PAGE

Passing 1D arrays to functions.

· In C++ arrays can only be reference parameters.

· It is not possible to pass an array by value. Therefore, the ampersand (&) is omitted.

· What is actually passed to the function, when an array is the formal parameter, is the base address of the array (the memory address of the first element in the array). This is true whether the array has one or more dimensions.

· When declaring a 1-D array parameter, the compiler only needs to know that the parameter is an array; it doesn’t need to know its size. The complier will ignore it, if it is included. However, inside the function we still need to make sure that only legitimate array elements are referenced. Thus a separate parameter specifying the length of the array must also be passed to the function.

 int ProcessValues (int [], int); // works with ANY 1-d array

Example:
#include <iostream>
using namespace std;
int SumValues (int [], int); //function prototype
void main()
{
 int Array[10]={0,1,2,3,4,5,6,7,8,9};

 int total_sum;

 total_sum = SumValues (Array, 10); //function call

 cout <<”Total sum is “ <<total_sum;

}

int SumValues (int values[], int num_of_values) //function header

{

int sum = 0;

for(int i=0; i < num_of_values; i++)

sum+=values[i];

return sum;

}

· Note that we are using only the name of the array in the function call: Array, not Array[10] .

Since arrays are always passed by reference, all changes made to the array elements inside the function will be made to the original array. The only way to protect the elements of the array from being inadvertently changed, is to declare an array to be a const parameter.

Example:

#include <iostream>

using namespace std;

int SumValues (const int [], int); //function prototype

int main()

{

 const int length =10;

 int Array[10]={0,1,2,3,4,5,6,7,8,9};

 int total_sum;

 total_sum = SumValues (Array, length); //function call

 cout <<”Total sum is “ <<total_sum;

 return 0;

}

int SumValues (const int values[], int num_of_values) //function header
{

 int sum = 0;

 for(int i=0; i < num_of_values; i++)

 sum+=values[i];

 return sum;

}

· Since you do not intend to change the values of an array in the above function, make it a const parameter to protect yourself. The original array (in the main) should not be const, or you wouldn’t be able to make any changes to it at all.

· You do not however need to make the length of an array a const parameter, since it is passed by value and any changes to it will not affect the actual parameter. The compiler will not allow you to pass it by reference if it was declared as a const int in the main ().

PAGE
1

