
Competitive Fuzzy Edge Detection

Lily Rui Liang and Carl G. Looney*
Computer Science & Engineering Department/171

University of Nevada, Reno, NV 89557, USA
liang@cs.unr.edu, looney@cs.unr.edu

Abstract. Our fuzzy classifier detects classes of image pixels corresponding to gray level variation
in the various directions. It uses an extended Epanechnikov function as a fuzzy set membership
function for each class where the class assigned to each pixel is the one with the greatest fuzzy truth
of membership. This classification is done first, after which a competition is run as a second step
to thin the edges. Like the Canny edge detector, the edge sensitivity of our competitive fuzzy edge
detector can be set from low to high by the user. The performance of our algorithm is somewhat
similar to that of the Canny algorithm but ours is significantly faster. For both, the proper level of
sensitivity must be chosen by the user for the best results because the tradeoff is more edges with
more noise versus fewer edges and less noise. However, the settings are less sensitive and more
intuitive for our algorithm. We make comparisons on good and degraded images.

Keywords. Fuzzy Classifier, Edge Detection, Competitive Edge Selection

1. Introduction

Edge pixels are defined as locations in an image where there is a significant variation in gray
level (or intensity level of color) pixels [5] in a fixed direction across a few pixels. Edge pixels form
curved or straight boundaries. Edges are one of the most important visual clues for interpreting
images [6]. Edge detection is by far the most common approach for detecting meaningful
discontinuities in gray level. The process of edge detection reduces an image to its edge details that
appear as the outlines of image objects that are often used in subsequent image analysis operations
for feature detection and object recognition. While this is usually white lines on black backgrounds,
we prefer to avoid the excessive use of printer toner and the nonuniform shading on black printed
regions by making black line drawings on white backgrounds.

There are many different methods for edge detection [5,6], such as Sobel filtering, Prewitt
filtering, Laplacian of Gaussian filtering, moment based operators, the Shen and Castan operator and
the Canny and Deriche operator, but some common problems of these methods are a large volume
of computation, sensitivity to noise, anisotropy and thick lines. Russo [13,14], and also Russo and
Ramponi [15], designed fuzzy rules for edge detection. Such rules can smooth while sharpening
edges, but require a rather large rule set compared to simpler fuzzy methods [8]. Neural networks
can be trained to detect edges [10] and radial basis functional link nets [9] are especially powerful
for this, but here we develop a special fuzzy classifier for edges that does not require training.

* Supported by U.S. Army Research Office Grant DAAD19-99-1-0089

2

A fuzzy classifieris a system that accepts inputs that are either: i) feature vectors; or ii) vectors
of fuzzy truths for the features to belong to variousfuzzy set membership functions(FSMFs). It
outputs fuzzy truths for the memberships of the input vector in the various classes. The class
assigned to an input feature vector is the one with the maximum fuzzy truth given by the FSMFs.
We usually require the maximum to exceed the second greatest fuzzy truth by a certain amount to
yield a unique class membership (otherwise we can only say that the input feature vector belongs
to each class with a particular fuzzy truth). Different types of fuzzy classifiers are used in
[1,12,18,20] for other purposes.

An earlier fuzzy classifier [11,21] createdextended ellipsoidal Epanechnikovfunctions as the
fuzzy set membership functions centered on the class prototypes. Such classifiers were inspired by
probabilistic neural networks[2,3,16,17] but avoid the higher extraneous error that is due to large
mixtures of Gaussians in Parzen windows [19]. Our non-competitive fuzzy classifier [7] does not
implement an edge thinner and has five classes. Its advantages are easy modeling, efficient
computation, low sensitivity to noise and isotropy, but its disadvantage is that its lines are thick as
are the lines obtained by most edge detectors such as by thresholding with XView for UNIX/Linux
and LView Pro (for Windows) or by applying the Sobel or other edge operators. We develop the
competitive edge modification here that thins edges, and we also employ other enhancements.

Our newcompetitive fuzzy edge detector(CFED) not only detects edge pixels in the first step,
but applies competitive rules as a second step for the purpose of thinning the ridges around local
maxima in difference magnitude. It detects a portion of a ridge or embankment that can be rather
broad in the case of diffuse edges, which in some methods results in a thick band of pixels in the
edge map [5]. A third step despeckles by removing single and double pixel noise specks.

