Appendix 3.A. An Algorithm for Mask Convolution

The Algorithm. A high level algorithm is described here. The mask of weights that contains p rows and q
columns will be represented by {h(i,j): 8 i < p-1, 0< j < g-1}. This algorithm will process a pxq
neighborhood of each pixel in the image {f(m,n)<0m < M-1, 0 < n < N-1}. It merely copies without
processing those pixels whose pxq neighborhood overlaps the image, that is, is not completely in the image.

Figure 3.A.1. Processing a row

The first pixel in the upper lefthand corner to be processed
START will be located at the point (p/2,q/2). Recall that p and g are

\ odd integers, so p/2 and g/2 are truncated to be the central
\ pixel position (m,n) = (p/2,9/2) in the pxg neighborhood. The
algorithm works on a strip of p rows, of which p/2 is the row
to be processed (see Figure 3.A.1). Considering pxqg = 3x3,
the point (p/2,0/2) = (1,1) is the first pixel to be processed on
the strip of rows 0, 1 and 2 with columns 0, 1 and 2 being the
NBHD OVERLAP first 3x3 neighborhood. The last pixel in this row is at (p/2,N-

B R 1) but it can not be processed because it does not have a
complete neighborhood in the image. Thus the last pixel in
row p/2 to be processed is (p/2,N-1-q/2).

On afirst reading of the algorithm given below, let p = 3 and g = 3. Figure 3.A.1 presents a view of a strip
of rows being processed. The mask overlaps the image at the first image pixel (top left) and so we do not
process the top row of pixels. Similarly, we do not process the first column nor the last, nor the last row.

Thegreatest integefor pxq = 3x3, isp/2-= /2= 1. In the first strip shown, we start the mask
over a neighborhood (nbhd) in the image, and process the neighborhood to obtain a new center pixel. Then
the mask moves to the right and processes the next neighborhood, and so forth, until it reaches the last row
pixel for which the mask fits inside the image strip. We write the first pixel and last pixel in the strip directly
to the output array without processing. Similarly, we write the first row and last row of the image to the
output array. Appendix 3.B lists a C program for this. Here we present a high level process.

Algorithm 3.A.1 (ApplyMask()):

call GetMask(); //Get convolution mask from user
call GetStrip(); //Procedure gets first p rows, 0,...,p-1, from
for m = 0to (p/2)-1 do /linput file and places them in array fim][n]
forn=0to N-1do //Read and write first p/2 rows to output array
g[m][n] < flm][n]; /l[g[m][n] for writing directly to output file
RowCount- p/2; /IFirst row to be processed
do //Loop over all strips of p rows
ColCount« 0; /[First g/2 columns can not be processed
forn=0to (g/2)-1 do //but are copied directly to output array
g[RowCount][n]- f[RowCount][n]; //Write unprocessed pixels in row to output array
do //Loop over all processable columns in strip
PixelSum« 0; /lInitialize convolution sum to zero
for mrow =0 to p-1 do /[For all pixels (m,n) in current

for ncol = Colcount to Colcount+g-1 do //neighborhood and all mask entries
deltacol- ncol - ColCount; //(mask columns always go from O to p-1)

PixelSum«~ PixelSum + mask[mrow][deltacol]*fimrow][ncol]; //do convolution
PixelSum~ MaskFactor*PixelSum; //Multiply convolution sum by mask factor
NewPixel«- integer(PixelSum); /[Put real pixel value into integer variable
if (NewPixel > 255) then NewPixet 255; //New pixel must be between 0 and 255
if (NewPixel < 0) then NewPixet O ; //for grayscale processing
g[RowCount][Colcount+qg/2} NewPixel;//Put processed value into output array

