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Cancer subtyping remains a challenging task in microarray data analysis. The major goals of a successful
cancer subtyping system are accuracy and reliability. Cluster analysis techniques have proven to be effective
in this area. To facilitate further development in cancer subtyping based on microarray data, we provide a
comprehensive review of the major cluster analysis algorithms from the clinical and computational domains
that have been applied on microarray mRNA expression data and miRNA expression data for cancer sub-
typing, as well as other clustering algorithms with potential application in cancer subtyping.
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1. INTRODUCTION

Clustering microarray gene expression data has been used to improve cancer subtyp-
ing [Alon et al. 1999; Golub et al. 1999; Slonim et al. 2000] over traditional clinical
methods based on morphological appearances. Its aim is to find groups of patients
sharing similar expression patterns or biological attributes. Due to the amount of data
(e.g. large number of dimensions or gene expressions) produced by microarray technol-
ogy, manual analysis is not possible. Automatic analyzing tools are needed to discover
underlying patterns within the data. Clustering approaches are suitable to accomplish
this goal and have shown promising progress [Slonim et al. 2000] and possibilities for
more accurate and reliable results.

In this review, we focus on the application of clustering techniques. It is important
to understand the difference between clustering (unsupervised learning) and classifi-
cation (supervised learning). In contrast to classification techniques, clustering tech-
niques do not require labels which may not be accurate or available. Clustering results
are obtained solely from data. This advantage also enables clustering algorithms to
avoid over-fitting, a potential problem in classification techniques.

In order to develop clinically successful clustering-based cancer subtyping tools for
microarray data, a solid understanding of clustering and the available clustering meth-
ods is essential. Clustering is the task of assigning a set of objects into groups or clus-
ters, so that the objects in the same cluster are more similar to each other than to those
in other clusters [Guha et al. 1998]. Clustering has a long history, tracing back to Aris-
totle, and has been studied extensively since the 18th century [Hansen and Jaumard
1997]. It has a wide range of applications in natural sciences, engineering, economics,
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marketing, medicine, psychology, and many other fields. As a consequence, the clus-
ter analysis literature is vast and heterogeneous with hundreds of papers and books
published each year from various communities [Hansen and Jaumard 1997].

Cluster analysis algorithms draw upon statistics, mathematics, and computer sci-
ence [Hansen and Jaumard 1997]. Closely related fields are machine learning, pattern
recognition, computer vision, image analysis, information retrieval, and bioinformat-
ics. The k-means algorithm, first published in 1955 [Steinhaus 1956], is one of the most
simple and popular clustering algorithms. Thousands of clustering algorithms in vari-
ous fields have been published since then. Due to the ill-posed nature of clustering, i.e.
lack of external objective criteria to validate clustering results, it is difficult to design
a general purpose clustering algorithm. Different clustering algorithms or even the
same algorithm with different parameters often produce different results on the same
data set. There is no single clustering algorithm that performs best for all data sets
[Kuncheva and Hadjitodorov 2004], and discovering all cluster structures in a data set
is impossible for any known clustering algorithm [Duda et al. 2001; Handl et al. 2005].

In order for computational communities to contribute to the cancer subtyping field,
the background and an updated knowledge of cancer subtyping are necessary. Cancer
remains a leading cause of death worldwide largely due to lack of effective treatment.
Personalized treatment based on cancer subtypes improves patient survival. The goal
of cancer subtyping is to identify subtypes within a cancer type, where patients within
a subtype are more similar than patients in other subtypes. The advent of microarray
technology in the 1990s made it possible to assess the expression of tens of thousands
of genes in a single experiment. Microarray gene expression data has been used for
cancer subtyping [Alon et al. 1999; Golub et al. 1999; Slonim et al. 2000], and the re-
sults are promising with improved accuracy over traditional methods [Slonim et al.
2000]. This kind of analysis was first employed in [Golub et al. 1999] and [Alizadeh
et al. 2000]. Since then, clinical decision support in the form of cancer subtype diag-
nosis based on microarray data analysis has become an important emerging medical
application, and has attracted great attention [D’haeseleer 2005].

The high dimensional and noisy nature of gene expression data has given rise to a
wealth of clustering techniques being presented. Much of the early work used methods
developed originally for other domains [Alizadeh et al. 2000; Bhattacharjee et al. 2001;
Bittner et al. 2000; Bredel et al. 2005; Chen et al. 2002; Chowdary et al. 2006; Dyrskjgt
et al. 2002; Golub et al. 1999; Laiho et al. 2006; Lapointe et al. 2004; Liang et al. 2005;
Risinger et al. 2003; Singh et al. 2002; Yeoh et al. 2002]. Novel algorithms specifically
targeting gene expression data and taking its intrinsic characteristics into account
were presented to improve the clustering results [Brunet et al. 2004; Liu et al. 2003;
McLachlan et al. 2002].

The main goal of this review is to provide a background of cluster analysis appli-
cation in cancer subtyping, as well as an overview of its current state. Audiences in
the medical community may find that the overview of clustering and literature review
in the computational communities will broaden their experimental possibilities, while
the audience in the computational communities may find the cancer subtyping back-
ground and literature review in the clinical community an entry point for them to start
contributing to this application area.

Since clustering is a vast and ever changing field, it is impossible to cover all ap-
proaches in a single paper. This review paper focuses on key clustering algorithms and
their novelties. It also covers important developments applying clustering techniques
to cancer subtyping.

The organization of the paper is as follows: Section 2 provides a historic background
on cancer subtyping that includes very different subtyping techniques in the medical
field. Section 3 presents a general overview of clustering, including discussions about
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issues such as the curse of dimensionality, feature selection, and cluster validity. It
then reviews literature regarding different types of clustering across several disci-
plines including their variety, uses, strengths, and limitations. Section 4 provides a
literature review of clustering applications on microarray-data-based cancer subtyp-
ing. It includes literature in both the clinical community and the computational com-
munity. For each community, the section discusses literature in two categories: mRNA
experiments and miRNA experiments. Section 5 examines challenges in microarray-
data-based cancer subtyping. Finally, Section 6 concludes the review and points out
future directions.

2. CANCER SUBTYPING TECHNIQUES

Many diseases, including cancers, have multiple subtypes. For example, leukemia
has four main subtypes: acute lymphoblastic leukemia (ALL), acute myelogenous
leukemia (AML), chronic lymphocytic leukemia, and chronic myelogenous leukemia
[NCI 2013a]. Each of these main subtypes can have several subsubtypes as well. For
example, ALL has six subsubtypes [Society 2013]. Accurate subtyping can identify the
most appropriate treatments to target specific disease subtypes, thus improving treat-
ment results.

Given the tremendous complexity of various types and subtypes of cancers, it is
believed that the single most important factor for surviving or managing cancers is
and will be early detection and treatment [Xu et al. 2008]. Early cancer diagnosis
requires accurately identifying the type as well as the subtype of a tumor. Tumors
with similar appearances under microscope may have quite different origins and may
therefore respond differently to the same treatment therapy. For example, DLBCL,
the most common type of lymphoma in adults, can be cured by chemotherapy in only
35-40 percent of patients due to the existence of unknown subtypes that cannot be
discriminated based only on their morphological parameters [Alizadeh et al. 2000].

The conventional approach to cancer therapy has been to provide treatment accord-
ing to the organ or tissue in which the cancer originates. In the past two to three
decades, however, the genetic events that lead to cancer have been dissected, and it
has become clear that cancer develops as a result of multiple genetic defects and that
individuals with the same type of cancer often have dissimilar genetic defects in their
tumors. This finding explains why patients who seem to have similar cancer respond
in a heterogeneous manner to anticancer agents and shows clearly the huge obstacle
to providing effective treatments for cancer [Van’t Veer and Bernards 2008]. New ap-
proaches to cancer therapy are shifting to a more personalized approach in which each
patient is treated according to the specific genetic defects in the tumor.

Traditional cancer subtyping methods are largely dependent on the morphological
appearance of tumors and parameters derived from clinical observations including
histology, histopathology, and immunohistochemistry. The advent of DNA-microarray
technology in the 1990s and the systematic analysis of the gene-expression patterns of
tumor samples enabled researchers to investigate a new class of molecular diagnostic
test for cancer [Van’t Veer and Bernards 2008]. The gene expression profiles from par-
ticular microarray experiments have been recently used for cancer classification [Alon
et al. 1999; Golub et al. 1999; Slonim et al. 2000]. This approach promises to give a
better therapeutic measurement to cancer patients by diagnosing cancer types with
improved accuracy [Slonim et al. 2000]. This section provides brief summaries of tra-
ditional subtyping methods, and focuses on the newer method of molecular diagnosis
subtyping and applying clustering to molecular diagnosis subtyping.
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2.1. Histology and Histopathology

Histology studies the microscopic anatomy of cells and tissues of plants and animals.
It is commonly performed by sectioning and staining cells and tissues, then exam-
ining such cells and tissues with a light microscope or electron microscope [Martini
2012]. Marcello Malpighi (1628-1694), an Italian anatomist, conducted work that laid
the foundation of histology. He used a rudimentary microscope to examine tissues and
was the first to observe capillaries [DiDio 1994]. Marie Francois Xavier Bichat (1771-
1802), a French anatomist, is generally regarded as the 'father of histology’. He sug-
gested that body organs are composed of various tissues or membranes and introduced
21 such tissues [Roeckelein 1998]. In the early 19th century, histologist Camillo Golgi
invented the tissue staining technique to enhance the contrast between cellular com-
ponents [Prize 2013]. Histology is an essential tool in the fields of biology and medicine.

Histopathology studies the microscopic anatomy of diseased tissues in order to ex-
amine the manifestations of disease. Specifically, in clinical medicine, histopathology
refers to the examination of a surgical specimen or biopsy by a pathologist after the
specimen has been processed and placed onto glass slides [Allen 2013]. It is an impor-
tant tool in anatomical pathology, and accurate diagnosis of cancer and other diseases
usually requires histopathological examination of tissues.

2.2. Inmunohistochemistry

Immunohistochemistry (IHC) refers to the process of identifying antigens (e.g. pro-
teins) in cells of tissues. Tmmuno’ means antibodies, and ‘histo’ means tissue. It is
based on the principle that antibodies bind specifically to antigens in biological tissues.
In an THC process, antibodies are tagged with a visible label. IHC uses anatomical,
immunological and biochemical techniques to visualize specific cellular components’
distribution and localization within cells and tissues [Piercenet 2013].

As early as the 1930s, the principle of IHC was known [Duraiyan et al. 2012]. In
1942, Coons reported the first IHC study that identifies pneumococcal antigens in in-
fected tissue using FITC-labeled antibodies [Coons et al. 1942]. Since then, improve-
ments have been made in IHC, and IHC has become a routine and essential tool in
laboratories for diagnosis and research purposes.

THC can be used for disease diagnosis, drug development, and biological research.
For example, physicians use IHC and specific tumor markers to diagnose a cancer as
benign or malignant, as well as the tumor stage and grade, cell type and origin (site of
the primary tumor) [Duraiyan et al. 2012].

2.3. Molecular Diagnosis

Conventional diagnosis of cancer type and subtype has been based on examination
of the morphological appearance of stained tissue specimens under the light micro-
scope, which is subjective and depends on pathologists’ experiences. Diagnosis of can-
cer based on microarray data gives hope that cancer classification can be objective and
highly accurate, which could provide clinicians enough information to choose the most
appropriate treatment. The accuracy of morphological and immunohistochemistry di-
agnosis is insufficient in many diseases (including cancers) to identify diagnostic sub-
types. Research has shown that a genomic method using gene expression in diseases
can increase the clarity of previously obscure diagnostics. The molecular classification
of diseases on the basis of gene expression can discover previously undetected but clin-
ically significant subtypes of diseases [Alizadeh et al. 2000].

In 1949, Pauling et al. introduced the term ‘molecular disease’, which is based on
their discovery that a single amino acid molecule change at the b-globin chain leads to
the disease of sickle cell anemia [Pauling et al. 1949]. The foundation of molecular di-
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agnostics was laid by scientists from various disciplines working on recombinant DNA
technology in the 1970s [Chehab 1993]. In the 1980s, molecular diagnostics started to
become popular with the discovery of the powerful molecular biology tool, Polymerase
Chain Reaction [Bartlett and Stirling 2003]. In 1996, the application of microarray
technology made it possible to simultaneously monitor thousands of genes in one ex-
periment. Molecular diagnostics has been implemented not only in research laborato-
ries but also in clinics on individual patients due to reduced complexities, costs, and
time requirements involved in the process.

Molecular diagnosis of human diseases is nucleic acid based. It detects various
pathogenic mutations in nucleic acid (i.e. DNA and/or RNA samples) in order to facil-
itate detection, diagnosis, subtyping (or subclassification), prognosis of diseases, and
monitoring response to therapy [Chehab 1993]. Molecular diagnostics uses technolo-
gies such as mass spectrometry and gene chips from the fields of genomics and pro-
teomics to classify cancers and other diseases. Molecular diagnostics studies how the
genes and proteins interact in a cell and discovers their activity patterns by exam-
ining the expression patterns of genes. For example, in different types of cancerous
or precancerous cells, molecular diagnostics uncovers differences in gene expression
patterns that can be used to improve cancer diagnosis [NCI 2013b].