2. Methodology

A. The Feature Vector for a Pixel. Figure 1 shows the 3x3 neighborhood of pixels about the center
pixel p5 as well as the four directions in which edges may appear. Thebi-directional summed
magnitude differences in graylevel between p5 and its neighbors are designated by d1, d2, d3 and d4

for Directions 1, 2, 3 and 4, respectively, are shown in Figure 1 and are calculated by

d1 = | p1-p5 | + | p9-p5 | (Direction 1), d2 = | p2-p5 | + | p8-p5| (Direction 2) (1 a,b)

d3 = | p3-p5 | + | p7-p5| (Direction 3), d4 = | p4-p5 | + | p6-p5| (Direction 4) (2 a,b)

For each pixel in an input image that is not on the outer boundary of the image we compute a
4-dimensionalfeature vectorx = (d1, d2, d3, d4) of gray-level summed magnitude differences in four
directions on its 3x3 neighborhood. The magnitudes make each difference dj bi-directional.

3

B. Pixel Edge Classes. Our new fuzzy
classifier differentiates pixels into fouredge
classes, abackground classand aspeckle edge
class(a speckle is a noisy pixel). Four typical
neighborhoodsituationsare used for each edge
class: each directional edge neighborhood
shown in Figure 2, its rotation by 180° and the
exchange of darker and lighter pixels in each of
these two cases.

Fig. 1. Pixels and directions in a 3x3 neighborhood.

Each set of four situations for a class has a single feature vector of summed magnitudes of
differences as far as the low and high values are concerned. The background class is for any pixel
whose neighborhood has low magnitude differences in the four directions. A speckle edge class is
used for pixels on whose neighborhood the change magnitudes in all directions are high (this class
is shown in Figure 3 c,d as examples.

Given a pixel, any neighborhood has a situation that
determines a feature vector such as, e.g.,x = (3, 35, 26, 41), of
magnitudes of differences in each of the four directions shown
in Figure 1. We construct six prototype vectorsc0,…,c5 to be
the respective centers of the six classes (four edge, one
background and one speckle edge classes). These centers, or
prototypes, for the respective classes have component values
lo and hi that represent low and high summed magnitude
differences in the directions indicated. The parameterslo and
hi are to be set by the user and depend on the image region
contrasts and the sensitivity desired. These class centers for the
situations, some of which are displayed in Figure 2, are listed
in Table 1. All other combinations are mapped to white.

Figure 2. Edge classes.

Table 1. The Classes and Their Prototype Vectors.

Class 0 (Background) c0 = (lo, lo, lo, lo)
Class 1 (Edge) c1 = (lo, hi, hi, hi)
Class 2 (Edge) c2 = (hi, lo, hi, hi)
Class 3 (Edge) c3 = (hi, hi, lo, hi)
Class 4 (Edge) c4 = (hi, hi, hi, lo)
Class 5 (Speckle Edge) c5 = (hi, hi, hi, hi)

4

In practice, the values oflo andhi are defined by the
user for each particular image to achieve a desirable result.
For example,lo could be assigned to a graylevel difference
of 5 andhi could be set to a value from 30 to 40. These low
and high values determine the prototypesc0,…,c5 that are the
center points of the six fuzzy set membership functions for
the six classes. Other neighborhoods such as those shown in
Figure 3 may indicate that the center pixel is an edge pixel or
is next to an edge pixel. In Parts (c) and (d) the pixel p5 is in
the speckle edge class, but is initially mapped to an edge.
Parts (a) and (b) display neighborhoods of regular edges.

Figure 3. Other neighborhoods.

The FSMFs are dome shaped symmetrical functions (upside-down cups) determined by a
center vectorci and a width parameterw that also must be set by the user. They are defined in the
next section. Every image interior pixel must be recognized as belonging to a class centered on one
of these prototypes or else it is mapped to background (white) because it is a purer form of speckle
than edge speckle.

