Unit 6. Geometrical Processes II: Transformations

6.1 Geometric Transformations

Pixel Mappings. A geometrical transformation of a source image {f(m,n)} into a target image {g(a,b)}
moves the source pixel locations (m,n) to target locations (a,b) and assigns them gray levels. There may be
fewer or more pixels in {g(a,b)} than in {f(m,n)} and so interpolation is necessary to obtain gray levels for
them. Such mappings are necessary to map a distorted image in a manner that removes the distortion. Also,
an image may not have the correct aspect ratio (height-to-width) and needs to be stretched in one direction or
another. Other reasons exit, such as zooming in or out. If an image taken the previous year is to be subtracted
from one taken this year, for example, to show the new growth or deforestation, at least one image must be
registered with the other one (processed to "fit" the other one) whenever the images were not taken from the
same point in space (and perhaps not with the same lens or angle or in the same band of light, infrared or radar
or from the same distance).

The general formulation for a geometric transformation of pixel locations is

(m,n) => (a,b) = (a(m,n),b(m,n)) (6.1)

where {f(m,n)} is the input image, {g(a,b)} is the output image, and a = a(m,n) and b = b(m,n) specify the
transformation (m,n) => (a,b). The transformations are continuous and although the arguments (m,n) are
integer values, they can map to real nonintegral values (a,b).

Figure 6.1. Mapping pixels.

Because the pixel locations (a,b) in the new (target)
image must be located at integer pixel values, they may
map to nonintegral values (x,y), so interpolation is
necessary to find the gray level at the integral point (a,b).
The gray levels at the nonintegral points are used in this
interpolation. Interpolation methods are discussed in a
later section.

PIXEL FILLING

(xy

(m,n)

In Figure 6.1, the top mapping shows a pixel
location (m,n) in the target (output) image with gray level
SOURCES TARGETS g(m,n). Going backwards, from target to source image,
the inverse (backward) mapping yields a real value (x,y)
in the source image. In this case, the pixel gray level

g(m,n)

) i I =Ny g(m,n) at the integral target location (m,n) must be
' interpolated from the gray levels of the 4 points nearest
f(m.p) M) the point (x,y) shown as an "x" in Figure 6.1. This is

called pixel filling. In the case of the bottom mapping in
Figure 6.1, the pixel at (m,n) in the source image is
PIXEL CARRYOVER mapped to a real point (x,y) in the target image shown as
"x." This is called pixel carryover. The nonintegral point
(x,y) is moved to the closest of the integer locations, say,
(my,n,) of the target pixel locations, called the nearest neighbor of (x,y). The gray level f(m,n) is assigned to
that location via g(m,,n,) = f(m,n).

As an example of a geometrical mapping, consider
a(mmn) =2.5m + 0.8n, b(mn) =0.8m + 2.5n (6.2)

The pixel located at (10,10) would become the pixel at

(@b) = ((2.5)(10)+(0.8)(10), (0.8)(10)+(2.5)(10)) = (33,33)

This mapping is linear and we can see that it maps a point on the diagonal into a point on the diagonal.
The mapping is a matrix

lal |25 08| |m|

|
| =] (6.3)
Ib| 0.8 25| |n]

A linear mapping does two things to vectors: 1) contracts or dilates their length, depending upon the size
of the entries and thus of the eigenvalues; and ii) rotates the vector. Such transformations are called rigid body
motions. Note that for (m,n) = (10,20), which is off the diagonal, that

(@b) = ((2.5)(10)+(0.8)(20), (0.8)(10)+(2.5)(20)) = (41,58) (6.4)

which is dilated and rotated somewhat (a line from (0,0) through (10,20) would pass through (40,80) but not
through (41,58)). A later section considers rotations, translations, scaling, and warping (the latter is nonlinear).

The tools required for geometrical processing are: i) a transformation (mapping) specification; and ii) an
algorithm for interpolation, which assigns the gray levels.