Ideally, measurement of gene expression is done on the final gene product, the pro-
tein for many genes. However it is often easier to use one of the precursors, typically
mRNA (messenger RNA), to infer gene expression level [Xu 2011]. There are differ-
ent technologies to measure gene expression including reporter gene [Koo et al. 2007],
northern blotting [Alberts et al. 2007; Kevil et al. 1997], western blotting [Song et al.
2009], RT-qPCR [Taylor et al. 2010], SAGE [Velculescu et al. 1995], and DNA microar-
ray [Schena et al. 1995].

DNA Microarrays, also called ‘gene chips’, are an efficient way to measure gene ex-
pression, allowing researchers to obtain the expression of thousands of genes at once.
When active genes assemble proteins, they produce mRNA molecules. The mRNA
molecules’ strands are then copied to cDNAs (complementary DNAs) using the DNA
base-pairing rules. The resulting cDNAs are then attached to fluorescent dye. When
the fluorescent cDNAs are put into a DNA microarray, each cDNA molecule will bind
to the microarray spot containing pieces of its specific matching gene by base-pairing.
This way, each microarray spot corresponds to a gene which was actively being tran-
scribed into mRNA in the original cell. The intensity and color of the fluorescence of
each microarray spot are measured and analyzed by a computer program to make pre-
cise measurements of genes expressed at different levels. Further information about
microarray technology can be found in [Miiller and Nicolau 2005].

Microarrays and molecular diagnosis have been used in cancer research and have
produced very promising results. For example, researchers used microarrays to com-
pare gene expression patterns in normal vs. cancerous stomach tissues and found that
the PLA2G2A gene is expressed in the cancerous stomach tissue only. The researchers
also found that stomach cancer patients with high expression levels of PLA2G2A had
better 5-year survival prognosis than those with low expression levels [NCI 2013b].
Researchers also use microarrays to detect the differences in gene expression patterns
within the same cancer type. In many cases, researchers have found that a single type
of cancer based on microscope observations contains several subtypes based on their
different gene expression patterns. For example, researchers have identified several
subtypes of leukemia and four subtypes of lung adenocarcinoma, the most common
type of lung cancer.

Besides being used for screening and diagnosing diseases, molecular diagnostics has
many other uses. For example, expression patterns can provide information for new
treatment design, treatment effectiveness evaluation, and patient response prediction.
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3. DATA CLUSTERING

Clustering is an interdisciplinary research topic and is also known by researchers in
different fields as unsupervised learning, exploratory data analysis, grouping, clump-
ing, taxonomy, typology, and Q-analysis [Jain 2010]. Cluster analysis is defined as ‘a
statistical classification technique for discovering whether the individuals of a popu-
lation fall into different groups by making quantitative comparisons of multiple char-
acteristics’ and its first known use was in 1948 (Merriam-Webster Online Dictionary,
2013). The clustering algorithm was first developed by biologists in numerical taxon-
omy study in 1963 before being utilized by statisticians [Ilango et al. 2011]. Clustering
is used for class discovery, i.e. exploration or discovery of the underlying patterns of a
dataset by separating the dataset into groups, with little or no prior knowledge [Everitt
et al. 2001; Jain and Dubes 1988; Xu and Wunsch 2005; 2009]. Clustering is also used
for natural classification, i.e. identifying the degree of similarity among organisms,
and compression, i.e. organizing and summarizing data using cluster prototypes [Jain
2010]. Clustering has become increasingly popular as society increasingly generates
an overwhelming amount of data, and it is often used as the first step in data analysis
or as a preparation step for experimental work [Linden 2009; Xu and Wunsch 2010].

There is no universally agreed upon definition of clusters [Everitt et al. 2001]. A
cluster is a set of objects that are compact (or similar to each other) and isolated (or
dissimilar) from other clusters. In reality, cluster definition is subjective, and its signif-
icance and interpretation requires related domain knowledge [Jain 2010]. Similarity
measure is used by clustering methods to calculate the similarity between two objects.
Different similarity measures will have different clustering results, as some objects
may be similar to one another using one measure but dissimilar using another. Sim-
ilarity between two objects can be measured in different ways, and the three domi-
nant methods are distance measures, correlation measures, and association measures
[Tlango et al. 2011]. Common similarity measures include Euclidean distance, Manhat-
tan distance, Maximum norm, Mahalanobis distance, Pearson coefficient, Spearman’s
rank correlation coefficient, angle between two vectors, and the Hamming distance.

Since the process of clustering is subjective, judging the relative efficacy of clus-
tering methods is difficult [Baraldi and Alpaydin 2002; Jain et al. 1999]. Cluster va-
lidity is used to assess clustering results and can be classified into three categories:
a) Internal validities formulate quality as a function of the given data set [Hu and
Yoo 2004]. Examples include Dunn’s Validity Index, Silhouette Value, Hubert Gamma
Statistic, Entropy, Xie-Beni, Normalized Mutual Information. b) External validities
assess quality by additional external information such as category labels [Hu and Yoo
2004]. Examples include Jaccard Index, Rand Index, Adjusted Rand Index, Variation
of Information, Kappa Statistic, CA. ¢) Relative validities evaluate a clustering result
by comparing it to results from other clustering methods.

The procedure of cluster analysis includes four steps [Xu and Wunsch 2005]: a) Step
one is feature selection or extraction. Feature selection selects a subset of all features,
and feature extraction generates novel features from the original ones by using some
transformations [Bishop 1995; Jain et al. 1999; Jain et al. 2000; Xu and Wunsch 2005].
b) Step two is clustering algorithm design or selection. Since clustering algorithms
group objects based on some proximity measure, this step usually includes choosing
an appropriate proximity measure and construction of a clustering criterion function,
creating an optimization problem that has been well studied in the literature. ¢) Step
three is cluster validation. This step calculates a confidence level for the clustering
results. d) Step four is results interpretation. This step provides meaningful insights
from the data.
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There is no single clustering algorithm that performs best across all problems or
data sets [Kleinberg 2002; Xu and Wunsch 2005]. Therefore, it is important to study
the characteristics of the problem and use an appropriate clustering strategy [Xu and
Wunsch 2005].

Properties to be considered in choosing a clustering algorithm include [Berkhin
2002]: a) feature type (numeric and non-numeric), b) scalability (large datasets), c)
handling high dimensional data, d) finding clusters of irregular shape, e) handling
outliers, f) time complexity of the algorithm, g) data order dependency, h) assignment
type (hard or strict vs. soft or fuzzy), i) prior knowledge and user defined parameters
dependency, and j) interpretability and visulization of results.

Despite many examples of successful applications of cluster analysis, there still re-
main many challenges due to the existence of many inherent uncertain factors [Xu and
Wunsch 2005]. The following fundamental challenges in clustering [Jain and Dubes
1988; Jain 2010] are relevant even today [Jain 2010]: a) definition of a cluster, b) se-
lection of features, ¢) normalization of the data, d) outlier detection, e) definition of
pair-wise similarity, f) number of clusters, g) selection of clustering method, h) exis-
tence of clustering tendency, and i) validity of the clusters.

Some recent trends in clustering include [Jain 2010]: semi-supervised clustering uti-
lizing external or side information; interactive clustering, where a user can specify or
change program parameters based on domain knowledge or results from previous clus-
tering iterations; clustering ensembles, where the partitions resulting from different
algorithms (or the same algorithm with different parameters) are combined; multi-
objective clustering, where the clustering algorithm optimizes multiple specific objec-
tives; large-scale clustering, which handles very large databases; multi-way clustering,
which extends the bi-clustering framework and simultaneously clusters heterogeneous
components of the data objects [Bekkerman et al. 2005]; and heterogeneous data clus-
tering for data comprising multiple types, such as rank data, dynamic data, graph
data, and relational data [Ilango et al. 2011].

Clustering techniques can be organized into categories. Different criteria may result
in different categories of clustering algorithms [Xu and Wunsch 2005]. Furthermore,
categorization of clustering algorithms is not straightforward or canonical, and cate-
gories can overlap [Berkhin 2002]. For convenience, in this review we use the following
taxonomy, which is also widely used in the literature: hierarchical clustering (Sec-
tion 3.1), partitioning clustering (Section 3.2), graph-based Clustering (Section 3.3),
distribution-based clustering (Section 3.4), density-based clustering (Section 3.5), grid-
based clustering (Section 3.6), clustering big data (Section 3.7), clustering high dimen-
sional data (Section 3.8), and other clustering techniques (Section 3.9).

3.1. Hierarchical Clustering

Hierarchical clustering algorithms organize a data set into a hierarchical structure
according to a similarity measure [Xu and Wunsch 2005]. It is based on the belief
that nearby objects are more related than objects that are farther away [Nangia 2012].
These algorithms connect objects based on their similarity to form clusters, which is
usually represented using a dendrogram. Hierarchical clustering algorithms differ in
the choice of similarity measures, the linkage criterion (distance between clusters), and
whether the process is agglomerative (bottom-up) or divisive (top-down). Agglomera-
tive hierarchical clustering starts with singleton clusters and then recursively merges
appropriate clusters, and divisive hierarchical clustering starts with one cluster con-
taining all objects and recursively splits appropriate clusters [Berkhin 2002].

Divisive clustering is very expensive in computation [Everitt et al. 2001] and is not
commonly used in practice [Xu and Wunsch 2005]. We focus on the agglomerative
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clustering first and then mention two divisive clustering algorithms named MONA
and DIANA [Kaufman and Rousseeuw 2009; Xu and Wunsch 2005].

There are many agglomerative hierarchical clustering algorithms based on differ-
ent linkage criterion. The single linkage method or nearest neighbor method [Gower
and Ross 1969; Jain and Dubes 1988; Sibson 1973; Sneath and Sokal 1973; Sneath
1957; Xu and Wunsch 2005] uses the distance between two closest objects in different
clusters, and the shortest distance determines the merge of two clusters. The com-
plete linkage method or farthest neighbor method [Defays 1977; King 1967; Sorensen
1948; Xu and Wunsch 2005] uses the distance between two farthest objects in differ-
ent clusters, and the shortest distance determines the merge of two clusters. These
two methods are the simplest and most popular [Xu and Wunsch 2005]. Average link-
age methods include UPGMA (Unweighted Pair-Group Method using Arithmetic av-
erages), WPGMA (Weighted Pair-Group Method using Arithmetic averages), UPGMC
(Unweighted Pair Group Method using Centroids), and WPGMC (Weighted Pair Group
Method using Centroids). UPGMA and UPGMC use a simple average, while WPGMA
and WPGMC use a weighted average where the weight is the inverse of cluster size.
UPGMA [D’Andrade 1978; Everitt 1980; Jain and Dubes 1988; Sneath and Sokal 1973;
Sokal and Michener 1958] uses average distance between two objects in different clus-
ters, and the shortest average distance determines the merge of two clusters. WPGMA
or weighted average linkage method [Murtagh 1983] uses weighted average distance
between two objects in different clusters, and the shortest average distance determines
the merge of two clusters. UPGMC or centroid linkage method [Sneath and Sokal
1973] uses Euclidean distance between unweighted centroids (calculated by arithmetic
mean) of different clusters, and the shortest distance determines the merge of two
clusters. WPGMC or median linkage method [Sneath and Sokal 1973] uses Euclidean
distance between weighted centroids of different clusters, and the shortest distance
determines the merge of two clusters. Minimum-variance method or Ward’s method
[Ward Jr. 1963] considers the relationship of all objects in a cluster. Its objective is
to form clusters such that the increase of variance within each group is minimized
[Wildi 2010]. Further readings about these methods include [Everitt et al. 2001; Xu
and Wunsch 2005; Yager 2000].

What follows are examples of divisive hierarchical clustering algorithms. DIANA
[Kaufman and Rousseeuw 2009] (DIvisive ANAlysis Clustering) selects in each divid-
ing step the cluster with the largest diameter and divides it into two new clusters.
MONA [Kaufman and Rousseeuw 2009] (MONothetic Analysis Clustering of Binary
Variables) divides clusters based a single well-chosen variable (or feature), whereas
most other hierarchical methods use all variables (or features).

Advantages of hierarchical clustering are a) Good visualization with dendrogram
representation [Xu and Wunsch 2005; 2010; Jain and Dubes 1988; Theodoridis and
Koutroumbas 2006], b) Very informative descriptions with dendrogram representation
[Jain and Dubes 1988; Theodoridis and Koutroumbas 2006; Xu and Wunsch 2005;
20101, and c) Flexibility regarding the number of clusters, since the clustering results
can be obtained by cutting the dendrogram at different levels.

Disadvantages of hierarchical clustering are [Xu and Wunsch 2005; 2010]: a) Lack-
ing of robustness and sensitivity to noise and outliers. b) High computational complex-
ity, which limit their application on large scale data. ¢) Tendency to form clusters with
spherical shapes instead of natural shapes. d) Prone to reversal phenomenon [Okabe
and Sugihara 2012].

