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Abstract—Understanding the topological characteristics of the
Internet is an important research issue as the Internet grows
with no central authority. Internet Topology mapping studies
help better understand the dynamics of the Internet backbone
network. Knowing underlying topology, researchers can develop
new protocols and services or fine-tune existing ones. In this
paper, we first discuss issues in subnet-level Internet topology
mapping and present approaches to handle them. Then, we intro-
duce Cheleby, an integrated Internet topology mapping system.
Cheleby, first, dynamically probes every observed subnetwork
in the Internet using a team of PlanetLab nodes around the
world. Then, it utilizes efficient algorithms for resolving subnets,
IP aliases, and unresponsive routers in collected data to provide
subnet-level topologies. Different from current topology mapping
systems, Cheleby not only samples the Internet topology but also
processes the collected data to build more complete maps. Sample
topologies are provided athttp://cheleby.cse.unr.edu.

Index Terms—Internet Measurement, Router-level, Topology
Sampling.

I. I NTRODUCTION

Internet, the largest man made complex network, is a web
of interconnected backbone networks over which thousands of
small and medium size Autonomous Systems (ASes) connect
individuals, businesses, universities, and agencies. Internet
is a spontaneously growing complex system whose large-
scale structure is affected by many interacting units aimedat
optimizing local communication efficiency without a central
authority. While the building blocks of the Internet, its proto-
cols and individual components, have been subject to intensive
studies, the immense global entity has not been precisely
characterized.

The Internet’s global properties can not be inferred from
the local ones as it is composed of networks engineered with
large technical diversity and range from small local campuses
to large transcontinental backbone providers [1]. Additionally,
the Internet evolves with the interplay between cooperation,
so that the network works efficiently, and competition, so
that providers earn money. Routers and links are added by
competing entities according to local economic and technical
constraints where topology information is kept confidential
due to various privacy and security concerns [2]. Combination
of all of these factors results in a general lack of understanding
about the topological characteristics of the Internet. Thecon-
fidentiality of network topology introduces challenges forthe
research community and requires them to infer the topology
by using measurement probes.

Need for Internet measurements arises due to commercial,
social, and technical issues and provide insight into network
topology, routing, protocols, and applications. Topological
analysis of the Internet is needed to develop network planning,
optimal routing algorithms, and failure detection measures [3].
Researchers test new protocols and systems using simulations
or emulations, but more realistic results can be obtained when
real topologies are fed to the models [4], [5]. Additionally,
network anomalies can be identified using topology mea-
surements [6]–[8]. Analyzing Internet topology also provides
insight into current trends. For instance, Gill et al. pointed
out that content providers are deploying their own networks
which has a flattening effect on the hierarchical AS model [9].
Similarly, evolution of the Internet topology can be analyzed
to predict future growth [10].

The research community has been conducting numerous
Internet measurement studies to answer various questions
on the functional and topological characteristics of the In-
ternet. Internet measurement studies require availability of
representative topology maps. Depending on the nature of
measurement study, researchers may use different types of
topology maps including AS level [11], [12], point-of-presence
(POP) level [13], [14], router level [15], link level [16] orIP
address level maps [17]. A POP level topology map is often the
most detailed information that ASes make publicly available,
if at all, about their network [2].

In general, Internet topology measurement studies consistof
three phases: (1) topology sampling, (2) topology construction,
and (3) topology analysis. Inaccuracies in the first two pro-
cesses may significantly affect the accuracy of the observations
or results obtained in the measurement study [18]–[21]. In
this paper, we first briefly define the issues in the Internet
topology mapping and proposed approaches in earlier studies.
We especially focus on the topology sampling and construction
processes that can significantly affect observations aboutthe
underlying network [18]–[22]. Then, we present Cheleby, an
Internet topology mapping system that provides insight into
the Internet topology by taking continuous snapshots of the
underlying networks. The system utilizes efficient algorithms
to process large scale data-sets collected from distributed
vantage points and provides accurate topology graphs at subnet
level.

Cheleby topology mapping system, shown in Figure 1, runs
on a server which actively manages PlanetLab nodes as its
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Fig. 1: Cheleby System Overview

monitors to collect topology information from geographically
diverse vantage points. The server instructs monitors to col-
lect partial path traces and perform other probing activities.
Cheleby then resolves subnets, IP aliases and unresponsive
routers within the collected raw data to construct the network
graph corresponding to the sampled network. Incorporating
enhanced resolution algorithms, Cheleby provides comprehen-
sive topology maps at the subnet-level.