Zooming. The process of zooming is equivalent to moving the camera closer to (zooming in) or farther from
(zooming out) the scene. Zooming is the transformation obtained by scaling each dimension (see the next
section): a = a(m,n) = (c,)m, b = b(m,n) = (c,)n. Zooming in enlarges the objects in the scene and the scene
itself, so that pixels around the image boundary are lost in the new image (c,, ¢, > 1). Zooming out reduces the
size of the image so that the result is a smaller image of fewer pixels (c,, ¢, < 1), but the scene is the same
except for the smaller size. Mixed scaling warps, or distorts. For example, ¢, > 1 and ¢, < 1 causes the output
image to be higher but narrower.

Zooming in allows us to see a part of the image up close, but extra pixels must be inserted. Where do we
get the information for these extra pixels? The only information we have, except for some unusual
circumstances, is in the existing pixels. The coarsest method of zooming in or out is to respectively repeat

pixels or eliminate pixels. However, zooming in with repeated pixels yields a blocky appearance to the resulting
image and adds no extra information. Eliminating pixels can lose valuable information.

6.2 Some Useful Geometric Transformations

Translations. A translation of a block or region R of an image involves the translation along each of the x-
axis and y-axis by respective fixed amounts t, and t,. The formulation for the source to target mapping is

(xy) =>(rs), r=x+t, s=y+i, (6.5)
Such a transformation is not actually linear because (0,0) maps to (%t rather than mapping to (0,0). Such

mappings are called translations. They are linear except for the addition of constants. The inverse
transformation of the given translation is the target-to-source backward mapping

(r.s) =>(xy), x=r-t, y=s-1, (6.6)

Scaling. A transformation that contracts or dilates in each of the dimensions is called a scaling mapping. Let
¢, and ¢, be two scaling constants. The source to target mapping is

(xy) =>(rs), r=cx, s=cy (6.7)

The target-to-source (inverse or backward) mapping, is

(r,s) => (x,y), x=r/c, y=s/k, (6.8)

Scaling is used to zoom in and out. If the scaling constants are greater than unity, then the transformed
image is magnified and constitutes zooming in. If, on the other hand, the scaling constants are less than unity,
then the image is reduced in size, which is zooming in. As mentioned above, mixed scaling distorts the image
(for example, ¢, = 2.2 and ¢, = 1.6).

Rotation. The mappings that rotate an image or region are called rotations. The forward (source to target)
transformations use the Euler equations (x,y) => (1,s)

r = xcos(®) + ysin@®), s = -xsin(®) + ycos(®) (6.9)

The target-to-source backward mapping (r,s) => (x,y) is given by

X = (r)cos(®) - (s)sin@®), y = (r)sin(®) + (s)cos(®)

Any matrix transformation may be considered as a rotation in 3-dimensional space of a 2-dimensional object

and scaling by dividing the matrix entries by the largest magnitude of the entries and then multiplying the
matrix by this magnitude as a scale factor.

(6.10)

Perspective Mappings. A tall building or other object appears to be relatively smaller at the top than at the
bottom when the picture is taken from the bottom because the top is farther away from the lens. Objects that
rise up toward the top of the image appear to be longer than they should. These are distortions that are linear
at any fixed row, but the distortions vary with height. A mapping that can restore the proportions involves using
a fixed row contraction scaler c, and a variable scalar function c (x) that varies with x in that it is greater for
x near zero and smaller as x moves away from zero (moves downward).

The particular scaler values can be obtained by experimenting. For example, such an undistorting linear
transformation may be given by c (x) = sx + r, where s is the slope and r is the y-intercept, with ¢ (0) = 2, r=2,
etc., and ¢, (M) = 1. Solving for s and r from these two points, and using, say, ¢, = 0.9, this becomes

a=09m, b=c(x)n=[(-1/M)x + 2]n (6.11)
Affine Mappings. Affine transformations (x,y) => (1,s) take the general form
r| C c, | X | |t
| = | F || (6.12a)
s | %) Cy | Y| [ty |
The inverse of this mapping is
X | d, d, | (r-t) |
| = | \ (6.12b)
yl d 4 | |-t

where the matrix {d,} is the inverse matrix of {c,}.

