, which was published on the Clowiz platform website at https://doc.clowiz.

com/tutorial.html.

The tutorial consists of an introduction about the Clowiz platform in General,

and CodeGen, FeatureGen, and AppGen applications in particular.

The CodeGen section includes instructions to create Java JPA Entity, Full HTML

Page with BootStrap, and MySQL Table Structure. Based on the instructions, users

are able to generate these software artifacts with few clicks and by modifying the

metadata values of the desired fields.

In the FeatureGen section in the tutorial, the same fields that were used in the

CodeGen experiment, had also been used in the FeatureGen one, where end-to-end

source code were generated based on the Java Web Stack. The stack includes Prime-

Faces, Java Server Faces, and Java Persistence API with Hibernate implementation.

In the last experiment, the users were asked to develop a simple application using

AppGen. The requested application represents a simple human resources manage-

ment system, which consists of Departments, Job Titles, and Employee Profiles man-

agement pages. The development process includes creating, designing, preview, down-

loading, importing, then launching the project locally as described in Section 5.1.4.

Moreover, to give the participants more flexibility, they were also given an option

of reading the tutorial, then trying out the platform randomly. However, and to

have a clear understanding of the user’s behaviors of using the platform, all the

transactions and the interaction with the system were recorded automatically, which

enabled distinguishing between the participants who followed the instructions in the

tutorial, and who randomly worked on the platform, and also who scanned the tutorial

and didn’t try the platform.

https://doc.clowiz.com/tutorial.html
https://doc.clowiz.com/tutorial.html

91

Smart-Cloud Survey

After following the instructions, and to complete the experiment, the participants

were asked to complete an online survey.

The survey organized into five sections: Introductory Information, Participant

Information, Cloud Applications, Clowiz Platform, and ,finally, Suggestions and Rec-

ommendations.

� Introductory Information This section included an introduction about the user

study, followed by the consent required by the IRB process of UNR. After that,

it includes the email address of the participant, then (optionally) his/her name,

and if they could be contacted for future feedback or questions if needed.

� Participant Information This section aims to get general information about

the participants including their overall experience in the software development

industry, higher academic degree, current job titles, years of experience, and

what are their day-to-day activities working on software development projects.

� Cloud Applications This section included questions about cloud applications

significance, cost, and limitations. In particular, the first question was whether

choosing cloud applications is more beneficial than the traditional approaches

for green-field projects (i.e., new projects with minimal constraints). The sec-

ond question is to verify if there a shortage in experienced software engineers

who can develop high-quality cloud-based applications. The third, fourth, and

fifth questions are about the cost of software development, maintainability, and

operation of cloud vs. traditional applications respectively. The last question in

this section is about the risk of uplifting traditional applications (i.e., migrating

applications to the cloud).

� Clowiz Platform This section included questions about the Clowiz platform.

Clowiz platform was selected since it exposes the features of Smart-Cloud frame-

work into a user-friendly model-driven development approach. Similar to asking

92

users to evaluate Google search engine through the simple web interface pro-

vided over the internet.

The first two questions include the learning-curve and the usability-level of

Clowiz platform. The third, fourth, and sixth questions ask the participant if

the platform can reduce the cost of cloud-based application’s development, and

whether the generated code is high-quality and maintainable. Question five

asks the users if they would use Clowiz for their day-to-day work if it could

generate the artifacts in the technology they use. The last question in this

section, asks about what could be the most significant app from the platform

(CodeGen, FeatureGen, or AppGen) based on the participants’ experience and

requirements.

� Suggestions and Recommendations In the last section of the survey, there were

three questions. Firstly, we asked the participants about what could be done

better; secondly, what new features could be considered in the future; thirdly,

we asked them if they have any comments or other suggestions.

A full copy of the questionnaire can be found in Appendix C.

7.2 Results and Discussion

This section includes the results and discussion of the evaluations performed for

Smart-Cloud framework, which includes the results and evaluation of the PMS case

study presented in Chapter 6, and the results and evaluation of the user study pre-

sented earlier.

7.2.1 PMS Results and Evaluation

Smart-Cloud was used to develop an end-to-end Publication Management System

(PMS). The front-end model-driven platform, Clowiz, was used to enable rapid ap-

plication development for the application. The results are shown in Table 7.1.

93

Table 7.1: The results of implementing PMS using Smart-Cloud

Artifact(s) Efforts

Project Structure Statically generated by the framework, it includes creating
a Maven project object model (i.e., pom file) and files struc-
ture. In addition, it includes a proposed unique structure
that enables easier styling and maintaining of pages.

Dependencies Single dependency of the smart-cloud web framework, which
includes all the required utilities and API’s to enable faster
and efficient development, such as the ManagedBeanWith-
OrmSupport, and JKObjectDataAccess classes.

Theme resources Statically generated by the framework, which includes the
templates, CSS styles, themes, JavaScript, images, icons,
and others.

Configuration files Statically generated by the framework, which consists of de-
velopment and live configurations.

View pages Statically generated by the framework, which are based on
the PrimeFaces and JSF components.

Controllers code Statically generated code that extends a reused class pro-
vided by the framework.

Models code Statically generated by the framework, which are JPA enti-
ties that are mapped directly to a database.

Data access code Provided out of the box from the framework as easy to use
APIs.

Web Server Provided out of the box as embedded web-server, to enable
rapid development and execution.

Database Provided out of the box H2 embedded database to enable
faster execution and rapid application development.

Clearly, implementing the framework can reduce the development time by pro-

viding all artifacts shown in Table 7.1 out of the box, without writing any single

line code. Having all these artifacts as a base for a new software project could be

considered a software product line approach, where such approach can reduce the

94

development time of similar projects up to 90%, as discussed in Section 2.3, which in

our case are data-intensive applications.

7.2.2 Users Study Results

As a part of the user study conducted to evaluate Smart-Cloud, the participants

were asked to complete an online survey. The survey included questions about cloud

applications. The questions and their responses are shown in Table 7.2. The results

of Clowiz platform questions are shown in Table 7.3. Moreover, the bar charts of

these results are shown in Figures 7.4, 7.5, 7.6, and 7.7. The question is about Clowiz

apps, and what participants think is the most significant apps. The results of this

question are shown in Table 7.4.

Table 7.2: The results of cloud application questions
Question Strongly Disagree Neutral Agree Strongly Average

Disagree Agree

Ranking Value (1) (2) (3) (4) (5)

For new software applications, choosing a
cloud-based approach can be more beneficial
than choosing traditional approaches

- 1 (2.8%) 3 (8.3%) 19 (52.8%) 11 (30.6%) 4.18

There is a shortage of experienced software
engineers who can develop high-quality cloud
applications

- - 10 (27.8%) 16 (44.4%) 10 (27.8%) 4

The cost of software development of cloud
based applications is higher than cost of de-
veloping traditional software

1 (2.8%) 18 (50%) 6 (16.7%) 10 (27.8%) - 2.71

The maintainability cost of cloud based ap-
plications is higher than that of traditional
software applications

4 (11.1%) 19 (52.8%) 4 (11.1%) 6 (16.7%) 2 (5.6%) 2.72

The operational cost of cloud based applica-
tions is higher than that of traditional soft-
ware applications

3 (8.3%) 15 (41.7%) 5 (13.9%) 10 (27.8%) 2 (5.6%) 2.80

Migrating applications developed using tra-
ditional approaches to be cloud-based is an
expensive and risky process

1 (2.8%) 5 (13.9%) 8 (22.2%) 17 (47.2%) 2 (5.6%) 3.42

In addition to cloud applications and the platform questions, we asked the par-

ticipants if they have any comments, suggestions, or feedback. The summary of these

comments included asking for supporting other technologies, such as Angular, React,

and Solr. In addition, they proposed integration other technologies and tools such

as GitHub, Amazon AWS, and Docker-Hub. Moreover, they proposed to generate

a microservices skeleton for systems as a whole, then for every service individually.

95

Table 7.3: The results of Clowiz platform questions
Question / Ranking
Value

(1) (2) (3) (4) (5) (6) (7) Average

I find it easy to learn
and work on Clowiz

- 1 (2.8%) - 1 (2.8%) 4 (11.1%) 13 (36.1%) 17 (47.2%) 6.19

I understand the
process of developing
cloud applications
using Clowiz

- 1 (2.8%) - 5 (13.9%) 6 (16.7%) 12 (33.3%) 12 (33.3%) 5.78

Clowiz platform can
reduce the develop-
ment cost of creat-
ing cloud-based appli-
cations

- - 2 (5.6%) 1 (2.8%) 6 (16.7%) 11 (30.6%) 16 (44.4%) 6.06

The code generated by
Clowiz is high-quality
and maintainable

- 1 (2.8%) 1 (2.8%) - 8 (22.2%) 15 (41.7%) 11 (30.6%) 5.89

I would use Clowiz
features if it could
generate the code in
my day-to-day work-
ing programming lan-
guage and technology

- 2 (5.6%) 2 (5.6 %) 4 (11.1%) 5 (13.9%) 12 (33.3%) 11 (30.6%) 5.56

Clowiz can generate
good quality end-to-
end cloud-based code,
features, and applica-
tions

- 1 (2.8%) 1 (2.8%) 5 (13.9%) 5 (13.9%) 14 (38.9%) 10 (27.8%) 5.67

Figure 7.4: Results of Clowiz usability

Table 7.4: The results of the most significant app in Clowiz question
Application Number of participants think its more significant Percentage

CodeGen 13 39%

FeatureGen 6 18%

AppGen 14 42%

96

Figure 7.5: Results of the understanding of AppGen process

Figure 7.6: Results of Clowiz reducing the cost of cloud applications development

To enable faster generation, some of them proposed exporting and importing the

metadata into JSON format. Some performance tuning and user experience requests

were also proposed, such as having keyboard shortcuts, to enable faster entry for the

metadata. Also, to get more flexibility, many of them asked about the possibility

of enabling the customization of the generated artifacts, themes, and styles before

downloading the projects.

97

Figure 7.7: Results of generated code quality of Clowiz

Figure 7.8: Results of using Clowiz in day-to-day work

7.3 Discussion

Nowadays, the cloud-based approach of software applications development is one

of the important current trends in the software engineering industry. However, we

believe that there are many challenges surround the adoption of this approach in

many organizations.

98

Figure 7.9: Results of Clowiz overall quality of generated applications

However, before trying to identify these problems, we wanted to be sure that

building applications following the cloud approach is the preferred way in green-field

projects over the traditional on-primes approach in organizations in different domains.

So based on the results of the user study, more than 82% of the participants say that

choosing cloud applications can be more beneficial than the traditional approach in

new software projects, with an average of 4.18/5, where 5 is Strongly Agree and 1 is

Strongly Disagree.

In addition, and as shown in Table 7.2, around 50% of participants think that the

development, maintainability, and operational cost of cloud applications is lower than

traditional the approaches. As shown in the table, the average of the responses are

2.71, 2.72, and 2.8 respectively, where lower values means that the cloud is cheaper.

The goal behind designing the survey for these questions in an opposite direction is

to ensure that the participants are completing the survey with rational data and not

rushing the answers.

The above results shows the significance of cloud computing and cloud appli-

cations in reducing the cost of development, maintenance, and operations, which

answers the first question we raised in Section 7.1: Does the work presented in this

99

research solve a significant problem which are worth attention?.

However, since averages of development, maintainability, and operational cost

are all close to the median, we think that these questions require more investigation.

On the hand, all the previous questions were related to new projects in a green

field situation. So, we also wanted to check if migrating current applications to

be cloud-based is considered a risky process for the organizations, and the results

show that more than 40% of the participants think it is risky to uplift on-premise

applications (migrate applications to the cloud), with an average of 3.42/5. However,

we also think that this requires more investigation, since based on the feedback of

some participants, privacy, compliance, and security concerns are still dominant.

So the question is, if most of the participants think that cloud applications are

more beneficial than the monolithic based, then why there are still many on-primes

applications in many organizations?. The answer to this question is shown in Fig-

ure 7.10, where more than 71% of the participants say that there is a shortage in

experienced software engineers who can develop high-quality cloud software applica-

tions, with an average of 4/5 of the participants think that there is a shortage in this

area, which confirms the results of RightScale report published in 2018, which dis-

cussed in Section 2.1.6, that the lack of resources and expertise has become a major

barrier for adopting cloud computing.

We believe that the above results, show that there is a need for an approach that

enables developing cloud-based applications in an efficient and effective way, without

requiring particular expertise, is significant and worth attention.

As a solution for the presented problem, we proposed Smart-Cloud framework,

which is a metadata-driven approach that enables rapid applications development

of cloud-based applications, without the need for special expertise in software en-

gineering. Furthermore, we developed the Clowiz platform, which is a cloud-based

model-driven-development approach built on the top of the framework to enable more

efficient usage of the framework, without the need of writing code to use it.

However, we wanted to be sure that people from the software engineering industry

100

Figure 7.10: Shortage in experienced cloud application’s developers

from different seniority levels, and different backgrounds, are able to use the platform

without any training and with a short period of time and learning curve. So based

on the user study, and by only reading a tutorial that requires 10-20 minutes, more

than 87% say that the platform is easy to learn, with an average of 6.19/7, and more

than 76% of them understand the process of development with an average of 5.78/7,

where 7 is Strongly Agree and 1 is Strongly Disagree.

Even though a short learning curve is significant in any approach, the quality,

and the willingness to adopt this approach by the participants can indicate if the

approach is practical enough to solve real-life problems or not. Based on the user-

study, more than 93% of the participants say that the code generated by the platform

is high-quality and maintainable with an average of 5.89/7. Also, 76% of them would

use the platform in their day-to-day work if it can generate the code in the technology

they use, with an average of 5.56/7.

Moreover, more than 90% of the participants say that the platform can reduce

the development cost of cloud-based applications, with an average of 6/7.

On the other hand, we also wanted to know what features of the platform could

be more useful to the participants. We found that all the people who fully followed

101

the tutorial say that AppGen is the more significant application with a percentage

of 38.9%, while 36.1% think CodeGen is the most significant; however, only 16.7%

think that FeatureGen is the most important one.

The feedback of the open-ended questions was promising, where most of the

participants were positive with the experience. Some of the comments where “Really

amazed by this concept and implementation”, “Your work is definitely a step in the

right direction of software development future”, “It is a well developed creative idea

that can be converted into a revolutionary product that helps millions of developers

and give entry to non-developer into the development world”, and “As a developer

I find it very easy to use Clowiz platform and a great opportunity to boost my

development process”.

Moreover, some of the participants proposed to include new technologies, tool

integration, and user-experience features. Proposed technologies included Angular,

React, Microservices, and others. Features included integration with GitHub, Ama-

zon AWS, and Docker. User experience suggestions included keyboard shortcuts, and

lighter response by disabling the real-time code generation.

However, there were some comments about small glitches “As it is still in Alpha

phase, there are some small glitches here and there,” so we worked on those bugs

and solved them, such as the error when trying to delete a field from the FeatureGen

application.

102

Chapter 8

Conclusion and Future Work

This chapter concludes the works presented in this dissertation, where the research

question is revisited, an overall characterization of Smart-Cloud is presented, con-

cluding remarks are provided, and future directions are identified.

8.1 Research Question Revisited

As discussed in Chapter 1, the research question of this dissertation is: Is there

an approach that enables the development of cloud-based applications to be: rapid,

efficient, and straightforward?

We believe that with Smart-Cloud we have been able to provide an approach

that answers and solved this research question. In particular, we have been able

to achieve rapidity by adopting the model-driven and metadata-driven development

approaches. Moreover, efficiency was achieved by providing a comprehensive set of

components that are reusable enough to eliminate the need of third-party libraries

and APIs. Furthermore, straightforwardness was delivered by having a high-level

abstraction and functionalities that reduce the learning curve and development time.

8.2 An Overall Characterization of Smart-Cloud

The Smart-Cloud framework can be characterized by being a cloud-based, reusable,

model-driven, metadata-driven, and a product line approach.

The Smart-Cloud components are designed and developed following the twelve-

103

factor-app recommendation for modern cloud software architecture. Also, the frame-

work provides transparent support of cloud functionality out of the box, such as the

multi-tenant support and automatic binding of relational database resources on cloud

environments. Moreover, the model-driven development functionality provided on the

cloud by Clowiz platform is also deployed on the cloud.