In Section II, we provide brief definitions of some issues in
Internet topology mapping studies. In Section III, we briefly
present major Internet topology mapping systems. Then, in
Section IV, we present overview of the Cheleby system and
experimental results with various system parameters. In Sec-
tion V, we discuss topology construction steps in Cheleby and
present some experimental results. Finally, in Section VI,we
conclude the paper and provide a brief overview of future work
to enhance the Cheleby Internet topology mapping system.

II. BACKGROUND ON TOPOLOGYMAPPING

In this section, we briefly clarify some issues in Internet
topology mapping studies.

Sampling Bias: An important issue in topology collection
is to eliminate sampling bias [20], [23]. Since there are limited
number of vantage points and a large number of destinations,
one may collect a topology that is biased towards the vantage
points.

Load Balancing: Another issue to keep in mind during
topology collection is the deployment of load balancing by
ISPs. Certain traffic engineering practices for load balancing
may cause traceroute to return IP addresses that do not
correspond to a real end-to-end path in the network [24].
This happens when a router forwards consecutive traceroute
probes on different paths toward the destination, a common
phenomenon in the Internet [25].

Probing Overhead: As the volume of active measurement
practices has increased in time, it is important to minimize
redundant probing and carefully consider any disruption that
might be caused by the measurement study.

Unresponsive Router Resolution:Unresponsive routers
are routers that are passive to measurement probes and are
represented by a ‘*’ in a traceroute output. Since a router
may appear as a ‘*’ in multiple traceroute outputs, we need
to identify ‘*’s (i.e., unresponsive nodes) that belong to the
same router1. This process is called as unresponsive router
resolution.

1We use the termunresponsive nodeto refer to a ‘*’ in a traceroute output
and unresponsive routerto refer to the actual router that is represented by
this unresponsive node (i.e., by this ‘*’) in the tracerouteoutput.

IP Alias Resolution: As routers have multiple interfaces,
each interface has a unique IP address. In a given set of
path traces, a router may appear on multiple path traces with
different IP addresses. In IP alias resolution, the goal is to
identify nodes that appear to be separate in collected path
traces and combine them into one single node (i.e., to detect
IP addresses that belong to the same router).

Subnet Resolution:Normally, routers are connected to each
other over subnetworks and subnet resolution helps in identi-
fying the underlying subnets. In this task, the IP addressesin
a data set are analyzed to infer subnet relations among them.
The goal in subnet resolution is to identify multiple links that
appear to be separate and combine them to represent their
corresponding single hop connection medium (e.g., point-to-
point or multi-access link).

III. R ELATED WORK

In order to facilitate topology measurement studies, sev-
eral research groups have developed mapping systems to
collect the required information. Archipelago measurement
infrastructure of CAIDA [26], the DIMES project [27], and
the iPlane infrastructure [28] continuously provide sampled
Internet topologies. Additionally, several other groups have
developed tools or systems [29]–[38]. Table I presents major
Internet topology mapping systems and their characteristics
including number of: (1) deployed monitors, (2) destination
IP addresses, (3) collected traces, (4) generated probes, (5)
observed IP addresses, (6) observed edges without topology
construction, (7) alias sets, (8) IP addresses that appeared in
an alias set, and (9) provided data type2. Note that, iPlane
sends a single probe per hop in collected path traces while
other systems send three. Using three probes per hop helps the
mapping system identify load balancing routers and carefully
construct subsequent links.

1) Ark: Archipelago [26] is a successor of the skitter
measurement infrastructure [39] that started probing the In-
ternet in 1998. A major step from Skitter to Ark is the
coordination of monitors using Marinda tuple-space, which
utilizes a distributed memory space and pattern matching tech-
niques. Ark focuses on generating annotated Internet maps.
Currently, Ark utilizes 53 dedicated monitors around the world
to trace every observed /24 subnetwork. Monitors are divided
into 3 teams to trace towards 9.1M destination IP addresses
using scamper [40] to generate approximately 100 probes per
second. Ark started collecting IPv6 topology utilizing some
of the monitors since September 2010.Finally, Ark utilizes
Mercator, Midar, and kapar to resolve IP aliases.

