
Chapter 9. File Formats and Image Compression

9.1 Data Compression

Compression and Decompression. Consider a stream of data in the form of a large string of bytes

D = d1d2..........dN (9.1)

where N may be a few K (thousands) or may be hundreds of M (mega, or million). A data compression
process accepts the bytes from the stream D and converts them to a shorter string

C = c1c2..........cM (9.2)

of bytes for which there is an inverse process for converting C back into D. We say that D is the data or
dataset and that C is the compressed data. Figure 9.1 shows the processes of compressing and decompressing.

 Figure 9.1. Data Compression

Compression always requires the input stream and yields the
output stream. Often it also requires a codebook, i.e., a set of keys for
doing the decompression. A contiguous block of bytes is represented by a
smaller block of bytes in the compressed image. An algorithm or set of
rules performs this conversion. The decompression requires that the
smaller blocks of contiguous bytes be replaced with a larger set of blocks
that it represents.

A file is a stream of data that has other information included, such
as a header, or block of bytes at the front of the file to provide certain
information about the file. The data compression and decompression
process is one of converting files into smaller files that can be converted
back into the original file, essentially. As we will see, we do not always get
back the identical original file, but the degradation must be acceptable.

Compression Ratio and Loss. The relative size of the N and M in Equations (9.1) and (9.2) is called the
compression ratio. More precisely, it is

r = N/(M + o) (9.3)

where o is the overhead consisting of the number of bytes in a codebook, if one is used. For small or no
codebooks, we take o to be zero and just use r = N/M. For example, if a 500KByte file is compressed with
a compression ratio of 2, then the compressed file would contain approximately 250KBytes.

If the compression/decompression process restores a compressed image to the identical original file,
then the process is called lossless because there is no loss in information. However, lossless compression
schemes have low compression ratios, which may be from 1.1 to 2.5, depending on the data and the process.
A compression scheme that restores data that is not the identical original data is said to be lossy. There are
processes that are lossless with low compression ratio on the one hand and processes with high loss but high
compression ratios on the other hand. Lossy compression ratios may be 9 or higher.

The tradeoff between lossless and lossy compression schemes is: we want to obtain the highest
compression ratio possible with the smallest amount of loss. For Internet images that are for decoration and
color rather than necessity, we need to send small image files for speed, which means that we choose a lossy
method with high compression ratio. For displaying such images on a World Wide Web homepage we should
keep the compressed file size from 9K to 25K bytes. But for medical images, where the details are crucial,
we want lossless compression, so we must settle for a low compression ratio (and the resulting larger files).
The tradeoffs are in the range between these extreme cases.

2

9.2 Some Common File Formats

Several file formats have arisen since the microcomputer age came into existence. One of the early
ones was PCX that was developed by ZSoft Corporation of Marietta, Georgia for the purpose of desktop
publishing. The more common file formats and their parent organizations are listed below.

PCX: ZSoft Corp., 450 Franklin Road, Suite 90, Marietta, GA 30067; 404-428-0008. The file format
was developed for desktop publishing and image processing with PC Paintbrush, and it has been upgraded
over the years. It uses from 1-bit to 24-bit color, is raster based with resolutions up to 64K by 64K. The data
compression ratio varies with the data from about 1.1 to 1.5 using run length encoding (RLE), where a byte
gives the number of bytes that have the same value and the next byte gives the value of the byte. The
compression is lossless.

TIFF: Aldus Corp., 411 First Avenue South, Seattle, WA 9894; Microsoft Corp., 16011 NE 36th
Way, Box 97017, Redmond, WA 98073. This was developed by Aldus and Microsoft and uses the tagged
image file format that gives offsets into the file and the number of bytes to read for specific types of
information about the image. The pixel data is written in raster scan order. The 1987 version is the most
compatible in that many image display programs cannot correctly decompress the 1989 version. The
compression is a type of RLE (run length encoding) and is lossless with low compression ratios.

TGA: Truevision Inc., 7340 Shadeland Station, Indianapolis, IN 46256. This was the first format
to be able to use high color resolution. It uses 24-bit pixels and has the true color range of 16,777,216 colors.
This requires 3 bytes per pixel in raster scan order and so the files are very large. Compression implements
a different RLE from TIFF and PCX.

JPEG: Joint Photographic Experts Group, or JPEG, Littleton, MA. This uses multiple formats from
8-bit gray scale to 24-bit color. The compression uses the discrete cosine transform (DCT), or the real part
of the DFT. Blocks of rxr pixel values are replaced with a set of cosine transform coefficients, from which
the inverse cosine transform can be made. The compression is lossy.

GIF: CompuServe Inc., 500 Arlington Center Blvd., Columbus, Ohio 43220; 614-457-8650. This
format is used by internet viewers such as Netscape and Internet Explorer. This was used originally in
desktop publishing with 1 to 8 bit color pixels for raster scan order pixels. The compression builds a code
table (codebood) as it goes for compression but does not store a codebook. Instead, the decompression builds
its own code table during processing for successful decompression without loss. The compression scheme
is based on the Limpel-Ziv-Welsh (LZW) algorithm and is patented by Unisys of Minneapolis.

