Computer Networks 81 (2015) 178-200

Contents lists available at ScienceDirect

gm:;s

Computer Networks ks

journal homepage: www.elsevier.com/locate/comnet

Graph Based Induction of unresponsive routers
in Internet topologies

@ CrossMark

Hakan Kardes®, Mehmet Hadi Gunes ™", Kamil Sarac ¢

?Inome Inc., United States
b University of Nevada Reno, United States
€ University of Texas at Dallas, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 8 July 2013

Received in revised form 27 December 2014
Accepted 16 February 2015

Available online 23 February 2015

Keywords:

Internet topology measurement
Internet mapping

Unresponsive router resolution

Internet topology measurement studies utilize traceroute to collect path traces from the
Internet. A router that does not respond to a traceroute probe is referred as an unrespon-
sive router and is represented by a ““’ in the traceroute output. Unresponsive router resolu-
tion refers to the task of identifying the occurrences of “*’s that belong to the same router in
the underlying network. This task is an important step in building representative tracer-
oute-based topology maps and obtaining an optimum solution, i.e., minimal graph under
trace and distance preservation conditions, is shown to be NP-complete. In this paper,
we first analyze the nature of unresponsive routers and identify different types of unre-
sponsiveness. We also conduct an experimental study to understand how the responsive-
ness of routers has changed over the last decade. We then utilize a novel graph data
indexing approach to build an efficient solution to the unresponsive router resolution prob-
lem. The results of our experiments on both synthetic and sampled topologies show a sig-
nificant improvement in accuracy and effectiveness over the existing approaches. Our
experiments also demonstrate that applying IP alias resolution along with unresponsive
router resolution results in a final topology closer to the original topology.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Understanding Internet topology is valuable for com-
mercial, social, and technical purposes. Knowledge of the

Internet has become an important part of our daily
interactions and keeps expanding around the world. As
the largest man-made complex network, it has been grow-
ing with no central authority. Each network is built by a
different AS for possibly different purposes, e.g., small local
campuses to large transcontinental backbone providers. As
each AS grows its own network based on local economic
and technical objectives, a single or few ASes are not rep-
resentative of the Internet.

* Corresponding author.
E-mail addresses: hkardes@cse.unr.edu (H. Kardes), mgunes@unr.edu
(M.H. Gunes), ksarac@utdallas.edu (K. Sarac).

http://dx.doi.org/10.1016/j.comnet.2015.02.012
1389-1286/© 2015 Elsevier B.V. All rights reserved.

network graph helps in understanding the large scale char-
acteristics and dynamics of the Internet [1]. For instance,
such graphs are needed in analyzing the topological char-
acteristics of the Internet and designing topology gen-
erators that can produce realistic synthetic topologies [2].
Researchers have also indicated that the deployment of
networks by content providers has a flattening effect on
the hierarchical AS structure [3]. Knowledge of the under-
lying networks help in path exploration using new
approaches [4] and optimize data delivery [5].
Additionally, analysis of the Internet topology is useful to
develop failure detection measures, network planning,
and optimal routing algorithms [G]. Researchers test new
protocols and systems using simulations or emulations

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.02.012&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2015.02.012
mailto:hkardes@cse.unr.edu
mailto:mgunes@unr.edu
mailto:ksarac@utdallas.edu
http://dx.doi.org/10.1016/j.comnet.2015.02.012
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

H. Kardes et al./ Computer Networks 81 (2015) 178-200 179

[7,8], but more realistic results can be obtained when real
topologies are utilized in the analysis [9,10].

Internet service providers (ISPs) keep their topology
information confidential due to commercial and security
reasons. This policy introduces a practical challenge for
the research community and requires them to generate
measurement probes to sample the Internet topology at
various levels, including IP, link, router, point of presence
(PoP), and autonomous system (AS) levels. Most measure-
ment studies utilize traceroute [11] or its variations to col-
lect a large number of path traces from topologically
diverse set of vantage points. Traceroute relies on the TTL
expiration mechanism of routers to elicit responses from
routers between source and destination (see RFC 1393:
Traceroute Using an IP Option).

After collecting the path traces, the information needs
to be processed to build the corresponding topology map.
In particular at link, router and PoP levels, we need to (i)
verify correctness of the collected paths [12], (ii) identify
underlying tunnels [13], (iii) resolve IP addresses belonging
to the same router [14,15], (iv) infer IP addresses that are
connected over a common subnet link [16,17], and (v)
resolve unresponsive routers that are represented by “’s
in traceroute outputs [18]. The first task is due to the fact
that certain traffic engineering practices may cause tracer-
oute to return IP addresses that do not correspond to a real
end-to-end path in the network. Augustin et al. [19] pro-
pose Paris traceroute tool to address this problem. The sec-
ond task helps in identifying and addressing inaccuracies
due to tunneling techniques such as MPLS. Researchers
have developed approaches to identifying underlying tun-
nels [20,13]. The third task is due to the fact that routers
have multiple IP addresses that may appear in different
path traces. Without any resolution, each IP address is
treated as a potentially different router in the initial graph
and IP alias resolution is applied to identify the IP address-
es which belong to the same router. Several tools exist to
resolve alias IP addresses [14,15,21]. The third task, subnet
resolution, identifies subnet relations among IP addresses
and reveals connectivity that is not observed in collected
path traces [16,22,17]. The last task emerges due to the fact
that not all routers respond to traceroute probes during
topology collection and is the main focus of this paper.

All of these tasks are important for obtaining accurate
samples of the underlying network. The accuracy and com-
pleteness of these tasks significantly affects the accuracy of
the resulting topology maps [23-25]. Hence, topology
measurement studies should handle these tasks to obtain
representative topology maps. Moreover, when handling
these tasks, one needs to make decisions based on observa-
tions to infer the underlying topology. As the earlier deci-
sions affect the later ones, obtaining the most likely
topology under various conditions has been shown to be
NP-hard [26]. Several approaches have been proposed to
reduce the set of hypotheses in the decision making of
the resolution tasks [27,18,14,28,20].

A router that is unresponsive to measurement probes is
represented by a “*’ in traceroute output and the same rou-
ter may be probed multiple times in different traces. Even
though routers are expected to generate an ICMP message

indicating TTL expiration, it is not mandated (see RFC
1812: Requirements for IP Version 4 Routers). Moreover,
different protocols have different success rates in eliciting
a response [29]. Without any resolution, each occurrence
of *’ is treated as a potentially different router in the graph.
Unresponsive router resolution task focuses on identifying
the “’s belong to the same unresponsive router. In this
paper, we use the term unknown node to refer to a *’ in
the traceroute output and unresponsive router to refer to
the actual router that is represented by this unknown node
(i.e., by this “*). Similarly, we use the term known node to
refer to an observed IP address in the traceroute output
and responsive router to refer to the actual router that is
represented by this known node (i.e, by the IP
address(es)).

Depending on the number of unresponsive routers and
the topology collection scenario, the collected set of path
traces may include a large number of ‘*’s. For instance, let
us consider the Internet2 backbone presented in Fig. 1a
where squares represent the vantage points attached to
each router shown as a circle. Assume that the routers at
Washington,DC and SaltLake are configured to be unre-
sponsive and path traces are collected between all vantage
points. Under these assumptions, the topology that is con-
structed from the 36 path traces between 9 vantage points
would be as in Fig. 1b (with no resolution). The common
approach of pruning (see Section 4 for details) will produce
a graph as seen in Fig. 1c and leave artificial nodes that
needs to be further processed.

In this paper, we first analyze the nature of unrespon-
sive routers and identify different types of unresponsive-
ness. We observe that temporary unresponsiveness is an
important case that is omitted in previous studies. We also
investigate the responsiveness of routers to active network
measurements. Expanding our earlier work [29] on skitter
[30] data sets, we present the prevalence of unresponsive
routers in historical Ark [31] and iPlane [32] measurement
data sets.

We then introduce a Graph Based Induction (GBI)
approach, based on our earlier work [18], to resolve unre-
sponsive routers in traceroute based topology mapping
studies. In our work, we define a new induction approach
from the practical context of the unresponsive router
resolution problem and develop an efficient implementa-
tion. To this end, we first examine topology maps that are
constructed from traceroute data with unresponsive rou-
ters and identify a number of graph structures that are
formed among unknown nodes and their known neigh-
bors. We then use Structural Graph Indexing (SGI) to detect
these structures in the graph and reduce the unknown
nodes (i.e., the occurrences of “*’s) into their correspond-
ing unresponsive routers. We enhance our SGI [33]
approach to efficiently query constructed topology
graphs.

In our evaluations on synthetic topologies, we observe
that GBI has better resolution than previously proposed
Initial Pruning [34] and Neighbor Matching [35] approach-
es. Due to their high algorithmic complexity (see
Section 2), we did not compare GBI with graph minimiza-
tion [36], dimensionality reduction [37], and spectral

H. Kardes et al./ Computer Networks 81 (2015) 178-200

\ 7

Nyp

Cen ye

\L_ P Wi

;//_\ K \ L —/)
\;7 Sz

S

vp

(c) After Initial Pruning (of unresponsive nodes)

Fig. 1. Sample network.

embedding [38] approaches. We also showed that proper 33M traces, 9M unresponsive and 300K known
resolution of IP aliases improves the unresponsive nodes, (ii) Ark with 22.7 M traces, 11.4 M unresponsive
resolution. In addition, we demonstrate the feasibility of and 1.2 M known nodes, and (iii) Cheleby [39] with 15 M
our approach on datasets collected by (i) iPlane with traces, 7.2 M unresponsive and 1.2 M known nodes.

H. Kardes et al./ Computer Networks 81 (2015) 178-200 181

According to our study, the large volume of unrespon-
sive routers in collected Internet graph significantly affects
graph characteristics such as degree distribution, and clus-
tering coefficient of the graph (see Section 5.1). In order to
build more representative Internet maps, unresponsive
routers should be properly resolved. However, the massive
volume of unknown nodes in the collected data set intro-
duces challenges in building efficient solutions. For
instance, the iPlane datasets we use in our evaluations in
Section 3.2 has almost 67% of nodes as unknown in aver-
age. Hence, timely analysis of large scale data sets, current-
ly tens of millions of traces, requires efficient algorithms.

The rest of this paper is organized as follows: Section 2
summarizes the related work. Section 3 presents an
experimental study to understand the responsiveness of rou-
ters to active probing. Section 4 introduces our Graph Based
Induction approach. Section 5 presents our experimental
evaluations. Finally, Section 6 concludes the paper.

2. Related work
2.1. Router unresponsiveness

Active probing has increasingly been used to observe
different characteristics of the underlying network. Based
on the increasing need for active measurements, the
research community has developed large scale distributed
measurement platforms (e.g., skitter [30], Ark [31], iPlane
[32], Dimes [40], Cheleby [41], DipZoom [42], PlanetLab
[8], and TraceNET [43]) that are commonly used to conduct
measurement activities.

Most topology measurement studies utilize the well-
known Internet debugging tool traceroute [11] or its vari-
ants [19,44] to collect a large number of path traces from
a topologically diverse set of vantage points. Traceroute
returns a path from a local system to a given remote sys-
tem by tracing the routers in between. It uses TTL-scoped
TCP, UDP or ICMP based probe packets to elicit ICMP error
messages from the routers on the path. By collecting the
source IP addresses from the incoming ICMP packets,
traceroute returns the path as a sequence of IP addresses
each representing a router between the local system and
the remote destination.

Luckie et al. analyzed router responsiveness of TCP,
UDP, and ICMP based traceroute methods [45]. They found
that reachability of ICMP-based traceroute methods is
higher. ICMP-based methods also collect evidence of a
greater number of AS links. On the other hand, UDP-based
methods infer the greatest number of IP links, despite
reaching the fewest destinations. We had a similar analysis
in [29] that is updated in Section 3. In [29], we conducted
an experimental study to understand the responsiveness of
routers to active probing both from a historical perspective
and current practices. Our historical analysis revealed that
router and end-system responsiveness reduced during the
last decade. We also observed that ICMP based probes elic-
it the highest response rate while UDP based ones elicit the
lowest.

Broido et al. report that around 1/3 of probed paths con-
tain unresponsive, private, or invalid routers [46]. Most of

the early work in the area ignored this problem or used
simple heuristics to work around it. Cheswick et al. avoid
the problem by stopping a trace toward a destination on
encountering an unresponsive router on the path [47].
Thus, in this approach, they simply ignored the unrespon-
sive router problem. However, this causes loss of potential-
ly useful connectivity information as the path after an
unresponsive router is ignored. Broido et al. handle unre-
sponsive routers by replacing them either with arcs (to
connect the known routers at two ends) or with unique
identifiers to treat them as separate nodes [46]. This
approach also results in either loss of path information
from the probe result or inaccuracies in the resulting topol-
ogy maps. Bilir et al. merges same length sequence of
unknown nodes between the same pair of known nodes
with each other [34] (called as Initial Pruning in
Section 5.1). This approach provides limited resolution in
the resulting topology maps. Hence, considerable amount
of unresponsive routers remains unresolved.