2) Dimes: Similar to SETI@home crowd sourcing ap-
proach [41], Distributed Internet Measurements and Simula-
tions (DIMES) [27] utilizes home computers to collect path
traces around the world. Currently, around 20K agents around
the world contribute as vantage points to probe destinations
from a rich set of locations and capture peripheral Internet

2As DIMES does not release raw traces we could not obtain some ofits
statistics.



Platform Monitors Dest. IP Traces Probes IPs Edges Alias Sets Aliased IPs Data Type
Ark 53 9.1M 27.1M 993M 1.3M 2.3M 79.6K 271K Router/AS topology
DIMES 19,000 3.6M 15M Router/PoP/AS topology
iPlane 200 100K 33.8M 472M 0.3M 1.2M 12.1K 33.2K PoP/AS topology
Cheleby 500 3.5M 13.6M 658M 1.9M 2.9M 83.0K 217K Link-level topology

TABLE I: Internet Topology Mapping Systems

topology. DIMES focuses on PoP level topology mapping and
annotating the links with delay and loss statistics. Finally,
DIMES only implements Mercator method in resolving IP
aliases.

3) iPlane: iPlane [28] aims at providing Internet links
annotated with latency, bandwidth, capacity and loss rate for
improved overlay network deployment. iPlane performs path
traces from 200 PlanetLab monitors towards 100K destina-
tions to construct a backbone topology that can be used as
landmarks for overlay networks. Moreover, geo-location of
routers is identified using undns [15] and sarangworld [42]
tools. Finally, iPlane utilizes Mercator and Ally in resolving
IP aliases.

Inaccuracies in the topology sampling and construction pro-
cesses may significantly affect the accuracy of the observations
or results obtained in the measurement study [18]–[22], [43].
However, currently deployed topology mapping systems do not
complete all topology construction tasks. In particular, Ark,
DIMES and iPlane provide alias pairs for some data sets but
they do not provide subnets for observed IP addresses and also
ignore unresponsive routers. Addition of subnet relationsand
unresponsive routers in the final graph considerably improves
the network accuracy.

IV. CHELEBY: TOPOLOGYSAMPLING

In order to sample the underlying backbone topology of the
Internet, Cheleby system utilizes the PlanetLab infrastructure
to probe the Internet. Cheleby collects a large number of path
traces from geographically diverse vantage points towardsall
/24 subnets in the announced subnet prefixes. Cheleby utilizes
Paris traceroute, which fixes flow identifiers so that flow-
identifier based load balancing routers will choose the same
next hop for probe packets toward the same destination [44].
Moreover, Cheleby performs ICMP based querying as it elicits
more responses than other probing approaches [45].

A. Destination List Generation

In order to probe each active /24 subnetwork range,
we obtain subnet announcements with originating AS from
http://www.cidr-report.org. The list provides ad-
vertisements and actual RIR allocations for each AS. We
divide each subnet advertisement into a /24 subnetwork (e.g.,
A.B.C.0/24) and pick first allocable IP address as the probing
destination (i.e.,A.B.C.1). If a specific range is smaller than
/24, then we pick the first allocable IP address in the range.
These IP addresses are then divided into destination blocks
of approximately 1,024 destinations that will be probed by
monitors. Note that, an AS might be divided into several

blocks if it is larger than /14 or a destination block file may
contain multiple ASes. At the end of this process, we have
3,460destination blocks, i.e., 3.54M destination IP addresses.

After a few experiments, we replaced non-observed IP
addresses with responsive IP addresses, which have a com-
mon subnetwork prefix of /24 or longer, in the earlier data
sets. Moreover, we dynamically appended newly observed IP
addresses to the destination lists during topology construction
phase (see Section V).

B. Response Wait Time

In order to determine time-out time for traceroute probes,
we analyzed the response time of elicited responses for traces
towards 3.54M destinations using a time-out of 1.7 seconds.
Figure 2 presents the CDF of Round Trip Time (RTT) for
213.3M probes that elicited an ICMP response. In this experi-
ment, cumulatively there were 213M responsive nodes (i.e, an
ICMP response with an IP address was received) and 17.5M
unresponsive nodes (i.e., no response was received) in the
collected traces. In the Figure 2, we observe that more than
99.95% of responsive nodes respond within 0.5 sec. Hence,
in all subsequent experiments we set time-out time to 0.5 sec
since longer time-outs delay the overall topology collection
process. Round Trip Time Experiment
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Fig. 2: Cumulative Distribution Function for RTT

