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Abstract

This work is a focused contribution to decentralized auction mechanisms in mar-

kets driven by autonomous, dynamically interacting nodes. These markets are char-

acterized by strategic interactions, limited information, and fluctuating competition.

Traditional auction models, such as the Second Price Auction, encourage truthful

bidding but often assume centralized control, which is impractical in decentralized

settings. To address this gap, we propose some extension to the Progressive Second-

Price (PSP) auction, a mechanism that allows nodes to iteratively adjust bids based

on local information from neighboring nodes.

This work develops a dynamic framework for decision-making processes in de-

centralized environments, utilizing a game-theoretic approach. By process, we define

a subset of right-continuous, left-limited (cadlag) valuation functions used in order to

model deterministic events.

Our framework represents strategies as a finite set of feasible actions, formalized

through buyer–seller interactions on the bipartite graph representing participation,

or the set of active bids, capturing the interdependencies between players within the

network. We introduce a set of mixed strategies defined by probability distributions

over these feasible actions, allowing for the modeling of intelligent decision-making

within dynamic, competitive and alternatively, cooperative environments.

Key contributions include the development of influence sets to capture direct and

indirect network effects on bidding behavior, an opt-out mechanism for strategic exit

based on utility gain, derivations and proofs realizing and validating our extensions

of the original theorems. Finally, we design and implement simulations to support

our claims, allowing for further investigation of the solution space.
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Chapter 1

Introduction

1.1 Motivation

This introductory chapter establishes the foundational motivation and mechanism

design principles for the Progressive Second-Price (PSP) auction framework. It con-

nects the early theoretical groundwork to the later developments in network modeling,

latency analysis, and dynamic PSP systems. We outline the scope of the disserta-

tion and demonstrate continuity in analysis from static equilibrium theory to fully

dynamic decentralized markets.

1.1.1 Overview of Market Dynamics and Distributed Auc-
tions

Decentralized systems such as mobile data sharing markets, bandwidth auctions, and

distributed digital markets present unique challenges in terms of resource allocation.

Nodes dynamically enter and exit these markets, creating continuously changing con-

ditions. Decentralized, agent-based market models often struggle in such dynamic

environments because they assume static participation and global information ac-

cess.

In these distributed markets, auctions are a preferred mechanism for efficiently

allocating resources. Auctions assign resources to nodes who value them most, opti-

mizing overall utility. The Progressive Second-Price (PSP) auction is a strong candi-

date for these dynamic environments due to its iterative bidding and pricing rules.



2

1.1.2 Limitations of Current Auction Mechanisms

Traditional auction models, such as first-price, second-price, and Vickrey-Clarke-

Groves (VCG) auctions, work well in static environments. These models ensure truth-

ful bidding and efficient resource allocation. However, in decentralized and dynamic

markets, these models face significant limitations:

• Lack of Iterative Feedback: Traditional auctions occur in a single round or

in isolated instances, whereas decentralized markets require continuous feedback

loops for nodes to adapt their strategies.

• Fixed Participation: Classical models assume all nodes are present through-

out the auction process, which does not reflect real-world decentralized envi-

ronments where nodes may join or leave the market.

• Real-Time Adjustments: Traditional models struggle to account for real-

time changes in market conditions, leading to inefficient resource allocation in

fast-moving markets.

These limitations necessitate an auction mechanism that not only accommo-

dates dynamic participation but also enables strategic decision-making based on local,

evolving information.

1.2 Objectives and Outline of the Dissertation

The main objective of this dissertation is to enhance the Progressive Second-Price

(PSP) auction mechanism by introducing a new, innovative framework, thus address-

ing the limitations of traditional auction models in dynamic, decentralized markets.

These innovations aim to improve efficiency, stability, and strategic depth in auction

environments where autonomous nodes make rational decisions using information

from the dynamically changing environment, i.e. environments where autonomous

nodes make decisions based on limited, time-sensitive information.
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We demonstrate the ability to incorporate complex mathematical tools to extend

the capabilities of auction models. The enhanced PSP auction will be applied to

various contexts, such as bandwidth allocation, decentralized finance, and peer-to-

peer data markets, while incorporating game theory, network economics, and iterative

feedback mechanisms.

Chapter 2 provides a comprehensive overview and establish theoretical founda-

tions that align with the subsequent [12], [10], and [11] results. The foundational

work on PSP mechanisms gives the structure and support for our transition to multi-

auction and latency analyses. We provide a comprehensive overview of the theories

foundational to this research, beginning with core concepts in network theory, in-

cluding network structures, message transmission, and utility optimization. These

basics set the stage for a deeper exploration of auction theory, from traditional auc-

tion formats (English, Dutch, and second-price auctions) to advanced mechanisms like

Vickrey-Clarke-Groves (VCG) auctions, emphasizing their role in promoting incentive

compatibility and addressing computational challenges.

We introduce our focus: progressive, iterative auction models. A detailed review

of the Progressive Second-Price (PSP) auction by Lazar and Semret, first presented

in 1999, is given, particularly as it pertains to the real-time, decentralized contexts

explored in this dissertation. By examining market dynamics and pricing strate-

gies—such as equilibrium pricing and demand-based pricing models. The chapter

illustrates how PSP auctions manage adaptive bidding and resource allocation in

changing environments.

Additional sections delve into various network representations, including time se-

ries, graph theory, and ecological models, which provide tools for analyzing dynamic

interactions within auction settings. Applications of mean-field theory and potential

games allow for stability analysis in large systems. Game theory concepts, particu-

larly Nash equilibrium, potential games, and fixed-point theorems, are discussed as

frameworks for understanding auction stability and strategic behavior among partic-

ipants. Graph theoretical tools and sphere of influence (SOI) graphs are introduced
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as methods for analyzing network stability and interdependencies. Finally, decision

theory in ecological models inspire our modeling of adaptive behavior in networked

markets, offering a perspective on how participants optimize resource allocation under

uncertainty.

Chapter 3 will outline the motivation for developing adaptive auction mechanisms

in decentralized markets and the main challenges faced.

Chapter 4 will discuss the opt-out function and the persistence of the existing

Nash equilibrium in the context of a real-world scenario, the Hong Kong Mobile Data

Exchange Market. We will test the PSP mechanism in this networked environment.

We will analyze the outcomes of the simulations, focusing on metrics such as conver-

gence relative to network connectivity and the role of network topology.

Chapter 5 will refine and define the Nash Equilibrium from Chapter 4, expanding

the ITNG (2021) [12] analytical framework that modeled fully connected, noncoop-

erative markets. This chapter revisits the secondary data exchange market example,

illustrating how elasticity of supply and demand shapes the PSP mechanism and

supports equilibrium formation. It provides a bridge from the foundational single-

auction environment to the multi-auction, graph-theoretic interpretation explored in

later chapters.

Chapter 6 transitions from single-market equilibrium models to network-based

analysis. It introduces a bipartite structure that connects buyers and sellers through

multiple overlapping auctions and presents the projection-based influence framework

on the active bid set. This section defines the graph-theoretic concept of partial

orders, saturation over influence sets that emerge naturally from the PSP formulation,

linking the earlier equilibrium results to partial orders on bid prices that govern

allocation, market shifts, and demonstrates the emergence of saturated one-edge shells

(BFS-sets of bipartite connectivity).

Chapter 7 examines how message delays and random initial bids influence the for-

mation of ϵ-Nash equilibria under truthful ϵ-best replies. It introduces asynchronous

bid updates and bounded delay mechanisms that explain how latency and initializa-
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tion noise shape convergence and predictability in decentralized PSP markets. This

chapter refines the understanding of temporal asynchronicity.

Chapter 8 extends the PSP mechanism into a fully dynamic multi-auction sys-

tem. It introduces bounded participation across concurrent auctions and generalizes

the exclusion–compensation principle to a global setting, revealing how aggregate ex-

ternalities can be expressed as price–ordered compositions of local market staircases.

Chapter 9 will present our conclusions, highlighting key findings on market sta-

bility, influence sets, and dynamic participation, and demonstrate our test case eval-

uations. We determine the potential applications of the PSP model in wireless and

vehicular networks, mobile data and other consumable resource exchanges, and the

associated decentralized financial markets and distributed systems, emphasizing the

interdisciplinary potential of the enhanced PSP mechanism, and highlight the impli-

cations of our results for efficient resource allocation in decentralized and dynamic

markets.

Finally, we outline future research directions to extend this work, increasing the

resilience of auction models by using adaptive techniques responsive to noise and

imperfect environments.
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Chapter 2

Background and Review of the
Literature

This chapter provides the necessary background to understand the theories and mod-

els that inform the research in this dissertation. We explore foundational auction

theory, game theory, network economics, and various modeling approaches essential

for understanding decentralized auction mechanisms.

2.1 Introduction and Definitions

2.1.1 Transform from Message-Passing Network Constraints
to Optimal Solutions

This subsection establishes the link between classical message-passing optimization

and the Progressive Second-Price (PSP) auction framework. In PSP markets, itera-

tive updates to bids, prices, and allocations correspond directly to variable updates

in message-passing algorithms. Each buyer–seller interaction can be viewed as a step

towards equilibrium, where local information exchange replaces global coordination.

Convergence of the iterative updates represents the formation of network equilib-

rium under the PSP mechanism, showing how distributed optimization techniques

naturally extend to decentralized market behavior.

To transform from message-passing network constraints to optimal solutions, we

first identify the problem. Familiar network problems that have seen a considerable

amount of research are capacity planning and scheduling; each problem type requires a
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different type of optimal solution, and therefore optimization algorithms will perform

a search in the associated space of possible solutions. We implement the algorithm by

iteratively updating variables and ensuring updates respect network constraints. In

this way, we solve for the constraints, and our transform reveals our optimal solution.

The game-theoretic implications of auction mechanisms allow for robustness,

efficiency, and scalability in achieving optimal solutions. With the advancement of

technology, network links are more intelligent, and able to act independently, reducing

the need for centralized control and so considerable research has been towards the

goal of designing a mechanism suitable for real-time applications in modern networked

systems. Networks are growing in their availability, complexity and we are dealing

with an astonishing decrease in the heterogeneity of link type and ability.

2.1.2 Criteria for Optimal Message Transmission

Optimal message transmission in networks is about ensuring that messages reach

their destination in the most effective way. The criteria can vary depending on the

network’s goals and constraints.

Latency Minimization: Latency minimization in communication networks re-

flects responsiveness in decentralized PSP auctions, where faster bid propagation

and information exchange improve market convergence and stability. Efficient com-

munication supports convergence to equilibrium in PSP markets.

Latency minimization is concerned with reducing end-to-end delay; critical in

applications where real-time responsiveness is essential, such as video conferencing,

online gaming, and automated control systems. Latency minimization ensures that

messages are transmitted as quickly as possible, which can be particularly challenging

in decentralized networks.

Energy-Efficiency: In decentralized PSP networks, energy-efficiency can be inter-

preted as a cost-efficiency tradeoff. Nodes seek to conserve their computational and

communication resources while continuing to participate strategically in the market.
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In networks with limited power resources (e.g., wireless sensor networks), min-

imizing energy consumption during message transmission is vital. Energy-efficient

routing protocols reduce the number of transmissions, use lower-power nodes, or ad-

just transmission power to conserve energy without compromising reliability.

Reliability Measures: Reliability focuses on ensuring that messages are delivered

accurately, even in the presence of potential failures. Fault tolerance is particularly

crucial in networks with high churn or intermittent connectivity (e.g., ad hoc or

peer-to-peer networks), where optimal message transmission includes mechanisms for

retransmission, redundancy, or error correction.

Load Balancing: Distributing traffic evenly across the network helps prevent con-

gestion and ensures no single node or link is overloaded. This is particularly relevant

in mesh and peer-to-peer networks where nodes may have different capacities and

routes can be dynamically adjusted to balance the load.

Scalability and Performance: In large-scale networks, optimal message transmis-

sion should not only work well for a small number of nodes but should scale effectively

as more nodes join. Scalability considerations ensure that transmission performance

(like latency and throughput) remains consistent as the network grows.

Cost Minimization: For networks with associated costs (e.g., cellular networks

where users pay for data usage), cost minimization is an important criterion. Optimal

message transmission, in this case, aims to achieve desired performance levels (e.g.,

low latency or high reliability) while keeping costs as low as possible.

2.1.3 Other Network Optimization Problems

Network optimization encompasses a wide range of problems aimed at improving

the performance and efficiency of communication systems. While optimal message

transmission focuses on the real-time movement of data through a network, other
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areas such as capacity planning and scheduling address broader infrastructure and

resource management challenges. These complementary problems operate at different

layers of the network, collectively ensuring efficient and reliable communication.

Capacity Planning for Network Resources: Capacity planning focuses on en-

suring the network has sufficient resources (e.g., bandwidth, storage, processing power)

to handle anticipated traffic volumes. While capacity planning is about provisioning

resources in advance, optimal message transmission is more concerned with efficiently

using the existing capacity at any given moment. Capacity planning deals with the

broader infrastructure setup, whereas message transmission tackles real-time or near-

real-time data flow within those constraints. Optimal message transmission depends

on effective capacity planning, as having insufficient capacity can lead to network

congestion and degraded performance. However, they are distinct because capac-

ity planning does not involve the actual routing or transmission protocols, focusing

instead on high-level resource allocation.

Scheduling Problems in Networks: Scheduling ensures that network resources

(e.g., CPU time, bandwidth) are allocated to different tasks or data flows in a way that

meets specific performance goals, such as fairness or priority handling. Scheduling

determines the order and timing of data transmission but doesn’t directly address the

methods for transmitting messages across the network. Optimal message transmission

focuses on the mechanics of data delivery, such as selecting the best routes or adjusting

transmission parameters, rather than deciding which messages go first. Effective

scheduling supports optimal message transmission by organizing data flows to reduce

contention and improve access to shared resources. However, they operate at different

layers: scheduling often works at the data-link or transport layer, while message

transmission can involve network-layer routing and link-layer transmission protocols.
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2.1.4 Understanding Network Equilibrium

In networked environments, equilibrium represents a state where nodes (or partici-

pants) achieve a stable balance between their objectives, constraints, and available

resources. Network equilibrium emerges from the interaction of several key factors:

utility, cost, phase, and valuation. Each node seeks to maximize its utility, which

is often influenced by its valuation of network resources, while managing the costs

associated with resource usage. Phases within network operations introduce tem-

poral dynamics, adding complexity to decision-making processes and impacting how

equilibrium is maintained over time. Together, these elements create a dynamic envi-

ronment where nodes adjust strategies to reach a state of optimal resource allocation,

balancing individual needs with network-wide efficiency.

Utility Measure: Utility represents the level of satisfaction or benefit that a node

(or participant) gains from participation. It is a measure of how valuable a certain

outcome or resource allocation is to an individual participant. Utility is central to

determining equilibrium in networked environments. Each node’s goal is typically to

maximize its utility, which might involve achieving lower latency, greater bandwidth,

or better reliability.

Cost of Network Resources: Cost refers to the resources that a node expends to

achieve its desired utility. This could include monetary costs, energy consumption,

processing power, or other resources needed for transmission and reception. Cost

is often what constrains a node’s actions within the network. In equilibrium, nodes

seek a balance between maximizing utility and minimizing cost, leading to an efficient

allocation of resources. High costs can discourage certain network behaviors, push-

ing nodes toward an equilibrium where only beneficial or resource-efficient activities

occur. Lowering cost often requires sacrificing some utility.
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Phase in Networked Auctions: Each phase can be explicitly associated with

the auction iteration variable, such as time step t or iteration count n, in the PSP

mechanism. Here, a phase represents a dynamic bid–response cycle in which buyers

and sellers update their strategies, prices, and allocations. This connection between

temporal phases and discrete iterations clarifies how equilibrium evolves through suc-

cessive PSP updates, making each phase a measurable component of convergence

behavior.

The balance between utility and cost shapes the stability and sustainability of

network behavior over time. The market will experience shifts as nodes adjust their

strategies, attempting to sustain equilibrium. We may use the term phase to refer

to this dynamic behavior. In networked auctions or dynamic networks, phase can

refer to different stages or time intervals within the network’s operation, often linked

to bidding rounds, decision-making points, or transmission cycles. Phase is crucial

for understanding how equilibrium evolves over time in dynamic networks. Each

phase may represent a temporary equilibrium point or an adjustment period as nodes

respond to new information, alter strategies, or update bids.

Equilibrium Shifts in Multi-Phase Environments: Equilibrium can shift as

nodes transition from one phase to another, particularly in auctions where each phase

might introduce new bids or changes in network topology. In multi-phase, or iterative

systems, nodes face trade-offs related to timing and decision-making. For example,

acting early in a phase might lead to favorable bids or access to resources, while

waiting until a later phase could offer more information but at a higher cost or

reduced utility. Phased interactions introduce temporal dynamics that can affect

strategy and equilibrium stability, as nodes must consider not only their immediate

utility and cost but also may construct potential strategies, and remember previous

strategies for themselves, and other players.

An equilibrium is achieved when nodes’ bids, reflecting their valuations, bal-

ance resource supply and demand. Nodes must balance their valuation against their
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willingness to incur costs, potentially adjusting their valuations based on resource

availability, competition, or budget constraints.

Valuation of Networked Nodes: In PSP frameworks, valuation can be formalized

through elastic demand functions θi and their derivatives θ′i, which represent each

node’s marginal valuation of resources. These functions define how a node evaluates

additional allocation or cost and directly informs its bidding behavior and strategy

updates. By grounding valuation in θi and θ′i, we connect the perceived worth of

network resources to a quantitative measure that governs PSP dynamics, making

valuation the core of each node’s strategic decision-making.

Finally, valuation refers to the perceived worth or value that a node assigns to

a specific resource or service within the network. In auctions, valuation typically

reflects how much a node is willing to pay or trade for a resource, such as bandwidth,

processing power, or data storage. Valuation is fundamental to the bidding process

and directly influences equilibrium outcomes in auction-based networks. Each node’s

valuation affects its bid and strategy, as nodes aim to secure resources at prices

that align with their valuations. High valuation for a scarce resource might lead to

aggressive bidding, while low valuation might result in a node opting out of certain

auctions or negotiations. Valuation can change dynamically.

Reliability Protocols: Reliability protocols in networked environments are often

designed to tolerate faults probabilistically, balancing between high availability and

resource constraints [75, 84]. Vosoughi et al. (2016) explore fault tolerance in large-

scale networks, noting that protocol reliability can be augmented through redundancy

and error-checking, though at the expense of additional resources. These consid-

erations are particularly relevant to dynamic market environments, where network

conditions and participant availability may change rapidly.
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2.2 Auction Theory Foundations

2.2.1 Auction Mechanisms and Their Evolution

Auction mechanisms have evolved from traditional formats, such as English and

Dutch auctions, to more complex models designed for specific strategic and economic

outcomes. In an English auction, bids increase incrementally, with the highest bid

winning, while a Dutch auction decreases the price until a bidder accepts, both

offering straightforward bid placement and winner determination strategies. These

types are widely used but are limited by their centralized and synchronous nature.

2.2.2 Introduction to Auction Theory

First-Price and Second-Price Auctions In a first-price auction, the highest

bidder wins and pays their bid. In a second-price auction, the highest bidder also wins,

but pays the second-highest bid. This crucial distinction impacts bidding strategies:

while first-price auctions encourage strategic underbidding.

Second-price auctions, pioneered by Vickrey [83], allow the highest bidder to pay

the second-highest bid, incentivizing truthful bidding, as paying the second-highest

price minimizes the need for strategic manipulation. This auction type supports

fair pricing but faces challenges in dynamic and decentralized environments where

information and timing constraints can hinder optimal bidding [19, 51].

Vickrey-Clarke-Groves (VCG) Auctions VCG auctions generalize the second-

price auction to multi-unit or multi-item settings, ensuring truthful bidding by max-

imizing social welfare. The incentive compatibility of VCG auctions arises from the

design that aligns individual interests with group efficiency, making them optimal for

resource allocation in complex environments.

The VCG auction extends second-price principles to multi-item auctions, opti-

mizing social welfare by encouraging truthful bidding across participants [24, 32].

However, VCG mechanisms can be computationally intensive and vulnerable to col-
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lusion, especially in large, decentralized networks. These limitations have led to

the development of alternative mechanisms better suited to dynamic and distributed

markets.

These challenges motivated the development of distributed mechanisms such as

the Progressive Second-Price (PSP) auction [45, 70], which retains the incentive-

compatible structure of Vickrey-type mechanisms while enabling iterative updates

through local communication. PSP provides a bridge between static VCG principles

and dynamic networked markets, forming the foundation for the decentralized model

explored in this dissertation.

2.3 Auction Mechanisms in Decentralized and Net-

worked Markets

2.3.1 Challenges in Decentralized Markets

In decentralized systems, such as mobile data sharing or bandwidth auctions, par-

ticipants lack access to global information and must base decisions on local, often

incomplete, data. This introduces challenges in designing auction mechanisms that

can effectively aggregate dispersed information.

2.3.2 Auction Design in Networked Markets

Auction design in networked markets involves creating mechanisms that allocate re-

sources efficiently while accounting for the decentralized and dynamic nature of these

environments. Unlike traditional auctions, networked markets require mechanisms

that adapt to changing supply and demand, manage interdependencies among par-

ticipants, and ensure fairness and efficiency under constraints such as limited in-

formation and asynchronous decision-making. Progressive auction mechanisms have

address these challenges by enabling iterative bidding and local adaptation. This

section explores key principles of auction design, emphasizing the role of network

structure, strategic interactions, and stability in creating robust and efficient market
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systems.

2.3.3 Introduction to the Progressive Second-Price (PSP)
Mechanism

Shivkumar Kalyanaraman Semret’s doctoral thesis, “Market-Based Resource Alloca-

tion and Pricing for Dynamic Spectrum Access in Wireless Networks”, published in

1999, was a pioneering contribution to the field of decentralized resource allocation.

His work introduced the Progressive Second-Price (PSP) auction as a mechanism

for achieving efficient and fair allocation of resources in dynamic, distributed net-

works. This thesis laid the foundation for integrating market-based principles into

network optimization, emphasizing decentralized decision-making and adaptability,

which have become crucial in modern auction and network models [73].

Progressive auctions allow participants to adjust their bids iteratively over multi-

ple rounds. This iterative process is crucial in environments where nodes progressively

learn about other bids, adjusting their strategies based on emerging information [45].

Lazar and Semret’s Progressive Second-Price (PSP) auction extends the second-price

auction to an iterative, decentralized framework, emerging as a distributed extension

of the Vickrey and VCG principles that form the foundation of modern mechanism

design. Designed for decentralized networks, the PSP auction allocates an infinitely

divisible resource efficiently and fairly among multiple users by allowing each partic-

ipant to submit bids independently at each network link [45, 51]. This structure is

particularly suitable for networks with variations in demand and availability [73].

Valuation and Elastic Demand in the PSP Mechanism: Elastic demand

refers to the idea that a user’s valuation of a resource decreases as the quantity

of the resource they receive increases. This property encourages users to adjust bids

according to their diminishing returns, fostering stable bidding behavior in PSP auc-

tions [1].

In the PSP auction, each player i submits a bid si = (qi, pi), where, qi is the
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quantity of the resource the player desires; pi is the unit price the player is will-

ing to pay. This decentralized bidding approach allows each participant to react to

changes in other bids dynamically, promoting a stable equilibrium through iterative

adjustments [45].

Allocation of Resources in the PSP Mechanism: The allocation rule defines

how resources are distributed based on bids. For a given bid profile s = (s1, s2, . . . , sI),

the allocation ai(s) for player i is given by:

ai(s) = qi ∧Qi(pi; s−i)

where Qi(pi; s−i) represents the maximum available quantity at a bid price of pi,

considering the bids of other players [45].

Cost and Utility in the PSP Mechanism: The cost to player i is:

ci(s) =
∑
j ̸=i

pj [aj(0; s−i)− aj(si; s−i)]

and their utility is given by the quasi-linear function:

ui(s) = ϕi(ai(s))− ci(s)

where ϕi(ai(s)) is the valuation function for the allocated resource.

Each expression introduced above has a direct interpretation: the cost function

represents the social opportunity cost of a participant’s actions, while the utility func-

tion is quasi-linear in allocation, illustrating how each bidder’s valuation translates

into measurable surplus.

Equilibrium of the PSP Mechanism: A Nash equilibrium in the PSP auction is

a bid profile s∗ such that no player can unilaterally improve their utility by changing

their bid [73]. The PSP mechanism promotes incentive compatibility by aligning each

player’s strategy with their true valuation, ensuring truthful bidding and stability [1].
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At equilibrium, the allocation maximizes the total user value:
∑I

i=1 ϕi(ai(s
∗)),

ensuring that resources are allocated efficiently to those who value them the most.

The PSP auction mechanism addresses the unique challenges of decentralized

resource allocation by promoting truthful bidding, efficient allocation, and stabil-

ity. Its design leverages elastic demand, allowing the allocation and price to adjust

dynamically to reflect each participant’s marginal valuation of resources. The PSP

auction’s iterative nature and incentive-compatible structure make it ideal for net-

works with variable demand and resource constraints, ensuring both individual utility

maximization and overall efficiency [45, 51, 73].

These foundational PSP rules provide the basis for the extended mechanism de-

veloped in this dissertation. The introduction of influence sets, dynamic participation,

and graph-based connectivity generalizes PSP to networked markets where interac-

tions evolve iteratively over time, linking auction equilibrium to network equilibrium.

2.4 Markets and Pricing in Network Auctions

2.4.1 Market Clearing and Equilibrium Pricing

In network auctions, achieving market-clearing, where the quantity of resources sup-

plied matches the quantity demanded, can be essential for reaching equilibrium. Pro-

gressive auction models, such as the PSP mechanism, enable these market-clearing

prices by iteratively adjusting bids based on real-time demand, given by a numerical

study by Maillé et al. [51]. By allowing prices to adapt dynamically, the iteration

converges to an efficient allocation of resources even in unstable market situations.

Similar principles apply in supermarket games, where equilibrium is reached as users

strategically select resources to balance load and minimize costs in a decentralized

environment [89].

These are demand-based pricing models, and support this equilibrium by using

elasticity to adjust prices according to demand shifts. For example, as discussed

by Morris and Semret, elasticity captures how a user’s valuation changes with the
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quantity of resource received, encouraging fairer distribution in decentralized networks

where resource needs vary [59, 73].

Delenda, Maillé and Tuffin [26] build directly on Lazar and Semret’s 1999 PSP

framework by addressing the one remaining free parameter in the model — the reserve

price. They demonstrate that while PSP guarantees convergence, efficiency, and

incentive compatibility, the seller’s minimum acceptable price crucially determines

revenue and market clearing. Their key contribution is a concavity proof showing

that the expected revenue is concave under mild assumptions on user demand. This

means the reserve price can be optimized by simple numerical methods, allowing PSP

markets to balance efficiency with revenue maximization.

2.4.2 Dynamic Pricing, Queueing, and Resource Allocation

In PSP markets, queueing and dynamic pricing behaviors map naturally onto iterative

bid–response cycles. Each PSP iteration can be viewed as a queue update, where

latency represents the delay in bid propagation and response. As buyers adjust bids

and sellers update reserve prices, the system behaves like a queue reaching steady

state–we see how congestion or waiting time corresponds to delayed convergence.

Dynamic pricing and queueing theory work hand-in-hand in network auctions,

particularly for optimizing resource allocation in environments where demand fluctu-

ates. Queueing models allow researchers to examine the effects of resource congestion,

waiting times, and the availability of resources in real-time, which can directly impact

auction outcomes. For instance, by modeling queue lengths and service times, queue-

ing theory helps in determining how pricing adjustments can alleviate congestion,

thus ensuring that resources are distributed efficiently in high-demand scenarios [40].

Simulation-based approaches to dynamic pricing allow researchers to model com-

plex, decentralized interactions, as Morris demonstrates in the context of evolving

market conditions [59]. These simulations are particularly relevant in multiuser cog-

nitive radio networks, where game-theoretic models such as supermarket games have

been used to optimize resource allocation and address the challenges of real-time
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competition for limited bandwidth [1, 49, 89].

Competitive pricing models in network auctions also consider inefficiencies that

can arise from Nash equilibria, as described by Niyato and Tasnadi [63, 80]. These

models analyze how competitive dynamics influence price stability and resource allo-

cation, highlighting that equilibrium prices may not always align with optimal out-

comes. This misalignment led to research towards the design of pricing mechanisms

that minimize inefficiencies in decentralized networks, and a large field of study that

considers the transformation between decentralized network constraints and global

optimization; for example, mean-field theory. In large-scale PSP systems, mean-

field theory approximates the aggregate behavior of numerous agents as individual

influence diminishes, allowing macro-level analysis of equilibrium and convergence

dynamics.

2.5 Representations and Models

2.5.1 Time Series and Event Ordering

Time series models are crucial for understanding how information propagates across

a network, which directly impacts the convergence of distributed algorithms. In

systems where rigid intervals or discrete events create discontinuities, time series

models enable precise tracking of these sequences, as shown in Lamport’s work on

logical clocks [44]. Effective time series analysis can guide the design of algorithms

for network auctions by accounting for delays in information propagation, ultimately

influencing convergence behavior.

2.5.2 Dynamic Models and Difference Equations

Population Dynamics: Dynamic models provide a foundation for analyzing inter-

actions within networked systems, where population dynamics and ecological models

can serve as analogs for competitive market systems. In network auctions, models

such as the Lotka-Volterra equations illustrate competition and resource allocation,
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framing interactions between bidders as analogous to predator-prey relationships [15].

These dynamics capture how strategies within an auction adapt over time, where com-

petition for resources mirrors ecological interdependencies, and understanding these

patterns supports efficient market design.

Building on population dynamics, phase dynamics allow us to design algorithms

around binary analogs—such as supply and demand or cost and utility. By modeling

systems as converging to fixed points along 45◦ lines, phase dynamics highlight the

underlying stability in competitive interactions, much like the equilibrium between op-

posing forces in markets [78]. This analogy extends to autonomous decision-making,

where nodes strategically adjust behavior to reach optimal outcomes, effectively cre-

ating a balance in market-like environments.

Diffusion Models: The diffusion models from physics provide further insights into

networked markets, particularly in how resources and information spread. Helbing’s

diffusion models describe the movement of particles in physical systems, analogous to

the flow of information or resources within a dynamic market [34]. Here, diffusion can

represent the spread of bidding information or resource availability, with equilibrium

acting as a mixed strategy solution in game-theoretic terms. As information diffuses

through the network, strategies stabilize, leading to an equilibrium where resources

are allocated based on collective demand and individual utility maximization.

Clustering Models: Clustering models based on simplex structures provide frame-

works for understanding phase transformations and equilibrium states in networks [88].

These models are particularly applicable in auction settings with multiple interact-

ing agents where phase shifts occur as strategies converge. Clustering allows us to

observe equilibrium states that emerge as similar strategies group together, forming

clusters of optimal decisions [88, 96]. These models are especially valuable in auctions

with multiple bidders, where equilibrium emerges through phase shifts as strategies

converge. The deterministic nature of simplex structures offers researchers a mecha-
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nism to drive systems toward desired outcomes; clustering creates naturally optimal

allocations.

In cognitive radio ad-hoc networks, flow-based power control enables efficient re-

source allocation by adjusting power levels according to demand [43]. This determin-

istic strategy mirrors the allocation rules in PSP auctions, and reflects game-theoretic

principles where resource allocation adapts efficiently to current needs, providing a

practical analog for designing network auctions that continuously optimize resource

usage.

Each of these dynamic models provides a lens for analyzing various aspects of

network auctions, from equilibrium pricing to resource allocation stability. Their

applications extend beyond traditional networking to capture complex, evolving in-

teractions within auction-based systems.

2.6 Game Theory and Strategic Decision-Making

in Auctions

2.6.1 Game-Theoretic Properties Associated with Network
Constraints

Game-theoretic properties associated with network constraints are essential in under-

standing individual strategies, and how solutions may be designed where the actions of

autonomous nodes have an impact on overall network performance. In network equi-

librium, the modeled constraints interact as nodes strive to maximize utility while

managing costs within a time-phased structure. The equilibrium state is reached

when each node optimally balances its utility and cost in a given phase, with minimal

incentive to change its strategy unless conditions or phases shift. The interactions

form our simple model real-world network dynamics, where nodes continuously adapt

to achieve efficient and sustainable outcomes in the face of changing resources and

competitive pressures.
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Nash Equilibrium: The equilibrium state, defined by Nash [62], is known as a

Nash Equilibrium, is particularly relevant for networks where each node optimizes its

own performance (e.g., minimizing delay, cost, or maximizing throughput) in response

to others’ actions.

Pareto Efficiency: Another important game-theoretic concept is Pareto efficiency.

In networked settings, Pareto efficiency often aligns with optimal resource allocation

and balancing network traffic. It implies a configuration where performance improve-

ments for one user don’t degrade service for others

Efficiency in decentralized decision-making is a measure of strategic selfishness

of individual nodes, and is sometimes characterized as the Price of Anarchy (PoA).

For example, in a routing game, nodes may choose paths that minimize their individ-

ual travel times, leading to congestion. The PoA metric demonstrates the need for

incentives in decentralized auctions, which can help align individual strategies with

overall network performance.

Incentive-Compatibility (Truthfulness): In decentralized auction networks, mech-

anisms like the Progressive Second-Price (PSP) auction incentivize nodes to bid truth-

fully, ensuring that each node’s behavior aligns with the system’s goals without cen-

tralized enforcement. Thus, truthfulness, or incentive-compatibility is an important

goal in networked games. A system is incentive-compatible if every participant max-

imizes their utility by truthfully reporting their preferences or constraints.

Truthfulness allows for nodes to exhibit best-response dynamics. In networks

with auction mechanisms, best-response dynamics describe how each node adapts its

strategy based on others’ strategies. We strive for a socially optimal solution, and

must improve our collective performance. Mechanisms without incentive-compatibility

built-in often require coordination or incentive alignment to achieve similar goals.

As researchers, we are able to measure the aggregate utility of all nodes in the

network. We desire to maximize the social welfare of all participants; our mechanism
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is carefully designed, utilizing these game-theoretic properties which allow nodes to

converge iteratively to an equilibrium by continuously adjusting to local information.

In a decentralized setting, these best-response dynamics allow optimization to oc-

cur organically, with each node contributing to equilibrium stability as best it can

given the information available. In games of partial information, trustfulness is key

in determining dynamic equilibrium, and allows researchers to increase the network

complexity based on the decision-making abilities of intelligent nodes, and the uncer-

tainty inherent in all message-passing schemes.

Feasibility Constraints: Feasibility constraints (e.g., bandwidth limits, process-

ing power) restrict nodes’ possible actions. For auction mechanisms, these resource

constraints are key in finding an equilibrium state. Additional constraints may be

interpreted and added to the financial model; for example, a budget constraint con-

tributing to the equilibrium stability. The number and complexity of the constraints

defines the network problem, and so defines the solution state; the mechanism; the

auction, or game, will converge to the equilibrium solution. These constraints will

determine the existence of a solution, along with the nodes’ individual strategies,

determining how stable the solution will be.

Solution Stability: Stability is especially relevant in dynamic network environ-

ments where nodes may frequently join or leave the network. A stable equilibrium

can handle such fluctuations without significant degradation in performance. Dif-

ferent network types will experience different difficulties in finding and maintaining

equilibrium. We must be careful to determine the actions of our intelligent players,

the strategic decisions made towards the goal of the mechanisms implementation. The

solution of the truthful embedding of the network game is a solution to the game [73].

2.6.2 Nash Equilibrium in Auction Models

Nash equilibrium is a fundamental concept in game theory, representing a state where

no player can benefit by unilaterally changing their strategy given the strategies of
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others [62]. In auction models, Nash equilibrium provides a basis for stable bidding

strategies that align with the overall market conditions. Xu’s work on equilibrium

dynamics in networked systems illustrates how participants adjust bids in response

to neighboring nodes, showing how equilibrium states evolve dynamically in network

auctions as participants seek optimal responses [89]. Best response dynamics are

central to these interactions, as players iteratively adjust their bids based on observed

changes in the network, ultimately converging to a stable equilibrium.

2.6.3 Mean-Field Theory and Potential Games

Introduction to Mean-Field Theory: Mean-field theory approximates interac-

tions in large systems by focusing on a global measure of the behavior of the popula-

tion, rather than on individual actions. In large auction markets or networked envi-

ronments, mean-field theory allows complex systems to be simplified, as the behavior

of each participant becomes part of an aggregate distribution [29]. This approach is

particularly useful in large auctions, where the actions of single bidders have minimal

impact on the collective outcome. In these scenarios, participants’ strategies often

converge to a mean-field equilibrium, representing the system’s overall balance [64].

2.6.4 Application of Mean-Field Theory and Potential Games
in Market Models

Applications of Mean-Field Theory in Auctions and Networked Systems:

Mean-field theory provides a framework for analyzing interactions in large markets

by approximating the aggregate effect of individual behaviors. Supermarket games

apply this theory effectively in decentralized settings, modeling how individual user

strategies impact system-wide resource availability and equilibrium [89]. In spectrum-

sharing scenarios where many users compete for limited resources, Maharjan and

Wang show that mean-field approximations reduce computational complexity by fo-

cusing on average behavior, making it feasible to model decentralized decision-making

at scale [49, 85]. In network resource allocation, this approach allows researchers to
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model complex systems by focusing on the average interaction effect rather than de-

tailed individual strategies. Boualem and Nutz discuss how mean-field models are

especially effective in large-scale decentralized settings, where they simplify the anal-

ysis of market-clearing prices and resource allocation [29, 64]. This theory applies

well to dynamic networks, where decentralized systems benefit from the aggregate

effects captured by mean-field models, providing a framework for predicting market

behavior with less computational overhead.

Potential Games and Auction Stability: Potential games further contribute to

stability in network auctions by aligning individual incentives with an overall potential

function, as explained by Manshaei and Xu [52, 89]. This concept is highly applicable

in cognitive radio and other resource-constrained environments, where mean-field

theory combined with potential games helps to understand how collective behaviors

influence network-wide resource availability and efficiency; efficient resource allocation

is achieved in [85] for spectrum optimization, where consistent allocation results in

better performance. In these games, players’ incentives are structured to naturally

lead towards convergence, with each strategy adjustment contributing to a stable

state [52].

Potential games are particularly applicable to networked auction settings; Xu’s

work on spectrum allocation illustrates how potential games enhance stability in

auctions, as each bidder’s strategy aligns with collective efficiency goals [89].

2.6.5 Fixed-Point Theory and Applications in Network Op-
timization

Fixed-Point Theorems in Optimization: Fixed-point theorems like Brouwer’s

provide the mathematical basis for ensuring equilibrium in optimization problems,

asserting that under specific conditions, a stable allocation will emerge [56, 71]. In

network auctions, these theorems help confirm that equilibrium solutions are achiev-

able, supporting the stability of flow and pricing configurations where participants’
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strategies balance with resource constraints.

Methods for Fixed-Point Solutions: Fixed points in networked systems are

often difficult to compute directly, but tools such as the Krawczyk operator offer

an interval-based approach for locating fixed points within bounded regions [77].

Additionally, projection-like retractions on matrix manifolds, as outlined by Absil,

facilitate efficient optimization for high-dimensional fixed-point problems, supporting

stable configurations in network auctions [2].

Applications to Dynamical Systems and Stability: Iterative methods for find-

ing fixed points play a critical role in analyzing stability in dynamical systems. Domes

and Montanher’s research on iterative methods for feedback systems is relevant here,

as networked auctions often feature feedback loops where each participant’s bid in-

fluences others’ strategies [30, 58]. Smale’s contributions to differentiable dynamical

systems provide further insights into stability in competitive environments, revealing

how equilibria evolve in complex auction settings [79].

2.6.6 Influence of Network Structure on Nash Stability

The structure of a network heavily influences the stability and robustness of Nash

equilibria in auction settings. In highly connected networks, equilibrium can be

reached more quickly as strategies and information spread efficiently. Methods such as

contraction mapping and supermodular games contribute to stabilizing equilibrium

in interconnected environments by leveraging the interdependence among partici-

pants [93]. For instance, Zhang’s application of Stackelberg games shows how leader-

follower dynamics can enhance stability in network optimization, while Maharjan’s

use of potential games and mean-field models highlights the balancing act between

competition and cooperation necessary for achieving robust outcomes in decentral-

ized auctions [49]. Highly connected networks often promote stability by ensuring

that strategic deviations propagate quickly, realigning incentives across participants.

Quint and Shubik’s study illustrates that when vertices interact mainly with local
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neighbors, stability relies on the density of local connections and the structure of

these interactions within the network [72].

2.6.7 From Mechanisms to Matrix Representations

Analyzing stability within networked auctions may also involve representing these

mechanisms within a matrix framework, where methods like the Krawczyk operator

can provide insights into fixed-point stability [77]. While not central to auction de-

sign, stability analysis using operators helps assess equilibrium configurations, but a

more tangible approach involves matrix representations that facilitate decentralized

solutions.

Linear programming techniques, such as the Danzig-Wolfe method, solve for

multi-hop routing problems by optimizing allocation based on matrix fitness ra-

tios [46]. These matrix-based approaches translate auction mechanisms into a struc-

tured format, supporting decentralized solutions that allow each node to optimize

local objectives within a global framework. By combining linear programming with

matrix representations, decentralized systems can achieve optimal allocations, effec-

tively bridging the gap between individual strategies and network-wide equilibrium.

2.7 Graph Theory and Optimization in Auction

and Network Models

Graph theory offers powerful tools for modeling and optimizing auction and net-

worked systems. By representing participants as vertices and their interactions as

edges, graph structures provide a foundation for analyzing how connectivity, stabil-

ity, and disruptions impact resource distribution and equilibrium in auction environ-

ments. This section explores key graph-theoretical concepts and their relevance to

decentralized auctions, particularly progressive second-price (PSP) markets.
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2.7.1 Fundamentals of Graph Theory in Networked Systems

Graph-theoretic models capture the complexity of auction networks by representing

interactions and dependencies through edges and vertices. These models help to

visualize and analyze resource flows, dependencies, and stability in PSP markets.

2.7.1.1 Directed Acyclic Graphs (DAGs)

DAGs simplify scheduling and dependency management by ensuring that no cycles

exist, enabling clear bid flow organization. Barret’s work on DAGs illustrates their

utility in traffic management and routing, which translates directly to PSP auctions

for managing bid dependencies and ensuring efficient allocation across iterative bid-

ding rounds [8]. By leveraging DAG structures, PSP markets can reduce conflicts,

optimize scheduling, and maintain transparency in resource allocation.

Minimizing Crossing Numbers: Graph visualization and efficiency improve sig-

nificantly when crossing numbers—the number of edge crossings in a graph lay-

out—are minimized. DeVos explores methods for reducing crossing numbers, which

is particularly relevant in auction environments where bid flows and resource allo-

cations must be optimized for clarity and efficiency [27]. For progressive allocation

mechanisms, minimizing crossing numbers facilitates faster convergence by reducing

complexity in iterative processes.

2.7.2 Properties and Metrics for Stability in Auction Net-
works

Graph stability metrics assess the resilience and robustness of auction networks, influ-

encing convergence rates and equilibrium outcomes. These metrics, including reach-

ability, resistance distance, and centrality, are particularly important for modeling

interactions in PSP auctions.