Yao et al. formulate the unresponsive router resolution
problem as an optimization problem [36]. Their goal is to
build a minimum size topology by merging unknown
nodes under two conditions: (i) trace preservation, i.e.,
there should not be any routing loop due to merging two
unknown nodes and (ii) distance preservation, i.e, the unre-
sponsive router resolution process should not reduce the
length of a shortest path between any two nodes in the
resulting topology map. They prove that the optimum
topology inference under these conditions is NP-complete
and propose a heuristic to minimize the constructed topol-
ogy by identifying unknown nodes that, when merged, sat-
isfy both conditions. They evaluate their approach on a
sample 6Bone topology with only 1351 routers with few
of them set as unresponsive. The main limitation of this
approach is that it is not feasible for current data sets
due to its high algorithmic complexity of O(n>) where n
is the number of unknown nodes. Additionally, the claimed
distance preservation condition does not reflect the rout-
ing practices where the observed paths are not always
the shortest due to peering agreements between ASes.
Moreover, as the authors indicate, this paper made the
simplifying assumption that a router cannot have both a
known and an unresponsive interface address. While this
assumption was consistent with their experiment in the
context of the 6Bone, actual routers may behave unrespon-
sive through certain interfaces or under certain conditions
(see Section refsec:types for details).

Later, Jin et al. introduced a dimensionality reduction
approach that uses link delays or node connectivity as
attributes in the dimensionality reduction process [37].
The main limitation of this approach is also that it is not
feasible with an algorithmic complexity of O(n®) where n
is the number of nodes. In addition, the link delay based
approach is not practical as it ignores the difficulty of esti-
mating individual link delays from round trip delays in
path traces [35]. The authors also propose a simple neigh-
bor matching heuristic with a smaller time complexity, i.e.,
0O(n?). As the authors indicate in their paper, this approach
introduces a higher rate of false positives and false nega-
tives (see Section 5.1 for details).

182 H. Kardes et al./ Computer Networks 81 (2015) 178-200

Almog et al. proposed semi-supervised spectral embed-
ding of all nodes followed by clustering of the unknown
nodes in the projected space [38]. As the authors indicate,
the approach should be improved to be practical in large-
scale data sets. Moreover, it assumes that there is only
one unresponsive router between two known routers.
According to our analysis in Table 2, however, there are
considerable amount of unresponsive router chains and
the number of these chains has been increasing in recent
years. Additionally, they use a k-means clustering
approach to cluster the unresponsive routers which
requires the knowledge of the number of unresponsive
routers in the graph. Authors approximate the number of
the unresponsive routers in the graph but, according to
our study in Section 3, the number of unresponsive routers
and their distribution depends on the topology collection
approach. Thus, a general approximation technique which
will work for different topology maps is a challenge for this
approach.

Recently, Du et al. [48] developed an approach based on
the results of single-source traceroute under the assump-
tions that every router supports source routing, every
traceroute packet passes through a same path each time,
and all the connections have the same bandwidth. The
main weakness of this approach is that it is based on sin-
gle-source trace route as topology collection systems use
multiple vantage points.

Finally, Pignolet et al. [49] theoretically investigated the
topology inference with unresponsive routers. Authors
focused on the network properties of inferrable topologies
using pairwise end-to-end measurements. They present a
formal theory of topology inference by proposing basic
axioms (i.e., assumptions on the trace set) that are used
to guide the inference process without the cooperation of
some nodes along these paths. Overall, they prove that
(1) unresponsive nodes makes the topology inference pro-
cess extremely difficult and (2) having complete set of path
traces is helpful with correct inference of only global graph
characteristics.

In this paper, we propose an approach that combines
theoretical approach of graph minimization and clustering
approach of data mining in Section 4.

2.2. Graph data mining

Graph data mining techniques are utilized in many
application domains [50-53] to extract useful information
from the graph representation of large data sets [54]. The
need for mining large graphs in an efficient manner
increases as researchers look into complex networks.
Several studies have been carried out to make graph min-
ing in an efficient manner using indexing techniques.
Among various graph mining techniques, graph-based
induction (GBI) technique shows similarity to our problem.
Graph-based induction is a technique to find frequent sub-
structures, a common problem in biological and chemical
networks, [55]. It extracts typical patterns by stepwise
identification of recurring node pairs and minimizes the
graph size by replacing identified patterns with a node.
In our work, we propose a similar induction technique to
identify subgraphs of some common structures within

the topology graph and use them to resolve unresponsive
routers.

Graph indexing studies can be mainly divided as path-
based and structure-based approaches. Path-based graph
indexing approaches use path expressions as indexing fea-
tures such as GraphGrep [56] and Daylight [57]. GraphGrep
enumerates all paths in the graph up to the length maxL.
Then, it looks for the graph whether it contains all paths
up to maxL for a graph query g;. A significant feature of
the path-based approaches is that paths can be manipulat-
ed easier than general graphs. However, path is a simple
structure loosing structural information of a graph, and
hence false positive ratio of path-based methods might
be very high [58]. In addition, the number of paths in a
graph database increases exponentially, making path-
based methods impractical for very large graphs.
Alternatively, structure-based graph indexing approaches
identify subgraphs to be indexed as in gIndex [58].
gIndex first searches for the frequent subgraphs in the
graph, then indexes these frequent structures. An issue in
this case is that frequent subgraph discovery increases
complexity and exponential number of frequent fragments
may exist under low frequency support. Therefore, in their
study, authors limit the number of nodes to 10.

In this paper, we utilize a novel Structural Graph
Indexing (SGI) approach to search and process queries effi-
ciently even in very large graphs [33]. As indexing features,
we use commonly observed graph structures: star, com-
plete bipartite, and triangle.

3. Router responsiveness analysis

In this section, we analyze responsiveness of routers
and end hosts to active probes from historical data sets.
We assume a trace visits different vertices v in the under-
lying Internet graph and returns a list of nodes representing
the interfaces (one for each vertex) as its output, i.e.,
trace(v;, vj) = (i", ..., i, i, ..., i) If a router
v, € trace(v;, vj) is an unresponsive router, the trace output
will have a unknown node, =", instead of a known node, i.".
Note that IP alias resolution, i.e., identification of IP
addresses belonging to the same router, should be handled
during the resolution process as well [14,15,21]. In this

study, we focus on resolving unknown nodes (e.g., *;"’) in

addition to known nodes (e.g., i.?) that are observed due
to a single router v,.

3.1. Unresponsive router types

In this section, expanding on our earlier work [29], we
investigate router (un)responsiveness to active probes. As
in Fig. 2 active probes are divided into two categories as
(i) direct probes where the destination IP address in the
probe packet is the intended destination as in ICMP ping
or (ii) indirect probes where the destination IP address in
the probe packet is some other destination as in traceroute
when it probes an intermediate router during a trace.

In both direct and indirect probing, eliciting a packet
from a probed node indicates the responsiveness of the
node. On the other hand, not receiving a response to an

H. Kardes et al./ Computer Networks 81 (2015) 178-200 183

Indi Di
l;‘esI;e:r:se . Rg:;;nse .
() O, ()

Source Intermediate Destination

Fig. 2. Active probing.

active probe packet may have different interpretations. In
the case of direct probing, the lack of a response message
may not necessarily indicate node unresponsiveness as it
may be that the probed node may be unreachable; may
be disconnected or turned off; or either probe or the
response packet may be filtered/dropped/lost in the net-
work. In the case of indirect probing as in traceroute, the
lack of a response message, in general, indicates node
unresponsiveness if another responsive node appears later
on within the same trace.

We classify unresponsive routers into two categories:

Permanent unresponsive: A router might be perma-
nently unresponsive under two conditions. First, a system
may be configured to ignore certain probe packets causing
it to be unresponsive with such probing. Second, a border
router may be configured to filter out (i) certain types of
packets such as unsolicited UDP packets directed to a local
host or (ii) outgoing ICMP responses originating from
nodes within its local domain. Border filtering causes inter-
nal nodes to be seen as unresponsive.

Temporary unresponsive: A router might be tem-
porarily unresponsive under several conditions. A system
may apply ICMP rate limiting and become unresponsive
if the rate of the incoming probes exceed a preset limit.
Similarly, a system may ignore probe packets when it is
congested but respond to them when it is not. Finally,

packets may occasionally be dropped or lost due to
routing or overflow. In either case, the router has altering
responsiveness.

Moreover, a system may have a private (i.e., publicly
unroutable) IP address that cannot guarantee node unique-
ness. Such nodes can be either marked per AS they origi-
nate from or marked as an unknown node. Since the
number of such nodes were very small in iPlane and
Caida datasets, we excluded them from our study.

3.2. Historical data analysis

In this section, we use traceroute collected historical
data sets to study router reaction to indirect probe mes-
sages. We downloaded publicly available historical tracer-
oute data sets from CAIDA (collected by Skitter [30] and
Ark [31] systems), and iPlane [59]. We utilized data sets
that were collected during a single collection cycle in July
of each year by the corresponding infrastructure (typically
two days of measurement for CAIDA and one day of mea-
surement for iPlane). Note that we discard the inaccurate
path traces,i.e., path traces with loops, from the datasets.
Additionally, we ignore unknown nodes at the end of
traces as they might be due different reasons such as an
unresponsive destination, a filtering firewall/gateway, or
non-existing destination.

First, we look for a trend in the ratio of unknown nodes
in the collected data in Table 1. In this table, Srcs shows the
number of sources, Traces shows the number of traces,
Completed Traces gives the percentage of traces that
reached the final destination; IPs gives the number of
known nodes (interfaces) within the data set before IP alias
resolution; and Unknown gives the percentage of unknown

Table 1
Analysis of historical responsiveness.
Initial Unres. type

Dataset Year # Srcs # Traces (M) Completed traces (%) # IPs (M) Unknown (%) Perm. (%) Temp. (%)

Skitter (CAIDA) 1999 5 35 86.5 0.2 37.2 100 0.0
2000 14 14.8 83.5 0.7 45.1 100 0.0
2001 17 134 73.6 2.1 42.2 100 0.0
2002 20 19.1 50.4 1.5 339 100 0.0
2003 23 24.3 54.3 1.9 29.6 100 0.0
2004 23 229 53.0 24 39.1 100 0.0
2005 22 21,0 46.4 6.8 81.9 96.9 3.1
2006 19 184 37.2 6.4 81.5 96.5 3,5
2007 18 17.5 30.6 4.9 84.8 95.6 44
2008 11 10.7 23.2 2.8 76.8 92.8 7.2

Ark (CAIDA) 2007 8 6.4 3.11 0.69 9.0 86.8 13.2
2008 23 14.0 6.72 0.95 11.9 86.2 13.8
2009 36 222 7.51 1.16 15.6 88.7 113
2010 43 24.5 8.71 1.22 18.8 89.8 10.2
2011 53 28.5 9.41 1.30 19.7 88.6 11.4
2012 53 29.7 10.52 1.39 19.8 87.4 12.6
2013 66 30.6 12.45 1.37 219 82.7 17.3

iPlane 2006 190 171 79.4 0.21 60.1 63.2 36.8
2007 187 20.0 66.6 0.24 64.0 67.4 32.6
2008 180 24.0 68.3 0.29 74.3 80.3 19.7
2009 200 27.0 60.0 0.28 71.5 78.0 22.0
2010 239 34.8 51.8 0.29 70.1 63.3 36.7
2011 201 29.1 514 0.29 69.9 65.1 349
2012 147 18.6 70.2 0.31 61.6 66.0 34.0
2013 143 20.7 65.9 0.34 63.5 65.0 35.0

184 H. Kardes et al./ Computer Networks 81 (2015) 178-200

nodes (interfaces) in the original data set with partial unre-
sponsive router resolution as explained below. The next
two columns give the classification of unknown nodes as
percentage values.

In this table, we assume Initial Pruning is performed.
That is, unknown nodes between the same known nodes
are considered as the same. Suppose we have the following
three traces:

A—-B—-X—%—Y—-C
D—-E—-X—%—Z—x—F
G—X—%x—Z—-H-F

In these two traces, we have 19 responses (A, B, X, *, Y,
CD,E X, % Z, F, G, X % Z H, F), and 15 unique nodes (A,
B, X, *1, Y, C, D, E, 2, Z, %3, F, G, %4, H). For above traces, x*;
and x4 are considered as same since both appear between
X, and Z. So, unknown ratio is 21.4% (3/14 % 100).

Additionally, for our analysis, we mark an unknown
node (e.g., *3) between two known nodes (i.e., Z and F) as
temporarily unresponsive when we observe a parallel trace
with an IP address (i.e., H) between the same pair of nodes
(i.e., Z and F). This classification is approximate as it is dif-
ficult to know the actual cause of the lack of response to a
probe packet from a remote system.