C. Task Assignment to Monitors

We divided functional PlanetLab nodes into 7 teams based
on their geographic locations (i.e., 1: North-West America,
2: North-Central America, 3: North-East America, 4: South
America, 5: Western Europe, 6: Eastern Europe + Africa +
Western Asia, and 7: Eastern Asia + Australia), as shown by
squares in Figure 4. The figure also shows the distribution for 5



Team Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7
Monitors 56.63 53.88 55.50 56.75 77.25 73.63 76.25

Incomplete Dest Blocks 7.43 30.28 24.03 35.72 12.85 12.35 12.15
Completed Dest Blocks 3,453 3,430 3,436 3,424 3,447 3,448 3,448
Completed in 2nd Trial 16.2 63.1 40.6 60.4 26.9 23.4 26.1

Avrg. Compl. Time (sec) 1,476 1,376 1,586 1,650 1,764 1,764 1,566
Run Time (hours) 8.53 8.18 9.15 9.32 7.32 7.68 6.54

TABLE II: Team Statistics (Average of 8 Data Sets)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  500  1000  1500  2000  2500  3000  3500

P
ro

bi
ng

 T
im

e

Destination Block (ranked by average probing time)

Team 1
Team 2
Team 3
Team 4
Team 5
Team 6
Team 7

Average

Fig. 3: Completion Time per Destination Block (in Seconds)

teams, which were deployed later as discussed in Section IV-D,
with dashed lines. Ark utilizes a similar approach to divideits
53 monitors into three teams.

Fig. 4: Team assignment of PlanetLab nodes (5 teams: Blue
lines. 7 teams: Green boxes.)

In order to probe destinations from geographically diverse
vantage points, Cheleby utilizes PlanetLab [46] nodes around
the world. Among∼1,100 nodes only∼600 of them were
good to be utilized during our experiment. As∼100 of good
monitors did not function well with the Paris traceroute, we
could utilize∼500 nodes during our topology collection. In
this section, we describe major steps of Cheleby regarding
topology sampling and data collection experiments using
∼500 available PlanetLab nodes during Nov 2010.

Cheleby dynamically assigns one of the available monitors
from each team to probe destination blocks. Each block is
probed by only one monitor at a time and overall by 7
monitors (i.e., the number of teams). Each monitor is set to
probe 4 destination blocks in parallel to reduce the overall
round completion time. Each of the 4 monitor processes work
independent from others. These processes are marked asidle,
busy, or inactive. All processes in a monitor isinactivated
when one of them returns its data in less than 2 minutes as
this indicates a problem with the probing. They remaininactive
for a period of 4 hours before becomingidle and obtaining a
new destination list. Moreover, monitors are ranked based on
their task completion averages and Cheleby selects the topidle
process from a team to assign a new destination block.

Probing of a monitor is terminated if the monitor can not
complete its task within a period of 2 hours. In this case,
the monitor is penalized with a reduction in its ranking and
brought to theidle state. The partially traced destination block
is also put to non-probed list for another trial by another
monitor in the same team. If the new monitor, which reverses
the order of destination IP addresses before probing, is not
able to complete probing in time as well, then the destination
block is marked as partially completed and both of the partial
traces are added to the database.

Using 7 teams, we performed 8 rounds of data collection to
observe teams dynamics. Table II presents the averages of (1)
the number of monitors, (2) the number of incomplete desti-
nation blocks, (3) the number of completed destination blocks,



(4) the number of destination blocks that could complete in the
second trial, (5) average block completion times in seconds,
and (6) total run time for each team in hours. Initially, we
clustered the monitors around the world into regions to have
balanced number of monitors in each team. However, teams 5,
6, and 7 were considerably behind others. Hence, we increased
their monitors by adjusting geographic clusters.

As seen in the Table II, on average 19.26 of the 3,460
destination blocks were not completed in allowed time of
2 hours even after 2nd trial. Team 4 (South America) had
lowest probe completion with an average of 35.72 (i.e., 1.03%
of all blocks) incomplete destination blocks. On average,
36.67 of blocks were completed in the second trial (which is
included in the overall completion numbers). Team 5 (Western
Europe) and Team 6 (Eastern Europe + Africa + Western Asia)
were slowest with an average of 1,764 seconds to trace a
destination block. This is also apparent in Figure 3, which
shows destination block probing completion times of each
team for a single run. However, Teams 5, 6, and 7 were the
fastest ones in probing all destination blocks due to higher
number of monitors in these teams. Destination blocks in the
Figure 3 are ranked by the average completion times of all
teams for the block from max to min (shown with black line).
In Figure 3, we observe that there is a group of destinations
blocks that complete probing approximately in 700 seconds
independent of team averages. These cases often happen when
the destination block is in the same location as the probing
team.