C. The Fuzzy Classifier Architecture. Figure 4 shows the originalfuzzy classifier[11,21]
architecture (with two outputs here for two classes) that we used as a starting model. Each node in
the hidden (middle) layer represents an extended Epanechnikov fuzzy set membership function
centered on a prototypecj (see Equations 3a,b,c,d,e below), where each class has one or more
prototypes. We have also successfully used Gaussians as the FSMFs but they take more time to
evaluate by the computer and are positive everywhere. The input feature vectorx = (x1, ..., xN)
activates certain fuzzy set membership functions of which at least one will go relatively high
provided the domain regions where the FSMFs are positive cover the feature domain.

In the original fuzzy classifier of Figure 4, the output layer contains a single node for each class
to sum the values passed to it by the hidden layer nodes in its class group. When one of the FSMFs
at a node in the hidden layer goes high, the summing node in the output layer for that class also goes
high. The output layer node with the maximum value determines the class.

This fuzzy classifier led to our first, noncompetitive fuzzy edge detector [7], which performs
edge/non-edge classification but results in thick edges. Our new CFED is made up of: i) thefuzzy
classifier, modified to detect the six classes, and ii) a set ofcompetitive rulesthat implement a
competition between neighboring edge pixels across the edge width for designation as an edge (see
[3,4] for other competitions).

Our new edge detector uses a single node for each class in the hidden (middle) layer and so we
do not need the output layer to sum the output values from the hidden nodes. Thus we have only two
layers in the CFED network, in contrast to Figure 4. The CFED feeds the input feature vectors
directly to six output nodes, which have extended Epanechnikov FSMFs that classify a pixel as one
of four types of edges, a non-edge or a speckle edge. One of these FSMSs will be a maximum.

5

We next apply a competitive rule to
each edge pixel according to its assigned
class. Only the pixels that are first
classified as edge pixels and then win in
the edge competition, or are speckle edges,
are mapped to black pixels in the new
output image. All other pixels are mapped
to white. This creates a thinner black line
drawing on a white background.

On the 4-dimensional feature space
we define the fuzzy set membership
functions for the six classes as extended
Epanechnikov [11] functions by Equations
(3a, b, c, d, e, and f) for any input feature
vectorx.

Figure 4. Fuzzy classifier diagram.

Class 0 (Background) ÿ0(x) = Max { 0, 1- ||x-c0||
2/w2} (3a)

Class 1 (Edge) ÿ1(x) = Max { 0, 1- ||x-c1||
2/w2} (3b)

Class 2 (Edge) ÿ2(x) = Max { 0, 1- ||x-c2||
2/w2} (3c)

Class 3 (Edge) ÿ3(x) = Max { 0, 1- ||x-c3||
2/w2} (3d)

Class 4 (Edge) ÿ4(x) = Max { 0, 1- ||x-c4||
2/w2} (3e)

Class 5 (Speckle Edge)ÿ5(x) = Max { 0, 1- ||x-c5||
2/w2} (3f)

The width (or spread) parameterw is the
radius of these FSMFs andw must be large
enough so thesupport (the region where a
function is non-zero) of each FSMF combines
to cover the cube [0, 255]4 domain (the
diagonal distance of this cube is {4*2562} 1/2 =
512). Thus the quality of the edge detection, as
measured by the fuzzy truth of its
memberships in the fuzzy classes, depends on
the parameterslo, hi, andw (and on the image
contrast and the purpose of the edges). We can
use a value of, say, 200 to 256 forw.

Figure 5. A 3-dimensional view of the FSMFs.

For easy visualization Figure 5 provides a 3-dimensional portrayal of only two features, rather
than four, versus fuzzy truth. The extended Epanechnikov functions [11] are shown here with small
diameters for clarity. In practice they overlap so that each input feature vector falls into one or more
of the fuzzy set membership functions. Such functions are dome shaped.

6

D. The Competitive Rules. Before an edge pixel is mapped to either white or black in the output
image, a competition with its neighbor edge pixels is done. Once a pixel is classified as an edge
class, it competes with the two edge pixels on either side of it across the edge width. For these three
pixels, only the one with the largest difference magnitude is saved as a black edge (the others are
saved as white background). Thus the edges are thinned. The rules for this competition are given
below.

IF x is Class 0 (background) THEN change pixel to white

IF x is Class 1 (edge) THEN
compete d3 with neighbor pixels in Direction 3
IF it wins THEN change it to black (edge) ELSE change to white.