BIRCH [Zhang et al. 1996] (Balanced Iterative Reducing and Clustering using Hier-
archies) clusters incoming data objects incrementally and dynamically. It first builds
a CF (Clustering Feature) tree dynamically as new data objects are inserted and then
applies an agglomerative hierarchical clustering algorithm to the nodes represented
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Fig. 1. Hierarchical Clustering [Ho 2012]

by their CF vectors. After obtaining a centroid for each cluster, it assigns each data
object to its nearest centroid. CURE [Guha et al. 1998] (Clustering Using REpresenta-
tives) uses a number of representative data points in a cluster to evaluate the distance
between clusters. Closest cluster pair are merged at each step of its hierarchical clus-
tering process. ROCK [Guha et al. 2000] (RObust Clustering using linKs) uses links
and not distances when merging clusters for boolean and categorical data. DISMEA
[Spath 1980] uses the k-means algorithm to divide a cluster into two clusters. The
Edwards and Cavalli-Sforza Method [Edwards and Cavalli-Sforza 1965] divides all
available clusters at each step. Minimum Spanning Tree-based clustering algorithms
[Eldershaw and Hegland 1997; Piivinen 2005; Zahn 1971] construct an MST (Mini-
mum Spanning Tree) [Kruskal 1956; Nesettil et al. 2001; Prim 1957] from a data set
and produce a group of clusters by removing selected edges.
Figure 1 shows an example of hierarchical clustering.

3.2. Partitioning Clustering

Partitioning clustering algorithms divide objects into clusters without hierarchical
structure. Clusters are represented by a central vector. Given the number of clusters,
partitioning clustering assigns the objects to the closest cluster center. Partitioning
algorithms can be grouped into k-means methods and k-medoids methods. k-means
methods use the centroid of objects within a cluster as center. k-medoids methods use
the most appropriate object within a cluster as center.

k-means clustering [Berkhin 2002; Forgy 1965; Hartigan 1975; Hartigan and Wong
1979; MacQueen 1967; Steinhaus 1956; Xu and Wunsch 2005; 2010] is very simple,
but one of the best known and popular clustering algorithms. There are many varia-
tions of the basic k-means clustering. Classic k-means reassigns data objects based on
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optimization of the objective function. If a reassigning has positive effect, the data ob-
ject is reassigned and the cluster centers are updated. ISODATA [Ball and Hall 1965]
(Iterative Self-Organizing Data Analysis Technique) splits and merges intermediate
clusters based on a user-defined threshold and iterates until the threshold is reached.
FORGY [Forgy 1965] reassigns objects to nearest centroids and recomputes centroids.
It iterates until a stopping criterion is achieved. Fuzzy c-means [Bezdek et al. 1981;
Dunn 1973] assigns fuzzy cluster membership to each data object, and updates clus-
ter centers and membership after each iteration. Methods to speed up k-means and
fuzzy C-means such as brFCM (bit reduction by Fuzzy C-Means) [Eschrich et al. 2003]
replace similar data objects with their centroid before clustering.

Variations of k-medoid [Kaufman and Rousseeuw 2009] methods are as follows.
PAM (Partitioning Around Medoids) assigns each data object to the closest medoid
and iteratively reassigns objects and updates medoids to optimize the objective func-
tion. CLARA (Clustering LARge Applications) [Kaufman and Rousseeuw 2009] applies
PAM on multiple subsets or samples of the data set, and selects the best clustering as
output. CLARANS (Clustering Large Applications based upon RANdomized Search)
[Ng and Han 1994] searches a graph where each node is a set of medoids. It selects
a node randomly in search for a local minimum among its neighbor nodes through
iterations and outputs the best node to form clustering results.

Advantages of partitioning clustering are a) simple, straightforward and easy im-
plementation, b) fast execution with computation complexity of O(n), ¢) very suitable
for compact and hyperspherical clusters, d) computational rigor (firm foundation of
analysis of variances).

Disadvantages of partitioning clustering are a) they are still subjective processes
that are sensitive to assumptions, b) they require the number of clusters to be specified
in advance, c¢) they prefer clusters of approximately similar size, as they will always
assign an object to the nearest center, often leading to incorrectly cut borders in be-
tween of clusters, d) they are subject to easy trapping in local minima and sensitivity
to the initial partition (hill-climbing optimization method).

Other developments are as follows. Bisecting k-means [Steinbach et al. 2000] recur-
sively partitions a cluster into two. KD-trees k-means [Pelleg and Moore 1999] uses the
KD-Tree data structure to speed up the assignment of data objects to their closest clus-
ter by reducing the number of nearest-neighbor queries in the traditional algorithm.
Scaling k-means [Bradley et al. 1998] retains important data objects and summarizes
or discards other objects. Centroids of the resulting data set are then used on the whole
data set. X-means [Pelleg and Moore 2000] finds the number of clusters K automati-
cally by optimizing a criterion function such as AIC (Akaike Information Criterion)
or BIC (Bayesian Information Criterion). Kernel k-means [Scholkopf et al. 1998] en-
hances k-means by using a kernel function that nonlinearly maps the original feature
space to a higher dimensional one, where clusters are more separable. Weighted kernel
k-means [Dhillon et al. 2004] further extends kernel k-means by assigning a weight
for each cluster. The weight is defined as the reciprocal of the number of data objects in
the cluster. GA k-means [Babu and Murty 1993] applies a genetic algorithm to improve
cluster centers initialization for k-means. Simulated annealing [Al-Sultan and Selim
1993; Huntley and Brown 1991; Klein and Dubes 1989; Selim and Alsultan 1991] uses
simulated annealing optimization to avoid local optima and find the global minimum
solution. Soft assignment [Zhang 2001] assigns data objects to different clusters with
appropriate weights to improve the optimization process. It uses Harmonic Averages
of the distances from the data object to all the centers. Mahalanobis distance [Mao and
Jain 1996] is used to detect clusters with hyperellipsoidal shapes. Maximum of intra-
cluster variances [Gonzalez 1985] can be used as the objective function instead of the
sum to obtain good clustering results. k-prototypes [Huang 1998] incorporates cate-
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Fig. 2. Partitioning Clustering [Chire 2011c]

gorical data as a generalization approach. Accelerated k-means by triangle inequality
[Elkan 2003] avoids unnecessary distance calculations by using the triangle inequality
and keeping track of lower and upper bounds for distances between data objects and
cluster centers. k-means++ [Arthur and Vassilvitskii 2007] improves the speed and the
accuracy of k-means by using a simple randomized seeding technique.

Figure 2 shows an example of partitioning clustering.

3.3. Graph-based Clustering

Graph-based clustering algorithms construct a graph/hypergraph from the data and
then partition the graph/hypergraph into subgraphs/subhypergraphs or clusters. Each
vertex represents a data object, and the edge weight represents the similarity of two
vertices [Chen 2010]. The edges in the same subgraph/subhypergraph should have
high weights, and the edges between different subgraphs/subhypergraph should have
low weights [Chen 2010]. It is also called spectral clustering [Jain 2010].
Representative algorithms are as follows. Chameleon [Karypis et al. 1999] uses a
connectivity graph and graph partitioning to build small clusters, followed by the ag-
glomerative hierarchical clustering process. Its key feature is that it considers both
interconnectivity and closeness when merging clusters. CACTUS (Clustering Categor-
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ical Data Using Summaries) [Ganti et al. 1999a] detects candidate clusters based on
the summary of the data set and determines the actual clusters through a validation
process against the candidate clusters. It uses a similarity graph to represent the inter-
attribute and intra-attribute summaries [Gan 2011]. A Dynamic System-based Ap-
proach or STIRR (Sieving Through Iterated Relational Reinforcement) [Gibson et al.
2000] represents each attribute value as a weighted vertex in a graph. It iteratively
assigns and propagates weights until a fixed point is reached. Different weight groups
correspond to different clusters on the attribute. ROCK (Robust Clustering algorithm
for Categorical Data) [Guha et al. 2000] repeatedly merges two clusters until the spec-
ified number of clusters is reached, and it uses data sampling to improve complexity.
It uses a connectivity graph to calculate the similarities between data objects [Gan
2011].

The advantages of graph-based clustering are [Chen 2010]: a) A graph is an elegant
data structure that can model many real applications. b) It is based on solid math-
ematical foundations, including spectral theory and Markov stochastic process. c¢) It
produces optimal clustering (optimizing a quality measure instead of acting greedily
toward the final clustering).

The major disadvantage of graph-based clustering is that it may be slow when work-
ing on large scale graphs [Chen 2010].

Other developments are as follows. The Ratio Cut algorithm [Hagen and Kahng
1992] adopts a cluster size constraint, which is the number of data points in a cluster.
The Normalized Cut (NCut) algorithm [Shi and Malik 2000] is an approximate graph-
cut based clustering algorithm with a cluster size constraint, which is the volume of
the cluster or sum of edge weights within a cluster. It also has a multiclass version
[Yu and Shi 2003]. The MNCut (Modified Normalized Cut) algorithm [Meila and Shi
2001] gives a new interpretation to the NCut algorithm in the framework of a Markov
Random Walk. Ng’s method [Ng et al. 2001] derives a new data representation from
normalized eigenvectors of a kernel matrix simultaneously and in a particular man-
ner. Laplacian Eigenmap [Belkin and Niyogi 2003] uses the eigenvectors of the graph
Laplacian to represent data. Pairwise Data Clustering by Deterministic Annealing
[Hofmann and Buhmann 1997] uses proximity measures between the data objects to
represent data. Dominant Sets Pairwise Clustering [Pavan and Pelillo 2007] relates
clusters to maximal dominant sets [Motzkin and Straus 1965] in pair-wise clustering.
Fast approximate spectral clustering [Yan et al. 2009] applies a distortion-minimizing
local transformation to the data to speed up conventional spectral clustering. Active
spectral clustering [Wang and Davidson 2010] follows the concept of constrained clus-
tering and uses pairwise relations. Its constraints are specified in a incremental man-
ner. Locally-scaled spectral clustering using empty region graphs [Correa and Lind-
strom 2012] employs 3-skeleton (a subset of empty region graphs) and non-linear dif-
fusion to define a locally adapted affinity matrix which defines the similarity of two
data objects.

Figure 3 shows an example of graph-based clustering.

3.4. Distribution-based Clustering

Distribution-based clustering views or assumes that the data are generated by a mix-
ture of probability distributions, each of which represents a different cluster [Gan et al.
2007; McLachlan and Basford 1988]. This way, a cluster can be seen as objects gener-
ated by the same distribution. Thus, a particular clustering method can be expected to
produce good results when the data conform to the method’s distribution model [Gan
et al. 2007]. It is also called model-based clustering. There are usually two approaches
to form the model: the classification likelihood approach and the mixture likelihood
approach [Gan et al. 2007].
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Fig. 3. Graph-based Clustering [Evans 2014]

Distribution-based clustering has a long history. Early works include [Binder 1978;
Day 1969; Scott and Symons 1971; Wolfe 1970]. A survey of cluster analysis in a prob-
abilistic and inferential framework is presented in [Bock 1996].

Representative algorithms are as follows. The EM (Expectation-Maximization) clus-
tering algorithm [Dempster et al. 1977] is the most popular method in distribution-
based clustering. It tries to fit the data set into the assumed number of Gaussian
distributions by moving the means of Gaussian distributions toward the cluster cen-
ters. COOLCAT (reducing the entropy, or COOLing of the CATegorical data clus-
ters)[Barbara et al. 2002] uses entropy to cluster categorical data. It consists of data
sampling and incremental assignment. STUCCO (Search and Testing for Understand-
able Consistent Contrasts) [Bay and Pazzani 1999] uses tree searching and signifi-
cant contrast-sets to find clusters. GMDD (Gaussian Mixture Density Decomposition)
[Zhuang et al. 1996] uses a recursive approach and identifies each Gaussian compo-
nent in the mixture successively. Autoclass [Cheeseman and Stutz 1996] is based on
the classic distribution-based approach and uses a Bayesian method to determine the
optimal clusters. P-AutoClass [Pizzuti and Talia 2003] is a parallel version of Autoclass
and can be used on large data sets.

The advantages of distribution-based clustering are as follows: a) It can be modified
to handle complex data [Berkhin 2002], b) It has a solid theoretical foundation, c) Its
results are easily interpretable [Berkhin 2002], d) It not only provides clusters, but
also produce complex models that capture relationships among attributes, e) Results
are independent of the timing of consecutive batches of data [Berkhin 2002], f) It is
good for online learning since the intermediate mixture model can be used to cluster
objects [Berkhin 2002], g) the Mixture model can be naturally generalized to cluster
heterogeneous data [Berkhin 2002].

The disadvantage of distribution-based clustering is the difficulty in choosing the
appropriate model complexity (since a more complex model will usually be able to
explain the data better but may cause an overfitting problem from excessive parameter
set).

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 1111.



1:14 Yan Yan et al.