Figure 5 displays completion time statistics for a data set.
In the figures, monitors for each team are ranked by the
number of destination blocks they completed probing. As seen
in Figure 5-a, while most of the monitors completed 40 to
80 destinations blocks, there were outliers that either outper-
formed or fall behind others. Moreover, as seen in Figure 5-
b, average probe completion times increased in general with
lower rankings as expected. In general, the outliers that were
considerably below the average curve were faulty monitors
that either returned responses in few minutes, whose data was
removed and setinactive for certain time, (e.g., Team 2 node
at 55) or became available for part of the data collection
(e.g., Team 5 node at 75). On the other hand, outliers well
above the average line received a non-responding destination,
i.e., AS regions that were not very responsive, causing jumps
in completion time. Overall, the dynamic task assignment
helped improve round completion time to less than half of
the initial experiments where tasks were randomly assigned
without timeouts and penalties.

Finally, Figure 6 presents the average of the number of
unique nodes and edges observed as data from vantage points
and destination blocks are respectively appended to the graph.
Similar to earlier findings, we observe that addition of more
monitors sub-linearly increases the number of unique IP
addresses or edges. On the other hand, number of unknown
nodes increases linearly as the unresponsive routers are not
resolved yet and each instance is recorded as a unique node.
Finally, addition of destination blocks linearly increases the
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completed destination blocks)

number of observed IPs and edges as the destination blocks
are for different ASes.

D. Probing Overhead Reduction

In Cheleby, we utilize inter-monitor and intra-monitor probe
reduction as shown in Figure 7. We reduce intra-monitor
redundancy by performing partial traces to some destination
IP addresses. Once we have a full trace to an IP address in
an AS, we start successive traceroute queries from the hop
distancehi of the ingress router (i.e., hop distance of the last
IP address in the trace that did not belonging to the destination
AS). If the first IP of the new trace has not appeared at the
same hop distancehj in any of the earlier full traces to the AS,
then we complete the trace. Otherwise, we do not complete
the trace. Analyzing collected traces we observe that 35.4 %
of 22.4M traces are partial traces. This overall saved 66.2M
probes that would be generated with full tracing.

Additionally, to reduce inter-monitor redundant probing,a
destination IP is probed by only one monitor of a team. Since
the monitors in the same team are geographically close to each
other, we expect their contribution to identify a new link/node
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Teams 3 5 7 9 11
Time (min) 540 630 770 1,220 1,540

Traces 9.5M 15.9M 22.0M 28.7M 35.0M
Probes 151M 249M 347M 452M 552M

Total IPs 95.3M 157M 219M 285M 348M
Total *s 55.7M 92.4M 128M 167M 204M

Unique IPs 1.11M 1.18M 1.21M 1.24M 1.27M
IPs / all 79.3% 84.3% 86.3% 88.8% 90.7%

Per min IPs 2,057 1,874 1,571 1,020 825
Unique Edges 1.42M 1.76M 1.96M 2.13M 2.26M

Edges / all 46.1% 57.1% 63.6% 69.1% 73.1%
Per min Edges 2,636 2,794 2,550 1,747 1,465

TABLE III: Team Statistics with Different Team Sizes

is small. Moreover, we are in the process of identifying
ingress points of ASes to dynamically establish teams for each
destination AS so that we have exactly one monitor probing
through each ingress point of an AS. That is, we will determine
the sets of monitors that probe each ingress point of the AS
and then build individual teams for each AS IP addresses.
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Fig. 7: Intra- and Inter-monitor Redundancy Reduction
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We performed an experiment where we varied team sizes
to analyze the effect of choosing different number of teams.
Variations in the number of teams has a direct effect as seen in
the Table III, which for each team configuration presents: (1)
the round completion time, (2) generated traces, (3) generated
probes, (4) probes yielding an IP address, (5) probes that did
not elicit a response, (6) unique IP addresses, (7) percentage
of observed IP addresses compared to combination of all IP
addresses, (8) number of observed IP addresses per minute of
probing, (9) unique edges, (10) percentage of observed edges
compared to union of all, and (11) number of observed edges
per minute of probing. Additionally, Figure 8 presents the
changes in the number of observed IP addresses and edges
with aggregation of monitor data.