Also, the framework consists of a novel combination of reusable API’s, services,

and application framework to increase developer’s productivity on all levels.

Furthermore, it utilizes the model-driven development approach, where users can

generate single artifacts, end-to-end features, or full applications using cloud-based

design tools without writing code.

The code generation provided by the framework is based on the metadata-driven

design, where the developers configure only the attributes and specifications of their

artifacts or applications, then using the framework this metadata could be exported

into the desired artifacts.

Finally, to reduce the time required for starting new projects, the framework was

designed to provide a software product line approach for developers to enable a more

robust creation of new projects.

8.3 Cloud Computing

Cloud computing was extensively discussed. The history and evolution of cloud com-

puting were presented, and how the expensive hardware and infrastructure, along

with the absence of economies of scale might be the main reasons for delaying its

adoption. This was followed by how the Internet, low-cost commodity-computers

based data centers, smart-phones, and economic crisis played essential roles in mov-

ing forward in cloud computing, and offering computer services as utilities. The main

advantages of cloud computing were also presented, such as reducing the total cost

of ownership, time to market, and liabilities delegation. On the other hand, disad-

vantages and challenges were discussed, such as security, loss of control, regulations

and political conflicts. Moreover, the effect of cloud computing on startups, economic

104

disciplines, and hardware businesses were also examined.

Furthermore, the common service delivery models were presented, IaaS, PaaS,

and SaaS. However, we think SaaS term is misused, and service delivery models re-

quire a standardized new taxonomy. In particular, software is a very generic term

that includes operating systems, platforms, applications, and even virtualization tech-

nologies such as hypervisors. Consequently, all service delivery models are SaaS in

some way. The main issue with this is the future regulations of taxation, billing, and

licenses may be based on the categories of the software provided.

Moreover, cloud applications were presented, including a multi-tenancy taxon-

omy, application clients, and a comparison with on-premise applications. In addition,

design, architecture, and process concepts and their rationale were discussed including

the microservices architecture, native cloud applications, and DevOps. Also, benefits,

challenges, and strategies for moving to applications on the cloud were overviewed.

To the best of our knowledge, the taxonomy of cloud applications presented in

this dissertation: (i) Single-Instance Single-Tenant(SIST), (ii) Single-Instance Multi-

Tenant(SIMT), (iii) Multi-instance Single-Tenant, and (iv) Multi-Instance Multi-

tenant, is novel, and may open the door for new styles, patterns, and techniques

and business models to build cloud applications.

Even though we think the background and the literature review presented in this

dissertation is comprehensive enough as an introductory survey for cloud computing

and cloud applications, we believe that having more details about the architectural

styles and patterns for building cloud applications can also be beneficial for software

architects and developers. Moreover, a further discussion about PaaS platforms will

enable them to choose whether to build on one of the available options, build a new

platform on top of an existing one, or even build a new domain-specific one.

The main issue with the currently available cloud computing offerings and tech-

nologies is the lack of standardization, which increases the risk of service provider

lock. Even though this can be mitigated by creating an abstract layer between ser-

vice users and providers, this increases the development cost, and may introduce

105

buggy features, and will not allow full utilization of services provided. In fact, we

think Amazon is leading the de-facto standardization of cloud computing following

the Dominant Design Concept [122]. However, this situation is risky since its long-

term stability is not guaranteed and increasing the number of proprietary services,

technologies, and protocols are more likely.

We believe that standardization is significant since it can address many con-

straints, risks, and challenges, and can enable more user traction. In addition, it may

eliminate privacy and data constraints issues, and enable interoperability.

On the other hand, since the design and architecture of cloud applications is

challenging and requires particular expertise, the utilization of native cloud platforms

such as Pivotal Cloud Foundry [114] and the work presented in some reports [9, 99]

may reduce the cost and enable proper utilization of cloud resources. In fact, PaaS

worldwide spending is expected to increase from 11% in 2015 to 17% in 2020, which

may be a sign for the need of supporting native cloud applications out of the box [66].

However, the low-maturity of this field and its lack of standardization open the door

for future research on new designs and methods of native cloud application platforms.

8.4 Concluding Remarks and Future Work

In this dissertation, we presented Smart-Cloud, an application framework that aims to

reduce the development cost of modern cloud-based software applications in general

and data-intensive applications in particular, while maintaining a high level of quality

and standardization. The framework consists of libraries, APIs, services, and end-

user applications. These application utilize the model-driven development approach

to enable rapid and efficient application development using the framework without

writing code.

For evaluation and validation, a PMS case study of publication management

system was presented and discussed, to ensure that the validation could be performed

by following the AppGen process presented in Section 5.1.4. Also, a user study was

conducted which involved 36 professionals from industry and academia. The goals of

106

the user study were to ensure that the problem we try to solve is significant, and to

verify if we solve it right. The user study was an IRB approved by the University of

Nevada, Reno (IRB #1362116-1). The results of the user study are promising, and

the feedback from the participants contributed to identifying some future directions

of this work.

Smart-Cloud can be the basis for future work in the cloud space and Internet-

based applications. Some future directions may include the support for Big Data

management and Big Data analysis web-based projects. In addition, it could be use-

ful to enhance the framework to support applications that are not data intensive. For

example, bringing rapid application development to domains such as Artificial Intel-

ligence (AI), Virtual Reality (VR), Internet of Things (IoT), and game development.

Furthermore, enabling integration through standard interfaces can make Smart-

Cloud interoperable and integrable with other systems.

Finally, supporting other technologies, such as Angular and React, and integra-

tion with cloud tools and services such as GitHub and AWS, can also be beneficial.

107

Appendix A

User Manual

This appendix includes the user guide of Clowiz platform. It consists of a description

about Clowiz in general, followed by comprehensive information about by Clowiz

applications (apps): CodeGen, FeatureGen, and AppGen.

A.1 Introduction

Clowiz is a cloud-based platform that aims to increase the productivity of teams

working on developing software projects, and reducing the cost and time of developing

high-quality software applications.

Clowiz utilizes the model-driven development approach, where users can generate

and develop software artifacts using visual design tools without writing code. The

code generation is based on metadata information provided by the platform’s users.

� CodeGen App: An Online code generator that enables users to generate

a single artifact unit of code at a time, such as Java class, HTML page, or

MySql SQL script. This app is designed to increase the productivity of software

engineers, web developers, and database developers so that they can have their

day to day artifacts generated rapidly without writing code.

� FeatureGen App: An online end-to-end code generator, that enables full-

stack software developers to develop all the artifacts required for a fully func-

tional page. FeatureGen app follows the MVC design pattern, where it generates

the code for the view (page), model, controller, and database script.

108

� AppGen App: AppGen is an online application development app, that enables

technical and non-technical people to develop software applications without

writing code. With AppGen, users can create applications, design the artifacts,

preview a full prototype, and download the end-to-end full source code for their

projects, without writing a single line of code. With AppGen, designing appli-

cations is a straightforward process, which includes, configuring the application

modules (sub-apps), page-groups (menus), and pages (views). Designing the

pages is also as simple as configuring the fields of that page (metadata).

To evaluate Clowiz apps, or creating quick proof of concepts, users can work

in the Guest Mode without creating accounts or signing in. However, in this case,

nothing of their work will be saved.

It is highly recommended that every user login to the platform before start cre-

ating artifacts or apps, especially in the AppGen app.

The following sub-sections include the details of the applications of Clowiz.

A.2 Home

Clowiz Home page is the main entry for the platform, which can be accessed at

http://www.clowiz.com URL.

As shown in Figure A.1, the home page of Clowiz consists of links for the primary

platform’s applications (apps), which are:

� CodeGen App

� FeatureGen App

� AppGen App

IMPORTANT: As discussed in the Introduction section, it is highly recommended

that Authentication App to the platform before doing any serious development, to

http://www.clowiz.com

109

Figure A.1: Clowiz Home Page

avoid losing their work. The Guest Mode was only created to enable users to exper-

iment and to do quick proofs-of-concept on the platform, and it is not intended for

production work.

A.3 Authentication App

In the Authentication App of Clowiz, users can Sign Up, Reset Password, Log In, as

shown in Figure A.2. To access the authentication app, navigate to https://www.

clowiz.com/login.

A.3.1 Sign Up

To be able to save their work and get the full benefits of the platform, users shall

have an account in Clowiz, and Log In to the system.

� Click on Create an Account

https://www.clowiz.com/login
https://www.clowiz.com/login

110

Figure A.2: Authentication App

� Fill the required information (Email, First name, and Last name) as shown in

Figure A.3.

Figure A.3: Create an Account

� Check your Email As shown in Figure A.4, after completing the required in-

formation, an email contains the password will be delivered to the specified

111

Email.

Figure A.4: Sign Up Confirmation

A.3.2 Reset Password

If a user forgets his/her password, they can click on Forgot Password link in the

Authentication app, enter their email address, then click on the ’Next’ button to

reset their passwords, as shown in Figure A.5. If the email address already exists as a

registered account, a new password will be created and sent to the email; otherwise,

the system will show “We cannot find this Email in our records. Create an Account?”

message.

Figure A.5: Reset Password Form

A.3.3 Log In

To login to the system, in the Authentication app, the user should enter his/her email

and password, then click Login, as shown in Figure A.6.

112

Figure A.6: Login Form

A.4 CodeGen App

CodeGen is an app that generates source code artifacts for different technologies

using the model-driven development approach. To access the CodeGen app, navigate

to https://www.clowiz.com/code-generator.

TIP: The artifacts created by FeatureGen is just for ad-hoc needs. To have

the work saved and organized in a more modular way, users should consider using

AppGen App. As shown in Figure A.7, the view consists of four main components:

- The Metadata on the left side. - The Technologies section on the center top side. -

The Exporters of the selected technology. - The Generated Code in the middle center

of the view.

TIP: CodeGen does not provide a full project structure and configurations, so

users will need to include the generated artifacts into their projects manually. For

a more robust and comprehensive option, users may consider using AppGen App to

create a fully configured end-to-end applications. CodeGen automatically generates

code based on the information that the users configured in the metadata data section

in the left side of the page.

https://www.clowiz.com/code-generator

113

Figure A.7: CodeGen App Page

A.4.1 CodeGen Metadata

As shown in Figure A.8, the metadata required to generate source code in CodeGen

is quite simple.

� [Unit] name: is the name of the unit to be generated, which depends on the

selected technology. For example, if the selected exporter is Java, the unit name

will be the Class name, and if the selected exporter is MySql, then the unit name

will be the table name.

� Fields: the fields are the part of the unit to be generated. The actual meaning

of these fields depends on the selected exporter, for example, in Java classes,

this means the instance variables, while in the HTML exporters, it means the

HTML input fields and their assigned labels.

Add Field

To add new fields to the metadata, click on the New Field button, this will auto-

matically add a field to the list with the name automatically set on that field.

114

Figure A.8: CodeGen metadata

Modify Field

To change the field name, just change the value directly in the input box that contains

the current field name. In addition, a user can change the field data type, and

configures whether it is required or not.

Delete Field

To delete a field, click on the trash icon on the last column in the metadata table.

A.4.2 Fields Data Types

Every field should have a data type that will be used by the exporter to generate the

code correctly. By default the data type of the fields is text.

� Text

� Integer

� Float

� Double

115

� Boolean

� Binary

� Month

� Time

� Timestamp

� Date

� Email

� Password

� Telephone

� URL

A.4.3 Technologies

CodeGen supports different technologies that can be selected by the platform’s user.

Every technology consists of different exporters (generators), that can generate soft-

ware artifacts for the configured metadata. Currently, CodeGen supports the Java,

HTML, and SQL technologies.

Java

Java technology support in CodeGen consists of the following exporters:

Java Class Exporter This exporter generates java class based on the metadata,

where the fields in the metadata represent the instance variables in the Java class.

As shown in Figure A.9, the generated code follows the best practices of java

naming and convention. In addition, it follows the best practices of encapsulation by

restricting access to the instance variables and expose them using setters and getters.

116

Figure A.9: Java Class Exporter in CodeGen

Java Class with Lombok Exporter This exporter generates java class with Lom-

bok support based on the metadata, where the fields in the metadata represent the

instance variables in the Java class. As shown in Figure A.10, the generated code

does not include the setters and getters for the instance variables because Lombok

will generate them for free during the compilation phase.

Figure A.10: Java Class with Lombok Exporter in CodeGen

117

JPA Entity Exporter JPA Entity exporter exports Java classes including the full

annotation required by Java Persistence API, which could be used to persist objects

of this class to a relational database.

JPA Entity exporter is shown in Figure A.11.

Figure A.11: JPA Entity Exporter in CodeGen

JPA Entity with Lombok Exporter JPA with Lombok exporter exports the

entity into JPA entity with Lombok support, which can reduce the lines of code

dramatically by eliminating the need of writing setters and getters. Figure A.12

shows JPA with Lombok exporter.

JSF Managed Bean Exporter JSF Managed Bean exporter exports the entity

into annotated JSF managed bean Java class that extends JKManagedBeanWith-

OrmSupport class which is provided by the Smart-Cloud framework, which includes

all the required functionalities to enable high-quality CRUD operation in the view.

The exporter is shown in Figure A.13.

118

Figure A.12: JPA Entity with Lombok Exporter in CodeGen

Figure A.13: JSF Managed Bean Exporter in CodeGen

PrimeFaces View Only Exporter This exporter used to generate PrimeFaces

view code only. PrimeFaces is a web-based user interface widgets that enable rich

user experience for JSF based applications. As shown in Figure A.14, this exporter

does not include binding the user interface components with the backend model or

controller.

119

Figure A.14: PrimeFaces View Exporter in CodeGen

PrimeFaces with Backend Exporter PrimeFaces exporter with Backend bind-

ing includes generating PrimeFaces view and the binding code with the model and

the backend. As shown in Figure A.15.

Figure A.15: PrimeFaces with Backend Binding Exporter in CodeGen

120

HTML

The HTML technology in CodeGen includes exporters for: HTML Only, HTML with

Bootstrap Styles, and HTML full page with Bootstrap.

HTML Only Exporter In this exporter, CodeGen will generate the required input

HTML fields based on the field’s metadata data type. The HTML input tags will

be surrounded by fieldset and form tags. The HTML Only exporter is shown in

Figure A.16.

Figure A.16: HTML Only Exporter in CodeGen

HTML with Bootstrap Exporter This exporter generates a complete HTML

form with its input components and labels components attached to these input fields.

In addition, it includes the CSS styles of the Bootstrap framework on every component

as needed. HTML with Bootstrap Exporter in CodeGen shows in Figure A.17.

HTML Full Page with Bootstrap Exporter This exporter generates full HTML

page the includes:

121

Figure A.17: HTML with Bootstrap exporter

� Bootstrap framework.

� JQuery framework.

� Bootstrap theme.

� Fonts Awesome library.

� Selected Google Fonts.

� Compete HTML form for the configured metadata.

HTML Full Page with Exporter is shown in Figure A.18.

SQL

The SQL technology section consists of exporters that generate scripts for various

relational database engines such as MySql, H2, SQL Server, PostgreSQL, and Oracle.

122

Figure A.18: HTML Full Page with Bootstrap Exporter in CodeGen

H2 Database Exporter This exporter will generate the script that creates a

database table for H2 database, which is a lightweight database engine that is heavily

used in proofs-of-concept, unit testing, and integration testing, as shown in Fig-

ure A.19.

Figure A.19: H2 Database Exporter in CodeGen

123

MySQL Database Exporter This exporter generates a create table statement

for the configured metadata with the specific syntax of MySQL database. MySQL

exporter is shown in Figure A.20.

Figure A.20: MySQL Exporter in CodeGen

Microsoft Database Exporter The exporter is generating the SQL script for

Microsoft SQL server database. It generates full create table statement, as shown in

Figure A.21.

Figure A.21: Microsoft SQL Server Exporter in CodeGen

Oracle Database Exporter Oracle database exporter used to generate the script

that is compatible with Oracle database. It generates full create table statement, as

shown in Figure A.22.