ColCount- ColCount + 1; /lIncrement column to be processed next
while ColCount< N-(g/2)-1; /1& process until nbhd goes outside of image
for n = N-(p/2) to N-1 do //Copy last (g/2) cols. of row to output array

g[RowCount][n]+- f[RowCount][n]; [ffor current row being processed
RowCount- RowCount + 1; /lIncrement count of row for processing next
while GetStrip() '=-1; //Get next strip of rows (move down 1 row)
/fand place it them in array fim][n]
for m = M-(p/2) to M-1 do /IRead/write last p/2 rows directly to output
forn=0to N-1do /Ig[m][n] for writing to output file

g[m][n] ~ f[m][n];

On the first call the procedur@etStrip() reads the first p rows (indexed as 0,...,p-1) into the array
variable f[m][n] as the first strip. The first p/2 rows are not processed because no complete neighborhoods
exist for them and so they are written directly to the output array. The row count is set at p/2, which is the
first row to be processed. The first (g/2) center pixels in that row are not processed (no complete
neighborhood exists) and so are copied directly into the output array. Then the column count is set at zero
and the first g columns are used as the first neighborhood. Mask convolution processes it to obtain the new
output pixel g[p/2][a/2]. After that, the column countis incremented by one to move the mask to the right one
pixel and the mask convolution is done again, and so forth.

When the processing of the current row (designated by RowCount) is completed (all pixels in the row
have been processed except the first 0,...,(g/2)-1 and the last N-(g/2) columns), then these last (g/2) pixels are
copied directly to the output array (the first g/2 pixels in this row wre previously copied). Then a new strip
of p rows that consists of rows Rowcount,...,Rowcount+p-1 is placed in fim][n] for m = 0,...,p-1 by
GetStrip() and is processed the same way. When the procedetstrip() gets the last p rows M-p,...,M-
(p/2)-1, the returned value is still 1 as in all previous cases. The next time, however, it returns -1 to indicate
that there is no complete strip to process (no complete neighborhoods exist for the pixels in the remaining
rows) and the process terminates. The last p/2 rows are then copied into the output array g[m][n] directly.
Another procedure can be used to write the output row to the outputimage file during processing, or the entire
array {g[m][n]) can be written to the file at the end. Appendix 3.B presents the C source code for mask
convolution.

Linux/Solaris/UNIX System Calls to XVIt is convenient to make system calto XV from the image
processing program to display an image on the screen. A system call interacts with the operating system (of
UNIX type) just as if the user were typing from the command line. The commands must be written into a
buffer and given to the system call instruction. As beféteyindowsmust be running.

We prefer to first display the original image with a system call to XV and then display the processed
image with another system call. We use plodl parameter so that we may process the image again, write the
processed image to the output image file and display the processed image in the same processed image
display window as before.

A separate subroutine (procedure, or function) can be written to make the system calls for display.
We call this functiorDisplay() and call it from the main routine in the program at the end of a loop that

processes the image. Then the user can exit from the loop or select parameters to process the image again.
When the repeat processing is done and written to the output file, then that image is displayed by XV. Our
high level main procedure contains the functions in the order given below.

DisplayHeading); /Displays program heading/
OpenFiley); /Opens input and output image files/
do /Start of do-while loop for repeat processing/
GetMask(); /Accepts mask input from user/
ApplyMask(); /Calls GetStrip() for convolution, writes output
Display(); /Calls XV to display images/
key -~ GetUserInfo(); /User inputs key to stop or process again/
while key !="X'; /End of do-while loop, 'x' exits loop/
CloseFileg); /Write data to output files, close files/

The C code for th®isplay() procedure uses the string print functigprintf() to write the command
to be given to the system call into a buffer. The first buffer is for the command that is to copy the output file
(outfile) to a new output filedisplay_filg to be used in the display. Itis callédfferl This is accomplished
via
sprintf(bufferl, " %s %s %s ", " cp ", outfile, display_file);
This writes three string variables into bufferl. The first is the string "cp" to give the Linux/Solaris/UNIX
command to copy a file. The second is the name of the processed (source) outpuififdeand the third is
the namalisplay_fileof the destination file to use for displaying the image.
The buffer that holds the command to call XV to display the imadmuféer2 Thus we next use
sprintf(buffer2, " %s %s %s ", " xv -poll -geometry +10-50 ",display_file);
This writes four string variables into a buffdnffer?d. The first is the commanxlvthat causes the operating
system to run the XV program. The second is the parameter that tells XV to poll to see if the image file has
changed and to update the display if it has. The third gives the location on the screen of the image, which in
this case is at 10 pixels from the left and 50 from the bottom of the screen. The fourth is the name of the file
to display, which here idisplay_file