IF x is Class 2 (edge) THEN
compete d4 with neighbor pixels in Direction 4
IF it wins THEN change it to black (edge) ELSE change to white.

IF x is Class 3 (edge) THEN
compete d1 with neighbor pixels in Direction 1
IF it wins THEN change it to black (edge) ELSE change to white.

IF x is Class 4 (edge) THEN
compete d2 with neighbor pixels in Direction 2
IF it wins THEN change it to black (edge) ELSE change to white

IF x is Class 5 (speckle edge) THEN change pixel to black (edge)

3. The Algorithm

Because the speckle edge maps to a black edge pixel and is not always an edge, we implement
a despecklerthat removes isolated single and isolated double edge pixels from the edges after the
fuzzy classification and edge competition have been done. We also implement asmootherbefore
any edge detection is done, but we make this selectable by the user because it does not need to be
used except when noise is above a certain level. Such smoothing uses a 3x3 mask of all 1's except
the center, which is 2 and the multiplier is 1/10 (a mild smoother).

The CFED algorithm operates on grayscale PGM images via three passes through the image.
It first makes a pass across all interior pixels (not on the image boundary) and classifies each pixel
as belonging to Class 0, 1, 2, 3, 4, or 5. The classification is done by putting the feature vectorx =
(d1, d2, d3, d4) for each pixel through each of the six extended Epanechnikov functions [11] to obtain
their fuzzy truths of membership in one of the corresponding six classes. The largest fuzzy truth
determines the class membership. The second and third passes thin edges and despeckle. The high
level pseudo code follows.

7

Fuzzy Classification
Step 1: set parameters lo, hi and w; open image file; select smooth/no-smooth

if smoother selected then smooth image
Step 2: for each pixel in the image

compute and save the directional summed magnitudes of differences
construct the feature vectorx
compute the six fuzzy truth valuesÿi(x), i = 0,...,5
determine maximum fuzzy truth and record pixel class for pixel

After all pixels have been classified, then a second pass is made where the class of each pixel
is examined. If it is an edge pixel (in Class 1, ..., 4) then the direction is determined to use for
examining its adjacent edge pixels. Of three pixels in that direction across the 3x3 neighborhood,
the one with the maximum sum of magnitude difference is selected as the edge pixel, which is
changed to black in the output image. Despeckling is done next on the third pass.

Edge Strength Competition
Step 1: for each pixel in the image

if edge class then apply appropriate rule and record pixel value
if background class then write white pixel
if speckle edge class then write black pixel

Despeckling
Step 1: for each pixel in the image

if isolated single or double speckle then change to white

4. Experimental Results

A. Edge Results. All of our results were obtained by using a 3x3 neighborhood centered in turn on
each interior pixel. The center parameterslo, hi and the width parameterw must be provided to
achieve good results by positioning and spreading the extended Epanechnikov fuzzy set membership
functions. In practice, different people may look for different details in the same image, so those
parameters should be input by the user to obtain the desired type of edge [22]. For example, we
could putlo = 4, hi = 48 andw = 240. A smallerhi value yields more sensitivity to edges (and
displays more noise), whereas a largerlo value maps more of the weak edges to the background.
Any value ofw greater than 200 appears to yield similar results.

To obtain results for the Canny edge detector we used Matlab 6 (Release 12). The results are
white edges on black background, so we take the negative for comparison with the CFED. The
Matlab command for Canny edge detection is

Output_Image= edge(Input_Image, ’canny’, T, �);

where “Output_Image” and “Input_Image” are the respective output edge image and input image.

8

The Canny parameters that must be input by the user are theupper threshold T(upper edge
sensitivity) andsigma� (the Gaussian parameter).

The standardized parameterT ranges from 0 up to 1.0 in Matlab 6, which also uses the Canny
lower threshold tfor finer edges and sets it tot = 0.4T by default (we did not get better results by
setting t independently). The default� value is 1.0. We found that a smaller thresholdT gives more
detail (and noise). Making� smaller also gives more detail but without the noise.T is the most
sensitive. Appendix A displays tradeoffs for the Canny edge detector ofT and � on building.tif.
Appendix B shows some tradeoffs for CFED parameters lo, hi and w on the same image. Figures
A-6 and A-7 have the most detail without too much noise for the Canny method. Figure B-1 has the
most detail (sensitivity) and essentially no noise with the CFED, for which no smoothing was done.