124

Figure A.22: Oracle Exporter in CodeGen

A.5 FeatureGen App

FeatureGen is one of the core apps in Clowiz platform that generates end-to-end arti-

facts for a page. It can be accessed at https://www.clowiz.com/feature-generator.

FeatureGen does not provide a full project structure and configurations, so users

will need to include the generated artifacts into their projects manually. For a more

robust and comprehensive option, users may consider using AppGen App to create

a fully configured end-to-end applications. The usage of FeatureGen is as simple

as configuring that fields (metadata) that compose the page (view), then a realtime

preview for the page is shown in the middle of the page, and the full generated source

code artifacts are shown in the bottom of the view.

As shown in Figure A.23, the FeatureGen page consists of the following sections:

� Metadata.

� Technology Stack.

� Page Preview.

� Generated code.

https://www.clowiz.com/feature-generator

125

Figure A.23: FeatureGen Page

A.5.1 FeatureGen Metadata

As shown in Figure A.24, the metadata required to generate source code in Feature-

Gen is quite simple.

� Page name: is the name of the page to be generated.

� UI Columns: is the number of columns to render the user interface. This

number should consider the labels as well. For example, if the page only has

one field, and the desired output is to have the label next to the input field

on the same row, then the number of columns should be 2, but if the desired

output is to have the label above the field, then the value should be one.

� Fields: the input fields of the desired page.

Add Field

To add new fields to the metadata, click on the New Field button, this will auto-

matically add a field to the list with the name automatically set on that field.

126

Figure A.24: FeatureGen Metadata

Modify Field

To change the field name, just change the value directly in the input box that contains

the current field name. In addition, a user can change the field data type, and

configures whether it is required or not.

Delete Field

To delete a field, click on the trash icon on the last column in the metadata table.

A.5.2 Fields Data Types

Every field should have a data type that will be used by the exporter to generate the

code correctly. By default the data type of the fields is text.

A.5.3 FeatureGen Technology

The technology stack section in the FeatureGen is used to determine the exporters

(generators) that will be used to generate the final artifacts.

127

The currently supported technology stacks in Clowiz platform are:

� JavaEE Web: JSF, PrimeFaces, JPA with Hibernate.

� Spring Framework[In Progress]: SpringBoot, SpringMVC, SpringData, and

JPA/Hibernate.

A.5.4 Feature Page Preview

This section will enable the users to view the exact final pages prototype that will be

generated by FeatureGen, with the default style provided by Clowiz.

The preview section is intended to be a prototype preview for the end users, and

does not provide a functional user-interface.

A.5.5 FeatureGen Generated Code

This section shows the full artifacts generated for this page. Since the FeatureGen

app follows the MVC design pattern, the generated code will include the view (page),

model, controller, and the database script which is required for the relational database

engine configured in the technology stack.

The artifacts created by FeatureGen is just for ad-hoc needs. To have the work

saved and organized in a more modular way, users should consider using AppGen

App.

A.6 AppGen App

The AppGen app of Clowiz platform is a new innovative way of building cloud-

based software applications. It enables the model-driven approach, where users use

graphical modeling tools to create and develop software applications. AppGen can

be accessed at: https://www.clowiz.com/app-manager.

� App Manager.

� App Designer

https://www.clowiz.com/app-manager

128

� Page Designer

A.6.1 App Manager

The App Manager is the main entry of the AppGen. As shown in Figure A.25, the

App Manager consists of the following:

� Create New Software Applications: this action is used to create a new

application. The new application will be shown in the User’s Applications

area. The status of the application will be Development Status as discussed

in AppGen Application Status. The application will be named Application X

where X represents the number of current applications +1 of the user.

� User’s applications: this represents the list of the current applications that

were created by the user.

Note: If the user works in the guest mode, the list shows the applications that

marked as Allow Public Access by other users. Any applications created by the

user in this mode will be discarded when the user navigates to the other views.

The applications in the AppGen will have an assigned status that will be shown

next to or under the application name in the AppGen home page.

� Development Status: indicates that the project is still under continuous

development.

� Deployment Status: indicates that the applications are deployed on the cloud

using AppDeployer App.

� Archiving Status: indicates that the project is archived and is not under

active development.

The available functionalities for every application depend on the status. In gen-

eral, users can Design, Preview, Download Source Code, Deploy, Archive, UnArvice,

or Delete projects.

129

Figure A.25: Clowiz AppGen Home Page

Design Application

This action launches the App Designer for designing the high-level artifacts of the

app.

Preview Application

This action launches a complete none-functional prototype of the application. The

prototype includes the home page, the menu-bar, and all the pages design.

Download Source Code

This downloads a complete, end-to-end, web-based, software project source-code

package. The package will be downloaded as a compressed package.

� Main: a launcher class that enables running the application without the need

of web server.

� Project Configuration: a Maven POM file, which is a standard project con-

figuration for the Java technology, so that it can be imported with any Java

130

IDE.

� Pages: a generated JSF view code for all the pages in the application.

� Models: a generated JPA entities code for all the pages.

� Controllers: a generated JSF managed bean classes which act as controllers

for the views.

� Theme: a complete theme of the web applications based on PrimFaces, Boot-

Strap, Fonts-Awesome, and others.

� Template: a Facelet template, which is based on the standard template engine

provided by the JSF framework. The views extensively use PrimeFaces widget

libraries.

� Logging Configurations: configuration for SLF4J logger.

� Configuration: a configuration file for the database.

NOTE: The downloaded application does not require a separate database or a

web server installation, embedded server and database engines are provided out of the

box. TIP: The package utilizes some components from the Smart-Cloud framework,

so compatibility with cloud providers is provided out of the box. Currently, the

framework supports Pivotal Cloud Foundry (PCF) environment.

Deploy App

This action launches the application to the cloud using AppDeployer App.

Archive App

This action changes the status of the app to Archiving status.

UnArchive App

This action changes the status of the app to Development status.

131

Delete App

This action deletes the app permanently. This action is only available in the archive

status.

A.6.2 App Designer

The App Designer is one of the pages of AppGen app of Clowiz platform; it enables

users to configure the required high-level attributes of their applications using cloud-

based design tool, as shown in in Figure A.26.

� Application name: which is an input text field that allows users to change

the application name.

� Actions: includes the actions that users can do in this page, which includes:

Save Changes, Save Changes and Back, or Ignore Changes and Back.

� Advanced Mode: a checkbox that enables the advanced features which in-

cludes:

– The Multi-Module support: where users can divide the application

into subsystems (modules).

– Advanced Attributes: which includes the advanced attributes of the

currently selected application.

� Page-Groups: this section includes the page groups (menus) of the applica-

tion. Pages group will be rendered as the main menu in the final generated

code.

� Pages: the page component represents the page that will be generated under

this page group (menu). This page will be rendered as a menu item under the

page group.

132

Figure A.26: AppGen App Designer

Create Page Group (Menu)

To create a page group, users need to click on the New Pages-Group button in the

center of the page. This will create a new page group with a name automatically set.

The group name can be changed by clicking on the header of the group and edit the

name. This will make this page group appears as menu-bar inside the application

menu bar.

Create new Page

To create a new page, users should click on a New Page button inside any page group;

this will create a new page inside that group. This will add a menu item under the

page-group menu in the final application menu bar.

Clicking on any page will open the Page Designer view for that page, which is

discussed in the following section.

133

A.6.3 Page Designer

The page designer view, which is shown in Figure A.27, is the view that enables users

to design the contents of any page without writing code. To design a page can be

opened by clicking on any page in the App Designer.

� Metadata: this section includes the metadata required for designing the page.

� Page Preview: which shows the realtime preview for the page. The preview

includes two parts, Form Preview and Data-table Preview.

� Generated Code: which is a checkbox the enables user to preview the code

that will be generated for this page.

Figure A.27: AppGen Page Designer

The metadata section is the part which determines how the code will be generated

for this page. The metadata includes page-level metadata, and the fields metadata.

� Page name: which will be used in the menu item, in the page title, and all

the other artifacts names.

134

� UI Columns: which determines the number of user interface columns for the

generated form.

The fields metadata include the configurations of every field individually.

For every field, there are core properties that are shown directly on the front

of the Page Designer, and there are more advanced metadata that can be shown by

clicking on the advanced edit icon in the field row in the fields metadata table.

Table A.1 shows the list of the field attributes with their description.

When the user is done with modifying the page, he/she can click on the Back

button to get back to the App Designer.

135

Table A.1: Fields metadata attributes
Property Name Description

1 Name Field name
2 Data Type Field datatype
3 Required Required or optional
4 Enabled Enabled or disabled in the user interface
5 Updatable Updatable
6 Main field Main field of the entity generated for this page (e.g., in

Java, this will be part of the toString() method). This
can be helpful of this page is used as a reference in other
pages

7 List of values Comma separated values that will be rendered as a
multi-choice select box, for example, ”A,B,C”

8 Default value The default value for this field
9 Visible Determines whether to show this field on the user inter-

face or not
10 Show in Datatable Determines whether to show in the generated datatable

or not
11 Max length The maximum length for this field
12 Width The width of this field in the user interface
13 Height The height of this field in the user interface
14 Background color The background color of this field. Any valid CSS color

value is accepted
15 Color The font color of this field. Any valid CSS color value

is accepted
16 Linked with Page Determines whether this field is linked with other pages

in a relation (e.g., foreign key relationship)
17 Reference Page If the Linked with Page checkbox is checked, this will

determine the page that this field is related with
18 Reference Field If the Linked with Page checkbox is checked, this will

determine the field in the selected page, that this field
is related with

136

Appendix B

Excerpts from Source Code

This appendix include excerpts from the source code of both, the framework, and

PMS case study. Table B.1 shows the summary of the included source code.

Table B.1: Source code excerpts summary

File Description

JavaClassExporter The Java class that exports EntityMetadata
objects into Java Class [Listing B.1].

HtmlExporter This Java class exports an EntityMetadata
object into HTML page [Listing B.2].

JKWebApplicationExporter This Java class exports an ApplicatioMeta-
data and its internal metadata data struc-
ture into full end-to-end applications [List-
ing B.3].

Main This class is generate by the framework, and
it is used to launch PMS system [Listing B.4].

Author Generated model code for the Author meta-
data [Listing B.5].

MB Author Generated controller code for the Author
metadata [Listing B.6].

index.xhtml Generated view code for the Author
page [Listing B.7].

137

package com . jk . expor t e r s . commons . java ;

import com . jk . expor t e r s . core . AbstractExporter ;
import com . jk . expor t e r s . core . Exporter ;
import com . jk . expor t e r s . core . Exporter . Layer ;
import com . jk . expor t e r s . core . Exporter . Technology ;
import com . jk . metadata . core . EntityMetadata ;
import com . jk . metadata . core . FieldMetadata ;
import com . jk . u t i l . JK ;
import com . jk . u t i l . java . JKCompileUtil ;

@Exporter (name = ”Java Class ” ,
l ay e r = Layer .MODEL,
technology = Technology .JAVA,
d e s c r i p t i o n = ”Normal Java Class (POJO) ” ,
language = ” java ” ,
unitName=” Class ”)

pub l i c c l a s s JavaClassExporter extends AbstractExporter {

@Override
pub l i c S t r ing export (EntityMetadata en t i t y) {

r e s e t () ;
// package
add (”package %s ; ” , getPackageName () . concat (” . models ”)) ;
l i n e () ;
// imports
addImportSection (en t i t y) ;

// annotat ions
// c l a s s l i n e
add (” pub l i c c l a s s %s{” , en t i t y . getCamelCaseWithCapFirst ()) ;
l i n e () ;
// in s tance v a r i a b l e s
f o r (FieldMetadata f i e l d : en t i t y . g e t A l l F i e l d s ()) {

add (” p r i va t e %s %s ; ” , f i e l d . getJavaType () . getSimpleName () , f i e l d .
getCamelCaseWithSmallFirst ()) ;
}

// s e t t e r s and g e t t e r s
f o r (FieldMetadata f i e l d : en t i t y . g e t A l l F i e l d s ()) {

l i n e () ;
S t r ing f i e l dWi thSma l lF i r s t = f i e l d . getCamelCaseWithSmallFirst () ;
S t r ing f i e ldWithCapsFis t = f i e l d . getCamelCaseWithCapFirst () ;
S t r ing javaType = f i e l d . getJavaType () . getSimpleName () ;
add (” pub l i c void s e t%s(%s %s){” , f i e ldWithCapsFist , javaType , f i e l dWi thSma l lF i r s t) ;
add (” t h i s .%s=%s ; ” , f i e ldWithSmal lF i r s t , f i e l dWi thSma l lF i r s t) ;
add (” }”) ;
l i n e () ;
add (” pub l i c %s get%s () {” , javaType , f i e ldWithCapsFis t) ;
add (” return t h i s .%s ; ” , f i e l dWi thSma l lF i r s t) ;
add (” }”) ;

}
add (”}”) ;
re turn ge tResu l t s () ;

}

protec ted void addImportSection (EntityMetadata en t i t y) {
f o r (FieldMetadata f i e l d : en t i t y . g e t A l l F i e l d s ()) {

i f (! f i e l d . getJavaType () . getName () . s tartsWith (” java . lang ”) && ! f i e l d . getJavaType () . getName ()
. s tartsWith (” [B”)) {

add (” import %s ; ” , f i e l d . getJavaType () . getName ()) ;
}

}
}

@Override
pub l i c S t r ing exportAndTest (EntityMetadata en t i t y) {

St r ing export = export (en t i t y) ;
i f (JKCompileUtil . compi leJavaClass (export)) {

re turn export ;
}
JK. e r r o r (” Fa i l ed to export en t i t y %s with code %s ” , ent i ty , export) ;
r e turn n u l l ;

}
}

Listing B.1: Source code of JavaClassExporter.java

138

package com . jk . expor t e r s . commons . html ;

import java . s q l . Types ;
import java . u t i l . L i s t ;

import com . jk . expor t e r s . core . AbstractExporter ;
import com . jk . expor t e r s . core . Exporter ;
import com . jk . expor t e r s . core . Exporter . Layer ;
import com . jk . expor t e r s . core . Exporter . Technology ;
import com . jk . metadata . core . EntityMetadata ;
import com . jk . metadata . core . FieldMetadata ;
import com . jk . u t i l . JKIOUtil ;
import com . jk . u t i l . datatypes . JKType ;

@Exporter (
name = ”HTML Only” ,
l ay e r = Layer .FONTEND,
technology = Technology .WEB,
d e s c r i p t i o n = ”HTML 5” ,
language = ”html” ,
unitName = ”Page”)

pub l i c c l a s s HtmlExporter extends AbstractExporter {

@Override
pub l i c S t r ing export (EntityMetadata en t i t y) {

r e s e t () ;
add (”<form method=’ post ’ a c t i on = ’ ’ id =’frm%s ’/>” , en t i t y . getName ()) ;
add (” < f i e l d s e t >”) ;
add (” <legend>%s Form</legend>” , en t i t y . getDisplayName ()) ;
{

add (” <input type=’hidden ’ name=’%s ’ />” , en t i t y . g e t IdF i e l d () .
getLowerCaseNameWithUnderScores ()) ;

L ist<FieldMetadata> f i e l d L i s t = en t i t y . g e t F i e l d s () ;
f o r (FieldMetadata f i e ldMetadata : f i e l d L i s t) {

St r ing htmlName = f ie ldMetadata . getCamelCaseWithSmallFirst () ;
add (” ”) ;
add (” < l a b e l f o r=’%s ’ >%s</labe l>” , htmlName , f i e ldMetadata . getDisplayName ()) ;
add (” <input type=’%s ’ name=’%s ’ id=’%s ’ />” , getFieldType (f i e ldMetadata) , htmlName ,

htmlName) ;
add (” ”) ;

}
add (” </ f i e l d s e t >”) ;

}
{

add (” <div>”) ;
add (” <input type=’submit ’ value =’submit ’ />”) ;
add (” </div>”) ;