To actually execute the commands storetlufferlandbuffer2we use thesysten() function per

system(bufferl); /Execute file copy command in bufferl/
system("sleep 5"); /Wait 5 msecs. for file copy to be completed/
system(buffer2); /Buffer2 comand calls XV to display image/

These system commands can be put in loops or branches and so forth, so the programmer can be quite
creative in the use of XV to display the images. We hg#ferAandbufferBto hold similar commands to

display the original image, except that we do not use the "-poll" parameter (the original stays the same
throughout and only the reprocessed output image changes). The C source dodeltoy() follows.

A Display Function in C for Use with XView
void Display()
{

Part 1. Copy original image "infile" to file "Display_Filel" and display if first time/
if (first_time == 1)

sprintf(bufferA, " %s %s %s ", " cp ", infile, DisplayFilel);

/[-----Give system command in "bufferA" to system to execute copy-------------
system(bufferA);

//-----Wait for image file to be completely copied
system("sleep 2");

sprintf(bufferB, " %s %s %s ", " xv -geometry +2-2" , Displdilel,"&");
/[-----Display original image in "Display_Filel" with XV
system(bufferB);

/= ==
[***Part 2. Copy processed image "outfile" to file "Display_File2" and display on any call***/

system(bufferl);
/[-----Wait for image file to be completely copied
system("sleep 2");
if (first_time == 1)
{ /l-----Command to display image in "Display_File2" with XV at (200,200)------
sprintf(buffer2, " %s %s %s ", " xv -poll -geometry +200-200 ", Display_File2,"&");
/I-----Display processed image in "Display_File2" with XV
system(buffer2);
/[-----Turn off first_time so as to not call XV further
first_time = 0;
/[-----The polling feature updates changed processed files automatically----------

printf(" Move images to desired location for viewing and comparison\n");
return;
} /1 End of Display() function
/== =
Notes
i) infile andoutfile are names of files given by the user to read the input image file and write the output
image file, respectively. They are declarednainvia

char infile[40];
char static outfile[40];

i) Display_FilelandDisplay_File2are names of the files to which the original image fiiiféle andoutfile
are copied, respectively. They are declarethainvia

char Display_Filel = "Image_Before";
char Display_ File2 ="Image_After";

iii) the buffers are strings that are declarednainvia
char bufferA[100], bufferB[100], buffer1[100], buffer2[100];

Obviously, a single buffer could be used to store each command in a sequential fashion before making a
system call, but we have taken the pedagogical approach.

iii) first_timeis an integer variable declarediinainand set to 1. After an image has been processed, the
functionDisplay()is called to display the original and the processed images in two separate windows. Then
first_timeis turned off, that is, set to 0 so that no further processing of the original image will be displayed
by a system call. However, any reprocessing of the image and daispfay()causes the new reprocessed
image to be copied Display_File2 Thepoll parameter causes the new reprocessed imdgisjptay_File2

to be written to the display in the window over the previous processed image.

Appendix 3B - A Mask Convolution Program in C

[[+++++++++++++++H+H+H++++4H<M D | P>+ ++ 44+
I
/[>>>MDIP 3.1 - MASK DIGITAL IMAGE PROCESSING Program<<<

1 Linux Version -- Gnu C++ Compiler
1 (also UNIX Version with C++ Compiler)
I

1 This program processes an input image with a user
/I supplied (user input) convolution mask, writes out result.

/Il It makes calls to XV (Xview) to display original and

/I processed images on screen. Reprocessed images are updated

/I on the screen.