The inverse of a linear (matrix) mapping of the form

Figure 6.2. Warping Transformations.

SOURCE

WARP
JTRANSFORMATION

TARGET

6.3 Tiepoint Transformations

A tiepoint transformation is a nonlinear transformation

Nonlinear Transformations. Geometric transformations that
distort an image are called warping mappings (also called
transformations). Figure 6.2 shows nonlinear warping. These
warp and can be either polynomials or can be approximated by
polynomials. For example, a quadratic warping polynomial pair
in x and y has the form

r= cx texytey texteyte (6.13a)
s=dx’ +dxy+dy +dx+dy+d, (6.13b)

Warping to remove distortion is a primary objective in many
cases where the image is distorted. The nonlinear unwarping
transformations can be designed to map the 4 corners of a part
of a distorted image into the four corners of an undistorted
image, as described in the next section. This is similar to the
registration of an image with respect to another image (the
undistorted image) discussed in Unit 4..

Figure 6.3. A Tiepoint Transformation.

that maps a region determined by straight lines between 4
source image pixels, called tiepoints or control points, into
a region also determined by lines between the 4 target
image tiepoint pixels. Figure 6.3 shows two such
quadrilaterals. The transformation is provided by

a =a(mmn) =cmn+c,m+ cn +c, (6.14a)
b =a(mn) =csmn + cgn + c,n + ¢ (6.14b)

There are a total of 8§ tiepoints that are to be selected
by the user. Upon substituting these 8 points into Equations
(6.14a,b), the appropriate 4 into each equation, we obtain
8 equations in the 8 unknowns c,, c,,...,c;, Which can be
solved by a computer program package. When we have
found the coefficients, then we map each pixel (m,n) into a
point (x,y) via Equations (6.14).

We may use the nearest neighbor (a,b) in the target
image, as the mapped pixel, or we may map each target

TARGET IMAGE

SOURCE IMAGE

pixel (a,b) backward (by using the inverse transformation) to obtain a source point and interpolate the gray
level from the 4 pixels nearest to it to use as the gray level for the target pixel. The equations for the 4 points

arc
a, =cmn, +cm; +cn; +c,

a, = c,m,n, +c,m, + ¢c;n, + ¢,

b, =csmn, + cam, +c,n, +c (6.14¢)

b, = c¢;m,n, + c;m, + c,n, + ¢ (6.14d)

a; =c,m;n; +c,m; +cny e, by =c.mung +cgm; + cny +ocg (6.14¢)
a,=cmmn, +cm, +cn, +c, b,=cmmn,+cgm,+ cn, +cg (6.141)

We can use this method to remove distortion by employing an estimated inverse distortion transformation
on the source image to obtain a target image essentially free of distortion. The entire image may not be
undistortable with a single mapping, but we can map distorted regions via the tiepoint transformation. We may
need to experiment by changing the points until it appears to the eye that the distortion is removed.
Transformations with a higher degree of nonlinearity can be used (higher degree polynomials), but these require
solving a larger set of linear equations in more unknowns and thus use greater computational time. The tradeoff
is that a more intricate warping may be achieved.

An important application of the tiepoint transformation is in the registration of one image of a scene with
another image of the same scene. The same tiepoints can be selected in each image and the tiepoint
transformation can be made as was done in Unit 4. It is important to register two images with respect to each
other if the images are to be combined in some fashion.

6.4 Interpolation

The Backward Mapping Technique. In the case of pixel carryover, that is, forward mapping, (m,n) maps
to a (possibly) nonintegral point (x,y) between the four nearest pixels (see Figure 6.1) and its gray level f(m,n)
is assigned to the nearest location of the four corner pixels. Because some pixels may map to points outside
of the image and multiple pixels may map (with rounding to integers) to the same pixel location (m,,n,), we
do not use this method. Instead, we prefer pixel filling via backward mapping.