. .
L
os | & J* . .
-
. .
]
0E
or
-
s o
. .
os | ®
.
04
03
0z
-

01

o

0 01 0z 0z [n [ [ o7 0s 03 1

Fig. 4. Distribution-based Clustering [Chire 2011b]

Other developments are as follows. Latent Dirichlet Allocation (LDA) [Blei et al.
2003] uses a hierarchical Bayesian model that has three levels. Each data object is
modeled as a finite mixture over an underlying set of groups (or clusters) of objects.
Each group (or cluster) is modeled as an infinite mixture over a set of group (or clus-
ter) probabilities. Pachinko Allocation Model (PAM) [Li and McCallum 2006] uses a
Directed Acyclic Graph (DAG) to model cluster correlations. The leaves of the DAG rep-
resent data objects, and the interior nodes represent correlations. Undirected graph-
ical model for data clustering [Welling 2005] is based on exponential family distri-
butions and the semantics of undirected graphical models. It uses the technique of
minimizing contrastive divergence to speed up the process. Robust cluster analysis via
mixture models method [McLachlan et al. 2006] uses the mixtures of multivariate t
distributions approach to the clustering. It also uses the t distribution to cluster high-
dimensional data via mixtures of factor analyzers. Online learning for LDA method
[Hoffman et al. 2010] is an online Variational Bayes (VB) algorithm for LDA. It uses
natural gradient step in online stochastic optimization, which converges to a local op-
timum of the VB objective function.

Figure 4 shows an example of distribution-based clustering.
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3.5. Density-based Clustering

Density-based clustering defines clusters as dense regions of data objects separated by
low-density regions. A cluster is a connected dense component and grows in any direc-
tion that density leads [Gan et al. 2007]. Objects in low-density areas which separate
clusters are usually considered to be noise and border points. There are two major ap-
proaches for density-based clustering [Berkhin 2002]: the connectivity approach pins
density to a training data point; the density function approach pins density to a point
in the attribute space.

Representative algorithms for the connectivity approach are as follows. DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) [Ester et al. 1996] starts
by selecting a data object and tries to find all data objects density-reachable from it
to form a cluster. If none are found, the algorithm selects a new data point and re-
peats. GDBSCAN (Generalized DBSCAN) [Sander et al. 1998] generalizes the concept
of neighborhood by permitting the use of any distance function besides Euclidian dis-
tance and allows other measures besides simply counting the objects to define the
cardinality of that neighborhood. OPTICS (Ordering Points To Identify the Clustering
Structure) [Ankerst et al. 1999] is like an extended DBSCAN algorithm. It does not
assign cluster memberships but stores the order in which the data objects are pro-
cessed as well as the core-distance and a reachability-distance for each data object. An
extended DBSCAN is used to assign cluster memberships. DBCLASD (Distribution
Based Clustering of LArge Spatial Databases) [Xu et al. 1998] uses the notion of clus-
ters based on the distance distribution and incrementally augments an initial cluster
by its neighboring points as long as the nearest neighbor distance set of the resulting
cluster still fits the expected distance distribution.

Representative algorithms for the density function approach are as follows. DEN-
CLUE (DENsity-based CLUstEring) [Hinneburg et al. 1998] calculates the impact of
each data object within its neighborhood (i.e. influence function) and determines clus-
ters mathematically by identifying local maxima of the overall density function (i.e.
density-attractors).

The advantages of density-based clustering are as follows: a) They can find clusters
of arbitrary shapes, in contrast to many other methods. b) Time complexity is low
(linear or O(n)). c¢) It is deterministic for core and noise points (but not for border
points), therefore there is no need to run it multiple times. d) It can handle noise well
[Gan et al. 2007]. e) The number of clusters is not required, since it finds clusters and
the number of clusters automatically [Gan et al. 2007]. f) Results are independent of
data ordering [Berkhin 2002]. g) There are no limitations on the dimension or attribute
types [Berkhin 2002].

The disadvantages of density-based clustering are as follows: a) It is often difficult to
detect cluster boarders when the cluster density decreases continuously (i.e. arbitrary
borders). b) For a mixtures of Gaussians data set, distribution-based clustering (e.g.
EM) usually outperforms density-based clustering. ¢) Limitations in processing high-
dimensional data, since it is difficult to distinguish high-density regions from low-
density regions when the data is high-dimensional [Jain 2010]. d) Most density-based
clustering algorithms were developed for spatial data [Gan et al. 2007].

Other developments are as follows. BRIDGE [Dash et al. 2001] integrates the k-
means algorithm and the DBSCAN algorithm. k-means is first performed, and then
DBSCAN is used on each partition. Finally, results are improved by removing the noise
found by DBSCAN. JarvisPatrick algorithm [Frank and Todeschini 1994] partitions
the data set into clusters based on the number of shared nearest neighbors. It first
identifies the k nearest neighbors of each data object and then merges two data objects
at a time. C-DBSCAN (Constrained-DBSCAN) [Ruiz et al. 2007] enhances the DB-
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Fig. 5. Density-based Clustering [Chire 2011a]

SCAN algorithm with pairwise constraints. SCAN (Structural Clustering Algorithm

for Networks) [Xu et al. 2007] can detect hubs and outliers, in addition to clusters in

networks (or graphs). It uses a structural similarity measure to cluster vertices.
Figure 5 shows an example of density-based clustering.

3.6. Grid-based Clustering

Grid-based clustering operates on space partitioning instead of data partitioning to
produce clusters [Berkhin 2002]. It first creates the grid structure by partitioning the
data space into cells (or cubes) and then clusters the cells based on their densities.
Representative algorithms are as follows. BANG-clustering [Berkhin 2002; Schikuta
and Erhart 1997] uses a multi-dimensional grid data structure to organize or partition
the data. It uses the cell information in the grid and clusters the cells. STING (A STa-
tistical INformation Grid approach) [Wang et al. 1997] uses a hierarchical structure
of grid cells with a top-down approach. It labels a cell to be relevant or not at a spec-
ified confidence level. Then, it finds all the regions formed by relevant cells. STING+
[Berkhin 2002; Wang et al. 1999] uses a similar hierarchical cell structure as STING
and introduces an active spatial data mining approach. OptiGrid (Optimal Grid) [Hin-
neburg and Keim 1999] constructs an optimal grid partitioning of the data by find-
ing the best partitioning hyperplanes for each dimension with projections of the data.
GRIDCLUS (GRID-CLUStering) [Schikuta 1996] organizes the space surrounding the
clusters with a grid data structure. It uses a topological neighbor search to cluster
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the grid cells. GDILC (Grid-based Density-IsoLine Clustering) [Yanchang and Junde
2001] is based on the idea that the density-isoline figure reflects the distribution of
data. It uses a grid-based approach to calculate the density and finds dense regions.
WaveCluster (Wavelet-based clustering) [Sheikholeslami et al. 1998] transforms the
original feature space by applying wavelet transform and then finds the dense regions
in the new space. It yields sets of clusters at different resolutions and scales, which can
be chosen based on the user’s needs. FC (Fractal Clustering) [Barbara and Chen 2000]
adds one data object at a time to one cluster in such a way that the fractal dimension
changes the least after adding the data object.

The advantages of grid-based clustering are as follows: a) It is fast and works well
with large data sets (since speed is independent of the number of objects in the data)
[Berkhin 2002; Gan et al. 2007]. b) It handles noise well [Berkhin 2002]. c¢) It is inde-
pendent of data ordering [Berkhin 2002]. d) It can handle attributes of different types
[Berkhin 2002]. e) It can be used as an intermediate step in many other algorithms
such as CLIQUE and MAFTA [Berkhin 2002].

The disadvantages of grid-based clustering are as follows: a) Most algorithms need
the user to specify grid size or density thresholds, which can be difficult (fine grid
sizes result in high computational time, while coarse grid sizes result in low quality
of clusters) [Gan et al. 2007]. b) Some grid-based clustering algorithms (e.g. STING,
WaveCluster) are not good at high dimensional data [Gan et al. 2007].

Other developments are as follows. AMR (Adaptive Mesh Refinement clustering)
[Liao et al. 2004] creates grids at multiple resolutions where higher resolution grids
are applied to the localized denser regions. O-Cluster (Orthogonal partitioning CLUS-
TERing) [Milenova and Campos 2002] is a variant of OptiGrid. It creates a hierarchi-
cal grid-based structure by making axis-parallel (orthogonal) partitions on the input
data. It operates recursively, and the final irregular grid frames the data into clus-
ters. CBF (Cell-Based Filtering) [Chang and Jin 2002] splits each dimension into a set
of partitions using a filtering-based index. It then creates cells based on the overlap-
ping regions of the partitions. PGMCLU (Parallel Grid-based CLUstering algorithm
for Multi-density datasets) [Xiaoyun et al. 2009] consists of parallel data partitioning,
local clustering, and merging local clusters. It introduces a new measure called grid
compactness for the degree of tightness between data objects within the grid, and the
notion of grid feature for summarizing the information about a grid.

Figure 6 shows an example of grid-based clustering.

3.7. Clustering Big Data

Big data clustering refers to clustering on millions of data objects [Jain 2010]. These al-
gorithms need to have good scalability and process big data within reasonable comput-
ing time and memory space [Berkhin 2002]. A high computational complexity would
dramatically limit an algorithm’s application to big data. The strategies used for big
data clustering can be categorized into sampling, data summarization, distributed
computing, and incremental learning.

3.7.1. Sampling:. Sampling methods select a sample of the original large data set and
perform clustering over the sample data. Old-fashioned sampling methods may or may
not use rigorous statistical reasoning [Berkhin 2002]. Newer sampling methods use
special uniform checks to control their adequacy [Berkhin 2002]. Advantages are that
it is simple to implement and can screen out most outliers. However, small clusters
may be missed.

Examples are as follows. CURE (Clustering using REpresentatives) [Guha et al.
1998] and ROCK (RObust Clustering using linKs) [Guha et al. 2000] were covered in
Section 3.1. CLARA (Clustering LARge Applications) [Kaufman and Rousseeuw 1987]
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Fig. 6. Grid-based Clustering [Yolkowski 2014]

draws several samples from the data set, runs PAM on each of them, and selects the
best result. CLARANS (Clustering Large Applications based on RANdomized Search)
[Ng and Han 1994] starts with a new randomly-selected node (a set of k potential
medoids) in the graph in search of the local optimum. It repeats if a local optimum is
found.

3.7.2. Data Summarization:. Data summarization methods calculate data summary
statistics and perform clustering on the summaries instead of the original data. The
advantage is that the requirement for the storage of and frequent operations on the
large amount of data are greatly reduced, saving both computational time and storage
space. The disadvantage is reduced cluster quality.

Examples are as follows. BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) was covered in Section 3.1. BUBBLE [Ganti et al. 1999b] instantiates
generalized BIRCH for data in a distance space. BUBBLE-FM (BUBBLE-FastMap)
[Ganti et al. 1999b] improves upon BUBBLE by reducing the computation time using
FastMap [Faloutsos and Lin 1995]. EMADS (EM Algorithm for Data Summaries) [Jin
2002] directly generates a Gaussian mixture model from simplified data summaries.
bEMADS (BIRCH’s EMADS) [Jin 2002] uses data summarization procedures in the
BIRCH algorithm.
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3.7.3. Distributed Computing:. Distributed computing methods divide a large data set
into smaller data sets and perform clustering on each smaller data set. The advantage
is that clusterings on each smaller data set can be done in parallel to reduce the overall
computation time [Jain 2010]. The disadvantage is the overhead and complexities due
to the dividing and combining steps.

Examples are as follows. Parallel k-means [Dhillon and Modha 1999] is a parallel im-
plementation of the k-means clustering algorithm. DBDC (Density Based Distributed
Clustering) [Januzaj et al. 2004] clusters distributed data locally and extracts suitable
representatives from these local clusters to send to a global site where the complete
clusters are restored based on the local representatives. It uses a density-based clus-
tering algorithm for both local and global clustering. Parallel spectral clustering in
distributed systems [Chen et al. 2011] makes the dense similarity matrix sparse by
retaining nearest neighbors using a parallel approach.

3.7.4. Incremental Learning:. Incremental learning methods process one data object at a
time and may discard it. They require only one single pass over all data objects, in con-
trast to most clustering methods that require multiple passes over data objects before
identifying the cluster centers [Jain 2010]. Advantages are: improved clustering effi-
ciency in terms of data storage and processing time (they can admit new data objects
without learning from scratch [Xu and Wunsch 2010]); handling outliers well [Berkhin
2002]; resumable processing which makes it very suitable for dynamic big data sets
[Berkhin 2002]. Disadvantages are that results depend on data order and may not be
stable [Carpenter and Grossberg 1987b; Moore 1989; Xu and Wunsch 2010], and can
result in lower quality clusters [Berkhin 2002].

Examples are as follows. DIGNET [Thomopoulos et al. 1995; Wann and Thomopoulos
1997] moves cluster centers toward a new data point with each new addition. Harti-
gan’s leader algorithm [Hartigan 1975] uses a distance/similarity threshold to decide
if a data point should be added to the cluster or used for a new cluster center. ART
(Adaptive Resonance Theory) family [Carpenter and Grossberg 1987a; Xu and Wunsch
2010] simulates neural circuits that are believed to trigger fast learning. It includes
a large family of neural network variants such as ART1 [Carpenter and Grossberg
1987b], ART2 [Carpenter and Grossberg 1987a], Gaussian ART [Williamson 1996],
Bayesian ART [Vigdor and Lerner 2007], Ellipsoid ART [Anagnostopoulos and Geor-
giopoulos 2001], ART tree [Caudell et al. 1991; Wunsch et al. 1993], ARTMAP [Carpen-
ter et al. 1991], Q-learning ART [Brannon et al. 2009], Fuzzy ART [Carpenter et al.
1992]. Charikar’s incremental clustering [Charikar et al. 1997] maintains a clustering
of the data objects so that the maximum cluster diameter is minimized as new data
objects are added. GenlIC (Generalized Incremental algorithm for Clustering) [Gupta
and Grossman 2004] divides the data stream into chunks or windows, updating each
cluster center with each new data object addition and merging clusters at the end
of a window of data. Cobweb [Fisher 1987] is an incremental system for hierarchi-
cal clustering, which enables bi-directional hill-climbing search through the space of
hierarchical schemes.