Reachability Constraints: Reachability defines which vertices can be accessed

from a given starting point, shaping influence paths within auction networks. In PSP
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auctions, reachability constraints determine influence sets, where participants impact

one another’s bids based on network connections. Algorithms like depth-first and

breadth-first search systematically evaluate reachability, revealing strategic influence

patterns and ensuring robust resource distribution in decentralized systems.

Resistance Distance: Resistance distance, adapted from electrical circuit theory,

quantifies the ease of information or resource flow between vertices. Osvaldo demon-

strates how resistance distance captures temporal interactions, modeling long-term

stability by tracking resource diffusion across dynamic networks [4]. This measure

directly applies to PSP auctions, where resource propagation drives equilibrium ad-

justments and influences bid dynamics. As resistance decreases, influence spreads

more effectively, stabilizing competitive auction environments.

Centrality Metrics: Centrality measures, including degree, betweenness, and eigen-

vector centrality, identify influential vertices in a network. High-centrality vertices

streamline resource flow, stabilize bidding behavior, and reduce congestion in auction

systems. Borgatti and Everett show that centrality amplifies stability by enhancing

connectivity and ensuring resilience in decentralized networks [17]. These measures

are essential for designing PSP markets where strategically placed vertices can accel-

erate convergence and maintain equilibrium.

2.7.3 Centrality Measures and Their Role in Auction Stabil-
ity

In auction networks, centrality metrics play a crucial role in stabilizing decentralized

systems. High-centrality vertices facilitate information flow, align strategies, and

ensure resource allocation efficiency.

Connectivity and Stability: Increased connectivity aids in achieving equilibrium

by enhancing information flow and aligning participant strategies. Jackson andWolin-

sky’s work highlights how central vertices in decentralized systems stabilize auction
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dynamics by reducing delays and enabling faster convergence to equilibrium [37].

These properties are especially valuable in PSP auctions, where stable bidding inter-

actions depend on seamless communication across the network.

Strategic Influence of Central Vertices: Freeman’s foundational research on

centrality demonstrates how strategically positioned vertices gain competitive advan-

tages by influencing adjacent nodes [31]. In PSP auctions, high-centrality vertices

stabilize bidding dynamics by coordinating strategies and facilitating resource allo-

cation, ensuring robust equilibrium outcomes. These vertices act as stabilizing forces

in competitive markets, mitigating volatility and promoting efficiency.

2.7.4 Applications of Graph Theory in Auction Optimization

Graph theory provides practical tools for optimizing auction networks, transforming

theoretical concepts into actionable strategies that enhance stability, efficiency, and

adaptability in PSP markets.

Spectral Properties for Stability and Convergence: Spectral graph theory

offers insights into network robustness through the spectral gap of the Laplacian

matrix—the difference between its largest and second-largest eigenvalues. A larger

spectral gap indicates faster convergence to equilibrium and greater resilience to dis-

ruptions. Mohar and Chung’s research highlights how spectral gaps reduce instability,

ensuring stable resource allocation in PSP auctions [57, 23]. These properties support

the design of auction networks that adapt effectively to changing market conditions.

Resistance Distance in Dynamic Networks: Resistance distance models the

diffusion of influence and resources in PSP auctions, capturing long-term stability

in dynamic settings. Osvoldo’s research demonstrates how resistance-based metrics

predict resource flow and influence propagation, shaping equilibrium outcomes in

decentralized markets [4]. By understanding these dynamics, auction designers can

optimize network interactions to sustain stability.
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Message-Passing Algorithms and Optimization: Yedidia’s work on message-

passing algorithms provides a framework for inference and optimization in decentral-

ized systems, offering insights into autonomous decision-making in PSP auctions [90].

By leveraging message-passing strategies, auction networks can achieve efficient re-

source allocation and align individual strategies with global objectives.

2.8 Sphere of Influence Graphs (SIG) and Advanced

Influence Metrics

Sphere of Influence Graphs (SIGs) provide a powerful framework for modeling local

interactions in decentralized systems, including PSP auctions. By connecting vertices

based on proximity within a metric space, SIGs capture localized dependencies and

strategic influences, offering insights into how bidding behavior propagates and sta-

bilizes in networked markets. This section explores the properties, applications, and

strategic implications of SIGs, emphasizing their role in achieving equilibrium in PSP

auctions.

Definition: For a set X = {X1, X2, . . . , Xn} in a metric space M , each point Xi

has an influence region (or sphere) determined by the closest point distance ri. An

edge between Xi and Xj exists if their spheres of influence intersect.

X1 X2

X3

X4

X5

X6 X7

Figure 2.1: Spheres of Influence for a Set of Edges and Vertices. Modified from
Toussaint’s original figure [81].
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Real-World Example - Ecological Zones: Consider an ecosystem where various

plant species grow in specific areas, each species representing a node. Each plant’s

“sphere of influence” is the surrounding area where it competes for resources like sun-

light, water, and soil nutrients. If two plants’ spheres overlap, an edge forms, indicat-

ing competition or interaction. SIGs model these relationships, showing which species

affect each other, aiding in the study of competition, biodiversity, and ecosystem sta-

bility in fragmented habitats. This example highlights SIGs’ utility in environmental

and biological research.

2.8.1 Sphere of Influence Graphs in PSP Auctions

SIGs model localized interactions where participants’ bids influence their neighbors,

forming clusters of aligned strategies. Introduced by Michael and Quint for spatial

data modeling, SIGs have been widely applied to networked systems to represent

dynamic dependencies and influence patterns [55, 56]. In PSP auctions, SIGs provide

a natural representation of influence zones, where local interactions ripple through

the network, driving adjustments in bids and stabilizing market outcomes.

Metrics for Stability in SIGs: Key metrics for analyzing SIGs include edge den-

sity and clique size. High edge density indicates tightly connected regions where

participants’ strategies are synchronized, promoting stability in bidding behavior.

Barrett’s analysis shows that cliques within SIGs foster equilibrium by aligning bids

within connected groups, reducing volatility and enhancing market efficiency [8].

These metrics are particularly relevant in PSP markets, where local strategic align-

ment drives convergence to stable equilibria.

Dynamic Properties and Micro-Level Modeling: Dynamic SIG properties en-

able the modeling of adaptive strategies at a micro level, where each participant’s

behavior evolves based on local interactions. Barrett and Osvaldo highlight SIGs as

tools for visualizing influence dynamics in PSP auctions, showing how bid depen-

dencies evolve over time [8, 4]. This approach aligns with the iterative nature of
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PSP mechanisms, where bid adjustments are guided by feedback from neighboring

participants, creating a layered and adaptive market structure.

Influence Radius and Bid Dependencies: The influence radius of a vertex in

a SIG determines the extent of its impact on neighboring vertices, capturing the

localized effects of bidding behavior. Influence graphs based on SIG structures model

these dependencies, showing how local interactions propagate adjustments across the

network. Quint and Shubik’s work demonstrates how influence paths within SIGs

drive equilibrium by cascading strategic shifts throughout the network [72].

2.8.2 Applications of SIGs in Auction Models

SIGs offer practical insights for designing and optimizing decentralized auctions by

representing local interdependencies and strategic influences.

Weighted Influence Graphs: In PSP auctions, weighted influence graphs extend

the SIG framework by assigning weights to edges based on the strength of influence.

These weights capture bid intensity and resource demand, allowing for dynamic ad-

justments that align with changing market conditions. Lazar and Semret’s PSP

mechanism leverages this adaptability to ensure efficient resource allocation in decen-

tralized environments [45].

Centrifugal Number and Network Stability: The centrifugal number in SIGs

measures the maximum number of non-overlapping spheres around a central vertex,

providing insights into clustering behavior and stability. Quint’s research shows that

high centrifugal numbers indicate robust clustering, reducing disruptive interactions

and facilitating smoother convergence to equilibrium [55]. This property is particu-

larly useful in PSP markets, where stable clustering minimizes volatility and supports

iterative bid adjustments.
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Dynamic Interactions in Multi-Phase Systems: In multi-phase PSP markets,

SIGs model the progression of bidding dynamics across iterative rounds. Each phase

represents a temporary equilibrium adjusted as bids evolve, with influence graphs

capturing real-time dependencies and interactions. Quint and Shubik’s work on multi-

phase systems highlights how SIGs stabilize PSP auctions by structuring interactions

over multiple iterations, ensuring consistent convergence to equilibrium [72, 81].

2.8.3 Influence Graphs and Equilibrium Convergence

Influence graphs represent the interdependencies among bidders in PSP auctions,

where vertices denote participants and edges indicate bid influence. These graphs

provide a framework for analyzing strategic dependencies, capturing both local and

global effects on equilibrium behavior.

Impact on Convergence Rates: The structure of influence graphs directly affects

the rate of convergence to equilibrium. Denser influence graphs with larger spectral

gaps promote faster convergence by ensuring that bid adjustments propagate effi-

ciently across the network. Quint and Shubik’s analysis demonstrates how localized

interactions within influence graphs accelerate equilibrium stabilization by realigning

incentives across connected participants [72].

Resilience to Bid Disruptions: Influence graphs enhance resilience by modeling

how strategic deviations are absorbed and corrected within the network. Weighted

influence graphs adapt to disruptions by adjusting edge weights based on changing

bid intensity and demand, creating a flexible structure that maintains equilibrium

even under fluctuating conditions [45].

Applications to Resource Allocation: Influence graphs support efficient re-

source allocation by modeling dependencies and aligning bidding strategies with mar-

ket conditions. Barrett’s work on SIGs illustrates how influence-based clustering im-

proves resource distribution in PSP auctions, minimizing contention and ensuring
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stable outcomes [8].

2.9 Decision Theory and Network Models

Decision theory offers a framework for understanding and modeling choices under

uncertainty, making it essential for analyzing behavior in both ecological systems and

networked environments. This section explores the foundational principles of decision

theory, its connections to ecological dynamics, and applications to networked systems,

highlighting how these models inform the stability and optimization of decentralized

auctions.

2.9.1 Foundations of Decision Theory

Decision theory addresses the principles of making optimal choices in uncertain envi-

ronments. The foundational work of Boole [16] established deductive reasoning as a

basis for decision-making, introducing early ideas on uncertainty and logical deduc-

tion. Building on these principles, expected utility theory became a cornerstone of

decision theory, providing a framework for evaluating choices based on their expected

outcomes. Diecidue’s rank-dependent utility model [28] extends this concept, offering

a robust approach for incorporating risk preferences and addressing discrepancies in

decision-making under uncertainty.

In dynamic environments, decision-making often occurs under time constraints or

incomplete information. Ordonez’s study on decision-making under time pressure [66]

demonstrates how agents balance immediate actions against long-term optimization.

These insights are directly applicable to auction systems and network models, where

participants must adapt strategies rapidly in response to fluctuating conditions.

2.9.2 Probabilistic Decision Models in Ecology

Probabilistic decision models are widely used to predict ecological outcomes, where

uncertainty arises from environmental variability and species interactions. Chiou’s

work on robust traffic control [22] demonstrates the utility of probabilistic models
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in managing flows, a concept that translates to ecological networks for resource and

population management. Bayesian methods, as outlined by Zhou [96], provide a

framework for incorporating uncertainty into decision-making processes, enabling ro-

bust clustering in dynamic ecological settings. These methods help bridge the gap

between theoretical models and practical applications in systems where uncertainty

shapes outcomes.

2.9.3 Linking Decision Theory and Ecological Models

Ecological systems offer natural analogs for decision-theoretic processes, where species

behavior can be modeled as a series of decisions influenced by environmental condi-

tions and interspecies dynamics. Bomze’s application of the Lotka-Volterra predator-

prey model [15] demonstrates how decision-making can reflect competition and adap-

tation in ecological settings, framing species interactions as strategic processes. May’s

exploration of bifurcation phenomena [53] extends this framework, showing how small

environmental changes can lead to significant shifts in system dynamics.

Adaptive decision-making under environmental uncertainty is another critical

area where decision theory informs ecological models. Oki’s biologically-inspired

frameworks [65] and Meyer’s work on noise-driven dynamics [54] illustrate how or-

ganisms and systems adapt to fluctuating conditions, offering insights into resilience

and optimization in decentralized networks.

2.9.4 Ecology and Game Theory Connections

The interplay between ecology and game theory reveals deep parallels between pop-

ulation dynamics and strategic interactions. Replicator dynamics, as explored by

Bomze [15], model ecological equilibria by treating population fractions as mixed

strategies. These models capture the evolution of competitive interactions, with phase

portraits identifying equilibria as sources, sinks, or other critical points.

Evolutionary game theory offers algorithmic tools for understanding these dy-

namics. Chastain’s study on multiplicative weight updates [21] connects evolutionary
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games to frameworks like the experts algorithm, balancing cumulative utility and

entropy maximization. These methods have direct implications for auction systems,

where strategies evolve over time, reflecting a balance between short-term gains and

long-term equilibrium. The Karush-Kuhn-Tucker conditions provide a mathematical

foundation for ensuring optimization in these games, emphasizing the importance of

maximizing efficiency in dynamic environments.

2.9.5 Applications of Decision Theory in Ecological and Net-
worked Systems

Decision theory informs a wide range of applications in ecological and networked sys-

tems, particularly in managing resources and optimizing outcomes in uncertain envi-

ronments. Behavioral models guide population management, with Hansen’s interval-

based optimization techniques [33] and Liu’s chaotic time series methods [47] provid-

ing tools for analyzing complex dynamics. These approaches are crucial for under-

standing how decentralized networks, such as ecological systems or auction markets,

adapt to changing conditions.

In networked systems, decision theory integrates with resource allocation mod-

els to optimize equilibrium and stability. Shary’s Krawczyk operator [77] offers a

method for interval-based analysis, supporting robust optimization under uncertainty.

Padilla’s cognitive frameworks [67] extend this approach by incorporating decision-

making under incomplete information, emphasizing resilience and adaptability. These

techniques align with concepts from Lamport’s study on event ordering [44], address-

ing the challenges of time-based decision-making in distributed networks.

Resource allocation in ecological systems often parallels strategies in auction mar-

kets, where network equilibrium reflects balanced resource distribution. Quint’s work

on balancedness in partitioning games [71] highlights how equilibrium concepts can

inform resource-constrained networks, ensuring efficient allocation despite competing

demands.
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2.10 Conclusion

This chapter provides a comprehensive review of the theoretical and mathemati-

cal foundations of decentralized auction mechanisms, with a particular focus on the

Progressive Second-Price (PSP) auction. Through an exploration of auction theory,

game theory, and network economics, we lay the groundwork for understanding how

decentralized auctions operate and how participants interact strategically within such

systems.

Key concepts from auction theory, such as equilibrium pricing, incentive com-

patibility, and resource allocation, were examined in the context of dynamic and

networked environments. Game-theoretic principles, including Nash equilibria, po-

tential games, and mean-field theory, were highlighted as essential tools for analyzing

strategic interactions and achieving stable outcomes. The intersection of these dis-

ciplines with network economics emphasizes the role of connectivity, influence, and

competition in shaping market dynamics.

The chapter also introduces the foundational role of graph theory in modeling and

optimizing PSP auctions. Graph structures, metrics, and algorithms–such as Sphere

of Influence Graphs (SIGs), centrality measures, resistance distance, and reachability–

provide critical insights into how information propagates across networks. These tools

enable the design of robust, efficient auction mechanisms that adapt to changing

market conditions.

In summary, this chapter has established the theoretical and methodological basis

for studying PSP auctions in decentralized markets. By integrating insights from

multiple disciplines, it has paved the way for the analysis and design of mechanisms

that leverage local interactions, network connectivity, and strategic decision-making

to achieve optimal resource allocation in complex, networked environments. This

synthesis will guide the development of advanced models and algorithms in subsequent

chapters, building on the foundations outlined here.
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Chapter 3

Challenges and Motivations

3.1 Motivation

This research addresses the complexities of decentralized auctions and market mech-

anisms, particularly in environments where strategic interactions are influenced by

network structure and information constraints. In modern markets, nodes often face

uncertainty, incomplete information, and dynamic competition, all of which pose chal-

lenges to efficient resource allocation. Auctions, and specifically second-price auction

mechanisms, provide a framework for truthful bidding. However, in decentralized set-

tings, the lack of centralized control and real-time feedback necessitates mechanisms

that adapt to evolving market conditions.

Our focus is on developing adaptive auction mechanisms, like the Progressive

Second-Price (PSP) auction, that respond to market dynamics by allowing nodes to

adjust their bids based on local information gathered from their network neighbors.

This motivates the study of influence sets, dynamic participation, and the role of

network effects in shaping bidding behavior. In these settings, nodes lack full market

information, and are affected by network dependencies.

Picture a bustling urban environment during rush hour, with hundreds of au-

tonomous vehicles navigating the city streets. Each vehicle is equipped with sensors

and communication systems, forming a decentralized vehicular network. These vehi-

cles must make decisions on route selection, speed adjustments, and lane changes to

minimize travel time and fuel consumption, all while avoiding congestion and colli-
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sions.

However, each vehicle only has local information—data from its immediate sur-

roundings and neighboring vehicles—making it difficult to predict global traffic pat-

terns. To optimize their routes, vehicles engage in a decentralized bidding process

for access to high-priority lanes or faster routes. Each vehicle’s bid depends on its

urgency, destination, and local traffic conditions.

The network faces challenges similar to those in auctions: as vehicles adjust their

bids based on changing local conditions, traffic flow becomes unpredictable. Some

vehicles drop out of the bidding for high-priority lanes when costs outweigh benefits,

while others strategically bid higher to secure faster routes. Over time, the system

self-organizes, with vehicles reaching an equilibrium where resources like road space

and time are efficiently allocated.

Just as vehicles in the network balance individual utility with overall traffic opti-

mization, nodes in decentralized markets leverage dynamic participation and network

effects to stabilize and achieve optimal outcomes. The dynamic nature of decentral-

ized systems requires auction mechanisms that can adapt to shifting market conditions

and heterogeneous network structures. Our implementation of a real-world network

faces significant obstacles; it is a game of partial information played in a web of

interconnected decisions, dynamic participation, and evolving market constraints.

To address these complexities, we must identify and overcome key challenges that

impact both the stability and efficiency of decentralized markets. The next section

outlines these challenges, forming the basis for the innovative solutions proposed in

this work.

3.2 Challenges

Designing auction mechanisms in decentralized environments poses significant chal-

lenges due to the complexity and variability of networked systems. These challenges

arise from a combination of incomplete information, dynamic behaviors, and the in-

terconnected nature of decision-making among participants. Addressing these issues
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requires a comprehensive understanding of the following key factors:

Information Asymmetry: In decentralized markets, nodes lack access to

global market information and must rely solely on local signals obtained from their

immediate neighbors. This limited perspective increases the likelihood of suboptimal

bidding strategies and strategic miscoordination, where decisions made based on par-

tial information fail to align with the overall market dynamics. For instance, consider

a bidder in a networked auction who overestimates demand due to limited local sig-

nals, leading to inflated bids. These inflated bids ripple across the network, prompting

neighboring participants to adjust their own strategies, often exacerbating inefficien-

cies. Mitigating information asymmetry requires mechanisms that enable nodes to

infer broader market trends from local interactions without centralized oversight.

Dynamic Participation: Participants in decentralized auctions, whether buy-

ers or sellers, often enter or exit the market based on their perceptions of value and

competition. This fluid participation introduces variations in bidding dynamics, dis-

rupting stability and complicating the prediction of equilibrium outcomes. To address

this, adaptive mechanisms must accommodate changing participation patterns and

interconnected decisions while ensuring market stability and efficiency.

Network Effects: The interdependence of decisions among participants ampli-

fies the complexity of decentralized markets. A node’s bid impacts its direct neighbors

and propagates through secondary connections, making prediction and coordination

complex. To address this, adaptive mechanisms must accommodate changing par-

ticipation patterns and interconnected decisions while ensuring market stability and

efficiency. Effective auction design must account for both direct and indirect influ-

ences on bidding strategies.

Market Saturation: As decentralized markets mature, the incremental effects

of additional interactions diminish, leading to saturation. In such conditions, price

variability decreases, and influence sets converge, limiting the scope for strategic

adjustments. Overcoming market saturation requires mechanisms that maintain dy-

namic bidding opportunities and adapt to the diminishing returns of further interac-
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tions.

Bid Adjustment Mechanisms: In dynamic auctions, participants must con-

tinuously adjust their bids in response to local changes and new information. How-

ever, determining optimal bid adjustment strategies is inherently challenging. Effec-

tive strategies must balance responsiveness to immediate conditions with the need

for long-term stability, particularly in environments where bids are shaped by both

primary interactions (direct connections) and secondary interactions (indirect influ-

ences). Auction mechanisms must enable nodes to navigate these complexities while

preserving market efficiency.

These challenges lay the groundwork for the development of our extended Pro-

gressive Second-Price (PSP) mechanism. By integrating adaptive features, our mech-

anism enables dynamic bid adjustments, fosters strategic flexibility, and enhances

resilience against information asymmetry and network effects. In traffic systems, the

concept of Wardrop’s Principle describes an equilibrium state where no driver can

improve their travel time by unilaterally changing routes [87]. Our proposed frame-

work is designed to maintain market efficiency and stability, even under constraints

evolving from dynamic node type and the resulting heterogeneous connections. By

design, these challenges form our extended PSP mechanism, ensuring that decentral-

ized markets remain robust, scalable, and capable of meeting the demands of modern

networked environments.

3.3 Contributions

Building upon the challenges outlined in the previous section, this chapter transitions

toward the design logic of the extended PSP mechanism. The challenges of informa-

tion asymmetry, dynamic participation, and network interdependence directly inform

the adaptive strategies and opt-out mechanisms introduced next, ensuring continuity

between problem definition and methodological development.

This dissertation proposes an innovative solution to the challenges of overloaded

networked systems, focusing on extending the Progressive Second-Price (PSP) mech-
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anism to meet the demands of decentralized markets. By leveraging concepts from

physical and biological systems, the extended PSP mechanism enhances the decision-

making capabilities of autonomous nodes, enabling them to adapt to dynamic envi-

ronments and heterogeneity in network structure. Acting as rational agents within

distributed systems, these nodes create a dynamical system that bridges classical auc-

tion theory and real-world decentralized markets, illustrating how local interactions

and network effects influence global outcomes. The adaptive behavior of nodes in

this framework mirrors natural systems, where individual agents respond to changing

conditions by exploring alternative configurations. These systems thrive under un-

certainty, leveraging variation as a means to optimize outcomes and avoid suboptimal

equilibria. By incorporating adaptive mechanisms and utilizing perturbations con-

structively, this work demonstrates how decentralized markets can achieve robust and

efficient resource allocation, even in the presence of limited information and dynamic

conditions.

Our extended PSP mechanism incorporates several key innovations: dynamic

bid adjustments, the integration of influence sets, and the inclusion of opt-out condi-

tions. Together, these components create a stable and adaptive auction environment

that balances local decision-making with global efficiency. This dissertation outlines

a framework for formalizing utility functions, modeling network interactions, and an-

alyzing game-theoretic implications, ensuring that the proposed solution is robust,

flexible, and widely applicable.

3.4 Road Map

This section discusses the intellectual trajectory of the dissertation and provides con-

text for what follows. Each chapter is motivated by a set of theoretical or practical

questions that arise naturally from the limitations of the previous stage. The goal

is not only to describe what is to come, but to explain why each transition is neces-

sary for understanding the emergence of stability, influence, and adaptation in PSP

markets.
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The dissertation begins by confronting a central question: “How do truthful,

efficient, and adaptive market mechanism operate without centralized control, what

motivates the participants to act? How can we model adaptive behavior under un-

certainty?” Each subsequent chapter contributes a different level of resolution to this

question, expanding the theoretical foundation while connecting it to real-world net-

worked markets.

The early chapters establish the mechanism and its initial application. Chapter 4

presents the PSP auction within the Hong Kong Mobile Data Exchange Market, intro-

ducing the opt-out function and demonstrating how local participation rules preserve

equilibrium in decentralized settings. Chapter 5 refines the theoretical framework, ex-

tending the equilibrium analysis to include elasticity and reserve pricing. This chapter

provides a formal bridge from single-auction equilibrium models to the multi-auction

interpretation developed later.

The middle chapters shift from equilibrium analysis to network and temporal

structure. Chapter 6 introduces a bipartite graph model of multi-auction markets,

where buyers and sellers are connected through overlapping influence sets. It for-

malizes the projection-based influence framework, defining primary and secondary

influence sets and demonstrating how local interactions produce market-wide coordi-

nation and saturation effects. Chapter 7 examines how asynchronous bid updates and

latency affect convergence. By introducing bounded delay mechanisms and measuring

the effects of initialization noise, it refines our understanding of temporal asynchronic-

ity and stability in distributed auctions.

The final chapters integrate these results into a cohesive dynamic model. Chap-

ter 8 presents the dynamic multi-auction PSP mechanism, generalizing exclusion-

compensation and bounded participation principles into a continuous decision pro-

cess. It unifies valuation, allocation, and cost under a shared temporal framework,

showing convergence toward an absorbing ϵ-Nash region. Chapter 9 concludes by re-

flecting on how adaptive PSP mechanisms address the core challenges of asymmetry,

participation, and interdependence. It identifies opportunities for future applications
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in wireless communication, vehicular coordination, and decentralized resource alloca-

tion.

It is our intent that each chapter builds conceptually and methodologically upon

the last, culminating in a coherent theory of decentralized market dynamics that

connects equilibrium reasoning, network structure, and temporal adaptation.
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Chapter 4

Strategic Bidding and Opt-Out
Mechanism in the PSP Auction

This chapter first appeared in the proceedings of ITNG 2020 [14].

Jordan Blocher, Frederick C. Harris, Jr. An Optimization Algorithm for the Sale

of OverageData in Hong Kong’s Mobile Data Exchange Market, in Latifi, S. (eds.),

17th International Conference on Information Technology : New Generations (ITNG

2020) Advances in Intelligent Systems and Computing, Volume 1134, Chapter 73,

pp 553-561. April 6-8, Las Vegas, NV. Springer, DOI https://doi.org/10.1007/

978-3-030-43020-7_73

Abstract

Internet service providers are offering shared data plans where multiple users may

purchase and share a single pool of data. In the Chinese economy, users have the

ability to sell unused data on the Hong Kong Exchange Market, called “2cm”, cur-

rently maintained by AT&T internet services. We propose a software-defined network

for modeling this wireless data exchange market; a fully connected, pure “point of

sale” market. A game-theoretical analysis identifies and defines rules for a progressive

second-price (PSP) auction, which adheres to the underlying market structure. We

allow for a single degree of statistical freedom – the reserve price – and show that

data exchange markets allow for greater flexibility in acquisition decision-making and

mechanism design with an emphasis on optimization of software-defined networks.

https://doi.org/10.1007/978-3-030-43020-7_73
https://doi.org/10.1007/978-3-030-43020-7_73
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We have designed a framework to optimize this strategy space using the inherent

elasticity of supply and demand. Using a game theoretic analysis, we derive a buyer-

response strategy for wireless users based on second-price market dynamics and prove

the existence of a balanced pricing scheme. We examine shifts in the market price

function and prove that the desired properties for optimization to a Nash equilibrium

hold.

Keywords: software-defined networks, mobile share, game theory, second-price

auction

4.1 Introduction

Mobile data usage is quickly outpacing voice and SMS in wireless networks. Multi-

device ownership has led to the introduction of the shared data plan [7]. Using

an account service, users are able to keep track of data usage in real time across

all their devices. The shared data service plan requires that users hold an a priori

knowledge of demand and supply with respect to their data plan in order to form a

strategy, meaning that a user must plan to either buy or sell thier overage data. In

our formulation, we address several topics: data as a product in the real-monetary

market, and data as network resource in a wireless topology.

Many new services are found exclusively on mobile devices. Companies are mov-

ing their software from (wired) grid-based to node-based communication. For ex-

ample, the move from a standard website to a mobile phone app. Software-defined

networking (SDN) addresses the new environment of wireless communication devices,

allowing for a programmable network architecture. The account services that manage

wireless shared data plans decentralize network management, and mobility becomes

a factor in SDN design. Individual mobile devices provide flexibility, and may make

decisions regarding local network infrastructure. There is a clear need for algorithms

designed for optimization in this space. In many cases, the direct communication

between mobile devices allows for a simple mutation of classic optimization models.

Auctions are key in SDN for the fair allocation of resources. For this work, we focus on
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mobile data, an infinitely divisible and distributable quantity. Mobile data represents

online data accessed using a wireless network. In [45], Lazar and Semret introduced

the Distributed Progressive Second-Price Mechanism (PSP) for bandwidth alloca-

tion. Such an auction is (1) easily distributed, and (2) allocates an infinitely divisible

resource. A PSP auction is defined as distributed when the allocations at any ele-

ment depend only on local state; no single entity holds a global market knowledge.

We consider the multi-auction: where each auctioneer is a user selling data to their

peers.

The model for data exchange was recently adopted by China Mobile Hong Kong

(CMHK), who released a platform, called 2cm (secondary exchange market), creating

a secondary market where users can buy and sell data from each other. CMHK owns

and moderates 2cm, where CMHK the only auctioneer, and computes allocations of

mobile data based on bids submitted to the platform. We focus on providing users

with an incentive framework so rational users will choose a collaborative exchange.

This collaborative exchange is the (built-in) transformation from the direct-revelation

mechanism (truthful bidding) to the desired message space (actual bids).

We describe our auction mechanism as a pure-strategy progressive game with

incomplete, but perfect information. The market strategy is determined by the impact

of user behavior on market dynamics. The optimal objective is defined as a rational

user’s valuation of digital property. In classic mechanism design, with multiple user

types, there is no single way to design the transformation from the direct revelation

mechanism to its corresponding computational design. As in [45], our incentive for

a user to truthfully reveal its type is built into the user strategies. We determine

(at least one) local equilibrium is a result of incentive compatibility (truthfulness)

in strategic bidding, and so our formulation holds the desired PSP qualities. Our

derivation of strategies depend on the ratio of supply and demand, and consequently,

on the ratio of buyers to sellers.

This is the first work to provide a comprehensive derivation of an auction mech-

anism with respect to the CMHK platform. The rest of of this paper is structured as
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follows: Section 4.2 presents the related work on auction theory and resulting policy

software. Section 4.3 details the mathematical structure of the data-exchange market,

which we present as an extension of the market in [45]. The analysis of user behavior

and the resulting algorithms are presented in Section 4.4 along with a simple example.

Conclusions and Future Work follow in Section 4.5.

4.2 Related Work

Progressive second-price auctions are used for optimal allocation in a variety of sce-

narios, and for different reasons. Different definitions of social welfare define different

strategies. Typical goals of optimization are the maximization of revenue, and op-

timal allocation. Other papers focus, taken from auction theory, optimize seller’s

reserve prices, or market price. Results derived from game theory focus on player

strategy, as in this work. In [70], user strategy gives a “quantized” version of PSP,

improving the rate of convergence of the game. Modifications to the mechanism that

result in improved convergence also appear in [50], which relies on an approximation

of market demand. Another mechanism derived from game theory [74], derives op-

timal strategies for buyers and brokers (sellers), and further shows the existence of

network-wide market equilibria by representing the market dynamics as a system of

equations.

Allowing a user preference to, loosely, represent a policy, we may interpret a the

rules of the data exchange market as a policy scheme, where the ISP is assumed to

enforce the rules and the market dynamics play out as a game among “users” of the

game. So in a distributed system, users are allowed to set their own policies, and

the ISP is responsible for implementing the framework to support their preferences.

Trusted management systems are based on the Common Information Model (CIM),

and focus on policy-based management, for example the “Policy-Maker” toolkit. In

general, the translation of policy-based management systems to SDN focuses on com-

bining the simplicity of policy-based implementation with the flexibility of SDN, as

in the meta-policy system, CIM-SDN [68].
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Game-theoretical analysis of mobile data has been presented in [92] as a frame-

work for mobile-data offloading. In our analysis, the stability of the game is ex-

pressed as the set of equilibria, or fixed points, of the system. When considering the

distributed and decentralized allocation of resources, a variety of equilibria exist for

heterogeneous and homogeneous services once a certain set of conditions is met, one

of which is truthfulness.

4.3 The Market Mechanism

In a distributed PSP auction, the design must must meet a certain set of known cri-

teria: (1) truthfulness (incentive compatibility), (2) individual rationality/selfishness,

and (3) social welfare maximization (exclusion-compensation). We examine the PSP

auction as the constraints are able to attain the desirable property of truthfulness

through incentive compatibility, meaning that an user has more of an incentive to tell

the truth. This is because in second-price markets, the winning bid does not pay the

winning bid price, but the price from next lowest bid. The pricing mechanism also

upholds the exclusion-compensation principle, or Pareto criterion, where any change

to the system would make at least one user worse-off. We construct the model for a

PSP data auction for mobile users participating in secondary mobile data exchange

market.

Let the set of all wireless users to be labeled by the index set I = {1, · · · , I}.

In our current formulation, we do not allow a seller to host multiple auctions, thus

we may identify each local auction with the index of the seller j ∈ I. The bid

profiles of the users are given as, s ≡ [sji ] where (i, j) ∈ I × I. Now, this is a single

bid, where we fill the space by submitting zero bids to all non-active users, meaning

that if there is no interaction between two players i and j, then (i, j) = 0. One

may think of it as an I × I matrix, with each element of the matrix representing

a pair-interaction. However this matrix is just one projective representation of the

space. A single snapshot of a static system, all quantities and prices are fixed may

be represented by this matrix. Once users begin to bid, then we must consider all
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possible interactions, which is done by fixing one index in I at a time, allowing all

other quantities to vary. So the strategy space in fact includes all the possibilities for

an user in I; another dimension to the problem is added with each possible variation.

We call this space S, the (full) strategy space for buyer i as all possible bids at

all auctions (where i’s bid changes with respect to the variation of all other bids):

Si = Πj∈IS
j
i , and S−i = Πj∈I

(
Πk ̸=i∈IS

j
k

)
as the associated opponent profiles, as in

standard game-theoretic notation.

The grid(s) of bid profiles, s, represents the uncertain state of the distributed

PSP auction mechanism in the secondary market, where we take uncertain to mean

the statistical distribution of player types and corresponding actions. In general, we

will not reference the full grid s. We will also use the context of the bid to indicate

the user type. To further clarify our analysis, we adopt the following notational

conventions: a seller’s profile is denoted by sj = [sji ]i∈I , and si = [sji ]j∈I denotes

a buyer’s profile, where s−i ≡ [sj1, · · · , s
j
i−1, s

j
i+1, · · · , s

j
I ]j∈I as the profile of user i’s

opponents. Furthermore, noting that this is a simplification for ease of notation, we

let Qj =
∑

i∈I q
j
i be the total amount of data j has to sell, and Qi =

∑
j∈I q

j
i represent

the total amount of data desired by buyer i.

We assume a public platform, published by the ISP, that allows sellers to advertise

their auctions. Buyers may submit bids directly to sellers over the wireless network.

We also assume that a buyer’s budget is sufficient, as the alternative would be to pay

a higher price to the ISP. We describe the rules as follows:

• The bid is represented by sji = (qji , p
j
i ), meaning i would like to buy from j a

quantity qji and is willing to pay a unit price pji .

• The seller takes responsibility for notifying i of opponent bid profiles s−i, and

updates the bid profile when buyer i joins the auction.

• sji > 0 represents a buyer-seller pair in s, with bid, sji = (qji , p
j
i ), where quantity

qji ∈ dj is an element of [qji ]i∈I , with reserve unit price pji ∈ pj, an element of

[pji ]i∈I .
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• If a buyer does not submit a bid to a seller, then this implies sji = 0. A buyer

that does not submit a bid will not receive opponent profiles from seller j.

• A user who does not submit a bid is holding to the previous bid, either zero or

nonzero.

We emphasize that buyers are consistently referenced using the index i as a subscript,

and sellers using the index j as a superscript, as in [73].

4.3.1 Market incentive.

We examine the role of buyers, who are able to directly influence global market

dynamics, and assume that the sellers take a reactionary role. Each buyer i will have

information from each seller j, as well as opponent profiles s−i, from each auction in

which it is participating. In the extreme case, where i submits bids to all auctions

j ∈ I, buyer i gains access all buyer profiles, [s1, · · · , sI ]. However, sellers can only

gain information about the market by observing buyer behavior in their local auction.

Buyers, on the other hand, can see all the sellers reserve prices, although they can

only see their opponent bid profiles.

Define the set of sellers chosen by buyer i ∈ I as,

Ii(n) = argmax
I′⊂I,|I′|=n

∑
j∈I′

Qj,

and similarly, for a seller j ∈ I, we define the set of buyers participating in auction

j as,

Ij(m) = argmax
I′⊂I,|I′|=m

∑
i∈I′

pji ,

where m,n ∈ I.

The PSP auction given in [45] is a set of simple and symmetric rules that closely

follow market theory. We now formally define a PSP auction, which determines the

actions buyers and sellers in the secondary market. We define an opt-out function,

σi, associated with a buyer i as part of its type. Buyer i, when determining how to
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acquire a possible allocation a, will determine its bid quantities by,

σi(a) = [σj
i (a)]j∈I . (4.1)

In a general sense, σi applies our user strategy to the PSP rules. The rules presented

here incorporate of the opt-out function with the auction mechanism, and closely

follows the work presented in [45]. The market price function, Pi, for a buyer in the

secondary market can be described as follows:

Pi(z, s−i) =
∑
j∈I

σj
i ◦ p

j
i (z

j
i , s

j
−i)

=
∑
j∈I

(
inf

{
y ≥ 0 : qji (y, s

j
−i) ≥ σj

i (z)

})
,

(4.2)

and is interpreted as the aggregate of minimum prices that buyer i bids in order

to obtain data amount z given opponent profile s−i. We note that in the following

analysis the total minimum price for the buyer cannot be an aggregation of the

individual prices of the buyers, as it is possible that the reserve prices of the sellers

may vary. The maximum available quantity of data in auction j at unit price y given

sj−i is:

qji (y, s
j
−i) = σj

i ◦ q
j
i (y, s

j
−i) =

[
Qj −

∑
pjk>y

σj
k(a)

]+
. (4.3)

It follows from the upper-semicontinuity of Qj
i that for s

j
−i fixed, ∀ y, z ≥ 0,

σj
i (z) ≤ σj

i ◦ q
j
i (y, s

j
−i)⇔ y ≥ σj

i ◦ p
j
i (z, s

j
−i). (4.4)

The resulting data allocation rule is a function of the local market interactions be-

tween buyers and sellers over all local auctions, as is composed with i’s opt-out value,

so that for each i ∈ I, the allocation from auction j is,

aji (s) = σj
i ◦ a

j
i (s)

= min

{
σj
i (a),

σj
i (a)∑

pjk=pji

σj
k(a)

qji (p
j
i , s

j
−i)

}
, (4.5)
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noting that for the full allocation from all auctions we may simply aggregate over the

seller pool.

Remark: The bid quantity σj
i (a) and the allocation aji are complementary. In fact,

the buyer strategy is the first term in the minimum, the second term being owned by

the seller.

Finally, we must have that the cost to the buyer adheres to the second-price rule for

each local auction, with total cost to buyer i,

ci(s) =
∑
j∈I

pji

(
aji (0; s

j
−i)− aji (s

j
i ; s

j
−i)

)
. (4.6)

The cost to buyer i adds up the willingness of all buyers excluded by player i to pay

for quantity aji . i.e.

cji (s) =

∫ aji

0

pji (z, s−i) dz.

This is the “social opportunity cost” of the PSP pricing rule.

4.4 User Strategy

In any market, a buyer or seller would like to obtain the maximum amount of utility

possible while staying within budget. The buyer’s utility maximizes the amount of

data allocated by the seller, while the seller’s utility maximizes the cost of the data

sold. Clearly, the cost is the product of the unit price and the desired allocation. We

examine cases where the buyer has found an allocation that satisfies its demand AND

price constraints, and define a strategic bid to a move to a better market position.

4.4.1 User valuation (strategic incentive).

We define each buyer as a user i ∈ I with quasi-linear utility function ui = [uj
i ]j∈I .

A buyers’ utility function is of the form,

ui = θi ◦ σi(a)− ci, (4.7)

where the composition of the elastic valuation function θi with σi distributes a buyers’

valuation of the desired allocation a across local markets, submitting the strategic bid
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to multiple seller’s auctions. The composition map represents the codomain of θi(σi),

which is the same as the domain of σi(a), and performs the function of restricting the

buyer’s domain to minimize djpj−ci, i.e., maximize ui. Using this rule, we extend the

PSP rules described in [73] in order to find equilibria in subsets of local data-exchange

markets.

The sellers, j ∈ I are not associated with an opt-out function. We consider their

valuation to be a functional extension of the buyers, where θj is constructed from

buyer demand. We adopt the definition for an elastic valuation function as in [45],

which allows for continuity of constraints imposed by the user strategies.

Definition 4.1. (Elastic demand) [45] A real valued function, θ(·) : [0,∞)→ [0,∞),

is an (elastic) valuation function on [0, D] if

• θ(0) = 0,

• θ is differentiable,

• θ′ ≥ 0, and θ′ is non-increasing and continuous,

• There exists γ > 0, such that for all z ∈ [0, D], θ′(z) > 0 implies that for all

η ∈ [0, z), θ′(z) ≤ θ′(η)− γ(z − η).

We begin our analysis with buyer valuation θi. A buyers’ valuation of an amount

of data represents how much a buyer is willing to pay for a unit of data (bandwidth).

This is equivalent to the bid price when given a fixed amount of data. The buyers’

utility-maximizing bid (fixing the desired allocation z ≥ 0) is a mapping to the lowest

possible unit price,

fi(z) ≜ inf
{
y ≥ 0 : ρi(y) ≥ z, ∀ j ∈ I

}
, (4.8)

where ρi(y) represents the demand function of buyer i at bid price y ≥ 0. The

market supply function is the extreme case of possible buyer demand, and acts as an

“inverse” function of fi. We have, for bid price y ≥ 0, ρi(y) =
∑

j∈I:pji≥y Q
j. The

utility-maximizing bid price is the lowest unit cost for the buyer to be able participate
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in all the auctions in Ii, and corresponds to the maximum reserve price amongst the

sellers.

From the perspective of the seller we have a more direct interpretation of valu-

ation as revenue. The demand function of seller j at reserve price y ≥ 0 is ρj(y) =∑
i∈I:pji≥y σ

j
i (a). We define the “inverse” of the buyer demand function for seller j as

potential revenue at unit price y, we have,

f j(z) ≜ sup
{
y ≥ 0 : ρj(y) ≥ z, ∀ i ∈ I

}
. (4.9)

Unsurprisingly, f j maps quantity z to the highest possible unit data price.

We show that user valuation satisfies the conditions for an elastic demand func-

tion, based on (4.9). We first note that, in general (and so we omit the sub-

script/superscript notation), the valuation of data quantity x ≥ 0 is given by, θ(x) =∫ x

0
f(z) dz. We propose the following Lemma,

Lemma 4.2. (user valuation) For any buyer i ∈ I, the valuation of a potential

allocation a is,

θi ◦ σi(a) =
∑
j∈I

∫ σj
i (a)

0

fi(z) dz. (4.10)

Now, we may define seller j’s valuation in terms of revenue,

θj =
∑
i∈I

θj ◦ σj
i (a) =

∑
i∈I

∫ σj
i (a)

0

f j(z) dz. (4.11)

We have that θi and θj are elastic valuation functions, with derivatives θi
′ and θj

′

satisfying the conditions of elastic demand.