BMP: Microsoft Corp., 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. This uses
raster scan pixel values of 1 to 8 bit color that are compressed by RLE. There is also a 24 bit true color mode
where no compression is used.

9.3 A Simple Example: PCX

The Header. This early standard for the program Paintbrush has been heavily used by other "paintbrush"
types of programs. Many images exist in this format. A *.pcx file consists of

 i) a header of fixed length, ii) the image data, iii) an extended color palette structure

 The file header is of exactly 128 bytes, which have file addresses (offsets) of 0, 1,..., 127. It provides the
following information. Taable 9.1 presents the interpretation of the bytes in the header.

3

Table 9.1. The PCX File Header Structure

 Byte No. Data Meaning of Information
 0 10 (decimal) Must be 10 (0A hex)to denote PCX format.
 1 0 => Version 2.5

2 => Version 2.8 w/palette information
3 => Version 2.8 w/o palette information
5 => Version 3.0
2 Version 2.8 with palette.
3 Version 2.8 or 3.0 without palette.
5 Version 3.0 with palette.

 2 1 Simple run length encoding (RLE).
 3 1 EGA/VGA 16 color modes.

2 CGA 4 color mode.
8 VGA 256 color mode.

4-11 four short integers 8 bytes define top-left and bottom-right (2 bytes each) corners, e.g.,
(0,0) and (799,599) for 800x600 are in the order 0 0 799 599
 (we designate these as Xmin, Ymin and Xmax, Ymax).

12-13 N 2 bytes for horizontal resolution of creating device, such as 640.
14-15 M 2 bytes for vertical resolution of creating device, such as 480.
16-63 RGB Color map of 48 bytes that form 16 triplets of 3-byte color pixel

values with a pixel for each of R, G and B, so there are only 16
colors (16x3 = 48). For 256 colors (triplets), there are 256x3 = 768
bytes in a color table at the end of the file, 769 bytes from the end
where 0C hex designates that the next byte starts the color table

64 0 Reserved.
65 b Number of bit planes, NPlanes: 4 for 16 color, 1 otherwise
66-67 B Bytes per scan line for each color (plane). It must be an even number

compatible with above window size given.
68-69 1 Interpret palette as color or B&W.

2 Interpret palette as gray scale.
70-127 Filler blanks to fill out the 128 byte header.

 When the 256 color mode is to be used (Byte 3 has the value 8), the 768 byte triplets of R, G and B byte
values are stored starting from 769 bytes from the end of the file. To access these, the file must be advanced
to the end of the file and then backed up exactly 769 bytes to read a tag. If the tag is 0Ch (12 decimal) then
the 256 color byte triplets follow.

To decode a PCX file, first find the pixel dimensions of the image by calculating [XSIZE = Xmax
- Xmin + 1] and [YSIZE = Ymax - Ymin + 1]. Then calculate how many bytes are required to hold one
complete uncompressed scan line: TotalBytes = NPlanes * BytesPerLine. Note that since there are always
an integral number of bytes, there will probably be unused data at the end of each scan line. TotalBytes
shows how much storage must be available to decode each scan line, including any blank area on the right
side of the image. You can now begin decoding the first scan line - read the first byte of data from the file.

RLE Encoding. We assume here that we are working with 8 bits per pixel value (256 colors, where each
8-bit value is the address one of the 256 color registers that contain 3 6-bit values for R, G and B, according
to the discussion in Chapter 1). If two or more consecutive pixel values are the same, these identical pixel
values are called a run. In writing the pixel byte-values in sequence according to the raster scan order, only
consecutive bytes that are different from those adjacent to it are written to the output as pixel bytes. For any
run, two bytes are written. The first is a byte that has the two most significant bits set to 1. The next 6 bits
give the number of bytes in the run. The second byte gives the pixel value to be repeated. For example, if 8
bytes have the same value of 127, then we designate it by writing the following to the output PCX file.

11001000 01111111
 Byte 1 Byte 2

4

Byte 1 contains 11 in the two highest order bits, which is 0C hex (12 decimal) to designate that this
is a run indicator byte. The 6 lower order bits have the value 8 decimal to indicate that there are 8 pixel
values of the value the is to appear next. Byte 2 is the value that is to appear 8 times in the displayed image.
Because these 6 lower order bytes in a run indicator byte range from 0 to 63, the run lengths can be 0 to 63.
Longer runs must be broken at 63 and a new run started.