According to iPlane data sets, the ratio of path traces
reaching their final destination fluctuates over the time.
In average, 64% of traces do not reach to their final destina-
tion. In skitter data set, this ratio has significantly
decreased over the time (87% in 1999, 23.2% in 2008).
Although this ratio is relatively low in traces collected with
Ark, it increases over the time (3% in 2007, 12% in 2013).
Ark performs better than skitter in reaching a targeted IP
address as it uses an improved destination list. The
decrease in reachability and the low reachability values
are most likely caused by the change in the default ICMP
behavior by operating systems, proliferation of firewalls,
and the inclusion of a destination from each /24 subnet
range that might not correspond to a live system.
However, path traces not reaching their final destinations

Table 2
*-Subpath characteristics.

contribute little useful information and considerably slow
down the probing process.

Moreover, the ratio of unknown nodes has significantly
increased for Ark data (9% in 2007 while 22% in 2013). It
fluctuates but is relatively high in iPlane data (~67%).
CAIDA reports that skitter had several updates to destina-
tion IP address lists and had a major change in its topology
collection system in mid 2004 where it utilized dynamic
destination lists with increased probing frequency at its
monitors. So, for skitter datasets, there are different trends.
The average ratio of unknown nodes is ~38% before 2005,
while it is ~81% after 2005. These high ratios point to the
prevalence of unresponsive router resolution to obtain
realistic sample topologies.

Another observation from the table is that the ratio of
temporarily unresponsive nodes is not negligible (~13%
in Ark, while ~31% in iPlane). Yet, they were ignored by
all of the previous unresponsive router resolution
approaches.

Next, we are interested in the length distribution of
path segments formed by consecutive “*’s in path traces.
We call a path segment in the form of a
(IP1,%1,%2,...,%,IP;) a x-subpath of length [and denote
it with ugp, ip,14) Where A is the set of nodes between IP,
and IP,, i.e., {*1,*%2 ...,*%}. We are interested in the fre-
quency distribution of *-subpaths with respect to their
length L. Although a *-subpath of length one may have dif-
ferent interpretations about the cause of router unrespon-
siveness, occurrence of longer *-subpaths may be an
indication of ISP policy of preventing active probing in its
network. Moreover, resolution of unresponsive routers in
such cases is much harder. It is easier to correctly resolve
an unresponsive router when all of its neighbors are
responsive. However, when there are neighboring unre-
sponsive routers, deciding which router an unknown node
belongs to is challenging (as explained in Section 5.1) and
is where most of the resolution algorithms, including GBI,
introduce false positives.

Table 2 represents the *-subpath distribution for the
same CAIDA and iPlane datasets. In the table, we present

*

Unique *-Subpath length
Dataset Year *-Subpaths Same AS (%) 1 2 3 4 5 >5
Skitter (CAIDA) 2005 225,456 12.6 151,133 63,662 6360 4301 - -
2006 207,067 11.6 137,829 59,171 5828 4239 - -
2007 305,331 14.4 212,263 73,263 14,019 5779 7 -
2008 231,633 14.0 148,182 63,944 13,733 5772 2 -
Ark (CAIDA) 2009 124,700 28.7 71,120 30,071 14,191 9318 - -
2010 159,151 26.5 89,196 34,650 24,547 10,758 - -
2011 178,095 25.2 98,085 42,725 25,166 12,119 - -
2012 203,221 25.3 120,757 44,817 24,462 13,185 - -
2013 235,467 25.1 142,942 50,707 26,551 15,267 - -
iPlane 2006 472,656 25.6 330,672 100,198 40,536 825 269 155
2007 731,077 25.9 510,186 215,924 2941 1327 441 242
2008 931,880 233 530,698 216,452 110,300 71,097 1313 1809
2009 840,132 23.1 500,488 180,283 92,988 64,837 781 728
2010 844,712 22.7 629,468 207,725 3651 1781 1163 833
2011 851,404 23.0 622,900 218,128 4942 2579 1312 1502
2012 850,629 23.5 625,264 216,871 3893 2742 1271 588
2013 850,629 235 625,264 216,871 3893 2742 1271 588

H. Kardes et al./ Computer Networks 81 (2015) 178-200 185

the number of unique *-subpaths in the original data set.
For uniqueness, we represent a *-subpath of length [as a
triplet (IPq,1,IP,) and avoid counting the duplicate triplets
of this form. The data sets prior to 2005 for CAIDA have
only length [=1 *-subpaths and are not included in the
table. Starting 2005, we observe *-subpaths of longer
lengths with the majority of *-subpaths being of length 1
or 2. We partly attribute the behavior of routers to changes
in the data collection process such as the increased probing
rate. Longer *-subpaths might also be due to growth in net-
works where more hops of an unresponsive AS are tra-
versed or due to increased use of MPLS tunnels.
According to the results for the iPlane data sets, [=1
*-subpaths are almost doubled in the last five years. We
observe that both the overall number of unresponsive rou-
ters and the longer length *-subpaths have increased.

We also look into the percentage of *-subpaths that
appear within a single AS in the Same AS column. For a
given *-subpath, say (IP,l,IP;), we look at the relation
between IP; and IP, and map each such IP address to cor-
responding AS numbers with AS lookup tool of CYMRU
[60]. If the IP addresses share the same AS number, then
these IP addresses belong to the same domain and there-
fore the unresponsive nodes in between most likely belong
to the same domain. Given that most *-subpaths are of
length 1 or 2 and the probability of two IP addresses being
in different ASes is about 75% (according to Table 2), we
think that the majority of *-subpaths originated from

10,000,000

-=-1999

1,000,000

100,000

10,000

1,000

100

10

Number of unresponsive routers

1

1 6 1 16 21 26 31 36 4
Distance to source
(a) Unresponsive Routers

100,000,000

= Unresponsive
............ * Responsive
@ 10,000,000 eee, Al
7] i
5 ‘e
3 1,000,000 . . ‘s,
“6 ae® n"“nn %
© 100,000 B P
5 . B
o ECTR
€ 10,000 L]
S .
4 0 ‘n‘
1,000 O
e
., e,
100 = .
. .
10 e
B
oo
1

0 5 10 15 20 25 30 35 40 45 50 55 60
Distance to source
(b) Routers for 2011 CAIDA data set

Fig. 3. Historic distance distribution.

100,000,000
10,000,000 |\
1,000,000 N
100,000 - \
10,000
1,000 \
100
10 \\

11— 7T
01 2 3 4 5 6 7 8 9 10

of *-substrings

Traces

Fig. 4. Distribution of traces with multiple *-subpaths.

routers at domain boundaries or exchange points between
neighboring ASes.

We are also interested in the position of unresponsive
nodes within path traces and counted the number of
unknown nodes at each hop distance from the vantage
point. Fig. 3a presents the distance distribution of
unknown nodes for five different CAIDA data sets.
According to the figure, early data sets (i.e., before 2005)
contain small number of unknown nodes that were mostly
distributed 10-20 hops away from the source. On the other
hand, recent data sets include much more unknown nodes,
the majority of which appear 3-25 hops away from the
source. The figure also shows a high number of unknown
nodes at a distance of 2 from the source for the 2011 data
set. A close examination of the corresponding data set
shows that this is due to the existence of a permanently
unresponsive router at a 2 hops distance to one of the van-
tage points.

Fig. 3b presents the distance distribution for known,
unknown, and all of the nodes for the 2011 CAIDA data
set. Since the number of unknown nodes is relatively
smaller than the number of known nodes when accounting
for each occurrence separately, the distance distribution of
all the nodes is quite similar to distance distribution of
known nodes. Moreover, unlike the distribution of known
nodes, there is a decrease in the number of unknown nodes
between distance 1-9. Starting from hop distance 10, they
start to exhibit a similar trend.

Fig. 4 presents the distribution of *-subpaths. As seen in
the figure, there are considerable number of traces with
multiple *-subpaths, which can be up to 10 such regions.

3.3. Load balancing practices

A major issue to keep in mind during topology collec-
tion is the effect of load balancing practice of ISPs.
Certain traffic engineering practices for load balancing
may cause traceroute to return IP addresses that do not
correspond to a real end-to-end path in the network [19].
This happens when a router forwards consecutive tracer-
oute probes on different paths toward the destination, a
common phenomenon in the Internet [61]. For instance,
consider the Internet2 backbone in Fig. 5 where there are
two paths between y and z (underlying links are marked
with black lines). When router S forwards packets through
both paths towards destination z, then path traces will

186 H. Kardes et al./ Computer Networks 81 (2015) 178-200

Fig. 5. Effect of load balancing (#s indicate observed hop distance).

include non-existent links (marked with dashed red lines)
as we would observe a path of S—-L-K-A-N-N-z from s.

Routers allow configuration of several parameters to
determine load balancing including destination IP, source
IP, protocol and port number [62,63]. Additionally, routers
can be set to randomly send packets as flow preserving
parameters consume storage and computation resources.
Augustin et al. classify load balancers as per destination,
i.e.,, only destination IP affects load balancing decision,
per flow, i.e.,, any combination of the parameters are uti-
lized for load balancing decision, and per packet, i.e., pack-
ets are randomly distributed [19].

In general, topology collection systems have developed
several strategies to overcome load balancing effect in the
collected topologies. For example, traditional traceroute
tools would find accurate links with per destination load
balancer but not with per flow and per packet load bal-
ancers. Paris traceroute fixes flow identifiers so that per
flow load balancing routers will choose the same next
hop for probe packets toward the same destination [19].
However, Paris traceroute can only detect the existence of
per packet load balancers on a path and would fail to accu-
rately identify actual links on the balanced paths. Similarly,
sidecar can detect changes in traversed paths by enabling
record route option of probe packets [64]. However, sidecar
does not provide a method to force routers to use the same
path in forwarding probe packets so that accurate path
traces could be collected. Cheleby [41] utilizes the Paris
traceroute to collect path traces and identify per packet
load balancers.

3.4. Summary

In summary, in this section, we presented a measure-
ment study to understand the responsiveness of routers
to active probing. In our historical analysis, we observed
that in general responsiveness reduced during the last dec-
ade. We also observed that network operators are increas-
ingly rate limiting ICMP responses. Another observation
from our study is that the destination reachability consid-
erably reduced over the time indicating that systems (i.e.,
routers and end systems) are increasingly unwilling to
respond to direct probes.

Based on the findings in the measurement study, in our
unresponsive router resolution approach, we address the
lack of (i) temporary unresponsive router resolution as the
ratio of temporarily unresponsive routers have been
increasing and (ii) *-subpath resolution as the length of
*-subpaths and the number of longer ones have been
increasing. Neither of these cases are properly addressed

by the previous resolution studies while both trends are
observed to be increasing in recent years.

4. Graph Based Induction for unresponsive router
resolution

4.1. Preliminaries

In this section, we present a formal definition of unre-
sponsive router resolution problem. First, we clarify a set
of terms/conditions that will help us define the problem.
The notations introduced in this section will also be used
in the development of the algorithms in the remainder of
this section.

Definition (Router-Level Graph:). Let G = (V,E) be a router
level network graph where V represents the set of vertices
(i.e., routers and end-hosts) and E represents the set of
edges (i.e., communication links) connecting the vertices in
V. Each vertex » € V has one or more interfaces i and each
interface i, has at least one i..address that corresponds to a
globally unique IP address.

For the ease of presentation, we use i, to represent both
an interface and its corresponding identifier, i.e., its IP
address.

Definition (Trace:). A trace (a.k.a path trace), trace(v;, vj),
is a path in the graph where the trace visits a vertex, v,
starting from v; all the way to »; and returns a list of nodes
representing the interfaces (one for each vertex) as its
output, ie., trace(v;, v)) = (iy',.. ‘,i;’",i;”, ...,i)) where
each v, e V.

If a router v, € trace(v;, ;) is an unresponsive router,

the trace output will have a unknown node, ., instead of a
known node, iZ.

Definition (Alias Set:). An alias set is a set of known nodes
(e.g., i?) and unknown nodes (e.g., *f”") that are observed
due to a single router .

The alias set of known nodes is handled by IP alias
resolution process [14,15,65,66,21].

Definition (Subpath:). A subpath up14 is a continuous
segment of a trace (a, vq, v>,..., v, b) where a and b are
known nodes, I is the length of subpath between a and b
excluding a and b, and A is the set of these nodes where
each v; is a known node (e.g., i.) or an unknown node
(e.g.,).

Definition (*-Subpath:). A *-subpath uj,,,, is a subpath
U4 Where all the nodes in A are unresponsive. Given a
path trace trace(v;, v;) = (i",... 0g, %1, %2, ..., %1, 0, ..., 17),
a *-subpath is Uiy = (fgy 15 %2, « « « y %1, 0p)-

Note that a given trace may have zero or more *-subpaths
(as shown in Fig. 4 for a sample data set).

H. Kardes et al./ Computer Networks 81 (2015) 178-200 187

Definition (I-neighbor:). Two known nodes are I-neighbor
if there are | unknown nodes in between. For example, a
and b are l-neighbor of one another, if there is a path
(a,*1,%2,...,%,b) from a to b.

Definition (Trace Preservation Condition:). Trace preserva-
tion condition serves as an accuracy condition during
topology construction. In the context of unresponsive rou-
ter resolution, it states that if («, %r) € trace(w;, v;), then =,
and #; cannot be in the same alias set, i.e., they cannot
belong to the same router.