Proof. Let ξ be a unit of data from buyer bid quantity σj
i (a). If ξ decreases by

incremental amount x, then seller bid qji must similarly decrease. The lost potential

revenue for seller j is the price of the unit times the quantity decreased, by definition,

f j(ξ)x, and so, θj(ξ)− θj(ξ−x) = f j(ξ)x, and (4.11) holds. As we may use the same

argument for (4.10), as such, we will denote fi = f j = f for the remainder of the

proof. We observe that the function f is the first derivative of the valuation function
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with respect to quantity. Letting θi = θj = θ, the existence of the derivative implies

θ is continuous, and therefore, in this context, f represents the marginal valuation

of the user, θ′. Also, clearly θ(0) = θ(σ(0)) = 0. Now, as we consider data to be an

infinitely divisible resource, we have a continuous interval between allocations a and

b, where a ≤ b. Now, as θ is differentiable, for some c ∈ [a, b],

θ′(c) = lim
x→c

θ(x)− θ(c)

x− c
= f(c),

and so f = θ′ is differentiable at c ∈ [a, b], and so as a ≥ 0, θ′ ≥ 0. Finally, we have

that concavity follows from the demand function. Then, as θ′ is non-increasing, we

may denote its derivative γ ≤ 0, and taking the derivative of the Taylor approxima-

tion, we have, θ′(z) ≤ θ′(η) + γ(z − η).

Finally, it is worth mention that the analysis of the auction as a game only as-

sumes some form of demand and supply, in order to derive properties. The mechanism

itself does not require any knowledge of user demand or valuation.

4.4.2 User behavior.

Buyers and sellers are able to change their bid strategies asynchronously. A user’s

local strategy space is therefore non-deterministic as the preferences of users are

subject to change. Although it is possible for a seller to fully satisfy a buyer i’s

demand, it is also reasonable to expect that a seller’s overage data may not satisfy

even a single buyer’s demand. In this case, a buyer must split its bid among multiple

sellers. The buyer strategy bids in auctions with the highest quantities first, a natural

result of the demand curve.

The buyer strategy tends towards equal valuation of all local markets, and there-

fore similar prices. Buyer i’s seller pool is determined by minimizing n, the smallest

set of sellers that satisfy its demand Qi: min
{
n ∈ I | nDn ≥ Qi

}
. Similarly, seller j

determines the minimal set of buyers that maximizes revenue and sells all of its data,

Qj, i.e. min
{
m ∈ I

∣∣∣∣ ∑
i∈Ij(m)

qji ≥ Qj
}
. We use j∗ = n ≤ I to represent the seller

with the least amount of data ∈ Ii, i.e. Dj∗ ≤ Qj, ∀ j ∈ Ij.
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Define the composition,

σj
i ◦ a = σj

i (a) =
aji
|Ii|

, (4.12)

to be the buyer strategy with respect to quantity for all sellers j ∈ Ii. We propose

the following scheme:

Definition 4.3. (Opt-out buyer strategy) Let i ∈ I be a buyer and fix all other buyers’

bids s−i at time t > 0, and let a be i’s desired allocation. Define,

σj
i (a) ≜

{
σj∗

i (a), j ∈ Ij,
0, j ∋ Ij.

(4.13)

and bid price pji = θ′i(σ
j
i (a)).

Let the reserve price for seller j be,

pj∗ = pji∗ + ϵ, (4.14)

where i∗ is the bidder with the highest “losing” bid price. A truthful bid implies that

the new bid price differs from the last bid price by at least ϵ.

We will show that sellers are able to maximize revenue in a restricted subset of

buyers in I, and as such will attempt to facilitate a local market equilibrium for this

subset. A local auction j converges when s
j(t+1)
i = s

j(t)
i ∀ i ∈ I, at which point the

allocation is stable, the data is sold, and the auction ends. We propose a strategy to

maximize (local) seller revenue.

Lemma 4.4. (Localized seller strategy (i.e. progressive allocation)) For any seller j,

fix all other bids [ski ]i,k ̸=j∈I at time t > 0 ∈ τ . For each t ∈ τ , let ω(t) be define the

winner at time t, and perform the update,

Dj(t+1) = Dj(t) − σ
j(t)
ω(t)(a). (4.15)

Allowing t to range over τ , we have that Qj = 0, and a local market equilibrium.

We omit the proof, and provide a simple example.
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4.4.3 A simple example.

We give a simple example of convergence to a local market equilibrium, where the

buyers are assumed to respond according to (4.5).

Name Bid total Unit price
A 50 1
B 40 1.2
C 26 1.5
D 20 2
E 14 2.2

Let s(1) = [(65, ϵ)]i∈I and s(2) = [(85, ϵ)]i∈I . The buyer bids are as follows:

sA = [(0, 0), (50, 1)],

sB = [(0, 0), (40, 1.2)],

sC = [(0, 0), (26, 1.5)],

sD = [(0, 0), (20, 2)],

sE = [(0, 0), (14, 2.2)].

Then at t = 1, s(2) = [(0, p(2)), (20, p(2)), (26, p(2)), (20, p(2)), (14, p(2))], and so (D(2), p(2))

= (85, 1 + ϵ), The buyer response is,

sA = [(50, 1), (0, 0)],

sB = [(40, 1.2), (0, 0)],

sC = [(0, 0), (26, p(2))],

sD = [(0, 0), (20, p(2))],

sE = [(0, 0), (14, p(2))].

At t = 2, (D(1), p(1)) = (65, 1 + ϵ), with bid vector s(1) = [(25, p(1)), (40, p(1)), (0, 0),

(0, 0), (0, 0)]. (D(2), p(2)) = (25, 1 + ϵ). Then,

sA = [(25, p(1)), (25, p(2))],

sB = [(40, p(1)), (0, 0)],
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where we have removed bids to indicate winner(s) with a tentative allocation. At

t = 3, (D(1), p(1)) = (50, 1 + ϵ), with bid vector s(1) = [(25, p(1)), (40, p(1)), (0, 0),

(0, 0), (0, 0)]. (D(2), p(2)) = (0, 1 + ϵ) and s(2) = [(25, p(1)), (0, 0), (26, p(2)), (20, p(2)),

(14, p(2))]. Then,

sA = [(25, p(1)), (0, 0))].

At t = 4 the auction ends.

4.4.3.1 Individual rationality/selfishness.

Value is modeled as a function of the entire marketplace: a buyer’s valuation is

aggregated over all the auctions, and the seller’s valuation is aggregated over its own

auction. We must ensure that a user’s private action satisfies the conditions of a

direct-revelation mechanism, as well as adheres to the collective goals. We show that,

from (4.4) and (4.3), an individual user will contribute to local stability, given global

market dynamics S.

We model the impact of the dynamics of S of the data-exchange market on a

local auction j. As we have shown, the seller behavior is a reaction of buyer behavior,

and have presented some rules. The market fluctuations from S give auctioneer j

the chance to infer information about the global market. We demonstrate that the

symmetry between buyer and seller behavior stretches across subsets of local auctions.

Additionally, we identify a clear bound restricting the range of influence that local

auctions have on each other. Consider a single iteration of the auction, where a seller

updates bid vector sj, and the buyers’ response si, to comprise a single time step.

We have the following Proposition,

Proposition 4.5. (Valuation across local auctions) For any i, j ∈ I,

j ∈ Ii ⇔ i ∈ Ij. (4.16)

Fix an auction j ∈ I with duration τ and define the influence sets of users. The
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primary and secondary influencing sets are given as,

Λ =
⋃
i∈Ij

Ii, and λ =
⋃
i∈Ij

( ⋃
k∈Ii

Ik
)
. (4.17)

Define ∆ = Λ ∪ λ. Fixing all other bids sji ∈ I, and time t > 0 ∈ τ , we have

that, ∑
j∈Λ

θji =
∑
i∈λ

θji . (4.18)

Proof. As this is our main result, we provide an outline of the (exhaustive) proof,

illustrating the most important case, when a market shifts affect auction j, and the

direct influence of the shift on the connected subset of local markets.

A local auction j ∈ I, is determined by the collection of buyer bid profiles. Using

Proposition 4.4 and (4.16), we have that,

i ∈ Ij ⇔ pji > pji∗ , (4.19)

where we define i∗ as the losing buyer with the highest bid price in auction j. By

(4.8) pji ≥ pji∗ + ϵ, thus pji < pji∗ can only happen during a market shift. Consider

k ∈ Ij at time t where, for example, some buyer(s) enter the auction, and so (4.19)

implies that
∑

i∈Ij σ
j
i (a) > Qj. Now, pji < pji∗ ⇒ k ∋ Ij and sjk > 0 will cause k to

initiate a shift. By definition 4.3, k will set sjk = 0, and begin to add sellers to its

pool. Suppose that at time t, j’s market is at equilibrium. Unless k adds a seller

with a higher reserve price within |Ij| time steps, by (4.15), the auction ends. We

have that, ∀ i ∈ Ij, ∄ sji > 0 where i ∋ Ij, and (4.16) holds.

Now, the subset Ij ⊂ I determines j’s reserve price pji∗ . We will assume the

buyer submits a coordinated bid, using (4.5). The reserve price (4.14) of seller j is

determined at each shift, and is the lowest price that j will accept to perform any

allocation. Let pj∗ denote the reserve price of auction j and p∗i denote the bid price

of buyer i, i.e. pki = p∗i , ∀ k ∈ Ii. Using Proposition 4.4, for each i ∈ Ij, we have

from (4.8), (4.9), that p∗i ≥ pk∗, ∀ k ∈ Ii. In the simplest case, consider a disjoint

local market j, where ∀ i ∈ Ij, ski = 0, ∀ k ̸= j ∈ Ii ⇒ Λ = {j} and λ = Ij. Again
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using (4.8) and (4.9), it is clear that θi = θj, ∀ i ∈ Ij. In all other cases, the sellers

∈ Λ are competing to sell their respective resources to buyers whose valuations are

distributed across multiple auctions. The bid price of buyer i ∈ Ij is determined by,

p∗i = maxk∈Ii(p
k
∗). Λ is the set of sellers directly influencing the bids of buyers in

auction j. Now, the reserve price for auction j is such that, pj∗ ≤ mini∈Ij(p∗i ) − ϵ.

From (4.17), Λ is defined by a seller j ∈ I, where each user k ∈ λ has some direct or

indirect influence on j. Denote ∆j = Λj ∪ λj.

Consider the set λj. For some buyer i ∈ Ij, and then for some seller k ∈ Ii, we

have a buyer l ∈ Ik. By (4.16), i, l ∈ Ik, and so the reserve price pk∗ ≤ min(p∗l , p
∗
i ),

and k, j ∈ Ii ⇒ p∗i ≥ max(pk∗, p
j
∗). Suppose that l ∋ Ij ⇔ j ∋ Il, so that p∗l < pj∗,

and the valuation of buyer l does not impact auction j and vice versa, i.e. θjl = 0.

Since l ∈ Ik, p∗l ≥ pk∗ ⇒ pk∗ < pj∗, and i ∈ Ij ⇒ p∗i ≥ pj∗. Therefore, we have that the

ordering implied by (4.17) holds, and,

pk∗ ≤ p∗l < pj∗ ≤ p∗i , (4.20)

for any buyer l ∈ λj such that l ∋ Ij. We use a similar argument for a secondary

user q ∈ Il.

Finally, consider the subset Λj; a shift occurs in 2 cases. (1) If i ∈ Ij decreases

its bid quantity so that
∑

i∈Ij σ
j
i (a) < Qj, and (2) if buyer i∗, defined in Proposition

4.4, increases its valuation so that pji∗ < pj∗. Fixing all other bids, a decrease in q’s

demand will directly impact buyer i. If at the end of the bid iteration, we still have

that i is the buyer with the lowest bid price, then (4.9) holds and j’s valuation does

not change. Otherwise a new i∗ will be chosen upon recomputing Ij, as in Lemma

4.3, and the market will attempt to regain equilibrium. We determine the influence

of ∆k∗ on ∆j by (4.19).

In each case we have that (4.8) and (4.9) hold for some fixed time t, and so,

∀ i ∈ Ij, any bid outside of our construction has a zero valuation, with respect to

buyers ∈ λ and sellers ∈ Λ, and therefore cannot cause shifts to occur except through

a shared buyer, e.g. some l ∈ Ik. Thus, in all cases, (4.8) and (4.9) hold. Fixing all
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bids in any auction where q ∋ Λj, ∀ i ∈ Ij,∀ k ∈ Ii,∀ l ∈ Ik,∫ σk
i (a)

0

fi(z) dz =

∫ σk
i (a)

0

fk(z) dz, (4.21)

and ∫ σk
l (a)

0

fk(z) dz =

∫ σk
l (a)

0

fl(z) dz. (4.22)

Thus, with a slight abuse of notation for clarity,

∑
λ

∫ σ(a)

0

fΛ(z) dz =
∑
Λ

∫ σ(a)

0

fλ(z) dz, (4.23)

where the result follows by construction, and the continuity of θ′.

4.4.3.2 Truthfulness (incentive compatibility).

We will prove that the dominant strategy for buyers is to submit coordinated bids,

where all bids the buyer submits are equal. Our motivation for coordinated bids

comes from the idea of potential games. In potential games, the incentive of all

users to change strategy can be expressed as a single global function. The necessary

condition of an ϵ-best reply is that the new bid price must differ from the last by at

least ϵ. Thus, our strategic bid is an ϵ-best response. Now, an ϵ-best reply for user i

is p∗i = θ′i(σi(a)) + ϵ, for a given opponent profile s−i, and for each j ∈ Ii. Now, as ϵ

is the bid fee, we have that pji is equal to the marginal valuation of player i in auction

j, and so incentive compatibility holds.

4.4.3.3 Social welfare maximization (exclusion-compensation).

We define an optimal state of social welfare to be when valuations are equal across a

subset of local auctions. Then, ∆ ⊂ I is the subset of users where social welfare is

achieved. We finally have:

Corollary 4.6. (∆-Pareto efficiency) The subset ∆ ⊂ I is Pareto efficient, in that

no user can make a strategic move without making any other user worse off.
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Proof. Define s∗ = (z∗, θ
′
∗(z∗) as the set of truthful ϵ-best replies for user i given

opponent bid profile S−i, where ∀j ∈ Ii, sj∗ = s∗. Since θ
′
i is continuous, as was shown

in Lemma 4.2, and as s|∆ = {[sji ] ∈ λj × Λj} is continuous in s on Sk = Πk∈λjSj
k,

then given that s∗ = s∗ = (f ∗(p∗), p∗) = (z∗, θ′(z∗)), we have that s∗ is truthful. The

result now follows directly from the result of Proposition 4.5.

4.5 Conclusion and Future Work

We take these results as evidence of (at least one) fixed point, and conjecture that

an optimal solution exists, where all users will receive the desired amount of data

(negative or positive), at a fair price.

The PSP auction is a natural data-pricing scheme for consumers accessing a

data-exchange market in their wireless network, and that the desired properties of

(1) truthfulness, (2) individual rationality/ selfishness, and (3) social welfare maxi-

mization are met. We conclude that there is a need for better management of data on

the consumer level; an advanced implementation such as the PSP auction presented

here would ensure that the consumers in any such exchange market benefit from

their participation. It is clear that there is profit to be made by supplying data to

the data-driven consumer. However, customer care is necessary to hold the “lifetime

consumer”. Consumers, when allowed to manage their own overage data, are able to

do so fairly and efficiently. It is not unreasonable to allow them to manage their own

data; this benefits all wireless users.

Mathematically, we have shown that if truthfulness holds locally for both buyers

and sellers, i.e. pi = θi
′, ∀ j ∈ Ii and pj = θj

′
, ∀ i ∈ Ij, then, in the absence of

market shifts, there exists an ϵ-Nash equilibrium extending over a subset of connected

local markets. Observing the symmetric, natural topology of the strategy space, we

conjecture that a unique subspace limit exists for connected ∆. A study of this space

and the design of the necessary framework is the direction of our future work.

In future work, we intend to show that s|∆ represents a continuous mapping
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[0,
∑
k∈λj

Qk]i∈Λj onto itself, and show that the continuous mapping of the convex com-

pact set s∗ into itself (s∗) has at least one fixed point, i.e., ∃ some k ̸= i such that

z∗ = σ∗(z) ∈ [0, Dk]i∈Λj . We want to show that the symmetry built into strategy

space provides built-in conditions for convergence and stability, indicating a network

Nash equilibrium (NE). Wireless users are modeled as a distribution of buyers and

sellers with normal incentives.

Finally, as a result of user behavior and subsequent strategies, we determine that

the data-exchange market behaves in a predictable way. However, each auction may

be played on the same or on different scales in valuation, time, and quantity; therefore

the rate at which market fluctuations occur is impossible to predict. Nonetheless, we

have shown that our bidding strategy results in (at least one), Nash equilibrium,

where again the reserve prices are fixed by the seller at bid time.
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Chapter 5

An Equilibrium Analysis of a
Secondary Mobile Data-Share
Market

An Equilibrium Analysis of a Secondary Mobile Data-Share Market

This chapter first appeared as a Journal publication in Information [13].

Jordan Blocher and Frederick C Harris, Jr. An Equilibrium Analysis of a Sec-

ondary Mobile Data-Share Market, Information, Vol 12, No 11, pg 434, October 2021.

https://doi.org/10.3390/info12110434

Abstract

Internet service providers are offering shared data plans where multiple users may buy

and sell their overage data in a secondary market managed by the ISP. We propose

game-theoretic approach to a software-defined network for modeling this wireless data

exchange market: a fully connected, noncooperative network. We identify and define

the rules for the underlying progressive second-price (PSP) auction for the respective

network and market structure. We allow for a single degree of statistical freedom

– the reserve price – and show that the secondary data exchange market allow for

greater flexibility in the acquisition decision-making of mechanism design. We have

designed a framework to optimize the strategy space using elasticity of supply and

demand. Wireless users are modeled as a distribution of buyers and sellers with

normal incentives. Our derivation of a buyer-response strategy for wireless users
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based on second-price market dynamics leads us to prove the existence of a balanced

pricing scheme. We examine shifts in the market price function and prove that our

network upholds the desired properties for optimization with respect to software-

defined networks and prove the existence of a Nash equilibrium in the overlying

noncooperative game.

Keywords: software-defined networks; mobile share; game theory;

second-price auction

5.1 Introduction

We study an evolving noncooperative real time market. The changing demand of

consumers operating on a wireless network has led companies to change their strategy

towards data management and networking among wireless users. Mobile phone data

experiences dynamically changing demand. Companies are beginning to measure,

customize prices, and serve customers according to their individual demand in real-

time. Recently, AT&T has introduced a mobile data sharing plan [7], which allows

consumers to manage their own data usage in a real time auction on a public platform

managed by AT&T. In this work, we derive the Nash equilibrium by examining the

resulting structure of this secondary data market. We address several topics: data as

a product in the real-monetary market, and data as a network resource in a wireless

topology.

As older softwares move from (wired) grid-based to node-based communication,

a new paradigm of programmable network architectures is becoming the standard

for wireless communication. These decentralized software-centric networks manage

services modularly and allow for flexibility of demand; a decentralized design better

suited to managing mobile networks, and mobility becomes a factor in network design.

The relationship between the provider and the consumer is shifting; it is becoming

a necessity to discretize consumer valuation. This is the new paradigm of digital

economics.

There is a clear need for algorithms designed for optimization in this mobile space.
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Mobile devices provide flexibility, and may make individual decisions regarding local

network infrastructure. In many cases, the direct communication between mobile

devices allows for a simple mutation of classic optimization models. In online (web)

resource allocation algorithms, auctions are used to implement the fair distribution

of resources in network allocation algorithms. Mobile data is individually requested

by each consumer as demand is unique to each mobile device. For the customer, they

perceive a higher level of value for the service. For the ISP, progressive pricing allows

for all customers to actively control, create, and share value. As stated by Izaret and

Schürmann, ”Making progressive pricing a ... reality can happen only if firms change

how they create, define, and measure value so that they can share it fairly.” [36]

An auction mechanism is defined as distributed when the allocations at any

element depend only on local state, i.e. no single entity holds a global market knowl-

edge. In [45], Lazar and Semret introduced the Distributed Progressive Second-Price

(PSP) Mechanism for bandwidth allocation, auction mechanisms that are (1) easily

distributed, and (2) allocate an infinitely divisible resource. In classic mechanism

design, with multiple user types, there is no single way to design the transformation

from the direct revelation mechanism to its corresponding computational design. We

apply a modifier to the PSP mechanism in order to mutate the strategy space, follow-

ing the dynamics of user correspondence. As in [45], we obtain our result by design

in composition with the PSP rules.

The secondary market provides a unique opportunity for social equilibrium, as it

allows users to share data without sharing the same data plan, a restriction in most

ISPs, such as [7]. We address the need for privacy in the bidding market; bid privacy

is a concern for two reasons: (1) Sellers may use a buyer’s valuation to discriminate

against a specific buyer(s), (2) an auctioneer might create a fake second highest bid

slightly below the highest bid in order to increase his revenue. In general, the buyer

does not trust the auctioneer. We therefore determine that our mechanism must be

locally privacy-preserving. By privacy-preserving, we mean anonymous. That is, the

winning bid in each local auction maintains anonymity, although the bid itself may
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be public information. In this way, consumers are able to trust the pricing scheme of

the local auction and the resulting allocation.

To the best of our knowledge, this is the first work to provide a comprehensive

derivation of a truthful mechanism that is self-contained within this specific dynamic

market topology, the second-price auction platform pioneered by AT&T. We focus

on providing the existing auction platform with an incentive framework, and so ra-

tional users choose a collaborative exchange. In other words, adhering to the second-

price rule, where price is derived from autonomous demand, we build ”order” within

the dynamic network of shifting demand and supply based on noncooperative, au-

tonomous consumers. This is the (built-in) transformation from the direct-revelation

mechanism to the desired message space. Our auction mechanism may be described

in game-theoretical terms as a pure-strategy progressive game with incomplete, but

perfect, information.

The rest of of this paper is structured as follows: Section 5.2 presents the re-

lated work on auction theory and resulting policy software. Section 5.3 details the

market derivation and mathematical form, which we present as an extension of the

formulation found in [45]. The analysis of user behavior and the resulting algorithms

that drive the noncooperative game are presented in Section 5.4 along with a simple

example. The analysis of the VCG properties and the network Nash equilibria are

given in Section 5.5. Conclusions and Future Work follow in Section 5.6.

5.2 Related Work

Different definitions of social welfare define different auction strategies. Typical goals

of optimization are the maximization of revenue and optimal allocation. Google

AdWords allows advertisers to set their own prices by using an auction system where

advertisers bid on keywords to get their ads placed in Google search results [36].

According to [36], progressive pricing, when used in combination with an auction

platform, is a fairer way to determine prices. This is the ”smart” pricing rule. We are

used to understanding prices in units of data, or rates such as units of data per hour.
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If we can instead see prices in terms of a unit of value, then the price the customer

pays can scale in proportion to the value demanded; this is our dynamic reserve price.

Progressive second-price auctions strive for this dynamic price in different ways, some

try to optimize the sellers’ reserve price, or market price, as in this work. Research

has been done for PSP auctions, and improvements have been made to the original

work from Lazar and Semret. In [70], user strategy gives a “quantized” version of

PSP, improving the rate of convergence of the game by shifting the bid price based on

some threshold. Modifications to the mechanism that result in improved convergence

also appear in [50], which relies on a global approximation function of demand.

Approximation of demand is a popular avenue of research for the division of

data in a PSP auction. The complexity and amount of data inherent in digital data

sharing creates a natural necessity; platforms must take advantage of the continuity

of auctions restricted to simple sellers and buyers, as well as grid-based platforms. An

approximation of the global demand function that uses a statistical approximation of

the state space is derived from the theory of potential games. Potential games make

use of a global strategy defined by the potential function; many companies use this as

a mathematical tool to gather user data in order to further shape their market space.

The idea of potential games in PSP markets was used by Zhong to coordinate the fair

charging of electric vehicles in [91]; the potential game modeled the distribution of

the load variance in electric vehicle charging, minimizing it as a global function with

some constraints. The benefit of potential games is that, under some conditions, we

are guaranteed convergence to a Nash equilibrium.

The analysis and interpretation of the data exchanged between the data-serve

platform and the user quantify user value individually and strive to understand the

decision process with increasing granularity. Usually, companies only know their

marginal costs and can only infer user value by sample estimation. Today, with

pervasive data and increasingly precise analytical capabilities, companies can derive

a more precise estimate of value per user, and still maintain a zero marginal cost.

Recently, using a mobile app as a platform, [94] assigns electric vehicles to charging
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stations, replacing a first-come-first-serve system, and ensuring that there is enough

power assigned to keep each user satisfied without overloading the supply. Impor-

tantly, [94] considers the individual valuations of the users. More generally, [74],

defines an optimal strategy for buyers and brokers using a game-theoretic derivation,

and further shows the existence of network-wide market equilibria obtained by the

specific provisioning of this network given specific network dynamics. Indeed, various

equilibria may be derived by designing the structure of provisioning in distributed

systems, motivated by individual users interests. The continuity of data supplied by

the customer demand allows for the continuity of change to the pricing system of the

data-serve platform. By allowing a user preference to, loosely, represent a policy, we

may interpret a user preference from the data exchange market as a plan to allow

users to set their own policies, and rely on the existing framework to implement their

preferences. Game-theoretical analysis of mobile data has been presented in [92] as a

framework for mobile-data offloading.

This new type of provisioning is described as virtual elasticity in [60], a paper

that has recently provided an innovative way to estimate future prices, an avenue

of research that is of great interest to the marketing community. The estimation

of future prices is difficult in PSP auctions, due to the dynamically changing bids.

However, an estimation of future demand (price) can greatly affect the efficiency of

the provisioning system, particularly with static resources, such as computer memory.

Finally, we mention that the concern of privacy is addressed in [35]. This paper

addresses the problem of privacy between the web user and the advertiser, which is

beyond the scope of this paper. However, we mention that the issue of privacy can

change based on the platform, and the extent to which we have implemented data

privacy, through anonymous bids, may not be sufficient. Our analysis is largely based

on the work of [73] and his examination of second-price auctions in networked settings.

In particular, we make use of the assumption of consistent bids, in the special case

where consistent bidding is an optimal solution, i.e. a Nash equilibrium.



72

5.3 Market Formulation and Definitions

5.3.1 The Market Mechanism

We aim to design a distributed PSP auction, operating within a strategic framework

that determines the bidding behavior of users in a wireless network. The auction

design must must meet a certain set of known criteria: (1) truthfulness, (2) individual

rationality/ selfishness, (3) social welfare maximization, and (4) an anonymous win-

ning bid. For the secondary data exchange market, we determine that the strategy

space must meet additional criteria: (5) privacy and independence from the ISP, (6)

locally fair division, and (7) minimize crossover in buyer/ seller pools. In second-

price markets, the winning bid does not pay the winning bid price, but the price from

next lowest bid. This provides the market with the property of truthfulness through

incentive compatibility, meaning that a bidder will truthfully reveal its valuation of

the resource. The exclusion-compensation principle, or Pareto criterion, is built into

the pricing mechanism, and guarantees that at equilibrium, any change to the system

would make at least one user worse-off.

Let the set of all wireless users be labeled by the index set I = {1, · · · , I}. In

our current formulation, we do not allow a seller to host multiple auctions, and so

we may assume that data is a unary resource belonging to the seller, and identify

each local auction with the index of the seller j ∈ I. The bid profiles of the users are

given as, s ≡ [sji ] where (i, j) ∈ I × I. We assume that all inactive bids are zeroed,

i.e. if there is no interaction between two players i and j, then (i, j) = 0. Then,

I × I is a matrix, with each element of the matrix representing a single buyer-seller

interaction, one projective representation of the space. The matrix allows for ease

in our analysis by vectorizing the space, and represents a single snapshot of a static

system, all quantities and prices are fixed. We call this space S, as in standard game-

theoretic notation, and so the (full) strategy space for buyer i as all possible bids at

all auctions: Si = Πj∈IS
j
i , and S−i = Πj∈I

(
Πk ̸=i∈IS

j
k

)
as the associated opponent

profiles.
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The grid(s) of bid profiles, s, represents the statistical distribution of player types

and corresponding actions, the userwise distributed state of actions in the secondary

market. We will use the context of the bid to indicate the user type as well as the

notation: si is a buyer’s bid, s−i ≡ [sj1, · · · , s
j
i−1, s

j
i+1, · · · , s

j
I ]j∈I is the profile of user

i’s opponents, and sj a seller’s local auction. We describe the rules as follows:

• The bid is represented by sji = (qji , p
j
i ), indicating that i would like to buy from

j a quantity qji and is willing to pay a unit price pji .

• The auction platform maintains and updates all bids.

• sji > 0 represents an active bid in s, with bid, sji = (qji , p
j
i ).

• A buyer that does not submit a bid, i.e. sji = 0, will not receive opponent

profiles from seller j.

• A seller’s profile [si] is comprised of buyers in auction j, and a buyer’s profile

[sj] a set of auctions in which the buyer holds active bids.

We will assume that a buyer’s budget is sufficient, as the alternative would be to pay

a higher price to the ISP.

5.3.2 Market Incentive

As a market with perfect with incomplete information, we determine that sellers can

only gain information about the market by observing buyer behavior in their local

auction. Buyers are able to see the sellers reserve price for each market in which

they bid. The reserve price of each auction is determined by the valuations of the

buyers, that is, the seller takes a passive, or reactive role, and modifies its reserve

price according to market demand. Thus the buyer is able to determine the state of

the market through the reserve price of its active auctions, and so may be able to

infer some behavior resulting from opponent bid profiles. Our analysis focuses the

role of buyers, who are able to directly influence global market dynamics. Each buyer

i will have information from each seller j, as well as opponent profiles s−i, from each
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auction in which it is participating. In the extreme case, where i submits bids to all

auctions j ∈ I, buyer i gains access all buyer profiles, [s1, · · · , sI ] for each auction j.

Define the set of sellers chosen by buyer i ∈ I as,

Ii(n) = argmax
I′⊂I,|I′|=n

∑
j∈I′

Qj,

and similarly, for a seller j ∈ I, we define the set of buyers participating in auction

j as,

Ij(m) = argmax
I′⊂I,|I′|=m

∑
i∈I′

pji ,

where m,n ∈ I.

We now must determine a function which regulates the behavior of the buyers in

our dynamic market. We define an opt-out function, σi, associated with a buyer i

as part of its type. Buyer i, when determining how to acquire a possible allocation

a, will determine its bid quantities by,

σi(a) = [σj
i (a)]j∈I . (5.1)

In a general sense, σi applies the PSP rules to our user strategy. The rules presented

here incorporate the opt-out function with the auction mechanism. The market price

function, Pi, for a buyer in the secondary market is:

Pi(z, s−i) =
∑
j∈I

σj
i ◦ p

j
i (z

j
i , s

j
−i)

=
∑
j∈I

(
inf

{
y ≥ 0 : qji (y, s

j
−i) ≥ σj

i (z)

})
,

(5.2)

which we interpret as the aggregate of minimum prices that buyer i bids in order to

obtain data amount z given opponent profile s−i. The maximum available quantity

of data in auction j at unit price y given sj−i is given as:

qji (y, s
j
−i) = σj

i ◦ q
j
i (y, s

j
−i) =

[
Qj −

∑
pjk>y

σj
k(a)

]+
. (5.3)
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It follows from the upper-semicontinuity of Dj
i that for sj−i fixed, ∀ y, z ≥ 0,

σj
i (z) ≤ σj

i ◦ q
j
i (y, s

j
−i)⇔ y ≥ σj

i ◦ p
j
i (z, s

j
−i). (5.4)

The data allocation rule is a function of the local market interactions between buyers

and sellers over all local auctions, as is composed with i’s opt-out value, so that for

each i ∈ I, the allocation from auction j is,

aji (s) = σj
i ◦ a

j
i (s)

= min

{
σj
i (a),

σj
i (a)∑

pjk=pji

σj
k(a)

qji (p
j
i , s

j
−i)

}
. (5.5)

Remark 5.1. The bid quantity σj
i (a) and the allocation aji are complementary.

Finally, we must have that the cost function.

ci(s) =
∑
j∈I

pji

(
aji (0; s

j
−i)− aji (s

j
i ; s

j
−i)

)
. (5.6)

The cost to buyer i adds up the willingness of all buyers excluded by player i to pay

for quantity aji . i.e.

cji (s) =

∫ aji

0

pji (z, s
j
−i) dz.

This is the “social opportunity cost” of the PSP pricing rule.

5.3.3 The Anonymity Problem

The PSP auction given in [45] is comprised of a set of simple and symmetric rules

that closely follow market theory, and as it is distributed we require privacy to be

computed on an individual basis, each user must be able to confirm its own anonymity.

We describe the process as given in [19]. In general, a distributed computation, where

buyer i is part of a coalition comprising auction j, is as follows:

Denoting m−i = [(sji , ri),m1, · · · ,mn]k ̸=i∈I , buyer sends a message to each of its

opponents, where sji is i’s bid, ri is an independent random value, and m1, · · · ,mn

the messages i has received so far. Then, all buyers are able to confirm the winning
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bid s∗ī . It was proven in [19] that full privacy is not possible in a second-price auction,

even if we allow partial revelation and weak coalitions. We propose anonymity, in the

winning bid only.

Buyers are anonymous

In our secondary market, we have that any local auction is anonymous by definition,

as a permutation of the valuations results in a permutation of allocations and prices,

equivalently, exchanging the bids of two losing buyers does not change the auction’s

result. Formally,

Definition 5.2. (Anonymous auction) [19] Given an auction j and buyers i ∈ I, a

protocol for computing max{i ∈ I : pji ≥ pjk ∀ k ∈ I} if for all coalitions T ⊂ I, any

pair of inputs x = [sj1, · · · , s
j
I ], ξ, so that ξ is a permutation of x, ∀ i ∈ T : xi = ξi,

and max(), and any choice of random inputs {ri}i∈T . Let T̄ = T × I \ T ,

Pr
(
[x, {ri}i∈T ]x∈

∣∣{ri}i∈T )
= Pr

(
[ξ, {ri}i∈T ]ξ∈T×I\T

∣∣{ri}i∈T )),
which states that any two inputs, the messages seen by coalition T are identically

distributed.

The winning bid is trusted (anonymous) information

We claim that a buyer’s trust in a local auction is fulfilled when the outcome of

the auction is guaranteed to be correct, and if the winner’s identity remains private

information. For each local auction, we define a coalition to be the participating

buyers. The winning bidder is chosen by distributed computation via homomorphic

encryption. We present the Lemma in its general form,

Lemma 5.3. (Benaloh 1987) f(x1, x2, · · · , xn) =
∑n

i=1 xi mod p is privately com-

putable.

Thus, it is possible to anonymously compute,

ω = max([pji ]i∈Ij) = (pj1, p
j
2, · · · , pjn, argmax(pj). (5.7)
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We have the following procedure determining the winner of auction j for some fixed

time in the bid progression, where Qj > 0.

Algorithm 5.1 (Max bid private computation)

1: ω ← 1, e← 0
2: while e ≤ 1 do
3: for i ∈ Ij do
4: if pji ≤ ω then
5: pji ← 1
6: else
7: pji ← 0
8: end if
9: end for
10: e =

∑
i∈Ij p

j
i mod (n+ 1) (Lemma 5.3)

11: for i ∈ Ij do
12: if pji ≥ e then return i (winner)
13: end if
14: end for
15: end while
16:

The winning buyer then leaves the auction, and so we have that the privacy of the

winning buyer is persistent. We note that it is possible for a winner to anonymously

rejoin an auction, however this does not alter our result. At time t = 0, a seller j

entering the market will submit bid sjκ = (Qj, ϵ) to the public data exchange platform,

and so the initial bid sjκ, is public knowledge. The auction begins at time t > 0, and

at t = 0, j will initializing its reserve price by executing a single bid iteration.

We will assume that the cost of participating in the secondary market is absorbed

by the bid fee, which could represent data used in submitting bids, or a fee charged

per unit of data, or a flat rate charged at the completion of the purchase. We do not

model ISP revenue, but assume it may be extracted from the bid fee at t = 0.

The formulation is inspired to the thinnest allocation route for bandwidth given

in [45]. We note that if a single seller j can satisfy i’s demand, then (5.8) reduces to

the original form, defined in [73] as ”a simple buyer at a single resource element”.
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Truthfulness (incentive compatibility)

We will prove that the dominant strategy for buyers is to submit coordinated bids,

where all bids the buyer submits are equal. Our motivation for coordinated bids

comes from the idea of potential games. In potential games, the incentive of all users

to change strategy can be expressed as a single global function. We map the incentive

of a buyer over all auctions j ∈ I to a single potential function. This is a standard

method that is used often, as it simplifies the analysis of both strategy and auction

design. Thus, our strategic bid is an ϵ-best response. The necessary condition of an

ϵ-best reply is that the new bid price must differ from the last by at least ϵ. Now,

an ϵ-best reply for user i is p∗i = θ′i(σi(a)) + ϵ, for a given opponent profile s−i, and

for each j ∈ Ii. Now, as ϵ is the bid fee, we have that pji is equal to the marginal

valuation of player i in auction j, and so incentive compatibility holds.

5.4 Strategic Framework

5.4.1 User Valuation (Strategic Incentive).

In any market, a buyer or seller would like to obtain the maximum amount of utility

possible while staying within budget. The buyer’s utility maximizes the amount of

data allocated by the seller, while the seller’s utility maximizes the cost of the data

sold. We may illustrate the resulting product space for the buyer:

a p

d

projection

level

Figure 5.1: Product / Quotient (step) Space

The level, or price associated with the buyer’s bid may be projected onto a line. As

we will show, this holds when buyers use the same bid price for all nonzero bids. The

projection, or the amount of data requested, is a plane, since buyers may bid in more
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than one auction. Clearly, the allocation is the product of the price and the data

request. The resulting step function is convex. We define a move to a better market

position to be synonymous with a strategic bid.

Remark 5.4. The terms “bid” and “strategy” are often interchangeable, from auction

design and game theory, respectively.

Our mechanism allows a buyer to opt-out of auctions by submitting zero bids. This

strategy maximizes utility while minimizing the number of positive bids submitted

to the overall market. We define each buyer as a user i ∈ I with quasi-linear utility

function ui = [uj
i ]j∈I , a buyers’ utility function is of the form,

ui = θi ◦ σi(a)− ci, (5.8)

where the composition of the elastic valuation function θi with σi distributes a buyers’

valuation of data allocation a across local markets (and thus multiple sellers). The

composition map (the codomain of θi(σi) is the same as the domain of σi(a)) and

restricts the buyer’s domain to minimize qjpj − ci and so maximize ui. We formally

extend the PSP rules described in [73] to determine the presence of equilibria across

fully connected subsets of local data-exchange markets. By fully connected, we mean

that the market subset maintains its own equilibrium without the influence of any

other data-exchange (any other auction). The sellers, j ∈ I are not associated with

an opt-out function. The sellers’ strategy can only be to determine the reserve price

of their local auction, using only information from buyers who have not opted out.

Remark 5.5. It is possible that a seller would be able to derive information about

other auctions by examining buyer bids over time, particularly if the seller had knowl-

edge of the buyer strategy. In this work, we assume sellers are unable to derive oppo-

nent information from buyer bids.

Elastic valuation functions allow for even infinitesimal changes in the market

dynamics to be modeled. We give the definition for an elastic valuation function as

in [45].
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Definition 5.6. (Elastic demand) [45] A real valued function, θ(·) : [0,∞)→ [0,∞),

is an (elastic) valuation function on [0, D] if

• θ(0) = 0,

• θ is differentiable,

• θ′ ≥ 0, and θi
′ is non-increasing and continuous,

• There exists γ > 0, such that for all z ∈ [0, D], θ′(z) > 0 implies that for all

η ∈ [0, z), θ′(z) ≤ θ′(η)− γ(z − η).

The elastic valuation of users and homogeneous nature of data in the secondary

market allows for continuity in the constraints imposed by the user strategies. We

begin our analysis with buyer valuation θi. A buyers’ valuation of an amount of data

represents how much a buyer is willing to pay for that amount. This is equivalent to

the bid price, given a fixed amount of data, satisfying θi. We determine the buyers’

utility-maximizing bid given quantity z ≥ 0 to be a mapping to the lowest possible

unit price. We have,

fi(z) ≜ inf
{
y ≥ 0 : ρi(y) ≥ z, ∀ j ∈ I

}
, (5.9)

where ρi(y) represents the demand function of buyer i at bid price y ≥ 0, and gives

the quantity that buyer i would buy at a given price. We determine that the market

supply function corresponds to an extreme of possible buyer demand, and acts as an

“inverse” function of fi. We have, for bid price y ≥ 0,

ρi(y) =
∑

j∈I:pji≥y

Qj. (5.10)

We note that fi is such that i could still bid in any auction j ∈ I. Therefore, the

utility-maximizing bid price is the lowest unit cost of the buyer to participate in all

auctions, and corresponds to the maximum reserve price amongst the sellers.

From the perspective of the seller we have a more direct interpretation of valua-

tion as revenue. We determine the demand function of seller j at reserve price y ≥ 0
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to be,

ρj(y) =
∑

i∈I:pji≥y

σj
i (a), (5.11)

and define the “inverse” of the buyer demand function for seller j as potential revenue

at unit price y, we have,

f j(z) ≜ sup
{
y ≥ 0 : ρj(y) ≥ z, ∀ i ∈ I

}
, (5.12)

and, unsurprisingly, f j maps quantity z to the highest possible unit data price.

The valuation of any user must be modeled as a function of the entire market-

place. Naturally, a buyers’ valuation is aggregated over local markets, and the sellers’

valuation is aggregated over its own auction. We have already introduced the com-

position θi ◦ σi as the valuation of the buyers. We further show that user valuation

satisfies the conditions for an elastic demand function, with valuations based on (5.11)

and (5.12). We first note that, in general (and so we omit the subscript/superscript

notation), the valuation of data quantity x ≥ 0 is given by,

θ(x) =

∫ x

0

f(z) dz,

as in [73]. Now, we have the following Lemma,

Lemma 5.7. (User valuation) For any buyer i ∈ I, the valuation of a potential

allocation a is,

θi ◦ σi(a) =
∑
j∈I

∫ σj
i (a)

0

fi(z) dz. (5.13)

Now, we may define seller j’s valuation in terms of revenue,

θj =
∑
i∈I

θj ◦ σj
i (a) =

∑
i∈I

∫ σj
i (a)

0

f j(z) dz. (5.14)

We have that θi and θj are elastic valuation functions, with derivatives θi and θj
′

satisfying the conditions of elastic demand.
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Proof. Let ξ be a unit of data from buyer bid quantity σj
i (a). If ξ decreases by

incremental amount x, then seller bid qji must similarly decrease. The lost potential

revenue for seller j is the price of the unit times the quantity decreased, by definition,

f j(ξ)x, and so,

θj(ξ)− θj(ξ − x) = f j(ξ)x.

