
HMM-based Address Parsing: Efficiently Parsing
Billions of Addresses on MapReduce

Xiang Li†‡ Hakan Kardes† Xin Wang† Ang Sun†

†Data Research, inome, Inc.
‡Computer Science Department, New York University

xiangli@cs.nyu.edu, {hkardes, xwang, asun}@inome.com

ABSTRACT
Record linkage is the task of identifying which records in one
or more data collections refer to the same entity, and ad-
dress is one of the most commonly used fields in databases.
Hence, segmentation of the raw addresses into a set of se-
mantic fields is the primary step in this task. In this paper,
we present a probabilistic address parsing system based on
the Hidden Markov Model. We also introduce several novel
approaches to build models for noisy real-world addresses,
obtaining 95.6% F-measure. Furthermore, we demonstrate
the viability and efficiency of this system for large-scale data
by scaling it up to parse billions of addresses with Hadoop.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Text Analysis; H.2.8
[Database Applications]: Spatial databases and GIS

General Terms
Algorithms

Keywords
Address Parsing, Large-scale Data, Record Linkage

1. INTRODUCTION
Record linkage refers to the process of joining records that

refer to the same entity or event in one or more data col-
lections. In the absence of a shared, unique key, record
linkage involves the comparison of ensembles of partially-
identifying, non-unique data items between pairs of records.
Address is one of the most commonly used spatial data items
in everyday life, and parsing addresses into semantic fields is
therefore a fundamental problem for spatial record linkage
(Section 2). In this paper, a fast, reliable address parser has
been developed.

One of the most frequently used spatial footprints is postal
address, such as “500 108th Ave NE Suite 2200 Bellevue

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM Copyright 2014 ACM 978-1-4503-3131-9/14/11 $15.00
http://dx.doi.org/10.1145/2666310.2666471.

Table 1: Address Fields and Parsed Example
Field Description Example

HouseNumber Primary (house) number 500
PreDir Street pre-direction -
Street Street name or PO Box 108th Ave
PostDir Street post-direction NE
Unit Secondary (unit) number Suite 2200
City City name or abbreviation Bellevue
State State name or abbreviation WA
Zip 5-digit zip code 98004
Zip4 Last 4-digit zip code 0000

WA 98004-0000”. The motivation of address parsing in this
paper comes directly from the demand to support people
search, which aims to return individuals according to queries
that use names and locations. Given that there are many
people sharing the same name (e.g., there are more than
500 “Jim Smith” in California state1), using a combination
of name and address to differentiate records is one of the
essential techniques for reliable record linkage. Thus, we de-
fine a set of semantic fields in Table 1 to parse addresses,
where the above sample address is parsed into corresponding
fields for illustration. Since real-world addresses may con-
tain variations or noisy information, such as wrong spellings
or inconsistent orders, several approaches are applied to in-
corporate “noise” into the training data for better models
(Section 3). Traditionally, deterministic rule-based process-
ing systems are used to carry out this parsing procedure.
This paper describes an alternative approach, the probabilis-
tic Hidden Markov Model (HMM), which provides a viable,
efficient alternative to rule-based systems (Section 4). An
HMM-based system is implemented with advanced features
to parse billions of raw, real-world U.S. addresses, which
turns out its outstanding capacity for handling large-scale
data (Section 5).

2. RELATED WORK
Record linkage is the task of finding records that refer to

the same entity across different data sources. Its process is
trivial, where the records that relate to the same entity or
event all share a common, unique key or identifier. However,
there is often no unique key that is shared by all the data
collections. The techniques of record linkage mainly rely on
an element-wise comparison between pairs of records, each
comprising an ensemble of partially identifying personal at-
tributes. These attributes commonly include residential ad-
dresses, and standardizing address data is therefore an im-
portant step in data pre-processing [5, 1].

1Based on the data from Intelius.com, as of June, 2013.