3.8. Clustering High Dimensional Data

High Dimensional Data clustering refers to clustering on data objects that represent
from a few dozen to thousands or more features. Such high dimensional data are of-
ten seen in areas such as medicine (e.g. microarray experiments), and text documents
(e.g. word-frequency vector methods [Chakrabarti 2003]). Clustering high dimensional
data is tremendously difficult. One problem is that increased irrelevant features elim-
inate the likelihood of clustering tendency [Berkhin 2002]. Another problem is the
‘curse of dimensionality’, or lack of data separation, in high dimensional space (the
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problem becomes severe for dimensions greater than 15) [Berkhin 2002]. Performing
feature selection before applying clustering can improve the first problem. Principal
Component Analysis (PCA) [Pearson 1901] is commonly used. However, the dimension
may still be high after feature selection. In this review, we discuss techniques that
have been developed to address such situations: projected clustering, subspace cluster-
ing, bi-clustering (or co-clustering), tri-clustering, hybrid approaches, and correlation
clustering.

3.8.1. Projected Clustering:. Projection techniques map data objects from a high dimen-
sional space to a low dimensional space, while maintaining some of the original data’s
characteristics [Avogadri and Valentini 2009].

Examples are as follows. PreDeCon [Bohm et al. 2004] finds subsets of feature vec-
tors that have low variance along subsets of attributes. PROCLUS [Aggarwal et al.
1999] finds the candidate clusters and dimensions by using medoids. For each medoid,
the subspace is determined based on attributes with low variance. Random projections
for k-means clustering [Boutsidis et al. 2010] implements a dimensionality reduction
technique for k-means clustering based on random projections.

3.8.2. Subspace Clustering:. Subspace clustering algorithms identify clusters in appro-
priate subspaces of the original data space.

Examples are as follows. CLIQUE (CLustering In QUEst) [Agrawal et al. 1998] par-
titions the data space into units and then finds the maximum sets of connected dense
units. SUBCLU (density-connected Subspace Clustering) [Kroger et al. 2004] adopts
the notion of density-connectivity introduced in DBSCAN (Section 3.5) and uses the
monotonicity of density-connectivity to prune subspaces. CACTUS (Clustering Cat-
egorical Data Using Summaries) is covered in Section 3.3. ENCLUS (ENtropy-based
CLUStering) [Cheng et al. 1999] finds clusters in subspaces based on entropy values of
subspaces. Subspaces with lower entropy values typically have clusters. It then applies
CLIQUE or other clustering algorithms to such subspaces. MAFIA (Merging of Adap-
tive Finite Intervals) [Goil et al. 1999] uses adaptive grids in each dimension and then
merges them to find clusters in higher dimensions. OptiGrid (Optimal Grid) is covered
in Section 3.6. MrCC (Multi-resolution Correlation Cluster detection) [Cordeiro et al.
2010] constructs a novel data structure based on multi-resolution and detects correla-
tion clusters by identifying initial clusters as axis-parallel hyper-rectangles with high
data densities, followed by merging overlapping initial clusters.

Figure 7 shows an example of subspace clustering.

3.8.3. Hybrid Approaches:. Hybrid approaches find overlapping clusters. Some of them
find only potentially interesting subspaces and use full-dimensional clustering algori-
thms to obtain the final clusters.

Examples are as follows. DOC (Density-based Optimal projective Clustering) [Pro-
copiuc et al. 2002] uses a global density threshold to compute an approximation of
an optimal projective cluster. FIRES (FIlter REfinement Subspace clustering) [Kriegel
et al. 2005] first computes one-dimensional clusters and then merges them by apply-
ing ‘clustering of clusters’ based on the number of intersecting points between clusters.
P3C (Projected Clustering via Cluster Cores) [Moise et al. 2006; 2008] first computes
intervals matching or approximating higher-dimensional subspace clusters on every
dimension and then aggregates those intervals into cluster cores. The cluster cores are
refined and used to assign data objects.

3.8.4. Bi-clustering:. Bi-clustering is also called bi-dimensional clustering [Cheng and
Church 2000], co-clustering, coupled clustering, or bimodal clustering. Bi-clustering is
popular in bioinformatics research, especially in gene or sample clustering. For gene
expression data, there are experimental conditions in which the activity of genes is un-
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Fig. 7. Subspace Clustering [Slowmo 2010]

correlated. This causes limitations for results obtained by standard clustering meth-
ods. So bi-clustering algorithms that can perform simultaneous clustering on the genes
and conditions are developed to find subgroups of genes and subgroups of conditions in
which the genes exhibit highly correlated activities for every condition [Madeira and
Oliveira 2004].

Examples are as follows. CTWC (Coupled Two-Way Clustering) [Getz et al. 2000]
generates submatrices by an iterative process and considers only those submatrices
whose rows and columns belong to genes and samples/conditions that were in a stable
cluster in a previous iteration. ITWC (Interrelated Two-Way Clustering) [Tang et al.
2001] clusters the rows and then clusters the columns, based on each row cluster. It
keeps the cluster pairs that are most dissimilar. Block Clustering [Hartigan 1975] sorts
the data by row mean or column mean and splits the rows or columns such that the
variance within each ‘block’ is reduced. It then repeats and splits rows or columns dif-
ferently. é-biclusters [Cheng and Church 2000] or CC algorithm (Cheng and Church’s)
finds biclusters whose rows and conditions show coherent values, using mean-squared
residue. SAMBA (Statistical-Algorithmic Method for Bicluster Analysis) [Tanay et al.
2004] uses probabilistic modeling and graph theoretic techniques to find subsets of
rows whose values are very different in a subset of columns. Plaid Models [Lazzeroni
and Owen 2000] allows biclusters to overlap, i.e. a gene or a sample/condition can be-
long to more than one cluster. Information-theoretic co-clustering [Dhillon et al. 2003]
intertwines the row and column clusterings to increase mutual information.
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3.8.5. Correlation Clustering:. Correlation clustering uses the correlations among at-
tributes to guide the clustering process. These correlations may be different and ex-
ist in different clusters and cannot be reduced to uncorrelated ones by traditional
global decorrelation techniques. Such correlations create clusters with different spa-
tial shapes, and local correlation patterns are used to define the similarity between
data objects. Correlation clustering is closely related to biclustering.

Examples are as follows. ORCLUS (ORiented projected CLUSter generation) [Ag-
garwal and Yu 2000] is similar to k-means but uses a distance function based on an
eigensystem, i.e. the distance in the projected subspace. The eigensystem is adapted
during iterations and close pairs of clusters are merged. 4C (Computing Correlation
Connected Clusters) [Bohm et al. 2004] takes a density-based approach and uses a
density criterion to grow clusters. The density criterion is the minimal number of data
objects within the neighborhood of a data object. The neighborhood is based on distance
between two data objects in the eigensystems. HiCO (Hierarchical COrrelation clus-
tering) [Achtert et al. 2006] defines the similarity between two data objects based on
their local correlation dimensionality and subspace orientation. It takes a hierarchical
density-based approach to obtain correlation clusters. CASH (Clustering in Arbitrary
Subspaces based on the Hough transform) [Achtert et al. 2008] is based on the Hough
transform [Hough 1962], which maps the data space into parameter space. It then
uses a grid-based approach to find dense regions in the parameter space and corre-
sponding data subsets in the original data space. It recursively applies itself on such
corresponding data subsets.

3.9. Other Clustering Techniques

3.9.1. Neural Network-Based Clustering:. The neural network approach has been stud-
ied intensively by mathematicians, statisticians, physicists, engineers, and computer
scientists [Kumar and Joshi 2007]. A neural network is an interconnected group
of artificial neurons and an adaptive system for information processing. Neural-
network-based clustering is competitive-learning-based clustering, not statistical
model-identification based clustering. For competitive-learning-based clustering, the
first phase is learning where the algorithmic parameters are adjusted, and the second
phase is generalization [Du 2010]. Competitive learning can be implemented using a
two-layer neural network: the input layer and the output layer [Du 2010].

Examples are as follows. A SOM (Self-Organizing Map) [Kohonen 1982] consists of
nodes or neurons, each of which is associated with a weight vector and a position in
the map space. It creates a mapping from a higher dimensional input space to a lower
dimensional output space. SOM clustering computes the distance of the input pattern
to each neuron and finds the winning neuron. LVQ (Learning Vector Quantization)
or VQ (Vector Quantization) [Burton et al. 1983; Gersho and Ramamurthi 1982] is a
classical quantization technique for signal processing. It models the probability den-
sity functions by using the distribution of prototype vectors. It divides a set of vectors
into groups that have approximately the same number of vectors closest to them. Ba-
sic VQ is k-means clustering, and LVQ is a precursor to self-organizing maps (SOM)
[Gersho and Ramamurthi 1982]. Neural gas [Martinetz and Schulten 1991] is inspired
by SOM. It is a simple algorithm and finds optimal data representations based on fea-
ture vectors. During the adaptation process, the feature vectors distribute themselves
dynamically like a gas within the data space. ART model is covered in Section 3.7.4.

3.9.2. Evolutionary Clustering:. Evolutionary computation has many applications in
computer science, bioinformatics, pharmacometrics, engineering, physics, and eco-
nomics. Evolutionary computation is inspired by the biological mechanisms of evo-
lution, and uses iterative processes such as growth or development followed by selec-
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tion in a population of candidate solutions. Clustering methods that use local search
techniques including hill-climbing approach-based k-means suffer from local minima
problems. The recent advancements in evolutionary computational technologies [Fogel
2006] provide an alternate and effective way to find the global or approximately global
optimum [Xu and Wunsch 2010]. PSO (Particle Swarm Optimization) simulates social
behavior in nature, such as bird flocking or fish schooling [Kennedy et al. 2001]. ACO
(Ant Colony Optimization) algorithms model the behaviors of ants in nature [Dorigo
and Stiitzle 2003]. GAs (Genetic Algorithms) [Holland 1975] mimic natural selection
and use evolutional mechanisms such as crossover, mutation and selection to generate
solutions.

Examples are as follows. PPO (Particle-Pair Optimizer) [Du et al. 2008] is a modi-
fication of the Particle Swarm Optimizer. It uses two particle pairs to search for the
global optima in parallel and uses k-means for efficient clustering. Niching genetic k-
means [Sheng et al. 2004] modifies Deterministic Crowding [Mahfoud 1995], one of the
niching genetic algorithms, and incorporates one step of k-means into its regeneration
steps [Sheng et al. 2004]. EvoCluster algorithm [Ma et al. 2006] encodes cluster struc-
ture in a chromosome, in which one gene represents one cluster or the objects belonging
to one cluster. Reproduction operators are used between chromosomes. GenClust [Ges
et al. 2005] is a simple algorithm and proceeds in stages. It uses genetic operators
and a fitness function to compute partitions in a new stage based on partitions in the
previous stage.

3.9.3. Kernel Clustering:. Kernel-based learning such as Support Vector Machines
(SVMs) [Cortes and Vapnik 1995; Scholkopf et al. 1996; Platt 1999] has had successful
applications in pattern recognition and machine learning and is becoming increasingly
important [Platt 1999]. Kernel methods [Cristianini and Shawe-Taylor 2000] perform
a nonliner mapping of the low dimensional input data into a high dimensional space,
which becomes linearly separable. To improve efficiency, they avoid explicitly defining
the nonlinear mapping by using kernel functions, such as polynomial kernels, sigmoid
kernels, and Gaussian radial basis function (RBF) kernels. This is the known as the
kernel trick.

Examples are as follows. SVC (Support Vector Clustering) [Wang et al. 2007;
Zafeiriou and Laskaris 2008] uses SVM training to find the cluster boundaries and
an adjacency matrix to assign a cluster label to each data object [Xu and Wunsch
2010]. Variations of SVC include Iterative One-Class SVC [Camastra and Verri 2005],
and rough Set SVC [Pawlak 1991]. Kernel k-means [Girolami 2002] uses a kernel
method to calculate the distance between items in a data set, instead of using the
Euclidean distance as in regular k-means. Variations include Incremental Kernel-k-
means [Scholkopf et al. 1998]. Kernel deterministic annealing clustering [Yang and
Wu 2006] uses an adaptively selected Gaussian parameter and a Gaussian kernel to
determine the nonlinear mapping. Kernel fuzzy clustering [Liu and Xu 2008; Zhang
and Chen 2004; Zhou and Gan 2004] applies kernel techniques to fuzzy clustering al-
gorithms by replacing the original Euclidean distance with a kernel-induced distance.
Kernel Self-Organizing Maps [Andras 2002; Boulet et al. 2008; Lau et al. 2006] per-
form self-organizing between an input data object and the corresponding prototype in
the mapped high dimensional feature space or in the mapped space completely.