The pixel filling technique constructs the output target image in a pixel-by-pixel manner, one line at a
time. In the output image {g(a,b)} to be generated, each pixel location (a,b) is taken in turn, one at a time, and
the inverse geometric mapping takes it back to a point (x,y) in the original image {f(m,n)}, where (x,y) may
be a nonintegral real number (see Figure 6.1). The point (x,y) must be assigned a gray level f(x,y) based on
interpolating the 4 corner points surrounding it (although more than 4 could be used with more computational
complexity). Then we put g(a,b) = f(x,y). The interpolation algorithm used affects the quality of the resultant
image.

Backward Mapping Nearest Neighbor Interpolation. This is also called zeroeth order interpolation because
there is no linear, quadratic, cubic, etc., approximation technique involved in the process. The top mapping
shown in Figure 6.1 clarifies the process. Each pixel location (@,b) in the output image is mapped by the inverse
map (a,b) => (x,y) into the real point (x,y) whose gray level must be found from the 4 corner pixels

SAxLID, A+ LD, ATx(L D+ 21D, Alx+ 1] v+ 1)
where [1]| is the greatest integer less than or equal to 7.
This decision is quick in the case of nearest neighbor interpolation, which simply choses the pixel location

(mg,n,) = ([x1,[yD), (my,n) = ([x+11,[y]), (my,n,) = (IX],[y+1]), or (m;,n,) = ([x+1],[y+1]) to which (x,y) is
closest. It uses the gray level f(m;,n,) for g(m,n) that has the nearest location (m,n,), that is

g(a,b) = fm,n,) (6.15a)
where (my,n,) satisfies
(mq-x)* + (n-y)* < min{(m-x)’ + (n-y)’: m and n = nonnegative integers;} (6.15b)

This usually appears good to the eye, but not always. Where the gray levels are changing significantly at
higher frequencies, the aliasing causes artificial artifacts in the target image and blockiness.

Bilinear Interpolation. A more satisfactory type of interpolation is to use the 4 corner points to select a point
in a plane that passes through the 4 points. Because 3 points in 3-dimensional space determine a plane, and
there are 4 points here, a plane does not fit neatly through the 4 points (if a plane is fit through 3 of the 4
points, then the fourth point may be above or below the plane. We use a bilinear function that is linear in each
of x and y separately, but is nonlinear in both x and y. The form is

Jxy) =cxy tex +eyte, (6.16)
Clearly, if we let y remain fixed, f,(x) = f(x,y) is linear in x and similarly f(x,y) is linear in y with a fixed x.

If we were to fit a lineal (straight line) function f(x) of a single variable to two points x, and x, =x, + 1
along the x-axis from the first value to the second value, we could describe the functional value at every point
on the line by

SO, + o) = (1-a)f(x,) + of(x,) (6.17)
as o goes froma = 0too = 7 (x; + o goes from x; to x,).

In a 2-dimensional domain where we consider the function to be linear in one variable for each fixed value
of the other variable, we substitute to get

Jimra, n+f3) = (1-0)(1-B)f(mn) + a(lp)fm+1n) + (I-e)fif(mn+1) + afifm+1Ln+tl) (6.18)

as o and B3 go from O to 1. This equation provides a quick and easy computation of the gray level at any point

xy) = ((1-)m, + cm,, (1-)n, + fin,) (6.19)
in the square determined by the 4 points: (m,,n,), (m,,n,), (m,,n,), and (m,,n,).

Fuzzy Interpolation. Consider the case of a transformation from the source to the target image. The inverse
transformation takes each pixel location (m,n) in the target back to the real values point (x,y) in the source
image via (m,n) = (x,y). The point (x,y) in the source image has 4 nearest pixels that surround it. We need to
interpolate the gray level value f(x,y) from the 4 gray levels

Jr = XLy, Jo = xF1LIyID (6.20a,b)
Jo = JXLIy+11D, Jo = MIxF1LIy+1]) (6.20c,d)