In these settings, the techniques of address segmentation
can be broadly divided into two groups: deterministic or
rule-based techniques, and probabilistic techniques. The
most common approach is the manual specification of pars-
ing and transformation rules. A well-known example of this
approach is AutoStan [6] in the biomedical research field.
[8] also implemented a rule-based system to parse addresses
through regular expression matching. Probabilistic methods
are an alternative to these rule-based approaches. Statisti-
cal models, HMM in particular, have been used extensively
to help solve sequence labeling problems, such as part-of-
speech tagging [7]. More recently, HMM has been applied
to the problem of extracting structured information from
unstructured text [3, 4] and address standardization [2].

3. DATA

3.1 Synthetic Training Data
Our address data sources are at a very large scale, such

as in billions, and vary in data quality. To experiment with
parsing address at such a large scale, we leverage some of the
current Big Data processing tools, such as Hadoop. We ap-
ply Hadoop to mine nearly 100 million unique addresses from
one of our data sources, which is of higher quality than other
data sources. These addresses have been pre-segmented into
the above fields defined in Table 1 by our data vender, so
these extracted addresses can naturally serve as our proto-
type training data for the HMM-based system. Here is a
sample instance:

<HouseNumber>500</HouseNumber>
<Street>108th Ave</Street>
<PostDir>NE</PostDir> <City>Bellevue</City>
<State>WA</State> <Zip>98004</Zip>

But one problem here is that all these segmented instances
have already been normalized, such as “Street”, “Str.”, “St.”
and other forms of word“street”are normalized into the only
form “St”. While for many regular words there is only one
correct spelling, there are often different written forms for
proper names (commonly used as street or locality). Hence,
this data source actually lacks normal address variations.
Furthermore, these addresses are also well-formed, correctly
ordered and complete, so that it does not contain any case
that consists of incomplete or badly ordered fields. How-
ever, correct addresses may appear in different orders or even
miss some fields. The HMM is quite robust with respect to
the training set used, so it is quite feasible to add train-
ing instances that are archetypes of unusual address pat-
terns, without compromising the performance on more typ-
ical addresses. Therefore, we introduce some techniques to
automatically generate better synthetic training data from
this high-quality data source, which is more close to the
real-world scenarios and further improve the system perfor-
mance. The following approaches are sequentially applied.

1. Denormalization We take one step backward to cap-
ture all various address expressions through denormal-
ization. We collected four dictionaries of grouped ge-
ographical variations. Then if an expression e, which
is included in some group g within these dictionaries,
appears in a prototype training instance, we randomly
select one expression e′ from the group g to replace

e in that training instance. This procedure is applied
to each expression in each prototype training instance.
Since e could be different from e′, we successfully de-
normalize the original data source to create a synthetic
training data set with more variations.

(1) State Dictionary consists of common variations and
abbreviations of a total of 59 state and region names
in United States. Such as, all “Florida”, “Fla.”, and
“FL” refer to the “Florida” state;

(2) Street Dictionary lists 195 groups of expressions
and various abbreviations about“street”, such as“boule-
vard”can normally be written as“blvd”,“boul”,“boulv”,
and “boulevard”. Moreover, “post office box” can usu-
ally be abbreviated as “po box”, “pbox”, “pbx”, “p o
box”, “pobx”, “pobox”, and “pob”2;

(3) Unit Dictionary contains 20 groups of words and
abbreviations of unit expressions, such as both “apt”
and “apmt” are familiar forms of “apartment”;

(4) Direction Dictionary includes common direction
phrases, i.e., both “ne” and “northeast” express the
“northeast” direction.