Thus (5.14) holds. As we may use the same argument for (5.13), as such, we will

denote fi = f j = f for the remainder of the proof. We observe that the function

f is the first derivative of the valuation function with respect to quantity. Letting

θi = θj = θ, the existence of the derivative implies θ is continuous, and therefore,

in this context, f represents the marginal valuation of the user, θ′. Also, clearly

θ(0) = θ(σ(0)) = 0. Now, as we consider data to be an infinitely divisible resource,

we have a continuous interval between allocations a and b, where a ≤ b. Now, as θ is

continuous, for some c ∈ [a, b],

θ′(c) = lim
x→c

θ(x)− θ(c)

x− c
= f(c),

and so f = θ′ is continuous at c ∈ [a, b], and so as a ≥ 0, θ′ ≥ 0. Finally, we have that

concavity follows from the demand function. Then, as θ′ is non-increasing, we may

denote its derivative γ ≤ 0, and taking the derivative of the Taylor approximation,

we have, θ′(z) ≤ θ′(η) + γ(z − η).

The sellers’ natural utility is the potential profit, or simply uj = θj, where we have

chosen to omit the original cost of the data paid to the ISP, as it is not a component

of our mechanism, and as a discussion of mobile data plans is outside the scope of

this paper. Now, a rational user will try to maximize its utility, thus, user incentive

manifests as a response to market dynamics. A buyer has the choice to opt-out of

any auction, and as a seller will try to sell the maximum amount of data, the highest

possible reserve price is conditioned by ”natural” constraints. Utility-maximization

acts as revenue maximization for a rational seller, and as cost minimization for a

rational buyer. Thus, for each user pji ≥ min
(
pji ) and pji ≤ max

(
pji ), which holds
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∀ i, j ∈ I such that sji > 0. Now, rational buyer does not want to purchase extra

data, as this would be equivalent to overpaying, however i submits positive bids to

a set of sellers, and a rational seller will attempt to maximize profit, and so will try

and sell all of its data. Therefore,

∑
i∈I

σj
i (a) ≥ Qj and

∑
j∈I

qji ≥ Qi, (5.15)

which holds ∀ i, j ∈ I. We will assume that buyers and sellers do not overbid, and so

omit this constraint from our formulation. Thus, at equilibrium all users are satisfied,

and Qj = Qi, although we observe that this result does not imply that si = sj.

Finally, it is worth mention that the analysis of the auction as a game assumes

some forms of demand and supply, in order to derive properties. The mechanism

itself does not require any knowledge of user demand or valuation.

5.4.2 User Behavior.

The user local strategy space is non-deterministic: the preferences of users are subject

to change, determinations and predictions are based on the binary dependence of

the variables. Arrow’s Theorem states that no deterministic strategy can provide

a mapping of the preferences of users into a market-wide (complete and transitive)

strategy. As individual bids cannot map to a general objective, a better market

position can only be determined by an adaptive strategy. We will address the market

risks and securities in our secondary data exchange market, and provide a game-

theoretic model of a real market progression, which we then use to derive, and then

define, adaptive variables.

Assuming equal bandwidth for all users, we derive a globally optimal strategy

suited for users with local information in a distributed data-sharing model. In a

multi-auction market, each auction a buyer joins has the possibility of decreasing

the potential cost of its data. However, increasing the size of the auction implies a

certain risk, which we may interpret as a definite liability. Increasing the number of

transactions causes additional messaging overhead, fees, and increased competition
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from other buyers. A transaction also causes potential indirect costs, which may be

considered work done to find sellers, or effort of communication from participation.

A seller has the potential for greater profit with each new buyer in its auction, taking

the same risk. To simplify our analysis, here the liability of any user is naturally

absorbed into the bid fee ϵ, as in [73]. Therefore, according to our interpretation, the

bid fee is dependent on the association between two users and their market positions,

in addition to the underlying network structure. Now, both sellers and buyers must

consider the cost of adding additional users to their subsequent pools.

Buyer i’s seller pool is determined by minimizing n, and is the smallest set of

sellers that allows for a coordinated bid, and the aggregate bids satisfy its demand,

Qi.

min
{
n ∈ I | nDn ≥ Qi

}
. (5.16)

Similarly, seller j determines the minimal set of buyers that maximizes revenue and

sells all of its data, Qj.

min

{
m ∈ I

∣∣∣∣ ∑
i∈Ij(m)

qji ≥ Qj

}
, (5.17)

We further determine that the set of buyers and sellers participating in a single

equilibrium is bounded by the potential indirect costs of participation. We will denote

this individual cost to each user as ϱ. The indirect cost is the portion of the bid fee

ϵ that is dependent on the underlying network and the individual. Observing that ϱ

indirectly effects user utility, and therefore acts to establish a natural budget for each

user. We define this constraint as,

u ≤ ϱ, (5.18)

which may be interpreted as the effort a rational user is willing to expend on its

message space, and serves to limit the size of the buyer/seller pools. This information

may be collected from a specific device’s configuration, i.e. enabled roaming, daily

data restrictions. It is clear that an unconstrained market, even with a finite number
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of users, could suffer from the expense of many local auctions trading an infinitely

divisible resource, thus ϱ is interpreted as the ”liability” component of ϵ, and attempts

to regulate network congestion.

Buyer Strategy

Although it is possible for a seller to fully satisfy a buyer i’s demand, it is also

reasonable to expect that a seller may come close to using their entire data cap,

and only sell the fractional overage. In this case, a buyer must split its bid among

multiple sellers. The buyer strategy bids in auctions with the highest quantities first,

a natural exploitation of the demand curve. A new seller entering the market with a

large quantity of data will be in high demand. This behavior contributes to market

price stability, as seller valuation is determined by buyer demand, the buyer strategy

tends towards equal valuation of all local markets, and therefore similar prices. If a

buyers’ demand is not satisfied, they will need to bid in markets with smaller data

quantities, and so will bid on a larger portion of the sellers’ bid quantity, increasing

their unit price. We define j∗ = n ≤ I represent the seller with the least amount of

data ∈ Ii, i.e. Dj∗ ≤ Qj, ∀ j ∈ Ij. We define the composition,

σj
i ◦ a = σj

i (a) =
aji
|Ii|

,

to be the buyer strategy with respect to quantity for all sellers j ∈ Ii. We propose

the following strategy.

Lemma 5.8. (Opt-out buyer strategy) Let i ∈ I be a buyer and fix all other buyers’

bids s−i at time t > 0, and let a be i’s desired allocation. Define,

σj
i (a) ≜

{
σj∗

i (a), j ∈ Ij,
0, j ∋ Ij.

(5.19)

and bid price pji = θ′i(σ
j
i (a)). Now, (5.19) holds ∀ j ∈ I.

Each time step, sj, the vector of bids held by auction j, is updated it is shared

with all participating buyers. At this point buyers have the opportunity to bid again,



86

where a buyer that does not bid again is assumed to hold the same bid, since a buyer

dropping out of the auction will set their bid to sji = (0, 0).

Proof. We assume that a buyer will try and fill their data requirement. In the case

that there exists a seller who can completely satisfy a buyers’ demand, j∗ = 1, |Ii| = 1

and (5.16) holds. If such a buyer does not exist, as the set Ii is ordered by the quantity

of the sellers’ bids, i may discover j∗ by computing Ii. Suppose that Qi >
∑

j∈I Q
j,

then j∗ > I and Ii = ∅. We model the ISP at time t > 0 as a seller κ with bid

sκ = (dκ, pκ), where dκ > Qj, ∀ j ∈ Ii, and pκ represents the price for data set by

the ISP, which we note is also the upper bound of the sellers’ pricing function. We

note that in [95] this cost is the data overage fee. Consider some k ̸= i ∈ I where

pji = pjk. The allocation rule (5.5) determines that the data will be split proportionally

between all buyers with the same unit price. It is possible that the resulting partial

allocation of data to i and k would not satisfy some demand. As the two cases i

and k are the same, we will only consider one. Suppose seller j updates its bid to

reflect the new data quantity, where q
j(t+1)
i < σ

j(t)
i (a). First, i sets its bid to sji = 0,

and from the new subset Ii, submits bids until
∑

j∈Ii σ(a)
j
i ≥ Qi, by (5.15). Now,

we consider the case where a new buyer k with bid price pjk > pji for some j ∈ Ii,

in other words, a new buyer k may enter the market with a better price, decreasing

the value of i’s bid for j ∈ Ii. In this case, by (5.16), i will choose Ii so that,

σ
j(t+1)
i (a) = σ

j(t)
i (a) − σ

j(t)
k (a), and so Ii is large enough to balance the additional

demand from k. Finally, we consider the case where |Ij| = I, where the demand of

buyer i exceeds the supply, and the case where σi(ϱ) > θi(σi(a)), where the overhead

exceeds the current valuation of the data. Then, by (5.9), the valuation of the data

increases until either the demand is satisfied, the debit from the overhead costs are

balanced (5.18), or the upper bound of the sellers’ reserve price pκ is reached. Thus,

as in each case we have that i is able to satisfy their demand, and we determine that

the opt-out strategy is optimal.
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Algorithm 5.2 (Buyer response)

1: pi(0) ← ϵ, si(0) ← (pi, Qi), Dt ← Qi, compute Ii(0)
2: Update si
3: while Qi(t) > 0 do

4: Dj
i(t+1) ←

∑
j∈Ii σ

j(t)
i (a)

5: if Dj
i(t+1) < Dt then

6: Compute Ii(t)
7: pi ← θi(σi(a))
8: end if
9: si(t+1) ← (σi(a), pi)
10: Update si
11: Dj

i(t+1) ← Dj
i(t)

12: t← t+ 1
13: end while

Finally, we note that Ii is not the only possible minimum subset ∈ I able to satisfy

i’s demand, in fact, by restricting the size of the set Ii, we would be able to improve

the computation time of buyer i, at the cost of increasing the price.

Seller Strategy

We define the reserve price for seller j as,

pj∗ = pji∗ + ϵ, (5.20)

where i∗ is the highest losing bidder with respect to bid price. We claim that the

choice of reserve price pj∗ does not force any buyers out of the local auction. In order

to maximize revenue, the seller must also be able to respond dynamically to strategic

bids. In order to do this, we determine that the seller may modify its reserve price in

response to the changing market dynamics.

Define any auction duration to be τ ∈ [0,∞). We will show that sellers are able

to maximize revenue in restricted subset of buyers in I, and as such will attempt

to facilitate a local market equilibrium for this subset. A local auction j converges

when ∀ i ∈ I, sj(t+1)
i = s

j(t)
i , at which point the allocation is stable, the data is sold,

and the auction ends. In the sellers’ local environment, we determine that the best
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course of action is to maximize revenue, and then try to keep its buyer pool stable

until convergence occurs.

Lemma 5.9. (Localized seller strategy (i.e. progressive allocation)) For any seller j,

fix all other bids [ski ]i,k ̸=j∈I at time t > 0 ∈ τ . For each t ∈ τ , let ω(t) be given by

(5.7), and perform the update,

Dj(t+1) = Dj(t) − σ
j(t)
ω(t)(a). (5.21)

Allowing t to range over τ , we have that Qj = 0, and a local market equilibrium.

Consider a user purchasing data from a subset of other network users. The sellers’

auction will function as follows: at each bid iteration all buyers submit bids, and the

winning bid is the buyer i that has the highest price pji . The seller allocates data to

this winner, at which point all other buyers are able to bid again, and the winner

leaves the auction (or equivalently, maintain their bid). The auction progresses as

such until all the sellers’ data has been allocated.

Proof. We assume that the seller will try to maximize its revenue. In the case where

|Ij| = 1, then if σj
i (a) = Qj, then j’s market is at equilibrium. Otherwise, we arrive

at the case of multiple buyers, which we note includes the case where σj
i (a) < Qj,

which is reflected trivially here.

For auction j with multiple buyers, i∗ is the losing buyer with the highest unit

price offer, determined by (5.17), Suppose that for some i ∈ Ij, buyer demand is not

met. In this case, by (5.15) the seller must notify i of a partial allocation by changing

the bid vector at index i. With this caveat, and Proposition 5.8, we have that the

aggregate demand of subset Ij is satisfied by seller j. Although the buyers’ valuation

θi is not known to the seller, we will assume that buyers are bidding truthfully, and

so the new reserve price pji∗ + ϵ = θi∗
′ + ϵ. For clarity, let the reserve price be

denoted by pj∗. Now, by the elasticity of (5.9) and (5.12), we have that, ∀ z ≥ 0,

fi∗(z) < f j(z) ≤ fi(z), which holds ∀ i ∈ Ij, and ∀ j ∈ Ii. We claim that the choice

of reserve price pj∗ does not force any buyers out of the local auction. To show this,
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we use the assumption of truthful bids, and the fact that since the auction begins at

time t > 0, buyers will bid at least once. As will be addressed in further analysis,

we assume that a new bid price differs from the last bid price by at least ϵ. Suppose

the auction starts at equilibrium, so
∑

i∈Ij σ
j
i (a) = Qj at time t = 0. The reserve

price pj∗ set at time t = 0 begins the auction with the first bid iteration, and so

at t > 0, ∀ i ∈ Ij, we have that pji − pj∗ ≥ ϵ. Now, in the case where at t = 0,∑
i∈Ij σ

j
i (a) > Qj, by (5.5), the seller notifies (any) buyer k with the lowest bid price

of a partial allocation by changing djk thus by Proposition 5.8, k either decreases its

demand or increases its valuation until σj
i (a) ≤ qji . Then, as the seller computes the

set Ij at each time step, a new i∗ may be chosen and the buyers bid again. Suppose

∃ k ∈ Ij such that ∀ l ∈ Ik, i ∋ I l ∀ i ̸= k ∈ Ij. That is, k is disconnected from all

other buyers i ∈ Ij, and suppose that djk is partial allocation at t > 0, and further

suppose that there are many l ∈ Ik where |I l| > |Ij|. The more buyers an auction

has, the more likely that cases will occur that cause buyers to rebid, particularly

if auctions l ∈ Ik have overlapping buyers, then k may opt-out of auction j, i.e.

s
j(t)
k ̸= s

j(t+1)
k = 0, then the seller may simply return the tentatively allocated data

to Qj. Finally, we note that if for some i ∈ Ij ∃ k ∈ Ij such that pji = pjk, then

the seller again notifies the buyers of a partial allocation by changing qji and djk by

(5.5). Thus we determine the valuation between seller j and buyer i is well-posed,

the reserve price (5.20) is justified, and we have a local equilibrium at time τ .

We provide a simple example.

5.4.3 A Simple Example.

Example 5.10. Finally, we give an additional simple example of convergence to a

local market equilibrium, where the buyers are assumed to respond with their truthful,

ϵ-best replies.
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Name Bid total Unit price
A 50 1
B 40 1.2
C 26 1.5
D 20 2
E 14 2.2

Let s(1) = [(65, ϵ)]i∈I and s(2) = [(85, ϵ)]i∈I. The buyer bids are as follows:

sA = [(0, 0), (50, 1)],

sB = [(0, 0), (40, 1.2)],

sC = [(0, 0), (26, 1.5)],

sD = [(0, 0), (20, 2)],

sE = [(0, 0), (14, 2.2)].

Then at t = 1, we have bid vector s(2) = [(0, p(2)), (20, p(2)), (26, p(2)),

(20, p(2)), (14, p(2))], and so (D(2), p(2)) = (85, 1 + ϵ), The buyer response is,

sA = [(50, 1), (0, 0)],

sB = [(40, 1.2), (0, 0)],

sC = [(0, 0), (26, p(2))],

sD = [(0, 0), (20, p(2))],

sE = [(0, 0), (14, p(2))].

At t = 2, (D(1), p(1)) = (65, 1 + ϵ), with bid vector s(1) = [(25, p(1)),

(40, p(1)), (0, 0), (0, 0), (0, 0)]. (D(2), p(2)) = (25, 1 + ϵ). Then,

sA = [(25, p(1)), (25, p(2))],

sB = [(40, p(1)), (0, 0)],

where we have removed bids to indicate winner(s) with a tentative allocation. At t = 3,

(D(1), p(1)) = (50, 1+ ϵ), with bid vector s(1) = [(25, p(1)), (40, p(1)), (0, 0), (0, 0), (0, 0)].
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(D(2), p(2)) = (0, 1 + ϵ) and s(2) = [(25, p(1)), (0, 0), (26, p(2)), (20, p(2)),

(14, p(2))]. Then,

sA = [(25, p(1)), (0, 0))].

At t = 4 the auction ends.

Remark: In the case where market resources do not satisfy (5.15), however as this

constraint is not restricted in time, we reason that in the case of insufficient data in

the market buyers may wait for additional sellers or purchase from the ISP, κ, as a

monopoly sale. Similarly, in the case of insufficient demand, where we may assume

that data is held at time t = 0 by κ at bid price ϵ.

Algorithm 5.3 (Seller progressive allocation)

1: pj(0) ← ϵ, sj(0) ← (pj, Qj), Ī = ∅, compute Ij(0)
2: Update sj

3: while Qj(t) > 0 do

4: ī← max
i∈Ij

∑
i∈Ij

pji

5: Dj(t+1) ← Dj(t) − σ
j(t)

ī
(a)

6: pj ← pji∗ + ϵ and qj ← Dj(t+1)

7: sj(t+1) ← (qj, pj)
8: Update sj

9: Ī ← Ī ∪ ī
10: for k ∈ Ī do
11: if pjk < pji∗ then
12: Dj(t+1) = djk
13: Ī ← Ī \ {k}
14: end if
15: end for
16: Compute Ij(t)
17: Ij(t+1) = Ij(t) \ Ī
18: t← t+ 1
19: end while

Individual rationality/selfishness.

We conclude this portion by examining the relationship between the strategies of

buyers and sellers in local auctions. We have proven that a buyer cannot have a
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negative utility. Our strategic framework creates an incentive for the seller to maintain

a local equilibrium, where supply equals demand. A truthful bid implies that the

new bid price differs from the last bid price by at least ϵ. As a seller must distribute

bid vectors to all buyers in its auction, we reason that the seller may employ a

strategic caveat. The seller will notify a buyer who is subject to a market shift

by changing its bid at the appropriate index. As we have shown, the seller is a

functional extension of the buyer, with rules determined by the buyers’ behavior.

This gives an auction j a natural logical extension into the global market through

its buyers. We demonstrate that the symmetry between buyer and seller behavior,

consequently strategies, stretches into a symmetry across subsets of local auctions.

Value is modeled as a function of the entire marketplace: a buyer’s valuation is

aggregated over all the auctions, and the seller’s valuation is aggregated over its own

auction. We must ensure that a user’s private action satisfies the conditions of a

direct-revelation mechanism, as well as adheres to the collective goals. We show

that, from Lemma 5.9 and Definition 5.8, an individual user will contribute to local

stability, given global market dynamics S.

We model the impact of the dynamics of S of the data-exchange market on a

local auction j. The market fluctuations from S give auctioneer j the chance to infer

information about the global market. We identify a clear bound restricting the range

of influence that local auctions have on each other. Consider a single iteration of the

auction, where a seller updates bid vector sj, and the buyers’ response si, to comprise

a single time step. We have the following Proposition,

Proposition 5.11. (Valuation across local auctions) For any i, j ∈ I,

j ∈ Ii ⇔ i ∈ Ij. (5.22)

Fix an auction j ∈ I with duration τ and define the influence sets of users. The

primary and secondary influencing sets are given as,

Λ =
⋃
i∈Ij

Ii, and λ =
⋃
i∈Ij

( ⋃
k∈Ii

Ik
)
. (5.23)
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Define ∆ = Λ ∪ λ. Fixing all other bids sji ∈ I, and time t > 0 ∈ τ , we have that,∑
j∈Λ

θji =
∑
i∈λ

θji . (5.24)

Proof. As this is our main result, we provide an outline of the (exhaustive) proof,

illustrating the most important case, when a market shifts affect auction j, and the

direct influence of the shift on the connected subset of local markets.

A local auction j ∈ I, is determined by the collection of buyer bid profiles. Using

Lemma 5.9 and (5.22), we have that,

i ∈ Ij ⇔ pji > pji∗ , (5.25)

where we define i∗ as the losing buyer with the highest bid price in auction j. By

(5.9) pji ≥ pji∗ + ϵ, thus pji < pji∗ can only happen during a market shift. Consider

k ∈ Ij at time t where, for example, some buyer(s) enter the auction, and so (5.25)

implies that
∑

i∈Ij σ
j
i (a) > Qj. Now, pji < pji∗ ⇒ k ∋ Ij and sjk > 0 will cause k to

initiate a shift. By Definition 5.8, k will set sjk = 0, and begin to add sellers to its

pool. Suppose that at time t, j’s market is at equilibrium. Unless k adds a seller

with a higher reserve price within |Ij| time steps, by (5.21), the auction ends. We

have that, ∀ i ∈ Ij, ∄ sji > 0 where i ∋ Ij, and (5.22) holds.

Now, the subset Ij ⊂ I determines j’s reserve price pji∗ . We will assume the

buyer submits a coordinated bid, using (5.5). The reserve price (5.20) of seller j is

determined at each shift, and is the lowest price that j will accept to perform any

allocation. Let pj∗ denote the reserve price of auction j and p∗i denote the bid price

of buyer i, i.e. pki = p∗i , ∀ k ∈ Ii. Using Lemma 5.9, for each i ∈ Ij, we have from

(5.9), (5.12), that p∗i ≥ pk∗, ∀ k ∈ Ii. In the simplest case, consider a disjoint local

market j, where ∀ i ∈ Ij, ski = 0, ∀ k ̸= j ∈ Ii ⇒ Λ = {j} and λ = Ij. Again

using (5.9) and (5.12), it is clear that θi = θj, ∀ i ∈ Ij. In all other cases, the sellers

∈ Λ are competing to sell their respective resources to buyers whose valuations are

distributed across multiple auctions. The bid price of buyer i ∈ Ij is determined by,



94

p∗i = maxk∈Ii(p
k
∗). Λ is the set of sellers directly influencing the bids of buyers in

auction j. Now, the reserve price for auction j is such that, pj∗ ≤ mini∈Ij(p∗i ) − ϵ.

From (5.23), Λ is defined by a seller j ∈ I, where each user k ∈ λ has some direct or

indirect influence on j. Denote ∆j = Λj ∪ λj.

Consider the set λj. For some buyer i ∈ Ij, and then for some seller k ∈ Ii, we

have a buyer l ∈ Ik. By (5.22), i, l ∈ Ik, and so the reserve price pk∗ ≤ min(p∗l , p
∗
i ),

and k, j ∈ Ii ⇒ p∗i ≥ max(pk∗, p
j
∗). Suppose that l ∋ Ij ⇔ j ∋ Il, so that p∗l < pj∗,

and the valuation of buyer l does not impact auction j and vice versa, i.e. θjl = 0.

Since l ∈ Ik, p∗l ≥ pk∗ ⇒ pk∗ < pj∗, and i ∈ Ij ⇒ p∗i ≥ pj∗. Therefore, we have that the

ordering implied by (5.23) holds, and,

pk∗ ≤ p∗l < pj∗ ≤ p∗i , (5.26)

for any buyer l ∈ λj such that l ∋ Ij. We use a similar argument for a secondary

user q ∈ Il.

Finally, consider the subset Λj; a shift occurs in 2 cases. (1) If i ∈ Ij decreases

its bid quantity so that
∑

i∈Ij σ
j
i (a) < Qj, and (2) if buyer i∗, defined in Lemma 5.9,

increases its valuation so that pji∗ < pj∗. Fixing all other bids, a decrease in q’s demand

will directly impact buyer i. If at the end of the bid iteration, we still have that i

is the buyer with the lowest bid price, then (5.12) holds and j’s valuation does not

change. Otherwise a new i∗ will be chosen upon recomputing Ij, as a consequence

of Definition 5.8 and Lemma 5.9, and the market will attempt to regain equilibrium.

We determine the influence of ∆k∗ on ∆j by (5.25).

In each case we have that (5.9) and (5.12) hold for some fixed time t, and so,

∀ i ∈ Ij, any bid outside of our construction has a zero valuation, with respect to

buyers ∈ λ and sellers ∈ Λ, and therefore cannot cause shifts to occur except through

a shared buyer, e.g. some l ∈ Ik. Thus, in all cases, (5.9) and (5.12) hold. Fixing all

bids in any auction where q ∋ Λj, ∀ i ∈ Ij,∀ k ∈ Ii,∀ l ∈ Ik,∫ σk
i (a)

0

fi(z) dz =

∫ σk
i (a)

0

fk(z) dz, (5.27)
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and∫ σk
l (a)

0

fk(z) dz =

∫ σk
l (a)

0

fl(z) dz. (5.28)

Thus, with a slight abuse of notation for clarity,∑
λ

∫ σ(a)

0

fΛ(z) dz =
∑
Λ

∫ σ(a)

0

fλ(z) dz, (5.29)

where the result follows by construction, and the continuity of θ′.

For completeness, in the case where the ISP κ does not adhere to the market

dynamics, so pκ > pj + ϵ, ∀ j ∈ I, then we may absorb the overage (difference) as

part of the bid fee.

Locally fair division.

We claim that the allocation a by seller j for a local auction at equilibrium is an

equitable division, a fair division where each buyer equally values their valuation. We

have that equitable division holds from (5.27) Proposition 5.11.

Social welfare maximization.

We define an optimal state of social welfare to be when valuations are equal across a

subset of local auctions. Then, ∆ ⊂ I to be a subset of users where an optimal social

welfare is achieved.

Social welfare maximization (exclusion-compensation)

We define an optimal state of social welfare to be when valuations are equal across a

subset of local auctions. Then, ∆ ⊂ I is the subset of users where social welfare is

achieved. We finally have:

Corollary 5.12. (∆-Pareto efficiency) The subset ∆ ⊂ I is Pareto efficient, in that

no user can make a strategic move without making any other user worse off.

Proof. Define s∗ = (z∗, θ
′
∗(z∗) as the set of truthful ϵ-best replies for user i given

opponent bid profile S−i, where ∀j ∈ Ii, sj∗ = s∗. Since θ
′
i is continuous, as was shown
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in Lemma 5.7, and as s|∆ = {[sji ] ∈ λj × Λj} is continuous in s on Sk = Πk∈λjSj
k,

then given that s∗ = s∗ = (f ∗(p∗), p∗) = (z∗, θ′(z∗)), we have that s∗ is truthful. The

result now follows directly from the result of Proposition 5.11.

5.5 Equilibrium Analysis

We intend to show evidence shared network optima (a global optimum). A buyer

i ∈ I will have incentive to change its bid quantity if it increases its opt-out value σi,

and therefore its utility (5.8). We will show that, without loss of utility, buyer i may

use a “consistent” bid strategy within its seller pool, i.e. qji = qki , ∀ j, k ∈ Ii, and as

such, Proposition 5.8 supports an optimal strategy with respect to (5.8). Our result

shows that a buyer may select Ii in order to maximize its utility while maintaining a

coordinated bid strategy. Reasonably, if j∗ < I, a buyer may increase the size of its

seller pool Ii, thereby lowering its coordinated bid quantity while obtaining the same

(potential) allocation ai. As buyer i submits identical bids to multiple auctions, the

bid price must be as high as the highest reserve price pji ∈ Ii. Buyer i’s bid then

has identical bid price pji∀ j ∈ Ii. We further note that i optimal strategy does not

require reducing its bid price to a minimum in each auction, where the bid quantity

σj
i (a) is still fulfilled. The pricing rule of the PSP auction dictates that a buyer i will

pay the cost of excluding other players from the auction, and as i’s bid price reflects

its valuation of it data requirement Qi across all local markets, we have identical bid

prices in each auction where sji > 0. Obviously, if j ∋ Ii, then θji = 0.

Lemma 5.13. (Opt-out buyer coordination) Let i ∈ I be a opt-out buyer and fix all

sellers’ profiles sj. For any profile Si = (Qi, Pi), let ai ≡
∑

j a
j
i (s) be a tentative data

allocation. For any fixed S−i, a better reply for i in any auction is xi = σi ◦ (zi, yi),

where ∀ j ∈ Ii,

zji = σj
i (a),

yji = θ′i(z
j
i ).
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Furthermore,

aji (zi, yi) = zji , (5.30)

and

cji (zi, yi) = yji , (5.31)

where i’s strategy is as in Proposition 5.8.

The proof follows closely the work in [73].

Proof. As s−i is fixed, we omit it, in addition, we will use u ≡ ui ≡ ui(si) ≡ ui(si; s−i).

In full notation, we intend to show

ui((qi, pi); s) ≤ ui((zi, yi); s−i).

Now, if there exists a seller who can fully satisfy i’s demand, then |Ii| = 1, and the

case is trivial as no coordination is necessary for a single bid. Otherwise, buyer i’s

demand can only be satisfied by purchasing data from multiple sellers. We will show

that i may increase |Ii|, and so decreasing qji , ∀ j ∈ Ii, without decreasing
∑

j∈Ii u
j
i .

Buyer i maintains ordered set Ii where the sellers with the largest bid quantities are

considered first; the index of seller j∗ defines a minimal subset Ii, satisfying (5.16).

By construction, qj
∗

i is the minimum quantity bid offered by any j ∈ Ii. Thus by

(5.16) and (5.19), ∀ j ∈ Ii, k ∋ Ii, σk
i (a) ≤ zji = σj

i (a), and so, using (5.24),

σj
i (a) ≤

[
Dj −

∑
k∈Ij :pjk>yji

djk

]+
. (5.32)

The buyer valuation function (5.13), guarantees that ∀ j ∈ Ii, yji ≥ pji∗ , where

pji∗ is the reserve price of seller j, defined in Proposition 5.9, and is by definition the

minimum price for a buyer bid to be accepted. As D̄j
i is non-decreasing, ∀ j ∈ Ii,

k ∋ Ii,

Qj
i (y

j
i ) ≥ Qj

i (p
j
i ) ≥ Qj

i (p
k
i ).
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Thus (5.32) holds and so, by (5.5),

aji (zi, pi) = min
i∈Ij

(
zji ,

[
Dj −

∑
pjk>yji

djk

]+)
= zji = σj

i (a)

where the last equality is by definition, and so (5.30) is proven. From (5.3), D̄j
i (y, s−i) =

0 ∀ y < pji∗ , and D̄j
i (y, s−i) = 0 ≤ ϵ⇒ σj

i (a) = 0⇒ zki = 0, ∀ k ∋ Ii, and therefore,

∑
j∈Ii

cji (zi, yi) =
∑
j∈Ii

cji (zi, pi),

thus (5.31) simply shows that changing the price pji to yji does not exclude any addi-

tional buyers, as the bid pji was already above the reserve price of any seller j ∈ Ii.

We proceed to show that xi does not result in a loss of utility for buyer i, that is,

ui ≤ ui(zi, yi).

From (5.30), we have aji (zi, yi) = zji = σj
i (a(zi, yi)), and so,

θi ◦ σj
i (a(zi, yi)) = θi ◦ σj

i (a),

which holds ∀ j ∈ Ii. Therefore, by the definition of utility (5.8), and the buyers’

valuation (5.13),

θi ◦ σi(a(zi, yi))− θi(a) ◦ σi(a)

= ui(zi, yi)− ui =
∑
j∈Ii

cji − cji (zi, yi)

=
∑
j∈Ii

∫ aji

aji (zi,pi)

fi(q
j
i − x) dx.

Then, as ai(zi, pi) ≤ zji ≤ aji , and noting that zji > 0 ⇒ θi ≥ 0 ⇒ fi ≥ 0, we have

ui(zi, yi)− ui ≥ 0, ∀ j ∈ Ii.

The property of truthfulness is an essential component of equilibrium in second-

price markets. The strategies described in this paper have removed the necessity for
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a user to determine its own valuation function, we intend to show that the market

dynamics resulting from the construction of the user strategy space results in truth-

ful bids that are optimal for all users, i.e. bid prices are to the marginal value as

determined by market dynamics. To achieve incentive compatibility, we find that the

opt-out buyer must choose We have so far only made the assumption of truthful bids

throughout our analysis. As was shown in Proposition 5.11, a buyer only has incen-

tive to change its bid as a result of a market shift or partial allocation. In a truthful

reply, the term ϵ/θ′i(0) ensures that a new bid price differs from the last bid price by

at least ϵ, thereby ensuring that a buyer does not change its bid without correcting

the effects of unstable shifts. For any buyer i, it suffices to show the continuity of

the set of truthful ϵ-best replies in the set of opponent bid profiles. So, for a buyer i,

define the set of possible ϵ-best replies,

Sϵ(s) = {si ∈ Si(s−i) : u(si; s−i)

≥ ui(s
′
i; s−i)− ϵ, ∀ s′i ∈ Si(s−i)},

(5.33)

and the set of truthful bids,

Ti = {si ∈ Si(si) : z =
∑
j∈Ii

σj
i (a) ∧ pi = θ′i(z)}, (5.34)

where ∧ denotes the logical ”and” operator. We note that the ”strategic” set Ti is

restricted by Proposition 5.8. We have the following Proposition,

Proposition 5.14. (Incentive compatibility across local auctions) Let Λ, λ be defined

as in Proposition (5.11), and fix time t > 0 ∈ τ , and fix sj, ∀ j ∈ Λ, and for some

buyer i ∈ Ij, let sl also be fixed ∀ l ∋ i ∈ λ. Define,

χi =

{
x ∈ [0, Qi] : θi

′(x) > max
j∈Λ

P j
i (x)

}
, (5.35)

and z = sup(χi − ϵ/θ′i(0))
+, and for each j ∈ Λ,

vji = σj
i (z),

and

wj
i = θ′i(z).
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Then a (coordinated) ϵ-best reply for the opt-out buyer is ti = (vi, wi) ∈ Ti ∩ Sϵ
i (s−i),

i.e., ∀ si, ui(ti; s−i) + ϵ ≥ ui(si; s−i). With reserve prices pj > 0, there exists a

”truthful” strategy game embedded ∈ ∆. Therefore, a fixed point ∈ ∆ is a fixed point

in the multi-auction game.

Proof. We claim that ti is an ϵ-best reply for buyer i. That is,

ui(ti; s−i) + ϵ ≥ ui(si; s−i).

As a result of auction initialization, a seller j’s valuation defines its reserve price to be

determined by a buyer i ∋ λ, even if this price is zero, we have that pj = ϵ ≥ 0 ∀ j ∈ Λ.

Let z = sup(χj
i ), and again let pj∗ = f j ◦ σj

i (a) denote the reserve price of auction j,

and p∗i = fi◦σj
i (a) denote the (coordinated) bid price of buyer i. We have that i ∈ Ij,

and (5.9) defines θ′i(z) as being max of the reserve prices pj∗, ∀ j ∈ Ii, therefore (5.35)

is such that,

θ′i(z) > max
j∈Λ

P j
i (v

j
i ),

which implies, as θ′i is non-increasing and P j
i ≥ 0, we have ∀ j ∈ Ii,

wj
i > P j

i (v
j
i )

⇒ vji ≤ Qj
i (w

j
i ) = Qj − ρj(wj

i ).

And so, by (5.5),

aji (ti; s−i) = vji

⇒
∑
j∈Λ

aji (ti; s−i) = z.

Therefore, ∀ j ∈ Λ and ∀ i ∈ λ such that (5.27) and (5.28) hold,

∫ vji

0

P̄i(x) dx =
∑
j∈Λ

∫ σj
i (z)

0

P j
i (x) dx.

It follows that,
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ui(ti; s−i) =

∫ z

0

θ′i(x) dx− σi ◦
∫ z

0

P̄i(x) dx.

Suppose ∃ si = (qi, pi) such that uj
i (si; s−i) > uj

i (ti; s−i) + ϵ. Propositions 5.13 and

5.8, define the coordinated bid, νi = (ζi, pi), using (5.27) and (5.28), for each j ∈ Λ,

σj
i (a

j
i (νi; s−i)) = ζji , then clearly ui(νi, s−i) ≥ ui(si, s−i)⇒ ui(ti; s−i)−ui(si; s−i) > ϵ.

Denoting ζji (fixed) as ζ, ∫ ζ

z

θi
′(x) dx−

∫ ζ

z

P̄i(x) dx > ϵ.

For concave valuation functions, the first-order derivative of θ at point 0 gives the

maximum slope of the valuation function, and so the factor ϵ/θ′(0) guarantees that

new bids will differ by at least ϵ, and as such, buyer i will remain in any local auction

with reserve price determined by (5.20). We therefore verify that,∫ z+ϵ/θ′i(0)

z

θ′i(x) dx ≤ ϵ,

and as P j
i ≥ 0, we have that, from the construction of ζ,∫ ζ

z+ϵ/θ′i(0)

θ′i(x) dx−
∫ ζ

z+ϵ/θ′i(0)

P̄i(x) dx > 0.

If ζ > z + ϵ/θ′i(0), then for some δ > 0, θi(z + ϵ/θ′i(0) + δ) > P j
i (z + ϵ/θ′i(0) + δ),

contradicting (5.35). Now, if ζ ≤ z, then θ′i(z + ϵ/θ′i(0)) < P j
i (z + ϵ/θ′i(0)), also a

contradiction of (5.35), and so buyer si cannot exist. Finally, as we may consider

∆ ⊂ I to be a multi-auction game, our user strategies form a ”truthful” local game

with strategy space restricted to ϵ-best replies from buyers ∈ λ. Therefore we have

that a fixed point in the ”truthful” game is a fixed point for the auction.

In linear analysis, we may determine a Nash equilibrium by finding a local optima

of the potential function. Additionally, as the potential function also iterates, it

may be used in an analysis of convergence. The convergence of a Nash equilibrium

results from the progression of ϵ-best replies, where each subsequent bid is a unilateral

improvement, provided that ti is continuous in opponent profiles. From the original
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proof by [45], we observe that the collection of unconstrained truthful bids may be a

subset of the collection of ϵ-best replies, i.e. Ti ⊂ Sϵ
i .

Now, the strategy space is comprised of a collection of bid, or ”strategy”, vectors

that together, may be represented as a collection of potential functions, where change

in buyer i’s utility, resulting from a change in strategy, equals the change in the

local market objective of each seller j ∈ Ii. These local objectives are known as

potential functions, and are formulated by mapping the incentives of all users in a

local auction to a single function. The goal of our analysis is to therefore construct

a global potential function that encompasses all local markets, and show that this

space adheres to the construction described in our proof. The conditions of convexity,

connectedness and continuity must apply to the global market space in order for a

global equilibrium to exist.

In order to address continuity in a global sense, we must again demonstrate

continuity in the construction of our model. We will show that our global market

holds a differentiable topology, where our opt-out function σ extends to an injective,

differentiable map. We show that locally, the connectivity of our market subspace ∆

provides a linearization, or approximation of a linear map, and so continuity holds

in the global sense. We construct an extension and determine the existence and

uniqueness of a global market objective by mathematical correspondence. We begin

with the definition of correspondence,

Definition 5.15. (Correspondence) A correspondence is mathematically defined as

an ordered triple (X, Y,R), where R is a relation from X to Y , i.e. any subset of the

Cartesian product X × Y .

In an economic model, a correspondence (Si, S−i, R) defines a map from Si to the

power set S−i, where R is a binary relation, i.e. R ⊂ Si × S−i. The classic example

of a correspondence in our model is the buyers’ best response Bϵ
i , where, for the

multi-auction, Si and S−i are built by repeatedly using the Cartesian product over bid

profiles. The power set S−i = Πj

(
Πk ̸=iS

j
i ) arises naturally from the product of ordered
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sets. The binary equality relation i ∼ j naturally occurs in the strategy space, and is

both an equivalence relation and a partial order, and therefore is reflexive, transitive,

symmetric and anti-symmetric. We use the the axiom of set equality based on first-

order logic, which states that, ∀ i ∈ I, ∀ j ∈ I, (i ∈ Ij ⇔ j ∈ Ii) ⇒ i ∼ j, and

follows from (5.22). Given any set of buyers Ii ∈ Λ where we have an allocation from

some j ∈ λi, 1λ(Si, S−i) : λ→ Λ ∈ S/ ∼, and so is a canonical mapping as well as an

inclusion map. The product topology of the strategy space is preserved, and the set

of all indicator functions on S forms the power set P(S) = Si × S−i on S defines a

quotient space, and forms the partition
{
sj ∈ S : sj ∼ si

}
of S. Now, ∆ ⊂ P(S) is

the result of the correspondence map, and we have that set of users in an auction is

uniquely determined by its members where sellers have fixed market prices; all users

who are not changing their bids are considered equal. Therefore each seller j ∈ I is

equivalent to some buyer i ∈ I; buyer i’s utility constraint is satisfied in auction j if

and only if seller j’s utility constraint is also satisfied.

The best response is a reaction correspondence defined by the mixed-strategy

game. Denoting T ϵ
i = Ti ∩ Bϵ

i , we have the set of truthful ϵ-best replies in opponent

bid profiles S−i. A natural induced topology of this space is the product topology,

e.g. the canonical map Si → Πj∈IS
j. Now, in order to find a fixed point in the mixed

strategy space, we must have a continuous mapping, i.e. Λj ⇐⇒ λi,∀ i, j ∈ ∆. The

data-sharing market consists of inter-dependent sets of multi-auction games around

possible fixed points. Clearly, the union of all possible sets
⋃

j∈I ∆
j covers I. We claim

that the shared buyers between the different subsets ∆ form a sufficiently connected

set, so that Proposition 5.11 holds. We have the following Lemma.

Lemma 5.16. (Continuity of ϵ-best reply on ∆) Let ∆ be defined as in Proposition

(5.11). For any buyer i ∈ λj, the collection of bids Bi is continuous in S−i

Proof. Define σi ◦ P = maxi∈Ij θ′i(0), and P̄i(z, si) = P = ϵ − ϱ, where ϵ is the bid

fee, and ϱ is i’s liability estimate for auction j ∈ I. We observe that σi ◦ Bϵ
i is

simply Bϵ
i restricted to seller pool Ii, i.e. σi ◦ Bϵ

i ≡ Bϵ
i |Ii . Thus, we have σi ◦ Ti =
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([0, Qk]k∈Ij×[0, σi◦P ]|I
j |) is a product of closed subsets of compact sets. Now, we have

that a closed subset of a compact set is compact and the resulting product topology

gives Tychonoff’s theorem, i.e. every product of a compact space is compact, we have

σi ◦ Bϵ
i is compact subset of Bϵ

i . Now, letting P = maxi∈λj θ′i(0), and we have by

definition of ∆ and the product,

σi ◦ Si(s−i) ≡ σi|Λj : Si 7→ Ti ⊂ Si

⇒
( ⋃

i∈Ij

[0, Qk]k∈Ii , [0, P ]

)
=

⋃
i∈Ij

(
[0, Qk]k∈Ii × [0, P ]

)
= ([0, Qk]k∈Λj , [0, P ]) ∈ Λj × λj ⊂ T.

The result follows from the fact that ti is continuous in si, as was proven in [73], and

as a finite union of compact sets is a compact set.

We have proven that buyers will submit bids according to their marginal val-

uations. We have that all bids represent ϵ-best replies, and, as was proven in [45].

The sellers’ positive reserve price implies that bids are truthful. Finally, by prop-

erties determined by the construction of a mixed strategy symmetric game with a

2-dimensional message space, we may now restrict our analysis to the set of contin-

uous, truthful, ϵ-best replies, T ϵ. In mathematics, the notion of the continuity of

functions is not immediately extensible to multivalued mappings; we show the cor-

respondences between the two sets λ and Λ. The correspondence between i and j

forms the set λ ∼ Λ. We note that due to the binary relation, the set of all possible

ϵ-best replies,

∆ϵ = {(i, j) ∈ λ× Λ}|T ϵ ,

is well-posed by Hadamard [1923], definition (4.3) and Corollary (4.4). We show

that our bidding strategy results in (at least one), Nash equilibrium, where again the

sellers reserve prices are fixed.