As the number of teams increases more probes are generated
and less monitors are deployed per team. Both of these cause
longer round completion times. However, as seen in unique
IPs and unique edges rows, there is a diminishing benefit with
higher number of probes. Even though, using 11 teams returns
highest number of unique IPs and unique edges, the overhead
is highest per observed IP address. An important observation
is that the overlap between the edges is much smaller than the
overlap between the IP addresses because deployed monitors
in each case differ. Considering this analysis, we decided to
utilize 7 teams in the Cheleby as it provides best balance
between coverage and overhead.

V. CHELEBY: TOPOLOGYCONSTRUCTION

After collecting topology data, we need to process this raw
data to obtain the underlying network topology. In particu-



lar, we (1) filter faulty traces, i.e., initial pruning, (2) infer
underlying physical subnets among IP addresses, (3) resolve
IP addresses belonging to the same router, and (4) resolve
unresponsive routers as shown in Figure 9. These resolution
tasks especially are challenging when large scale topologies
of millions of nodes are processed. In this section, we analyze
each of these tasks and indicate the algorithms that we utilized
to handle these tasks.

A. Initial Pruning

As path traces contain anomalies such as routing loops, we
first prune raw path traces. The pruning breaks path traces
with a loop (e.g.,IPA, IPB , IPC , IPD, IPE , IPC , IPF ,
IPG) into three pieces based on the repeated IP address (i.e.,
IPC) and utilize the first part (i.e.,IPA, IPB , IPC) and the
last part (i.e.,IPC , IPF , IPG) of the trace in the remainder
of processing. In data sets collected with 7 teams, 772K
(%3.45 of 22.4M) of path traces contain routing loops among
which 143K has multiple loops. Moreover, we observed border
firewalls that filter ICMP packets from/to a network domain
and occasionally respond with their IP address. However, the
hop distance of these IP addresses are not consistent. Hence,
we filter any IP address that appears at the end of a trace after
three anonymous nodes.

We build initial network graph by parsing filtered path
traces. During parsing, we resolve unknown nodes that are
between the same set of known nodes by detecting the same
*-substrings (i.e., the same length *-substrings with the same
known nodes as the end points). Performing this unresponsive
router resolution step during graph construction reduces the
number of unknown nodes by %78.71 on average. Table IV
presents the number of (1) all traces, (2) partial traces, (3)
saved probes, (4) unknown nodes, i.e., ‘*’, and (5) known
nodes, i.e., IP addresses, for the analyzed data sets.

B. Subnet Inference

First task after building an initial network graph is the
identification of the underlying physical subnets, i.e., link
level connectivity, among IP addresses in the collected topol-
ogy [16]. The goal in subnet resolution is to identify multiple
links that appear to be separate and combine them to represent
their corresponding single hop connection medium (i.e., multi-
access link). Subnet resolution also finds the missing links
between IP addresses that fall in the same subnet range but
were not observed in path traces. The successful inclusion of
subnet relations among the routers yields topology maps that
are closer, at the subnet level, to the sampled segments of the
Internet.

Cheleby, enhances subnet resolution approach presented
in [16] by utilizing only the distance preservation condition
but not the trace preservation condition to reduce the compu-
tational complexity. SubNet Inferrer module (SNI) observes
distances of all IP addresses per vantage point and determines
IP address ranges that have similar distances to all vantage
points. Different from initial approach in [16], we only allow
one IP address being closer to each of the vantage points.
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Fig. 10: Analytical and Probe-based Alias Resolver v2

As the number of vantage points is increased, the distance
condition can more accurately filter false subnets without
relying on the trace accuracy condition.

Table V presents averages of identified subnets and the
completenesses of the subnets that had %20 of their IP
addresses present in the trace data set. This number is less
than we expected as only 99K of collected 1.2M IP addresses
appear in a subnet. The main reason for this is because we did
not explore other IP addresses of candidate subnets. We then
add a probing module into SNI that probes subnets that have
less than half of their IP addresses present in the data set as
explained in Section V-E.