The thresholdTcan be interpreted as the minimum probability for an edge to be an actual edge.
The lower thresholdt can be interpreted as the maximum probability for neighbor pixels to not be
part of the edge. The Canny operator first smooths the image by a Gaussian convolution. It next uses
� to make a first pass that assigns a probability to each possible edge pixel. Then a simple two
dimensional derivative operator is applied to the smoothed image to highlight regions with high first
spatial derivatives. Edges cause ridges in the gradient magnitude image, on which the algorithm
tracks the top points (greater than T) and sets them to be edges. It sets all pixels not on top of the
ridge to background. When the ridge falls below the lower threshold t, the tracking stops.

Figure 6 shows the original imagebuilding.tif. The results of the Canny edge detector on this
image are shown for both high and low sensitivity, respectively, in Figures 7 and 8 with� fixed at
0.5. Decreasing� would show more detail without increasing the noise significantly. The results for
our competitive fuzzy edge detection for the higher sensitivity to edges are presented in Figure 9.

Figures 10 and 11 show the best results that we obtained with the respective CFED and Canny
methods on several parameter settings (in our judgement, which is a subjective decision). There is
no ground truth against which to make a measure of success here so the human eye and subjectivity
determine the winning results. Recall that the CFED uses a despeckler afterwards and the Canny
uses a smoother beforehand. TheT value of 0.04 is large enough so as to not reveal too many weak
edges as noise, but the� value of 0.6 was small enough to reveal many details.

We tried histogram equalization before applying both the Canny edge detector and our CFED,
but it made the noisy edges worse. Lowering the contrast actually helped with the edges that were
not too weak. But contrast must be traded off with edge sensitivity. We found the Canny edge
detector more difficult to use because of the interaction of T and� .

Figure 12 displays the result of thresholding to black and white with the popular Unix/Linux
based shareware tool XView. Figure 13 shows the result of using our original noncompetitive fuzzy
edge detector [7]. These have low noise levels, moderate detail and thick edges.

Figure 14 is the well knownpeppersimage. The result of the Canny edge detector with a good
sensitivity setting is shown in Figure 15, while a perhaps better Canny result (less noise) is shown
in Figure 16. Figure 17 is the result of our CFED with low-moderate sensitivity (and despeckling).

9

We note that the Canny processed images can not be improved by despeckling because the noise is
coarse and connected by tracking. Figure 18 displays the result of using the program XView to
threshold to black and white with the threshold graylevel set to 20.

Figure 19 is the building image that has been strongly corrupted with uniform noise that has
large average value (from 0 to255, truncated to remain in this range) to test the Canny and CFED
algorithms on noisy images. Figures 20 through 24 show the results of Canny with different
parameter settings, while Figures 25 through 27 show those from the CFED with different
parameter settings. We used the smoother with the CFED only on these runs with the uniform noise
(Canny always smooths before edge detecting).

Figure 28 is the building image degraded with Gaussian noise that has smaller mean-square
error. Figures 29 through 32 show the Canny results for various good parameters. Figures 33
through 35 show some CFED results. The Canny results were significantly worse than those of the
CFED on the uniform noise, but only slightly worse on the Gaussian noise.

B. Speed Results. Our compiled C program for the basic CFED algorithm (no smoothing nor
despeckling) on the building image (240x320) took about 0.49 seconds to run on a Sun Sparc 64 bit
processor running at 266 MHz when the algorithm time included reading in the image file from the
hard drive and then writing it out. The Canny algorithm running from the Matlab 6, Release 12
command line took 2.3 seconds on the same machine, but it had already read in the image file and
did not write it out. On thepeppersimage, which is 512x512, our method required 4 seconds to 8.2
seconds for the Canny algorithm.

When we eliminated the reading from the timing, but left in the writing to a memory buffer,
which Matlab does, the basic CFED program took 0.1seconds for thebuilding image and 0.338
seconds for thepeppersimage. Thus the basic CFED computes in about 4.2% - 4.5% of that of
Canny and so is more than 20 times faster than the Matlab Canny. We rarely use smoothing, but
adding in the despeckler requires much less time than the basic CFED algorithm, so the result is that
the CFED with despeckling is still more than 10 times faster than the Canny edge detector.