Lemma 5.17. (∆ϵ-Nash Equilibrium) Let ∆ be defined as in Proposition (5.11), and

suppose that auction j ∈ ∆ is not in a transient state, e.g. t = τ j. Fix all ski , k ̸= j.
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Using the rules of the data auction mechanism, along with type-based strategic moves,

j converges to an ϵ-Nash equilibrium. The proof follows closely that of [73].

Proof. As auction j is at equilibrium, and since θ′i is continuous, as was shown in

Lemma 5.7, and t = {[tji ] ∈ λj ×Λj} is continuous in s on Tk = Πk∈λjT j
k . Now, t rep-

resents a continuous mapping of [0,
∑
k∈λj

Qk]i∈Λj onto itself and we may use Brouwer’s

fixed point theorem, as in [73], which states that the continuous mapping of a con-

vex compact set into itself has at least one fixed point. Therefore, ∃ some k ̸= i

such that z∗ = σ∗(z) ∈ [0, Dk]i∈Λj . Then, given that s∗ = (z∗, θ′(z∗)), we have that

s∗ = t(s∗) ∈ T .

The rules of the PSP multi-auction drive market mutations that evolve and are

regulated by the user strategies. As a result of user behavior, and subsequent strate-

gies, we determine that the data-exchange market behaves in a predictable way. We

point out the need for better management of data on the consumer level. It is obvi-

ous that there is profit to be made by supplying data to the data-driven consumer.

Mathematically, we have shown that if truthfulness holds locally for both buyers and

sellers, i.e. pi = θi
′, ∀ j ∈ Ii and pj = θj

′
, ∀ i ∈ Ij, then, in the absence of market

shifts, there exists an ϵ-Nash equilibrium extending over a subset of connected local

markets. However, each auction may be played on the same or on a different scale in

valuation, time and quantity, and so the rate at which market fluctuations occur is

impossible to predict. This presents a problem, as in our linear analysis we rely on

the stability of the market equilibrium at a fixed time to find a convergent sequence

of ϵ-best replies within any auction j, whereas in the global market discontinuities

may occur when we have Ii ∩ Ij = ∅. In this case, we must address the market

using a non-linear analysis. Up to this point, we have constructed our proofs around

connected local markets, such as in 5.11, where we defined connectivity via a set of

influencing users Λ and λ. The result was the existence of a sequence of vector-valued

functions on the union of the influencing sets, ∆, allowing for the requirements of

differentiability and therefore continuity to hold, resulting in a fully connected subset
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of local auctions.

For each ∆, the Kuhn-Tucker optimality conditions imply that si is the optimal

response of player i to s−i if and only if there exists a Lagrange multiplier ρi such

that:

ρi = θ′(sji ), if sji > 0, j ∈ ∆ (5.36)

ρi ≤ θ′(sji ), if sji = 0, j ∈ ∆ (5.37)

∑
j∈∆

sji = ai, sji ≥ 0, i ∈ ∆. (5.38)

where ρ turns out, in fact, to be the (stable) marginal price [41]. Without loss of

generality, we will consider adding data in such a way that the ordering of the sets λ

and Λ is preserved. That is, the buyers bids are such that s1 ≥ s2 ≥ · · · ≥ sI . We may

even define a function N : ∆ → RS that assigns each s ∈ S∆ the Nash equilibrium

N (s) of its respective game. Each assignment induces a game with a unique Nash

equilibria. We consider disjoint sets {∆}, we construct an extension so that for any

influencer i ∈ ∆ϵ, there is an extension such that for k ∈ ∆k such that the dominant

strategy for i ∈ ∆j×k.

We construct our extension in the form of a new user type, a broker type. A

broker type fills the space between ∆j and ∆k by purchasing data from one auction

subset and selling it in the other. This user performs the function of connecting two

fully-connected auction subsets ∆j and ∆k by supplying additional data from one

auction (∆j) to the ordered set Ij of each seller in each auction j ∈ ∆k. We show that

this additional broker type preserves the optimality of the set ∆j ∪∆k. Suppose that

the broker assumes that there is an infinite amount of data available to buy and creates

bids on the assumption that a market ∆ will be available to fill the data request. The

broker may create orders that are not feasible in the actual market, causing buyers
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in ∆ to shift their bids according to the (presumed) available data. In this way, the

broker may actually plan the data requirements, overage or underage, based on some

finite scheduling scheme. This concept is beyond the scope of our current research,

but merits some future consideration. In this case, the broker can only add data δ

to ∆ from the set {d ∈ RI
+ : s1 ≥ · · · ≥ sI ; (δi, ·) ≥ (qi, ·);

∑
(qi − δi) ≤ δ}. We

are presented with the problem of how to add additional data to ∆ that is optimal

with respect to its Nash equilibrium N∆, as in [42]. For each optimal strategy s, the

unique Nash equilibria N∆(s) describes the allocations of data Qj from each seller j

in ∆.

We begin by examining the addition of data to a single market subset. We will

show that this strategy, which we will call s∗, is therefore userwise price optimal for

the entire space N (s) ∀ s ∈ S. We show that, under certain conditions, the transfer

of data happens in an ”ordered” way, so that the natural price ordering of the space

is preserved and thus, the Nash equilibrium. In particular, there exists a Lagrange

multiplier ρ∗ such that (5.36) - (5.38) hold.

Theorem 5.18. (∆∗
ϵ -Nash Equilibrium)

Let ∆∗ = ∆j ∪ ∆k be a union of market subsets at equilibria. Let A∗
∆(s) be an

allocation where a bids ŝj = (pj, q̂j), are augmented such that q̂j = qj − δi and δi is

such that
∑

j∈∆j â
j
i =

∑
k∈∆k aki . Then,

p̂j∗ < pj∗ ∈ Λ, (5.39)

and,

p̂∗i > p∗i for all i ∈ λ. (5.40)

The transfer of data δ from influencing set Λj to Λk preserves the ordering p̂j∗ ≤ p̂∗l <

p̂k∗ ≤ p̂∗i for all users k, j ∈ Ii, i, l ∈ Ij, i ∈ Ik such that l ∈ Λk, l ∋ Ik.

Proof. We speculate that two things are going to happen with this change in alloca-

tion. 1. Buyers in ∆j will no longer have enough data to satisfy the bid requirement

of their current auction, and will increase their reserve price. 2. Sellers in ∆k will
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have additional data to sell, and so will lower their reserve price. We determine the

influence of the modified allocation by (5.25) and (5.20). Without loss of generality,

suppose that a broker purchases data from auction j ∈ ∆j, selling it in as auction

k ∈ ∆k. This may happen for any pair of auctions in which the sellers reserve prices

differ by more than ϵ, that is pk∗ ≥ pj∗ + ϵ for some k ∈ ∆k and for some j ∈ ∆j.

In this way the broker may make a profit. We have that p̂j∗ > pj∗ ∈ Λj as the losing

buyer with the highest bid price changes; less data in auction j will push buyers out

of the auction, as seller j increases it’s price according to (5.20). We will call this set

of buyers Î. Now buyers in Î are making consistent bids, and so must increase their

bid uniformly. The set Λj does not have enough data to satisfy the demands of all

the sellers λj, and so bids must be made that include sellers from Λk, making ∆∗ a

connected set (noting the allocation restriction of two sets in the premise). The sets

∆j and ∆k must be connected through auction k̂, as buyers in Î will need to bid in

auction k̂ in order to satisfy their data requirement. This, in effect, adds auction k̂

to ∆j, along with the corresponding influencers. As buyers bid consistently, buyers

from Î will bid the same in all auctions from ∆j, now including auction k̂.

We address the buyer side. The bid price of buyer i ∈ Ij is determined by

p∗i = maxj∈Ii(p
j
∗). For some buyer i ∈ Ij, and then for some seller k ∈ Ii, we have

a buyer l̂ ∈ Ik. By (5.22), i, l̂ ∈ Ik, and so the reserve price pk∗ ≤ min(p̂∗l , p
∗
i ), and

k, j ∈ Ii ⇒ p∗i ≥ max(pk∗, p
j
∗). With the addition data to auction k, we now have

that p̂∗i ≥ max(p̂k∗, p̂
j
∗), and p̂∗i > p∗i by (5.39). Seller k, now adding data to ∆k,

must bring new buyers in, changing its reserve price according to (5.20). Seller k will

choose its reserve price to compete with sellers Λk. As ∆k is a fully connected set

at equilibrium, as defined in Proposition 5.11, the reserve price for auction k̂ must

be set to maxj∈Λk(pji∗ |
∑

i∈Ik a
k
i = Qk). As we assume that the broker would not act

without gaining a profit, we must have that the reserve price of auction k̂ is at least

ϵ higher than that of auction j. Again, for all i ∈ Î, p̂∗i > p∗i .

Now suppose that l̂ ∋ Î ⇔ k̂ ∋ Il, the valuation of buyer l̂ does not impact

auction k̂ and vice versa, i.e. θkl = 0. We must have that p̂∗l ≥ p∗j and p̂∗l < p̂k∗. Since
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l ∈ Ij, p∗l ≥ pj∗ ⇒ pj∗ < p̂k∗, and i ∈ Ik ⇒ p∗i ≥ p̂k∗. Therefore, we have that the

ordering implied by (5.23) holds, and,

p̂j∗ ≤ p̂∗l < p̂k∗ ≤ p̂∗i , (5.41)

for any buyer l̂ ∈ λk such that l̂ ∋ Ik. Market shifts will occur due to the new reserve

prices chosen in auction k̂ according to Proposition 5.11 until the market reaches

equilibrium, and so (5.41) holds ⇒ (5.39) holds. In effect, the transfer of data has

forced the reserve prices of Λj and Λk to ”squeeze” together, with the broker profiting

off of the difference. Sellers in Λj lower their reserve prices, according to the lower

demand. At the same time, buyers in λk lower their bid prices according to the

increased supply of data. The sets Λk and Λj are connected via auction k̂, and so the

reserve price determined in auction k̂ will affect Λj through the bid price of buyers

in Î. We have, by transfer of data, for all i ∈ ∆∗,∫ σj
i (a)

0

θ′i(x) dx−
∫ σj

i (a)−σ̂k
i (a)

0

P̄i(x) dx < ϵ,

and, ∫ σk
i (a)

0

θ′i(x) dx−
∫ σk

i (a)+σ̂k
i (a)

0

P̄i(x) dx < ϵ.

Using Proposition 5.11, we may conclude that equilibrium is achieved and so (5.36)

- (5.38) hold for the sets ∆j and ∆k connected through auction k̂, and we have the

existence of at least one Nash equilibrium in ∆∗.

In this scenario, the presence of a broker causes the two sets ∆j and ∆k to become

connected, arriving at a Nash equilibrium for ∆∗ = ∆k ∪ ∆j. These connected sets

are defined by the influencing users around the auctions k and j, and are dynamically

defined as such. This complicates the analysis and makes it difficult to determine

stability in time. By restricting the transfer of data to two auctions within two

auction subsets, we manage to create some sort of structure in the underlying market

dynamics that is intuitively simple, however analytically difficult to describe.



110

5.6 Conclusion and Future Work

Mathematically, we have shown that if truthfulness holds locally for both buyers and

sellers, i.e. pi = θi
′, ∀ j ∈ Ii and pj = θj

′
, ∀ i ∈ Ij, then, in the absence of market

shifts, there exists an ϵ-Nash equilibrium extending over a subset of connected local

markets. We have provided the analysis for a network that is operated according to

a game theoretic paradigm, so that its Nash equilibrium upholds the requirements

of a second-price auction, showing characteristics of efficiency, truthfulness and ra-

tionality with respect to certain system-wide criteria. We have focused on Nash

equilibria whose uniqueness has been established, such as those for users with consis-

tent bids [73]. We show that s|∆ represents a continuous mapping [0,
∑
k∈λj

Qk]i∈Λj onto

itself, and that the continuous mapping of the convex compact set s∗ into itself (s∗)

has at least one fixed point. We show that the symmetry built into strategy space

provides built-in conditions for convergence and stability of a ϵ-Nash equilibrium over

pairwise connected subsets ∆∗.

The dynamics of the system with the inclusion of brokers provides an interesting

direction for future research. We speculate that certain network-wide objectives may

be achieved (such as stability, bandwidth regulation, throttling) through the use of

brokers. The brokers would exercise a type of feedback control, both a priori (in

the static analysis) or in time, in order to maintain a desired network topology; one

with a stable network-wide equilibrium. Here we have examined the relation between

two connected auction subsets under allocation constraints. We expect that with

the addition of more players the strategy space will begin to suffer ”the curse of

dimensionality”, rendering the analytic techniques we have used here (based on order

and continuity) ineffective.

We would like to begin real-world simulations of the results presented in this

paper, and extend our theory to include some practical, statistical analysis. In par-

ticular, we would like to add queueing theory and an underlying Poisson arrival pro-

cess or Brownian motion [73], in order to add practical structure and timing to our
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game. This practical experience may give us insight as to the breadth and variation

of the game according to the user strategy of truthfulness. An alternative method

to determining Nash equilibria in the higher dimensional strategy space (with more

users) could be found, and the nature of the space could be described using simulated

results.
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Chapter 6

Bipartiteness in Progressive
Second-Price Multi-Auction
Networks with Perfect Substitute

Abstract

We consider a bipartite network of buyers and sellers, where the sellers run locally

independent Progressive Second-Price (PSP) auctions, and buyers may participate in

multiple auctions, forming a multi-auction market with perfect substitute. The paper

develops a projection-based influence framework for decentralized PSP auctions. We

formalize primary and expanded influence sets using projections on the active bid

index set and show how partial orders on bid prices govern allocation, market shifts,

and the emergence of saturated one-hop shells. Our results highlight the robustness

of PSP auctions in decentralized environments by introducing saturated components

and a structured framework for phase transitions in multi-auction dynamics. This

structure ensures deterministic coverage of the strategy space, enabling stable and

truthful embedding in the larger game. We further model intra-round dynamics us-

ing an index τk to capture coordinated asynchronous seller updates coupled through

buyers’ joint constraints. Together, these constructions explain how local interac-

tions propagate across auctions and gives premise for coherent equilibria—-without

requiring global information or centralized control.
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6.1 Introduction

The Progressive Second Price (PSP) auction, introduced by Lazar and Semret [45],

and later expanded upon in Semret’s dissertation [73], presented a full theoretical

framework for distributed resource pricing and demonstrated the linkage between

PSP and VCG-type efficiency results. The PSP auction is a decentralized mechanism

characterized by truthfulness, individual rationality, and social welfare maximization.

Unlike traditional centralized auctions, PSP allows buyers and sellers to iteratively

interact through local bidding rounds, dynamically allocating consumable resources

such as network bandwidth and other communicative and computational resources.

In PSP auctions, winners pay a cost determined by the externality that is imposed

on others, calculated from the distribution of allocations and the bid, This ensures

truthful reporting of valuation through incentive compatibility as was shown in the

foundational work of Vickrey, Clarke, and Groves [83, 24, 32]. The resulting equilibria

adhere to the exclusion-compensation principle, preventing unilateral improvement

without harming another participant.

Our focus is on developing adaptive auction mechanisms, like the Progressive

Second Price (PSP) auction, that respond to market dynamics by allowing agents to

adjust their bids based on local information gathered from their network neighbors.

This motivates the study of influence sets, dynamic participation, and the role of

network effects in shaping bidding behavior. In these settings, agents lack full market

information and are affected by network dependencies.

Maillé et al. [26] build directly on Lazar and Semret’s 1999 PSP framework

by addressing the one remaining free parameter in the model — the reserve price.

They demonstrate that while PSP guarantees convergence, efficiency, and incentive

compatibility, the seller’s reserve price can be optimized by simple numerical methods,

allowing PSP markets to balance efficiency with revenue maximization.

These iterative updates operate as strategic interactions in a decentralized frame-

work, where the PSP auction converges, perhaps astonishingly, deterministically to
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an ε-Nash equilibrium. This has been shown to be true on the networks of 20 years

ago, when bandwidth and bandwidth allocation was perhaps a different game. A real-

world, modern network faces significant obstacles; it is a game of partial information

played in a web of interconnected decisions, dynamic participation, and evolving mar-

ket constraints. This motivates a graph-theoretic treatment of information flow and

motivates the introduction of the concept of market saturation.

The structure of this paper is as follows. Section 6.2 introduces the foundations

necessary to model influence propagation in decentralized auctions. In Section 6.3,

we present the Progressive Second Price (PSP) auction mechanism, outlining its bid-

ding rules, participation logic, and price allocation behavior. Section 6.4 defines and

explores the dynamics of influence sets, establishing a framework for analyzing how

strategy updates propagate acrossthe market. Our approach adopts and extends these

concepts through graph-based methods, specifically leveraging the bipartite graph to

systematically represent buyer–seller interactions. Section 6.5 introduces the concept

of saturation as the limit of influence propagation, characterizing a locally evolving

equilibrium structure. The simulation framework and implementation are discussed in

Section 6.6, and this paper’s conclusion and future work are presented in Section 6.7.

6.2 Background and Related Work

This paper introduces a graph-based analytical framework to examine the dynamics

of Progressive Second Price (PSP) auctions within decentralized market structures.

Our approach builds on foundational concepts in auction theory, network influence

propagation, and graph analysis, while situating the PSP model among several related

domains.

The Progressive Second Price (PSP) auction, initially proposed by Lazar and

Semret [45], extends classical second-price mechanisms [83, 24, 32] into decentralized

contexts. Earlier studies such as Maille and Tuffin [51] and Semret’s dissertation [73]

provided a full system-level model of distributed market control and the theoretical

grounding for the PSP auction mechanism, analyzing network-based PSP equilibria
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and pricing strategies. Subsequent formal analyses such as Qu, Jia, and Caines [70]

presented key results on the Uniformly Quantized PSP (UQ-PSP) mechanism, show-

ing that it guarantees convergence to a unique limit price independent of initial condi-

tions, achieves γ-incentive compatibility, and extends naturally to network topologies

where equilibria depend on local information exchange. Their framework provided the

first rigorous quantized extension of the PSP model, establishing discrete convergence

proofs that later generalizations such as those developed in this work, Qu, Jia, and

Caines [69] further extended these results to networked PSP convergence, introduc-

ing asynchronous coordination and bounded-delay convergence. Subsequent work has

investigated distributed or multi-resource variants, including privacy-preserving and

differential frameworks in data and spectrum markets [19, 86], expanding PSP-like

mechanisms to new computational settings.

Local coordination rules, when combined with bounded delays and limited in-

formation exchange, can achieve global properties similar to those in consensus and

averaging protocols. Beyond traditional equilibrium analysis, distributed consensus

and coordination models offer insight into asynchronous bidding and update rules.

Aguilera and Toueg [3] and Lynch [48] describe protocols ensuring eventual consis-

tency under partial information, concepts that are applicable to asynchronous PSP

updates. These works demonstrate that convergent systems operating under bounded

delay result in deterministic convergence guarantees in decentralized markets.

In decentralized markets, agents’ strategies depend on local interactions but prop-

agate indirectly through shared participation and local coordination. This connects

PSP analysis to the broader literature on influence diffusion and cascading behav-

ior, as in Kleinberg [39], Oki et al. [65], and Osvaldo and Queen [4], which examine

network-driven contagion and adaptive decision processes. The theoretical founda-

tion of influence sets also aligns with the study of sphere-of-influence graphs [55, 81]

and dynamic graph structures that represent iterative strategic dependencies.

Graph-based approaches are central to understanding multi-agent optimization.

Baur [9], Barrett [8], and related work on planar and dynamic graphs illustrate how
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reachability, closure, and resistance distance can capture evolving connectivity. In the

PSP context, our use of projection operators extends these methods by linking graph

reachability to economic stability, enabling a deterministic interpretation of market

influence propagation.

This work examines decentralized auction theory, distributed coordination, in-

fluence propagation, and graph-theoretic modeling to provide a coherent analytical

framework for PSP auctions. This expanded foundation motivates the later sections

on local saturation and asynchronous market dynamics.

6.3 The PSP Auction Mechanism

The Progressive Second Price (PSP) auction is a decentralized mechanism in which

buyers iteratively submit bids to sellers, and sellers update reserve prices based on

received bids. Each auction operates locally, and coordination emerges through re-

peated interactions across the market graph. The mechanism rules first appears

in [45], defining the bid structure, auction dynamics, pricing rules, allocation strate-

gies, and participation behavior. In what follows, we define the bid structure, auction

dynamics, pricing rules, allocation strategies, and participation behavior that govern

the PSP mechanism. Let I = B ∪ L denote the set of all agents, partitioned into

buyers and sellers. Each seller j ∈ L manages a local auction for a divisible resource,

and each buyer i ∈ B may submit bids to a subset of sellers. The bid profile of auction

j is given by the column vector sj with entries sji , where (i, j) ∈ B × L. A bid

sji = (qji , p
j
i ) ∈ Sj

i = [0, Qj]× [0,∞)

represents a single interaction between buyer i and seller j, where qji is the quantity

requested by the buyer and pji is the unit price offered.

In decentralized markets governed by distributed Progressive Second Price (PSP)

auctions, agents submit bids in the form of price-quantity pairs at discrete time

steps. These bids are locally observable: buyers receive feedback from auctions in

which they participate, and sellers observe aggregate demand over time. However,
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the global structure of the market–including overlapping buyer influence, competition

externalities, and inferred network effects–must be reconstructed from these partial,

temporally indexed signals.

Table 6.1: Basic sets and notation for a bundle of J independent PSP auctions

Object Single auction j Across all auctions

quantity Qj
(
Q1, . . . , QJ

)
Player i’s bid pair sji = (qji , pji ) si = (s1i , . . . , s

J
i )

Strategy space of player i Sj
i = [0, Qj]× [0,∞) Si =

L∏
j=1

Sj
i

Opposing bids w.r.t. player i sj−i = (sj1, . . . , s
j
i−1, s

j
i+1, . . . , s

j
n) s−i = (s1−i, . . . , s

J
−i)

Profile in auction j sj = (sj1, . . . , s
j
n) s = (s1, . . . , sJ)

Grand strategy space Sj =
n∏

i=1

Sj
i S =

L∏
j=1

Sj

6.3.1 Bounded Participation

Each buyer will know the available quantity for each market in which they bid. Buyers

act strategically by selecting sellers, adjusting bid quantities, and choosing whether to

participate based on their expected ability to satisfy demand. In the PSP framework

buyers cannot reveal their entire valuation functions in a single step; instead they

must request allocations iteratively. To regulate this behavior we introduce a bounded

participation rule, which endogenously limits the set of sellers a buyer engages with,

and can be seen as an analogue of the opt-out behavior given in [12].

Fix buyer i at time t and let p∗ denote the common marginal price identified from

opponents’ bids. For each seller j let cj = capj(p
∗) be the residual quantity available

to i at price p∗. Define the desired total quantity

z∗i = min

{
q̄i(t),

∑
j

cj

}
. (6.1)

Definition 6.1 (Bounded participation rule). Buyer i selects a minimal–cost subset



118

of sellers Li(t) ⊆ L, ordered by nondecreasing price pj(n)(t), such that∑
j∈Li(t)

cj(t) ≥ z∗i . (6.2)

The buyer allocates requests sequentially to the least expensive sellers until the desired

total quantity z∗i is reached, subject to residual capacities cj(t). For j /∈ Li(t), set

qji = 0.

This rule formalizes bounded participation at fixed t: each buyer interacts only

with the fewest necessary sellers to realize z∗, in an attempt to minimize the cost

of participation. The resulting allocation targets allocations at a common marginal

price p∗(t) under residual quantity constraints.

6.3.2 Residual Quantity and Allocation

As a market with perfect but incomplete information, sellers can only gain information

about demand by observing buyer behavior, determined by the connectivity of the

auction graph. In each iteration, every seller completes one update of its local auction.

For each seller j, the reserve price pj∗(t) is the price at which seller j is indifferent

between selling her final unit of resource and keeping it. Equivalently, the seller may

be viewed as submitting an internal bid (Qj, pj∗(t)) on her own auction. At the end

of each round t, the reserve price is updated with information from the set of active

bids, where Bj(t) is the set of buyers who win strictly positive allocations at seller j

in round t, and ϵ > 0.

We define the clearing price at seller j to be the smallest price at which aggregate

awarded quantity meets available quantity:

χj(t) = min

{
y :

∑
k: pjk(t)>y

ajk(t) ≥ Qj(t)

}
. (6.3)

Any residual supply must therefore be allocated among bids that tie at prices just

above χj(t), after higher–priced bids are filled. Let

pj(t) := min{ pji (t) : i ∈ Bj(t) }, pj(t) := max{ pji (t) : i ̸∈ Bj(t) }, (6.4)
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be the lowest winning and highest losing bid prices at seller j, and where buyers not

in Bj(t) receive zero allocation at seller j. The clearing price satisfies

pj(t) < pj(t) + ϵ ≤ χj(t) ≤ pj(t)− ϵ < pj(t)

whenever there is at least one winning and one losing bidder at seller j. In particular,

χj(t) lies in the open interval between the highest losing and lowest winning bid. At

equilibrium, the reserve price pj∗(t) coincides with the clearing price at seller j, i.e.,

the clearing price implied by the PSP allocation rule.

Buyers at higher prices are therefore always served in full, whereas buyers at the

threshold price may be rationed. At each price level y, the residual quantity is given

by

Rj(y, t) =
[
Qj(t)−

∑
k:pjk(t)>y

ajk(t)
]+

. (6.5)

When multiple buyers tie at pji (t) = y, the awarded allocation respects both the

buyer’s request and the residual supply. We refer to the tie–splitting rule originated

in the analysis of quantized PSP auctions by Qu, Jia, and Caines [70],

aji (s(t)) = min

{
qji (t),

qji (t)∑
ℓ:pjℓ(t)=y q

j
ℓ(t)

Rj(y, t)

}
. (6.6)

The bid quantity qji (t) and the allocation aji (t) are complementary. In fact, the

buyer strategy is the first term in the minimum, the second term being owned by the

seller. For each buyer–seller pair (i, j) at time t, aji (t) is the awarded amount that

seller j allocates to buyer i once the allocation rule has been applied. By construction,

aji (t) ≤ qji (t), (6.7)

with equality holding when residual supply at the buyer’s price suffices to satisfy all

tied requests. The mechanism therefore never awards more than requested and may

award less when quantity is limited.
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We remark that the reserve price pj∗(t) that lies in the margin interval determined

by the bids

pj(t) < pj∗(t) < pj(t), (6.8)

whenever both pj(t) and pj(t) are defined, and we deliberately leave the precise rule for

selecting pj∗(t) within the interval (6.8) unspecified. In particular, admissible choices

include

pj∗(t) = χj(t), pj∗(t) = pj(t) + ϵ, pj∗(t) = pj(t)− ϵ,

provided that reserve price updates lie within ϵ and the resulting sequence {pj∗(t)}t is

nondecreasing.

6.3.3 Exclusion–Compensation

Each buyer’s payment follows a second–price externality principle, this is the “social

opportunity cost” of the PSP pricing rule. The exclusion–compensation payment to

buyer i equals the loss imposed on other buyers at that seller when i participates.

For a fixed auction j we use the opposing buyers’ piecewise–constant marginal price

function P j(·, sj−i) built from sj−i,

cji (s) =

∫ aji (s)

0

P j
(
z, sj−i

)
dz, (6.9)

which holds true locally at each auction, where the opposing bids are calculated

against the allocated resource to buyer i. The amount of resource available at price

pj(n) is ξ
j
n−1 − ξjn ≥ 0. The local inverse price function is then

P j(z, sj−i) = pj(n) for z ∈ (ξjn, ξ
j
n−1]. (6.10)

For each ordered price y, we have that Pi(z, s−i) is defined for the range of z corre-

sponding to the total resource available from all sellers at that price, i.e.,

z ∈
( ∑

pj
(n)

>y

(ξjn−1 − ξjn),
∑

pj
(n)

≥y

(ξjn−1 − ξjn)

]
. (6.11)
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Define the aggregate residual quantity

Qi(y, s−i) =
L∑

j=1

Qj
i (y, s

j
−i), Pi(z, s−i) = inf{ y ≥ 0 : Qi(y, s−i) ≥ z }, (6.12)

where because Qi(y, s−i) is a right–continuous, nondecreasing step function with

finitely many jumps at {pj(m)}, the infimum is attained.

6.3.4 Valuation and Utility

Each buyer i has an elastic valuation function θi : [0, Qi] → [0,∞) with strictly

decreasing derivative θ′i. The valuation depends on the total awarded quantity across

all sellers:

Vi(a) = θi

( J∑
j=1

aji (t)

)
=

∫ ∑J
j=1 a

j
i (t)

0

θ′i(z)dz. (6.13)

Given a strategy profile s, the utility of buyer i for potential allocation a is dependent

on the cost, ci(s), where the cost to buyer i as a function of the entire strategy profile

s.

In the dynamic setting this profile evolves with iteration t, where ci(s) may

represent total participation costs, including membership fees, per–round overhead,

and per–auction message costs. Utility is given by

ui(s) = Vi(a)− ci(s), (6.14)

where ci(s) is a dynamic cost function that evolves over time with bid updates.

The buyers’ utility functions implicitly define a potential over the allocation

space, as buyers seek to maximize their utility through strategic allocation requests.

We note that a uniform (coordinated) bid price from buyers across active sellers

upholds strategic simplicity and second-price incentives, which are rational under

quasi-linear utilities, as shown in the original PSP framework [45].

Following Lazar and Semret [45], updates occur only when the buyer’s utility

improvement exceeds a small positive threshold, ensuring asynchronous convergence

under bounded delay. In a single–auction market, buyer i accepts a new bid s′i only
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if ui(s
′
i; s−i) − ui(si; s−i) > ε. In the multi–auction setting, buyer i posts a

vector of bids that share a common marginal price p∗i across all connected sellers.

The utility comparison therefore becomes an aggregate test, where, in terms of the

opposing bid vector s−i, any gain in utility at time t depends on the current state of

play. Information propagation across the market affects how the vector of opposing

bids s−i is formed, and thus how externalities are computed. The realized utility

improvement ∆ui(t) is evaluated relative to the previous round to determine if a new

bid exceeds the cost of participation.

The discussion of externality under multiple auctions running asynchronously

and a formal convergence analysis of the PSP mechanism to a single, unique, global

ε-Nash network equilibrium, as was given in [73], is outside the scope of this paper.

We instead focus on the iterative application of a uniform marginal price and the lo-

calized pricing structure resulting from progressive bid updates on connected network

components consisting of multiple sellers sharing multiple buyers under an assumed

bipartite structure. A formal analysis of the effects of latency on a PSP auction is

given in [11].

6.4 Influence Sets

We model the behavior of vertices (buyers and sellers) in this bipartite structure us-

ing influence sets. Each vertex’s strategy space is influenced by neighboring vertices

and evolves over time. Influence sets restrict the strategy space of buyers and sell-

ers within bounded regions, stabilizing auction dynamics and supporting predictable

market equilibria. As rational agents, buyers and sellers do not optimize perfectly but

instead operate within acceptable thresholds of cost and utility. Influence propagation

determines the flow of information, where bidding saturation occurs once influence

sets stabilize. At saturation, there is no vertex that, upon calculating his measure of

utility, suffers a changing set of opponent bids, and all subsequent bid updates are

calculated on locally stable subgraphs of the market.

Thus, influence sets are subsets of the auction graph that represent the scope of
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influence a particular vertex (buyer or seller) has on others over a finite number of

auction iterations. These sets structure interactions into subsets of the auction graph

where local equilibria form dense regions where bid updates are stabilized.

6.4.1 Primary (Direct) Influence Sets

Following the original definition from [12], the primary influence set, denoted Λ, for

a given seller j at time t, is defined set-theoretically,

ΛL(j, t) =
⋃

i∈Bj(t)

Li(t), (6.15)

where Bj(t) is the set of buyers bidding on seller j, and Li(t) is the set of sellers

that buyer i bids on. Thus, Λ
(1)
L (j, t) represents all sellers directly connected to auc-

tion j via shared buyers at time t. This definition captures the notion that influence

propagates across the auction graph through buyer–seller connections. The super-

script (1) denotes the first layer of influence anchored at seller j expanding through

buyer-mediated connections.

To illustrate, for a buyer i, the relevant bids sji flow from the buyer to sellers.

For a seller j, we reverse this; bids flow into the seller from buyers. The base case

captures this directionality, which we get from market theory: buyers have positive

demand, and sellers have negative demand (otherwise known as surplus). The direct

influence set for buyer i, denoted Λ
(1)
B (i, t), includes buyers directly connected to i

through shared sellers,

ΛB(i, t) =
⋃

j∈Li(t)

Bj(t). (6.16)

We now have the first layer of buyer-to-buyer influence induced by common seller par-

ticipation. It serves as a foundation for constructing buyer–buyer influence graphs

and identifying bid coordination structures within the network. This expression gath-

ers the buyers indirectly connected to buyer i through shared sellers, filtered by active

bids at the given iteration. It provides a way to trace buyer–buyer influence mediated

through seller auctions.
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We extend the definition from [12] in a theoretical and practical sense, defining

the base case explicitly as the vertex itself,

Λ(0)(x, t) = {x}, (6.17)

emphasizing that at the zeroth level, the influence set represents only the vertex itself.

This represents a measure of “self–influence”, such as reserve prices (for sellers) or

initial valuations (for buyers), economically aligning with the idea that a seller starts

from a reserve price reflecting their own valuation, while a buyer’s self-valuation

corresponds to their initial maximum willingness-to-pay.

6.4.2 Expanded (Indirect) Influence Sets

For any vertex x in the auction graph (buyer or seller), and for n ≥ 1, the primary

influence set is expanded from the (n − 1)–step influence set by aggregating direct

neighbors at the next layer:

Λ(n)(x, t) =
⋃

y∈Λ(n−1)(x,t)

Λ(1)(y, t). (6.18)

Where we define a two–edge projection operator

Λ(1)(y, t) :=


⋃

i∈By(t)

Li(t), if y ∈ L,⋃
j∈Ly(t)

Bj(t), if y ∈ B,

which always returns vertices of the same type as y after one buyer–seller alternation.

For sellers, the n–step influence set may be computed recursively,

Λ
(n)
L (j, t) =

⋃
i∈Λ(n−1)

B (j,t)

Li(t),

where Λ
(n−1)
B (j, t) is the set of buyers reachable from seller j in n − 1 steps. This

returns the set of sellers that receive nonzero bids from buyers who are indirectly

connected to auction j via shared bidding activity across n rounds of the PSP auction.
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It describes how seller j’s influence propagates through buyer behavior across seller

neighborhoods. For buyers,

Λ
(n)
B (i, t) =

⋃
j∈Λ(n−1)

L (i,t)

Bj(t),

where Λ
(n−1)
L (i, t) collects sellers indirectly connected to buyer i.

Each new layer Λ(n)(x, t) therefore adds the direct neighbors of all vertices in

the previous layer, producing a breadth–first expansion in the auction graph. This

recursive expansion therefore builds a “growing influence ball” centered at x, where

the secondary set acts as a generalized neighborhood closure or hull around the initial

primary set. At each step n, the influence set Λ(n)(x, t) forms an outer boundary

surrounding the influence set Λ(1)(x, t), recursively aggregating direct neighborhoods

around previously identified influence vertices.

Pathwise Characterization. In graph theory, this structure parallels the n-edge

neighborhood closure or a breadth-first expansion of distance-n shells. We character-

ize Λ(n)(x, t) pathwise as the set of all vertices reachable from x by paths alternating

between buyers and sellers, of length up to 2n. Formally, let G = (I, E) denote the

bipartite auction graph, where I is the set of agents (buyers and sellers), and an edge

(i, j) ∈ E exists if buyer i bids on seller j. The graph alternates between buyers and

sellers by construction: no two buyers or two sellers are directly connected. Because

of the bipartiteness we have the parity rule, and consequently

Λ(n)(x, t) =
{
y ∈ I

∣∣ distG(x, y) = 2n
}
.

From a strategic perspective, the expanded influence set Λ(n)(x, t) describes the

scope of anticipated externalities: the agents whose actions may not affect x directly,

but may impact x’s incentives via shared neighbors. These influence chains emerge in

environments with incomplete information and approximate the region of the market

that affects the expected utility gradient of vertex x. In equilibrium analysis, these

indirect sets are crucial for understanding stability, coordination potential, and sus-

ceptibility to shock propagation (e.g., strategic manipulation or correlated noise). As



126

noted in [12] and echoed in broader decentralized market theory (e.g., [75]), indirect

influence plays a key role in shaping convergence. While Λ(x, t) governs observed in-

teraction, Λ(n)(x, t) governs inferred or mediated interdependence–and together, they

define the full strategic visibility of a vertex.

6.4.3 Projection Domains and Influence Operations

The influence set framework captures cascading dependencies and forms the founda-

tion for our graph-theoretic analysis. To analyze the propagation of influence in the

auction network, we construct influence sets using a sequence of projection operations

on the underlying bid graph. Each active bid is indexed by a pair (i, j) ∈ B×L, where

buyer i submits a bid to seller j. These interactions collectively form the strategy

space S(t), which consists of the full collection of price-quantity bids sji . We extract

the active subgame by identifying Iactive(t) ⊆ B × L, the set of observed interactions

between buyers and sellers at time t. These pairs serve as both an interaction graph

and an index set for the time-dependent strategy array s(t).

6.4.4 Projection-Based Influence Propagation

Let Iactive(t) ⊆ B × L be the set of buyer–seller pairs that submit positive bids at

time t. Each pair (i, j) indexes the strategy array s(t) ∈ S(t), so Iactive(t) is both a

graph on B ∪ L and an index set for the strategy space.

Projection maps.

π : Iactive(t) −→ B, π(i, j) = i, ϖ : Iactive(t) −→ L, ϖ(i, j) = j.

• Structural role. Alternating compositions ϖ ◦ π−1 ◦ π ◦ ϖ−1 . . . trace paths

through the bipartite auction graph, giving n-edge neighborhoods.

• Strategic role. Acting on S(t), the same maps carve out partial strategy profiles

(e.g. all bids of a given buyer).

Full pre-images. We take the composition of the the projections in order to restrict
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and vectorize the space S(t). For any buyer i and seller j we write

ϖ−1(i, t) = {(i, j′) ∈ Iactive(t)}, π−1(j, t) = {(i′, j) ∈ Iactive(t)},

so that

ϖ ◦ π−1(i, t) = {j′ | (i, j′) ∈ Iactive(t)} = Li(t),

π ◦ϖ−1(j, t) = {i′ | (i′, j) ∈ Iactive(t)} = Bj(t).

n-step influence. Because the graph is bipartite, two successive projections always

return a vertex of the same type. These projections serve dual purposes: struc-

turally, they trace paths through the auction graph, alternating between buyers and

sellers; strategically, they extract subspaces of S(t) that represent partial strategies

or responses and may evolve as patterns in the form of active bids sets.

Connected components via iterated projections Because the auction graph

is bipartite, two successive projections return a vertex of the same type. Define the

composition operators

P := ϖ ◦ π−1 (buyer→ seller), Q := π ◦ϖ−1 (seller→ buyer).

Starting from a seller j, one step of influence expansion is

Λ
(1)
L (j, t) = P Q (j) = ϖ ◦ π−1 ◦ π ◦ϖ−1(j, t),

which moves seller→ buyers→ sellers. Analogously, for a buyer i we set Λ
(1)
B (i, t) =

QP (i).

The n-edge neighborhoods follow by simple iteration,

Λ
(n)
L (j, t) = (P Q) n(j), Λ

(n)
B (i, t) = (Q P ) n(i), n ≥ 1,

with the base case Λ(0)(x, t) = {x}.

Each application of PQ (or QP ) adds exactly one buyer–seller alternation, so

Λ(n)(x, t) is the breadth-first shell lying n edges away from x. Iterating until Λ(n)(x, t) =
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Λ(n−1)(x, t) closes the connected component containing x. Thus the recursive projec-

tion operator captures both direct and indirect influence flows. Thus, Λ(n) may be

interpreted as the n-step neighborhood in the auction graph and as a dynamic closure

of best-response behavior. Each expansion layer captures not just structural prox-

imity but strategic influence–the transmission of incentive, information, and utility

across the network. In this way, we convert local participation patterns into global

influence propagation, formalized as graph-theoretic expansions over the projected

structure of the strategy space.

6.4.5 Partial Ordering and Market Shifts

While the projection mappings π, ϖ and their compositions produce index sets (sub-

sets of B or L), these sets are characterized by the underlying strategy space S(t).

These indices correspond directly to elements of the strategy space S(t), which con-

tains structured bid information sji (t). That is, the projection ϖ−1(i, t) retrieves

all bid tuples (i, j) in the index set, but equivalently defines the subspace of si(t)

consisting of all bid array submitted by buyer i at time t.

Each element sj(t) ∈ Sj(t) is a bid array, and the collection π ◦ϖ−1(j, t). Aside

from being an index set of buyers, we have a set of bid arrays {sji (t)}i∈Bj(t) that can

be partially ordered by their prices pj(n)(t). While the projection operators isolate

buyers or sellers structurally, the functional influence between market participants is

mediated through the comparison of bid prices.

This introduces a natural partial order among bidders for each seller at a fixed

time, and we define a partial ordering on Sj(t) ⊂ S(t) by pji (t) < pjk(t) if buyer i bids

less than buyer k for the same seller j. Given the set of buyers Bj(t) = π ◦ϖ−1(j, t),

we may impose a partial order structure based on the associated price bids {pji (t)}.

This ordering determines which buyers are accepted by seller j (those with highest

prices until the resource is exhausted), and the sensitivity of a potential equilibrium

to shifts in bidding behavior.

As shown in [12], a market shift occurs precisely when a buyer outside of Bj(t)
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improves their relative position in this order, causing Bj(t) to be recomputed. Such

shifts reflect structural changes in functional influence, as they alter the competitive

hierarchy among bids and propagate through the multi-auction environment. Specif-

ically, a market shift in auction j occurs when the partial order of bids at seller j

changes in a way that affects allocation. From [12], two cases are critical:

1. Demand Shortfall: A buyer i ∈ Bj(t) reduces their bid quantity so that total

demand falls below available supply:

∑
i∈Bj(t)

aji (t) < Qj(t).

The auction must recompute its reserve price or reallocate supply among re-

maining buyers.

2. Bid Overtake: A buyer i∗ /∈ Bj(t) improves their valuation so that

pji∗(t) < pj∗(t),

where pj∗(t) is the minimum accepted bid price at auction j. The buyer i∗

displaces the marginal buyer, triggering a shift in Bj(t).

Either case changes the minimal winning price, breaking the partial ordering within

the projected sets, and forces the auction to recompute Bj(t). As the seller frontier

Λ
(1)
L (j, t) consists of sellers connected to j through shared buyers, the reallocation

thereby propagates influence through layers of the the expansion Λ
(n)
L (j, t) = (ϖ ◦

π−1 ◦ π ◦ϖ−1)n(j).