3.9.4. Sequential Data Clustering:. Sequential data are sequences of numerical data or
non-numerical symbols and can be generated from speech processing, video analysis,
text mining, gene sequencing, and medical diagnosis. Time series data or temporal
data are a type of sequential data, which, unlike static data, contain feature values
that change over time. Since sequential data usually have variable length, dynamic
behaviors, and time constraints [Gusfield 1997; Sun and Giles 2001], they cannot be
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represented as points in the multi-dimensional feature space and thus cannot be an-
alyzed using any of the clustering techniques we have mentioned thus far [Xu and
Wunsch 2010]. Clustering techniques targeting sequential data have been developed,
and they commonly use three strategies: proximity-based approaches, feature-based
approaches, and model-based approaches.

Proximity-based approaches use proximity information such as the distance or simi-
larity between pairs of sequences. They then use hierarchical or partitional clustering
algorithms to group the sequences into clusters [Xu and Wunsch 2010]. Examples are
as follows. The Needleman-Wunsch algorithm [Durbin et al. 1998; Needleman and
Wunsch 1970] uses basic dynamic programming and is a global optimal alignment al-
gorithm. The Smith-Waterman algorithm [Durbin et al. 1998; Smith and Waterman
1980] is based on Needleman-Wunsch algorithm, and also uses dynamic program-
ming. It compares multi-lengthed sequence segments using character-to-character
pair-wise comparisons. FASTA (FAST-All) [Pearson and Lipman 1988] first finds seg-
ments of the two sequences that have some degree of similarity and marks these po-
tential matches. It then performs a more time-consuming optimized search approach
such as the Smith-Waterman algorithm. BLAST (Basic Local Alignment Search Tool)
[Altschul et al. 1990] searches for short alignment matches between two sequences
using a heuristic approach, which approximates the Smith-Waterman algorithm. Gen-
eRage [Enright and Ouzounis 2000] automatically clusters sequence datasets by using
Smith-Waterman dynamic programming alignment and single-linkage clustering. SE-
QOPTICS (SEQuence clustering with OPTICS) [Chen et al. 2006] implements Smith-
Waterman algorithms as the distance measurement and uses OPTICS [Ankerst et al.
1999] to perform sequence clustering.

Feature-based approaches map sequences onto multi-dimensional data points using
feature extraction methods and then use vector-based clustering algorithms on the
data points [Xu and Wunsch 2010]. Examples are as follows. Scalable sequential data
clustering [Guralnik and Karypis 2001] uses a k-means based clustering algorithm
which has near-linear time complexity to improve the scalability problem. Pattern-
oriented hierarchical clustering [Morzy et al. 1999] uses a hierarchical algorithm,
which can generate the clusters as well as the clustering models based on sequential
patterns found in the database. The wavelet-based anytime algorithm [Vlachos et al.
2003] combines a novel k-means based clustering algorithm and the multi-resolution
property of wavelets. It repeatedly uses coarse clustering to obtain a clustering at a
slightly finer level of approximation.

Model-based approaches assume sequences that belong to one cluster are generated
from one probabilistic model [Xu and Wunsch 2010]. Examples are as follows. Autore-
gressive moving average (ARMA) models [Bagnall and Janacek 2004; Xiong and Yeung
2004] derive an EM algorithm to learn the mixing coefficients and the parameters of
the component ARMA models. They use the Bayesian information criterion (BIC) to
determine the number of clusters. The Markov chain approach [Ramoni et al. 2002;
Smyth 1999] models dynamics as Markov chains and then applies an agglomerative
clustering procedure to discover a set of clusters that best capture different dynamics.
The Polynomial models approach [Bagnall et al. 2003; Gaffney and Smyth 1999] as-
sumes the underlying model is a mixture of polynomial functions. It uses an EM algo-
rithm to estimate the cluster membership probabilities, using weighted least squares
to fit the models. The Hidden Markov Model (HMM) [Oates et al. 2001; Smyth 1996] is
a probabilistic model-based approach. It uses HMMs, which have shown capabilities in
modeling the structure of the generative processes underlying real-world time series
data.
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3.9.5. Ensemble Clustering:. Clustering ensembles have emerged to improve robust-
ness, stability and accuracy of clustering results [Ghaemi et al. 2009]. A cluster en-
semble combines the results of multiple clustering algorithms to obtain a consensus
result [Pirim et al. 2011]. It can produce better average performance and avoid worst
case results. Other usages of clustering ensembles include improving scalability by
performing clustering on subsets of data in parallel and then combining the results,
and data integration when data is distributed across multiple sources [Jain 2007].

There are two main steps in a clustering ensemble: generation and consensus. In the
generation step, several approaches are used [Vega-Pons and Ruiz-Shulcloper 2011]:
different clustering algorithms, a single algorithm with different parameter initializa-
tions, different object representations, different object projections, and different sub-
sets of objects.

In the consensus step, several approaches are used: relabeling and voting, Mu-
tual Information (MI), co-association based functions, finite mixture models, a
graph/hypergraph partitioning approach, and others.

The relabeling and voting approach is also called the direct approach. It finds the
correspondence of the cluster labels among different clustering results and then uses
a voting method to determine the final cluster label for a data object. Examples are
as follows. BagClustl [Dudoit and Fridlyand 2003] applies a clustering procedure to
each bootstrap sample and obtains the final partition by plurality voting so that the
majority cluster label for each data object determines the final cluster membership.
BagClust2 [Dudoit and Fridlyand 2003] introduces a new dissimilarity matrix which
contains the proportion of time each pair of data objects were clustered together in the
bootstrap clusters. It then performs clustering on the dissimilarity matrix to obtain
the final partition.

The MI approach uses MI to measure and quantify the statistical information shared
between a pair of clusterings. It can automatically select the best clustering method
from several algorithms. Examples are as follows. A Genetic Algorithm (GA) clus-
tering ensemble [Azimi et al. 2007] uses a GA to obtain the best partition and the
co-association function as the consensus function. It determines fitness function pa-
rameters based on co-association function values. The information theory based GA
clustering ensemble [Luo et al. 2006] uses a GA to find a combined clustering by min-
imizing an information-theoretical criterion function. The generalized MI clustering
ensemble [Topchy et al. 2003] introduces a new consensus function using a general-
ized mutual information definition. The consensus function is related to the classical
intraclass variance criterion.

The co-association based functions approach is also called the pair-wise approach. It
uses a co-association matrix in the consensus step. Examples are as follows. Cluster-
fusion [Kellam et al. 2001] first generates an agreement matrix with each cell contain-
ing the number of agreements amongst clustering methods and then uses the matrix
to cluster data objects. Voting-k-Means [Fred 2001] transforms data partitions into a
co-association matrix with coherent association mappings. It then extracts underly-
ing clusters from this matrix. Evidence accumulation-based clustering [Fred and Jain
2002] maps data partitions created by each individual clustering into a new similarity
matrix, based on voting. It then uses the single link algorithm to extract clusters from
this matrix.

Finite mixture model approach assumes that the probability of assigning a label to a
data object is based on a finite mixture model or that the labels are ‘modeled as random
variables drawn from a probability distribution described as a mixture of multivariate
component densities’ [Vega-Pons and Ruiz-Shulcloper 2011]. It obtains the consensus
clustering result by solving a maximum likelihood estimation problem. Mixture model
clustering ensemble [Topchy et al. 2004] uses a probabilistic model of consensus based
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Fig. 8. Ensemble Clustering [Tam-On et al. 2012]

on a finite mixture of multinomial distributions in a space of clusterings. It finds a
combined partition by solving the corresponding maximum likelihood problem with
the EM algorithm.

The graph/hypergraph partitioning approach considers the combination problem as
a graph or hypergraph partitioning problem. Methods taking this approach differ in
how they build a (hyper)graph from the clusterings, as well as how they define the
cuts on the graph to obtain the consensus partition [Vega-Pons and Ruiz-Shulcloper
2011]. Examples are as follows. METIS [Karypis and Kumar 1998] is a multi-level
graph partitioning system. It collapses vertices and edges of the graph, partitions the
resulting coarsened graph, and then refines the partitions. SPEC (spectral graph par-
titioning algorithm) [Ng et al. 2001] tries to optimize the normalized cut criterion. It
treats the rows of the largest eigenvalues matrix as multiple dimensional embeddings
of the vertices of the graph and then uses k-means to cluster the embedded points.
CSPA (Cluster based Similarity Partitioning Algorithm) [Strehl and Ghosh 2002] first
creates a graph based on a co-association matrix, and then performs METIS cluster-
ing on the graph. HGPA (Hypergraph Partitioning Algorithm) [Strehl and Ghosh 2002]
uses a hyperedge in a graph to represent each cluster. It then uses minimal cut algori-
thms such as HMETIS [Karypis et al. 1999] to find good hypergraph partitions. MCLA
(Meta Clustering Algorithm) [Strehl and Ghosh 2002] determines soft cluster mem-
bership values for each data object by using hyperedge collapsing operations. HBGF
(Hybrid Bipartite Graph Formulation) [Fern and Brodley 2003] constructs a bipartite
graph where data objects and clusters are both modeled as vertices. It later partitions
the bipartite graph with an appropriate graph partitioning method.

Other approaches are as follows. The cumulative voting consensus method [Ayad
and Kamel 2008] solves the cluster label alignment problem by using cumulative vot-
ing, where a probabilistic mapping between labels is computed. Bipartite Merger and
Metis merger [Hore et al. 2009] are approaches for merging an ensemble of clustering
solutions using sets of cluster centers. They are highly scalable and provide compet-
itive results. Weighted consensus clustering [Li and Ding 2008] weights each input
clustering. It determines weights in a way so that the clusters are better separated.
Bayesian Cluster Ensembles [Wang et al. 2011] takes a Bayesian approach to combine
clusterings. It uses a variational approximation based algorithm for learning. This
way, it is able to avoid the cluster label correspondence problems.

Figure 8 shows an example of ensemble clustering.
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3.9.6. Multi-objective Clustering:. Conventional clustering algorithms use a single clus-
tering objective function only, which may not be appropriate for the diversities of the
underlying data structures. Multi-objective clustering uses multiple clustering objec-
tive functions simultaneously. Such methods consider clustering as a multi-objective
optimization problem [Ferligoj and Batagelj 1992].

Examples are as follows. FCPSO (Fuzzy Clustering-based Particle Swarm Optimiza-
tion) [Agrawal et al. 2008] uses an external repository to save nondominated particles
during the search process and a fuzzy clustering technique to manage the size of the
repository. It also uses a fuzzy-based iterative feedback mechanism to determine the
compromised solution among conflicting objectives. Evolutionary Multiobjective Clus-
tering [Handl and Knowles 2004] and MOCK (MultiObjective Clustering with auto-
matic k-determination) [Handl and Knowles 2007] use an evolutionary approach to
solve the multi-objective problem in clustering. They are based on a multi-objective
evolutionary algorithm named PESA-II (Pareto Envelope-based Selection Algorithm
version 2) [Corne et al. 2001] to optimize two complementary clustering objectives.
Multi-objective real coded genetic fuzzy clustering [Mukhopadhyay and Maulik 2011]
aims to optimize multiple validity measures simultaneously. It encodes the cluster cen-
ters in its chromosomes while optimizing the fuzzy compactness within a cluster and
fuzzy separation among clusters. EMO-CC (Evolutionary MultiObjective Conceptual
Clustering) [Romero-Zliz et al. 2008] combines evolutionary algorithms with multi-
objective optimization techniques and relies on the NSGA-II multi-objective genetic
algorithm [Deb et al. 2002]. It can discover less obvious but informative data associa-
tions.

3.9.7. Semi-supervised Clustering:. Semi-supervised clustering provides limited super-
vision to unsupervised clustering. There are many cases when some knowledge about
the data is available such as the constraints between data objects or cluster labels for
some data objects. Such knowledge can be used to guide the clustering process. There
are several approaches for semi-supervised clustering: similarity-adapting methods,
search-based methods, and other methods.

Similarity-adapting methods use a similarity measure which is adapted to make the
available constraints more easily satisfied [Grira et al. 2005]. Examples are as fol-
lows. Distance metric learning based clustering [Xing et al. 2003] learns a distance
metric based on examples of similar pairs of data objects in the input space using
convex optimization. Space-level constraints based clustering [Klein et al. 2002] ex-
ploits space-level implications based on instance-level constraints. It uses an all-pairs-
shortest-paths algorithm to adjust the distance metric.

Search-based methods modify the clustering algorithm itself to use the available
constraints or labels to guide the search for an appropriate clustering [Grira et al.
2005]. Examples are as follows. Seeded-K Means and Constrained-K Means [Basu
et al. 2002] generate initial seed clusters based on labeled data. The latter also gen-
erates constraints from labeled data and guides the clustering process using those
constraints. Semi-Supervised Clustering Using Genetic Algorithms [Demiriz et al.
1999] modifies k-means clustering to minimize within-cluster variance and a measure
of cluster impurity. Clustering with Instance-level Constraints [Wagstaff and Cardie
2000] incorporates hard constraints using a modified version of Cobweb (covered in
Section 3.7.4) which partitions the data.