After applying this Denormalization step, the above
sample prototype training instance can be transformed
to the following example:
<HouseNumber>500</HouseNumber>
<Street>108th Avenue</Street>
<PostDir>Northeast</PostDir>
<City>Bellevue</City>
<State>WA</State> <Zip>98004</Zip>

2. Incompletion Since real-world addresses may be in-
complete while all addresses from this high-quality data
source are comprised of complete information, we need
some incomplete addresses in our training data to im-
prove the HMM system with the capacity for correctly
parsing incomplete addresses. Accordingly, we ran-
domly select 20% from the original prototype training
instances. For each field in these instances, we remove
it with a 0.5 probability. For example, the above de-
normalized training instance can be modified as a syn-
thetic training instance with incomplete fields like:
<Street>108th Avenue</Street>
<City>Bellevue</City> <State>WA</State>
<Zip>98004</Zip>

3. Disarrangment Reordering the address fields is also
necessary to simulate real-world addresses with un-
usual address field orders. When a person looks for
an address in a search engine or provides addresses to
others, for instance, the order is not always perfect.
A possible reason is that people usually first provide
the address fields that they are more confident with,
and then try to add more detailed information. But
the correctness and accuracy of the information added
afterwards may not be guaranteed. Consequently, we
randomly rearrange the field order in the newly gen-
erated training instances from the above Incompletion
step, and these rearranged instances are added into the
final training data set. One reordered training instance
produced from the above incomplete instance is like:

2We deliberately put “Post Office Box” information in the
Street field in this task.

<State>WA</State> <Zip>98004</Zip>
<City>Bellevue</City>
<Street>108th Avenue</Street>

We have experimented with different percentages of pro-
totype training instances using in Incompletion and Disar-
rangement steps on a development data set. We find out
20% is appropriate. Otherwise, it may be too small to cap-
ture the noisy nature of real-world data, or the HMM may
get biased by the synthetic training data and have inferior
performance on handling the well-formed address cases.

3.2 Annotation Data
To evaluate the system performance, we construct a small

but representative annotated corpus. Two annotators are
trained to verify the validity of each address and segment
the address into predefined fields if the address is consid-
ered as correctly formatted. Otherwise, the addresses would
be ignored. The final annotated corpus consists of 587 typ-
ical, representative addresses (such as, city address, rural
address, highway address, Puerto Rico address, military ad-
dress, PO Box address, and etc.), which are randomly se-
lected from another raw address data set (different from the
above high-quality data set). We reach an inter-annotator
agreement of K = 0.742 in Kappa. We consider the agree-
ment quite good, considering the number of categories and
the difficulties of the task. We find out two annotators usu-
ally disagree about the boundaries of Street fields, due to
that no additional world knowledge is given, such as “1895
GAMAY TER TE CHULA VISTA CA 91913”. This also
reflects the difficulties of this task, even for people.

4. SYSTEM DESCRIPTIONS

4.1 Baseline System
Our rule-based baseline system [8] is designed based on

the open-source project JGeocoder (2008)3, which was fur-
ther developed and customized based on the different cases
identified over the course of development. The input raw ad-
dress string is segmented into the predefined address fields
using a library of regular expressions and rule sets. This sys-
tem has already been used in our company for production
purpose, which gives reasonable performance.

4.2 Hidden Markov Model System
We apply some tools provided in the Java Extraction

Toolkits (Jet) package4 to build this system. We treat the
tokenized input address as an ordered sequence of observa-
tion symbols, and assume that each observation symbol has
been emitted by one of the hidden states, such as Street and
City. Within each of the class states, a statistical bigram
model is employed, with the standard one-word-per-state
emission. Since these probabilities are estimated based on
the observations seen in a corpus, back-off models are used
to reflect the strength of support for a given statistic. Our
HMM system can compute the margin - the difference be-
tween the log probabilities of the top two hypotheses. This
is used as a rough measure of confidence in the top hypoth-
esis, and a large margin indicates greater confidence in the
first hypothesis. Furthermore, our HMM system can also
produce the top N best hypotheses for each address.
3http://jgeocoder.sourceforge.net/index.html
4http://cs.nyu.edu/grishman/jet/license.html