}
add (” </div>”) ;
add (”</form>”) ;
i f (i s Inc ludeTemplate ()) {

re turn compileTemplate (ge tResu l t s ()) ;
} e l s e {

re turn ge tResu l t s () ;
}

}

protec ted St r ing getFie ldType (FieldMetadata f i e ldMetadata) {
i n t type = f ie ldMetadata . getType () . getCode () ;
switch (type) {
case JKType .EMAIL:

return ” emai l ” ;
case JKType .URL:

return ” u r l ” ;
case JKType .MONTH:

return ”month” ;
case JKType .TELEPHONE:

return ” t e l ” ;
case Types . BIT :
case Types .BOOLEAN:

return ”checkbox” ;
case Types .TINYINT:
case Types .INTEGER:
case Types .NUMERIC:
case Types .DOUBLE:
case Types .FLOAT:
case Types .DECIMAL:

return ”number” ;
case JKType .PASSWORD:

return ”password” ;
case Types .BINARY:
case Types .BLOB:

return ” f i l e ” ;
case Types .DATE:

return ” date ” ;
case Types .TIME:

return ” time” ;
case JKType .JAVA CLASS :
case JKType .PROPERTIES:

139

case Types .VARCHAR:
case Types .CLOB:
case Types .NCLOB:
case Types .LONGVARCHAR:
case Types .CHAR:
case Types .VARBINARY:
case Types .LONGVARBINARY:
d e f a u l t :

r e turn ” text ” ;
}

}

pr i va t e St r ing compileTemplate (St r ing sourceCode) {
St r ing f i l e = JKIOUtil . r e adF i l e (”/ expor t e r s / templates / bootstap−html−template . html”) ;
re turn f i l e . r ep l a c e (”${pageContents}” , sourceCode) ;

}

pub l i c s t a t i c void main (St r ing [] a rgs) {
HtmlExporter e=new HtmlExporter () ;
System . out . p r i n t l n (e . getName ()) ;

}

@Override
pub l i c S t r ing exportAndTest (EntityMetadata en t i t y) {

re turn export (en t i t y) ;
}

}

Listing B.2: Source code of HtmlExporter.java

140

package com . jk . expor t e r s . jkweb ;

import java . i o . F i l e ;
import java . i o . InputStream ;
import java . n io . f i l e . F i l e s ;
import java . n io . f i l e . Path ;
import java . u t i l . L i s t ;

import com . jk . expor t e r s . commons . java . JpaEntityExporter ;
import com . jk . expor t e r s . commons . java . JpaEntityWithLombokExporter ;
import com . jk . expor t e r s . commons . s q l . MySqlExporter ;
import com . jk . expor t e r s . commons . s q l . SqlExporter ;
import com . jk . expor t e r s . core . Appl i cat ionExporter ;
import com . jk . expor t e r s . core . ExportManager ;
import com . jk . expor t e r s . core . MetaDataExporter ;
import com . jk . expor t e r s . core . TechnologyStack ;
import com . jk . metadata . core . Appl icationMetadata ;
import com . jk . metadata . core . EntityMetadata ;
import com . jk . metadata . core . ModuleMetadata ;
import com . jk . metadata . core . ViewGroupMetadata ;
import com . jk . metadata . core . ViewMetadata ;
import com . jk . metadata . u t i l . NameConvertor ;
import com . jk . u t i l . JK ;
import com . jk . u t i l . JKIOUtil ;
import com . jk . u t i l . JKStr ingBuf fer ;
import com . jk . u t i l . l ogg ing . JKLogger ;
import com . jk . u t i l . l ogg ing . JKLoggerFactory ;
import com . jk . u t i l . z ip . JKZipUt i l i ty ;

@TechnologyStack (
name = ” JavaStack ” ,
expor t e r s = {

ViewExporter . c l a s s ,
Cont ro l l e rExpor te r . c l a s s ,
JpaEntityWithLombokExporter . c l a s s ,
MySqlExporter . c l a s s })

pub l i c c l a s s JKWebApplicationExporter implements Appl i cat ionExporter {
pr i va t e s t a t i c f i n a l S t r ing PROJECT NAME = ”${ jk . p r o j e c t . name}” ;

s t a t i c JKLogger l ogge r = JKLoggerFactory . getLogger (JKWebApplicationExporter . c l a s s) ;

p r i va t e Path rootFo lder ;
p r i va t e ApplicationMetadata app ;
p r i va t e F i l e webAppFolder ;
p r i va t e F i l e javaFolder ;
p r i va t e F i l e r e sourceFo lde r ;

p r i va t e F i l e templatesFo lder ;

p r i va t e St r ing urlFormat ;

p r i va t e F i l e incFo lder ;

// //
@Override
pub l i c F i l e export (ApplicationMetadata app) {

l o gg e r . debug (” Exporting a p p l i c a t i o n s ({}) ” , app . getName ()) ;
t h i s . app = app ;
t ry {

InputStream input = JK. getInputStream (”/ jk−web−template . z ip ”) ;
rootFo lder = JKZipUt i l i ty . unzip (input) ;
webAppFolder = new F i l e (rootFo lder . t o F i l e () . getAbsolutePath () + ”/ s r c /main/webapp”) ;
javaFolder = new F i l e (rootFo lder . t o F i l e () . getAbsolutePath () + ”/ s r c /main/ java ”) ;
r e sourceFo lde r = new F i l e (rootFo lder . t o F i l e () . getAbsolutePath () + ”/ s r c /main/ r e s ou r c e s ”) ;
templatesFo lder = new F i l e (rootFo lder . t o F i l e () . getAbsolutePath () + ”/ s r c /main/webapp/WEB−INF

/ templates ”) ;
incFo lde r = new F i l e (rootFo lder . t o F i l e () . getAbsolutePath () + ”/ s r c /main/webapp/WEB−INF/

templates / inc ”) ;

L ist<ModuleMetadata> modules = app . getModules () ;
l o gge r . debug (” Proces s ing a p p l i c a t i o n a r t i f a c t s . . . ”) ;
p r o c e s s A p p l i a c t i o n A r t i f a c t s (app) ;
f o r (ModuleMetadata moduleMetadata : modules) {

l o gg e r . debug (” Proces s ing module ({}) ” , moduleMetadata . getName ()) ;
p roce s sModu leArt i f ac t s (moduleMetadata) ;
L ist<ViewGroupMetadata> viewGroups = moduleMetadata . getViewGroups () ;
f o r (ViewGroupMetadata group : viewGroups) {

l o gg e r . debug (” Process group metadata ({}) ” , group . getName ()) ;
processViewGroupArt i facts (group) ;
List<ViewMetadata> i tems = group . getViews () ;
f o r (ViewMetadata view : items) {

l o gg e r . debug (” Process view a r t i f a c t s ({}) ” , view . getName ()) ;
p roce s sV i ewArt i f a c t s (view) ;

}
}

}
F i l e f i n a l Z i p F i l e = new F i l e (JKIOUtil . createTempDirectory () , getFinalAppName (app) + ” . z ip ”) ;
l o gge r . debug (” Fina l f i l e name ({}) ” , f i n a l Z i p F i l e . getAbsolutePath ()) ;

141

JKZipUt i l i ty . z i pD i r e c to ry (rootFo lder . t o F i l e () , f i n a l Z i p F i l e) ;
f i n a l Z i p F i l e . deleteOnExit () ;
r e turn f i n a l Z i p F i l e ;

} catch (Exception e) {
JK. throww (e) ;
re turn n u l l ;

}
}

// //
@Override
pub l i c void p r o c e s s A p p l i a c t i o n A r t i f a c t s (ApplicationMetadata metadata) {

// pom f i l e
{

F i l e f i l e = new F i l e (rootFo lder . t o F i l e () , ”pom. xml”) ;
S t r ing pomFile = JKIOUtil . r e adF i l e (f i l e) ;
pomFile = pomFile . r ep l a c e (” jk−web−template ” , getFinalAppName (metadata)) ;
JKIOUtil . wr i teBytesToFi le (pomFile . getBytes () , f i l e . getAbsolutePath ()) ;

}
{

F i l e f i l e = new F i l e (webAppFolder , ” index . xhtml”) ;
S t r ing c o n f i g F i l e = JKIOUtil . r e adF i l e (f i l e) ;
c o n f i g F i l e = c o n f i g F i l e . r ep l a c e (”Your Appl i cat ion ” , getAppTit le (metadata)) ;
JKIOUtil . wr i teBytesToFi le (c o n f i g F i l e . getBytes () , f i l e . getAbsolutePath ()) ;

}{
F i l e f i l e = new F i l e (incFolder , ”html−head . xhtml”) ;
S t r ing headerF i l e = JKIOUtil . r e adF i l e (f i l e) ;
headerF i l e = headerF i l e . r ep l a c e (”Your Pro j ec t T i t l e ” , getAppTit le (metadata)) ;
JKIOUtil . wr i teBytesToFi le (headerF i l e . getBytes () , f i l e . getAbsolutePath ()) ;

}
// menu f i l e
{

St r ing indexF i l e = createMenuFileContents (metadata) ;
JKIOUtil . writeDataToFile (i ndexF i l e . getBytes () , new F i l e (incFolder , ”menu . xhtml”)) ;

}
}

// //
@Override
pub l i c void proce s sModu leArt i f ac t s (ModuleMetadata moduleMetadata) {

}

// //
@Override
pub l i c void processViewGroupArt i facts (ViewGroupMetadata group) {

}

// //
@Override
pub l i c void proce s sV i ewArt i f a c t s (ViewMetadata view) {

processViewWebArti facts (view) ;
proces sViewJavaAt i fact s (view) ;

}

// //
protec ted void processViewJavaAt i fact s (ViewMetadata view) {

l o gg e r . debug (” proces sViewJavaAt i fact s ({}) ” , view . getName ()) ;
i f (view . getMainEntityMetadata () == nu l l) {

re turn ;
}

{
Contro l l e rExpor te r expor te r = new Contro l l e rExpor te r () ;
S t r ing packageName = ”com . app . c o n t r o l l e r s ” ;
expor te r . setPackageName (packageName) ;
F i l e packageDir = getPackageDir (javaFolder , packageName) ;
S t r ing export = exporte r . export (view . getMainEntityMetadata ()) ;
F i l e j a v aF i l e = new F i l e (packageDir , ”MB ” + view . getMainEntityMetadata () .

getCamelCaseWithCapFirst () + ” . java ”) ;
JKIOUtil . writeDataToFile (export , j a v a F i l e) ;

}
{

JpaEntityExporter expor te r = new JpaEntityExporter () ;
S t r ing packageName = ”com . app . models ” ;
expor te r . setPackageName (packageName) ;
F i l e packageDir = getPackageDir (javaFolder , packageName) ;
S t r ing export = exporte r . export (view . getMainEntityMetadata ()) ;
F i l e j a v aF i l e = new F i l e (packageDir , view . getMainEntityMetadata () . getCamelCaseWithCapFirst ()

+ ” . java ”) ;
JKIOUtil . writeDataToFile (export , j a v a F i l e) ;

}
}

/**
*

* @param root
* @param packageName
* @return

142

*/
pub l i c s t a t i c F i l e getPackageDir (F i l e root , S t r ing packageName) {

i f (packageName == n u l l | | packageName . trim () . l ength () == 0) {
re turn root ;

}
packageName = NameConvertor . convertToPackageName (packageName) ;
S t r ing packageDirName = packageName . r ep l a c e (” . ” , JK.FILE SEPRATOR) ;
F i l e f i l e = new F i l e (root , packageDirName) ;
i f (! f i l e . e x i s t s ()) {

f i l e . mkdirs () ;
}
re turn f i l e ;

}

// //
protec ted void processViewWebArti facts (ViewMetadata view) {

St r ing path = getPagePath (view) ;
l o gge r . t r a c e (” Proces s ing page ({}) at path ({}) ” , view . getName () , path) ;

F i l e pageFolder = new F i l e (webAppFolder , path) ;
t ry {

Path d i r = F i l e s . c r e a t e D i r e c t o r i e s (pageFolder . toPath ()) ;
F i l e xhtml = new F i l e (d i r . t o F i l e () , ” index . xhtml”) ;
F i l e c s s = new F i l e (d i r . t o F i l e () , ”page . c s s ”) ;
F i l e j s = new F i l e (d i r . t o F i l e () , ”page . c s s ”) ;

l o gge r . t r a c e (”View a r t i f a c t s are : ({}) , xhtml ({}) , c s s ({}) , j s ({}) ” , path , xhtml . getPath
() , c s s . getPath () , j s . getPath ()) ;

S t r ing pageFu l lT i t l e = view . ge tFu l lQua l i f i edPath () ;
l o gge r . t r a c e (”Page f i l e t i t l e ({}) ” , pageFu l lT i t l e) ;
S t r ing xhtmlContents = createViewContents (view , t rue) ;

l o gge r . debug (”Xhtml contents ({}) ” , xhtmlContents) ;
JKIOUtil . writeDataToFile (xhtmlContents , xhtml) ;
JKIOUtil . writeDataToFile (”/* CSS f i l e f o r t h i s index page*/” , c s s) ;
JKIOUtil . writeDataToFile (”//Java s c r i p t f i l e f o r t h i s index page” , j s) ;

} catch (Exception e) {
JK. throww (e) ;

}

}

// //
pub l i c S t r ing createViewContents (ViewMetadata view , boolean includeTemplate) {

EntityMetadata mainEntityMetadata = view . getMainEntityMetadata () ;
i f (mainEntityMetadata != n u l l) {

ViewExporter expor te r = new ViewExporter () ;
expor te r . set Inc ludeTemplate (includeTemplate) ;
r e turn exporte r . export (mainEntityMetadata) ;

}
re turn c rea teFace t l e tPage (”View contents goes here ” + view . getName () , view . getName () ,
includeTemplate) ;

}

// //
pub l i c S t r ing createMenuFileContents (ApplicationMetadata app) {

St r ing menuContents = createTabMenu (app) ; // createMegaMenu (app) ;
re turn c rea teFace t l e tPage (menuContents , nu l l , f a l s e) ;

}

// //
protec ted St r ing c r ea teFace t l e tPage (St r ing contents , S t r ing t i t l e , boolean includeTemplate) {

JKStr ingBuf fer buf = new JKStr ingBuf fer () ;
buf . add (”<!DOCTYPE html>”) ;
buf . add (”<html xmlns=’http ://www. w3 . org /1999/ xhtml ’ xmlns : h=’http :// java . sun . com/ j s f /html ’
xmlns : p=’http :// pr ime faces . org / ui ’ xmlns : u i =’http :// xmlns . j cp . org / j s f / f a c e l e t s ’ ”) ;

buf . add (”xmlns : c=’http :// xmlns . j cp . org / j sp / j s t l / core ’ xmlns : f =’http :// xmlns . j cp . org / j s f / core ’>
”) ;
buf . add (”<ui : composit ion %s>” , includeTemplate ? ” template =’/WEB−INF/ templates / d e f au l t . xhtml ’ ”

: ””) ;
i f (includeTemplate) {

i f (t i t l e != nu l l) {
buf . add (”<ui : d e f i n e name=’page−t i t l e ’>%s</ui : de f ine>” , t i t l e) ;

}
buf . add (”<ui : d e f i n e name=’ contents ’>”) ;

}
buf . append (contents) ;
i f (includeTemplate) {

buf . add (”</ui : de f ine>”) ;
}
buf . add (”</ui : composit ion>”) ;
buf . add (”</html>”) ;
re turn buf . g e tResu l t s () ;

}

// //
pr i va t e St r ing createTabMenu (ApplicationMetadata app) {

JKStr ingBuf fer buf = new JKStr ingBuf fer () ;
L ist<ModuleMetadata> modules = app . getModules () ;

143

boolean multiModule = modules . s i z e () > 1 ;

buf . add (”<h : form >”) ;
buf . add (”<p : autoUpdate/>”) ;
i f (multiModule)

buf . add (”<p : tabView s t y l e =’margin : auto ’>”) ;

f o r (ModuleMetadata m : modules) {
i f (multiModule)

buf . add (” <p : tab t i t l e =’%s ’ i con =’ fa %s ’>” , m. getName () , m. get Icon () == nu l l ? ” jk−i con ”
: m. get Icon ()) ;