6.5 Influence Shells and Local Saturation

The projection and ordering framework developed above allows us to describe how

influence propagates through the auction network. We now ask under what condi-

tions this propagation stabilizes. As buyers and sellers iteratively adjust bids, cer-

tain neighborhoods of the market reach a state in which no participant can improve
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Figure 6.1: 3D matrix view: rows (buyers), columns (sellers), and z encodes price
tiers. The colored surface shows the buyer price; filled markers are active bids; open
circles show marginal winners. The right panel shows a transition where a new high-
tier participant appears at j=1, a demand shortfall removes a low cell, and a recon-
figuration shifts activity at j=2.

their utility through unilateral deviation. These locally stable regions form influence

shells–bounded subgraphs within which allocations, prices, and bid updates remain

consistent under further iterations. When every buyer and seller in such a region

satisfies this best-response property, the shell is said to be saturated. The following

gives the formal notation and enumerates the assumptions that we have made in the

generalization of influence sets as were defined in [12].

Definition 6.2 (Saturated Influence Shell). A primary influence set Λ
(1)
L (j, t) associ-

ated with seller j at time t is said to be saturated if no buyer or seller within this set

can improve their utility by unilaterally altering their bids. Formally, for every buyer

i ∈ Bj(t) and every seller ℓ ∈ Λ
(1)
L (j, t), the following holds,

ui(t) ≥ u′
i(t), for any feasible alternative strategy s′i(t).

Global market equilibrium decomposes into interconnected saturated shells, each

functioning as stable subsystems. We establish conditions for the existence of a

saturated influence shell.

(i.) Countable and Locally Finite Graph. The sets of buyers B and sellers

L are at most countably infinite. Each participant engages in only finitely
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many transactions, ensuring finite degree at every instant. This guarantees that

all projection maps (π,ϖ) encounter only finite fibres and that the influence

operator (6.18) perform finite unions.

Buyers and sellers participate in locally finite networks, enabling stable equi-

librium convergence within compact, bounded strategy spaces. Market rules

explicitly limit resources and interactions, ensuring finite dimensionality.

(ii.) Bounded Influence and Bids. Influence propagation strength remains bound-

ed, preventing divergence. Each seller’s fixed endowment Qj and each buyer’s

fixed demand cap Qi are finite and time-independent. Hence every non-zero bid

quantity qji (t) lies in the compact interval [0, Qi], and every realized allocation

is in [0, Qj].

(iii.) Partial Ordering Stability. The partial ordering induced by the bid struc-

ture must satisfy stable bid threshold rankings for all relevant buyers and sellers

within the shell, thus establishing clear marginal price tiers.

6.5.1 Ordering and Influence Propagation

We recall the ordering relationship from [12] that holds for any seller within a satu-

rated primary influence set Σ := Λ
(1)
L (j, t).

Lemma 6.3 (Local Price Ladder [12, Thm. 2.3, proof]). Let the market be at time t

with seller j and its saturated primary influence set Σ := Λ
(1)
L (j, t). Pick any neighbor

k ∈ Σ and two buyers

i ∈ Bj(t), ℓ ∈ Λ
(1)
B (i, t) \ Bj(t),

i.e., i bids on j, k is another seller reached from i, and ℓ is a buyer that bridges

further to k but not to j.

If the shell Λ
(1)
L (j, t) is saturated–no profitable deviation exists for any vertex

in this set–because ℓ does not bid on j while i bids on both j and k, the marginal
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thresholds must nest as follows

sup
(
pk(t), pk(t)

)
≤ p∗ℓ(t) < inf

(
pj(t), pj(t)

)
≤ p∗i (t), (6.19)

where the marginal intervals are chosen as in (6.4), and in particular, every choice

of reserve prices pk∗(t) ∈
(
pk(t), pk(t)

)
and pj∗(t) ∈

(
pj(t), pj(t)

)
satisfies

pk∗(t) ≤ p∗ℓ(t) < pj∗(t) ≤ p∗i (t). (6.20)

Proof. The argument for (6.20) is contained within the proof of [12, Thm. 2.3].

Left–to–right the chain reads

(i.) pk∗ seller k’s reserve price;

(ii.) p∗ℓ buyer ℓ’s bid that clears the marginal tier in both auctions;

(iii.) pj∗ seller j’s reserve price;

(iv.) p∗i the highest active bid of buyer i on seller j.

The left inequality holds because k clears at the minimum of the two buyers’ bids;

the strict middle inequality follows from ℓ placing no bid on j; the right inequality is

enforced by buyer i’s cross-auction participation. In a saturated shell, any profitable

deviation by k toward j or by i away from j is ruled out. Hence buyer ℓ’s marginal

valuation must lie weakly above all prices at which newk can clear its final unit,

while buyer i’s valuation must lie weakly below all prices at which j can still clear.

This forces the margin intervals to nest as in (6.19). Since pk∗(t) ∈
(
pk(t), pk(t)

)
and pj∗(t) ∈

(
pj(t), pj(t)

)
by the definition of the reserve price pj∗, the pointwise

ladder (6.20) follows immediately.

Economically, this implies that higher prices at neighboring sellers prevent buyers

from deviating profitably, ensuring that no participant has an incentive to alter their

bidding strategy unilaterally. Hence, the ordering captures a stable distribution of

resources and prices, reflecting locally optimal market conditions.
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Weak (local) Monotonicity The projected influence sets, together with the in-

duced partial orders, thus form the dynamic framework for market evolution, where

projections identify which vertices are connected, and partial orders determine how

influence is transmitted via price shifts. Market shifts occur when the partial order

structure is perturbed beyond certain thresholds, forcing recomputation of Bj(t) or

reserve prices.

Proposition 6.4 (Local Monotonicity). Let Σ = Λ
(1)
L (j, t) be the saturated shell of

seller j at time t. For each seller k ∈ Σ, let the marginal intervals be chosen as

in (6.4), and let the reserve price pk∗(t) be selected inside the interval (pk(t), pk(t)).

Now, consider the vector of seller reserves and buyer marginal valuations re-

stricted to Σ. Under elastic, strictly decreasing valuation functions θ′i(z) and any

reserve-update rule that

(i) selects pk∗(t+ 1) ∈ (pk(t+ 1), pk(t+ 1)) for each k ∈ Σ, and

(ii) is nondecreasing in the bids {pki (t)}i and the previous reserve pk∗(t),

the PSP price–update map

pk∗(t) 7→ p̃k∗(t+ 1) and pki (t) 7→ p̃ki (t+ 1) (6.21)

is locally monotone on Σ.

Proof. Elasticity of the valuation functions implies that each buyer’s marginal value

p∗i (t) = θ′i(zi(t)) is strictly decreasing in its own allocation. Increasing any bid or

reserve inside the saturated shell Σ may raise some allocations and lower others, but

it cannot create a reversal of the bid ordering that defines the interval (pk(t), pk(t)).

In particular, all ladder relations (6.20) remain invariant under such updates.

For sellers, the reserve-update rule is assumed nondecreasing in both the previ-

ous reserve pk∗(t) and the local bids {pki (t)}i. Thus any componentwise increase in

(pk∗(t), p
k
i (t)) cannot decrease any updated reserve pk∗(t + 1). By construction, each

updated reserve remains inside its interval (pk(t + 1), pk(t + 1)), and, because the
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shell Σ is saturated, these intervals evolve compatibly with the ordering relations and

cannot induce a downward jump that violates the ladder.

Therefore, every coordinate of the updated pair (pk∗(t + 1), pki (t + 1)) is weakly

increasing in the corresponding coordinate of (pk∗(t), p
k
i (t)). Hence the update rule

satisfies the order-preserving property (6.21), and the PSP price–update map is locally

monotone on Σ.

The partial ordering structure induced by bidding behavior is essential in an-

alyzing and predicting the direction and magnitude of market shifts resulting from

influence dynamics. A local allocation triggers global bid adaptation, reinforcing that

while seller auctions operate independently, buyer strategy space remains tightly cou-

pled. In integrated markets (scarce supply), the partial orders are dense and tightly

coupled, making markets highly sensitive and globally coordinated. In fragmented

markets (abundant supply), the partial orders become sparse and disconnected, lead-

ing to localized equilibria and insulating submarkets from external shocks. Thus, the

transition from integrated to fragmented equilibrium is not just a graph phenomenon–

it is a transition in the connectivity of the partial order structure induced by bidding.

Remark 6.5 (On the ordering of the PSP price map). Although the local update map

is written on the pair (pj, pji ), the PSP rule actually acts only on the first coordinate:

the buyer’s bid pji is simply carried forward (or set to 0 if j /∈ Li).

6.5.2 Asynchronous Sellers and Coupled Buyers

To represent the fine-grained dynamics of bid selection and displacement within an

auction round, we introduce an internal index τk to describe local progression steps.

Each τk denotes a partial–ordering resolution event—an allocation decision at auc-

tion j followed by an update to the reserve price and potentially to the projected

sets. The index acts as a local time variable inside the global iteration t, allowing us

to separate micro–adjustments from round-to-round evolution.

Definition 6.6 (Allocation Step τk). At each τk within round t, seller j selects the
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highest bidder in π◦ϖ−1(j) not yet fulfilled, allocates a feasible amount aji (τk), updates

the reserve price pj∗(τk+1), and recomputes Bj and ΛL(j) as needed.

Each τk inside a global round t is therefore a local ordering–resolution event:

seller j picks the highest unfilled bidder, allocates a feasible amount aji (τk), updates

its reserve, and recomputes the bidder set Bj(t) as well as the seller shell Λ
(1)
L (j, t).

The sequence τ1, τ2, . . . terminates when no remaining buyer meets the current reserve

or when supply is exhausted.

Sellers operate independently: each seller’s τk sequence proceeds without synchro-

nization with others. However, buyers must maintain a consistent strategy across all

sellers they bid on. Since the buyer’s bid array σi(t) is defined jointly over Li(t),

any change to the outcome of one auction requires coordinated updates across all

components. This coupling between independent seller threads through shared buy-

ers produces the feedback mechanism responsible for market coherence. From a

game–theoretic perspective, each seller executes a local best–response process, while

each buyer enforces cross–auction consistency of marginal valuation.

We define the buyer update rule as

qji (τk+1) = Qi(t)−
∑

j′∈Li(t)

aj
′

i (τk), ∀j ∈ Li(t), (6.22)

indicating that the buyer updates all bids simultaneously based on observed alloca-

tions. Equation (6.22) ensures that a buyer’s total requested quantity never exceeds

its available resource Qi(t) and redistributes residual demand across the active seller

set Li(t). The rule formalizes how buyers translate local allocation feedback into

revised offers, maintaining a form of budget balance across asynchronous auctions.

Because sellers run their τk threads asynchronously while buyers must update

all bids coherently according to (6.22), local price changes propagate through the

partial orders defined above, layer by layer. Each seller’s reserve adjustment initi-

ates a chain of bid updates in the neighborhoods that share its buyers. This extends

the projection–ordering framework, enabling intra–round modeling of bid dynamics,

bid–induced reordering, and precise tracking of influence propagation through up-
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dates to the projected domains. In this sense, the τk sequence acts as a micro–time

resolution that reveals how local saturation unfolds inside each global auction round.

Stability under asynchronous evolution The following proposition shows that,

even under these independent update threads, the relative ordering of bids remains

stable and the local price ladder is preserved.

Proposition 6.7 (Saturated Shell). Let Σ = Λ
(1)
L (j, t) be saturated at τk. Assume

that for every seller k ∈ Σ the reserve price lies in the interval,

pk(τk) < pk∗(τk) < pk(τk),

and that each τ–update preserves all ladder relations (6.20) inside Σ. If a local reso-

lution step τk → τk+1 modifies the strategy space only inside Σ, then:

(i) The ladder (6.20) is preserved: no ordering reversal is possible, and every af-

fected marginal or reserve price weakly increases; a strict increase occurs when-

ever the winning bid or reserve at some seller in Σ rises.

(ii) If every buyer or seller that first appears in Σn+1\Σn has no profitable deviation

given the preserved ladder, then the expanded shell Σn+1 is saturated.

Proof. If a τ–update reallocates quantity within Σ, the clearing price or reserve at the

affected seller can only move upward within its margin interval. Because all reserves

and winning bids in Σ lie inside their intervals (pk, pk), no update can create a reversal

of the ordering that defines the ladder (6.20). Thus each affected component moves

weakly upward, and whenever the winning bid or reserve at some seller in Σ increases,

at least one of the four prices in the ladder strictly increases.

Saturation implies every τ–update inside Σ preserves best–response conditions

given the ladder; hence extending Σ by including agents in Σn+1\Σn yields a saturated

larger shell whenever those newly added agents also have no profitable deviation under

the same ordering.



137

Saturation implies every τk update inside Σ is either a demand–shortfall or

bid–overtake event; both raise the marginal price they touch, propagating weakly

upward along every chain of the form (6.20). A strict increase occurs whenever the

winning bid or reserve at some auction in Σ is lifted. Thus, local “saturation” is a

best–response property of a one–edge influence shell.

By an inductive test we extend saturation shell–by–shell.

Corollary 6.8. The new shell Σn+1 inherits the price–ordering ladder (6.20): all its

marginal prices are no smaller than those in Σn; in particular, pk∗(τk+1) ≥ pk∗(τk) for

all k ∈ Σn+1.

Proof. Consider any buyer–seller quadruple (k, ℓ, j, i) whose seller k lies in the freshly

revealed layer Σn+1 \Σn. Applying Proposition 6.4 to that quadruple shows that the

ladder inequality (6.20) is preserved and all four prices weakly increase. Repeating

this argument for every such quadruple that touches Σn+1 completes the extension

of the monotone ladder one edge outward. For every edge (i, k) with k ∈ Σn, Propo-

sition 6.7 guarantees that a local τ–update cannot decrease the marginal price pk∗.

Hence
(
pk∗
)
k∈Σn

is component–wise non–decreasing from τk to τk+1.

The asynchronous update model developed above provides the conceptual foun-

dation for our simulation studies. It captures the essential features of decentral-

ized PSP dynamics: sellers acting independently on local information, buyers co-

ordinating across overlapping auctions, and influence propagating through partially

ordered interactions. In the following section, we use these principles to construct

an event–driven simulation framework that allows us to observe how local saturation

emerges in practice.

6.6 Simulation Framework and Implementation

This section summarizes the simulation code used to study the PSP markets with

multiple sellers and buyers. The simulation architecture explores the practical re-

alizations of decentralized coordination. The event-driven approach reproduces the
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iterative best-response behavior implied by the mechanism and allows examination of

convergence properties, price dispersion, and efficiency loss due to network coupling.

Following Semret and Lazar [45], each buyer’s valuation is given by a parabolic

curve of the form

θi(z) = κi(q̄i − z/2)z for z ∈ [0, q̄i]

where q̄i represents the maximum quantity of goods desired and κi = p̄i/q̄i has di-

mensions marginal price per unit where p̄i is the maximum marginal value that buyer

i would ever place on the resource.

6.6.1 Event-Driven Algorithm and Asynchronous Updates

The simulation operates as a discrete-time event system. Events are scheduled and

processed in a priority queue, advancing the simulation clock t to the next event.

Two event types exist:

1. Buyer Compute: Buyer i evaluates its local state, computes updated bids

(zji , p
j
i ) on each connected seller j, and schedules bid events when meaningful

changes occur.

2. Post Bid: Seller j clears its auction, applying second-price allocation and

updating quantities, payments, and revenues.

Buyer and seller events may reschedule each other (e.g., clears triggered after mean-

ingful bid changes). The loop halts when no effective changes remain or a step limit

is reached. The simplified pseudocode is shown in Algorithm 6.1.
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Algorithm 6.1 Event-driven PSP simulation

1: Initialize market state M ; schedule all buyers.
2: while queue not empty and not converged do
3: (t, type, payload)← pop()
4: if type = BUYER COMPUTE then
5: Update (zji , p

j
i ) for buyer i on feasible links.

6: Schedule POST BID events for affected sellers.
7: else if type = POST BID then
8: Seller j clears auction, enforcing Qj, opponent ordering, and payments.
9: end if
10: end while

Each buyer i computes a uniform (or per-seller) bid price using a valuation-

based update w = θ′i(
∑

j z
j
i ). Quantities are apportioned across incident sellers using

a local best-response step. Buyers are sorted by descending unit price pj(n). The

clearing process accumulates allocations until total demand equals available resource

Qj. The threshold price

pj∗ = min{pji :
∑

k:pjk≥pji

qjk ≥ Qj} (6.23)

identifies the seller’s marginal (clearing) price.

For each seller j, the clear routine builds a partial ordering by posted marginal

prices (bid prices), serves opponents until available resource Qj is exhausted, and

charges the price incurred by the externality of participation to all served buyers for

that seller. The routine updates a, seller revenue, and per-buyer costs. We define the

set of active buyers with positive bids as

Ij = {i : qji > 0, aij ∈ A}, (6.24)

where A represents the biadjacency matrix captures direct buyer–seller interactions:

A(t) ∈ 0, 1|B|×|L|,

where Aij(t) = 1 if buyer i bids on seller j at time t, and Aij(t) = 0 otherwise. Rows

of A(t) identify each buyer’s active sellers; columns identify all buyers bidding on a

given seller.
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Experiments are conducted using randomized networks of I = |B| buyers and

J = |L| sellers. The connectivity matrix Aij determines which buyers may interact

with which sellers. Each run uses the following protocol:

1. Initialize market state M with parameters (I, J,Qj, ε, reserve).

2. Assign buyer valuations (q̄i, κi) and budgets bi from uniform ranges.

3. Generate random biadjacency matrices with varying density (percentage of

shared buyers).

4. Execute the event-driven simulation for a fixed iteration limit.

5. Record convergence statistics, prices, allocations, and revenues.

The event scheduler supports both deterministic and stochastic updates, allowing

controlled comparison between synchronous and asynchronous dynamics.

Experimental Setup. Each experiment initializes a market with I buyers and J

sellers. Seller capacities are fixed at Qmax = [60.0, 40.0], with buyers distributed

across both sellers according to a connectivity percentage that varies from 0% (fully

isolated) to 100% (fully connected) in increments of 10%. For each connectivity level,

a base random seed (base seed = 20405008) ensures reproducibility while allowing

controlled stochastic variation across runs.

Following Semret and Lazar [45], each buyer’s valuation is given by a parabolic

curve of the form

θi(z) = κi(q̄i − z/2)z for z ∈ [0, q̄i]

where q̄i represents the maximum quantity of goods desired and κi = p̄i/q̄i has di-

mensions marginal price per unit where p̄i is the maximum marginal value that buyer

i would ever place on the resource. Note that κi is larger for buyers who derive more

value from the resource. Now choose q̄i and p̄i independently for all i such that

q̄i ∼ U [50, 100] and p̄i ∼ U [10, 20], (6.25)
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where U [a, b] represents the uniform distribution over the interval [a, b]. Noise and

perturbation effects are controlled by ϵ = 2.5. For each seed and connectivity level,

the simulation executes until convergence, measuring clearing prices, allocations, and

bid prices.

A sequence of derived seeds seed = base seed+ s is used for each connectivity

level s, ensuring comparable random draws while preserving independence across

runs.

6.6.2 Price Ladder Verification

The simulation presented here focuses on verifying the price ladder condition across

interconnected sellers. This experiment represents a localized instance of the broader

PSP market, designed to test whether clearing prices obey a monotonic relationship

when sellers share buyers through overlapping influence sets.

The experiment initializes a small market composed of two sellers (j = 1 and

ℓ = 0) and four buyers (i = 0, 1, 2, 3). The adjacency structure allows some buyers

to connect to both sellers, while others remain local. Sellers have distinct capacities,

Q1 = 8 and Q0 = 15, reflecting asymmetric market sizes. The buyer valuation and

bid initialization follow:

(0, 1) : q = 8, p = 40, (0, 0) : q = 8, p = 40,

(1, 0) : q = 2, p = 4, (2, 0) : q = 6, p = 1.

We have the connectivity of the market, in alignment with Lemma 6.3.

The resulting market has a highly skewed valuation distribution, allowing one

buyer to dominate both sellers, while others form the marginal tiers that define

second-price boundaries.

The algorithm scans all sellers and their one-hop neighbors to evaluate tuples

(ℓ, k, j, i) where Buyer i connects the two sellers. It tests the three inequalities defining

the ladder ordering p∗ℓ < pk < p∗j ≤ pi. If these inequalities hold for all tuples, the

market satisfies the monotone price ladder condition. Violations are reported with
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Figure 6.2: Adjacency structure showing market connectivity
between buyers and sellers.
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detailed tuple traces to aid in diagnosing market inconsistencies.

In this configuration, the ladder tuples satisfy all three inequalities, confirming a

monotone relationship among clearing and bid prices. The system outputs a detailed

report including, number of valid tuples and unique seller pairs (j, ℓ), margins between

successive price tiers: (pk−p∗ℓ), (p∗j−pk), and (pi−p∗j), and a summary of any violations

detected. For this experiment, the output indicates no violations and consistent

monotonicity, demonstrating that the PSP clearing mechanism maintains a globally

ordered price structure when local competition and influence overlap exist.

This controlled experiment provides an analytical validation of the price lad-

der lemma in a simplified setting, and is intended to act as a unit test. It con-

firms that bid prices across connected sellers obey the expected inequalities implied

Lemma 6.3. More generally, it shows that when buyers bridge multiple sellers, the

second-price mechanism induces a coherent ordering of marginal prices, and pro-

vides an analytical tool for extending this verification to larger graphs. In the tuples

(ℓ, k, j, i) = (0, 1, 1, 0) and (0, 2, 1, 0) we observe

p∗ℓ = 1.0, pk ∈ {4.0, 1.0}, p∗j = 40.0, pi = 40.0.

Thus the high-tier buyer at seller j sits at the clearing price, while mid-tier competi-

tors remain strictly below p∗j . The reported margins (pk − p∗ℓ) = 0, (p∗j − pk) = 36,

and (pi − p∗j) = 0 reveal a wide central gap: a single dominant tier clears seller j,
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Figure 6.3: Buyer 0 valuation curve and marginal diagnostics.
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whereas seller ℓ is anchored by low-tier participation at a much smaller price.

The monotone relationship validated here provides empirical confirmation of

Lemma 6.3. The experiment illustrates how buyers bridging sellers stabilize the

market through consistent price ordering, even when capacities and bid magnitudes

differ substantially. The asymmetry in seller revenues and capacities demonstrates

how equilibrium adapts to network structure, with high-valuation buyers dominating

smaller auctions and lower-tier participants anchoring larger ones.

Our next experiment allows us to observe the propagation of equilibrium con-

straints across overlapping influence shells, offering empirical evidence for Proposi-

tions 6.7 of this paper.

6.6.3 Connectivity

Further experimental results are aggregated as functions of the overlap percentage

between buyer–seller pairs, revealing how market interdependence affects stability,

bid prices, and efficiency. The framework also enables sensitivity analysis under

perturbations to parameters such as ε, budget distributions, and the structure of

influence sets.

In this experiment, connectivity was gradually increased to observe how equilib-

rium formation and price alignment change as the market transitions from isolated
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to coupled seller networks. Starting from a sparse adjacency structure, buyers were

allowed to participate in multiple auctions, creating overlaps that induced cross-seller

influence and coupling of price dynamics.

Figure 6.4 illustrates the adjacency structure used in the experiment. Connec-

tivity defines the feasible market domain Iactive(t) ⊂ B × L that bounds all strategic

interactions.

Figure 6.4: Adjacency and market connectivity for the 8× 2
experiment. Connectivity is set at 50%.
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Figure 6.5 shows the utility surface for a single buyer–seller pair, as was presented

in [45] , here buyer 6 and seller 0, plotted over bid quantity zji and price wj
i . The

surface depicts the buyer’s instantaneous utility ui(z
j
i , w

j
i ) = θi(z

j
i ) − zjiw

j
i given the

opponent bids and current market reserve. The concave ridge indicates the buyer’s

optimal quantity at the current price level, while the lower regions show diminishing

returns and cost-dominated outcomes. We see a stable interior optimum: movements

along the quantity axis correspond to allocation changes, whereas movements along

the price axis reflect valuation gradients.

Next, we present an algorithm: an iterative evaluation of the aggregate staircase

Pi(z, s−i). At each iteration t, buyers and sellers perform the following operations:

Because each accepted update increases some buyer’s utility by a bounded discrete

amount and the state space is finite, every sequence of threshold–improving updates
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Figure 6.5: Single buyer–seller utility surface for buyer 6 at
seller 0. The surface plots ui(z

j
i , w

j
i ) = θi(z

j
i )− zjiw

j
i over quan-

tity zji and unit price wj
i , holding the opposing bids fixed at the

snapshot.
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Algorithm 6.2 Buyer Update Dynamics under Bounded Participation

1: Bid formation. Each buyer i applies the opt–out map qi(a(s) : Li(t)) =
[ qji (a) ]j∈Li(t) and selects the minimal–cost subset of sellers.

2: Utility evaluation & Rebid. Buyer i computes the utility increment ∆ui(t)
from its updated bids. Buyer i updates its bids iff ∆ui(t) > ϵ.

3: Allocation and clearing. Sellers allocate proportionally at each price pj∗(t).
Buyers at the cutoff price may receive partial allocations.

4: Advance iteration. Set t← t+ 1.

must terminate in an absorbing ϵ–NE region. We speculate that the induced dynamics

are weakly acyclic: from any initial state, at least one finite improvement path leads

to equilibrium.

Figure 6.6 are produced by the above construction. For Buyer 6 we evaluate the

staircase Pi(·, s−i), compute (qi, wi), perform the minimal–cost fill, and then read off

the realized total Zi and price p∗ := Pi(Zi, s−i). The left panel shows (Zi, θi(Zi)) on

the concave valuation curve; the right panel shows θ′i together with the dashed price

level p∗. In the runs shown, the valuation is quadratic,

θi(z) ≈ az − b
2
z2, θ′i(z) = a− bz, a ≈ 66, b ≈ 1.1,
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(a) Constraint-limited: the joint best
response lies on a feasibility boundary;
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Figure 6.6: Buyer-level diagnostics under the Progressive Second Price (PSP) joint
best response. Each panel shows the valuation θi(z) with the realized point (Zi, θi(Zi))
and the marginal curve θ′i(z) with a dashed line at p∗, illustrating the transition from
constraint-limited to price-limited behavior along improvement paths.

so marginal value declines approximately linearly from θ′i(0) ≈ 66 to near zero around

z ≈ 60. Two sellers induce a two–step staircase in Pi; the three snapshots correspond

to marginal price levels near p∗ ≈ 32.1 with Zi ≈ 28.2 (interior), p∗ ≈ 28.6 with

Zi ≈ 28.3 (price–limited), and a high–availability case with Zi ≈ 52.2 where the

buyer is constrained by feasibility at that price. These values are taken directly from

the algorithm’s output and no post–hoc smoothing is applied.

When the orange marker in the marginal panel lies above the dashed line, the

realized point satisfies θ′i(Zi) > p∗; the buyer would buy more at the prevailing

price, but the minimal–cost fill has saturated feasible capacity at that price, so the

joint best response is attained on a boundary of the feasible region rather than at

marginal equality. When the marker sits on the dashed line, θ′i(Zi) = p∗ holds and

the allocation is locally efficient; here the construction returns an interior maximizer

of Ui(z) = θi(z)−Ci(z). When the marker lies below the dashed line, θ′i(Zi) < p∗ and

any further increase in quantity would decrease utility; the best response is therefore

at or near a participation boundary even though the valuation point on the left panel

is well inside the curve. In every case the left panel places the realized point on θi(·)

because the algorithm maximizes value minus payment over the compact feasible set

under the current price.

Figure 6.7 extends the analysis to the joint allocation space of the two sellers, each
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Table 6.2: Buyer regimes and their economic interpretation.

Regime Relation Economic meaning

Constraint-limited θ′i(z
∗) > p∗ Supply prohibitive.

Equilibrium (interior) θ′i(z
∗) = p∗ Marginally efficient allocation.

Price-limited θ′i(z
∗) < p∗ Cost prohibitive.

point on the surface corresponds to a feasible distribution across sellers 0 and 1 under

a uniform price w = θ′i(Zi). The height of the surface indicates utility under the split

given the opposing bids present in the snapshot. The ridge along constant Zi identifies

the efficient split between sellers: solutions on the plateau indicate a local optimum;

as the solution shifts below a ridge the buyer could improve utility by increasing its

bid quantity, and the solution shifts toward the seller facing weaker opposing demand.

Therefore, even with a uniform price tied to Zi, the allocation decision remains two-

dimensional due to how opponent demand and residual available resource shape the

intersection of feasible pricing and allocations.

Table 6.3: Interpretation of ridges in the buyer’s utility surface.

Ridge type What it corresponds to

Sharp rise in ui A new seller step becomes available (increase in supply).
Sharp drop Another buyer’s bid dominates → PSP second-price step kicks in.
Plateau Both sellers saturated or prices equalize (local equilibrium).

To summarize our results, seller 0, with greater available resource (Qmax = 200),

cleared at a slightly higher price p∗0 = 30.084 than Seller 1 (p∗1 = 28.597). Despite this

asymmetry, both sellers exhibited similar expected revenues (E0 = 44.76, E1 = 31.16)

and low variance, attributed to 40% of buyers participating in both markets. The

shared influence among these buyers synchronized seller behavior, leading to a nearly

uniform price surface.

Buyer-level data shows that bridging buyers—particularly buyers 6 and 7—

maintained bids across both sellers with marginal valuations (32.118, 33.355) close

to Seller 0’s clearing price. Their dual participation enforced cross-market coherence,
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Figure 6.7: Shared-seller utility surface where buyer 6’s utility is a function of total
requested quantity Zi = z0 + z1; ui(z0, z1) = θi(Zi) − w(zo, z1)(Zi) and w = θ′(Zi):
the feasible participation surface.

ensuring that no single auction could deviate significantly from the shared equilib-

rium.

Overall, increasing connectivity transforms the market from a set of independent

price islands into a unified utility surface. Sparse configurations produce local equi-

libria with greater variance between sellers, while denser networks encourage faster

convergence through influence propagation. These findings validate the theoretical

expectation that shared influence sets promote global coordination and equilibrium

alignment.

Statement on Supplementary Material The code for the experiments presented

in this paper can be found at:

• https://github.com/jkblazek/arXiv-2511.19225
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6.7 Conclusion and Future Work

This paper establishes a graph-theoretic framework for analyzing Progressive Second-

Price (PSP) auctions, connecting decentralized market dynamics to structural prop-

erties of influence graphs. We formalized and expanded the concepts of influence sets

and saturation, which together bound strategy spaces deterministically and ensure

stable, truthful convergence in decentralized settings.

Our analysis relies on two levels of saturation, linked by the partial-ordering

structure of bids; local saturation is a set–level best–response property. Establishing

a formal fixed-point characterization of this process–perhaps using lattice or order-

theoretic methods–remains an important direction for future work.

Our present analysis instead focuses on the constructive evolution of influence

shells and the preservation of local monotonicity. Specifically, our approach demon-

strates how recursive expansions of influence sets reveal market interactions across

successive auction rounds. By introducing intra-round resolution via the τk steps, we

provide a finer-grained analytical tool to model the internal dynamics of auction it-

erations, clarifying the subtle interactions between buyer strategies and seller pricing

rules.

The establishment of monotonicity in bid updates via induced partial ordering

ensures stable, non-oscillatory convergence under realistic, elastic valuation condi-

tions. Our framework provides a robust method to anticipate market shifts, charac-

terize equilibrium thresholds, and ensure consistent propagation of influence across

dynamic network topologies.

Future research will explore several promising extensions in reserve price opti-

mization. Could there be an optimal coordinated reserve vector, chosen using buyer

feedback, that upholds Lemma 6.3? We start by defining an admissible reserve price

region, where for fixed t, the admissible set of reserve profiles is

R(t) =
{
p∗ ∈ RJ : pj∗ ∈

(
pj(t), pj(t)

)
∀j, and Lemma 6.3 holds

}
.

Thus, we may determine the existence of coordinated reserve profile, where, given
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seller-side weights wj ≥ 0 at time t, is defined as any pcoord∗ (t) ∈ R(t) that maximizes

Φ(p∗) =
J∑

j=1

wjQ
j(t) pj∗

over R(t). We conjecture that at least one coordinated reserve profile pcoord∗ (t) exists

for every ϵ > 0. Moreover, every such profile preserves the interval ladder inequali-

ties (6.19) and hence is consistent with local saturation of primary influence shells.

A formal proof of a best–response property is beyond the scope of this work at this

time. Instead, we provide a sketch of the proof that would demonstrate the existence

of a joint ϵ-best reply for a buyer participating in multiple concurrent auctions.

To form a coordinated reply at a common marginal price, we collect the sellers

visible to buyer i under s−i and compute their prices at a target marginal value

wi. Ordering these sellers by nondecreasing price and applying tentative allocation

until the requested total is reached yields the minimal–payment split across auctions.

Denote our buyer-level payment by

Pi(z, s−i) := inf{ y : Qi(y, s−i) ≥ z },

which we call an aggregate price staircase. The cumulative payment is

Ci(z; s−i) :=

∫ z

0

Pi(ζ, s−i) dζ.

Knowing by finite-valuation that Pi(·, s−i) is bounded, nondecreasing, and piecewise

constant, this construction implements exactly the payments returned by PSP at the

target marginal price and, among all feasible potential allocations with the same total

quantity, attains the minimum payment.

First, we aggregate availability across auctions at a common marginal price by

Pi(z, s−i) = inf{y : Qi(y, s−i) ≥ z}. Finiteness in the number of bids ensures bound-

edness and right–continuity; the plateau condition Qi(y
−, s−i) < z ≤ Qi(y, s−i) char-

acterizes Pi(z, s−i) = y. The cumulative payment Ci(z) =
∫ z

0
Pi(ζ, s−i) dζ is continu-

ous and convex. Consider

Ui(z; s−i) := θi(z)− Ci(z; s−i).
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Realize Zi by sorting tiers by effective PSP price at level pi = θ′i(Zi) and taking

quantities until the sum equals Zi; PSP returns the same aggregate staircase, hence

the same total.

Finally, integrating stochastic perturbations and noise into the PSP framework

will deepen the realism of the model, allowing exploration of market resilience under

uncertainty. Additionally, applying resistance distance [8] to the reserve profiles and

diffusion-based influence models could yield deeper insights into influence propagation

and market stability. Empirical validation through simulation and real-world decen-

tralized applications, such as spectrum and bandwidth auctions, will be critical to

validate and refine theoretical predictions and improve practical mechanism design.

Appendix: Market Shift Revealed by Partial Or-

dering

Example 6.9 (Market Shift Revealed by Partial Ordering). In this example we model

a simple reactive reserve update,

pj∗(t+ 1) = max
{
pj∗(t), max

i/∈Bj(t)
pji (t) + ϵ

}
,

with ϵ > 0 providing strict improvement for convergence. Thus the seller always

keeps its internal bid strictly above the highest losing buyer, and the reserve price is

nondecreasing in t. Alternative clearing–price rules that set pj∗ to the threshold χj(t)

are equivalent for our results.

Consider a PSP auction market with two sellers L1, L2 and four buyers B3, B4,

B5, B6. Initial buyer-seller connections are represented by the adjacency matrix:

A(0) =

L1 L2

B3 1 0
B4 1 1
B5 1 1
B6 0 1

Auction Iteration t = 1
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Seller L1 initially receives bids from B3, B4, B5. Suppose initial bid prices are

ordered as follows:

pL1
B3
(1) = 2.0 > pL1

B4
(1) = 1.8 > pL1

B5
(1) = 1.5.

Progressive allocation steps for L1:

τ1 : B3 allocated requested quantity, pays second-highest price 1.8. Seller

updates reserve to 1.8 + ϵ.

τ2 : B4 allocated next available quantity, pays 1.5. Reserve updates to 1.5+ ϵ.

τ3 : B5 receives allocation, pays reserve (1.5 + ϵ).

Seller L2 has bids from B4, B5, B6, with initial ordering:

pL2
B5
(1) = 1.9 > pL2

B4
(1) = 1.7 > pL2

B6
(1) = 1.4.

Progressive allocation steps for L2:

τ1 : B5 allocated, pays second-highest price 1.7. Reserve updates to 1.7 + ϵ.

τ2 : B4 allocated next, pays 1.4. Reserve updates to 1.4 + ϵ.

τ3 : B6 allocated, pays reserve (1.4 + ϵ).

Partial Ordering and Initial Influence Sets Initially, influence projections:

π ◦ϖ−1(L1) = {B3, B4, B5}, π ◦ϖ−1(L2) = {B4, B5, B6}

Both sellers share buyers B4, B5, forming an integrated influence structure.

Market Shift at t = 2: Buyer B4 increases bid on L1 Buyer B4 increases their

bid on seller L1 to overtake B3:

pL1
B4
(2) = pL1

B3
(1) + δ, δ > 0.

This triggers an immediate, asynchronous allocation decision at seller L1:
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τ1 : Seller L1 allocates to the new highest bidder B4, who pays the second-

highest bid pL1
B3
(1). Reserve updates accordingly.

The new partial ordering on L1:

pL1
B4
(2) > pL1

B3
(2) > pL1

B5
(2).

Coupled Buyer Rebid Buyer B4 observes this new allocation outcome and imme-

diately updates their residual demand. Since buyers maintain consistent bid strategies

across all sellers, buyer B4 must now adjust their bid quantity for seller L2 simulta-

neously:

σL2
B4
(τ2) = QB4(2)− aL1

B4
(τ1),

and submits this updated bid quantity at price pL2
B4
(2).

Seller L2, asynchronously and independently from L1, now processes this rebid at

its next local step:

τ2 : Seller L2 allocates quantity to buyer B4, charging the next-highest price

among competing bidders (e.g., buyer B5’s previous bid).

Propagation of Influence via Projection Mappings: The shift at L1 updates

the projection and partial ordering structure, immediately affecting the shared buyer

set with seller L2. The updated projections remain:

π ◦ϖ−1(L1) = B3, B4, B5,

π ◦ϖ−1(L2) = B4, B5, B6,

but buyer B4’s strategic rebid triggers a recomputation of reserve prices and rebidding

decisions at L2, influencing buyer allocations in subsequent τk steps.

Thus, a local change in buyer B4’s bid on one seller (L1) creates a cascading

effect through the partial ordering structure, inducing market shifts and influencing

allocation outcomes on another seller (L2). The explicit recomputation of partial

orderings demonstrates clearly how strategic perturbations propagate through inter-

connected auction markets.
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Chapter 7

The Effects of Latency in
Progressive Second-Price Auctions

Abstract

The progressive second-price auction of Lazar and Semret is a decentralized mech-

anism for the allocation and real-time pricing of a divisible resource. This auction

proceeds with each buyer asynchronously updating their bids by sending a message

of the form (q, p) where q is the amount of resource desired and p is the marginal

value the buyer places on that quantity of resource. Our focus is on how delays in

the receipt of bid messages and randomness in the initial bids affect the ϵ-Nash equi-

libria obtained by the method of truthful ϵ-best reply. We then introduce additional

features to the auction mechanism that increase the predictability of outcomes.

7.1 Introduction

Lazar and Semret [45] introduced a decentralized second-price auction for allocation

of network bandwidth in which buyers asynchronously update bid prices in a way that

maximizes their allocations while increasing their utility. The novelty in this auction

mechanism is a buyer’s individual price valuation is revealed only locally when that

same buyer updates their bid with a new quantity and corresponding marginal value.

Thus, the seller does not need the full price valuation curve of each buyer to allocate

the resource in a way that maximizes the welfare or total value in the auction.

This progressive second-price auction was extended to the case where prices were
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quantized by Jia and Caines in [38]. An opt-out selection method in the presence of

multiple sellers was considered in [12]. For markets consisting of many simultaneous

auctions a graph theoretic framework that characterizes influences resulting from

which buyers buy from which sellers in terms of a bipartite graph is further explored

in [10].

It is known provided ϵ is large enough that Algorithm 1 in [45] leads to bid

updates that converge to an ϵ-Nash equilibium—an equilibrium state where no buyer

can individually increase individual their utility by more that ϵ through changing

their bid. We call this the method of truthful ϵ-best reply. Proposition 3 in [45]

shows further at such an equilibrium the auction is efficient, that is, the total value

in the final allocation is within O(
√
ϵκ) of optimal. Here κ is a constant related to

the maximal rate of diminishing returns among all buyers in the auction.

We consider three possible sources of randomness in the progressive second-price

auction: the initial bids of each buyer, the asynchronous order in which buyers up-

date their bids and communication latency in the receipt of bid messages. Perceptions

of fairness are influenced by predictability of outcomes; however, it is possible that

randomness in the initialization and operation of the auction do not lead to signifi-

cantly different equilibrium states. Our focus is on the degree the above sources of

randomness influence both market aggregates and individual outcomes.

While aggregate quantities such as total value, utility and revenue are of interest

to the seller, an individual buyer is more concerned about their individual allocations,

cost and utility. Assuming the buyers do not change, then it is desirable that the

allocation of resource between them also not change. Our goal is to characterize the

expected outcomes and deviations in those outcomes for both the seller and individual

buyers that arise from the distributed asynchronous nature of the progressive second-

price auction under a realistic model of communication latency.

We begin our study by introducing an algorithm to construct ϵ-Nash equilibria

consisting of truthful bids in which each buyer receives the exact quantity requested

and consequently impose no externality on the other buyers in the auction. As a
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result the second price for each buyer is zero and the revenue received by the seller

also zero. Note that the existence of zero-revenue ϵ-Nash equilibria may be inferred

from Semret [73] who observed that a buyer can obtain resource at zero cost by

making a bid with a zero per-unit price valuation. On the other hand there are also

ϵ-Nash equilibria which generate revenue much closer to the total value in the auction.

Therefore, total revenue can vary significantly between different ϵ-Nash equilibria of

the same auction. Since total utility is total value minus total cost, it follows that

the total utility enjoyed by the buyers can also vary significantly between different

equilibrium states.

To avoid the possibility of obtaining resource with a zero-price bid a reserve

price was introduced in [73] less than which no quantity of resource is ever allocated.

Under the assumption of scarcity, where the amount Q of resource available is less

than what the buyers could use, there is a reserve price P > 0 such that all resource

is allocated in the market. In this case setting the reserve price near the largest value

such that all resource is allocated has the effect of reducing variability of outcomes. It

follows that our algorithm for constructing a zero revenue equilibrium instead leads to

an equilibrium with minimal revenue QP where each buyer pays exactly the reserve

price for their allocation.

The structure of this paper is as follows: Section 7.2 introduces the formal setup,

notation, and buyer–seller valuation framework. Section 7.3 analyzes zero-revenue

equilibria, showing how truthful ϵ-best replies can lead to efficient but unprofitable

outcomes, motivating the use of a reserve price. Section 7.4 examines the role of

communication latency and asynchronicity on equilibrium convergence and variability

through stochastic modeling. Finally, Section 7.6 concludes with implications for

decentralized market design and directions for future research.

7.2 Preliminaries

Consider a progressive second-price auction consisting of one seller and multiple buy-

ers. During the operation of the auction buyers place their bids asynchronously and
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decentralization leads to communication latency in the receipt of bid messages. Thus,

the outcome of the auction is affected by randomness in the communication delays

and bid ordering. We also study what effect the initial bids have on the outcome of

the auction.