Other methods include the probabilistic semi-supervised clustering with constraints
method [Basu et al. 2006], which derives an objective function from the joint prob-
ability defined over the Hidden Markov Random Field model and performs semi-
supervised clustering by minimizing this object function.
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4. APPLICATIONS OF CLUSTERING IN CANCER SUBTYPING

The recently-developed DNA microarray technologies [Eisen and Brown 1999; Lip-
shutz et al. 1999], which can measure the expression levels of tens of thousands
of genes simultaneously, offer cancer researchers a novel method to investigate the
pathology of cancers from a molecular angle. Under such a systematic framework,
cancer types or subtypes can be identified through the corresponding gene expression
profiles. Research on gene expression profile-based cancer type recognition has already
attracted numerous efforts from a wide variety of research communities [McLachlan
et al. 2005; Xu and Wunsch 2005]. Investigations on leukemia [Golub et al. 1999],
lymphoma [Alizadeh et al. 2000], colon cancer [Alon et al. 1999], cutaneous melanoma
[Bittner et al. 2000], bladder cancer [Dyrskjgt et al. 2002], breast cancer [Perou et al.
2000], lung cancer [Garber et al. 2001], and others show very promising results. Su-
pervised computational methods, such as multi-layer perceptrons [Khan et al. 2001],
naive Bayes [Li et al. 2004a], support vector machines [Li et al. 2004b; Statnikov et al.
2005], semi-supervised Ellipsoid ARTMAP [Xu et al. 2007], and k-Top Scoring Paris
[Tan et al. 2005], have already been used in cancer diagnosis-oriented gene expression
data analysis.

In this section, we consider the situation in which we do not have labels for the
cancer samples. This assumption is reasonable with the requirement for discovering
unknown and novel cancer types or subtypes. In this case unsupervised learning or
cluster analysis [Xu and Wunsch 2005] is required in order to explore the underly-
ing structure of the obtained data and provide cancer researchers with meaningful
insights into the possible partitions of the samples.

Microarray data sets are generally generated from two types of platforms, single-
channel microarrays (e.g. Affymetrix) or double-channel microarrays (e.g. cDNA)
[Quackenbush 2001; Monti et al. 2003; Slonim 2002]. Measurements of Affymetrix
arrays are based on the number of RNA copies found in the cell sample, and measure-
ments of cDNA microarrays are based on the ratios of the number of copies in relation
to a control cell sample [De Souto et al. 2008]. Microarray data include mRNA gene
expression data and miRNA gene expression data.

Subtyping by microarrays is challenging due to the following reasons: a) There are
a large number of genes, but a relatively small number of samples. One of the major
challenges of microarray data analysis is the overwhelming number of measures of
gene expression levels compared with the small number of samples, which is caused
by factors such as sample collection and experiment cost. The number of genes are
usually in the thousands range, while the sample sizes are usually in the tens range.
This problem is well known as the ‘curse of dimensionality’ in machine learning, which
refers to the lack of data separation in high dimensional data space. When the dimen-
sions are high, the distance from a data object to the nearest neighbor data object
becomes indistinguishable compared with the majority of data objects [Berkhin 2002;
Beyer et al. 1999]. This effect becomes much worse when dimensions are greater than
15, and proximity based clustering becomes unreliable [Berkhin 2002]. b) It is impor-
tant to identify the most relevant genes. There are multiple steps to obtain microar-
ray data, due to several system or design issues, and each step may introduce noise.
Noise can obscure or mislead the underlying biological meanings, which is an impor-
tant reason why statistical tools are used to analyze microarray data, since they can
take the noise or variations into account. The noise can come from five phases of data
acquisition: microarray manufacturing, preparation of mRNA from biological samples,
hybridization, scanning, and imaging [Chowers et al. 2003]. And they can be classi-
fied into three major categories: biological - cells from different populations, tissues,
conditions, etc. experimental - defects of the spotting equipment, different hybridiza-
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tion conditions and dyes, different methods to make the arrays, to culture the cells, to
extract mRNA, etc. processing - errors related to numerical values collection such as
fluorescence scanning, image analysis, and intensity readout [Zhou 2003].

mRNA profiling has demonstrated its effectiveness at subtyping various cancers.
miRNA (short for MicroRNASs) profiling can be more accurate. Researchers have found
links between misregulated miRNAs and the genes that are affected in various cancer
subtypes [O’Day and Lal 2010]. miRNAs are small non-protein coding RNAs found
in animals and plants. The first miRNAs were discovered and characterized in the
early 1990s [Lee et al. 1993]. Since the early 2000s, miRNAs have been found to play
multiple roles in negative regulation in cells. The first cancer found to be associated
with miRNA deregulation and deletion was chronic lymphocytic leukemia [Calin et al.
2002]. Later on many miRNAs have been found to be related to more types of cancer
[Bottoni et al. 2005; Chan et al. 2005; Ciafre et al. 2005; Iorio et al. 2005; Johnson
et al. 2005; Karube et al. 2005; Metzler et al. 2004; Michael et al. 2003; Yanaihara
et al. 2006]. Since multiple subtypes of a disease may have similar patterns within
a single data type (i.e., mRNA or miRNA), both data types can be used together to
improve the accuracy of subtyping.

4.1. Clinical Applications

4.1.1. mRNA-based Applications. Golub used mRNA profiling of the expression of 6,817
genes in 72 leukemia samples as a test case for subtyping [Golub et al. 1999]. Us-
ing self-organizing maps (SOMs), leukemia samples were successfully grouped into
the known subtypes of acute myelogenous leukemia (AML) and acute lymphocytic
leukemia (ALL) without previous knowledge of these subtypes. The results showed the
feasibility of using gene expression alone to classify cancer and suggested a general
approach of classification for other types of cancer without using previous biological
knowledge.

Alizadeh used mRNA profiling to study 128 microarray analyses that contain 1.8
million measurements of gene expression from 96 samples of normal and malignant
lymphocytes [Alizadeh et al. 2000]. Using the hierarchical clustering approach, two
subtypes of diffuse large B-cell lymphoma (DLBCL) were identified: germinal center
B-like DLBCL, which is diverse in gene expression patterns, and activated B-like DL-
BCL, which is distinct at the molecular level. Patients with germinal centre B-like DL-
BCL had a significantly better response to current therapy and overall survival than
those with activated B-like DLBCL, which reflects tumor proliferation rate, different
state of the tumor, and different host/patient response.

Armstrong applied clustering technique of PCA on mRNA profiling of 8700 genes
from 72 leukemia samples and discovered mixed-lineage leukemia (MLL), a leukemia
subtype that is distinct from both AML and conventional ALL [Armstrong et al. 2002].
MLL is characterized by the mixed-lineage leukemia gene’s chromosomal transloca-
tion, and such patients have a decidedly poor prognosis and often have early relapse
after chemotherapy. The discovery of MLL as a distinct subtype is important to thera-
peutic success as well, since molecular markers differentially expressed by MLL com-
pared with both ALL and AML immediately suggest new and different molecularly
targeted treatment strategies for this treatment-resistant cancer subtype.

Bittner studied mRNA profiling of 6971 genes from 31 patients with malig-
nant melanoma, for which there were no accepted histopathological, molecular, or
immunohistochemical-marker defined subtypes [Bittner et al. 2000]. Hierarchical clus-
tering (agglomerative, average linkage) with Pearson correlation coefficients discov-
ered two potential subtypes. With in vitro assay experiments, the subtypes were asso-
ciated with different disease tissue invasion potential [Maniotis et al. 1999]. However,
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the patients in this study had uniformly poor prognosis, and future work is needed to
analyze the clinical relevance of observed subtypes.

Perou analyzed mRNA profiles of 8102 genes of 65 breast tumor specimens using a
hierarchical clustering approach [Perou et al. 2000]. Three subtypes were discovered
in this clinically highly heterogeneous tumor: the previously known Erb-B2, and two
others previously unknown, namely ER+(estrogen receptorpositive)/luminal-like and
basal-like. Due to the limited number of tumor specimens in this study, statistically
significant relationships between the discovered subtypes and clinical data are still to
be uncovered.

Lapointe profiled mRNA gene expression of 26,260 genes in 62 primary prostate tu-
mors and 9 lymph node metastases and identified three robust subtypes of prostate
tumors using a two-way hierarchical clustering technique on 5153 genes based on dis-
tinct gene expression patterns [Lapointe et al. 2004]. Subtype I is the clinically least
aggressive subgroup, subtype II is the second clinically aggressive subgroup, and sub-
type III is the most clinically aggressive subgroup, including most of the metastasis
cases in this study. These tumor subtypes may provide a basis for improved prognosti-
cation and treatment decision.

Liang performed agglomerative hierarchical clustering on mRNA profiles of 1800
genes from 32 samples including Glioblastoma multiforme (GBM) and normal brain
[Liang et al. 2005]. Two molecularly distinct subtypes of GBM were identified, and
their expression showed an obvious difference in a group of genes correlated with sur-
vival. Such finding may improve the accuracy of prognostic predictions and facilitate
the development of optimized therapies for each subtype.

Laiho showed that mRNA profiling of 7928 genes from 37 colorectal carcinoma (CRC)
samples separated serrated CRCs and conventional CRCs using hierarchical cluster-
ing [Laiho et al. 2006]. This study was able to provide firm molecular evidence for a
previously underrecognized route leading to CRC, which is a serrated neoplasia path-
way. Much clinical and pathological evidence suggested that serrated CRCs may be
more aggressive than conventional CRCs. Establishing serrated CRCs as a biologi-
cally distinct CRC subtype represents further discovering of the molecular subtypes
of CRCs. In the long term, understanding the molecular basis of serrated CRCs may
contribute to the development of treatment options specifically for this tumor subtype.

Wilkerson detected four lung squamous cell carcinoma (SCC) subtypes from mRNA
expression data totaling 2307 genes from 382 SCC patients using Consensus Cluster-
ing in the ConsensusClusterPlus software package by Bioconductor [Monti et al. 2003;
Wilkerson et al. 2010; Wilkerson and Hayes 2010]. The four lung SCC subtypes are:
primitive, classical, secretory, and basal. These subtypes were associated with tumor
differentiation as well as patient gender. The primitive subtype had the shortest sur-
vival and can be used as an independent predictor for survival outcome. The expression
profiles of the four subtypes showed different biological processes which may suggest
different pharmacologic interventions.

Lei identified 3 major subtypes among mRNA expression data of 35 genes from 248
gastric tumors using a robust method of unsupervised clustering, consensus hierarchi-
cal clustering with iterative feature selection [Lei et al. 2013]. The 3 subtypes of gas-
tric adenocarcinoma are: proliferative, metabolic, and mesenchymal. These subtypes
have differences in molecular and genetic features, and respond differently to therapy.
Thus, such subtyping may be helpful in selecting specific and appropriate treatment
approaches for patients.

4.1.2. microRNA-based Applications. Lu performed computational analyses on 217 miR-

NAs from 334 mammalian samples, including multiple human cancers [Lu et al. 2005].
Hierarchical clustering with average linkage and Pearson correlation was performed.
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Over miRNA profiles of 73 ALL samples, three groups were separated: BCR/ABL-
positive samples and TEL/AML1 samples; T-cell ALL samples; and MLL samples.
Subtyping results based on miRNA profiles on ALL samples and other tumor sam-
ples showed higher accuracy when compared with mRNA profiles. These discoveries
demonstrate that using miRNA profiling for cancer diagnosis is very promising.

Blenkiron reported the clustering analysis of miRNA expression in primary human
breast tumors [Blenkiron et al. 2007]. Hierarchical clustering with average linkage
and Pearson correlation were used: ER- and ER+ tumors were recovered in over 137
miRNAs in 93 primary tumors samples; basal-like, HER2+, luminal A, luminal B or
normal-like were recovered in over 38 miRNAs in 51 tumor samples; luminal A or lu-
minal B tumors were recovered in over 9 miRNAs in 24 tumor samples. This study is
among the first integrated analysis using miRNA expression, mRNA expression and
genomic changes in human breast cancer. Furthermore, it demonstrates that miRNA
expression profiling has the potential to effectively classify breast cancer into prognos-
tic molecular subtypes.

Mattie analyzed miRNA profiling of 20 different breast cancer samples in three com-
mon subtypes: ErbB2+/ ER-, ErbB2+/ER+, and ErbB2-/ER+ [Mattie et al. 2006]. Hier-
archical clustering identified these clinically relevant subtypes based on their miRNA
expression patterns. The ErbB2+/ER+ subtype is a clinically troublesome subtype and
appears to be more resistant to all kinds of endocrine therapy [De Laurentiis et al.
2005]. Successfully identifying the ErbB2+/ER+ subtype based on miRNA profiling is
of substantial interest since mRNA profiling studies had not previously been able to
identify it.

Porkka studied the expression of 319 human miRNAs in samples from prostate can-
cer cell lines, prostate cancer xenografts and clinical prostate tissues [Porkka et al.
2007]. Hierarchical clustering with average linkage separated the 9 prostate carci-
noma tissue samples into two groups that quite accurately correspond to clinical stage
based subtypes: hormone-naive subtype and hormone-refractory subtype. Such results
indicate that miRNAs profiling has the potential to become a novel diagnostic and
prognostic tool for prostate cancer.