Definition (Mergeable:). A set of unknown nodes A are
mergeable, i.e., mergeable(A), if they (or any other node in
their alias sets) do not appear in the same path trace.

Definition (Conflict set:). Conflict set is a set of traces that
a node appeared in. In order to ensure the trace preserva-
tion condition, a node should not be merged with another
node if they appear in the same trace. This structure helps
us eliminate the need to query all path traces to check if a
set of nodes are mergeable during alias and unresponsive
router resolution. If the intersection of conflict sets of
two nodes is non-empty, these two nodes appear in the
same trace(s), i.e., they are not mergeable.

4.2. Methodology

In this section, we present a Graph Based Induction (GBI)
technique to resolve unresponsive routers that introduce a
large number of artificial nodes in traceroute-based topol-
ogy maps [18]. Given a set of path traces (J{trace(v;, vj)},
and IP address alias sets of known nodes from a network
graph G = (V,E), unresponsive router resolution problem

is to build a graph G = (V,E) such that.

o V=1H{V(y} and E = U{E, 0}

o If %;* € trace(vy, v;) and *f”” € trace(vm, vn), then there
should be only one unknown node % € V correspond-
ing to permanently unresponsive router v, € V.

o If «¢” € trace(vy, v1) and i’ € trace(vm, va), then there
should be only one node i”” € V corresponding to the
temporarily unresponsive router v, € V.

e Vx,” and Vi, of a node v, € V and a node v, € V, there
should at most be one e(,, 4, € E.

Note that, we assume that the IP alias resolution pro-
cess is performed prior to or along with unresponsive rou-
ter resolution and the following condition is satisfied:

o If i;" e trace(vy, v;) and if" € trace(vm, v,), then there
should be one and only one v, € V.

Multiple network topologies with unresponsive routers
can result in the same observed topology. Without knowl-
edge of the underlying topology, it is not possible to prove

which one is the correct one. Yao et al. analyzes this issue
and proposes to use the minimal topology under trace and
distance preservation conditions as the underlying topology
for an observed network topology [36]. As there can be mul-
tiple topologies that lead to the same observation, research-
ers in general assume the minimal topology that meets
certain criteria to be the correct one. Different from [36],
we indicate that distance condition is not necessarily correct
as observed paths are known to be non-shortest paths.

Moreover, as shown in [49], minimal topology might be
far from the underlying topology. Hence, we focus on the
minimality of substructures under the trace preservation
condition.

Trace preservation condition requires that there should
not be any routing loops in the collected path traces. Path
traces with loops may exist due to routing instabilities (for
instance, %3.45 of path traces in [41] had routing loops),
and they should be filtered prior to the unresponsive rou-
ter resolution. Moreover, Paris traceroute [19] improves
trace accuracy by trying to send probe packets over the
same path.

In developing our approach, we analyzed different sce-
narios involving an unresponsive router and observed how
different path traces would lead to artificial nodes. In par-
ticular, we analyzed traces from one source to one destina-
tion, one source to multiple destinations, multiple sources
to multiple destinations, and between all sources. Then we
formulated a number of graph structures that are observed
in sample topologies. These structures are shown in Fig. 6a,
¢, e, and g and the corresponding connectivity relations in
the underlying actual network are shown in Fig. 6b, d, f,
and h respectively. We also investigated raw data and
observed evidence to each of these cases.

When there are m traces through a sequence of n unre-
sponsive routers as in Fig. 6b, we observe m parallel
unknown sequences as in Fig. 6a. Similarly, when there
are traces between all neighbors of an unresponsive router
as in Fig. 6d, we observe a clique structure as in Fig. 6¢ after
parallel sequences are resolved. Fig. 6e appears when there
are traces from one set, i.e., {a, b}, to the other set, i.e., {c, d,
e}, of bipartite graph in Fig. 6f. Finally, Fig. 6g will appear if
there are traces from a source node to multiple destina-
tions in Fig. 6h.

In order to address the unknown nodes, we replace the
subgraphs Fig. 6a, c, e, and g with the subgraphs in Fig. 6b,
d, f, and h within collected topology datasets. Note that
networks in Fig. 6b, d, f, and h are the minimum possible
underlying networks for the sampled networks shown in
Fig. 63, c, e, and g, respectively.

We modify our Structural Graph Indexing technique [33]
where we search for structures similar to the identified
ones in traceroute-collected topology data and transform
unknown nodes in them into their corresponding routers
with Graph Based Induction approach. In this process, we
first start with a router-level topology graph G = (V,E) that
is constructed from a set of traceroute-collected path
traces. We find all *-subpaths uy, , , ,, in this graph, and then
apply Structural Graph Indexing to efficiently perform
queries and Graph Based Induction to resolve unresponsive
routers based on the structures shown in Fig. 6.

188 H. Kardes et al./ Computer Networks 81 (2015) 178-200

(a) Observed parallel topology

VP2

(g) Observed star topology

(b) Underlying topology

(h) Underlying topology

Fig. 6. Structures (genuine and observed).

In graph indexing, we index predefined structures in the
network so that subsequent queries regarding the network
graph are more efficient. In our case, we index star, complete
bipartite, and triangle structures in a given graph. An impor-
tant difference of our approach from the previous indexing
studies is that we do not limit the size of candidate subgraphs.
We try to index maximal graphs that match the structure for-
mulation. For instance, a maximal complete-bipartite is a
complete-bipartite that cannot be extended by adding one
more vertex from the graph. In order to reduce computational
complexities, we index the structures within the original
graph in a consecutive manner. That is, we first identify star
structures, then complete-bipartite, and finally triangle
structures from the preceding ones as detailed below.

4.3. Structural Graph Indexing

In this section, we present each of the identified struc-
tures, their underlying topology, and the Structural Graph
Indexing of these structures for Graph Based Induction.

4.3.1. Parallel *-subpath structures

First common pattern that we observe in traceroute-
based topology maps is the occurrences of same length
*-subpaths with the same known nodes at the ends of each
*-subpath. While collecting path traces from a vantage
point, an unresponsive router may appear as ‘*’ in multiple
path traces resulting in multiple parallel *-subpaths
between the same known nodes. As an example in
Fig. 1a, traceroute queries from A,, to W,, return path
traces including *-subpaths such as (A, x;, W,,). Similarly,
traceroutes from W, to A,, result in additional *-subpaths
such as (W, *,,A). When path traces between all vantage
points are collected, we observe 10 parallel *-subpaths
between A and W,, in the resulting topology map as
shown in Fig. 1b. Note that in this example *-subpaths
include only one unresponsive router. A similar pattern
can be observed for *-subpaths of longer lengths as in
Fig. 6a.

Resolution of unresponsive routers in this type of struc-
tures requires detection of similar *-subpaths (i.e., same

H. Kardes et al./ Computer Networks 81 (2015) 178-200 189

length *-subpaths with the same known nodes at their end
points). As described in Section 3.3, certain load balancing
practices might cause inaccurate and incomplete path
traces in the collected topologies. Hence, we first prune
raw path traces. The pruning breaks path traces with a loop
(e.g., IPA., IPg, IPQ IPD7 IPg, IP(', IP[:7 ng) into three pieces
based on the repeated IP address (i.e., IPc) and utilize the
first part (i.e., IPa, IPg, IPc) and the last part (i.e.,
IP¢, IPg, IP¢) of the trace in the remainder of processing.
In data sets collected with Cheleby [41], 772 K of 22.4 M
path traces (i.e., 3.45%) contain routing loops among which
143 K has multiple loops. Moreover, we observed border
firewalls that filter ICMP packets from/to a network
domain and occasionally respond with their IP address.
However, the hop distance of these IP addresses are not
consistent. Hence, we filter any IP address that appears at
the end of a trace after three unresponsive nodes. After this
parsing/filtering, the algorithm Algorithm 1 in Fig. 7 pro-
vides a graph search module for parallel *-subpaths. In
the algorithm, we extract all *-subpaths uf,,, . ., ., from
the path traces and identify the same length *-subpaths
with the same known end nodes (i.e., a and b) to merge
unknown nodes with each other. The algorithm also builds
the initial data structures that we will utilize in the graph
indexing to resolve other structures. Note that we con-
struct the conflict sets at this step.

While reading the traces, each uj, , , is stored based on

the known end nodes a and b in a hash table. Subsequently
read uf 4, s are then compared to the ones with the same
hash value in the data structure. This results in a
complexity of O(|U|.log(|U|)) where |U| is the number of
*-subpaths.

Another related pattern is caused by routers that apply
ICMP rate limiting or that stay unresponsive when con-
gested, i.e., temporary unresponsiveness. Such a router
may appear as a known node in some path traces and
may appear as a ‘’ in others. For instance, in Fig. 8a, an
ICMP rate limiting router ¢ may cause occurrences of relat-
ed subpaths in the form of (...,a,cb,...) and
(...,a,x1,b,...) in different traces, and we resolve x; to c.
However, in some cases, there might be a subpath
(...,a,d,b,...)as well. In such cases, we resolve x; to either
c or d only if just one of them is marked as temporarily
unresponsive. Additionally, as in Fig. 8b, ICMP rate limiting
routers ¢ and d may cause occurrences of related subpaths
in the form of (...,a,*1,%2,b,...), (...,a,c,*3,b,...) and

Let G= (V,E); V « 0; E — 0; U < 0; maxLength < 0;
for (each trace in |Jtrace(v;, v;))

V —VU{a,b}; E— EU{ew@p} Yuapop € trace

for (each Wbl (1,0 }) € trace)

if (<3, € U

V —VU{a,*,*o,...,%,b}
U= U U1 fayer,)
E — EU{e@um):)} U {e
if maxLength <1

maxLength «— 1

Wi, 1 <i<l}

*is¥i41

Fig. 7. Algorithm 1: Finding Parallel *-Subpaths.

o‘zba

(a) Resolution of length 1 *-subpath

e
9‘9.9’6

(b) Resolution of longer *-subpaths
Fig. 8. Resolution of temporarily unresponsive routers.

(...,a,%4,d,b,...) in different traceroute outputs. In this
case, we resolve x; and %4 to ¢; and *, and x3 to d.

The algorithm Algorithm 2 in Fig. 9 resolves the
temporarily unresponsive routers. In the algorithm, for
each "-subpath uf,;, ., ., ., we look for the same length
paths between the same end nodes a and b. Finding paths
for given end nodes in a naive manner might result in a
high time complexity. While building the initial graph in
algorithm Algorithm 1 in Fig. 7, we also index the neigh-
bors of each node in our node structure.

In order to find the paths between given end nodes, we
find [I/2]-hop neighbor set of the left end node and
|(I+ 1)/2]|-hop neighbor set of the right end node. If the
intersection set of these two sets is not an empty set, we
identify the path between the end nodes. Moreover, if
there are multiple paths, we can process the unknown
nodes with the highest ranked path, which can be deter-
mined based on how many times it appears, and repeat
this with other paths based on their rank order as long as
there are remaining unknown nodes. Note that, as earlier
decisions affect the later ones, an error would be propagat-
ed. Hence, ranking of nodes based on the number of
appearance in traces allows us to process more frequently
observed nodes.

The algorithm takes O(|U]| - (ayq)"?) time where |U]| is the
number of *-subpaths and a,, is the average node degree of
all nodes. Note that we limit the length of *-subpaths to be
processed in this step by 5 as longer *-subpaths increase
the time complexity and the number of such subpaths
are relatively small according to data sets in Table 2.

Thus, worst case complexity becomes O(|U] - (dng)*)-

4.3.2. Star structures

After building *-subpath database from path traces, we
build an index of the star structures (e.g., Fig. 6g) that will
be utilized in resolving unresponsive routers as in Fig. 6h
and finding bipartite and triangle substructures. The star
structure typically appears in path traces collected from a
single vantage point toward a number of destinations or
from multiple vantage points toward the same destination.
The observed topology looks like the one presented in
Fig. 6g. We identify this type of structures by clustering
unresponsive neighbors (e.g., x,) of nodes (e.g., a, the head
node of *-subpaths in Fig. 6g).

We index maximal star structures for each node 7; ¢ V
using Algorithm 3 in Fig. 10. We define a node b as an

190 H. Kardes et al./ Computer Networks 81 (2015) 178-200

if (3 U(a,bJ,{m ,vz,...,vl}))

U—U- u?a,b,l,A)

INPUT: G = (V,E) and U from Alg.1
for (each uf,) 1y, 4y .y € U) where I <=5

for (each Ua,bl {102, 01)) € rankByFreq(U Ua,bl,{v1,02,}) € U))
if (mergeable(x; < v1) & ... & mergeable(x, — v;))

set *; «— V1, %9 «— Vg, ..., ¥ — v in G

Fig. 9. Algorithm 2: Resolving Temporarily Unresponsive Routers.

INPUT: G = (V,E) and U from Alg.2;
max Length from Alg.1; S « ()
for (each node v € V)
for (i=1:maxLength)
S «— SuU S(v,3,0,0)
for (each uf,;,; 4y € U)
S(a,l,N,M) <= S(a,l,(NU{b}),(MUA))
S(b,l,N,M) < S(b,l,(NU{a}),(MUA))
for (each sq N € S)
if |[N| <2
S 8 — 5@,n,M)

Fig. 10. Algorithm 3: Star Structure Indexing.