As we know, the addresses provided by people may con-
tain new or misspelled words, which do not appear in the
training data. If we apply the HMM system directly to
these unknown words, the system may not perform accu-
rately. This usually introduces errors to address segmenta-
tion. Hence, we apply a very simple strategy to solve this
problem. For each token t in an address, we check whether
t is a word (only letters after the removal of punctuations)
that appears in the training data. If it is unknown, we re-
place it with a special token, “UnknownUnknown”. Since
unknown words usually appear in Street, City, and State

fields, we assign this special token a frequency 1 under these
three hidden states respectively, so that this unknown to-
ken receives a very small emission probability. Finally, we
apply the HMM system on the input address and then re-
place this special token back with the original token in the
result. Although this method is very simple, from the exper-
iments, we observe that it can produce correct segmentations
with unknown words effectively, such as, the misspelled word
“Broadwya” can still be correctly segmented into Street in
address “719 Broadwya Floor 7 New York NY 10003”.

5. EXPERIMENTS
It is very efficient, reliable to train the HMM model. The

training takes less than 10 hours to finish training the model
with all of the 100 million synthetic training instances. All
our experiments are performed on a 8-core 2.33 GHz Intel
Xeon Linux server with 32 GB RAM.

5.1 System Performance
Addresses are judged to be accurately parsed if all ele-

ments of an input address string are placed into the correct
fields. Results are also judged on an individual basis for the
correctness of each field. For example, the segmentations of
address components that are assigned with Street tag will
also be evaluated individually. Table 2 compares the perfor-
mance (in Precision, Recall, and F-measure scores) between
the baseline system and the HMM-based system, which are
evaluated based on the adjudicated annotation data. The
results in Table 2 demonstrate that our HMM-based system
can generate more reliable, accurate parsed results compared
to our baseline system, either in overall or single field perfor-
mance. Especially for those complex, unusual addresses, the
results prove the substantial advantages of our HMM-based
system in terms of the parsing accuracy. Take an uncommon
Puerto Rico address for example, “QQ1 Calle Julio Ruedas
San Juan PR 00926”, our HMM system can perfectly seg-
ment it into correct fields, but the baseline system even fails
to recognize it as a validly formatted address.

5.2 Training Data Effects
We also investigate the benefits of the techniques applied

to generate the synthetic training data. In Figure 1, we com-
pare the system performance (in F-measure scores) on the
original (“OG”) high-quality data source, the only denormal-
ized (“DN”) training data, and the final training data that
has been processed through all Denormalization (“DN”), In-
completion (“IC”), and Disarragement (“DA”) steps. Com-
pared to the“OG”performance, it clearly shows that Denor-
malization approach can improve the system performance on
almost all individual fields, especially Street, Unit, and the
overall segmented address with around 5% absolute improve-
ment in F-measure. Once we additionally apply Incomple-

Table 2: Results Comparison between Baseline Sys-
tem and HMM System !

Field Performance
Baseline HMM

HouseNumber

Precision 1.000 1.000
Recall 0.991 1.000
Fmeasure 0.996 1.000

PreDir

Precision N/A 1.000
Recall 0.000 1.000
Fmeasure N/A 1.000

Street

Precision 0.579 0.961
Recall 0.577 0.959
Fmeasure 0.578 0.960

PostDir

Precision N/A 0.975
Recall 0.000 1.000
Fmeasure N/A 0.987

Unit

Precision 0.882 0.981
Recall 0.813 0.916
Fmeasure 0.846 0.947

City

Precision 0.912 0.997
Recall 0.889 0.985
Fmeasure 0.901 0.991

State

Precision 1.000 1.000
Recall 0.939 1.000
Fmeasure 0.968 1.000

Zip

Precision 0.550 1.000
Recall 0.546 1.000
Fmeasure 0.548 1.000

Zip4

Precision N/A 1.000
Recall 0.000 1.000
Fmeasure N/A 1.000

Address

Precision 0.284 0.956
Recall 0.284 0.956
Fmeasure 0.284 0.956

tion and Disarragment approaches, the performance on each
field gets improved more. Some fields, such as Street and
PostDir, receive almost 10% absolute improvement com-
pared to the “DN” scores. The enhancement on Unit even
reaches more than 30%, which also helps boost the over-
all performance from 84.0% to 95.6%. The improvements
on these fields are also quite reasonable, because these ap-
proaches do help better identifying the boundaries of the
fields, especially among Street, PostDir, and Unit fields.
Figure 1 also demonstrates the efficiency and necessity of
integration of these techniques to create a better training
data for the HMM-based system.

