2

Functions: Definitions

Function declaration/ function prototype

return_data_type function _name (list of the argument data types);

· Return_data_type can be void (no value is returned) or have a data type of the value that is returned by the function (i.e. int, double, float, char, etc …)
· Function_name is usually a verb following by one or two words that describe the purpose of the function. For example: CalculateAverage, PrintSum, FindMaxMin.
· List of arguments – specifies the number, order and data types of the arguments expected by a function. Order is important! It is not nesessary to provide the names for the arguments here, but it is okay if you do.
· Do not forget the semicolon at the end!

· Function prototypes are usually placed after all #includes, but before the main function.
Examples:

#include <iostream>
#include <cmath>

//function prototypes

int FindMin (int, int); // or we could write it as

int FindMin(int num1, int num2);

char CalulateGrade (float score);

float Calualate_Area (float , float, float);

int power(int, int);

// beginning of main function follows
int main()
{

…

Function Definition

function header

{

statements;

return if needed;

}

· Function header is basically the same as the function prototype, BUT it MUST contain the names of the arguments passed to the function and DOES NOT end in semicolon.
Function header :

return_data_type function _name (list of the argument data types and their names)
· The argument names in the function header are called formal parameters.

· If the function return_data_type is not void, it must have a line
return expression;

where “expression” is of the same data type as the return_data_type of the

 function.

Example:

float FindArea_Square (float); // function prototype

// function definition:

float FindArea_Square (float side) //function header, “side” is a formal parameter.

{

float area;

area = side*side;

return area;

}

Function Call

Function_name (data passed to function);

· Data passed to the function must be inclosed in parentheses.

· Do not put data types in parentheses.

· The order, number and data types of the values passed to the function must match function prototype.

When a function call is executed

· actual parameters are passed to the formal parameters according to positions, left to right then

· control transfers to the first executable statement in the function body

· when last statement in the function executed, control returns to the point from which function was called

To invoke a void function - use its name as a statement, with actual parameters in () following the function name.

Example:

float FindArea_Square (float); // function prototype
void main ()

{

int Area_Square;

int length_side;

cout<<”Enter the length of the side”;

cin >>length_side;

Area_Square = FindArea_Square (length_side); //function call

cout<<”\nThe area is “<< Area_Square;

}

//function definition

float FindArea_Square (float side) //function header
{

float area;

area = side*side;

return area;

}

NOTE: Make sure you use different names for arguments and formal parameters!!! It’s not a requirement of C++ but will help keep you from getting confused right now.
Scope -- Local and Global Variables

The scope of a variable is the portion of the program where the identifier is usable.

local variable - declared within a block and not accessible outside of that block

· occupies memory space only while the function is executing

· when function called - memory space created for its local variables

· when function returns - local variables are destroyed

· each function call is independent of every other call to same function

· must initialize the local variables within the function itself

· cannot use local variables within a function to store values between calls to the function

A local variable has scope beginning from point of declaration to the end of the block it's declared within.

global variable - declared outside all functions- access from within all functions

· not good programming practice to use

· occupy memory space during entire program execution

· can generate unanticipated side effects

A global variable has scope extending from the point of declaration to the end of the entire file containing the program code
We will NOT be using global variables this semester!

name precedence or name hiding - when a function declares a local identifier with the same name as a global identifier, the local identifier takes precedence within the function.

User-given name that identifies the function

Data types of the values expected by the function

Semicolon!

Type of the data returned by the function

Function header

No semicolon!!!

Function body

Arguments, or actual parameters

Argument, or actual parameter

Formal parameter

1
1