I-neighbor of g, if there is a trace with [unknown nodes in
between them. For example, a and b are I-neighbor of one
another, if there is a path trace (a,x1,*a,...,%,b) with
exactly | unresponsive routers from a to b. Star structures
within a graph G = (V,E) are represented as s,in,.um
where v; is the pivot node, | is the number of unknown
nodes between the »; and each of its l-neighbors, N; is
the set of all I-neighbors of z;, and M; is the set of all
unknown nodes in this star structure. The algorithm builds
on the *-subpaths database U and produces star structure
database S.

The algorithm first builds a star structure S, 00 for
each known node »; € V. Then, for each *-subpath uf,; 4,

it appends node b to the neighbor set of the star structure
of node a with length [, and vice versa. It also appends the
set A to the M set of both nodes’ star structures. After pro-
cessing all *-subpaths, the algorithm removes star struc-
tures s, nv) that have less than two neighbors, i.e. [N| < 2.

The overall run time complexity of the algorithm is
(V| + |U]).

4.3.3. Complete bipartite structures

After building Star structure database S, we index com-
plete bipartite structures K. A complete bipartite subgraph
(e.g, a 2x3 complete bipartite in Fig. 6e) is formed among
the known neighbors of an unresponsive router (i.e, *;
for Fig. 6f). This type of structure occurs when path traces
are between two sets of the unresponsive nodes’ neighbors
(i.e., {a,b} and {c,d, e} for Fig. 6e). In this case, the topology

INPUT: G = (V, E) from Alg.2; S from Alg.3
K~
for (each SN € S)

Lean < 0

for (each b; € N)

Lean <= Lean U N* where (3 5@, 1. nv+m+) € 5)
Lean < Lean — {a}
Rcan — ;V

for (each v; € Lean)
Ryew < Rean N N;" where (3 5,1 n+,11+) € 5)
if (| Rnew| = 2)
Lnew — {a} U{vi}
for (each v; € Lean)
if (Rpew C NJ7) where (3 s, 1 n# %) €)
Lypew — Lpew U {v;}
Myew — Mpew U M#
K = KU KLy, Brcwd Macw)

Fig. 11. Algorithm 4: Complete Bipartite Structure Indexing.

database includes *-subpaths (n;, *,,n;) among all known
neighbors of x,. In general, this structure frequently occurs
in paths collected using (k, m)-traces (i.e., tracing from a
relatively small number of k vantage points to a larger
number of m destinations) that is very common in topol-
ogy mapping studies.

We index all complete bipartite structures using
Algorithm 4 in Fig. 11. Note that, finding a complete bipar-
tite subgraph K, , with the maximal number of edges m - n
is an NP-complete problem [67]. Our search is a special
form where there are pre-indexed nodes that we pivot
around in the search process. Note that as Internet graph
has low degree, our approach can perform in a reasonable
amount of time as shown in Section 5.2. We represent a
complete bipartite graph as ky,v,;m where V; and V,
are two disjoint sets of neighboring nodes, [is the number
of unknown nodes between the nodes »; and v; for any two
nodes v; € V; and v; € V5, and M; is the set of all unknown
nodes in this complete bipartite structure. The algorithm
builds on the star database S from Algorithm 3 in Fig. 10.

In the algorithm, for each star structure sq nm), we
identify the maximal complete bipartite involving the node
a. For this purpose, we first identify two candidate sets of
nodes which will constitute the left and right hand side
of the bipartite structure involving the node a. Ry, set

H. Kardes et al./ Computer Networks 81 (2015) 178-200 191

represents the candidates for the right side of the complete
bipartite and is also the neighbor set N of this star struc-
ture. L, set indicates candidates for the left side of the
complete bipartite. This set consists of all I-neighbors of
each node in N.

We first find a Kk, v, v mv) Where [V}| = 2 and then grow
it to kv, v, nm Where V4| > 2. Finding k(V;,vZ.N*.M*)- we iter-
ate over each candidate node in the L., as a pivot node and
determine its neighbor intersection with that of the node a.
If the intersection set is larger than two, these nodes
belong to the right hand side. After determining the nodes
in the R, set, we grow the left hand side (i.e., L) and
hence the k(V;.V;.N*,M*) structure by finding all nodes that
has the right hand side nodes (i.e., Ryw) as a neighbor.

Overall, finding complete bipartite graphs takes
O(|S| - a) where |S| is the number of star structures in the
graph, and ay is the average neighbor set size of all stars.

4.3.4. Triangle structure

Finally, we build the indexes of the triangle structures.
A triangle is formed between an unresponsive router x,
and its known neighbors {n;,n,,n;} when we consider
the known neighbors of *,. This type of structure occurs
when path traces exists between all three known neigh-
bors of an unknown node, i.e.,, the topology database
includes all *-subpaths (n;, *,,n;) where i, j € [1,3], i #].
Fig. 6b presents an example of this case where the data
set includes *-subpaths among all known neighbors of
the unknown node as shown in Fig. 6a. Note that larger cli-
ques may appear in collected path traces however in our
earlier study we observed their occurrence frequency to
be very low [18]. As search for larger cliques is more costly
and they had very small occurrence rate in our previous
study, in this study, we limit our search for cliques to 3-cli-
ques, i.e., triangles.

We index all triangles in the graph using Algorithm 5 in
Fig. 12. The algorithm iterates over the star structures
reported by Algorithm 4 in Fig. 10. Since we are interested
in triangles, we consider only the star structures having
I=1. In the algorithm, for each star structure Sginm),
and su,1n M) Where N; € N, we obtain the intersection
set] of the N and N* sets. For each I; € I, t(n,j;.1,m) consti-
tutes a triangle where a, Nj, and I; are the three known
nodes of the triangle, and M is the set of all unknown nodes
in this triangle structure.

INPUT: G = (V, E) from Alg.2; S from Alg.3
T—0; 10
for (each s(,1 N € 5)
for (each N; € N) where N; > a
if (3 5(N,,,1,P.,]\~f1))
I—NAP
for (each I; € I) where I; > N;
T T Ut(fa,N;,1:},1,{A1,42,43})

*

* * p
where ug, n 1 a1ys Uia1,1,42)0 YN, 1,.1,09)

Fig. 12. Algorithm 5: Triangle Structure Indexing.

Indexing all triangles takes O(|S| - ay - log(ay)) where |S|
is the number of star structures, and ay is the average
neighbor set size of all stars.

4.4. Unresponsive router resolution

After building graph indexes for star, complete bipartite
and triangle structures, we resolve the corresponding
unresponsive routers. During the resolution process, we
first handle the triangle structures, then complete bipartite
structures, and finally the star structures as there is a high-
er possibility of conflicts within star or complete bipartite
structures. That is, observing a triangle structure versus a
star structure provides more evidence for a single unre-
sponsive router.

4.4.1. Triangle resolution

We resolve the triangle structures in the graph using
the Algorithm 6 in Fig. 13. If trace preservation condition
is satisfied, we combine unresponsive nodes A of a triangle
structure 14 iNto a single unresponsive router in the
constructed map. Moreover, before the resolution, we sort
triangles based on the total number of neighbors and pro-
cess triangles from the one with the smallest number of
neighbors to the largest. This ordering leaves cliquish
structures that are due to multiple neighboring unrespon-
sive routers to be processed later. In those scenarios, (as
observed in our preliminary experiments) we might have
multiple triangles some of which conflict the trace preser-
vation condition.

Resolving all triangles takes O(|T| - log(ac) where |T| is
the number of triangle structures and ac is the average
conflict set size. As there are three nodes in a triangle that
need to be compared their mergeability can be determined
using a sorted conflict list for each node.

4.4.2. Complete bipartite resolution

Next, we resolve the complete bipartite structures in
the graph using the Algorithm 7 in Fig. 14. We combine
unresponsive nodes A of a complete bipartite structure
kv, v,.14) into a single or a chain of nodes in the constructed
map under the trace preservation condition. If the unre-
sponsive nodes in A violate the trace preservation rule,
we find the maximal mergeable subset A" of these unre-
sponsive routers. A set of unknown nodes A are mergeable,
i.e., mergeable(A), if they (or any other node in their alias
sets) do not appear in the same path trace. If there is
any, we combine unresponsive nodes in this maximal
mergeable subset. Similar to triangle structures, we first
sort complete bipartite structures based on their sizes,

INPUT: G = (V, E) from Alg.2; T from Alg.5
sort (T)
for (each t((qp.cy4) €T)
if (mergeable(A))
merge(x, € A)

Fig. 13. Algorithm 6: Resolving Triangle Substructures.

192 H. Kardes et al./ Computer Networks 81 (2015) 178-200

INPUT: G = (V, E) from Alg.6; K from Alg.4
sort (K)
for (each kg ps:.) € K)
if (mergeable(A))
merge(x, € A)
else
A* — findMergeable(A)
merge(x, € A*)

Fig. 14. Algorithm 7: Resolving Complete Bipartite Substructures.

i.e. V1| % |V3|. We then start processing from the smallest
complete bipartite structure to the largest as they have
smaller probability of having conflicts.

Resolving all complete bipartite structures takes
O(|K| - ak - log(ac)) where |K| is the number of complete
bipartite structures, ax is the average size of the complete
bipartites, and ac is the average conflict set size. As merge-
ability search begins with higher ranked nodes, which can
be determined based on the number of occurrance in
traces, we can find mergeable subsets. That is, as we are
searching for the mergeabilty we can leave unmergeable
nodes out of the set.

4.4.3. Star resolution

Finally, we resolve the star structures in the graph using
the Algorithm 8 in Fig. 15. We combine all unknown nodes
A of a star structure s(a,l,N,A), i.e. all unresponsive neigh-
bors of a node g, into a single node in the topology map
under the trace preservation condition. If the unresponsive
nodes in A do not satisfy the trace preservation condition,
we find the maximal mergeable subset A" of these unre-
sponsive routers. If there is any, we combine the unrespon-
sive nodes in this maximal mergeable subset. If there are
multiple of them, we follow the same strategy that we
used in Algorithm 2 in Fig. 15. We process the unknown
nodes with the highest ranked path, which can be deter-
mined based on how many times it appears, and repeat
this with other paths based on their rank order as long as
there are remaining unknown nodes. Note that, as earlier
decisions effect the later ones, an error would be propagat-
ed. Hence, ranking of nodes based on the number of
appearance in traces allows us to process more frequently
observed nodes. In the process, we first sort star structures

INPUT: G = (V,E) from Alg.7; S from Alg.3
sort (S)
for (each sy € 5)
if (mergeable(A))
merge(x. € A)
else
A* — findMergeable(A)
merge(x, € A*)

Fig. 15. Algorithm 8: Resolving Star Substructures.

‘ Alg.1: Parallel *-subpath Resolution ‘

{

’ Alg.2: Temporarily Unresponsive Router Resolution ‘

{

‘ Alg.3: Star Structure Indexing ‘

]

‘ Alg.4: Complete Bipartite Structure Indexing ‘

]

‘ Alg.5: Triangle Structure Indexing ‘

4

’ Alg.6: Triangle Structure Resolution ‘

4

’ Alg.7: Complete Bipartite Structure Resolution ‘

4

’ Alg.8: Star Structure Resolution ‘

Fig. 16. Overall resolution process.

based on the total number of unresponsive routers they
have. We then start processing from the star structure with
the smallest number of unresponsive routers to the largest.
This way, non-conflicting sets of unresponsive nodes will
be processed before the ones that cannot be merged into
a single node.

Resolving all star structures takes O(]S|-as-log(ac))
where |S| is the number of complete bipartite structures,
as is the average size of the star structures, and ac is the
average conflict set size. Similar to complete bipartites,
we can find mergeable subsets as we are searching for
the mergeabilty.

4.5. Overall

Fig. 16 presents the overall flow chart of the unrespon-
sive router resolution.

5. Evaluations

In this section, we use simulations and sampled topol-
ogy data to evaluate accuracy and performance of Graph
Based Induction (GBI) approach to resolve unresponsive
routers.

5.1. Simulation-based evaluations

In our simulations, we use both synthetic and sampled
topologies to compare the accuracy of our approach with
that of Initial Pruning (IP) [34] and Neighbor Matching
(NM) [37]. IP is a commonly used technique and corre-
sponds to the Algorithm 1 in GBI. NM is similar to the star

H. Kardes et al./ Computer Networks 81 (2015) 178-200 193

resolution step in GBI. Note that we did not compare GBI
with graph minimization [36], dimensionality reduction
[37] and spectral embedding [38] approaches due to their
high complexities (see Section 5.2 for details).

For our comparisons, we use two network topologies:

e Sample AMP network obtained from AMP measurement
infrastructure [68]. This topology consists of path traces
among 130 vantage points and includes 2376 routers
and 3770 links after unresponsive router resolution
using GBI and extensive IP alias resolution [14,69].

e Synthetic Transit-Stub (T-S) network generated by GT-
ITM topology generator [70]. This network consists of
50,000 nodes and 138,500 links.