L ist<ViewGroupMetadata> groups = m. getViewGroups () ;
buf . add (”<p : menubar>”) ;
buf . add (”<p : menuitem value =’Home ’ u r l = ’/ ’ i con =’ fa fa−home ’ />”) ;
f o r (ViewGroupMetadata group : groups) {

buf . add (”<p : submenu l a b e l=’%s ’ i con =’ fa %s ’>” , group . getName () , group . get Icon () == n u l l ?
” jk−i con ” : group . get Icon ()) ;

L ist<ViewMetadata> views = group . getViews () ;
f o r (ViewMetadata view : views) {

St r ing u r l = getPageAction (view) ;
buf . add (”<p : menuitem value=’%s ’ u r l=’%s ’ />” , view . getName () , u r l) ;

}
buf . add (”</p : submenu>”) ;

}
buf . add (”</p : menubar>”) ;
i f (multiModule)

buf . add (”</p : tab>”) ;
}
i f (multiModule)

buf . add (”</p : tabView>”) ;
buf . add (”</h : form>”) ;
re turn buf . g e tResu l t s () ;

}

// //
pr i va t e St r ing createMegaMenu (ApplicationMetadata app) {

JKStr ingBuf fer buf = new JKStr ingBuf fer () ;
buf . add (”<p : megaMenu s t y l e =’margin−top :20 px’>”) ;

L ist<ModuleMetadata> modules = app . getModules () ;
f o r (ModuleMetadata m : modules) {

buf . add (” <p : submenu l a b e l=’%s ’ i con =’ fa %s ’>” , m. getName () , m. get Icon ()) ;
L ist<ViewGroupMetadata> groups = m. getViewGroups () ;
f o r (ViewGroupMetadata group : groups) {

buf . add (” <p : column>”) ;
buf . add (” <p : submenu l a b e l=’%s ’ i con =’ fa %s ’>” , group . getName () , m. get Icon ()) ;
L ist<ViewMetadata> views = group . getViews () ;
f o r (ViewMetadata view : views) {

St r ing u r l = getPageAction (view) ;
buf . add (”<p : menuitem value=’%s ’ u r l=’%s ’ ajax =’ f a l s e ’ />” , view . getName () , ur l ,

view . get Icon () == n u l l ? ” jk−i con ” : view . get Icon ()) ;
}
buf . add (” </p : submenu>”) ;
buf . add (” </p : column>”) ;

}
buf . add (” </p : submenu>”) ;

}
buf . add (”</p : megaMenu>”) ;
re turn buf . g e tResu l t s () ;

}

// //
protec ted St r ing getAppTitle (ApplicationMetadata metadata) {

re turn NameConvertor . convertToTit le (metadata . getName ()) ;
}

// //
protec ted St r ing getFinalAppName (ApplicationMetadata metadata) {

re turn NameConvertor . convertToLowerWithDashed (metadata . getName ()) ;
}

// //
protec ted St r ing getPageAction (ViewMetadata view) {

i f (urlFormat == n u l l) {
re turn ”#{r eques t . contextPath}” . concat (getPagePath (view)) ;

}
re turn St r ing . format (urlFormat , view . getFul lPath ()) ;

}

// //
protec ted St r ing getPagePath (ViewMetadata view) {

St r i ngBu f f e r b = new St r i ngBu f f e r () ;
S t r ing moduleName = view . getParentViewGroup () . getParentModule () . getName () ;
S t r ing menuName = view . getParentViewGroup () . getName () ;

b . append (”/ pages /”) ;
i f (app . getModulesCount () > 1)

b . append (NameConvertor . convertToLowerWithDashed (moduleName)) . append (”/”) ;

144

b . append (NameConvertor . convertToLowerWithDashed (menuName)) . append (”/”) ;
b . append (NameConvertor . convertToLowerWithDashed (view . getName ())) ;

r e turn b . t oS t r ing () ;
}

// //
pub l i c void setUrlFormat (St r ing urlFormat) {

t h i s . urlFormat = urlFormat ;
}

// //
pub l i c s t a t i c void main (St r ing [] a rgs) {

List<Class<MetaDataExporter>> expor t e r s2 = ExportManager . g e t In s tance () . getExporters () ;
f o r (Class<MetaDataExporter> c l a s s 1 : expor t e r s2) {

JK. p r in t (c l a s s 1) ;
}

List<Class<Appl icat ionExporter>> techno logyStacks = ExportManager . g e t In s tance () .
getTechnologyStacks () ;

f o r (Class<Appl icat ionExporter> c l a s s 1 : techno logyStacks) {
JK. p r in t (c l a s s 1) ;

}
}

// //
pub l i c Path getRootFolder () {

re turn rootFo lder ;
}

}

Listing B.3: Source code of JKWebApplicationExporter.java

package com . app ;

import com . jk . web . embedded . JKWebApplication ;

pub l i c c l a s s Main {
pub l i c s t a t i c void main (St r ing [] a rgs) {

JKWebApplication . run (9632) ;
}

}

Listing B.4: Source code of PMS Main.java

145

package com . app . models ;

import javax . p e r s i s t e n c e . * ;
@Entity
@Table (name=” author ”)
pub l i c c l a s s Author{

@Id
@Column(name=” id ”)
@GeneratedValue (s t r a t egy = GenerationType . IDENTITY)
In t eg e r id ;

@Column(name=” f i r s t name ” , n u l l a b l e=f a l s e)
St r ing f i rstName ;

@Column(name=” last name ” , n u l l a b l e=f a l s e)
St r ing lastName ;

@Column(name=” emai l ” , n u l l a b l e=f a l s e)
St r ing emai l ;

@OneToOne
@JoinColumn (name=” u n i v e r s i t y ” , n u l l a b l e=f a l s e)
Un ive r s i ty u n i v e r s i t y ;

@OneToOne
@JoinColumn (name=”department” , n u l l a b l e=f a l s e)
Department department ;

@Column(name=”phone”)
St r ing phone ;

@Column(name=” mobile ”)
St r ing mobile ;

@Column(name=” p r o f i l e ”)
St r ing p r o f i l e ;

pub l i c void s e t Id (In t ege r id){
t h i s . id=id ;

}

pub l i c In t eg e r get Id () {
re turn t h i s . id ;
}

pub l i c void setFirstName (St r ing f i rstName){
t h i s . f i rstName=firstName ;

}

pub l i c S t r ing getFirstName () {
re turn t h i s . f i rstName ;
}

pub l i c void setLastName (St r ing lastName){
t h i s . lastName=lastName ;

}

pub l i c S t r ing getLastName () {
re turn t h i s . lastName ;
}

pub l i c void setEmai l (S t r ing emai l){
t h i s . emai l=emai l ;

}

pub l i c S t r ing getEmail () {
re turn t h i s . emai l ;
}

pub l i c void s e t Un i v e r s i t y (Un ive r s i ty u n i v e r s i t y){
t h i s . u n i v e r s i t y=u n i v e r s i t y ;

}

pub l i c Un ive r s i ty ge tUn ive r s i t y () {
re turn t h i s . u n i v e r s i t y ;
}

pub l i c void setDepartment (Department department){
t h i s . department=department ;

}

pub l i c Department getDepartment () {
re turn t h i s . department ;
}

pub l i c void setPhone (St r ing phone){
t h i s . phone=phone ;

146

}

pub l i c S t r ing getPhone () {
re turn t h i s . phone ;
}

pub l i c void setMobi le (S t r ing mobile){
t h i s . mobile=mobile ;

}

pub l i c S t r ing getMobi le () {
re turn t h i s . mobile ;
}

pub l i c void s e t P r o f i l e (S t r ing p r o f i l e){
t h i s . p r o f i l e=p r o f i l e ;

}

pub l i c S t r ing g e t P r o f i l e () {
re turn t h i s . p r o f i l e ;
}
@Override
pub l i c S t r ing toS t r ing () {

St r i ngBu f f e r buf=new St r i ngBu f f e r () ;
buf . append (t h i s . f i rstName) . append (” ”) ;
buf . append (t h i s . lastName) . append (” ”) ;
re turn buf . t oS t r ing () ;

}

@Override
pub l i c boolean equa l s (Object obj) {

i f (obj == n u l l) {
re turn f a l s e ;
}
re turn t h i s . ge t Id () == ((Author) obj) . get Id () ;

}

}

Listing B.5: Source code of PMS Author.java

package com . app . c o n t r o l l e r s ;

import javax . f a c e s . bean . ManagedBean ;
import javax . f a c e s . bean . ViewScoped ;
import com . jk . web . c o n t r o l l e r s . * ;
import com . app . models . Author ;

@ManagedBean(name = ”mbAuthor”)
@ViewScoped
pub l i c c l a s s MB Author extends JKManagedBeanWithOrmSupport<Author> {

}

Listing B.6: Source code of PMS MBAuthor.java

147

< !DOCTYPE html>
<html xmlns=” http ://www. w3 . org /1999/ xhtml” xmlns : h=” http :// java . sun . com/ j s f /html” xmlns : p=” http ://

pr ime faces . org / ui ” xmlns : u i=” http :// xmlns . j cp . org / j s f / f a c e l e t s ”
xmlns : c=” http :// xmlns . j cp . org / j sp / j s t l / core ” xmlns : f=” http :// xmlns . j cp . org / j s f / core ”>
<ui : composit ion template=”/WEB−INF/ templates / d e f au l t . xhtml”>
<ui : d e f i n e name=”page−t i t l e ”>Author Management</ ui : d e f i n e>
<ui : d e f i n e name=” contents ”>
<h : form id=”frmAuthor”>
<p : messages />
<p : panelGrid columns=”4” id=”model” s t y l e=”margin : auto”>
<p : autoUpdate />
<f : f a c e t name=” header ”>#{msg . get (’ Author ’) } Form</ f : f a c e t>

<p : outputLabel value=”#{msg . get (’ f i r s t name ’) }” f o r=” f irstName ”/>
<p : inputText type=” text ” id=” f irstName ” value=”#{mbAuthor . model . f i rstName}” requ i r ed=” true ”

d i s ab l ed=”#{mbAuthor . readOnlyMode}” readOnly=”#{mbAuthor . readOnlyMode}” p l a c eho lde r=”Enter
value ”/>

<p : outputLabel value=”#{msg . get (’ l a s t name ’) }” f o r=” lastName”/>
<p : inputText type=” text ” id=” lastName” value=”#{mbAuthor . model . lastName}” requ i r ed=” true ”

d i s ab l ed=”#{mbAuthor . readOnlyMode}” readOnly=”#{mbAuthor . readOnlyMode}” p l a c eho lde r=”Enter
value ”/>

<p : outputLabel value=”#{msg . get (’ email ’) }” f o r=” emai l ”/>
<p : inputText type=” emai l ” id=” emai l ” value=”#{mbAuthor . model . emai l}” requ i r ed=” true ” d i s ab l ed=”

#{mbAuthor . readOnlyMode}” readOnly=”#{mbAuthor . readOnlyMode}” p la c eho lde r=”Enter value ”/>

<p : outputLabel value=”#{msg . get (’ Univers i ty ’) }” f o r=” u n i v e r s i t y ”/>
<p : selectOneMenu value=”#{mbAuthor . model . u n i v e r s i t y }” id=” u n i v e r s i t y ” r equ i r ed=” true ” d i sab l ed=”#{

mbAuthor . readOnlyMode}” conver te r=” omnifaces . Se l ec t I t emsConverte r ”>
<f : s e l e c t I t em itemLabel=”” itemValue=”#{n u l l }” />
<f : s e l e c t I t e m s value=”#{mbUniversity . modelList}” var=” r e f ” itemLabel=”#{r e f . name}” itemValue=”#{

r e f }” />
</p : selectOneMenu>

<p : outputLabel value=”#{msg . get (’ Department ’) }” f o r=”department”/>
<p : selectOneMenu value=”#{mbAuthor . model . department}” id=”department” r equ i r ed=” true ” d i s ab l ed=”#{

mbAuthor . readOnlyMode}” conver te r=” omnifaces . Se l ec t I t emsConverte r ”>
<f : s e l e c t I t em itemLabel=”” itemValue=”#{n u l l }” />
<f : s e l e c t I t e m s value=”#{mbDepartment . modelList}” var=” r e f ” itemLabel=”#{r e f . name}” itemValue=”#{

r e f }” />
</p : selectOneMenu>

<p : outputLabel value=”#{msg . get (’ Phone ’) }” f o r=”phone”/>
<p : inputText type=” text ” id=”phone” value=”#{mbAuthor . model . phone}” d i s ab l ed=”#{mbAuthor .

readOnlyMode}” readOnly=”#{mbAuthor . readOnlyMode}” p la c eho lde r=”Enter value ”/>

<p : outputLabel value=”#{msg . get (’ Mobile ’) }” f o r=” mobile ”/>
<p : inputText type=” text ” id=” mobile ” value=”#{mbAuthor . model . mobile}” d i s ab l ed=”#{mbAuthor .

readOnlyMode}” readOnly=”#{mbAuthor . readOnlyMode}” p la c eho lde r=”Enter value ”/>

<p : outputLabel value=”#{msg . get (’ P r o f i l e ’) }” f o r=” p r o f i l e ”/>
<p : inputText type=” text ” id=” p r o f i l e ” value=”#{mbAuthor . model . p r o f i l e }” d i s ab l ed=”#{mbAuthor .

readOnlyMode}” readOnly=”#{mbAuthor . readOnlyMode}” p la c eho lde r=”Enter value ”/>

<f : f a c e t name=” f o o t e r ”>
<div a l i g n=” cente r ”>

<p : commandButton value=”Add” ac t i on=”#{mbAuthor . add}” rendered=”#{mbAuthor . allowAdd}” proce s s=”
model” />

<p : commandButton value=” Edit ” ac t i on=”#{mbAuthor . ed i t }” rendered=”#{mbAuthor . a l lowEdit }”
proce s s=” @this ”/>

<p : commandButton value=”Save” ac t i on=”#{mbAuthor . save}” rendered=”#{mbAuthor . a l lowSave}” proce s s
=”model” />

<p : commandButton value=” Delete ” ac t i on=”#{mbAuthor . d e l e t e }” rendered=”#{mbAuthor . a l l owDe le te }”
proce s s=” @this ”/>

<p : commandButton value=” Reset ” ac t i on=”#{mbAuthor . r e s e t }” rendered=”#{mbAuthor . a l lowReset }”
proce s s=” @this ”/>

<p : commandButton value=” F i l l ” ac t i on=”#{mbAuthor . f i l l }” rendered=”#{mbAuthor . a l l o w F i l l }”
proce s s=” @this ”/>

<p : commandButton value=”Cancel Edit ” ac t i on=”#{mbAuthor . cance lEd i t () }” rendered=”#{mbAuthor .
editMode}” proce s s=” @this ”/>

</ div>
</ f : f a c e t>
</p : panelGrid>

<p : dataTable value=”#{mbAuthor . modelList}” var=”model” rowKey=”#{model . id }”
pag inator=” true ” pag inatorAlwaysVis ib l e=” f a l s e ” pag ina to rPos i t i on=”bottom” se lect ionMode=” s i n g l e ”
f i l t e r e d V a l u e=”#{mbAuthor . f i l t e r L i s t }”
s e l e c t i o n=”#{mbAuthor . model}” emptyMessage=”” rowIndexVar=”row”>
<p : ajax event=” rowSe lect ” update=”@form : model” />
<p : autoUpdate />
<f : f a c e t name=” header ”>Authors Data Table</ f : f a c e t>
<p : column headerText=”#”>#{row+1}</p : column>

<p : column headerText=”#{msg . get (’ f i r s t name ’) }” sortBy=”#{model . f i rstName}” f i l t e r B y=”#{model .
f i rstName}” f i lterMatchMode=” conta ins ”>

<h : outputText value=”#{model . f i rstName==nu l l ? ’− ’ : model . f i rstName}” />
</p : column>
<p : column headerText=”#{msg . get (’ l a s t name ’) }” sortBy=”#{model . lastName}” f i l t e r B y=”#{model .

lastName}” f i lterMatchMode=” conta ins ”>
<h : outputText value=”#{model . lastName==n u l l ? ’− ’ : model . lastName}” />
</p : column>
<p : column headerText=”#{msg . get (’ email ’) }” sortBy=”#{model . emai l}” f i l t e r B y=”#{model . emai l}”

148

f i l terMatchMode=” conta ins ”>
<h : outputText value=”#{model . emai l==n u l l ? ’− ’ : model . emai l}” />
</p : column>

</p : dataTable>
</h : form>
</ ui : d e f i n e>
</ ui : composit ion>
</html>

Listing B.7: Source code of PMS Author index.xhtml

149

Appendix C

Clowiz Full Questionnaire

This appendix includes the full questionnaire conducted as an evaluation for the

Smart-Cloud framework.