/== =
1 Version updated: Jul. 2002

I
/I This program processes a *.pgm image of raw data of size up
/I to 1280 (pixels wide) by M (pixels high) where M can be any
/I reasonable value, say 768, 1024, 1280, 4096, etc. The user
/I provides the input image file name and an image output file

/I where the results will be written. The output file is written

/I as a stream of characters where each is a gray scale value

/I of from O to 255. The output file is a *.pgm file (raw data).

/I The mask height and width are selected so that each is one
/I 0of{3,5,7,9,11,13,15,17,19,21} independently of the other.
/[The user must input the mask. elements.

I

/== =
Il PROGRAM

/== =
I

/I main();

/I heading(); display program heading

1 instruct(); displays instructions if selected

/I openfiles(); opens input & output image files

Il getmask(); gets convolution mask, multiplier from user

/I applymask(); does convolution with mask on input image

1 readhdr(); reads input image file header

1 getstrip(); reads strip of rows from input image file

1 convolve(); performs convolution of mask and row strip

1 writefile(); writes processed row to output image file

1 lastrows(); writes last rows (unprocessed) to output file

1 closefiles(); closes input and processed output image files

/I display(); displays original and processed image via XV

/I
include <stdio.h>
include <math.h>

include <stdlib.h>
Il

void heading(void);
void openfiles(void);
void getmask(void);
void applymask(void);
void instruct(void);
void display(void);

I

int fin[21][1280];
int gout[21][1280];

float mask[21][21]; /Ivalues for convolution mask
int MRows, NCols; /lindices for rows and cols
int p,q; //height/width of pxq mask

int rowcount; /lcount of row being processed
FILE *infptr, *outfptr; /linput/output file pointers

char infile[40];

char static outfile[40]; /Inames of input/output image files
char key; //key to select instructions

char display_Filel[] = "Original_Image";
char display_File2[] = "Processed_Image";
int first_time;

float factor; //multiplier of convolution mask
I

1 MAIN

Il

main()

{ void closefiles();
char changekey, stopkey; //key to process another image or stop

[f-=mmmmmmmm e (Put Heading on Screen)
do
{ heading();
if (key =="i") instruct();
first_time =1,
do
{ /[--=-=mmmmmme- (Open Input & Output Image Files)
openfiles();
[f--mmmmmmm - (Get Mask Entries & Multiplier)
getmask();
[f-=mmmmmmememeem (Do Convolution on Image with Mask)
applymask();
[f-mmmmmm e (Display Image with XV Program)
display();
[f-=mmmmmmemeeeem (Select to Change this Image or Not)
do

{ printf("\n Process this image again with new parameters (y/n): ?");
scanf("%1s",&changekey);
} while ((changekey!=y") && (changekey!="Y") &&
(changekey!="n") && (changekey!="y");
} while ((changekey=="y") || (changekey=="Y"));

do
{ printf("\n

------ (Close Any Open Image Files)

----(Select Stop or Process Another Image)

Enter <s> to stop or <i>to process another image ");

scanf("%1s",&stopkey);
} while ((stopkey !='s") && (stopkey !='S") &&
(stopkey !="1") && (stopkey !="1");

I

} while ((stopkey !="'s") && (stopkey !='S");
printf("\n Bye! Bye!\n");

return;
} //end main()
1
1 HEADING
1
void heading()
{int i
for (i=0;i<16;i++) printf(" +\n");
printf(" MDIP Ver. 3.1 - Convolution Mask Digital Image Processing\n");
printf(" by Prof. Carl G. Looney\n");
printf(" Computer Science Department/171\n");
printf(" UNIVERSITY OF NEVADA\n");
printf(" Reno, NV 89557\n");
printf(" looney@cs.unr.edu\n");
printf(" Updated: Jul. 2002\n");
for (i=0;i<4;i++) printf(" +\n");
do

{ printf("\n Enter <i> for instructions or <c> to continue: ");
scanf("%l1s",&key);
} while ((key '="1") && (key !'="c") && (key !'="I") && (key !="C");

return;

M/end heading()

I
I

INSTRUCT

I

void instruct(void)