One way to interpolate is to find a typical value that represents f(x,y) from the values f,, f,, f;, and f,
according to how close the location (x,y) is to their pixel locations. The WFEV (weighted fuzzy interpolated
value) is such a typical value. Let the 4 source image pixel locations used as arguments in Equation (6.20) be
designated by (m,;,n,), (m,,n,), (m;,n;), and (m,,n,). The WFEV is computed via

fg, = Z(k:1,4)exp['((mk'x)2 + (nk'y)z/(zsz))]ﬁc /Z(k:1,4)exp['((mk'x)2 + (nk_y)Z/(st))] (6.21)
This can also be written as
Jr= Z(k:u) wifi (6.22)
where
W, = expl-(m=x)* + ()N 2] 1Yo yexpl-((m=) + (0,-)/25)] (6.23)
w,+w, +tw, +w, =1 (6.24)

Note that pixels close to (x,y) have a greater weighting and pixels farther away have less weighting. The
determining factor as to how much relative weight the pixels have is the standard deviation o, which is a
spread parameter. A large value for 0 means that the Gaussian function is spread out so that pixels farther
away will have relatively more weighting. A small value for o causes pixels farther away to have relatively
smaller weighting (more like the nearest neighbor). Without knowing what value to use for o, we can take o
= 0.6. The midpoint has a distance of 1/v2 = 0.707, so 0.6 appears to be a good value.

We can also use the Tanimoto fuzzy set membership function that is faster to compute. The weights are

w, =1/ {s((mex)* + (ney)’) + 1} (6.25)

Appendix 6A is a listing of a C/C++ program that performs fuzzy interpolation on PGM grayscale
images. Instead of using the 4 pixels in the source image that surround each inversely mapped pixel in the target
image, we could use the 9 closest pixels to it. This requires extra computation and sometimes is not worth it.
However, if 9 pixels are used then the result is more smoothed and can be sharpened with unmask sharpening.

A General Interpolation Algorithm. The process of transforming and interpolating a source image into a
target image using the backward mapping technique is straightforward. We obtain the number of rows and
columns in the target image, and then process each taraget pixel consecutively in a row starting with the first
row, and proceeding to the next row after that, and so forth, until the last row is processed.

Algorithm 6.1. General Geometric Transformation and Interpolation

Mout = No_Output_Rows(); //Determine no. rows in new image

Nout = No_Output_Cols(); //Determine no. cols. in new image

for a =1 to Mout do //For each pixel in new image, i.e.,

for b =1 to Nout do //target image, get locations in original

x = Inverse Map_x(a,b); //image via inverse mapping
y = Inverse Map_y(a,b); //(x,y) is not necessarily pixel location
x1 = integer(x); //Get greatest integer values less than
yl = integer(y); //or equal to inverse mapped values
x2=x1+1; //Get 4 source pixel locations around
y2=yl+1; //the inverse mapped point (a,b)
gla,b] = Interpolate(x1,x2,y1,y2); //Interpolate source gray levels f(a(j),b(k))

The functions Inverse_Map x and Inverse_Map_y provide the inverse transformation from (a,b) back to
(x,y) which may not be located at a pixel (m,n) (may not have integral components). We then find the 4 pixel
points surrounding (x,y), which are (x,,y,), (X,,¥,), (X2,¥;), (X,,¥,). The function Interpolate() applies
interpolation using the source gray levels f(x,,y,), f(x,,y,), f(X,,y,), f(X,,y,) to obtain the target gray level g(a,b).
More source pixels may be used, but at greater computational cost and extra smoothing.

The functions No Output Rows and No_Output Cols map the 4 corners in the original image into the
4 corners of the target image and find the minimum and maximum of these. The corner with the minimal x
value is taken to be 0 plus a translation T, while the minimal y value is taken to be 0 plus a translation T,. If
any of the interpolation target points are outside of the mapped original image, we put g(m,n) = 0 (background).
Appendix 6A provides a program listing in C that does affine and other transformations on PGM PS5 images
and zooming using fuzzy interpolation with the Tanimoto fuzzy set membership function.