Clowiz (Cloud-Wizard) Questionnaire
This questionnaire is part of "Smart-Cloud: A Framework for Cloud Native Applications Development"
dissertation work of Jalal Al Kiswani, a Ph.D. candidate at the University of Nevada, Reno.

We appreciate the time that you will take to complete this form. Please, be sure to go over the tutorial
sent with the email invitation before completing this questionnaire.

CONSENT
Your participation in this study indicates that you have read the information provided (or the
information was read to you) on this link:
https://drive.google.com/file/d/1nLvjNt1w6X_vZj8Wiujfinn2SC74l0fM/view?usp=sharing

The consent form indicates that you are not waiving any of your legal rights as a research participant,
your personal information will be confidential and will not be shared with any third party, and you can
withdraw from participating at any time.

* Required

1. Email address *

2. Your Name (optional)

3. Can we contact you to get more feedback if required? *
Mark only one oval.

 Yes

 No

Participant Information
This section includes information about the participant working and professional experience

4. What is your experience level in the software development field? *
Mark only one oval.

 Expert level

 Professional level

 Intermediate level

 Entry level

 Other:

5. What is your highest academic degree? *
Mark only one oval.

 Doctoral

 Masters

 Bachelor

 Other:

150

6. What is your current job title?

7. How many years in total do you have with
practice, management, and/or research in the
software development field? *

8. What is your current day to day work in software development projects? (please check all
that apply) *
Check all that apply.

 Research

 Project management

 Business analysis

 Software architecture

 Software development

 Software implementation

 Testing

 Team management

 Technical support

 Teaching or training

 Other:

Cloud Applications
This section include questions about modern trends in software applications development, especially
those related to cloud applications.

9. For new software applications, choosing a cloud-based approach can be more beneficial
than choosing traditional approaches. *
Mark only one oval.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Other:

10. There is a shortage of experienced software engineers who can develop high-quality cloud
applications *
Mark only one oval.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Other:

151

11. The cost of software development of cloud based applications is higher than cost of
developing traditional software . *
Mark only one oval.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Other:

12. The maintainability cost of cloud based applications is higher than that of traditional
software applications *
Mark only one oval.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Other:

13. The operational cost of cloud based applications is higher than that of traditional software
applications *
Mark only one oval.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Other:

14. Migrating applications developed using traditional approaches to be cloud-based is an
expensive and risky process. *
Mark only one oval.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

 Other:

Clowiz (Cloud-Wizard)
This section includes information about the experience of participants working on Clowiz platform.

152

15. I find it easy to learn and work on Clowiz *
Mark only one oval.

1 2 3 4 5 6 7

Strongly disagree Strongly agree

16. I understand the process of developing cloud applications using Clowiz. *
Mark only one oval.

1 2 3 4 5 6 7

Strongly disagree Strongly agree

17. Clowiz platform can reduce the development cost of creating cloud-based applications. *
Mark only one oval.

1 2 3 4 5 6 7

Strongly disagree Strongly agree

18. The code generated by Clowiz is high-quality and maintanable *
Mark only one oval.

1 2 3 4 5 6 7

Strongly disagree Strongly agree

19. I would use Clowiz features if it could generate the code in my day-to-day working
programming language and technology. *
Mark only one oval.

1 2 3 4 5 6 7

Strongly disagree Strongly agree

20. Clowiz can generate good quality end-to-end cloud-based code, features, and
applications. *
Mark only one oval.

1 2 3 4 5 6 7

Strongly disagree Strongly agree

21. Which feature of Clowiz do you think is more important? *
Mark only one oval.

 CodeGen: Code generation for Software Engineers

 FeatureGen: End-to-end feature code generation

 AppGen: End-to-end application generation

 Other:

Suggestions and Recommendations

153

Powered by

This section includes suggestions and feedback from users who participated in the experiment.

22. Do you think that any of the current features of Clowiz could be done better? if yes, how?

23. Do you think that there is a functionality that should be available in Clowiz that is not
currently available? If yes, please describe.

24. Do you have any other comment?

154

155

Bibliography

[1] Afuah, Allan and Tucci, Christopher L. Internet business models and strategies.
ACM, https://dl.acm.org/citation.cfm?id=557033, 2001.

[2] Afuah, Allan and Tucci Christopher, https://dl.acm.org/citation.cfm?
id=579515. Internet business models and strategies. McGraw-Hill New York,
2001.

[3] Amazon. Amazone Large Datasets. (Date last accessed April 15, 2018). url:
https://aws.amazon.com/public-datasets/.

[4] Apache. JUnit. (Date last accessed Jan 6, 2019). url: https://junit.org/
junit4/.

[5] Apache. Maven. (Date last accessed Jan 6, 2019). url: https://maven.

apache.org/.

[6] Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D, Katz,
Randy, Konwinski, Andy, Lee, Gunho, Patterson, David, Rabkin, Ariel, Stoica,
Ion, and Zaharia, Matei. “A view of cloud computing”. In: Communications
of the ACM 53.4 (2010). https://dl.acm.org/citation.cfm?id=1721672,
pp. 50–58.

[7] Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D, Katz,
Randy H, Konwinski, Andrew, Lee, Gunho, Patterson, David A, Rabkin, Ariel,
Stoica, Ion, and Zaharia, Mate. Above the Clouds: A Berkeley View of Cloud
Computing. Tech. rep. UCB/EECS-2009-28. EECS Department, University of
California, Berkeley, https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2009/EECS-2009-28.pdf, 2009.

[8] Avison, David and Fitzgerald, Guy. Information systems development: method-
ologies, techniques and tools. McGraw Hill, https://www.amazon.co.uk/
Information - Systems - Development - Methodologies - Techniques / dp /

0077114175, 2003.

[9] Azevedo, Leonardo G, Tizzei, Leonardo P, Bayser, Maximilien de, and Cerqueira,
Renato. “Installation service: Supporting deployment of scientific software as a
service”. In: Communications (LATINCOM), 2015 7th IEEE Latin-American
Conference on. IEEE, https://ieeexplore.ieee.org/document/7430148/.
2015, pp. 1–6.

https://dl.acm.org/citation.cfm?id=557033
https://dl.acm.org/citation.cfm?id=579515
https://dl.acm.org/citation.cfm?id=579515
https://aws.amazon.com/public-datasets/
https://junit.org/junit4/
https://junit.org/junit4/
https://maven.apache.org/
https://maven.apache.org/
https://dl.acm.org/citation.cfm?id=1721672
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
https://www.amazon.co.uk/Information-Systems-Development-Methodologies-Techniques/dp/0077114175
https://www.amazon.co.uk/Information-Systems-Development-Methodologies-Techniques/dp/0077114175
https://www.amazon.co.uk/Information-Systems-Development-Methodologies-Techniques/dp/0077114175
https://ieeexplore.ieee.org/document/7430148/

156

[10] Balalaie, Armin, Heydarnoori, Abbas, and Jamshidi, Pooyan. “Microservices
architecture enables DevOps: migration to a cloud-native architecture”. In:
IEEE Software 33.3 (2016), pp. 42–52.

[11] Banerjee, Prith, Friedrich, Richard, Bash, Cullen, Goldsack, Patrick, Huber-
man, Bernardo, Manley, John, Patel, Chandrakant, Ranganathan, Parthasarathy,
and Veitch, Alistair. “Everything as a service: Powering the new information
economy”. In: Computer 44.3 (2011), pp. 36–43.

[12] Bang, Soon K, Chung, Sam, Choh, Young, and Dupuis, Marc. “A grounded
theory analysis of modern web applications: knowledge, skills, and abilities
for DevOps”. In: Proceedings of the 2nd annual conference on Research in
information technology. ACM, https://dl.acm.org/citation.cfm?id=
2512229. 2013, pp. 61–62.

[13] Bang, Soon K, Chung, Sam, Choh, Young, and Dupuis, Marc. “A grounded
theory analysis of modern web applications: knowledge, skills, and abilities
for DevOps”. In: Proceedings of the 2nd annual conference on Research in
information technology. ACM, https://dl.acm.org/citation.cfm?id=
2512229. 2013, pp. 61–62.

[14] Barham, Paul, Dragovic, Boris, Fraser, Keir, Hand, Steven, Harris, Tim, Ho,
Alex, Neugebauer, Rolf, Pratt, Ian, and Warfield, Andrew. “Xen and the art of
virtualization”. In: ACM SIGOPS operating systems review. Vol. 37. 5. ACM,
https://cse.buffalo.edu/~stevko/courses/cse704/fall10/papers/

2003-xensosp.pdf. 2003, pp. 164–177.

[15] Bass, Len, Clements, Paul, and Kazman, Rick. Software Architecture in Prac-
tice (3rd Edition). https://www.amazon.com/Software- Architecture-

Practice-3rd-Engineering/dp/0321815734. Addison-Wesley Professional,
2012.

[16] Bass, Len, Weber, Ingo, and Zhu, Liming. DevOps: A Software Architect’s Per-
spective. Addison-Wesley Professional, https://www.oreilly.com/library/
view/devops-a-software/9780134049885/, 2015.

[17] Beck, Kent, Fowler, Martin, and Beck, Grandma. “Bad smells in code”. In:
Refactoring: Improving the design of existing code (1999), pp. 75–88.

[18] Bezemer, Cor-Paul and Zaidman, Andy. “Challenges of reengineering into
multi-tenant SaaS applications”. In: Delft University of Technology, Tech.
Rep. TUD-SERG-2010-012, https: // pdfs. semanticscholar. org/ fef9/
c3d013c88663670b1a0195d28c79fb5df62b. pdf (2010).

[19] Bezemer, Cor-Paul and Zaidman, Andy. “Multi-tenant SaaS applications: main-
tenance dream or nightmare?” In: Proceedings of the joint ercim workshop on
software evolution (evol) and international workshop on principles of software
evolution (iwpse). ACM, https://dl.acm.org/citation.cfm?id=1862393.
2010, pp. 88–92.

https://dl.acm.org/citation.cfm?id=2512229
https://dl.acm.org/citation.cfm?id=2512229
https://dl.acm.org/citation.cfm?id=2512229
https://dl.acm.org/citation.cfm?id=2512229
https://cse.buffalo.edu/~stevko/courses/cse704/fall10/papers/2003-xensosp.pdf
https://cse.buffalo.edu/~stevko/courses/cse704/fall10/papers/2003-xensosp.pdf
https://www.amazon.com/Software-Architecture-Practice-3rd-Engineering/dp/0321815734
https://www.amazon.com/Software-Architecture-Practice-3rd-Engineering/dp/0321815734
https://www.oreilly.com/library/view/devops-a-software/9780134049885/
https://www.oreilly.com/library/view/devops-a-software/9780134049885/
https://pdfs.semanticscholar.org/fef9/c3d013c88663670b1a0195d28c79fb5df62b.pdf
https://pdfs.semanticscholar.org/fef9/c3d013c88663670b1a0195d28c79fb5df62b.pdf
https://dl.acm.org/citation.cfm?id=1862393

157

[20] Buyya, Rajkumar and Bubendorfer, Kris. Market-oriented grid and utility
computing. Vol. 75. John Wiley & Sons. https://leseprobe.buch.de/

images-adb/26/9f/269f6e68-2f32-46fa-a53b-bf5ad901b0d2.pdf, 2009.

[21] Cervantes, Humberto and Kazman, Rick. Designing Software Architectures: A
Practical Approach (SEI Series in Software Engineering). Addison-Wesley Pro-
fessional; 1st edition, https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=454919, 2016.

[22] Chen, Peter Pin-Shan. “The entity-relationship model—toward a unified view
of data”. In: Readings in artificial intelligence and databases. Elsevier, https:
//dl.acm.org/citation.cfm?id=320440, 1988, pp. 98–111.

[23] Choudhary, Vidyanand. “Software as a service: Implications for investment in
software development”. In: System Sciences, 2007. HICSS 2007. 40th Annual
Hawaii International Conference on. IEEE, https://ieeexplore.ieee.org/
document/4076800. 2007, 209a–209a.

[24] Chouhan, Pushpinder Kaur, Yao, Feng, and Sezer, Sakir. “Software as a ser-
vice: Understanding security issues”. In: Science and Information Conference
(SAI), 2015. IEEE, http://ieeexplore.ieee.org/document/7237140/.
2015, pp. 162–170.

[25] Clowiz-website. from http://clowiz.com. (Date last accessed Jan 15, 2019).

[26] Crockford, Douglas. JSON (JavaScript Object Notation). (Date last accessed
April 15, 2018). url: https://www.json.org/.

[27] Dey, Akon, Chinchwadkar, Gajanan, Fekete, Alan, and Ramachandran, Kr-
ishna. “Metadata-as-a-service”. In: Data Engineering Workshops (ICDEW),
2015 31st IEEE International Conference on. IEEE, https://ieeexplore.
ieee.org/document/7129536. 2015, pp. 6–9.

[28] Dixon, Tim and Hargitay, Stephen. Software Selection for Surveyors. Springer,
https://link.springer.com/book/10.1007/978-1-349-21696-3, 1989.

[29] Dropwizard. Dropwizard Production-ready, out of the box. (Date last accessed
April 15, 2018). url: http://www.dropwizard.io.

[30] Ebert, Christof, Kuhrmann, Marco, and Prikladnicki, Rafael. “Global software
engineering: Evolution and trends”. In: Global Software Engineering (ICGSE),
2016 IEEE 11th International Conference on. IEEE, https://ieeexplore.
ieee.org/document/7577432. 2016, pp. 144–153.

[31] Eisele, Markus. Modern Java EE Design Patterns: Building Scalable Architec-
ture for Sustainable Enterprise Development. O’Reilly Media, https://www.
oreilly.com/library/view/modern-java-ee/9781492042266/, 2016.

[32] Elmasri, Ramez and Navathe, Shamkant. Fundamentals of database systems.
Addison-Wesley Publishing Company, https : / / www . pearson . com / us /

higher-education/program/Elmasri-Fundamentals-of-Database-Systems-

7th-Edition/PGM189052.html, 2017.

https://leseprobe.buch.de/images-adb/26/9f/269f6e68-2f32-46fa-a53b-bf5ad901b0d2.pdf
https://leseprobe.buch.de/images-adb/26/9f/269f6e68-2f32-46fa-a53b-bf5ad901b0d2.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454919
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454919
https://dl.acm.org/citation.cfm?id=320440
https://dl.acm.org/citation.cfm?id=320440
https://ieeexplore.ieee.org/document/4076800
https://ieeexplore.ieee.org/document/4076800
http://ieeexplore.ieee.org/document/7237140/
https://www.json.org/
https://ieeexplore.ieee.org/document/7129536
https://ieeexplore.ieee.org/document/7129536
https://link.springer.com/book/10.1007/978-1-349-21696-3
http://www.dropwizard.io
https://ieeexplore.ieee.org/document/7577432
https://ieeexplore.ieee.org/document/7577432
https://www.oreilly.com/library/view/modern-java-ee/9781492042266/
https://www.oreilly.com/library/view/modern-java-ee/9781492042266/
https://www.pearson.com/us/higher-education/program/Elmasri-Fundamentals-of-Database-Systems-7th-Edition/PGM189052.html
https://www.pearson.com/us/higher-education/program/Elmasri-Fundamentals-of-Database-Systems-7th-Edition/PGM189052.html
https://www.pearson.com/us/higher-education/program/Elmasri-Fundamentals-of-Database-Systems-7th-Edition/PGM189052.html

158

[33] Espadas, Javier, Molina, Arturo, Jiménez, Guillermo, Molina, Mart́ın, Ramı́rez,
Raúl, and Concha, David. “A tenant-based resource allocation model for scal-
ing Software-as-a-Service applications over cloud computing infrastructures”.
In: Future Generation Computer Systems 29.1 (2013), pp. 273–286.