We utilize the above topologies as the underlying actual
networks. We randomly select a number of nodes in the

networks as unresponsive (between 2% and 14%) and col-
lect a number of (k, m) path traces to reflect traceroute-col-
lected path traces. We use (10, 500) and (10, 1000) path
traces from the sampled AMP network and (10, 1000),
(10, 2000), and (10, 3000) path traces from the synthetic
TS network. Note that in this study, we only consider per-
manently unresponsive routers as IP and NM approaches are
completely ineffective for temporarily unresponsive routers.
As indicated in Related Work Section, previous approaches
focus on permanently unresponsive routers and ignore
temporarily unresponsive ones.

For the simulations, we randomly select a number of
nodes in the actual networks as unresponsive, i.e., we
choose the unresponsive routers using independent
Bernoulli trials. Let’s assume that we have the sampled
topology in Fig. 17a where routers H, K, and N are unre-
sponsive with two of them being neighbors. If we collect

(¢) Resulting Topology (traces between all vantage points)

Fig. 17. Sample network for *-substrings.

(c) Graph Based Induction (GBI)

Fig. 18. Resolution of analyzed approaches.

194 H. Kardes et al./ Computer Networks 81 (2015) 178-200

traces between vantage points, we will obtain the traces as
in Fig. 17b, and the resulting observed topology will be as
in Fig. 17c. Fig. 18 illustrates how IP, NM, and GBI
approaches resolves the unresponsive routers in this
topology.

In practice, there are four cases while merging
unknown nodes into their corresponding unresponsive
routers:

e Perfect merge is when all unknown nodes of an unre-
sponsive router are correctly grouped into an alias set
without false positives or false negatives.

Over merge is when all unknown nodes of an unrespon-
sive router are correctly grouped into an alias set but
the set incorrectly includes additional unknown nodes.
Hence, there are false positives.

Under merge is when all unknown nodes corresponding
to the unresponsive router are not grouped into the
same alias set. Hence, there are false negatives.

Mixed merge is when some (i.e., not all) unknown nodes
of an unresponsive router are grouped into an alias set
with other nodes from other unresponsive routers. In
this case, we have both false positives and false
negatives.

In general, merge operation can add false positives or
lack of identifying merges can leave false negatives. As seen
in the results presented below, IP has few false positives
whereas NM has few false negatives. Our approach bal-
ances between both to obtain optimum results. Overall,
Algorithm 1 and Algorithm 2 can be considered aggressive
in their merge operations whereas others can be consid-
ered more cautious.

The following metrics are used for our evaluations. Edit
distance and unresponsive router ratio assess the accuracy
while topology size and clustering coefficient provide insight
into topological characteristic of obtained networks.

500 T T T T " . .
I cBI| (10,500) AMP
[N
400} [C__1IP
8
e 300 1
8
(2]
2
= 200
100
0

2% 4% 6% 8% 10%12%14%
Percentage of anonymous routers

Edit distance is the number of primitive operations
required to transform the sampled graph to the actual
graph. The primitive operations we define are node split
and node merge. During node split, a node v is split into
two nodes and a new vertex ¢’ is added to the set of ver-
tices. This operation fixes false positives. During node
merge, two separate nodes vand 2’ are merged into a single
node v and ¢ is removed from the set of vertices. This
operation fixes false negatives. Note that this metric is
similar to the widely used graph distance which accounts
for edges as well. Edit distance, however, fits better in
our context as it explicitly counts both false positives and
false negatives.

We analyze edit distance of all samples and observe
that on average edit distance of NM and IP are 39% and
379% higher than that of GBI, respectively. Fig. 19 shows
the edit distance for (10, 500) AMP and (10, 2000) T-S sam-
ples. In some cases, NM algorithm does not improve over
the Initial Pruning noticeably. As an example, when 14%
of the nodes in the (10, 2000) T-S sample are unresponsive,
edit distance reduces from 1800 with IP to 1784 with NM.
Overall, in all samples, GBI has the smallest edit distance,
i.e., GBI has least number of errors. Finally, Table 3 presents
the average edit distances for all samples with Initial graph
with no resolution. According to the results, GBI-based
topologies have smallest number of errors in all cases.

Unresponsive router ratio is the ratio of the number of
unresponsive routers in the induced topology to the ones
in the actual topology. It helps observe the inflation caused
by the unresponsive routers and assesses the effectiveness
of the resolution. An unresponsive router ratio of one does
not necessarily mean that unresponsive routers are cor-
rectly resolved without considering the edit distance.

We analyze unresponsive router ratio to assess the
effectiveness of each approach. On average, unresponsive
router ratios are 53.7, 3.72, 1.75, and 1.56 for Initial net-
work, IP, NM, and GBI approaches, respectively. Fig. 20

(10,2000) Transit-Stub
2000 — 1

1500 1

1000

Edit distance

500

2% 4% 6% 8% 10%12%14%
Percentage of anonymous routers

Fig. 19. Edit distances for two samples.

H. Kardes et al./ Computer Networks 81 (2015) 178-200 195
Table 3
Average edit distances.
Unresponsive (%) 2% 4% 6% 8% 10% 12% 14%
Initial 3798 4576 8093 10,519 11,045 16,383 19,079
P 135 229 501 666 718 967 1,252
NM 32 58 189 272 319 502 1,190
GBI 23 37 146 215 274 430 633
5r T T T T T T 5 T T T T T T
— GBI (10,500) AMP (10,2000) Transit-Stub
—6— NM 1 1
—*— IP
Qo 47 1 Qo 4r 1
— =
© o
— —
2 1) 1
> =}
<) e
»w 31 1 »w 3 1
> >
o o
IS 1S
> 1 = d
c c
o o
c c
< 2t 1 < 2t 1

2% 4% 6% 8% 10% 12% 14%

Percentage of anonymous routers

2% 4% 6% 8% 10% 12% 14%
Percentage of anonymous routers

Fig. 20. Unresponsive router ratio for two samples.

Table 4

Average unresponsive router ratios.
Unresponsive (%) 2% 4% 6% 8% 10% 12% 14%
Initial 59.8 48,6 574 52.0 459 539 582
P 34 33 39 39 39 37 42
NM 1.3 1.3 14 15 14 1.6 37
GBI 1.2 1.2 1.5 1.6 1.6 1.7 21

Table 5

Changes in graph characteristics.

Initial (%) IP(%) NM (%) GBI (%)

Number of nodes +262 +21 +5 +4
Number of edges +593 +83 +55 +49
Avg. node degree +91 +51 +48 +43
Clustering coefficient -98 —40 -19 -17
Assortativity +117 +34 +13 +23

shows the unresponsive router ratio for (10, 500) AMP and
(10, 2000) T-S samples. Similarly, Table 4 presents the
average unresponsive router ratios for all samples. In gen-
eral, GBI-based topologies have smallest ratios while, in
some cases, NM results in smaller unresponsive router
ratios. However, close examination of the results indicates
that NM has higher edit distance in each of these cases as
compared to GBI. The achieved reduction in graph size is
basically due to higher number of false positives.

Topology size, in terms of the number of nodes and
links, reveals the basic information about a network. Due
to unresponsive routers, a traceroute-based topology map
may include artificial nodes and artificial links. The first
two rows in Table 5 compare approaches based on the
average percentage increase in the number of nodes and
links in the resulting topologies. On average, GBI based
topologies have the smallest number of artificial nodes
and artificial links.

Clustering coefficient is the ratio of the number of tri-
angles to the number of triplets in a graph. This metric
characterizes the connectivity density of a given graph.
This metric is a useful metric to compare different resolu-
tion techniques as the resolution process modifies a given
graph and changes its connectivity density. The fourth row
in Table 5 compares the approaches based on the percent-
age difference of clustering coefficients as compared to
that of the original graph. Most of the initial topologies
have approximately zero clustering coefficient. On average,
the clustering coefficient of the GBI based graph is closest
to that of the original graph suggesting that the resulting
graph resembles the original graph the most in terms of
its connectivity density.

Assortativity coefficient measures the tendency of a
network to connect nodes of the same or different degrees
[71]. Positive values indicate assortativity, i.e., most of the
links are between similar degree nodes and negative

196 H. Kardes et al./ Computer Networks 81 (2015) 178-200

10,000

o Initial
. u|p
NM
* GBI
»
9 1,000 3
B
c]
o
© 100 ¢
o n
2 ‘¥
£ ‘e
S 10 fos
z Vg .
* * 0.
e e * o0
VL e & *
1
1 10 100 1000

Node Degree

Fig. 21. Degree distribution.

values indicate disassortativity, i.e., most of the links are
between dissimilar degree nodes. A value of 0 implies
non-assortativity.

In addition to the above metrics, we studied node
degree distribution. Fig. 21 presents the degree distribu-
tion of the resulting topologies. As shown in the figure, ini-
tial topology is considerably different from any of the
resolved graphs.

Impact of Unresponsive Regions: In order to assess the
effect of unresponsive regions as reported in Table 2, we
generated synthetic topologies where 14% of routers were
unresponsive while they followed the *-subpath distribu-
tion of 2013 Ark dataset. Below are the steps to generate
the synthetic topologies for this experiment:

1. Compute number of unresponsive routers that we
assume to exist in the topology. (i.e., N * 0.14).

2. Compute number of unresponsive chains that we
assume to exist in the topology. (In Ark 2013 data,
37% of the *s are in length 1 *-subpaths, 26% of the *s
are in length 2 *-subpaths, 21% of the *s are in length
3 *-subpaths, 16% of the *s are in length 4 *-subpaths.
So, we need to place N * 0.14 x 0.37 [1 length 1 *-sub-
paths, N % 0.14 * 0.26 [2 length 2 *-subpaths, N * 0.14 x
0.21 / 3 length 3 *-subpaths, N % 0.14 x 0.16 | 4 length 4
*-subpaths, respectively)

3. Next, we place these unresponsive chains to the topol-
ogy by randomly picking a responsive node (i.e., any
node which has not been marked as unresponsive ear-
lier) from the topology each time, and insert the chain
by making this node as the starting point of the chain
if the following conditions are satisfied:

(a) Any neighbor of this chain should not also have
been marked as unresponsive earlier (as this might
cause longer chains).

(b) According to the size (lets assume 1) of the chain, if
l-successive nodes of that node have not been
marked as unresponsive.

4. We repeat step 3 until all chains are injected.!

! Note that, we implemented this approach just to generate our
experimental synthetic topology. However, this approach might not always
be able to inject all chains.

Table 6
14% unresponsive router regions for (10, 2000) T-S sample.

Avg. unres. router ratio (%) Avg. edit distance

Initial 60.1 23,122
IP 6.2 1726
NM 3.8 1403
GBI 1.8 718

Table 6 presents the results for (10, 2000) T-S sample
which shows that GBI performs much better than the cor-
responding simulations in Tables 3 and 4. This indicates
that GBI is much better in data sets that contains unre-
sponsive regions as observed in real traces.

Impact of Alias IP Resolution: After collecting accurate
path traces two of the crucial processes in the topology
construction is the IP alias resolution and unresponsive
router resolution [72,23].2 Each of these tasks might have
inaccuracies, i.e. false positives and/or false negatives. In
order to analyze the impact of IP alias resolution on unre-
sponsive router resolution, we measure edit distance values
with and without IP alias resolution. As an example on the
(10, 2000) T-S sample, we used both an ideal IP alias resolu-
tion where all IP aliases are resolved and partial resolution
with APARv2 [14,41] that provided 65-70% resolution on
average. We also varied the unresponsive router ratio in
the topology. Table 7 presents the edit distance values for
initial and final topologies. Applying IP alias resolution
before unresponsive router resolution improves the edit dis-
tance values for all approaches. Even though the improve-
ment in edit distance is higher for IP and NM approaches
than GBI approach, GBI produces the best edit distance
results for all cases.

In summary, in this section, we have compared GBI
with practical approaches IP and NM, and have shown that
GBI performs better in terms of edit distance or unrespon-
sive router ratio. We also have shown that GBI based
graphs are closer to the original graphs in terms of topo-
logical characteristics. In addition, GBI handles all types
of unresponsiveness whereas IP and NM are completely
ineffective for temporary unresponsiveness (which are not
considered in the above simulations) because they only
consider permanent unresponsiveness.

5.2. Experimental results on sampled topologies

In this section, we use sampled topology data to analyze
the feasibility of GBI. We use three data sets collected in
February, 2011:

(i) iPlane: from 234 vantage points to ~144 K destina-
tions [32];
(ii) Ark: from 51 vantage points to ~9.5 M destinations
[31]; and
(iii) Cheleby: from 400 vantage points to ~3.5 M desti-
nations [41].

2 Note that load balancing and tunneling are common practices in the
Internet. However, topology collection study should focus on obtaining
accurate path traces and paths with inaccuracies should be corrected/fil-
tered prior to the topology construction.