6.5 Computer Experiments

Enlargement with Matlab. Figures 6.4 and 6.5 show the source (original) images lena256.tif and shuttle.tif.
We zoomed in on each of these using bilinear interpolation. Figure 6.6 displays lena256.pgm with
magnification of 1.8 while Figure 6.7 shows the 1.8 magnification of shuttle.pgm.

Figure 6.4. Original Lena. Figure 6.5 Original shuttle.

Fig. 6.6. Bilinear 1.8 zooming of Lena.

The enlarged images look quite good with the bilinear | =
interpolation that is linear separately in each of x and y, although |
it has an xy term. Bicubic interpolation is similar but instead of a
linear function in each of x and y separately, it uses a cubic
function in each of x and y with cross products. It is the best
theoretically, but takes more computation and time, and often
appears no better to the human eye than bilinear.

Figure 6.7. Bilinear 1.8 zooming of shuttle.

Figure 6.8. Nearest neighbor 2x2 Lena. Figure 6.9. Bilinear 2x2 Lena.

Matlab Experiments with Zooming. To get started, we click on the Matlab icon (MS Windows) or type in
matlab at the command prompt (UNIX). When it comes up we type the following in the command window.

>> |1 = imread('lena256.tif"); Y%read in image

>> imshow(I1); %show image

>> 12 = imresize(I1, 1.8, nearest’); Y%resize image: 1.8x1.8 times area, nearest neighbor
>> figure, imshow(12); %show nearest neighbor enlarged image

>> [3 = imresize(I1, 1.8, 'bilinear"); Y%resize image 1.8x1.8, bilinear interplolation

>> figure, imshow(I3); %show bilinear interpolated image

>> 14 = imresize(I1,1.8,bicubic"); Y%resize image 1.8c1.8, bicubic interpolation

>> figure, imshow(14); %show bicubic interpolated image

The nearest neighbor sometimes looks good, especially if it is smoothed slight, but it can sometimes look
blocky. Here the result is good. Figure 6.8 shows the 1.8x1.8 nearest neighbor extrapolated Lena. Figures 6.9
and 6.10 show the respective use of bilinear and bicubic interpolation. While bilinear looks good in this case,
the bicubic does not look as good due to the higher degree polynomial. Figure 6.11 shows the results of the
fuzzy interpolation.

Figure 6.10. Bicubic 1.8 Lena. Figure 6.11. Fuzzy interpolation 1.8 Lena.

6.6 Affine Transformations in C

Using Matlab for Affine Transformations. We use the function maketform() to make a transformation that
is really a 2x2 matrix, but the function requires that we put in the 3x3 scaled Euler transformation. To do this
we use 0 to complete each of the first two rows with a third column element and then use 0 0 I as the third
row, where the 1 in the third column places the 2-D plane in 3 dimensions. Thus if we want to use the 2x2
matrix given below on the left, we actually use the second 3x3 matrix on the right.

114 1.1 |
|

1
| 0.
105 1.2] |

=XV N

1.1
1.2
0

—_—o O

The Matlab commands to obtain the images shown below are

>> | = imread('cameraman.tif’); //read in cameraman image

>> mytform = maketform(‘affine',[1.4 1.1 0; 0.5 1.2 0; 0 0 1]); //make matrix transformation

>> J = imtransform(l,mytform); //transform the input image

>> imshow(l), figure, imshow(J); //show input & output images
Figure 6.12. Original cameraman image. Figure 6.13. Transformed Cameraman image.

Fuzzy Interpolation for Affine Transformationsl. Here we use our C/C++ program provided in Appendix
6A that implements the Gaussian fuzzy set membership function to obtain the weights for the interpolation (see
the interpolate() function in the program). Upon compiling and running the program, it will ask the user to type
in the names of the input and output PGM files and enter the spread parameter o (the values 0.4 to 0.6 are quite
good). We input the file shuttle.pgm. The user is asked to choose between zoom, affine, rotate and warp. Here,
we select affine.