[34] Fano, Robert M and Corbató, Fernando J. “Time-sharing on computers”. In:
Scientific American, https: // www. jstor. org/ stable/ 24931051 215.3
(1966), pp. 128–143.

[35] Fehling, Christoph, Leymann, Frank, Retter, Ralph, Schupeck, Walter, and
Arbitter, Peter. Cloud computing patterns: fundamentals to design, build, and
manage cloud applications. Springer, https://www.springer.com/us/book/
9783709115671, 2015.

[36] Feng, Xinyang, Shen, Jianjing, and Fan, Ying. “REST: An alternative to RPC
for Web services architecture”. In: Future Information Networks, 2009. ICFIN
2009. First International Conference on. IEEE, https://ieeexplore.ieee.
org/document/5339611. 2009, pp. 7–10.

[37] Fortune.com. Here’s Why Amazon’s Cloud Suffered a Meltdown This Week.
(Date last accessed April 15, 2018). 2017. url: http://fortune.com/2017/
03/02/amazon-cloud-outage/.

[38] Foster, Ian, Zhao, Yong, Raicu, Ioan, and Lu, Shiyong. “Cloud computing
and grid computing 360-degree compared”. In: Grid Computing Environments
Workshop, 2008. GCE’08, IEEE. https://ieeexplore.ieee.org/document/
4738445. 2008, pp. 1–10.

[39] Fowler, Martin. Microservices: a definition of this new architectural term.
(Date last accessed Dec 17, 2018). 2015. url: https://martinfowler.com/
bliki/MonolithFirst.html.

[40] Fowler, Martin and Lewis, James. Microservices: a definition of this new ar-
chitectural term. (Date last accessed Dec 17, 2018). 2014. url: https://

martinfowler.com/microservices/.

[41] Fowler, Martin and Lewis, James. Microservices: a definition of this new ar-
chitectural term. (Date last accessed April 15, 2018). 2014. url: https://
martinfowler.com/articles/microservices.html.

[42] Fromholz, Julia M. “The European Union data privacy directive”. In: Berk.
Tech. LJ, https: // scholarship. law. berkeley. edu/ cgi/ viewcontent.
cgi? article= 1281& context= btlj 15 (2000), p. 461.

[43] FSF. Free Software Foundation. (Date last accessed April 15, 2018). url:
https://www.fsf.org/.

[44] Gao, Jerry, Pattabhiraman, Pushkala, Bai, Xiaoying, and Tsai, Wei-Tek. “SaaS
performance and scalability evaluation in clouds”. In: Service Oriented Sys-
tem Engineering (SOSE), 2011 IEEE 6th International Symposium on. IEEE,
https://ieeexplore.ieee.org/document/6139093. 2011, pp. 61–71.

https://www.jstor.org/stable/24931051
https://www.springer.com/us/book/9783709115671
https://www.springer.com/us/book/9783709115671
https://ieeexplore.ieee.org/document/5339611
https://ieeexplore.ieee.org/document/5339611
http://fortune.com/2017/03/02/amazon-cloud-outage/
http://fortune.com/2017/03/02/amazon-cloud-outage/
https://ieeexplore.ieee.org/document/4738445
https://ieeexplore.ieee.org/document/4738445
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=1281&context=btlj
https://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=1281&context=btlj
https://www.fsf.org/
https://ieeexplore.ieee.org/document/6139093

159

[45] Garfinkel, Simson L. An evaluation of amazon’s grid computing services: EC2,
S3, and SQS. Technical Report TR-08-07. Harvard Computer Science Group,
https://dash.harvard.edu/handle/1/24829568, 2007.

[46] Garlan, David. “Software architecture: a travelogue”. In: Proceedings of the on
Future of Software Engineering. https://dl.acm.org/citation.cfm?id=
2593886. ACM. 2014, pp. 29–39.

[47] Garlan, David. “Software Engineering: Reflections on an Evolving Discipline”.
In: International Journal of Information Systems and Software Engineering
for Big Companies (IJISEBC) 1.1 (2015). https://dl.acm.org/citation.
cfm?id=2025116&dl=ACM&coll=DL, pp. 70–77.

[48] Ge, Yizhe, He, Shan, Xiong, Jingyue, and Brown, Donald E. “Customer Churn
Analysis for a Software-as-a-service Company”. In: Systems and Information
Engineering Design Symposium (SIEDS), 2017. IEEE, https://ieeexplore.
ieee.org/document/7937698/. 2017, pp. 106–111.

[49] GNU. GNU Operating System. (Date last accessed April 15, 2018). url: https:
//www.gnu.org.

[50] Google. Angular. http://angular.io. (Date last accessed Dec 17, 2018).

[51] Google Inc. Google App Engine. (Date last accessed April 15, 2018). url:
https://cloud.google.com/appengine/.

[52] Gorelik, Eugene. “Cloud computing models”. MA thesis. Massachusetts In-
stitute of Technology, https://dspace.mit.edu/handle/1721.1/79811,
2013.

[53] Gray, Jim. “Distributed computing economics”. In: Queue (2003).

[54] Guo, Chang Jie, Sun, Wei, Huang, Ying, Wang, Zhi Hu, and Gao, Bo. “A
framework for native multi-tenancy application development and manage-
ment”. In: e-commerce Technology and the 4th IEEE International Confer-
ence on Enterprise Computing, e-commerce, and E-Services, 2007. CEC/EEE
2007. The 9th IEEE International Conference on. IEEE, https : / / www .

computer.org/csdl/proceedings/cec- eee/2007/2913/00/29130551-

abs.html. 2007, pp. 551–558.

[55] Guradian, The. Cloud computing is a trap, warns GNU founder Richard Stall-
man. (Date last accessed April 15, 2018). 2008. url: https://www.theguardian.
com/technology/2008/sep/29/cloud.computing.richard.stallman.

[56] Hamilton, James. Internet-scale service efficiency. (Date last accessed April
15, 2018). 2008. url: http://www.cs.cornell.edu/projects/ladis2008/
materials/JamesRH_Ladis2008.pdf.

[57] Harrison, Neil B and Avgeriou, Paris. “How do architecture patterns and tac-
tics interact? A model and annotation”. In: Journal of Systems and Software
83.10 (2010). https://www.rug.nl/research/portal/files/2617153/
2010JSystSoftwHarrison.pdf, pp. 1735–1758.

https://dash.harvard.edu/handle/1/24829568
https://dl.acm.org/citation.cfm?id=2593886
https://dl.acm.org/citation.cfm?id=2593886
https://dl.acm.org/citation.cfm?id=2025116&dl=ACM&coll=DL
https://dl.acm.org/citation.cfm?id=2025116&dl=ACM&coll=DL
https://ieeexplore.ieee.org/document/7937698/
https://ieeexplore.ieee.org/document/7937698/
https://www.gnu.org
https://www.gnu.org
https://cloud.google.com/appengine/
https://dspace.mit.edu/handle/1721.1/79811
https://www.computer.org/csdl/proceedings/cec-eee/2007/2913/00/29130551-abs.html
https://www.computer.org/csdl/proceedings/cec-eee/2007/2913/00/29130551-abs.html
https://www.computer.org/csdl/proceedings/cec-eee/2007/2913/00/29130551-abs.html
https://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman
https://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman
http://www.cs.cornell.edu/projects/ladis2008/materials/JamesRH_Ladis2008.pdf
http://www.cs.cornell.edu/projects/ladis2008/materials/JamesRH_Ladis2008.pdf
https://www.rug.nl/research/portal/files/2617153/2010JSystSoftwHarrison.pdf
https://www.rug.nl/research/portal/files/2617153/2010JSystSoftwHarrison.pdf

160

[58] Holt, Adam, Flannery, Simon, Devgan, Sanjay, Malik, Atif, Rozof, Nathan,
Wood, CFA1 Adam, Standaert, Patrick, Meunier, Francois, Lu, Jasmine, Chen,
Grace, Lu, Bill, Han, Keon, Khare, Vipin, and Miyachi, Masaharu. “Cloud
Computing takes off”. In: Morgan Stanley Blue Paper (2011). http://www.
dabcc.com/resources/cloud_computing.pdf.

[59] Httermann, Michael. DevOps for developers. Apress, https://www.apress.
com/us/book/9781430245698, 2012.

[60] Humble, Jez and Farley, David. Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation (Adobe Reader). https:
/ / www . amazon . com / Continuous - Delivery - Deployment - Automation -

Addison-Wesley/dp/0321601912. Pearson Education, 2010.

[61] Humble, Jez and Molesky, Joanne. “Why enterprises must adopt devops to
enable continuous delivery”. In: Cutter IT Journal 24.8 (2011). https://www.
cutter.com/article/why- enterprises- must- adopt- devops- enable-

continuous-delivery-416516, p. 6.

[62] Inc., Docker. Docker. (Date last accessed April 15, 2018). url: https://www.
docker.com.

[63] JBoss. Hibernate Community Documentation. (Date last accessed April 15,
2018). url: https://docs.jboss.org/hibernate/orm/3.3/reference/en-
US/html/events.html.

[64] jBPM. https://www.jbpm.org. (Date last accessed Dec 17, 2018).

[65] Jenkins Community. (Date last accessed Jan 6, 2019). url: https://jenkins.
io/.

[66] John F. Gantz, Pam Miller. The Salesforce Economy: Enabling 1.9 Million
New Jobs and $389 Billion in New Revenue Over the Next Five Years. Tech.
rep. IDC, https://www.salesforce.com/blog/2017/10/salesforce-

economy-idc-study-2022, 2016.

[67] Kaufman, Lori M. “Data security in the world of cloud computing”. In: IEEE
Security & Privacy 7.4 (2009).

[68] Killalea, Tom. “The hidden dividends of microservices”. In: Communications
of the ACM 59.8 (2016), pp. 42–45.

[69] Kiswani, Jalal, Muhanna, Muhanna, and Qusef, Abdullah. “Using metadata
in optimizing the design and development of enterprise information systems”.
In: Information and Communication Systems (ICICS), 2017 8th International
Conference on. IEEE, https://ieeexplore.ieee.org/document/7921969/.
2017, pp. 188–193.

http://www.dabcc.com/resources/cloud_computing.pdf
http://www.dabcc.com/resources/cloud_computing.pdf
https://www.apress.com/us/book/9781430245698
https://www.apress.com/us/book/9781430245698
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://www.cutter.com/article/why-enterprises-must-adopt-devops-enable-continuous-delivery-416516
https://www.cutter.com/article/why-enterprises-must-adopt-devops-enable-continuous-delivery-416516
https://www.cutter.com/article/why-enterprises-must-adopt-devops-enable-continuous-delivery-416516
https://www.docker.com
https://www.docker.com
https://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/events.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/events.html
https://jenkins.io/
https://jenkins.io/
https://www.salesforce.com/blog/2017/10/salesforce-economy-idc-study-2022
https://www.salesforce.com/blog/2017/10/salesforce-economy-idc-study-2022
https://ieeexplore.ieee.org/document/7921969/

161

[70] Kiswani, Jalal, Muhanna, Muhanna, Dascalu, Sergiu, and Harris, Frederick.
“Software Infrastructure to Reduce the Cost and Time of Building Enterprise
Software Applications: Practices and Case Studies”. In: Proceedings of ISCA
26th International Conference on Software Engineering and Data Engineering
(SEDE 2017). ISCA, https://www.searchdl.org/Resources/Public/

Conf/2017/SEDE/1021.pdf, 2017.

[71] Käkölä, Timo and Dueñas, Juan Carlos. Software product lines. Springer,
https://link.springer.com/book/10.1007/978-3-540-71437-8, 2006.

[72] Krebs, Rouven, Momm, Christof, and Kounev, Samuel. “Architectural Con-
cerns in Multi-tenant SaaS Applications.” In: Closer 12 (2012). http://www.
scitepress.org/Papers/2012/39576/39576.pdf, pp. 426–431.

[73] Kshetri, Nir. “Cloud computing in developing economies”. In: Computer 43.10
(2010), pp. 47–55.

[74] Kumara, Indika, Han, Jun, Colman, Alan, and Kapuruge, Malinda. “Software-
Defined Service Networking: Performance Differentiation in Shared Multi-Tenant
Cloud Applications”. In: IEEE Transactions on Services Computing 10.1 (2017).
https://ieeexplore.ieee.org/document/7522643, pp. 9–22.

[75] Laplante, Phillip A, Zhang, Jia, and Voas, Jeffrey. “What’s in a Name? Dis-
tinguishing between SaaS and SOA”. In: It Professional 10.3 (2008).

[76] Linda M. Northrop Paul C. Clements Contributor Reed Little, John McGregor
Liam O’Brien Felix Bachmann John K. Bergey Gary Chastek Sholom G. Cohen
Patrick Donohoe Lawrence G. Jones Robert W. Krut Jr. A Framework for
Software Product Line Practice, Version 5.0. (Date last accessed Dec 17, 2018).
2018. url: https://www.sei.cmu.edu/productlines.

[77] Link, Björn and Back, Andrea. “Classifying systemic differences between soft-
ware as a service-and on-premise-enterprise resource planning”. In: Journal of
Enterprise Information Management 28.6 (2015), pp. 808–837.

[78] Liu, Feng, Guo, Weiping, Zhao, Zhi Qiang, and Chou, Wu. “SaaS integration
for software cloud”. In: Cloud Computing (CLOUD), 2010 IEEE 3rd Inter-
national Conference on. IEEE, https://ieeexplore.ieee.org/document/
5557968. 2010, pp. 402–409.

[79] Ma, Dan and Kauffman, Robert J. “Competition between software-as-a-service
vendors”. In: IEEE Transactions on Engineering Management 61.4 (2014).
https://ieeexplore.ieee.org/document/6857369, pp. 717–729.

[80] Mather, Tim, Kumaraswamy, Subra, and Latif, Shahed. Cloud security and
privacy: an enterprise perspective on risks and compliance. https://www.

amazon.com/Cloud- Security- Privacy- Enterprise- Perspective/dp/

0596802765. O’Reilly Media, Inc., 2009.

[81] Mell, Peter and Grance, Tim. The NIST definition of cloud computing. http:
//faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf. 2011.

https://www.searchdl.org/Resources/Public/Conf/2017/SEDE/1021.pdf
https://www.searchdl.org/Resources/Public/Conf/2017/SEDE/1021.pdf
https://link.springer.com/book/10.1007/978-3-540-71437-8
http://www.scitepress.org/Papers/2012/39576/39576.pdf
http://www.scitepress.org/Papers/2012/39576/39576.pdf
https://ieeexplore.ieee.org/document/7522643
https://www.sei.cmu.edu/productlines
https://ieeexplore.ieee.org/document/5557968
https://ieeexplore.ieee.org/document/5557968
https://ieeexplore.ieee.org/document/6857369
https://www.amazon.com/Cloud-Security-Privacy-Enterprise-Perspective/dp/0596802765
https://www.amazon.com/Cloud-Security-Privacy-Enterprise-Perspective/dp/0596802765
https://www.amazon.com/Cloud-Security-Privacy-Enterprise-Perspective/dp/0596802765
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

162

[82] Microsoft Live. Live Email. (Date last accessed April 15, 2018). 1996. url:
https://outlook.live.com/.

[83] Mietzner, Ralph, Metzger, Andreas, Leymann, Frank, and Pohl, Klaus. “Vari-
ability modeling to support customization and deployment of multi-tenant-
aware software as a service applications”. In: Proceedings of the 2009 ICSE
Workshop on Principles of Engineering Service Oriented Systems. IEEE, https:
//ieeexplore.ieee.org/document/5068815. 2009, pp. 18–25.

[84] Moens, Hendrik, Dhoedt, Bart, and De Turck, Filip. “Management of cus-
tomizable Software-as-a-Service in cloud and network environments”. In: Net-
work Operations and Management Symposium (NOMS), 2016 IEEE/IFIP.
IEEE, https://ieeexplore.ieee.org/document/7502932. 2016, pp. 955–
960.