C. IP Alias Resolution

After inferring underlying subnets, Cheleby resolves IP
aliases using Analytic and Probe-based Alias Resolver
(APAR) [47]. As pointed by Keys in [48], original APAR
implementation had high storage requirements3. Similar to
kapar, we enhanced APAR implementation by eliminating path
queries (called APARv2) as shown in Figure 10. During APAR
neighbor matching (see [47] for details), we need to verify
whether our candidate alias pair (i.e.,vp andPrev(vr)) has
a common neighbor (i.e.,Prev(Prev(vr)) and Next(vp))
as an alias or as in another subnet relation (i.e.,Prev(vr)
andNext(vp)). Hence, for each node in the graph, we record
previous nodes and next nodes from path traces, and derive 2-
hop predecessors of the IP addresses. We also record conflict
sets, i.e., set of traces an IP address appeared in, to ensure
trace accuracy condition. These changes help us eliminate the
need to keep path traces in memory and query them during
alias resolution.

Utilizing APARv2 on collected data, we identified 23,266
alias sets that include 75,019 aliased IP addresses on average.
However, this corresponds to onlysim7% of observed IP
addresses. This value was especially low as we did not include
IP-mates (/30 or /31 pair of the observed IP address) as in
Ark and iPlane and we had a low subnet coverage as these
subnets help in alias identification. Hence, we (1) improve
subnet coverage with probing candidate subnet IP addresses,
(2) include IP-mate probing component into APARv2, and (3)
implemented probing based mercator and ally appraches to
complement APARv2 as described in Section V-E.

D. Unresponsive Router Resolution

Unresponsive routers are routers that are passive to measure-
ment probes and are represented by a ‘*’ in a traceroute output.
In Cheleby, we utilize ourGraph Based Induction(GBI)

3Note that, other improvements proposed by [48] were discussedin [47]
and presented as options.
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Data Set 1 2 3 4 5 6 7 8
All Traces 22.39 22.42 22.42 22.40 22.42 22.41 22.42 22.03

Partial Traces 8.02 8.12 8.05 7.86 7.67 7.98 7.91 7.80
Saved Probes 65.23 66.14 67.68 66.32 63.98 67.90 66.19 65.98

Unknown Nodes 4.93 4.81 4.90 4.88 4.95 4.94 4.95 4.92
Known Nodes 1.18 1.18 1.19 1.17 1.20 1.17 1.19 1.17

TABLE IV: Topology Data (in millions)

Subnet Size /24 /25 /26 /27 /28 /29 /30 /31
Count 0.38 4.25 34.13 485 6,381 20,602 11,202 2,960

Completeness 27.7% 24.5% 23.3% 23.3% 24.8% 36.0% 100% 100%
All IPs 26 131 492 3,383 22,110 44,500 22,403 5,920

TABLE V: Average Subnet Statistics for 8 Data Sets

Initial I. Pruner Rate Lim. Triangle Bipartite Star Final *s
7,207,885 6,137,750 51,279 2,858 143,880 619,204 252,915

TABLE VI: Unresponsive Router Resolution (Average of 8 datasets)

technique to resolve unresponsive routers [49]. We enhanced
GBI using our structural graph indexer (SGI) [50], which helps
improve subsequent graph queries in the graph database, to
reduce the search time of GBI. SGI indexes maximal graphs
that match the structure formulation within the original graph
in a consecutive manner. SGI first identifies star structures,
then complete-bipartite, triangle and finally clique structures
from the preceding ones. In our experiments, we realized that
the number of cliques with more than three nodes is minimal
and hence we removed clique indexing from Cheleby. After
indexing structures with SGI, Cheleby resolves corresponding
unresponsive routers using GBI obeying the trace preservation
condition.

Table VI presents averages of unresponsive router resolution
steps. As indicated in Section V-A, initial pruning resolves
considerable number of unknown nodes. Then using SGI, we
perform GBI on remaining ones to reduce the number of final
unresponsive routers to 250K. This yields topologies where
17.24% of the routers are unresponsive, which agrees with
our earlier observations [45].

b) observed topology (inferred topology) a) genuine topology

C D

A B

C D

A B

Fig. 11: Effect of subnet resolution

E. Increasing Graph Density

Realizing that many subnets had low completeness, we
decided to increase the coverage as indicated in [16]. For
this, we determined non-observed IP addresses of subnets
that had at least 10% completeness. For the last data-set
there were 651.8K IP addresses missing from the identified
candidate subnets. Moroever, we looked at /30 and /31 mate of
observed IP addresses and they produced 535.2K and 93.1K IP
addresses, respectively. Next, to ensure the existence of these
IP addresses, we performed a reverse DNS lookup and probed
them with a ping. If either of these tests were positive, we
added them to the destination IP lists.