5. Conclusions

We have put the neighborhood summed magnitudes of differences on a 3x3 neighborhood of
each pixel into a feature vector and fed it into a new type of fuzzy classifier to classify a pixel as a
type of edge or background. Using the competitive rules on the pure edge types, the results are a line
drawing of moderately thin black lines on a white background, whereas some methods yield thick
lines and/or more noise (e.g., thresholding, the Prewitt and Sobel operators). A competition is
applied to consecutive edges across the edge width to thin the lines to yield good line drawings of
edges.

The benefits of using our CFED model in edge detection are: i) it yields moderately thin black
lines even when the edge in the input image is diffuse ii) it is fast with only six simple fuzzy set

10

membership functions (the extended Epanechnikov functions reduce the computation further); iii)
the method works well even when the intuitive parameters are adjusted somewhat coarsely; iv) the
process is isotropic in that lines of all directions are detected equally well.

In making runs with the Canny and CFED software, we found that it is easy to select CFED
parameters that yield good results whereas the Canny edge detector may require many more runs
using different combinations of parameters (although a very good tradeoff can be found after a
sufficient numbers of runs). The CFED does not perform contour tracking as does the Canny edge
detector, which at times tends to connect lines into a closed contour that should be separated. Our
algorithm computes much less time than that required for the Canny algorithm, which can be
significant for large images. Finally, the CFED does as well or better on images degraded with
noise.

Future work will use dynamic parameters oflo andhi that adjust over the image to be more or
less sensitive where needed, depending on contrast and differences. It will also allow different
values ofw for the different FSMFs. We will also explore the use of weak edges in lighter, but still
dark, shades of gray to add more information into the edge map.

References

[1] S. Abe and R. Thawonmas, “A fuzzy classifier with ellipsoidal regions,”IEEE Trans. Fuzzy
Systems, vol. 5, no. 2, 358-368, 1997.

[2] C. Anagnostopoulos, J. Anagnostopoulos, D. Vergados, E. Kayafas, V. Loumos and G.
Stassinopoulos, “A neural network and fuzzy logic system for face detection on RGB images,”Proc.
ISCA Int. Conf. Computers and Their Applications, 233-236, 2001.

[3] K. Chen and H. Chi, “A method of combining multiple probabilistic classifiers through soft
competition on different feature sets,Neurocomputing20, 227-252, 1998.

[4] F. L. Chung and T. Lee, “Fuzzy competive learning,”Neural Networks, vol. 7, no. 3, 539-551,
1994.

[5] Nick Efford, Digital Image Processing, Addison Wesley, pp.164-173, 2000.

[6] Earl Gose, Richard Johnsonbaug & Steve Jost,Pattern Recognition and Image Analysis,
Prentice Hall PTR, p. 298, 1996

[7] Lily Rui Liang, Ernesto Basallo, and Carl G. Looney, “Image edge detection with fuzzy
classifier”,Proc. Of the ISCA 14th International Conference, Las Vegas, 279-283, 2001.

[8] C. G. Looney, “Nonlinear rule-based convolution for refocusing”,Real-Time Imaging6,
29-37, 2000

11

[9] Carl G. Looney, “Radial basis functional link nets and fuzzy reasoning,” (in press)
Neurocomputing.

[10] Carl G. Looney,Pattern Recognition Using Neural Networks, Oxford University Press, New
York, 1997.

[11] C. G. Looney,A Fuzzy Classifier Network with Ellipsoidal Epanechnikovs, Tech. Report,
Computer Science Dept., University of Nevada, Reno, 2001.

[12] H. Maturino-Lozoya, D. Munoz-Rodriguez, F. Jaimes-Romero and H. Tawfik, “Handoff
algorithms based on fuzzy classifiers,”IEEE Trans. Vehicular Technology, vol. 49, no. 6, 2286-
2294, 2000.

[13] F. Russo, “A new class of fuzzy operators for image processing”,IEEE Int.Conf. on Neural
Networks, 815-820, 1993.

[14] F. Russo, “A user-friendly research tool for image processing with fuzzy rules”,Proc. First
IEEE Int. Conf. Fuzzy Systems, San Diego, 561-568, 1992.