{ printf("\n\n'
printf("

); printf("\n\n"); printf("\n\n");

>>INSTRUCTION S <<"); printf("\n\n");

printf(" This program processes RAW (packed) DATA *.PGM image files\n");
printf(" (from XView) for O - 255 GRAY LEVELS. The image processing is\n");

printf(* done via convolution with a pxq MASK that is entered by the\n");
printf(" user, where p,q are each in {3, 5, 7, 9, 11, 13}. The image\n");
printf(" file header must have 4 lines, and the third line must give\n");
printf(" N = number of columns and M = number of rows in the image.\n");
printf(" \n\n");

printf(" P5 (Line 1: P5 => raw packed bytes, P2 => ASCII codes)\n");
printf(" # (Line 2: a comment)\n");

printf(" 640 480 (Line 3: no. columns and no. rows)\n");

printf(" 255 (Line 4: max. no. of gray levels - this may be on line 3 above)\n");

printf(" \n\n");
printf(" The input .PGM file is processed and the results are written\n");
printf(" to the .PGM output file. The mask MULTIPLIER is composed ofin");
printf(" integer inputs for NUMERATOR and DENOMINATOR.\n\n");
printf(" Please write the mask and multiplier parts on paper and enter.\n");
printf(" \n\n");
printf(" Use a text editor if you need to fix the 4 line header on the\n");
printf(" image file (e.g., XV may put in an extra comment line!).\n\n");
return;
Hlend instruct()
I
I OPENFILES
I
void openfiles(void)
{void readhdr(void);
if (first_time == 1)
{ printf("\n OPEN an image file\n");
printf(" ~~\n");
printf(" Enter name of *.pgm INPUT image file: ? ");
scanf("%s",&infile);
printf(" Enter name of *.pgm OUTPUT image file: ? ");
scanf("%s",&outfile);

if ((infptr = fopen(infile, "r")) == NULL)

{ printf(" Can NOT open input image file: <%s>\n",infile);
printf(" Exiting program..... "); exit(1);

}

else printf(" Input file <%s> opened sucessfully\n\n",infile);

if ((outfptr = fopen(outfile,"w")) == NULL)

{ printf(" Can NOT open output image file <%s>\n\n",outfile);
printf(" Exiting program....."); exit(1);

else printf(" Output file <%s> is opened sucessfully\n\n",outfile);

readhdr();
return;
Hlend openfiles()
1
i GETMASK
1
void getmask()
{char redo; //key to redo the input mask
int i,j;
float numer, denom;
printf("....... Friinn Frriienn Friienn Foereenene o \n")
printf(" Image is to be processed by:\n");
printf(" -- convolutions MASK with mask MULTIPLIER\n");
printf(" -- it requires INTEGER entries\n\n");
do
{do

{ printf("\n Enter height of convolution mask (3,5,7,9,11,13,15,17,19,21): ?");

scanf("%d",&p);
} while ((p'=3) && (p!=5) && (p'=7) && (p!=9) && (p!'=11) && (p!=13)
&& (p!=15) && (p'=17) && (p'=19) && (p!=21));
do
{ printf(" Enter width of convolution mask (3,5,7,9,11,13,15,17,19,21): ?");
scanf("%d",&q); printf("\n");
} while ((9'=3) && (q!=5) && (9'=7) && (q!=9) && (q'=11) && (p!=13)
&& (g'=15) && (9'=17) && (g'=19) && (q!=21));
printf(" Enter mask multiplier NUMERATOR (integer): ?");
scanf("%f",&numer); printf("\n");
printf(" Enter mask multiplier DENOMINATOR (integer): ?");
scanf("%f",&denom); printf("\n\n");
factor = numer/denom;
for (i=0;i<p;i++)
{ printf(" Row (INTEGERS) %d::\n",i); printf(" \n");
for (j=0;j<q;j++)
{ printf(" Mask(%d,%d): ? ",i,j);
scanf("%f",&mask([i][j]);