Oberg examined the expression of 735 miRNAs in 52 normal and 263 colon tumor
samples [Oberg et al. 2011]. There were three clinical subtypes in the tumor sam-
ples: 41 adenomas, 158 pMMR carcinomas and 64 dMMR carcinomas. Hierarchical
clustering with average linkage and Pearson’s dissimilarity matrix demonstrated that
normal colon tissue and the three tumor subtypes were all clearly separable. It is the
first report to show global miRNA (instead of only a few selected miRNAs) expression
differences can be used for colon tumor subtype diagnosis.

Yang analyzed 219 miRNA-associated genes from 459 ovarian carcinoma (OvCa)
samples [Yang et al. 2013]. Consensus k-means clustering identified two clusters. One
of the two clusters contained 172 OvCa cases and formed a tight cluster with higher
expression values of the miRNA-associated genes. The majority of patients in this clus-
ter had advanced stage OvCa and significantly shorter overall survival durations than
patients the other cluster.

4.2. Computational Experiments

4.2.1. mRNA-based Experiments. Xing and Karp presented CLIFF (CLustering via Iter-
ative Feature Filtering) [Xing and Karp 2001] and tested it with mRNA profiles of 72
leukemia samples and 7130 genes [Golub et al. 1999]. CLIFF is based on the ‘normal-
ized cut’ concept and iterates between sample partitioning and feature filtering until
converging into an appropriate partition of the leukemia samples and a set of informa-
tive genes. The result produced by CLIFF had high agreement to the original expert
labeling of the leukemia data set. Its final partition had two clusters. One of the clus-
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ters contains 44 ALL samples, and the other cluster contains 25 AML samples and 3
ALL samples.

Tang and Zhang proposed IPD (Iterative Pattern-Discovery) based on iterative sam-
ple clustering and irrelevant gene pruning [Tang and Zhang 2002], and tested it on
mRNA profiles of over 7129 genes in 72 leukemia patient samples [Golub et al. 1999].
During the initial partition phase, conventional clustering methods k-means or SOM
was used to group samples and genes into exclusive smaller groups. Based on Rand In-
dex values, the clustering results obtained by IPD approaches are consistently better
than the results obtained by applying k-means or SOM directly.

Getz et al. proposed CTWC [Getz et al. 2000] (covered in Section 3.8.4) and applied
it to a leukemia mRNA data set [Golub et al. 1999] and a colon cancer mRNA data set
[Alon et al. 1999]. The leukemia data set contains 72 samples; 47 samples are ALL,
and the other 25 samples are AML. The original set contained 6,817 genes. 1,753 genes
were selected for the CTWC experiment. In two iterations, 49 stable gene clusters
and 35 stable sample clusters were obtained. One of the gene clusters contained 60
genes, and when used as the feature set CTWC was able to separate the samples
into AML/ALL clusters. The colon cancer data set contained 40 tumor samples and
22 normal samples. The original set contained 6,500 genes. 2,000 genes were chosen
for CTWC experiment. In two iterations, 97 stable gene clusters and 76 stable sample
clusters were obtained by CTWC. Four of the gene clusters can partition the samples
into normal/tumor clusters.

Cheng and Church proposed an efficient biclustering algorithm [Cheng and Church
2000] and applied it to diffuse large B-cell lymphoma mRNA profiles containing 4026
genes and 96 conditions [Alizadeh et al. 2000]. The algorithm is based on multiple
row/column addition/deletions and successively extracts biclusters from the raw data
matrix until a pre-specified number of clusters has been reached. In comparison with
the results from hierarchical clustering used by Alizadeh et al., the first 100 biclusters
discovered by Cheng’s biclustering had only 10 conditions/genes exclusively from one
or the other primary cluster from hierarchical clustering.

Iam-on et al. presented LCE (Link-based Cluster Ensemble) [Iam-on et al. 2010]
and applied it to several mRNA profile data sets including: leukemial [Golub et al.
1999] (1,877 genes and 72 samples), leukemia2 [Golub et al. 1999] (1,877 genes and
72 samples), leukemia3 [Armstrong et al. 2002] (2,194 genes and 72 samples), brain
tumor [Nutt et al. 2003] (1,377 genes and 50 samples), central nervous system (CNS)
[Pomeroy et al. 2002] (1,379 genes and 42 samples), and hepatocellular carcinoma
(HCC) [Chen et al. 2002] (85 genes and 180 samples). LCE incorporates relations
within an ensemble and associations among clusters to improve clustering results.
Based on average validity measure over three validity indices (Classification Accuracy
(CA), Normalized Mutual Information, and Adjusted Rand Index) on the clustering re-
sults, LCE regularly performs better than other clustering methods including MULTI-
K [Kim et al. 2009], consensus clustering with hierarchical clustering [Monti et al.
2003], graph-based consensus clustering [Yu et al. 2007], Cluster based Similarity
Partitioning Algorithm [Strehl and Ghosh 2002], Hyper-Graph Partitioning Algorithm
[Strehl and Ghosh 2002], Meta-Clustering Algorithm [Strehl and Ghosh 2002], Hy-
brid Bipartite Graph Formulation [Fern and Brodley 2004], k-means, single-linkage,
complete-linkage, and average-linkage. Based on the CA validity index, LCE achieved
over 74% accuracy on leukemial, over 70% accuracy on leukemia2, over 83% accuracy
on leukemia3, over 61% accuracy on brain tumor, over 63% accuracy on CNS, and over
84% accuracy on HCC.

4.2.2. microRNA-based Experiments. Lock and Dunson proposed Bayesian Consensus
Clustering (BCC) [Lock and Dunson 2013] and tested it with miRNA profiles of 348
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breast cancer samples and 423 miRNAs [Koboldt et al. 2012]. This approach is a flexi-
ble and computationally scalable Bayesian framework, which estimates the consensus
clustering and the base clusterings at the same time. BCC clustering results vs. TCGA
identified comprehensive subtypes matching matrix show that the two partitions have
a significant but weak association.

Li et al. proposed a subtyping method using the CTWC algorithm and Super-
Paramagnetic Clustering (SPC) [Li et al. 2014] and tested it with the miRNA profiles
of 71 breast cancer patients and 13 miRNAs [Blenkiron et al. 2007]. This method itera-
tively partitioned the sample and feature space using the two-way super-paramagnetic
clustering technique and identifies the final optimal miRNA clusters. Using a subset
of the miRNAs as the feature set, the five subtypes previously classified by mRNA ex-
pression profiling [Blenkiron et al. 2007] were identified successfully by CTWC. The
clinical significance of the identified subtypes were verified using Kaplan-Meier sur-
vival analysis [Kopycka-Kedzierawski and Billings 2004].

5. CHALLENGES

Advances in microarray technology and decreasing costs are making gene expression
data increasingly available and affordable. Research has shown that classifying can-
cers using gene expression can discover previously undetected and clinically signifi-
cant subtypes of cancer [Van’t Veer and Bernards 2008]. However, there are still many
challenges.

5.1. Clinical Challenges

Complexities in cancers and cancer subtypes Cancers and cancer subtypes are
complicated diseases. Especially for most solid tumors, many different cell types are
involved in a tumor, and tumor cells themselves are morphologically and genetically
diverse [Perou et al. 1999]. These features may make the conventional clustering ap-
proaches problematic or inadequate, so novel clustering approaches are needed to ad-
dress such complexities.

Experimental issues Gene expression studies require careful experimental design
to avoid experimental errors. This is especially important for studying solid tumors.
For example, biopsy specimens might have different proportions of surrounding stro-
mal cells, which may cause clustering results reflecting the stromal contamination,
rather than the underlying tumor. So, additional techniques are needed to improve
such problems. Microscopic examination of tumor samples to make sure that the tu-
mor cells are comparable and purified is helpful, as well as computational analysis
methods that can exclude surrounding stromal cells.

5.2. Computational Challenges

Curse of Dimensionality Gene expression data sets generally contain small num-
bers of samples (in tens) and large numbers of genes (in hundreds or thousands). Most
conventional clustering techniques need a large number of samples and a small num-
ber of variables to achieve robust performance. Approaches are needed to improve the
clustering results on such sparse data sets.

Noise There are multiple sources of noise introduced in microarray experiments,
including varying cellular composition among tumors, genetic heterogeneity within
tumors due to selection and genomic instability, differences in sample preparation,
nonspecific cross-hybridization of probes, and differences between individual microar-
rays. In general, biologic variation is the major source of variation in gene expression
experiments. The noise may obscure clustering results, especially in those approaches
based on distance functions. Techniques are needed to improve clustering approaches
so that they are more robust to noise.
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Number of subtypes For subtyping in clinical studies, the number of subtypes are
unknown or uncertain. However, in many clustering algorithms this number needs to
be specified by the user, so techniques are needed to estimate or infer the number from
the data.

Clinical or biologic meanings Gene expression data sets are complex and may
contain hundreds or thousands genes. In a complex data set, many different relation-
ships and patterns are possible [Ramaswamy and Golub 2002]. The patterns discov-
ered by clustering may not necessarily be clinically or biologically meaningful. Tech-
niques are needed to uncover and identify clusters of clinical or biologic interest.

Statistical significance An important issue with any analytic approach is the sta-
tistical significance of observed correlations. A typical microarray experiment produces
expression data for thousands of genes from a relatively small number of samples, thus
gene-cluster correlations can be identified by chance alone [Ramaswamy and Golub
2002]. Techniques are needed to determine the statistical significance, such as permu-
tation testing.

Knowledge integration Knowledge is obtained from multiple test techniques:
some from conventional tests and some from molecular diagnostic tests. However a
single recommendation is needed for the oncologist to treat the patient. Approaches
are needed to integrate these knowledge items to produce an improved single recom-
mendation. Algorithm selection There are a large number of clustering algorithms
available that may be used for clustering gene expression data, however there is no
single best algorithm that performs best in all aspects. Selecting the most appropriate
algorithm for a given gene expression data set and a given analysis goal is critical in
success application. Without automatic selection of the most appropriate algorithm,
researchers usually select a few promising clustering algorithms and compare their
results. Approaches are needed to improve algorithm selection.

Other challenges Besides the above challenges, researchers are also facing the
following challenges: time variation during specimen preparation, integration of data
sets created by different laboratories using different technologies, overlapping clusters,
presence of irrelevant attributes, and lack of prior knowledge.

6. CONCLUSIONS AND FUTURE PERSPECTIVES
6.1. Conclusions

In this paper we reviewed classical and state of the art clustering algorithms in the
communities of computer science, machine learning, statistics, etc. We also reviewed
historic and state of the art cancer subtyping techniques. Clustering algorithms that
have been applied to mRNA or miRNA expression data based cancer subtyping with
promising results, and challenges associated with molecular cancer subtyping were
presented as well.

However, given the many choices of available clustering algorithms, there is no
single algorithm that performs best in every validation matrix [Kuncheva and Had-
jitodorov 2004]. The performance of a given clustering algorithm and a validation ma-
trix is dependent on data characteristics and the application [Jiang et al. 2004].

6.2. Future Perspectives

Different granularities Users often desire different cluster granularity for different
subsets of data. For example, users may prefer small and tight clusters for some genes
but need only coarse data structure for other genes. However, most existing clustering
algorithms provide the same cluster granularity for all genes. It would be more helpful
for them to provide a flexible representation of the data cluster structure and let the
user to find the answer based on several different granularity requirements.
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Interactive semi-supervised feature Prior to clustering, much information about
the data set is unknown, but some knowledge is often available. For example, some ex-
perimental conditions are known to be correlated. If a clustering algorithm can provide
the options to interactively integrate such partially available knowledge into the clus-
tering process, it may produce more biologically meaningful results [Pirim et al. 2012].

Handling high dimensional / low sample data Although many clustering tech-
niques have been used for gene expression data, most of these techniques perform well
only on data with a large number of samples and a small number of dimensions. Can-
cer gene expression data sets generally contain a small number of samples with a large
number of dimensions or genes, since many human cancer studies use costly or rare
clinical specimens and are difficult to repeat. Future advances will require improved
clustering techniques better adapting to this type of data.

Easy to use software In order to make routine clinical use of clustering tools a
reality among medical and biological professionals, the software needs to be easy to
use. For example, the software should be able to determine the number of clusters
automatically based on the data properties; the software should avoid needing other
user-specific parameters or should provide effective guidance to determine those pa-
rameters; the software should provide good visualization and domain-specific inter-
pretation for the clustering results; the software should be able to extract useful and
relevant information from the data to solve users’ problems.

Robustness Noise can be introduced in every step of the microarray experiments
due to the nature of microarray technology. It is not realistic to count on the data to be
‘pure and uncontaminated’. Noise and outliers can be present in the data during mea-
surement, storage, and processing. The clustering algorithm should be able to better
detect and remove noise and outliers, or not be affected by them.

Arbitrary cluster shapes Many existing clustering algorithms form clusters with
regular shapes, such as hyperspheres or hyper-rectangles. Gene expression data gen-
erally have complex underlying data structures and are not always regular cluster
shapes. Cluster algorithms should be able to better detect arbitrary natural cluster
shapes rather than confine the clusters to some particular shape.
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