Suppose a quantity Q of a divisible resource is to be allocated among a fixed set

of buyers. Let I be an index set such that i ∈ I represents a buyer able to participate

in the auction. Each buyer has a price valuation θi(q) which identifies the value that

buyer obtains upon receipt of a quantity q of resource. We suppose the valuation

increases in q up to a maximum quantity q̄i and is concave to reflect diminishing

returns. Assuming θi is differentiable, it follows that θ
′
i is decreasing and the greatest

marginal value buyer i ever places on the resource is given by p̄i = θ′i(0).

Intuitively, θ′i(q) represents the value of the next unit of resource after q units

have been obtained. For definiteness, take θi as in [45] to be quadratic of the form

θi(z) =

{
(1− 1

2
z/q̄i)zp̄i for z < q̄i

1
2
q̄ip̄i otherwise.

(7.1)

where buyer demand q̄i is sampled uniformly over [50, 100] and the maximal marginal

valuation p̄i is uniform on [10, 20]. Note that the resulting decrease in marginal value

is bounded uniformly in i both above and below. Unless otherwise mentioned we

consider 100 buyers that participate in the auction and keep their respective price

valuations θi fixed as well as the amount of resource Q = 1000 available in the auction.

Remark 7.1. Since q̄i ≥ 50 for each buyer, the total quantity of resource valued by

100 buyers is at least 5000. Therefore Q = 1000 is guaranteed to be a condition of

scarcity in which at least one buyer has the potential to increase the value of their

allocation.

Now consider the bids (qi, pi) ∈ [0, q̄i] × [0,∞) from all buyers i ∈ I able to

participate in the auction. Here qi is the quantity requested and pi the amount the

buyer would be willing to spend to obtain an additional unit of resource, that is, the

marginal value at qi. Thus, a truthful bid always satisfies pi = θi(qi). We emphasize
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that the full valuation curve θi for each buyer is not made available to the seller but

revealed only locally though the marginal value pi at the quantity qi being bid on.

Denote the bid (qi, pi) submitted by buyer i as (i, qi, pi). Then the set of all bids

in the auction is

s =
{
(i, qi, pi) : i ∈ I

}
.

For definiteness we let the bid (0, Q, P ) represent the reserve price set by the seller,

never update this bid and suppose 0 ∈ I. In this special case θ0(a) = Pz is linear

and θ′0(z) = P constant. For notational convenience denote I0 = I \ {0}.

If k ̸= i then buyer k is in competition with buyer i and the opposing bids against

which buyer i must bid are

s−i =
{
(k, qk, pk) ∈ s : k ̸= i

}
.

At a marginal price of y the resource available to buyer i is

Qi(y, s−i) = max{Q− z, 0}

where z =
∑{

qk : (k, qk, pk) ∈ s−i and pk > y
}
. Note that if y < P the reserve

price takes effect, the bid (0, Q, P ) implies q0 = Q is an addend in z and consequently

Qi(y, s−i) = 0.

Conversely, obtaining at least a quantity z of resource from the auction requires

a bid with marginal price

Pi(z, s−i) = inf
{
y ≥ 0 : Qi(y, s−i) ≥ z }.

Practically speaking, the progressive second-price auction aims for an ϵ-Nash

equilibrium in which an individual buyer’s utility can not be increased by more than

ϵ. At such equilibria successful bid prices will be close but not in general the same.

Note, however, that if prices are quantized—for example in dollars and cents—then

ties become more likely, especially when ϵ is small. For the simulations in this paper

we do not quantize prices and take ϵ = 5 throughout. Even so, a tie breaking condition

appears useful. Following Jia and Caines [38] we allocate bids whose prices are tied

in proportion to the quantities requested.
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Thus, the allocation to buyer i is

ai(s) = (qi/z)min
{
qi, Qi(pi, s−i)

}
(7.2)

where z = 1 if qi = 0 and otherwise

z =
∑{

qk : (k, qk, pk) ∈ s and pk = pi
}
. (7.3)

Since the cost ci(s) to buyer i for participating in a second-price auction is the

loss incurred by the other buyers due to that participation, changes in the allocations

can be used to compute costs. In particular,

ci(s) =
∑

k∈I\{i}

pk
(
ak(s−i)− ak(s)

)
.

Remark 7.2. As our second-price auction is progressive the bids s−i reflect the his-

torical influence of buyer i leading up to the present time. Thus, ci(s) represents the

externality obtained by omitting buyer i when determining the allocation and not the

true externality that would have resulted if buyer i were never part of the auction.

This difference between the true and instantaneous externality is what leads to the

zero revenue ϵ-Nash equilibrium in the next section.

Unlike [45], [12] and [38] we do not consider each buyer to be further constrained

by a budget bi that bounds the cost they are willing to incur for their resource

allocation. This is for simplicity and to avoid situations where the second price

changes in such a way that a previous bid needs to be updated to stay under budget.

Crucial to the progressive second price auction is the maximum allocation avail-

able in a market on the price valuation curve of buyer i. Again following [45] we

consider the bid update rule given by

Definition 7.3. The truthful ϵ-best reply is defined as follows. Let

Gi(s−i) =
{
z ∈ [0, q̄i] : z ≤ Qi(θ

′
i(z), s−i)

}
. (7.4)

The ϵ-best reply to the bids s−i is defined as

(vi, θ
′
i(vi)) where vi = supGi(s−i)− ϵ/θ′i(0).
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The above bid is truthful since it lies on the graph of the marginal value. Taking

vi slightly less than the supremum ensures vi ∈ Gi(s−i) and increases the bid price

θ′i(vi) due to decreasing marginal value (except in the case of the reserve price). The

factor 1/θ′i(0) ensures the bid (vi, θ
′
i(vi)) is within ϵ of the best bid. In other words,

the truthfull ϵ-best reply of Definition 7.3 provides a truthful bid that cannot be

improved by more than ϵ while holding the opposing bids constant.

A proof of the above fact depends on two different ways of viewing the cost—the

exclusion-compensation theorem—which we state here as

Theorem 7.4. In a progressive second price auction under the above assumptions we

have

ci(s) =

∫ ai(s)

0

Pi(z, s−i)dz. (7.5)

Theorem 7.4 appears as equation (8) in [45] along with the observation that

repeatedly allowing each buyer to update their ϵ-best replies converges to an ϵ-Nash

equilibrium provided ϵ is large enough.

7.3 Zero-Revenue Equilibria

Before studying how communication latency and asychronous bidding affect the out-

comes of the progressive second-price auction, we first address variations in outcomes

that result from Remark 7.2 on the computation of cost. This section examines

zero-revenue equilibria. It demonstrates how such equilibria emerge under the stan-

dard mechanism and explains why a reserve price is required to ensure positive seller

revenue.

To construct zero-revenue equilibria, we modify the method of truthful ϵ-best

reply given as Algorithm 1 in [45] to alternate between the original bidding strategy

and a compromise bid. Simulations indicate this modified algorithm still converges

to an ϵ-Nash equilibrium, but in this case one in which each buyer obtains the exact

allocation they asked for.
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While the ϵ-best reply chooses a near optimal bid without regard for a buyers

previous bid, a compromise bid is based on the requested and and allocated resource

from the previous bid. Namely, we have

Definition 7.5. Suppose the bid (qi, pi) from buyer i receives an allocation of ai(s).

The truthful compromise reply is defined as

(vi, θ
′
i(vi)) where vi = (ai(s) + qi)/2.

While compromise bids generally do not lead to an ϵ-Nash equilibrium on their

own, interesting behavior happens when bids are alternated between the ϵ-best reply

of Definition 7.3 and the compromise reply of Definition 7.5. The compromise bids

reduce the externality while the ϵ-best replies advance towards an ϵ-Nash equilibrium.

First recall the method of truthful ϵ-best from [73] as

Algorithm 7.1 ϵ-best Reply

1: Each buyer evaluates the ϵ-best reply (Definition 7.3) and updates bids when
utility increases by at least ϵ.

2: Repeat until no additional ϵ-best replies occur.

Remark 7.6. At first it seems plausible that only a subset of ϵ-Nash equilibria might

be obtained through the method of truthful ϵ-best reply and that the zero revenue case

might not be among them. However, if the initial bids start at a particular equilibrium

state, then the ϵ-best reply will remain at that equilibrium. Thus, the method of ϵ-best

reply can terminate at any equilibrium state simply by starting at that equilibrium.

Remark 7.7. The ϵ-best reply for buyer i is constructed so their allocation ai(s) = qi;

however, increasing the utility of buyer i will generally cause some of the opposing

buyers to lose their part of their allocations. Thus, after an ϵ-best reply there may be

j ̸= i such that aj(s) < qj. This reflects an externality imposed on buyer j. If buyer

j makes a compromise bid in reply, this reduces the externality imposed by buyer i on

buyer j while at the same time not reducing the allocation of buyer j. In particular,

switching between ϵ-best and compromise bids tends to a ϵ-Nash equilibrium in which

no other buyer imposes any externality on another buyer.
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Our modified algorithm may now be stated as the alternating ϵ-best with com-

promise bid method:

Algorithm 7.2 Cooperative ϵ-best Reply

1: Each buyer evaluates the ϵ-best reply (Definition 7.3) and updates bids when
utility increases by at least ϵ.

2: Each buyer submits a compromise bid (Definition 7.5), independent of immediate
utility gain.

3: Repeat until changes in compromise bids fall below tolerance and no additional
ϵ-best replies occur.

Note that compromise bids are made whether or not they increase utility. We

do not comment on the rationality of this method of bidding but instead view Al-

gorithm 7.2 as a technique to obtain zero-revenue ϵ-Nash equilibria. In turn such

equilibria demonstrate the need for a reserve price even though the allocations are

near value maximizing.

To demonstrate the convergence of the alternating ϵ-best with compromise bid

method to a zero-revenue ϵ-Nash equilibria, consider a simplified version of the pro-

gressive second-price auction with no communication latency or asynchronous bid-

ding. In this case buyers bid round-robin and alternate between bid strategies. The

only source of randomness comes from the initial bids. We further illustrate the effects

of the reserve price by choosing different values of P ranging from 0 to 16.

Given an equilibrium state s obtained from Algorithm 7.2 we are primarily in-

terested in the aggregate quantities of revenue, total value and total utility. These

are given, respectively, by

S[c] =
∑
i∈I0

ci(s), S[v] =
∑
i∈I0

θi(ai(s)) and S[u] = S[v]− S[c].

To further understand the effects of the reserve price, we also compute an average

bid price as

E[p] =
1

S[a]

∑
i∈I0

ai(s)pi where S[a] =
∑
i∈I0

ai(s).

We study how the above aggregate quantities depend on the initial bids, by aver-

aging them over the ϵ-Nash equilibria corresponding to an ensemble of 100 randomly
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chosen initial bids. Specifically, consider a random set of initial bids of the form

{ (i, qi, θ′i(qi)) : i ∈ I } where the qi are independent and uniformly distributed over

[0, q̄i] for i ̸= 0 and q0 = Q. Let Ω be the underlying uniform sample space. Given

ω ∈ Ω define sw to be the ϵ-Nash equilibrium obtained from Algorithm 7.2 starting

at the initial bid corresponding to ω.

Now let E ⊆ Ω be an ensemble of 100 independent realizations of the initial bids.

Suppose X is either revenue, total value, total utility or bid price. The ensemble

average and sample variance of X is given by

⟨X⟩ = 1

|E|
∑
ω∈E

Xw and V [⟨X⟩] = 1

|E| − 1

∑
ω∈E

(
Xw − ⟨X⟩

)2
.

Here Xw indicates X measured at the ϵ-Nash equilibrium given by sw. For example,

if X = S[c] then the ensemble-averaged revenue would be

⟨S[c]⟩ = 1

|E|
∑
ω∈E

∑
i∈I0

ci(sw).

Table 7.1: The effects of reserve price on the bid price, total
value, utility and revenue in the ϵ-Nash equilibria obtained from
Algorithm 7.2 averaged over 100 different random initial bids.
Except for the revenue corresponding to a zero reserve price,
the standard deviations—not shown—were less than 1 percent
of the averages.

Reserve Price 0 6 12 14 16

Bid Price 13.4024 13.4022 13.3745 14.124 16.1289
Total Value 15544.5 15544.6 15536.8 12623.1 5784.98
Total Utility 15544.5 9544.56 3536.76 1602.27 441.175
Total Revenue 10−13 6000 12000 11020.8 5343.8

Table 7.1 reports the averages obtained through simulation of Algorithm 7.2

over an ensemble of 100 different initial bids. The standard deviations V [⟨X⟩]1/2

were consistently less than 1 percent of the average except for the zero-revenue case

corresponding to the reserve price of P = 0 where both the average and deviation

were numerically equal to zero. Note that for P ≤ 12 the total revenue is equal to
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QP but when P ≥ 14 the total revenue decreases. This is because as that point the

seller starts buying back the resource which does not contribute to revenue.

Remark 7.8. Since θ′i(z) is decreasing, it is invertible. Define

fi(y) =

{
(θ′i)

−1(y) for y ∈ [0, p̄i]

0 otherwise.

If the reserve price P is such that
∑

i∈I0 fi(P ) < Q then seller buyback is guaranteed.

A fundamental premise of the progressive second-price auction is that the seller does

not know the full valuation of each buyer; therefore, we do not explore this condition

further in this paper.

Given w ∈ Ω observe that the revenue-minimizing equilibrium sw is contained

in a neighborhood of truthful bids which are nearly revenue minimizing and also ϵ-

Nash equilibria. It follows that if the initial bids are chosen randomly, then there is a

positive probability that those bids are already at a ϵ-Nash equilibium that is nearly

revenue minimizing. We set P = 12 near the largest value such that all resource is

allocated to reduce the variability in revenue between equilibrium states. We also fix

the initial bids made by the buyers. This allows us to focus on the variability caused

by asynchronous bidding and communication latency in the sections which follow.

7.4 Latency and Asynchronicity

In this section we characterize the effects of latency and asynchronicity on the out-

comes of the ϵ-Nash equilibrium states reached by the distributed progressive second

price auction using the method of ϵ-best reply.

We use a renewal processes to model both communication latency and asyn-

chronicity in bid updates. Namely, we employ a sequence of independent Weibull-

distributed random variables with probability density

pdf(x) =
β

λ

(x
λ

)β−1

e−(x/λ)β

where β is the shape and λ the scale. The parameter β characterizes the delay

regime: β < 1 corresponds to a heavy-tailed, light-traffic latency distribution (bursty
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communication), whereas β > 1 represents a controlled, scheduled update process

with more predictable timing. Inspired by Arfeen, Pawlikowski, D. McNickle and A.

Willig [5], see also Arshadi and Jahangir [6], we model the interarrival times of bid

messages using λc = 1.0 and βc = 0.75 with a translation of δc = 0.1 seconds. The

decreasing hazard rate represents a bid sent under conditions of light traffic where

most messages arrive with minimum latency but when lost experience exponential

backoff of retransmission times.
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Figure 7.1: Comparison of the probability density functions gov-
erning the time between evaluation of bids and the communica-
tion latency to transmit a bid to the auction.

As the auction progresses the ϵ-best reply is evaluated by each buyer over intervals

characterized by a Weibull distribution with λe = 0.25 and βe = 1.5 translated by

δe = 1.0 seconds. The increasing hazard rate represents a controlled scheduling of

market analysis that, in part, results from the assumption that each bid incurs a cost

of ϵ that needs to be amortized before making the next bid.

Remark 7.9. For each fixed buyer the intervals between market analyses follow a

Weibull distribution; however, actually sending a message to update a bid is only

performed when the utility can be increased by at least ϵ. Moreover, as the state of

the auction gets closer to an equilibrium, the rate at which ϵ-best replies lead to a bid

update appears to slow down.
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Let ∆c
i represent the communication delay (time from bid placement to activa-

tion) and ∆e
i be the evaluation interarrival delay (time between attempted rebids).

These random variables are independent and distributed according to

∆c
i ∼ δc +Weibull(λc, βc) and ∆e

i ∼ δe +Weibull(λe, βe).

Thus, a bid (qi, pi) computed at time t is observed at time t+∆c
i . Similarly, a buyer

who analyzes the current state of the market at time t will again compute their ϵ-best

reply at time t+∆e
i . The simulation operates as a discrete-time event system. Events

are scheduled and processed in a priority queue, advancing the simulation clock t to

the next event.

Figure 7.1 depicts the distributions of the time between bids and the communi-

cation latency. Even though the expected time between bid updates is much greater

than the expected latency, the heavy tail corresponding to the shape parameter

βc = 0.75 implies there is a chance—due to network lag—that a new bid update

might be considered before the previous bid has been received by the auction.

To characterize the effects of latency and asynchronicity on the outcomes of the

progressive second-price auction we consider an ensemble E of 100 realizations for the

random processes given by ∆c
i and ∆e

i . Note that the ensemble used in Section 7.3

was over random initial bids. In this section we hold the initial bids fixed. Now, for

ω ∈ E let sw denote the equilibrium state obtained from the Algorithm 7.1 subject

to the communication delays and bid updates specified by ω.

Figure 7.2 on the left depicts the ensemble averages of the bid prices and total

utility as a function of the scale of the communications latency with λc ranging from

the default value of 1.0 shown in Figure 7.1 up to 20. The shadows illustrate the

standard deviations of the ensembles given by V [⟨E[p]⟩]1/2 and V [⟨S[u]⟩]1/2. The

deviations are small while the bid prices and total utility are horizontal to within the

errors represented by those deviations.

Note that the variance of the ensemble average V [⟨E[p]⟩] is different than ensem-
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Figure 7.2: Left shows that changing the scale λc of the com-
munication latency has minimal effect on the ensemble-averaged
price and total utility received by all buyers. Right shows the
average value and cost for each individual buyer in the case
λc = 1.

ble average of the variance, which instead is given by

⟨V [p]⟩ = 1

|E|
∑
ω∈E

(
1

S[a]

∑
i∈I0

ai(s)(pi − E)2
)∣∣∣∣

s=sw

.

Figure 7.2 on the right depicts the predictability of individual outcomes for the 62

buyers who received allocations in the market. The remaining 28 buyers consistently

did not receive allocations and are not shown. No resource was purchased by the

seller. We study the individual values and costs given by

⟨vi⟩ =
1

|E|
∑
ω∈E

vi(sw) and ⟨ci⟩ =
1

|E|
∑
ω∈E

ci(sw)

and the standard deviations in these averages. Some buyers experienced much higher

deviations in outcomes compared to others. This pattern was repeatable. Similar re-

sults but affecting different individuals were obtained for other populations of buyers.

Also computed but not shown, the deviation in individual utility

V [⟨ui⟩]1/2 =
( 1

|E| − 1

∑
ω∈E

(
ui(sw)− ⟨ui⟩

)2)1/2

was uniformly small for all buyers. Since demand is perfectly elastic, then arguably
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the buyer utility given by ui = vi− ci is more important than either the value or cost

on their own.

7.5 Different Latencies

This section studies whether buyers who compute their ϵ-best reply more frequently

and experience less latency in their bid messages have any advantage over buyers who

analyze the market less frequently and whose bid messages suffer greater latencies.

Consider a population of 100 buyers with valuation curves such that

θi+50 = θi for i = 1, 2, . . . , 50.

Thus, the first 50 buyers are identical twins of the last 50 buyers with one difference:

The last 50 buyers are lazy and evaluate the market 17 times less frequently and

experience 17 times more latency in their bid messages.

Specifically, the first 50 buyers keep the same bid evaluation frequency and la-

tency as in Table 7.1 while the delay and scale parameters for the time between bids

and communication latency for the last 50 buyers are multiplied by a factor of 17.

The last 50 buyers evaluate the market 17 times more slowly and experience 17 times

more latency in their bid messages.

Figure 7.3 depicts the outcomes of the first 50 buyers compared their identical

but lazy twins—the last 50 buyers. The graph on the left shows the transient part

of the utility received over time for representative pair of buyer twins. After making

an ϵ-best reply, either twin obtains the same utility from the market as the other.

However, the difference in the time scales allows the industrious twin to maintain

non-zero utility for a larger percentage of the time. As the equilibrium state is

reached—not shown—the rate of bid updates slows down so much that the fact that

one twin is 17 times slower than the other no longer matters.

In the end, both twins obtain essentially the same utility at the equilibrium

state. The right graph illustrated the statistics for the same twin pairs taken over

an ensemble E of size 100. The outcomes in terms of individually received utility
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Figure 7.3: The outcomes for lazy buyers who evaluate the
market 17 times less frequently and experience 17 times the
latency in their bid messages compared to an equal number of
industrious buyers with identical valuations.

depicted on the right are indistinguishable between the industrious and lazy twin.

Note also there is very little deviation in outcomes due to the asynchronous nature of

the individual market evaluations and the communication latencies in the distributed

second-price auction.

7.6 Conclusions

We have introduced an algorithm that that constructs ϵ-Nash equilibria consisting

of truthful bids in which each buyer imposes zero externality on the other buyers

and demonstrated through simulation that this algorithm converges. Although it is

known that the method of truthful ϵ-best replies stated as Algorithm 1 in [45] may

fail to converge unless ϵ is large enough, it is possible the introduction of compromise

bids removes the condition on ϵ. A theoretical proof of this fact currently seems out

of reach, however, if one assumes the ϵ-best replies converge to an ϵ-Nash equilibrium

without the compromise bids, then it may be possible to show our new algorithm

continues to converge when alternating these bids with compromise bids.

It is remarkable that the individual utility and bid prices at the ϵ-Nash equi-
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libria have so little dependency on the random elements in the market mechanism

of the progressive second-price auction. Seller revenue was further stabilized by the

introduction a reserve price.
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Chapter 8

An Analysis of a Progressive
Second-Price Multi-Auction
Market with Perfect Substitute
and Perfect Information

Abstract

We present a dynamic extension of the Progressive Second-Price (PSP) auction for

multi-auction markets in which buyers participate across multiple sellers through a

common marginal price. Within this structure, we extend the exclusion–compensation

principle to a global setting, showing that aggregate externalities can be represented

as a price–ordered composition of local staircases. This formulation provides a uni-

fied view of valuation, allocation, and cost in distributed markets and establishes a

rigorous foundation for future work: the establishment of a ϵ-best-response for multi-

auction markets with perfect information and perfect substitute.

8.1 Introduction

The progressive second-price (PSP) auction, introduced by Lazar and Semret [45], is

a decentralized mechanism designed for resource allocation. PSP satisfies truthful-

ness, individual rationality, and social welfare maximization while operating without

centralized knowledge of every buyers’ individual valuation. Unlike centralized auc-

tions, PSP unfolds as a distributed process in which buyers and sellers interact locally
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through repeated bidding rounds. At its core, each bid is a message consisting of a

quantity and the buyer’s unit-price marginal valuation at that quantity. Messages

that communicate a linear approzetamation of the valuation curve rather than the

full valuation bounds the cost of communication and ensures tractability in cases

where the full curve is unknown even to the buyer or changes over time due to exter-

nal influences.

Classical Vickrey–Clarke–Groves (VCG) auction theory [83, 24, 32] established

that charging each participant the externality they impose on others results in truthful

bidding. This is known as the exclusion–compensation principle: a participant pays

for the cost their presence creates by displacing others from their allocations. Truthful

bidding is intuitively a rational strategy because payments align with marginal effects

on others’ welfare. The classical theory assumes every buyer can report their entire

valuation function to a central planner. This full revelation enables efficient allocation

and exclusion–compensation pricing, but relies on centralized information.

By contrast, PSP restricts communication to a two-dimensional message space.

Buyers do not reveal their full valuation functions in a single step. Instead, they

gradually reveal information across rounds as the auction progresses through an or-

dered pair (q, p). This iterative process is what makes the mechanism progressive:

truthful valuations are approached incrementally through repeated bids, each reflect-

ing a more accurate signal of willingness-to-pay. The progressive structure is not

merely a design choice, but a necessity imposed by the restricted message space, the

costs of distributed communication, and the progressive consumption of an allocated

resource.

Extending PSP to multiple concurrent auctions raises new challenges. Each mar-

ket has its own reserve prices and allocation dynamics, and buyers may face a variety

of participation costs such as membership fees, per-round bid fees, or cumulative

transaction costs. Rational buyers may choose to avoid participation in some mar-

kets when the expected utility does not exceed these fees. We formalize this behavior

through an opt-out function, which filters a buyer’s desired allocation according to
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cost and benefit. This defines a bounded participation rule: buyers update their bids

only when the changing externality causes the previous bid to violate budget con-

straints or when the improvement in utility exceeds participation costs and tolerance

thresholds.

The presence of multiple auctions also complicates the structure of the message

space. While each bid is an ordered pair, a buyer active in several markets must

communicate multiple bids. This raises questions about complexity, latency, and

overhead: does simultaneously bidding in n auctions incur a fee of nϵ where ϵ is the

per-auction bid fee? Does each auction have a different bid fee? How do different

bid communication latencies and costs affect which auctions a buyer participates in?

In fragmented markets, message passing may incur delays or overheads that further

shape equilibrium. For simplicity, our model begins with minimal assumptions: we

treat the multi-auction system as a platform for allocating resources in which there is

no latency when communicating bids—abstracting away from the network topology.

This allows us to focus on the equilibrium and incentive properties of the auction and

opt-out mechanism. A study of the effects of latency in the communication of bids

appears in [11].

We remark that changing market conditions naturally affect the allocation of a

consumable resource over time, in particular, buyers may enter or exit the market or

their needs change. We assume that the timescales over which the market changes

are large compared to the speed at which the PSP auction converges. We therefore

assume the allocation of resources obtained by the auction represents a quasi-static

equilibrium that slowly changes over time.

Auction theory provides mechanisms for allocating goods and resources among

agents with private valuations. Traditional second-price auctions, introduced by Vick-

rey [83] and extended to social welfare optimization by Clarke [24] and Groves [32],

incentivize truthful bidding by charging each participant the externality their presence

imposes on others. This exclusion–compensation principle ensures that truthful bid-

ding is rational and aligns individual incentives with social welfare. However, these
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mechanisms assume centralized information and allow bidders to submit complete

valuation functions in a single step.

To address decentralized environments, Lazar and Semret [45] introduced the

progressive second-price auction as an iterative, message-passing algorithm. Each

bid is restricted to a two-dimensional message (price and quantity). This restriction

limits communication overhead but also means buyers cannot reveal their full valu-

ation functions in one step. Instead, valuations must be progressively revealed over

successive rounds. The progressive structure is therefore intrinsic to the mechanism:

it emerges from the restricted message space and the costs of distributed commu-

nication. Our work builds on this foundation and asks how the message space and

communication costs interact when multiple auctions run simultaneously.

In Lazar and Semret’s original analysis, the existence of an ϵ-Nash equilibrium

relies on a single global ϵ parameter, interpreted as a market-wide tolerance for prof-

itable deviation. In multi-auction PSP markets with participation fees and potential

communication overhead, however, ϵ may take multiple forms: a flat entry cost, a

per-round cost, a cumulative cost across rounds, or even additional terms reflecting

message-passing complexity. Each of these modifies the decision rule by which buyers

accept or reject new bids. Consequently, equilibrium must be reinterpreted as an

ϵ-Nash equilibrium where ϵ depends on heterogeneous costs across markets.

A main contribution of this paper is to show that the exclusion–compensation

principle, which underpins truthfulness, continues to hold in multi-auction PSP mar-

kets. This ensures that the externality created by each buyer’s presence is priced

correctly even when participation costs are heterogeneous.

The remainder of this paper is structured as follows. Section 8.2 presents the

rules of the PSP auction discussed in this work, including modifications given in [12,

10, 70]. Section 8.3 demonstrates the adherence of the multi-auction market to the

second-price rule, while Section 8.4 explores the possibility of an absorbing ϵ-Nash

equilibrium region and discusses the design of a coordinated best-response. Section 8.5

is a simulation of a set of coupled auctions, showing convergence even with buyers



175

operating independently. Finally, Section 6.7 summarizes and outlines directions for

future work in theoretical and practical applications. Namely, we determine the proof

of existence and uniqueness for the ϵ-Nash equilibrium region to be incomplete, and

outline this direction for future work.

8.2 PSP Auction Rules

The PSP auction is a decentralized mechanism in which buyers iteratively submit bids

to sellers, and sellers update reserve prices and allocations based on received bids.

Each auction operates locally, and coordination emerges through repeated interac-

tions across the market graph. In what follows, we define the bid structure, auction

dynamics, pricing rules, allocation strategies, and participation behavior that govern

the PSP mechanism.

8.2.1 Bid Structure and Strategy Space

Let I = B ∪ L denote the set of all agents, partitioned into buyers and sellers. Each

seller j ∈ L manages a local auction for a divisible resource, and each buyer i ∈ B

may submit bids to a subset of sellers. The bid profile of auction j is given by the

column vector sj with entries sji , where (i, j) ∈ B × L. A bid

sji = (qji , p
j
i ) ∈ Sj

i = [0, Qj]× [0,∞)

represents a single interaction between buyer i and seller j, where qji is the quantity

requested by the buyer and pji is the unit price offered.

We call the array of active bids s. This array generates a directed graph, drawing

edges between vertex pairs engaged in active bidding. We reserve vertex for graph

theory and use node only when referring generically to buyers or sellers as economic

agents. If there is no interaction between two players i and j, then we set sji = (0, 0),

and zero the associated entry of the biadjacency matrix. Each nonzero entry defines

an edge in the buyer-seller bipartite graph. Denote by si = [sji ]j∈L the i-th row of the

array s. Note that si represents the bids from buyer i in all the auctions hosted by
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the sellers. Let s−i denote the array s with the i-th row removed. This array consists

of entries sjk where k ∈ B \ {i} and j ∈ L. Thus, s−i represents the bid profiles of

buyer i’s potential opponents.

The strategy space for auction j is the set of all bid vectors Sj = Πi∈BS
j
i , and

represents the space of all possible ways in which a player can play a game (also

known as the strategy set). Similarly, the (full) strategy space for buyer i is defined

as all possible bids at all auctions,{
Si = Πj∈LS

j
i , S−i = Πj∈L

(
Πk ̸=i∈BS

j
k

)}
.

where the buyer valuation θ of quantity z is a second-order parabolic function,

Table 8.1: Basic sets and notation for a bundle of J independent PSP auctions

Object Single auction Multi-Auction

Quantity qi
∑

j q
j
i

Price pi = θ′i(qi) pi = θ − I ′(
∑

j q
j
i )

Bids s = {(i, qi, pi) : i ∈ I s = {(i, j, qji , pi) : i, j ∈ A ⊂ I × J}

Opposing {(k, qk, pk) : k ̸= i} {(k, j, qjk, p
j
k) : k ̸= i}

θi(z) =
θi
2
(z ∧ qi)

2 + θiqi(z ∧ qi),

where ∧ represents the minimum, and A is an index set representing the bipartite

connections of the buyers and sellers, where I = |B|, J = |L|.

Each buyer will know the available quantity and the seller’s updated reserve

price for each market in which they bid. Buyers act strategically by selecting sellers,

adjusting bid quantities, and choosing whether to participate based on their expected

ability to satisfy demand. In the PSP framework buyers cannot reveal their entire

valuation functions in a single step; instead they must request allocations iteratively.

To regulate this behavior we introduce a bounded participation rule, as in [12], which

endogenously limits the set of sellers a buyer engages with.
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8.2.2 Residual Quantity and Allocation

As a market with perfect but incomplete information, sellers can only gain information

about demand by observing buyer behavior in their local auctions. Sellers are not

associated with an opt–out function and update only on information revealed by

buyers who have not opted out. In each iteration, every seller completes one update

of its local auction.

For each seller j, the reserve price pj(t) is the price at which seller j is indifferent

between selling her final unit of resource and keeping it. Equivalently, the seller may

be viewed as submitting an internal bid (Qj, pj(t)) on her own auction. At the end

of each round t, the reserve price is updated with information from the set of active

bids, where Bj(t) is the set of buyers who win strictly positive allocations at seller j

in round t, and ϵ > 0.

We define the clearing price at seller j to be the smallest price at which aggregate

awarded quantity meets available quantity:

χj(t) = min

{
y :

∑
k: pjk(t)>y

qjk
(
a(t)

)
≥ Qj(t)

}
. (8.1)

Any residual supply must therefore be allocated among bids that tie at prices just

above χj(t), after higher–priced bids are filled. Let

pj(t) := min{ pji (t) : i ∈ Bj(t) }, pj(t) := max{ pji (t) : i ̸∈ Bj(t) }, (8.2)

be the lowest winning and highest losing bid prices at seller j, and where buyers not

in Bj(t) receive zero allocation at seller j. The clearing price satisfies

pj(t) < pj(t) + ϵ ≤ χj(t) ≤ pj(t)− ϵ < pj(t)

whenever there is at least one winning and one losing bidder at seller j. In particular,

χj(t) lies in the open interval between the highest losing and lowest winning bid. At

equilibrium, the reserve price pj(t) coincides with the clearing price at seller j, i.e.,

the clearing price implied by the PSP allocation rule.
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The allocation is determined by the availability implied by competition at the

current bid price. The maximum available quantity of data in auction j at unit price

y given sj−i is

qj(y, t) =
[
Qj(t)−

∑
k: pjk(t)>y

ajk(t)
]+

, (8.3)

be the residual quantity remaining after all buyers who bid strictly above y have been

served. We refer to the tie–splitting rule originated in the analysis of quantized PSP

auctions by Qu, Jia, and Caines [70],

aji (t) = min

{
aji (a),

aji (a)∑
ℓ: pjℓ=y a

j
ℓ(a)

qj(y, t)

}
. (8.4)

For each buyer–seller pair (i, j) at time t, aji (t) is the amount that seller j allocates

to buyer i.

We remark that the reserve price pj(t) that lies in the margin interval determined

by the bids

pj(t) < pj(t) < pj(t), (8.5)

whenever both pj(t) and pj(t) are defined, and we deliberately leave the precise rule for

selecting pj(t) within the interval (8.5) unspecified. In particular, admissible choices

include

pj(t) = χj(t), pj(t) = pj(t) + ϵ, pj(t) = pj(t)− ϵ,

provided that reserve price updates lie within ϵ and the resulting sequence {pj(t)}t
is nondecreasing. Could there be an optimal coordinated reserve price, chosen using

buyer feedback, that upholds the best-response dynamics? We admit there may be

a coordinated reserve profile that improves potential revenue for participating sellers.

We leave this conjecture for future work.

8.3 Exclusion–Compensation

The cost to the buyer adheres to the second-price rule for each local auction, this is

the “social opportunity cost” of the PSP pricing rule. For a fixed seller j, buyer i’s
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exclusion–compensation (EC) payment equals the loss imposed on other buyers at

that seller. For a fixed auction j we write

cji (s) =
∑
k ̸=i

pjk

[
ajk
(
0; sj−i

)
− ajk

(
sji ; sj−i

)]
, (8.6)

where sj−i collects the opponents’ bids at seller j and for each buyer k ̸= i the term

ajk(0; s
j
−i)− ajk(s

j
i ; s

j
−i) denotes the reduction in allocation to k due to buyer i’s par-

ticipation at j. Equivalently, the integral form uses the opposing buyers’ piecewise–

constant marginal price function P j(·, sj−i) built from sj−i,

cji (s) =

∫ aji (s)

0

P j
(
z, sj−i

)
dz, (8.7)

which holds true locally at each auction, where the opposing bids are calculated

against the allocated resource to buyer i. Each buyer in the opposing bid vector

contributes a price from their awarded allocation that enters into the externality of

another.

8.3.1 (Local) Externality Cost.

We examine the continuity of pricing given local residual quantities. For a fixed seller

j, the opponents of buyer i are ordered by decreasing prices pj(1) > pj(2) > · · · >

pj
(Mj)

≥ 0 where pj(n) denotes the n-th distinct price level among all buyers k ̸= i

at seller j. At each price tiers pj(n), there may be one or more buyers posting that

same price. The corresponding quantities requested by those buyers are qjk for all k

such that pjk = pj(n). Fix buyer i and a strategy profile s; let s−i ∈ R(I−1)×J denote

the matrix of other buyers’ bids, with sj−i its jth column. For each seller j, the local

inverse price function P j(·, sj−i) : [0,∞)→ [0,∞) maps an allocation level z for buyer

i at seller j to the smallest price level y such that the residual quantity available to i

at price y (after excluding opponents with strictly higher price and resolving ties at

y according to the mechanism’s tie–breaking rule) is at least z. Equivalently, if

Qj
i (y, s

j
−i) = the quantity available to i at seller j at price y,
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then we use the generalized inverse

P j(z, sj−i) = inf{ y ≥ 0 : Qj
i (y, s

j
−i) ≥ z },

which is a right–continuous, nonincreasing step function of z. The corresponding

residual quantities are

ζj0 = Qj, ζjn =
[
Qj −

n∑
m=1

∑
k ̸=i:pjk=pj

(m)

qjk

]+
, (8.8)

for n ≥ 1. The amount of resource available at price pj(n) is then ζjn−1 − ζjn ≥ 0. The

local inverse price function is

P j(z, sj−i) = pj(n) for z ∈ (ζjn, ζ
j
n−1].

Buyer i’s per–seller exclusion–compensation cost is the area under the function

cji (s) =

∫ aji (s)

0

P j(z, sj−i) dz =
Mj∑

m=n+1

pj(m)(ζ
j
m−1 − ζjm) + pj(n)(a

j
i (s)− ζjn), (8.9)

for aji (s) ∈ (ζjn, ζ
j
n−1]. The summation adds to the cumulative cost of all the bids

at strictly higher prices from buyers receiving their full allocation, whereas the final

term pj(n)
(
aji (s) − ζjn

)
corresponds to the partial allocation at the threshold price,

representing the portion of resource assigned to buyer i.

At the threshold price for seller j, (8.7) collapses to cji (s) = pj∗ aji (s), since each

unit awarded to buyer i at that price displaces a another buyer who would have

otherwise received it at the same threshold. It follows that P j(·, sj−i) is constant

over the awarded interval. In general, the exclusion–compensation rule charges every

awarded unit as if it displaces other bids valued at the threshold price pj∗(t).

This local view refers to the effect of buyer i’s participation at a single seller j,

where EC is computed using the local inverse price function P j(z, sj−i). The aggre-

gate (or global) view refers to the buyer’s total EC cost over all sellers in which it

participates, computed by concatenating and price–ordering the local steps to form

Pi(z, s−i). In the following analysis we will assume a coordinated clock across all

auctions.
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8.3.2 (Global) Externality Cost

We formalize how the aggregate inverse price function is obtained by price–ordering

and concatenating the local ones, and (iii) prove that the buyer’s total exclusion-

compensation (payment) can be computed either as a sum of local integrals or as a

single global integral. This sets up the multi–auction utility rule used later.

For each ordered price y, we have that Pi(z, s−i) is defined for the range of z

corresponding to the total resource available from all sellers at that price, i.e.,

z ∈
( ∑

pj
(m)

>y

(ζjm−1 − ζjm),
∑

pj
(m)

≥y

(ζjm−1 − ζjm)

]
. (8.10)

Define the aggregate available quantity at the price y as

Qi(y, s−i) =
∑
j∈Li

Qj
i (y, s

j
−i) (8.11)

and the price at which we obtain a total of at least z units of resource among all

available auctions

Pi(z, s−i) = inf{ y ≥ 0 : Qi(y, s−i) ≥ z }, (8.12)

where because Qi(y, s−i) is a right–continuous, nondecreasing step function with

finitely many jumps at {pj(m)}, the infimum is attained. To build the aggregate

inverse price function Pi(z, s−i), we collect all local price—quantity pairs with cumu-

lative quantity breakpoints 0 = ζj
Mj < ζj

Mj−1
< · · · < ζj0 (where P j(z) = pj(m) on

(ζjm, ζ
j
m−1]), then the local price—quantity pairs generalize to(
pj(m), (ζjm−1 − ζjm)

)
, m = 1, . . . ,M j, (8.13)

and Pi(·, s−i) is the staircase obtained by taking the union (multiset) of all local

price–quantity pairs from the sellers and ordering the pairs by nonincreasing price.

We define the global inverse price function,

Pi(z; s−i) = inf
{
y ≥ 0 :

∑
j

∑
m:pj

(m)
≥y

(ζjm−1 − ζjm) ≥ z
}
, (8.14)

representing the total resource available at prices greater than or equal to y.
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Lemma 8.1 (Aggregate exclusion–compensation). For every strategy profile s,∑
j∈Li

∫ aji (s)

0

P j
(
z, sj−i

)
dz =

∫ ∑
j∈Li

aji (s)

0

Pi

(
z, s−i

)
dz. (8.15)

and therefore the aggregate payment decomposes additively,

ci(s) =
∑
j∈Li

cji (s). (8.16)

Proof. For each seller j, the local inverse P j(·, sj−i) is a nonincreasing step function

with steps
{(

pj(m), (ζjm−1 − ζjm)
)}Mj

m=1
as above. Let aji (s) ∈ [0, Qj] be buyer i’s

awarded allocation from seller j. There exists a unique index n(j) ∈ {1, . . . ,M j}

with

aji (s) ∈
(
ζjn(j), ζ

j
n(j)−1

]
.

By direct evaluation of the integral of a piecewise–constant function,∫ aji (s)

0

P j(z, sj−i) dz =
Mj∑

m=n(j)+1

pj(m)

(
ζjm−1 − ζjm

)
+ pj(n(j))

(
aji (s)− ζjn(j)

)
. (8.17)

The summation term represents the cumulative cost of all bids at strictly higher prices

that receive their full available quantity, whereas the final term pj(n(j))(a
j
i (s) − ζjn(j))

corresponds to the partial allocation at the threshold price level, i.e. aji .

The local payment
∫ aji
0

P j(·) dz equals the sum of the areas of the topmost local

blocks truncated at total width aji (s). Summing (8.17) over j ∈ Li yields the total

area of the multiset of all such blocks, truncated seller–wise at widths {aji (s)}j:∑
j∈Li

∫ aji (s)

0

P j(z, sj−i) dz =
∑
j∈Li

Mj∑
m=1

pj(m) ∆zjm,

where for each pair (j,m) the nonnegative width ∆zjm is either ζjm−1 − ζjm (if the

entire tier is used) or the appropriate truncated width at the threshold tier (if only

part of that tier is used). Thus the total payment is the finite sum of prices pj(m) by

allocations ∆zjm.

Intuitively, the local inverse curves P j are descending staircases in allocation–price

coordinates. Their union, when resorted by price and concatenated, produces the ag-

gregate staircase Pi(·, s−i) by taking the same multiset of rectangles {(pj(m),∆zjm)}j,m
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and placing them consecutively along the z–axis in nonincreasing order of price. By

construction, Pi(z, s−i) is again a nonincreasing step function and its integral up to

the total allocation ∑
j∈Li

aji (s) =
∑
j∈Li

Mj∑
m=1

∆zjm

is equivalent to integrating the single aggregate staircase up to the global allocation:∫ ∑
j∈Li

aji (s)

0

Pi(z, s−i) dz =
∑
j∈Li

Mj∑
m=1

pj(m) ∆zjm.

This is a direct instance of a measure–preserving reordering, proving (8.15). Finally,

(8.16) follows immediately from the definitions

cji (s) =

∫ aji (s)

0

P j(z, sj−i) dz, ci(s) =

∫ ∑
j∈Li

aji (s)

0

Pi(z, s−i) dz.