}
printf("\n");

printf(" User's Convolution Mask (multiplier = %f):\n" factor);
for (i=0;i<p;i++)
{ for (j=0;j<q;j++) printf(" %f ",mask([i][j]);

printf("\n");

printf("+++++++++++++++++++ bbb NN,
printf(" Hit <a> to accept given mask or <r> to redo it: ?");
scanf("%1s",&redo); printf("\n\n");
} while (redo ==r");
Hlend getmask()
Il

1 APPLYMASK
I
void applymask()
{

void getstrip(void);
void convolve(void);
void writefile(void);
void lastrows(void);
void closefiles(void);

int Mminusphalf, Nminusghalf, Mend;
int pm1, phalf, phalfpl;

pml =p - 1; phalf = p/2; phalfpl = phalf + 1;
rowcount = O;

Mend = MRows - phalf;

getchar();

i [Read Input Image Header]

{ /[----==-m=-- [Read Strip of p Image Rows to Process]

== [Convolve Row Strip with Mask]

convolve();

e [Write Processed Row to Output File]
writefile();
rowcount++;

} while (rowcount < Mend);

lastrows();

closefiles();

return;

Hlend applymask()
I

I READHDR

I

void readhdr()

{
int i, k, Maxgrays;
char c, c1, buffer[128];

1 [Read PGM File Header]
printf("\n\n File <%s> Header Bytes:\n",infile);
printf(" \n");
k=0;
do
{i=0;
do
{ c = fgetc(infptr);
buffer[i] = ¢; i++;
} while (c I="\n");
if (k==0)
{ c1 = buffer[1];
if (c1=="5")

printf("\n File is: <P%c>\n",cl);

}

else

{ printf(" Image in WRONG format!! Quitting......... \n\n");
exit(0);

}

}
buffer[i] = \0"; k++;
fprintf(outfptr,"%s",buffer);
printf("%s",buffer);
} while (k < 2);
fscanf(infptr,"%d %d %d",&NCols, &MRows, &Maxgrays); ¢ = fgetc(infptr);
fprintf(outfptr,"%d %d", NCols, MRows);
fprintf(outfptr,"%c %d %c",\n', Maxgrays, \n");
printf(" %d ",NCols);
printf(" %d <-----(Width & Height)\n", MRows);

printf(" %d <-----(Max. Gray Level)\n\n",Maxgrays);

H/end readhdr()
I

1 GETSTRIP
1
void getstrip()
{int row, col, rowpl, pm1l, gmi;
unsigned char item; /lread in pixel as char
pml=p-1;gml=qg-1;
if (rowcount == 0) /fin case of first base row,
{ for (row=0;row<p;row++) /lread in p rows from input file
{ for (col=0;col<NCaols;col++) /[cols. from 0 to end of row
{ item = fgetc(infptr); /lread in binary byte

fin[row][col] = (int) item;
gout[row][col] = (int) item;
}

}
}

if (rowcount !=0) /fin case of second or greater row
{ for (row=0;row<pml;row++) //shift rows up 1 line from bottom row
{rowpl =row + 1;
for (col=0;col<NCols;col++)
{ fin[row][col] = fin[rowp1][col];

}

for (col=0;col<NCols;col++) /Inow read in new bottom row
{ item = fgetc(infptr); fin[pm1][col] = (int) item;

}

printf(" . ");

}
Hlend getstrip()
I

Il CONVOLVE

I
void convolve()
{ float fpixel; /float pixel output value
int row, col;
int Ncount, colcount;
int ncol, pixelcol;
int pixelsum, pixnum; IIpixel sum for convolution
int phalf, ghalf, Nend;
int Nminusghalf;
phalf = p/2; ghalf = g/2;
Nend = NCols - ghalf - 1;
Nminusghalf = NCols - ghalf;
colcount = 0; //base column of current strip
do
{ fpixel = 0; Ncount = colcount + g;
for (row=0;row<p;row++) /ffor p rows: pxq pixel block
{ for (col=colcount;col<Ncount;col++) //do convolution process