[85] Nam, Taewoo and Yeom, Keunhyuk. “Ontology model to support multi-tenancy
in software as a service environment”. In: Future Internet of Things and Cloud
(FiCloud), 2014 International Conference on. IEEE, https://ieeexplore.
ieee.org/document/6984188. 2014, pp. 146–151.

[86] Netflix. AWS Service registry for resilient mid-tier load balancing and failover.
(Date last accessed April 15, 2018). url: https://github.com/Netflix/
eureka.

[87] Northrop, Linda. Trends and new directions in software architecture. Tech.
rep. Software Engineering Institute - Carnegie Mellon University, https://
resources.sei.cmu.edu/asset_files/Webinar/2015_018_101_438680.

pdf, 2014.

[88] NSF - National Science Foundation. (Date last accessed April 15, 2018). url:
https://www.nsf.org.

[89] Nurmi, Daniel, Wolski, Rich, Grzegorczyk, Chris, Obertelli, Graziano, Soman,
Sunil, Youseff, Lamia, and Zagorodnov, Dmitrii. “Eucalyptus: A Technical
Report on an Elastic Utility Computing Archietcture Linking Your Programs
to Useful Systems UCSB Computer Science Technical Report Number 2008-
10”. In: Computer Science Department (2008). http://www.cs.yale.edu/
homes/yu-minlan/teach/csci599-fall12/papers/eucalyptus-tr08.pdf.

[90] Ojala, Arto. “Software-as-a-service revenue models”. In: IT Professional 15.3
(2013), pp. 54–59.

[91] O’Leary, Daniel E. Enterprise resource planning systems: systems, life cycle,
electronic commerce, and risk. Cambridge university press, https://www.

cambridge.org/core/books/enterprise-resource-planning-systems/

FBE044FD5D602059092F5F8A33FF29DD, 2000.

[92] Oracle. Java. https: // go. java/ index. html? intcmp= gojava-banner-
java-com . (Date last accessed Dec 17, 2018).

https://outlook.live.com/
https://ieeexplore.ieee.org/document/5068815
https://ieeexplore.ieee.org/document/5068815
https://ieeexplore.ieee.org/document/7502932
https://ieeexplore.ieee.org/document/6984188
https://ieeexplore.ieee.org/document/6984188
https://github.com/Netflix/eureka
https://github.com/Netflix/eureka
https://resources.sei.cmu.edu/asset_files/Webinar/2015_018_101_438680.pdf
https://resources.sei.cmu.edu/asset_files/Webinar/2015_018_101_438680.pdf
https://resources.sei.cmu.edu/asset_files/Webinar/2015_018_101_438680.pdf
https://www.nsf.org
http://www.cs.yale.edu/homes/yu-minlan/teach/csci599-fall12/papers/eucalyptus-tr08.pdf
http://www.cs.yale.edu/homes/yu-minlan/teach/csci599-fall12/papers/eucalyptus-tr08.pdf
https://www.cambridge.org/core/books/enterprise-resource-planning-systems/FBE044FD5D602059092F5F8A33FF29DD
https://www.cambridge.org/core/books/enterprise-resource-planning-systems/FBE044FD5D602059092F5F8A33FF29DD
https://www.cambridge.org/core/books/enterprise-resource-planning-systems/FBE044FD5D602059092F5F8A33FF29DD
https://go.java/index.html?intcmp=gojava-banner-java-com
https://go.java/index.html?intcmp=gojava-banner-java-com

163

[93] Oracle Inc. Oracle Cloud Platform. (Date last accessed April 15, 2018). url:
https://www.oracle.com/cloud/platform.html.

[94] Oracle NetSuite. Cloud ERP. (Date last accessed April 15, 2018). 1998. url:
http://www.netsuite.com/portal/home.shtml.

[95] Palmer, Michael and Walters, Michael. Guide to operating systems. Cengage
Learning, https://www.amazon.com/Guide-Operating-Systems-Michael-
Palmer/dp/1111306362, 2012.

[96] Parkhill Douglas, https://www.amazon.com/Challenge-Computer-Utility-
Douglas-Parkhill/dp/0201057204. The Challenge of the Computer Utility.
Addison-Wesley Educational Publishers Inc. US, 1966.

[97] Pastor, Oscar, España, Sergio, Panach, José Ignacio, and Aquino, Nathalie.
“Model-driven development”. In: Informatik-Spektrum 31.5 (2008), pp. 394–
407.

[98] PBXL. Cloud computing services. (Date last accessed April 15, 2018). url:
http://pbxl.co.jp/en/saas-paas-iaas/.

[99] Petcu, Dana, Macariu, Georgiana, Panica, Silviu, and Crăciun, Ciprian. “Portable
cloud applications?from theory to practice”. In: Future Generation Computer
Systems 29.6 (2013), pp. 1417–1430.

[100] Pettey, C. “Gartner Says Worldwide Public Cloud Services Market to Grow 18
Percent in 2017.” In: Gartner, Press Release (2017). https://www.gartner.
com/en/newsroom/press-releases/2017-02-22-gartner-says-worldwide-

public-cloud-services-market-to-grow-18-percent-in-2017.

[101] Pivotal. Pivotal Cloud Foundry. (Date last accessed April 15, 2018). url:
https://cloud.spring.io/spring-cloud-cloudfoundry/.

[102] Pivotal. Spring Boot. (Date last accessed April 15, 2018). url: https://

projects.spring.io/spring-boot/.

[103] Pivotal. Spring Cloud-Native. (Date last accessed April 15, 2018). url: https:
//pivotal.io/cloud-native.

[104] Pivotal. Spring cloud native applications. https: // pivotal. io/ spring-
app-framework . (Date last accessed Dec 17, 2018).

[105] Redhat. Hot vs cold deployment. https: // developer. jboss. org/ wiki/
HotVsColdDeployment . (Date last accessed Dec 17, 2018).

[106] RightScale. State of the Cloud Report. Technical Report. RightScale, https:
//www.rightscale.com/press-releases/rightscale-2017-state-of-

the-cloud-report-uncovers-cloud-adoption-trends, 2017.

[107] RightScale. State of the Cloud Report, Date to navigate your multi cloud strat-
egy. Technical Report. RightScale, https://www.rightscale.com/lp/state-
of-the-cloud, 2018.

https://www.oracle.com/cloud/platform.html
http://www.netsuite.com/portal/home.shtml
https://www.amazon.com/Guide-Operating-Systems-Michael-Palmer/dp/1111306362
https://www.amazon.com/Guide-Operating-Systems-Michael-Palmer/dp/1111306362
https://www.amazon.com/Challenge-Computer-Utility-Douglas-Parkhill/dp/0201057204
https://www.amazon.com/Challenge-Computer-Utility-Douglas-Parkhill/dp/0201057204
http://pbxl.co.jp/en/saas-paas-iaas/
https://www.gartner.com/en/newsroom/press-releases/2017-02-22-gartner-says-worldwide-public-cloud-services-market-to-grow-18-percent-in-2017
https://www.gartner.com/en/newsroom/press-releases/2017-02-22-gartner-says-worldwide-public-cloud-services-market-to-grow-18-percent-in-2017
https://www.gartner.com/en/newsroom/press-releases/2017-02-22-gartner-says-worldwide-public-cloud-services-market-to-grow-18-percent-in-2017
https://cloud.spring.io/spring-cloud-cloudfoundry/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://pivotal.io/cloud-native
https://pivotal.io/cloud-native
https://pivotal.io/spring-app-framework
https://pivotal.io/spring-app-framework
https://developer.jboss.org/wiki/HotVsColdDeployment
https://developer.jboss.org/wiki/HotVsColdDeployment
https://www.rightscale.com/press-releases/rightscale-2017-state-of-the-cloud-report-uncovers-cloud-adoption-trends
https://www.rightscale.com/press-releases/rightscale-2017-state-of-the-cloud-report-uncovers-cloud-adoption-trends
https://www.rightscale.com/press-releases/rightscale-2017-state-of-the-cloud-report-uncovers-cloud-adoption-trends
https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud

164

[108] Rimal, Bhaskar Prasad, Choi, Eunmi, and Lumb, Ian. “A taxonomy and survey
of cloud computing systems”. In: INC, IMS and IDC, 2009. NCM’09. Fifth
International Joint Conference on. IEEE, https://ieeexplore.ieee.org/
document/5331755. 2009, pp. 44–51.

[109] Rumbaugh James, Ivar Jacobson Grady Booch. Unified modeling language
reference manual. Pearson Higher Education, https://www.amazon.com/

Unified - Modeling - Language - Reference - paperback / dp / 032171895X,
2004.

[110] SalesForce CRM. (Date last accessed April 15, 2018). 1998. url: https://
www.salesforce.com/crm/.

[111] Schlossnagle, Theo. Scalable internet architectures. https://www.oreilly.
com / library / view / scalable - internet - architectures / 0768666767/.
Sams, 2006.

[112] Siegele, Ludwig. Let it rise: A special report on corporate IT. Special report.
The Economist, https://www.economist.com/special-report/2008/10/
23/let-it-rise, 2008.

[113] Sommerville. Software Engineering (10th Edition). AddisonWesley, https :

/ / www . pearson . com / us / higher - education / program / Sommerville -

Software-Engineering-10th-Edition/PGM35255.html, 2015.

[114] Spring Cloud Foundry. (Date last accessed April 15, 2018). url: https://
cloud.spring.io/spring-cloud-cloudfoundry/.

[115] Sullivan, Arthur and Sheffrin, Steven M. Economics: Principles in action.
Pearson Prentice Hall, https://www.amazon.com/Economics-Principles-
Action-Arthur-OSullivan/dp/0131334832, 2003.

[116] Sun, Wei, Zhang, Xin, Guo, Chang Jie, Sun, Pei, and Su, Hui. “Software
as a service: Configuration and customization perspectives”. In: Congress on
Services Part II, 2008. SERVICES-2. IEEE. IEEE, https://ieeexplore.
ieee.org/document/4700495. 2008, pp. 18–25.

[117] Tsai, Wei-Tek, Huang, Yu, and Shao, Qihong. “Testing the scalability of SaaS
applications”. In: Service-Oriented Computing and Applications (SOCA), 2011
IEEE International Conference on. IEEE, https://ieeexplore.ieee.org/
document/6166245/. 2011, pp. 1–4.

[118] Tsai, WeiTek, Bai, XiaoYing, and Huang, Yu. “Software-as-a-service (SaaS):
perspectives and challenges”. In: Science China Information Sciences 57.5
(2014), pp. 1–15.

[119] Turilli, Matteo, Vaccaro, Antonino, and Taddeo, Mariarosaria. “Internet neu-
trality: Ethical issues in the internet environment”. In: Philosophy & Technol-
ogy 25.2 (2012), pp. 133–151.

[120] Turner, Mark, Budgen, David, and Brereton, Pearl. “Turning software into a
service”. In: Computer 36.10 (2003), pp. 38–44.

https://ieeexplore.ieee.org/document/5331755
https://ieeexplore.ieee.org/document/5331755
https://www.amazon.com/Unified-Modeling-Language-Reference-paperback/dp/032171895X
https://www.amazon.com/Unified-Modeling-Language-Reference-paperback/dp/032171895X
https://www.salesforce.com/crm/
https://www.salesforce.com/crm/
https://www.oreilly.com/library/view/scalable-internet-architectures/0768666767/
https://www.oreilly.com/library/view/scalable-internet-architectures/0768666767/
https://www.economist.com/special-report/2008/10/23/let-it-rise
https://www.economist.com/special-report/2008/10/23/let-it-rise
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html
https://cloud.spring.io/spring-cloud-cloudfoundry/
https://cloud.spring.io/spring-cloud-cloudfoundry/
https://www.amazon.com/Economics-Principles-Action-Arthur-OSullivan/dp/0131334832
https://www.amazon.com/Economics-Principles-Action-Arthur-OSullivan/dp/0131334832
https://ieeexplore.ieee.org/document/4700495
https://ieeexplore.ieee.org/document/4700495
https://ieeexplore.ieee.org/document/6166245/
https://ieeexplore.ieee.org/document/6166245/

165

[121] Umble, Elisabeth J, Haft, Ronald R, and Umble, M Michael. “Enterprise re-
source planning: Implementation procedures and critical success factors”. In:
European journal of operational research 146.2 (2003), pp. 241–257.

[122] Utterback, James. “The dynamics of innovation”. In: Harvard Business School
Press, Boston (1994). https://www.amazon.com/Mastering- Dynamics-

Innovation-James-Utterback/dp/0875847404.

[123] Vaquero, Luis M, Rodero-Merino, Luis, and Buyya, Rajkumar. “Dynamically
scaling applications in the cloud”. In: ACM SIGCOMM Computer Communi-
cation Review 41.1 (2011), pp. 45–52.

[124] Varia, Jinesh. “Architecting for the cloud: Best practices”. In: Amazon Web
Services, https: // d1. awsstatic. com/ whitepapers/ AWS_ Cloud_ Best_
Practices. pdf ().

[125] Wu, Shiliang, Wortmann, Hans, and Tan, Chee-wee. “A pricing framework for
software-as-a-service”. In: Innovative Computing Technology (INTECH), 2014
Fourth International Conference on. IEEE, https://ieeexplore.ieee.org/
document/6927738/. 2014, pp. 152–157.

[126] Yahoo Inc. Yahoo Mail. (Date last accessed April 15, 2018). 1996. url: https:
//mail.yahoo.com.

[127] Zoho. http://zoho.com. (Date last accessed Dec 17, 2018).

https://www.amazon.com/Mastering-Dynamics-Innovation-James-Utterback/dp/0875847404
https://www.amazon.com/Mastering-Dynamics-Innovation-James-Utterback/dp/0875847404
https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://ieeexplore.ieee.org/document/6927738/
https://ieeexplore.ieee.org/document/6927738/
https://mail.yahoo.com
https://mail.yahoo.com

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Cloud Computing
	History and Evolution
	Deployment Models
	Service Delivery Models
	Cloud Providers
	General Benefits of Cloud Computing
	Challenges, Barriers and Risks
	Impact on Hardware Business
	Cloud Adoption

	Software Architecture
	Software Product Lines

	Literature Review and Related Work
	Design Models of Cloud Applications
	Application's Clients
	Cloud vs Traditional On-premise Applications
	Design and Architecture of Cloud Applications
	Monolithic Applications Architecture
	Service-Oriented Architecture
	Microservices Architecture
	Cloud-Native Applications

	Main Characteristics of Cloud Applications
	DevOps and Cloud Applications Development Process
	Benefits of Cloud Applications
	Challenges of Cloud Applications
	Strategy for Moving to the Cloud and Customer's Motivation
	Industry-based Related Work
	Related Work Discussion

	Framework Overview
	High-level Overview
	High-level Architecture
	Significance
	Features and Characteristics
	Technology

	Design, Architecture, and Implementation
	Framework Architecture
	Libraries and APIs
	App Logic Services
	Cross-cutting Services
	Platform Apps (Clowiz Platform)
	Database Design

	Framework User-Interface
	Framework Implementation

	Case Study: Publication Management System
	PMS Overview
	Implementation
	Create PMS Application
	Design PMS App
	Design PMS Pages
	PMS Prview
	Download PMS Source Code
	Import PMS Project into IDE
	Launch PMS Locally

	PMS Deployment to the Cloud

	Evaluation and Discussion
	User Study
	Participants
	Methodology

	Results and Discussion
	PMS Results and Evaluation
	Users Study Results

	Discussion

	Conclusion and Future Work
	Research Question Revisited
	An Overall Characterization of Smart-Cloud
	Cloud Computing
	Concluding Remarks and Future Work
	Appendix
	User Manual
	Introduction
	Home
	Authentication App
	Sign Up
	Reset Password
	Log In

	CodeGen App
	CodeGen Metadata
	Fields Data Types
	Technologies

	FeatureGen App
	FeatureGen Metadata
	Fields Data Types
	FeatureGen Technology
	Feature Page Preview
	FeatureGen Generated Code

	AppGen App
	App Manager
	App Designer
	Page Designer

	Excerpts from Source Code
	Clowiz Full Questionnaire
	Bibliography