Subnet Size /24 /25 /26 /27 /28 /29 /30 /31
Count 4 36 184 1,294 8,836 93,110 20,543 37,468

Completeness 26.3% 30.0% 28.3% 27.7% 28.0% 39.3% 100% 100%
All IPs 268 1,359 3,228 10,767 34,587 219,745 41,086 74,936

TABLE VII: Improved Subnet Statistics

Resolver Alias Sets Aliased IPs
APARv2 38,012 128,495
Ally (path traces) 32,860 65,720
Ally (common neighbor) 32,595 65,190
Ally (subnet) 25,436 50,872
Ally (combined) 55,027 110,054
Mercator 305 610
Combined 82,962 216,628

TABLE VIII: Alias Resolution Statistics

After these changes, we obtain a better resolution and a
more complete topology. As seen in table VII, the number
of observed subnets and their completeness significantly in-
creased. In final topology, the number of IP addresses observed
in a subnet is about 400K, which is four times of the initial
99K.

Moreover, improvements in the subnet coverage and inclu-
sion of IP-mates considerably improved alias IPs identified
with APARv2 as seen in Table VIII. The number of alias sets
increased from 23K to 38K and the number of IP addresses
in an alias set increased from 75K to 128K. Additionally,
we implemented probing based mercator and ally approaches
to complement APARv2. For mercator, we sent a probe to
all observed IP addresses and recorded the response. If the
response was from an IP address different from queried one,
then we marked them as aliases. This approach produced the
least number of aliases, i.e. only 610 IP addresses were placed
in an alias set.

Moreover, we utilized ally on candidate alias IP address
pairs. For this, we identified candidates using three methods.
First, we identified path traces that had multiple IP addresses
at a given hop distance. Then, we marked 70K IP address pairs
at the same hop as candidate aliases to be probed with ally.
Next, in the final graph, we identified IP addresses that had the
same common neighbors, i.e., IP addresses whose neighbor
intersection was more than one node. Similarly, we marked
2M pairs of these IP addresses as candidates. Finally, we used
subnets as pivot points to determine candidate aliases. Foreach
subnet (e.g., consider subnet in Figure 11-a), we marked each
subnet IP address (e.g., A, B, C and D) with other the IP
addresses’ neighboring IP addresses (i.e., A with the neighbors
of {B, C, D}; B with the neighbors of{A, C, D}; C with the
neighbors of{A, B, D}; and D with the neighbors of{A,
B, C}). Subnet based candidate generation produced 3M alias
pairs. Probing these pairs with ally we identified aliases for
66K, 65K, and 51K IP addresses, respectively.

After combining all these resolved alias sets, we obtain 83K
alias sets that contain 217K IP addresses, which is more than
three times of the initial resolution results.

VI. CONCLUSION

Due to the tremendous growth in Internet’s importance,
many groups, organizations, and governments have become
interested in understanding various characteristics of the Inter-
net for commercial, social, and technical reasons. Networkre-
search community depends on such Internet mapping systems
to understand characteristics of the Internet and develop new
protocols and services. Government agencies are interested
in Internet measurements to protect and improve the national
cyber infrastructure. Moreover, new network paradigms such
as overlay networks require knowledge of the underlying
network topology.

In this paper, we presented Cheleby Internet
topology mapping system that provides sample
network topologies at the subnet level (available at
http://cheleby.cse.unr.edu). Cheleby is an
assembly of topology collection and construction techniques,
i.e., target list generation, probing redundancy reduction,
unbiased accurate data collection, subnet inference, alias
resolution, and unresponsive router resolution, into a single
system. Note that, the validity of all of these approaches are
discussed in the respective papers in greater detail. Moreover,
the lack of public knowledge about large-scale Internet
topologies necessitates the Internet topology measurement
studies.

Cheleby system improves earlier systems by incorporating
topology construction steps in produced topology data. More
specifically, neither of existing systems provide subnetworks
for collected IP addresses and they discard anonymous nodes
in the final topologies. These processes may have considerable
effect on observed network characteristics.
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