TIDBITS
Some special symbols

Math symbols:
+
-
*
/
%
add
sub
mult
div
mod

Punctuation symbols:

,
;
comma separates items in a list

Semicolon used to end a C++ statement

Ex:
int x,y,z;

Reserved words (keywords):
int, float, char, void, return,…you’ll learn a lot more
Always lower case, cannot be used for anything other than their intended use.

Identifiers:
names the programmer gives things that appear in programs such as:

Variables, constants, functions
- give them self-documenting names (i.e. meaningful names like average – as opposed to x)
Consists of letters, digits, the underscore character (_) and MUST begin with a letter or underscore.

NOTE; no other symbols (like # * &) are valid in identifiers.

Can be any length, can be limited by specific system. On our systems we are limited to 32 characters (if memory serves me).

C++ is case sensitive

The data types we’ll be working with most:
Integral – a data type that deals with integers (characters fall in this category also)

char
- character

‘a’, ‘0’, ‘B’, ‘+’… single char only

int
- integer

-234, 0, 59

bool
- Boolean
(true, false)logical type

Floating-point
- a data type that deals with decimal numbers (real numbers)

float

- single precision

double

- double precision (more precision)
our compiler will give you a warning message if you use a float instead of a double – you can ignore this message or you can always use a double.

+ addition

- subtraction

* multiplication

/ division

above work with both integral and float types

we’ll talk about integer division 5/2 = 2 not 2.5 5.0 / 2 = 2.5 (5.0 is a float)

% modulus operator

works only with integral type

The assignment operator

=

variable = some expression

Assignment operator is always applied right to left, a single variable must appear on the left hand side.

Ex:

int x, y, z, w;

(the following are examples of assignment statements)

x = 2*3;

w = 2*x +4;

x = z/w + (3-x);
Remember to declare your variables before using them!

float x;

// before using x

C++ does not automatically initialize variables (we don’t know what’s in that memory location until we put something there)
AND before using the variable x on the right hand side of an assignment statement - - -

make sure it has been initialized – it has a value in it that you know about!

x = 0;

y = x;

or

cin>>x;

y = x;

If you don’t initialize it and just:

y = x; // you don’t have any idea what you placed in the variable y – we call it garbage!

Read data from keyboard:

cin >> variable1 >> variable2;

is the same as

cin >> variable1;

cin >> variable2;

When data is input in a program, the items are usually separated by blanks, lines or tabs. The last items has to have a carriage return following it.

Write data to the screen

cout << variable1 << variable2;

is the same as

cout << variable1;

cout << variable2;

Remember if you want to write a carriage return (line feed) on the screen you use endl

cout << endl;

cout << variable1 << endl;

We never use endl with cin!!!!!!!!!!!!

Comments

// anything following the ‘//’ to the end of the line is a comment;

cout << “hi”; // a statement can be followed by a comment

/* a multi line comment can be done

using this other type of comment delimiter */
The character \ is called the escape character

The sequence \n is called the newline escape character
We will tend to use endl instead of \n because it flushes the output buffer so we know our output will be written to the screen right away.
A program template

#include <iostream> // this is not a statement so no ; it is a preprocessor directive

using namespace std;

// this is a statement

int main()

// this is a function heading – again not a statement

{

// the beginning of the function

cout << “Hello” << endl;

// cout statement

return 0;

// return statement

}

// end of the function

placing a ; after the main() would cut the head of the function off from the body – not good!