8.3.3 Valuation and Utility

A rational buyer sets a uniform bid price pi(t) across all active sellers j ∈ Li(t). The

central object for each buyer i is a single buyer-specific valuation curve θi, evaluated

on the buyer’s total awarded quantity across all active auctions. The total possible

value is

qi(qi ◦ a) = θi

( ∑
j∈Li(t)

qji (a)

)
=

∫ ∑
j∈Li(t)

qji (a)

0

θ′i(z) dz (8.18)

where θi : [0, Qi] → [0,∞) is the buyer’s elastic valuation function with strictly

decreasing derivative θ′i. A buyer’s marginal value depends only on the aggregate

quantity it expects to receive across auctions, not on the identity of the seller.

Given a strategy profile s, the utility of buyer i for potential allocation a is

dependent on the cost, ci(s), where the cost to buyer i as a function of the entire

strategy profile s. In a multi–auction setting this profile evolves with iteration t, where

ci(s) may represent total participation costs, including membership fees, per–round

overhead, and per–auction message costs.
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We note that buyers that engage with more sellers may face higher aggregate

participation cost. We therefore consider the possibility of a time–dependent par-

ticipation cost for buyer i, ϵi(t) = |Li(t)|ϵ, where |Li(t)| is the number of active

auctions and represents the incremental participation overhead incurred by buyer i

when updating all bids simultaneously. The proportional form extends the original

single–auction bound by scaling the threshold with the number of active markets. We

acknowledge that this is a reasonable pricing structure. However, in the context of

this paper, we make the simple assumption that membership fees are a-priori, and

that ϵ is a market–wide, fixed fee, and leave a more complex pricing structure as

future work.

Given strategy s, the utility of buyer i is ui(s) = qi− ci(s). Now, in terms of the

opposing bid vector s−i, a buyer’s realized utility at time t depends on the current

state of play. Information propagation across the market affects how the vector of

opposing bids s−i is formed, and thus how externalities are computed. Given ϵ > 0,

a state s is an ϵ–Nash equilibrium if and only if

ui(s
′
i; s−i)− ui(si; s−i) ≤ ϵ, ∀i, ∀s′i ∈ Si.

Each buyer’s utility ui is computed from its valuation θi(·) and the externality cost de-

rived from (P j, Pi). The equilibrium represents the absorbing region of the dynamics-

—once reached, no buyer can improve its utility by more than the cost of participation.

In the multi–auction setting, buyer i posts a vector of bids that share a com-

mon marginal price wi across all connected sellers. The utility comparison there-

fore becomes an aggregate test given by Lemma 8.1. For convenience, define qi =∑
j∈Li

qji (a), and q′i =
∑

j∈Li
q′ji (a). We have

∆ui = θi(q
′
i)− θi(qi) −

∫ q′i

qi

Pi

(
z, s−i

)
dz. (8.19)

8.4 Buyer Best Response

We adapt the ϵ–best reply of Lazar and Semret [45] to a market with multiple si-

multaneous auctions selling a quantity of an identical resource, creating a market of
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perfect substitutes. Unlike the serial network setting considered in [45], we assume

all sellers offer perfect substitutes, so buyer i is characterized by a single strictly con-

cave valuation function θi defined over the total quantity obtained across all active

auctions.

Given opponents’ bids s−i, define the total quantity of resource available to buyer

i is given in (8.11) as Qi(y, s−i). This leads to a natural generalization of the single-

auction framework as follows. Namely, we replace the amount available in one auction

at the price y by the total resource available in all auctions. Specifically, let the

corresponding feasible set be

Gi(s−i) =
{
z ∈ [0, q̄i] : z ≤ Qi

(
θ′i(z), s−i

)}
, (8.20)

where q̄i is an upper bound on buyer i’s total allocation. The set Gi(s−i) collects all

total quantities that buyer i can obtain truthfully at marginal value θ′i(z) given the

total remaining quantity across all auctions given all opposing bids s−i.

Following the method of ϵ-best reply for a single auction let ε > 0 and define the

target bid

wi = θ′i(vi), where vi = supGi(s−i)−
ϵ

θ′i(0)
.

By construction 0 ≤ vi ≤ q̄i and vi ≤ Qi(pi, s−i). Thus (vi, wi) represents an ϵ-

relaxed truthful bid with a wi marginal price valuation on vi amount of resource. The

difficulty remains to proportion how much of the total resourece vi to request from

each of the auctions j ∈ Li in which buyer i is allowed to bid. In particular, we look

for a multi-auction bid of the form

si =
{
(i, j, vji , wi) : j ∈ Li

}
where

∑
j∈Li

vji = vi (8.21)

and the quantities vji further satisfy the resource availability constraints in each auc-

tion

vji ≤ Qj
i (wi, s

j
−i) for all j ∈ Li. (8.22)

Among all such decompositions, buyer i chooses si to minimize the total exclusion–

compensation payment. In fact, we wish to chose the quantities vji in a way that
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satisfies (8.22) and at the same time minimizes the exclusion–compensation payment

in each of the respective auctions. Because exclusion–compensation is additive across

ordered bids, (Lemma 8.1), this minimization reduces to displacing the lowest-priced

units first.

Note that supGi(s−i) represents the maximum total quantity buyer i can obtain

truthfully from all auctions in Li given s−i. Define

qi = supGi(s−i), vi = qi −
ϵ

θ′i(0)
, wi = θ′i(vi).

Thus (vi, wi) is an ϵ–relaxed truthful target bid, with vi ≤ qi and marginal valuation

wi.

The remaining task is to decompose vi across auctions. We seek a bid

si = {(i, j, vji , wi) : j ∈ Li}, with
∑
j∈Li

vji = vi,

subject to the feasibility constraints

vji ≤ Qj
i (wi, s

j
−i) for all j ∈ Li.

Among all feasible decompositions, buyer i chooses (vji )j∈Li
to minimize total exclusion–

compensation payment.

To evaluate costs, consider the set of all bids competing with buyer i across the

auctions in which i participates:

s−i =
{
(k, j, qjk, p

j
k) : k ̸= i, j ∈ Li} ∈ S−i.

We first impose a global price ordering on these bids; we then allocate the resource

among opposing buyers as if buyer i were not present in order to compute the second–

prices needed for calculating the utility ui of buyer i.

Using Lemma 8.1, these bids are ordered globally by price, producing a single

aggregate staircase Pi(·, s−i). The sorting implies

s−i =
{
(k(n), j(n), q

j(n)
k(n), p

j(n)
k(n)) : n = 1, . . . , N

}
,
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where k(n) ̸= i and j(n) ∈ Li, and the ordering is decreasing such that

p
j(n)
k(n) ≥ p

j(n+1)
k(n+1)

with ties broken deterministically. The bids are ordered such thatpji (n) < pji (n+ 1) or

pji (n) = pji (n+ 1) and γi(n+1) < γi(n)
(8.23)

where γ is a key used to impose a deterministic sort. To simplify the notation write

q(n) = q
j(n)
k(n) and p(n) = p

j(n)
k(n) for all n = 1, . . . , N.

For each seller j let Qj(n) be the remaining resource available in auction j after

the bids m with m < n have been allocated a(m). Thus, Qj(1) = Qj and for

n = 1, . . . , N we obtain

Qℓ(n+ 1) =

{
Qj(n)(n)− a(n) for ℓ = j(n)

Qℓ(n) otherwise,

where

a(n) = min
(
q
j(n)
k(n), Qj(n)(n)

)
(8.24)

is the allocation awarded to buyer k(n) at seller j(n).

This ordering is across auctions and reflects allocation received for each bid based

on the marginal values of the opposing buyers in the absence of buyer i.

For each index n, define

Hn = (θ′i)
−1
(
p(n)

)
, (8.25)

the total quantity at which buyer i’s marginal valuation equals the nth ordered oppos-

ing price. Recall a(n) denotes the allocation associated with the nth ordered opposing

bid. Buyer i selects the smallest index n such that

N∑
m=n

a(m) ≤ Hn. (8.26)
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Because the externality of each displaced unit equals its price, this rule min-

imizes the total exclusion–compensation cost. Here n indexes the valuation cutoff

determined by Hn, while n′ indexes the truncation required to meet the ϵ–relaxed

quantity vi. The index n is determined solely by the valuation curve, independent of

ϵ; the index n′ is determined by the ϵ–relaxed quantity constraint.

Since θi represents strictly decreasing returns then θ′i is a strictly decreasing

function, and so θ′i is invertible. For convenience we extend the inverse function as

(
θ′i
)−1

(p) =

{
q for p < θ′i(0), where θ′i(q) = p,

0 for p ≥ θ′i(0).

Lemma 8.1 allows costs incurred across distinct sellers to be evaluated using a single

inverse demand curve. In fact, without the aggregate exclusion–compensation iden-

tity, a single global price ordering across auctions would not define a coherent best

response.

Now we consider the opposing bids from lowest to highest and whether the sec-

ond price set by that bid is less than our own marginal valuation for obtaining the

corresponding allocation. Thus Hn represents the total quantity on our valuation

curve that we would want if we outbid all the bids from n to N .

We then consider the ordered opposing bids from index n = N to n = 1, i.e., from

the lowest to the highest price, and determine whether displacing each successive al-

location is profitable relative to buyer i’s valuation. Because exclusion–compensation

is linear in displaced units, any deviation from this ordering strictly increases total

cost for a fixed total quantity. Each allocation that we obtain contributes to our cost

through the second–price mechanism as the externality from the opposing bid. Since

we obtain allocations in reverse order this minimizes the second–cost from as many

auctions we can bid in.

There are two cases, either

n = 1 or
N∑

m=n

a(m) ≤ Hn, but
N∑

m=n−1

a(m) > Hn−1.

In the first case we are willing to outbid all the bids to get all the allocations.
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Thus, the resources from all available markets is less than the amount our valuation

says we would want by just outbidding the highest bid, and so we will get our re-

quested quantity. There is no additional cost in bidding more because we do not incur

any additional externality, we have already outbid all opposing bids and

∑
j∈Li

Qj =
N∑

m=1

a(m) ≤ H1. (8.27)

Taking qji = Qj it follows that
∑

j∈Li
qji = supGi(s−i) where Gi is given by (8.20).

What’s left is to set the quantities vji ≤ qji in a way that minimizes the cost.

Thus, we want

vi =
∑
j∈Li

vji =
∑
j∈Li

Qj − ϵ

θ′i(0)
(8.28)

Since the second cost increases with the bid prices of the opposing bids, we first choose

n′ such that

N∑
m=n′

a(m) ≤ vi <
N∑

m=n′−1

a(m). (8.29)

Take α ≥ 0 to be defined as α = vi −
∑N

m=n′ a(m) < a(n′ − 1) and define

vℓi =



N∑
m=n′
j(m)=ℓ

a(m), for ℓ ̸= j(n′ − 1)

N∑
m=n′
j(m)=ℓ

a(m) + α for ℓ = j(n′ − 1).

(8.30)

Now,
∑

ℓ∈Li
vℓi satisfies (8.28). Next we consider the case where

∑N
m=n−1 a(m) >

Hn−1, and the case where
∑N

m=n a(m) ≤ Hn. Recall that Hn =
(
θ′i
)−1(

p(n)
)
repre-

sents the total quantity on our valuation curve that we would want if we outbid all

the bids from n to N . We consider two subcases:

N∑
m=n

a(m) ≤ Hn−1 or
N∑

m=n

a(m) > Hn−1,

where the second inequality represents the case where outbidding the next highest

bid would result in a lower desired allocation at a higher price, and the mechanism
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discards the bid. In the first case,
∑N

m=n a(m) ≤ Hn−1, we have an increase in demand

and
∑N

m=n−1 a(m) ≤ Hn−1. Therefore

N∑
m=n

a(m) ≤ Hn−1 <

N∑
m=n−1

a(m) =⇒ 0 ≤ Hn−1 −
N∑

m=n

a(m) < a(n′ − 1).

Let β = Hn−1 −
∑N

m=n a(m). Now,

qℓi =



N∑
m=n

j(m)=ℓ

a(m), for ℓ ̸= j(n− 1)

N∑
m=n

j(m)=ℓ

a(m) + β for ℓ = j(n− 1),

(8.31)

and
∑

ℓ∈Li
qℓi = Hn−1, remarking that

∑
ℓ∈Li

N∑
m=n

j(m)=ℓ

a(m) =
N∑

m=n

a(m).

We reduce the quantity qℓi by ϵ/θ′i(0):∑
ℓ∈Li

vℓi = Hn−1 −
ϵ

θ′i(0)
(8.32)

so that
N∑

m=n′

a(m) ≤ Hn−1 −
ϵ

θ′i(0)
<

N∑
m=n′−1

a(m) ≤ Hn−1,

where (8.27) implies that n′ > 1. Now, α = Hn−1− ϵ/θ′i(0)−
∑N

m=n′ a(m) < a(n′−1),

and (8.30) satisfies (8.32). Note that the partial allocation at index n′− 1 is awarded

to buyer k(n′ − 1) at seller j(n′ − 1) by construction of the ordering.

The preceding construction determines how a buyer should decompose a target

total quantity across multiple auctions so as to minimize exclusion–compensation

cost. What remains is to show that this construction indeed corresponds to a best

response in the induced multi-auction game.

To this end, we separate the argument into two steps. First, we characterize the

exact best response for buyer i when the buyer is allowed to request the full utility-

maximizing quantity dictated by its valuation curve. This step is independent of
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the ϵ–relaxation and establishes the fundamental structure of optimal demand across

auctions. Second, we show how this exact best response can be truncated to yield

an ϵ–best response that respects the relaxed feasibility constraint while preserving

near-optimal utility.

Fix opponents’ bids s−i and let the aggregate price function for buyer i, Pi(·, s−i)

be defined as in Lemma 8.1, and consider the ordered opponent bids, where p(n) is

the bid price and a(n) is the quantity allocated according to the n-th bid by (8.24)

at that price, and where again the bids are ordered according to (8.23).

Define the cumulative quantity obtained by outbidding all bids between n + 1

and N as

An =
N∑

m=n+1

a(m). (8.33)

Lemma 8.2. Suppose An < Hn and a(n) > 0. Then outbidding the next bid increases

total utility.

Proof. Consider just outbidding bid n. Since bid n has price p(n) our bid price is

pi = p(n)+. By outbidding bid n we may obtain any amount up to a(n). Define

δn = min(Hn − An, a(n))

which is the truthful amount we want subject to that availability. Therefore, the

associated cost and value increments are

ci(n− 1)− ci(n) = δnpi and vi(n− 1)− vi(n) = θi
(
An + δn

)
− θi

(
An

)
.

The corresponding utility increment is

ui(n− 1)− ui(n) = θi
(
An + δn

)
− θi

(
An

)
− δnpi.

By the Mean Value Theorem, there exists η ∈ (0, δn) such that

θi(An + δn)− θi(An) = θ′i(An + η) δn.

Hence,

ui(n− 1)− ui(n) = δn
(
θ′i(An + η)− pi

)
.
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Since θ′i is decreasing, then Hn ≥ An + δn > An + η implies

pi = θ′i(Hn) ≤ θ′i(An + δn) < θ′i(An + η)

and consequently ui(n− 1) > ui(n).

Note, if a(n) = 0 then outbidding the next bid does not change the externality

by taking away any allocation from another buyer and consequently ui(n−1) = ui(n)

which leaves the utility unchanged.

Our first result is stated as a proposition, establishing an optimality property on

a set of ordered bids. The second result then follows as a theorem, quantifying the

welfare loss incurred by the ϵ–relaxation.

Proposition 8.3 (Buyer best response). Let ti denote the truthful bid from Lemma 8.2

and choose n as in (8.26). Then, ti satisfies

ui(ti, s−i) = sup
si

ui(si, s−i),

consuming the full allocation from each bid m > n, as well as the partial amount

δn = Hn − An from bid n, and zero from all bids m < n.

Proof. Provided the allocation aji corresponding to a bid (i, j, qji , p
j
i ) satisfies a

j
i = qji ,

then any bids of the form (i, j, qji , p) with p ≥ pji receives the same allocation and

results in the same cost, value and utility. Consider the multi-auction bid of buyer i

given by

si = {(i, j, qji , p
j
i ) : j ∈ Li} (8.34)

It follows that the bid

{(i, j, aji , pi) : j ∈ Li} where pi = max{pji : j ∈ Li}

receives exactly the same allocation as the other bid and generates the same utility.

We claim the truthful bid ti from Lemma 8.2 satisfies

ui(ti, s−i) = sup
si

ui(si, s−i).
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Following the remark above, we may assume that the supremum is obtained for a bid

si of the form given in (8.34) where aji = qji for all j ∈ Li and pji = pi does not depend

on j. For each n, define

ui(n) = θi
(
An

)
− ci(n),

where ci(n) is the exclusion–compensation cost of the first n− 1 bids.

Thus utility increases strictly up to the unique point Hn, defined in (8.25) and

decreases thereafter. Consuming bids sequentially from lowest price to highest (equiv-

alently, in decreasing index order) and stopping exactly at this point therefore maxi-

mizes ui. Since the resulting bid ti is of the same form as si then they both provide

the same utility.

We observe that, at the stopping point of the construction, buyer i’s marginal

valuation equals the price of the displaced bid. That is, if n is the index at which the

allocation transitions from fully displaced to not displaced, then

θ′i
(
An + δn

)
= p(n),

with An and δn defined as above. Consequently, displacing any bid with index m < n

would require paying a price strictly exceeding buyer i’s marginal valuation, and

therefore yields no positive utility gain. Hence bids with index m < n generate zero

externality in the best–response reply.

Theorem 8.4 (ϵ–best response). Let ti be the exact best response characterized in

Proposition 8.3, and define

qi = supGi(s−i), vi = qi −
ϵ

θ′i(0)
, wi = θ′i(vi).

Construct a feasible multi–auction bid

t
(ϵ)
i = {(i, j, vji , wi) : j ∈ Li} with

∑
j∈Li

vji = vi,

satisfying the per–auction constraints (8.22), with the quantities vji chosen according

to the ordered–bid construction (8.30). Then

ui(t
(ϵ)
i , s−i) ≥ ui(ti, s−i)− ϵ.
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where ui(ti, s−i) = supsi
ui(si, s−i).

Proof. By Proposition 8.3,

sup
si

ui(si, s−i) = ui(ti, s−i) = θi(Hn)− ci(Hn),

where ci(·) is the exclusion–compensation cost induced by the ordered bids.

The bid t
(ϵ)
i requests total quantity vi = qi − ∆ and is chosen to minimize

exclusion–compensation across the set of possible bids, so its payment is no larger than

the payment incurred by requesting qi−∆ under any other bid. Let n be the valuation

cutoff index defined by (8.26), independent of ϵ. By Proposition 8.3, the exact best

response requests a total quantity equal to Hn, and therefore qi = supGi(s−i) = Hn.

(i) If ϵ = 0, then vi = qi and any bid of the form

t
(0)
i = {(i, j, vji , wi) : j ∈ Li},

∑
j∈Li

vji = vi,

achieves the exact optimum by Proposition 8.3.

(ii) Assume ϵ > 0. Define the truncation amount

∆ =
ϵ

θ′i(0)

so that vi = qi −∆.

We compare ti at total quantity qi = Hn and t
(ϵ)
i at total quantity qi −∆. Since

t
(ϵ)
i requests a total quantity reduced by ∆ relative to ti, we may write

ui(ti, s−i)− ui(t
(ϵ)
i , s−i) = θi(qi)− θi(qi −∆)−

(
ci(qi)− ci(qi −∆)

)
.

Since exclusion–compensation cost is nondecreasing in the total displaced quan-

tity, we have ci(qi)− ci(qi −∆) ≥ 0, and therefore

0 ≤ ui(ti, s−i)− ui(t
(ϵ)
i , s−i) ≤ θi(qi)− θi(qi −∆).

Since θ′i is decreasing and θ′i(Hn) = p(n),

θi(qi)− θi(qi −∆) =

∫ qi

qi−∆

θ′i(z) dz.
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Now, since θ′i(z) ≤ θ′i(0) for all z,

0 ≤ ui(ti, s−i)− ui(t
(ϵ)
i , s−i) ≤ θ′i(0)∆ ≤ ϵ.

Taken together, Proposition 8.3 and Theorem 8.4 provide a complete character-

ization of buyer best responses in the multi-auction setting. The proposition shows

that, when feasibility constraints are ignored, a buyer’s optimal strategy is to displace

opposing bids in increasing price order until its marginal valuation equals the prevail-

ing externality price. The theorem then demonstrates that truncating this strategy

by at most ϵ/θ′i(0) units yields an ϵ–best response.

Crucially, Lemma 8.1 induces a global ordering of opposing bids across auctions,

which allows exclusion–compensation costs to depend only on the total displaced

quantity. Without such an ordering, a well-defined best response would not exist.

This structure suggests that repeated best–response updates may exhibit stable

behavior. Once bids are arranged so that no buyer can profitably adjust its total

requested quantity or its allocation across auctions by more than an ϵ margin, sub-

sequent best–response calculations will reproduce the same bids. This observation

motivates the following conjecture:

Conjecture 8.5 (Absorbing ϵ–NE region.). Under the proposed ϵ-–best-–response

dynamics, the multi-auction market converges to a state in which no buyer admits a

unilateral deviation yielding a utility gain exceeding ϵ. Once such a state is reached,

all subsequent best-response updates are rejected, and the dynamics remain within an

absorbing ϵ-–Nash equilibrium region.

In practical terms, this conjecture asserts that the market stabilizes under re-

peated ϵ-–best-–response updates. After a finite number of iterations, all buyers’

bids lie within an ϵ–neighborhood of mutual optimality, and no further updates can

produce a material improvement in utility. The results of this section establish the

structural properties of individual best responses that make such absorbing behavior

plausible; a formal analysis of convergence is left to future work.
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8.5 Simulations

In this section we study the effect of buyer connectivity on equilibrium outcomes in a

market consisting of multiple simultaneous auctions selling a perfectly substitutable

resource. The goal of these simulations is to illustrate how the structure of the

buyer–seller incidence pattern influences prices and price variability at an ϵ–Nash

equilibrium, complementing the best–response analysis developed in the preceding

sections.

Following Semret and Lazar [45], each buyer i is endowed with a strictly concave

valuation over the total quantity of resource obtained across all auctions. Valuations

are taken to be quadratic of the form

θi(z) = κi(q̄i − z/2)z, z ∈ [0, q̄i],

where q̄i represents the maximum desired quantity and κi = p̄i/q̄i scales marginal

value so that p̄i is the maximum marginal valuation at zero consumption. This

specification ensures decreasing marginal utility while remaining simple enough to

allow large-scale simulation.

Furthermore, at each equilibrium or stopping point, the following quantities are

collected,

Ej =
1

Aj

∑
i∈Bj

ajipi and Vj =
1

Aj

∑
i∈Bj

aji (pi − Ej)
2 where Aj =

∑
i∈Bj

aji

across realizations. In addition, buyer classification (winners, zero allocations) and

network statistics (fraction of shared buyers, seeds) are collected.

Figure 8.1 shows the average marginal price Ej for the corresponding ϵ-Nash

equilibrium in auction j as a function of the number of buyers allowed to bid in both

auctions at a corresponding ϵ-Nash equilibrium. Here the equilibrium is obtained by

using the ϵ-best reply algorithm with ϵ = 5.0, see Algorithm 1 in [45]. Each buyer is

allowed to bid in turn round robin. The shadow beneath each curve represents the

region Ej±
√

Vj where Vj is the variance in marginal price. Note that as connectivity
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increases, both sellers exhibit convergence in average marginal price and clearing price

in their respective auctions.
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Figure 8.1: Average bid price versus the percentage of buyers participating in multiple
auctions. The resource in each auction is given by Q1 = 1000 and Q2 = 2000. The
reserve price is P j = 6 in both actions.

Qualitatively, the Y-shape of Figure 8.1 is expected. When all buyers participate

in only one auction, the auctions are independent and the average bid price is higher

in the auction with less available resource. Seller-seller influence through buyers bid-

ding in both auctions cause the market to function like one auction when a sufficient

number of buyers are able to buy from both sellers. Quantitatively, when about 35

percent of the buyers or more are able to bid in both auctions, the average bid price

in each auction is about the same. Repeated trials with different buyers sampled ac-

cording to the same distribution yield similar Y-shaped graphs. We remark, however,

that the point at which the bid prices in both auctions align varied to some degree.

Next, we consider a market consisting of four auctions arranged in a linear topol-

ogy, as illustrated in Figure 8.2. Buyers are initially associated with a primary auction,

but may also be allowed to bid in neighboring auctions. The parameter p controls

buyer connectivity: it represents the percentage of buyers permitted to participate in

adjacent auctions.

When p is small, buyers are largely confined to a single auction and competition
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is local. As p increases, participation sets overlap more substantially, and buyers

increasingly compete across multiple auctions. In the limit, when p is large, nearly

all buyers are able to bid in all auctions and the market approaches a fully connected

setting.

Figure 8.2 illustrates the buyer–seller graph used in the simulations for a repre-

sentative value of p.

1 2 3 4

I1 I2
I3 I4

Auctions

Buyers

p p p p p p| | | | | | | | |

Figure 8.2: A buyer-seller graph for a market with four auc-
tions, 400 buyers and a 6-edge distance between the first and
last auctions. Here p is the percentage of buyers allowed the bid
in the neighboring auctions. Shown is p = 20 where |I1| = 120,
|I2| = 140, |I3| = 140 and |I4| = 120. Note that when p = 300
all bidders bid in all auctions.

For each value of the connectivity parameter p, we simulate asynchronous ϵ–

best–response dynamics starting from an initial bid profile. Buyers update their bids

sequentially, following the best–response construction described earlier, until an ϵ–

Nash equilibrium is reached, meaning that no buyer can improve its utility by more

than ϵ through a unilateral deviation.

Figure 8.3 reports the resulting average bid prices as a function of buyer connec-

tivity for a market with heterogeneous auction capacities.

To account for heterogeneity, each experiment is repeated over multiple random

realizations of buyer valuations. At equilibrium, we record the resulting bid prices in

each auction and compute averages and standard deviations across runs.

Figures 8.3 and 8.4 show the average equilibrium bid price in each auction as a

function of buyer connectivity p. The shaded regions represent one standard deviation
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Figure 8.3: Average bid price at an ϵ-Nash equilibrium for a
market consisting of four auctions versus the percentage of buy-
ers who can bid in the neighboring auction—see Figure 8.2.
The shadow illustrates the standard deviation. The resource
in each auction is given by Q1 = 500, Q2 = 2000, Q3 = 500 and
Q4 = 2000. The reserve price is P j = 10 in all actions.
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Figure 8.4: The same buyers as in Figure 8.3 except with Q1 =
500, Q2 = 2500, Q3 = 500 and Q4 = 1500. The reserve price is
P j = 10 in all actions.

across simulation runs. In both cases, the reserve price is fixed at P j = 10 for all

auctions, while auction capacities differ across the two scenarios.

When connectivity is low, auctions behave almost independently and equilibrium

prices reflect local supply and demand conditions. As connectivity increases, buyers
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are able to shift demand across neighboring auctions, leading to stronger coupling

between prices. Price dispersion decreases, and equilibrium prices become increasingly

aligned across auctions, despite differences in available capacity.

These observations are consistent with the interval-based best–response charac-

terization established earlier. Higher connectivity enlarges the ordered set of com-

peting bids relevant to each buyer’s decision problem, thereby expanding the range

of bids that can influence equilibrium outcomes. As a result, local changes in supply

or demand propagate more broadly through the market, reducing price differentials

while increasing sensitivity to aggregate conditions.

Overall, the simulations highlight how buyer connectivity governs the transition

from localized competition to a more integrated market, and illustrate the role of

network structure in shaping equilibrium behavior in multi–auction PSP markets.

Statement on Supplementary Material The code for the experiments presented

in this paper can be found at:

• https://github.com/jkblazek/dissertation

8.6 Conclusion and Future Work

The analysis above shows that buyer best responses in multi–auction PSP markets

admit a precise interval structure determined by the interaction between reserve prices

and marginal valuations. In particular, for fixed opponents’ bids, the globally ordered

set of competing bids induces a partition of the feasible quantity space into intervals

on which the buyer’s utility is monotone. Utility increases as quantity is accumulated

through lower–priced bids and decreases once higher–priced bids are reached.

As a result, each buyer’s optimal response depends only on a finite collection

of price intervals associated with this ordered set of bids. Bids priced outside these

intervals cannot affect the buyer’s utility or allocation decision, while bids within the

intervals are ordered and locally comparable. This induces a strong locality property



201

in the best–response calculation: only those competitors whose bids appear in the

relevant portion of the global ordering can influence the buyer’s choice.

Taken together, these results show that the multi–auction best–response problem

can be reduced to a one–dimensional comparison over a finite ordered set of bids,

despite the presence of multiple sellers and heterogeneous competition. The ordered

structure of opponent bids fully determines both the direction and magnitude of

profitable deviations, and thereby identifies the subset of bids that are relevant for

each buyer’s decision problem.

Future Work: An absorbing ϵ-Nash equilibrium region A formal proof of

Conjecture 8.5, which asserts the existence of an absorbing ϵ–Nash equilibrium region

under the proposed best–response dynamics, is beyond the scope of the present work.

Nevertheless, the results above provide strong structural support for this claim. In

particular, the characterization the ϵ–best response the autonomy of the buyer’s pro-

cess, and as such, we expect that once bids lie within an ϵ–neighborhood of mutual

optimality, no deviation can yield a utility gain exceeding ϵ.

Future Work: Dynamic participation costs Buyer i maintains an active seller

set

Li(t) = j ∈ L : aji (s, t) > 0.

Suppose, instead of a static ϵ, the buyer faces a participation cost ϵi(t) = |Li(t)|, ϵ

that scales with the size of its active set.

Under this rule, a buyer enters a new auction only if the predicted utility gain

exceeds the higher threshold associated with the enlarged active set, and exits an

auction whenever the utility loss is smaller than the threshold for the current set. This

asymmetry creates a band of width ϵ between entry and exit conditions, introducing

a simple form of hysteresis.

Entry (add a seller j /∈ Li(t)): add j and compute the predicted improvement
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∆ui(add j ← status quo). Accept the entry if

∆ui(add j ← status quo) > (|Li(t)|+ 1) ϵ.

Exit (drop a seller j ∈ Li(t)): remove j and compute the predicted loss ∆ui

(status quo← drop j) (this quantity is nonnegative when dropping j hurts). Accept

the exit if

∆ui(status quo← drop j) < |Li(t)| ϵ.

Thus, entry is tested against the threshold evaluated with the larger active set,

while exit is tested against the threshold for the current set. The gap between

(|Li(t)|+ 1)ϵ and |Li(t)|ϵ creates a strict band of width ϵ.

Future Work: Expanding on the bipartite structure Let A ∈ {0, 1}|I|×|L|

denote the buyer–seller biadjacency matrix, where Aij = 1 if buyer i participates in

auction j. For each buyer i and seller j with Aij = 1, consider the deviation of buyer

i’s bid price from the seller’s reserve price,

zji (t) =
∣∣pji (t)− pj(t)

∣∣.
Collecting these coordinates yields a buyer state vector zi(t) defined on the support

of A.

Influence between buyers arises only through shared sellers. Accordingly, a nat-

ural metric on buyer states is the L∞ norm restricted to common neighbors,

d∞(i, k) = max
j∈L

AijAkj

∣∣zji (t)− zjk(t)
∣∣.

Under this metric, influence neighborhoods are axis–aligned regions determined by

the largest marginal deviation at any shared seller, reflecting the fact that PSP pricing

and displacement are driven by the single closest competitor at the margin.

The reserve–price margin interval

pj(t) < pj(t) < pj(t),
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naturally defines the boundary of influence at seller j: buyers with bids outside this

interval cannot affect marginal allocations or second–cost terms, while buyers within

the interval determine displacement at the margin. From this perspective, the choice

of pj(t) selects a boundary within an admissible influence region, and admissible

update rules correspond to monotone movements of this boundary.

Future work will investigate coordinated reserve–price selection rules, using feed-

back from marginal buyers, that remain within the margin interval and preserve

ϵ–best–response dynamics. Such rules can be interpreted as SIG boundary updates

and may substantially reduce the computational burden of second–cost calculations

by restricting attention to buyers within the corresponding influence sets.

Appendix: Proving Price and Cost Equality

Proof. Following [45], we note that “it is readily apparent that”

ai(s) = qi ∧Q
i
(pi; s−i),

where

ci(s) =
∑
j ̸=i

pj
[
aj(0; s−i)−aj(si; s−i)

]
and ci(s) =

∫ ai(s)

0

Pi(z, s−i), dz. (8.35)

Dropping s−i for simplicity, we wish to show that

z ≤ Qi(y)⇒ y ≥ Pi(z) and y > Pi(z)⇒ z ≤ Qi(y).

We have

Pi(z) = inf y ≥ 0 : Qi(y) ≥ z, Qi(y) =
[
Q−

∑
pk>y,,k ̸=i

qk
]+

.

Assume no ties and qin > 0. If there are ties, they can be consolidated into

a single opposing bid (qi + qk, p). In the case of opposing bids with ties, then we

consolidate to one opposing bid (qi + qk, p).

For example, let

p1 = (1, 3) > p2 = (2, 2) > p3 = (1, 1), Q = 5.
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Then

Qi([3,∞)) = 5, Qi([2, 3)) = 4, Qi([1, 2)) = 2, Qi([0, 1)) = 1,

and

Pi((4, 5]) = 3, Pi((2, 4]) = 2, Pi((1, 2]) = 1, Pi([0, 1]) = 0.

In general, assuming surplus,

Qi([pi1 ,∞)) = Q,

Qi([pi2 , pi1)) = Q− qi1 ,

...

Qi([pin+1 , pin)) = Q−
n∑

m=1

qim ,

...

Qi([0, piN )) = Q−
N∑

m=1

qim ,

Pi((Q− qi, Q]) = pi, Pi((Q−
2∑

m=1

qim , Q− qi1 ]) = pi2 ,

...

Pi((Q−
n∑

m=1

qim , Q−
n−1∑
m=1

qim ]) = pin ,

runs
...

Pi([0, Q−
N∑

m=1

qim ]) = 0.

Let

pi1 = Q− qi, p0 = Q, pin = Q−
n∑

m=1

qim , pin−1 = Q−
n−1∑
m=1

qim , piN+1
= 0.

Define cumulative remaining capacities

ξ0 := Q, ξn :=
[
Q−

n∑
m=1

qim
]+

, n ≥ 1.

(If there is no surplus, then for some M ≤ N , ξM = 0 and ξn = 0 for all n ≥M .)
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On this grid,

Qi(y) =


ξ0, y ∈ [pi1 ,∞),

ξ1, y ∈ [pi2 , pi1),
... ξn, y ∈ [pin+1 , pin),
...

Pi(z) =

{
pin , z ∈ (ξn, ξn−1], 1 ≤ n ≤M,

0, z ∈ [0, ξM ].

This is the 90◦ rotation correspondence between Qi and Pi described in [45].

Fix a = ai(s) ∈ (0, Q] and let n satisfy a ∈ (ξn, ξn−1]. Since Pi is constant on each

(ξm, ξm−1] with value pim ,

runs

∫ a

0

P (z), dz =
(∫ ξM−1

ξM

+ · · ·+
∫ ξn

ξn+1

+

∫ a

ξn

)
P (z), dz

= piM (ξM−1 − ξM) + piM−1
(ξM−2 − ξM−1) + · · ·+

pin+1(ξn − ξn+1) + pin(a− ξn)

= pin(a− ξn) +
M∑

m=n+1

pim(ξm−1 − ξm).

We claim that

runsci(s) =
M∑

m=1

pim
[
aj(0; s−i)− aj(si; s−i)

]
=

∫ ai(s)

0

P (z), dz,

where

Qi(pin+1) = ξn =
[
Q−

n∑
m=1

qim

]+
=

[
Q−

∑
pk>y,,k ̸=i

qk

]+
.

By the PSP rule, when i is absent (si = 0), opponents fill capacity from the lowest

price upward; with i present, the first a = ai(s) units that i acquires displace lower

opponents. For each opponent j = im,

aj(0; s−i)− aj(si; s−i) =


ξm−1 − ξm, m > n (fully displaced block),

a− ξn, m = n (partially displaced block),

0, m < n.

Multiplying by pim and summing m = 1, . . . ,M gives

ci(s) =
∑
j ̸=i

pj
[
aj(0; s−i)− aj(si; s−i)

]
,
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which equals the integral

ci(s) =

∫ ai(s)

0

Pi(z; s−i), dz.

The sum indexes opponents j, while the integral indexes marginal quantity z; both

compute the same total displacement cost.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

The research presented here forms a collaborative exchange of ideas from auction

theory, network science, and game theory. Our understanding of decentralized de-

sign, and through an immersive study of the mathematics supporting the Progressive

Second Price Auction and its extensions gives form to a model view where each

participant–buyer or seller–as a local deterministic factor who in the iterative update

process is able to compute a dynamic solution that we would have never been able to

come by otherwise. Through these repeated interactions, we see global collaboration,

emergent despite any central authority. Our approach shows that despite solutions

that seem to evolve or disappear, the rigor of the mechanism’s foundational work

and robustness to perturbed starting conditions calls for a further understanding of

this system of dynamic inquiries and responses. Our intent was to demonstrate an

understanding of decentralized systems where individualistic control may achieve con-

vergence, efficiency, and incentive compatibility even when information is systemically

withheld, incomplete, or distributed unevenly.

The first chapters establish the theoretical and historical foundations, connecting

our work with the Vickrey-Clarke-Groves lineage and to distributed versions proposed

by Lazar, Semret, and others. Later chapters develop the mathematical formalism

of the mechanism, define influence and opt-out behavior, and link the dynamics of

bidding to graph structures that represent real networks. We begin our study with
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an overview given in Chapter 3.

We remark that the contributions detailed in this work are extensions of the

PSP mechanism beyond the work of the authors who originated and validated its

design. Through our consideration, verification and simulation of these previous

works, mentioned already throughout this dissertation, we mean to describe how

agents affect one another both directly and indirectly, and demonstrate how local

dependencies create global outcomes.

In Chapters 4 and 5, we describe how the PSP mechanism is expressed math-

ematically. It bridges market behavior and network representation by formalizing

buyer–seller dynamics as systems of equations and potential games. The analysis

highlights how second-price and VCG principles can be extended to networked envi-

ronments, turning theoretical PSP rules into tractable, model-based representations.

It also links user behavior and algorithmic response, serving as a transitional point

from mechanism design to network analysis.

Chapter 6 extends the analysis to incorporate both graph-based and game-

theoretic methods. It presents bipartite and influence-propagation models for buyer–

seller networks and defines saturation as a limit of influence diffusion. The model of

multi-auction markets, where buyers and sellers are connected through overlapping

influence sets, hosts the projection-based influence framework, defining primary and

secondary influence sets and demonstrating how local interactions produce market-

wide coordination and saturation effects. This work connects the PSP framework to

quantized and asynchronous convergence results from Qu, Jia, and Caines [69, 70] and

establishes formal stability criteria through graph connectivity and a partial-ordering

of relations built on these connections via the monotonicity of PSP price updates.

The treatment of monotonicity and influence shells provides a rigorous framework for

studying equilibrium formation, as we move from representation to theoretical proof.

A modification to the mechanism that enforces collaborative behavior in Chap-

ter 7 demonstrates the existence of a unique equilibrium state where the auction

produces zero revenue. The “zero cost” solution is a natural consequence of the itera-
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tive bidding process and the second-price rule, where the price paid is the externality

imposed on others. Chapter 7 additionally incorporates a study on latency, using a

Weibull distribution to represent network delay, addressing convergence under real-

istic network conditions, and proposing solutions to encourage convergence speed in

an applied analysis.

Each chapter builds on the last to expand and refine our knowledge of this in-

tricate system of optimization designed for the allocation of consumable, networked

resources. The final chapter challenges the theoretical framework in a multi-auction

setting. We intend to validate the mechanism for resource allocation in a generalized,

dynamic framework, positioning PSP as both a theoretical and computational model

for studying decentralized coordination, and provide a coherent theory of decentral-

ized market dynamics that connects equilibrium reasoning, network structure, and

temporal adaptation.

Our contributions demonstrate how decentralized systems can be described by

rules that are both simple and powerful. By connecting the local logic of individual

agents with the global behavior of the network, the PSP framework bridges eco-

nomics, computation, and ecology. This work shows that order can emerge without

central control and that systems built on local feedback can adapt, learn, and reach

equilibrium through iteration and interaction. We close with the conviction that

the principles outlined here–adaptability, decentralization, and resilience–will remain

essential in understanding and designing the markets and networks of the future.

9.2 Future Work

There were many things that we were unable to complete, and that have been left for

future work. Future research will address theoretical completeness, robustness under

uncertainty, and broader real-world implementation of PSP mechanisms.
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Theoretical Proofs

Future work will continue to challenge the theory behind the model, extending and

validating its proofs through technical analysis and simulation. We will explore the

constraints that drive the mechanism’s dynamics, and in so doing further explore the

solution space. We will elaborate and expand on the formal foundation of the model.

Several elements of Chapter 8 remain incomplete, particularly the proof of the

existence of an ϵ-best reply for agents participating in multiple concurrent auctions.

Establishing this result is essential to confirming that PSP remains stable under

overlapping participation. Additional work should generalize equilibrium convergence

proofs for distributed markets with shared influence sets and bounded participation

domains. Completing these proofs will strengthen the theoretical foundation of the

dynamic multi-auction PSP model.

Noise and Stochastic Dynamics

Future research will continue to explore imperfect models, stochastic environments,

and noise-driven adaptation in decentralized markets. Inspired by the work of Nak-

agaki et al. [61], which showed that the slime mold Physarum polycephalum finds

efficient paths through noisy environments, PSP could incorporate controlled ran-

domness to avoid suboptimal equilibria. Stochastic modeling traditions established

by Uhlenbeck and Ornstein [82] and expanded by Qu, Jia, and Caines [70] pro-

vide a foundation for introducing mean-reverting and diffusion processes that link

continuous-time uncertainty to discrete iterative dynamics.

Digital Data and Network Reliability

Reliability remains critical for decentralized systems. Insights from Bracha [18] on

asynchronous consensus and Shapiro et al. [76] on eventual consistency should inform

PSP designs that tolerate missing or delayed bid updates. Xu and Hajek’s Supermar-

ket Game [89] offers a valuable analogy for understanding queueing and congestion,

mapping communication latency to auction dynamics.
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Network Optimization under Imperfection

Building on Barrett et al. [8] and Michael and Newman [56], future research should

examine how graph metrics—such as resistance distance and dynamic proximity-

characterize evolving connectivity in imperfect markets. This can help model how

influence sets deform under link failures or network perturbations, revealing how

topology governs equilibrium robustness.

Applications and Computational Extensions

The PSP framework has broad applicability across emerging decentralized technolo-

gies. Buterin’s Ethereum [20] explores potential implementations of PSP as auto-

mated smart contracts for resource allocation. Brandt et al. [19] point to computa-

tional limits in multi-agent equilibrium models; future work should therefore empha-

size scalable, approximate computation for PSP networks. Incorporating evolution-

ary game dynamics from Cressman [25], Chastain [21], and Wang [85] can also yield

adaptive, learning-based bidding mechanisms for real-time decentralized markets.

In summary, future work should strengthen theoretical completeness, improve

robustness under stochastic conditions, and expand PSP applications to digital, net-

worked, and permissionless systems. Together, these directions will extend the mech-

anism from a theoretical framework to a practical foundation for understanding and

designing decentralized coordination in complex adaptive systems.
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