H. Kardes et al./ Computer Networks 81 (2015) 178-200 197

Table 7
Impact of IP alias resolution.
No. resolution Partial Perfect
resolution resolution
2% 14% 2% 14% 2% 14%
Initial 4212 17,726 3712 15,127 3426 13,419
P 158 1597 146 1346 140 1293
NM 68 1372 33 1213 30 1096
GBI 30 732 24 658 21 645

Table 8
Graph Based Induction technique on real data sets.
iPlane Ark Cheleby
#Traces 32M 227M 15M
#IPs 300K 1.2M 1.2M

Initial #*s 15,182,604 7,862,649 7,207,885
#*s resolved by Algorithm 1 14,320,510 7,213,793 6,137,750
#*s resolved by Algorithm 2 212,460 122,820 251,279

#*s resolved by Algorithm 6 3212 2688 2858

#*s resolved by Algorithm 7 158,862 115,194 143,880
#*s resolved by Algorithm 8 406,101 244,076 419,204
Total resolved 15,101,944 7,698,571 6,954,971
Final #*s 80,660 164,078 252,914

After filtering inaccurate and incomplete path traces,
we resolve IP aliases using APARv2 [14,41]. Table 8 pre-
sents the results for each step of GBI to resolve unrespon-
sive routers in the data set. Algorithm 1 applies the Initial
Pruning to considerably reduce the number of unknown
nodes. Algorithm 2 then identifies unknown nodes due to
temporarily unresponsive routers (i.e., the ones due to
ICMP rate limiting or due to congestion at the router).
This step resolves over 27% of the existing unknown nodes.
Note that none of the previous approaches handle this type
of unresponsiveness.

We then index star, complete bipartite and triangle
structures using Algorithms 3, 4, and 5, respectively.
Next, Algorithm 6 addresses the unknown nodes in the tri-
angle structures. Note that due to the (k,m) nature of the
traces that span from a few sources to a large number of
destinations, the number of observed clique structures
and the corresponding resolutions is small [18]. In the fol-
lowing step, Algorithm 7 resolves the unknown nodes in
the complete bipartite structures. Finally, Algorithm 8 pro-
cesses the unknown nodes in star structures.

Overall, GBI reduces the number of unknown nodes by
99%, 98% and 97% for iPlane, Ark and Cheleby data sets,
respectively (and by 91%, 75% and 76% if we consider the
topology after Initial Pruning as the starting point). Note
that no resolution process will reduce the number of
unknown nodes by 100% when there are permanently
unresponsive routers. Moreover, we observe that resolu-
tion is better with denser graphs such as iPlane that focus-
es traces on a region.

Additionally, in order to assess the impact of unrespon-
sive routers on the large scale topological characteristics of
the resulting graphs, we analyze the node degree distribu-
tions of the known nodes with and without unresponsive
router resolution. Fig. 22 presents the node degrees of

10,000,000 8%

#2006 w/o res.

o m2009 w/o res.
1,000,000 42012 w/o res.
%2006 w. res.
g 100,000 %2009 w. res.
8 10,000 ©2012 w. res.
8 3
© 2 o0
kol 1,000 —*
[e)
z 100
10
1 x
1 10 100 1000 10000 100000
Node Rank
Fig. 22. Effect on degree distribution.
Table 9

Complexity and operational overhead of GBI

Time complexity =~ Number of operations

iPlane Ark Cheleby
Algorithm 1 O(|U] - log(|U])) 5.0%10° 22%10° 6.7 % 10°
Algorithm 2. o(|U]| - (a,9)*) 4.0+10° 1.8x10" 3.3x10’
Algorithm 3 O(|V| + |U]) 09+10° 124%10° 124 10°
Algorithm 4 o(|s| - (ay)?) 11%10° 41x10° 56« 10°
Algorithm 5 O(|S| - ay - log(an)) 1.3 x10° 0.5 % 10° 0.7 % 10°
Table 10
Size of the data structures.
iPlane Ark Cheleby
| 09M 04M 1.1M
v 03M 12M 12M
S| 219K 93K 148 K
K| 858 K 752 K 793K
T| 99 K 47K 53K
Ung 7.67 3.55 3.11
ay 7.07 6.62 6.11

the known nodes for 2006, 2009, and 2012 iPlane datasets
that we utilized in Section 3.2 (other ones had similar
trends as well). As shown in the figure, unresponsive rou-
ters significantly inflate the node degrees.

Finally, we examine the operational overhead of GBI in
Table 9. We estimated the number of required operations
by using the data structure sizes presented in Table 10.
We use these values to compare the run time overhead
of GBI with earlier approaches. Based on the run time of
the GBI algorithms, the highest time complexity is due to
the Algorithm 2, i.e., approximately 4.0 « 10® operations
for the iPlane data. Note that, even though the complexity
seems to be O(n-m?), the value of m is much smaller than n.
Moreover, Table 10 presents the space requirements of
each index structure that is used in the resolution process.

The NM approach has a time complexity of O(n?) where
n is the total number of nodes in the data set after the
Initial Pruning. For iPlane data, n is approximately 1.15 M

and hence NM would take 10'? steps. Similarly, the

198 H. Kardes et al./ Computer Networks 81 (2015) 178-200

dimensionality reduction approach of [37] would take 10'®
operations while the graph minimization approach of [36]

would take 10°° operations. Since Almog et al. [38] have
not provided the time complexity of their approach, we
are not able to compare the computational overhead of
their approach. However, they utilize a distance matrix to
resolve the unknown nodes and the straightforward
resolution of a large scale graph is not practical with this
approach. Authors partition the map into subgraphs and
handle each separately.

6. Conclusion

In this paper, in order to assess the extent of unrespon-
sive routers in Internet topology mapping studies, we first
analyze the nature of unresponsive routers and identify
different types of unresponsiveness. To this end, we pre-
sent an experimental study on the responsiveness of rou-
ters to the active probing. In our historical analysis, we
observe that in general responsiveness reduced during
the last decade and regions of unresponsive routers
expanded. We also observe that network operators are
increasingly using rate limiting of active probes.

In the second part of the paper, we develop a Graph
Based Induction (GBI) approach to resolve unresponsive
routers. In this approach, based on our novel Structural
Graph Indexing, we index observed subgraphs that contain
unknown nodes. Then, we determine the corresponding
minimal underlying structure that satisfies the trace accu-
racy condition. Our work improves the state of the art in
unresponsive router resolution in terms of both accuracy
and efficiency. Regarding accuracy, GBI addresses all cases
of unresponsive routers whereas the previous approaches
ignore temporary unresponsiveness. Regarding efficiency,
the run time complexity of our algorithm is significantly
less than that of existing algorithms. Our experiments on
three different large scale data sets have shown a sig-
nificant reduction in the practical run time overhead of
our approach (approximately, 4.0« 10%® operations) as
compared to the previous approaches (approximately,
10'2 to 10*° operations in the worst case). Overall, GBI
can be utilized for Internet topology mapping studies
aimed to obtain sample network graphs. Most of such mea-
surement studies ignore unresponsive routers due to the
high complexity in processing unknown nodes. GBI pre-
sents an efficient solution that makes a balance between
false positives and false negatives while resolving unre-
sponsive routers.

Acknowledgment

This work was supported in part by National Science
Foundation Award #CNS-1321164.

References

[1] M. Newman, Networks: An Introduction, Oxford University Press,
Inc., New York, NY, USA, 2010.

[2] M.B. Akgun, M.H. Gunes, Link-level network topology generation, in:
Proceedings of the 2011 31st International Conference on

Distributed Computing Systems Workshops, ICDCSW 11, IEEE

Computer Society, Washington, DC, USA, 2011, pp. 140-145.

P. Gill, M. Arlitt, Z. Li, A. Mahanti, The flattening Internet topology:

natural evolution, unsightly barnacles or contrived collapse?, in:

PAM’08: Proceedings of the 9th International Conference on Passive

and Active Network Measurement, Springer-Verlag, Berlin,

Heidelberg, 2008, pp 1-10.

H. Karaoglu, M. Yuksel, M. Gunes, On the scalability of path

exploration using opportunistic path-vector routing, in: 2011 IEEE

International Conference on Communications (ICC), 2011, pp. 1 -5.

[5] M. Gunes, S. Bilir, K. Sarac, T. Korkmaz, A measurement study on
overhead distribution of value-added Internet services, Comput.
Networks 51 (14) (2007) 4153-4173.

[6] H. Haddadi, M. Rio, G. lannaccone, A. Moore, R. Mortier, Network
topologies: inference, modeling, and generation, Commun. Surv.
Tutorials, IEEE 10 (2) (2008) 48-69.

[7] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M.
Hibler, C. Barb, A. Joglekar, An Integrated Experimental Environment
for Distributed Systems and Networks, Boston, MA, 2002.

[8] PlanetLab Project. <http://www.planet-lab.org>.

[9] L. Cheng, N. Hutchinson, M. Ito, Realnet: a topology generator based
on real Internet topology, in: Advanced Information Networking and
Applications (AINAW), 2008, pp. 526-532.

[10] E. Arslan, M. Yuksel, M.H. Gunes, Network management game, in:
2011 18th IEEE Workshop on Local Metropolitan Area Networks
(LANMAN), 2011, pp. 1-6.

[11] V. Jacobson, Traceroute, Lawrence Berkeley Laboratory (LBL). <ftp://
ee.lbl.gov/traceroute.tar.gz> (February 1989).

[12] F.Viger, B. Augustin, X. Cuvellier, C. Magnien, M. Latapy, T. Friedman,
R. Teixeira, Detection, understanding, and prevention of traceroute
measurement artifacts, Comput. Netw. 52 (5) (2008) 998-1018.

[13] B. Donnet, M. Luckie, P. Mérindol,].-]. Pansiot, Revealing MPLS
tunnels obscured from traceroute, SIGCOMM Comput. Commun.
Rev. 42 (2) (2012) 87-93.

[14] M. Gunes, K. Sarac, Resolving IP aliases in building traceroute-based
Internet maps, IEEE/ACM Trans. Network. 17 (6) (2009) 1738-1751.

[15] M.E. Tozal, K. Sarac, Palmtree: an IP alias resolution algorithm with
linear probing complexity, Comput. Commun. 34 (5) (2011) 658-
669 (special Issue: Complex Networks).

[16] M. Gunes, K. Sarac, Inferring subnets in router-level topology
collection studies, in: ACM SIGCOMM Internet Measurement
Conference (IMC), San Diego, CA, 2007.

[17] M.E. Tozal, K. Sarac, Tracenet: an internet topology data collector,
in: Proceedings of the 10th Annual Conference on Internet
Measurement, IMC '10, ACM, New York, NY, USA, 2010, pp. 356-
368.

[18] M. Gunes, K. Sarac, Resolving anonymous routers in Internet
topology measurement studies, in: Proceedings of IEEE INFOCOM,
Phoenix, AZ, USA, 2008.

[19] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M.
Latapy, C. Magnien, R. Teixeira, Avoiding traceroute anomalies with
Paris traceroute, in: Proceedings of IMC, Rio de Janeiro, Brazil, 2006.

[20] R. Sherwood, A. Bender, N. Spring, DisCarte: A disjunctive Internet
cartographer, in: Proceedings of the ACM SIGCOMM, Seattle, WA,
USA, 2008.

[21] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring ISP
topologies using rocketfuel, IEEE/ACM Trans. Network. 12 (1) (2004)
2-16.

[22] M.B. Akgun, M.H. Gunes, Bipartite internet topology at the subnet-
level, in: IEEE International Workshop on Network Science (NSW
2013), IEEE, West Point, NT, 2013 (IEEE).

[23] M. Gunes, K. Sarac, Importance of IP alias resolution in sampling
Internet topologies, in: IEEE Global Internet (GI), 2007.

[24] R. Teixeira, K. Marzullo, S. Savage, G. Voelker, In search of path
diversity in ISP networks, in: Proceedings of the USENIX/ACM
Internet Measurement Conference, Miami, FL, USA, 2003.

[25] M.B. Akgun, M.H. Gunes, Impact of multi-access links on the internet
topology modeling, in: IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS 2013), IEEE, San Francisco, CA, 2013 (IEEE).

[26] H.B. Acharya, M.G. Gouda, A theory of network tracing, in: SSS '09:
Proceedings of the 11th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 62-74.

[27] G. Antichi, A. Di Pietro, D. Ficara, S. Giordano, G. Procissi, F. Vitucci,
Network topology discovery through self-constrained decisions, in:
Global Telecommunications Conference, 2009, GLOBECOM 2009,
IEEE, 2009, pp. 1-6.

3

[4

http://refhub.elsevier.com/S1389-1286(15)00059-6/h0005
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0005
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0005
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0010
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0010
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0010
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0010
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0010
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0015
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0015
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0015
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0015
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0015
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0015
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0025
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0025
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0025
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0030
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0030
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0030
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0035
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0035
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0035
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0035
http://www.planet-lab.org
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0060
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0060
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0060
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0065
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0065
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0065
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0070
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0070
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0075
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0075
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0075
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0085
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0085
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0085
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0085
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0085
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0105
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0105
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0105
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0110
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0110
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0110
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0110
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0125
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0125
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0125
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0125
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0125
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0130
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0130
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0130
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0130
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0130
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0135
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0135
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0135
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0135
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0135

H. Kardes et al./ Computer Networks 81 (2015) 178-200 199

[28] J. Ni, H. Xie, S. Tatikonda, Y. Yang, Efficient and dynamic routing
topology inference from end-to-end measurements, IEEE/ACM
Trans. Network. 18 (1) (2010) 123-135.