The user is then asked to input the first row of two values so we input 7.4 0.8 <ENTER>. The user
is next asked for the second row, so we input the two values 1.2 1.0 <ENTER>. The inverse 2x2 matrix is
then printed on the screen and also the matrix that was entered. The user is asked to accept the matrix or redo
it, in which case the matrix input process is repeated. Upon running the program on the shuttle image as the
input, we obtain the results shown below in Figure 6.15.

10

Figure 6.14. The input shuttle image. Figure 6.15 The affine shuttle image result.

Figure 6.16. Transformed building.

Figure 6.16 uses the affine transformation
shown below.

[0.5 0.86 0 1

{—0.6 09 0
0 0 1

Figure 17. Original building.

11

6.7 Exercises
6.1. The 2x2 matrix

e -¢, |

e, ¢

maps a vector (m,n) into a vector (a,b) linearly. Show that this matrix can be considered as a combination of
a scaling and a rotation whenever ¢, = -c,. Find the angle ® of rotation by dividing by (c,* + ¢,%)"* and
converting the resulting entries to sines and cosines. Use the scaler outside of the matrix.

6.2. Write an algorithm for user-given tiepoints to warp an image (4 control points inr each of the source and
target images).

6.3. Write a C/C++ computer program to zoom in or zoom out by a factor given by the user. Permit the vertical
and horizontal factors to be different so the aspect angle (ratio of height to width) to be changed. The main item
here is to obtain the output image of the new set of pixels and then for each of these pixels to find a gray level
from the original pixels by backward mapping and interpolation.

6.4 Modify the program in problem 6.3 above so that rotations can be done.

6.5. Compute the scaling function that contracts the first column by a factor of 0.5 and expands the last column
by a factor of 1.5 such that all columns in between the first and last are scaled a proportion of the way between
0.5 and 1.5.

6.6. Describe in detail an algorithm that performs linear geometrical transformations (write the high level
pseudo-code for the algorithm).

6.7. Write out an algorithm for general affine transformations that use bilinear interpolation.

6.8. Write a C/C++ computer program that implements the algorithm of Exercise 6.7.

6.9. Write an algorithm that finds the inverse mapping of any affine transformation.

6.10 Use Matlab to read in shuttle.tif as I1, convert it to black and white to obtain Ibw, then erode Ibw to get
Ioutl and dilate Ibw to get Iout2. Now subtract lout2 from Iout! to get the result as lout. Now thin this image
to get trimmed lines. Show all results.

Solution: Matlab does not allow the subtraction of a black and white image from a black and white image
because both have logical data types for the pixel values. The function imsubtract() must operate on data types

uint8 (8-bit unsigned integers for grayscale) or double (floating point). So we have to work around this.
From the command line, we type the following.

>> |1 = imread('shuttle.tif'); //read in image

>> imshow(I1); //show image

>> [bw = im2bw(I1, 0.75); //convert to black and white with im2bw();
>> imshow(Ibw); //show b&w image

>> Joutl = bwmorph(Ibw, 'dilate'); //dilate b&w image

>> Jout2 = bwmorph(Ibw, 'erode'); //erode b&w image

>> Jout = loutl - lout2; //subtract eroded image from dilated image
>> figure, imshow(lout); //show subtracted image

>> Joutthin = bwmorph(lout, 'thin'); //thin subtracted image with bwmorph();
>> figure, imshow(loutthin); //show the thinned image

12

Figure 6.16. Original image. Figure 6.17. Black & white image.

6.11 Write an algorithm that solves for the coefficients of the polynomial mapping that maps the region
within 4 tie-points into another region within the mapped 4 tiepoints.

6.12 Compile the programs fzntrp.c, and run it to zoom in on the image lena256.pgm. Show the before and
after images.

6.13 Zoom by the factors ¢, = 1.4 and ¢, = 1.0 on the program shuttle.pgm.
6.14 What can one say about the edges in a reduced image? In an enlarged image?
6.15 Develop an algorithm that solves for the coefficients in Equations (6.14c-f).

6.16 Write a C/C++ function that solves 8 equations in 8 unknowns for the algorithm in 6.14 above.

13