{ ncol = col - colcount; /Ipixels of base block
fpixel = fpixel + mask[row][ncol]*fin[row][col];
}
}
fpixel = factor*fpixel + 0.5001; /lget processed pixel
pixnum = (int) fpixel,
if (pixnum < 0) pixnum = 0;
if (pixnum > 255) pixnum = 255;
pixelcol = colcount + ghalf; /lget center col. of block
gout[phalf][pixelcol] = pixnum; [/Iwrite to output image file
if ((rowcount < 1) && (colcount < 1))
{ printf("\n First Processed Block:\n");
for (row=0;row<p;row++)
{ for (col=0;col<q;col++)
{ printf(" %d " fin[row][col]);
if (col == g-1) printf("\n");
}
}
printf("\n");
printf(" Old Pixel = %d ", fin[phalf][pixelcol]);
printf(" New Pixel = %d\n\n", gout[phalf][pixelcol]);
printf(" Hit <ENTER> to continue\n");
getchar();
}
colcount++;
} while (colcount < Nend);
[f--=-=---- [complete the unprocessed ends of processed row]----------
for (col=0;col<ghalf;col++)
{ gout[phalf][col] = fin[phalf][col]; //first pixels to block center
}

for (col=Nminusghalf;col<NCols;col++)
{ gout[phalf][col] = fin[phalf][col]; //last pixels to end of row
}

}lend convolve()
I

I WRITEFILE

1
void writefile()
{int row, col;
int phalf, ghalf, NColsmghalf;
int pixchar;
phalf = p/2; ghalf = g/2; NColsmghalf = NCols - ghalf;
[f--=mmmmmemeem [write first p/2 - 1 rows to output file]--------------
if (rowcount == 0) /lon first pass, write 1st half strip
{ for (row=0;row<=phalf;row++) /lto output file at beginning
{ for (col=0;col<NCols;col++)
{ pixchar = gout[row][col];
fprintf(outfptr,"%c", (char) pixchar);
}
}

R [write processed row to output file]
if (rowcount > 0)
{ for (col=0;col<NCaols;col++) //always write processed pixels to outfile
{ pixchar = gout[phalf][col];
fprintf(outfptr,"%c", (char) pixchar);

}
} /lend writefile()
x LASTROWS
<//oid lastrows()
{int i,j;

int Mm1, phalf, phalfpl;
phalf = p/2; Mm1 = MRows - 1;
phalfpl = phalf + 1; printf("\n\n");
R [read/write last few rows of image]----------------
printf(" Rows 0 - %d are processed/written to output file\n\n", Mm1);
printf(" Closing file: %s\n",outfile);
for (i=phalfpl;i<p;i++)
{ for (j=0;j<NCols;j++)
{ fprintf(outfptr,"%c", (char) fin[il[j]);
}
}

return;
Mlend lastrows()
I
1 CLOSEFILES
I
void closefiles()
{1 (Close Files)
fclose(infptr);
fclose(outfptr);
return;
} /lend closefiles()
I

I
void display()
{char buffer1[100], buffer2[100];
[f-==mmmmmmmeeeem Part 1: Copy and Display Original Image
/lcopy original image to display_Filel for displaying on first time
if (first_time == 1)
{ sprintf(bufferl,"” %s %s %s "," cp ", infile, display_Filel);
system(bufferl);
system("sleep 5");
/I----(Display Original Image at (y,x)
sprintf(buffer2," %s %s %s "," xv -geometry +2-2 ", display_Filel,"&");
system(buffer2);

I

[[-==mmmmemee- Part 2: Copy and Display Processed Image

I

sprintf(bufferl," %s %s %s "," cp ", outfile, display_File2);
system(bufferl);

system("sleep 2");

/[display processed image on first time this function is called

if (first_time == 1)

{ sprintf(buffer2," %s %s %s "," xv -poll -geometry +200-200 ", display_File2," &");
system(buffer2);
/------ Turn first_time off------
first_time = 0;

printf("\n Move images to desired position on screen with mousel\n");
return;

} /lend display()

I