Given the raw address “3117 Flowers RD S M Atlanta
GA 30341” as an example, our HMM system trained on the
original data source produces the following incorrect result:

<HouseNumber>3117</HouseNumber>
<Street>Flowers RD S M</Street>
<City>Atlanta</City> <State>GA</State>
<Zip>30341</Zip>

However, our system trained on the final synthetic train-
ing data can return the following completely correct result:

<HouseNumber>3117</HouseNumber>
<Street>Flowers RD</Street><PostDir>S</PostDir>
<Unit>M</Unit> <City>Atlanta</City>
<State>GA</State> <Zip>30341</Zip>

5.3 Discussions
We also measure the time that the HMM-based system

needs to parse a raw input address, and it turns out that
the average processing time is only around 5 milliseconds per
address. Distributed architectures, such as MapReduce and

0.55	

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

Ho
us
eN
um
be
r	

Pre
Dir
	

Str
ee
t	

Po
stD
ir	

Un
it	

Cit
y	

Sta
te	
 Zip

	

Zip
4	

Ad
dre
ss	

F-­‐
m
ea
su
re
	

OG	
 DN	
 DN	
 +	
 IC	
 +	
 DA	

Figure 1: Performance Comparison using Different
Techniques for Synthetic Training Data

Hadoop, can provide even faster processing. For instance, at
this rate, we have scaled the system up to parse billions of
real-world addresses on an 80-node Hadoop cluster in a cou-
ple of hours. This processing time impressively validates the
efficiency and scalability of this HMM-based address parsing
system in large-scale record linkage problems.

6. CONCLUSION
Accurately parsing address is a fundamental step in data

pre-processing. In this paper, we present an automated
probabilistic approach based on HMM, and also introduce
several approaches to train models for noisy data. Initial
experiments demonstrate that our HMM-based system can
correctly parse even complex and unusual addresses with
outstanding efficiency and capacity for large-scale data sets.
In the future, we will investigate more sophisticated machine
learning models on processing addresses in such large-scale
data settings. Another direction is to explore whether com-
parable results can be achieved on noisy data through other
methods, such as Expectation-Maximization.

7. REFERENCES
[1] M. Cayo and T. Talbot. Positional error in automated

geocoding of residential addresses. International
Journal of Health Geographics, 2003.

[2] P. Christen and D. Belacic. Automated probabilistic
address standardisation and verification. In
Australasian Data Mining Conference, 2005.

[3] D. Freitag and A. McCallum. Information extraction
using hmms and shrinkage. In Papers from the
AAAI-99 Workshop on Machine Learning for
Information Extraction, 1999.

[4] D. Freitag and A. McCallum. Information extraction
with hmm structures learned by stochastic
optimisation. In Proceedings of the Eighteenth
Conference on Artificial Intelligence, 2000.

[5] J. Han and M. Kamber. Data mining: Concepts and
techniques. In Morgan Kaufmann, 2000.

[6] MatchWare-Technologies. Autostan and automatch
user’s manuals. 1998.

[7] L. Rabiner and B.-H. Juang. Fundamentals of speech
recognition. New Jersey, Prentice-Hall, Ch 6, 1993.

[8] S. Xu, S. Flexner, and V. Carvalho. Geocoding billions
of addresses: Toward a spatial record linkage system
with big data. In GiBDA’12: Workshop on GIScience
in the Big Data Age, 2012.

	Introduction
	Related Work
	Data
	Synthetic Training Data
	Annotation Data

	System Descriptions
	Baseline System
	Hidden Markov Model System

	Experiments
	System Performance
	Training Data Effects
	Discussions

	Conclusion
	References