[29] M.H. Gunes, K. Sarac, Analyzing router responsiveness to active
measurement probes, in: Proceedings of the 10th International
Conference on Passive and Active Network Measurement, PAM ’09,
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 23-32.

[30] D. McRobb, K. Claffy, T. Monk, Skitter: CAIDA’s Macroscopic Internet
Topology Discovery and Tracking Tool, 1999. <http://www.caida.
org/tools/skitter/>.

[31] Archipelago Measurement Infrastructure (Ark). <http://www.caida.
org/projects/ark>.

[32] H.V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A.
Krishnamurthy, A. Venkataramani, iPlane: an information plane for
distributed services, in: OSDI, 2006.

[33] H. Kardes, M.H. Gunes, Structural graph indexing for mining
complex networks, in: Proceedings of the 2010 IEEE 30th
International Conference on Distributed Computing Systems
Workshops, ICDCSW '10, Washington, DC, USA, 2010, pp. 99-104.

[34] S. Bilir, K. Sarac, T. Korkmaz, Intersection characteristics of end-to-
end Internet paths and trees, in: IEEE International Conference on
Network Protocols (ICNP), Boston, MA, USA, 2005.

[35] D. Feldman, Y. Shavitt, An optimal median calculation algorithm for
estimating Internet link delays from active measurements, in: IEEE
E2EMON, Munich, Germany, 2007.

[36] B.Yao, R. Viswanathan, F. Chang, D. Waddington, Topology inference
in the presence of anonymous routers, in: IEEE INFOCOM, San
Francisco, CA, USA, 2003.

[37] X. Jin, W.-PK. Yiu, S.-H.G. Chan, Y. Wang, Network topology
inference based on end-to-end measurements, IEEE]. Sel. Areas
Commun. 24 (12) (2006) 2182-2195 (Special Issue on Sampling the
Internet).

[38] A. Almog,]. Goldberger, Y. Shavitt, Unifying unknown nodes in the
Internet graph using semisupervised spectral clustering, in:
Proceedings of the 2008 IEEE International Conference on Data
Mining Workshops, IEEE Computer Society, Washington, DC, USA,
2008, pp. 174-183.

[39] Cheleby: An Internet Topology Mapping System. <http://cheleby.cse.
unr.edu/>.

[40] Y. Shavitt, E. Shir, DIMES: let the Internet measure itself, ACM
SIGCOMM CCR 35 (5) (2005) 71-74.

[41] H. Kardes, M.H. Gunes, T. Oz, Cheleby: a subnet-level internet
topology mapping system, in: COMSNETS, 2012, pp. 1-10.

[42] S. Triukose, Z. Wen, A. Derewecki, M. Rabinovich, Dipzoom: An open
ecosystem for network measurements, in: Proceedings of IEEE
INFOCOM, Anchorage, AK, USA, 2007.

[43] E. Blanton, M.E. Tozal, K. Sarag, S. Fahmy, Location matters: eliciting
responses to direct probes, in: IEEE 32nd International Performance
Computing and Communications Conference, IPCCC 2013, San Diego,
CA, USA, December 6-8, 2013, 2013, pp. 1-10.

[44] N. Spring, D. Wetherall, T. Anderson, Scriptroute: A public internet
measurement facility, in: Proceedings of USENIX Symposium on
Internet Technologies and Systems, 2003.

[45] M. Luckie, Y. Hyun, B. Huffaker, Traceroute Probe Method and
Forward IP Path Inference, in: Internet Measurement Conference
(IMC), Vouliagmeni, Greece, 2008, pp. 311-324.

[46] A. Broido, K. Claffy, Internet topology: connectivity of IP graphs, in:
Proceedings of SPIE ITCom Conference, Denver, CO, USA, 2001.

[47] B. Cheswick, H. Burch, S. Branigan, Mapping and visualizing the
Internet, in: ACM USENIX, San Diego, CA, USA, 2000.

[48] J. Du, Y. Li, A solution for anonymous routers discovery based on
source-routing traceroute, in: Proceedings of 2013 International
Conference on Advances in Materials Science and Manufacturing
Technology, Trans Tech Publications Ltd., Stafa-Zuerich, Switzerland,
2013, pp. 1050-1054.

[49] Y.-A. Pignolet, S. Schmid, G. Tredan, Misleading stars: what cannot
be measured in the internet?, Distrib Comput. 26 (4) (2013) 209-
222.

[50] H. Kardes, D. Konidena, S. Agrawal, M. Huff, A. Sun, Graph-based
approaches for organization entity resolution in mapreduce, in:
Proceedings of TextGraphs-8 Graph-Based Methods for Natural
Language Processing, in Conjunction with EMNLP 2013, 2013, pp. 70.

[51] N. McNeill, H. Kardes, A. Borthwick, Dynamic record blocking:
efficient linking of massive databases in mapreduce, in: Proceedings

of the 10th International Workshop on Quality in Databases (QDB),
in Conjunction with VLDB 2012, 2012.

[52] H. Kardes, S. Agrawal, X. Wang, A. Sun, Ccf: fast and scalable
connected component computation in mapreduce, in: Proceedings
of the International Conference on Computing, Networking and
Communications (ICNC), 2014, IEEE, 2014, pp. 994-998.

[53] H. Kardes, A. Sevincer, M.H. Gunes, M. Yuksel, Six degrees of
separation among us researchers, in: Proceedings of the 2012
International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2012), IEEE Computer Society, 2012, pp. 654~
659.

[54] D. Cook, L. Holder, Mining Graph Data, John Wiley & Sons, 2006.

[55] T. Matsuda, H. Motoda, T. Washio, Graph-based induction and its
applications, Adv. Eng. Inform. 16 (2) (2002) 135-1434.

[56] D. Shasha, J.T.L. Wang, R. Giugno, Algorithmics and applications of
tree and graph searching, in: Symposium on Principles of Database
Systems, 2002, pp. 39-52.

[57] C.A. James, D. Weininger,]. Delany, Daylight Theory Manual -
Daylight 4.91, April 2005.

[58] X. Yan, P.S. Yu, J. Han, Graph indexing: a frequent structure-based
approach, in: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD '04, ACM, New York,
NY, USA, 2004, pp. 335-346.

[59] iPlane. <http://iplane.cs.washington.edu/>.

[60] CYMRU. <http://www.team-cymru.org/services/ip-to-asn.html>.

[61] M. Antic, A. Smiljanic, Routing with load balancing: increasing the
guaranteed node traffics, [IEEE Commun. Lett. 13 (6) (2009) 450-452,
http://dx.doi.org/10.1109/LCOMM.2009.081874.

[62] Route Selection in Cisco Routers, Tech. Rep. Document ID: 8651,
Cisco. <http://www.cisco.com/en/US/tech/tk365/technologies_tech_
note09186a0080094823.shtml> (January 2008).

[63] Configuring a Load-Balancing Scheme, Tech. rep., Cisco. <http://
www.cisco.com/en/US/docs/ios-xml/ios/ipswitch_cef/configuration/
15-0m/isw-cef-load-balancing.pdf> (October 2011).

[64] R. Sherwood, N. Spring, Touring the Internet in a TCP sidecar, in:
Proceedings of the ACM/SIGCOMM on Internet Measurement
Conference, ACM Press, New York, NY, USA, 2006, pp. 339-344.

[65] R. Govindan, H. Tangmunarunkit, Heuristics for Internet map
discovery, in: IEEE INFOCOM, Tel Aviv, ISRAEL, 2000.

[66] K. Keys, Y. Hyun, M. Luckie, K. Claffy, Internet-Scale IPv4 Alias
Resolution with Midar: System Architecture, Tech. rep., Cooperative
Association for Internet Data Analysis - CAIDA, May 2011.

[67] R. Peeters, The maximum edge biclique problem is NP-complete,
Discr. Appl. Math. 131 (3) (2003) 651-654.

[68] NLANR, Multicast Beacon, National Laboratory for Applied Network
Research. <http://dast.nlanr.net/Projects/Beacon/> (June 2000).

[69] M. Gunes, K. Sarac, Analytical IP alias resolution, in: IEEE
International Conference on Communications (ICC), Istanbul,
Turkey, 2006.

[70] E.W. Zegura, K.L. Calvert, M.]. Donahoo, A quantitative comparison of
graph-based models for Internet topology, IEEE/ACM Trans.
Network. 5 (6) (1997) 770-783.

[71] M.EJ. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89
(20) (2002) 208701.

[72] M. Gunes, K. Sarac, Impact of alias resolution on traceroute-based
sample network topologies, in: Passive and Active Measurement
Conference (PAM), Louvain-la-neuve, Belgium, 2007.

Hakan Kardes is a researcher at Inome Inc. He
received his B.S degree in Computer
Engineering from Bogazici University, TURKEY
in 2009. He got his M.S and PhD degrees in
Computer Science from University of Nevada,
Reno in 2010 and 20012, respectively. His
main research interests are complex net-
works, graph data mining and Internet mea-
surements.

http://refhub.elsevier.com/S1389-1286(15)00059-6/h0140
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0140
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0140
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0145
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0145
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0145
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0145
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0145
http://www.caida.org/tools/skitter/
http://www.caida.org/tools/skitter/
http://www.caida.org/projects/ark
http://www.caida.org/projects/ark
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0170
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0170
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0170
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0170
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0185
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0185
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0185
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0185
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0190
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0190
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0190
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0190
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0190
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0190
http://cheleby.cse.unr.edu/
http://cheleby.cse.unr.edu/
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0200
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0200
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0240
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0240
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0240
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0240
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0240
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0240
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0245
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0245
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0245
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0260
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0260
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0260
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0260
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0260
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0265
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0265
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0265
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0265
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0265
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0265
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0270
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0270
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0275
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0275
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0290
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0290
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0290
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0290
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0290
http://iplane.cs.washington.edu/
http://www.team-cymru.org/services/ip-to-asn.html
http://dx.doi.org/10.1109/LCOMM.2009.081874
http://www.cisco.com/en/US/docs/ios-xml/ios/ipswitch_cef/configuration/15-0m/isw-cef-load-balancing.pdf
http://www.cisco.com/en/US/docs/ios-xml/ios/ipswitch_cef/configuration/15-0m/isw-cef-load-balancing.pdf
http://www.cisco.com/en/US/docs/ios-xml/ios/ipswitch_cef/configuration/15-0m/isw-cef-load-balancing.pdf
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0320
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0320
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0320
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0320
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0335
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0335
http://dast.nlanr.net/Projects/Beacon/
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0350
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0350
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0350
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0355
http://refhub.elsevier.com/S1389-1286(15)00059-6/h0355

200 H. Kardes et al./ Computer Networks 81 (2015) 178-200

Mehmet Hadi Gunes is an Associate Professor
at University of Nevada, Reno. He received B.S.
degrees in Computer Science & Engineering
and Electronics Engineering from Isik
University of Turkey in 2002; M.S. in
Computer Science & Engineering from
Southern Methodist University in 2004; and
Ph.D. in Computer Science from University of
Texas at Dallas in 2008. His research interests
include Communications: protocols, health
systems, smart grid communications;
Complex networks: biological networks,
social networks, graph data mining, network visualization; Internet
measurements: Internet topology, Internet modeling; Network security:
anonymizers, private communication, secure cloud. His research is
funded by National Institute of Justice and National Science Foundation.

Kamil Sarac received the M.S. and Ph.D. degrees
in computer science from the University of
California at Santa Barbara, in 1997 and 2002,
respectively. He is currently an Associate
Professor in the Department of Computer
Science at the University of Texas, Dallas. His
research interests include Computer networks;
network and service monitoring and Internet
measurements; overlay networks; network
security and denial-of-service defense; broad-
cast in ad hoc networks; group communication
and IP multicast.

	Graph Based Induction of unresponsive routers in Internet topologies
	1 Introduction
	2 Related work
	2.1 Router unresponsiveness
	2.2 Graph data mining

	3 Router responsiveness analysis
	3.1 Unresponsive router types
	3.2 Historical data analysis
	3.3 Load balancing practices
	3.4 Summary

	4 Graph Based Induction for unresponsive router resolution
	4.1 Preliminaries
	4.2 Methodology
	4.3 Structural Graph Indexing
	4.3.1 Parallel *-subpath structures
	4.3.2 Star structures
	4.3.3 Complete bipartite structures
	4.3.4 Triangle structure

	4.4 Unresponsive router resolution
	4.4.1 Triangle resolution
	4.4.2 Complete bipartite resolution
	4.4.3 Star resolution

	4.5 Overall

	5 Evaluations
	5.1 Simulation-based evaluations
	5.2 Experimental results on sampled topologies

	6 Conclusion
	Acknowledgment
	References