[15] F. Russo and G. Ramponi, “Fuzzy operator for sharpening of noisy images”,IEE Electron.
Lett., 28: 1715-1717, 1992.

[16] D. F. Specht, “Probabilistic neural networks for classification, mapping or associative
memory,”Proc. IEEE Int. Conf. Neural Networks, vol. 1, 525-532, 1988.

[17] D. F. Specht, “Probabilistic neural networks,”Neural Networks, vol. 1, no. 3, 109-118, 1990.

[18] Manuel Valenzuela-Rendon, “Reinforcement learning in the fuzzy classifier system,”Expert
Systems with Applications, vol. 14, no. 1-2, 237-247, 1998.

[19] D. K. Wedding II and K. J. Cios, “Certainty factors versus Parzen windows as reliability
measures in RBF networks,”Neurocomputing19, 151-165, 1998.

[20] C.-C. Wong, C.-C. Chen and S.-L. Yeh, “K-means-based fuzzy classifier design,”IEEE Int.
Conf. Fuzzy Systems, vol. 1, 48-52, 2000.

[21] www.cs.unr.edu/~looney/cs791j/unit4

[22] http://prettyview.com/edge/

12

Figure 6. The original building image. Figure 7. Canny edges, high sensitivity
(T = 0.02, �� �� = 0.5).

Figure 8. Canny edges, low sensitivity Figure 9. CFED, higher sensitivity
(T = 0.2, �� �� = 0.5). (lo = 0, hi = 20, w = 256).

13

Fig. 10. CFED edges, best sensitivity Fig. 11. Best Canny result from many trials
(lo = 0, hi = 25, w = 256). (T = 0.04, �� �� = 0.6).

Fig. 12. XView edges, threshold = 20. Fig. 13. Fuzzy edge detection only.

14

Figure 14. The original peppers image.

Figure 15. Canny edge detected peppers (T = 0.04,�� �� = 0.5).

15

Figure 16. Canny detected peppers (T = 0.1,�� �� = 1.0).

Figure 17. Competitive fuzzy edges of peppers (lo = 0, hi = 20, w = 256).

16

Figure 18. XView edges, Threshold = 20.

17

Figure 19. Noise degraded building image. Figure 20. Canny (T = 0.3, �� �� = 1.0).

Figure 21. Canny (T = 0.2, �� �� = 0.8). Figure 22. Canny (T = 0.2, �� �� = 1.4).

Figure 23. Canny (T=0.1, �� �� = 1.8). Figure 24. Canny (T = 0.2, �� �� = 2.0).

18

Figure 25. CFED (lo = 0, hi = 20, w = 200). Figure 26. CFED (lo = 0, hi = 30, w = 200).

Figure 27. CFED (lo = 20, hi = 50, w = 256). Figure 28. Building with Gaussian noise.

Figure 29. Canny (T = 0.2, �� �� = 0.4). Figure 30. Canny (T = 0.2, �� �� = 0,1).

19

Figure 31. Canny (T = 0.1, �� �� = 1.0). Figure 32. Canny (T = 0.1, �� �� = 1.4).

Figure 33. CFED (lo = 0, hi = 40, w = 256). Figure 34. CFED (lo = 0, hi = 50, w = 256).

Figure 35. CFED (lo = 0, hi = 30, w = 256).

20

Appendix A. Runs onbuilding.tif with Matlab 6 Canny Edge Detector

Fig. A-1. (T = 0.04, �� �� = 1.0). Fig. A-2. (T = 0.02, �� �� = 1.0).

Fig. A-3. (T = 0.01, �� �� = 1.0). Fig. A-4. (T = 0.005,�� �� = 1.0).

Fig. A-5. (T = 0.04, �� �� = 0.6). Fig. A-6. (T = 0.04, �� �� = 0.3).

21

Fig. A-7. (T = 0.04, �� �� = 0.15). Fig. A-8. (T = 0.02, �� �� = 0.5).

Appendix B. Runs onbuilding.tif with CFED

Fig. B-1. (lo = 0, hi = 25, w = 256). Figure B-2. (lo = 0, hi = 45, w = 256).

Fig. B-3. (lo = 0, hi = 45, w = 1000). Figure B-4. (lo = 15, hi = 45, w = 256).