 A problem arises here. If a pixel has a value of 192 or greater, then it would be interpreted as a run
indicator byte. Thus every pixel value of 192 or more must have a run created for it of length one with a run
indicator byte followed by the pixel value of 192 or greater. This means that about 25% of the upper pixel
values are more costly to encode if not in a run or length 2 or more. For this reason, the RLE encoding has
a low compression ratio. Another reason that RLE has low compression ratios is that an image of great
variation has few and short runs. The encoding is, however, lossless. For example, a one-time pixel value
of 192 (11000000) would require the encoding of 11000001 11000000, while a one-time pixel value of 191
(10111111) would require only the one byte 10111111.

9.4 The TIFF File Format Scheme

The Tagged Image File Format Blocks. Aldus and Microsoft jointly supported the TIFF specification
and made it very flexible (perhaps too flexible). A TIFF file starts at Byte 0 and continues in a stream to the
end, but is grouped into blocks of bytes according to the following parts.

Offset Address in Bytes
0 1 2 ...7 8 9EoF

 Header | Image-File-Directory | Directory-Entry | Data

The Header. The Header bytes are listed in order below according to the way they are grouped.

Byte Number Meaning
0 - 1 2 ASCII bytes to indicate the order of significance of the bytes, II for Intel

or MM
for Motorola (Intel format: 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

 Address N Address N+1
 Least Most (significant))
 Byte Byte

 (Motorola: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Address N Address N+1
 Most Least (significant))
 Byte Byte

2 - 3 42 ASCII, the original version number (not the actual version number)
4,5,6,7 Address in number of file offset bytes to the first Image File Directory

(usually there is only one image per file, so this would be the only Image
File Directory

The Image File Directories. The first Image File Directory, which is the only one in the usual case where
there is a single image stored in the file, consists of 12 bytes that are described as follows.

5

Byte Number Meaning
 0 - 1 (2 bytes) Number of Directories in the Image File Directory
2 -13 (12 bytes) First Directory entry (12 bytes)

 14-25 (12 bytes) Second Directory entry (12 bytes)

 N to N+11 (12 bytes) Last Directory entry (12 bytes), N = 2 + 12*k for k-th Directory entry
 N+12 to N+15 (4bytes) Address of next Image File Directory (in case of more than one image in file)

The Directories for an Image File Directory. In the Image File Directory above (for the first and likely
the only image), there is a sequence of Directories. Each such Directory has provides a tag number that
prescribes a property of the image. Several of these Directories with their tags prescribe precisely the image
properties. A Directory has the following bytes and meanings.

Byte Number Meaning
 0 - 1 Tag number that is a 2-byte integer
 2 - 3 Field type: BYTE = unsigned 8-bit integer, ASCII = character, SHORT =

16-bit
unsigned integer, LONG = 32-bit unsigned integer (pixel data)

 4 - 7 Field length: the number of data items (of one or more bytes) in the field
data

 8 -11 Address in file offset bytes of the data

Tags. We list some commonly used tags below that can be used for the usual grayscale or color images.

Tag Number Meaning Type
256 Image Width SHORT/LONG
257 Image Length (Height) SHORT/LONG
258 Bits/Sample SHORT
259 Compression (none, RLE, LZW or JPEG) SHORT

1=>none, bytes are packed; 2=>CCITT Huffman
3=>CCITT Group 3; 4=>CCITT Group 4
5=>LZW; 32773=> PackBits (Macintosh)

262 Photometric Interpretation (0 => black) SHORT
270 Image Description (text) ASCII
273 Strip Offset (offset address to strip [multiple rows] of pixel data)
277 Samples per Pixel SHORT
278 Rows per Strip SHORT/LONG
279 Strip Byte Count SHORT/LONG
282 X-resolution RATIONAL
283 Y-resolution RATIONAL
296 Resolution Unit (inches, cm or none) SHORT
320 Color Map (reds first, the blues, then greens)

The RATIONAL type of data consists of two LONG types, of which the first ... and the second ...
. TIFF images are classified as Class G (grayscale), Class P (color mapped) or Class R (full RGB color). The
classes and their required tag numbers are given below.

Class Tag Numbers
 G 256, 257, 258, 259, 262, 273, 278, 279, 282, 283, 296
 P 256, 257, 258, 259, 262, 273, 278, 279, 282, 283, 296, 320
 R 256, 257, 258, 259, 262, 273, 277, 278, 279, 282, 283, 296, 320

An Actual TIFF Image. Here we take a look at the front part of the file san_fran.tif to see what can be
seen by displaying all bytes as hexadecimal data.

6

Bytes (each byte is 2 hexadecimal characters) Meaning

49 49 2A 00 18 00 00 00 “II” for Intel, ver. 42, Offset to
 Dir.=>00000018hex => 24decimal
(Intel: rightmost byte is least significant)

2C 01 00 00 01 00 00 00 non-data

2C 01 00 00 01 00 00 00 non-data

0D 00 FE 00 04 00 01 00 “OD” is 24-th byte offset from file beginning
000Dh = 13 =>no. entries: first directory starts at
00 FE = 254 (tag number), 0004 = field type (long
integer)

00 00 01 00 00 00 00 01 0000001 = length of field item.

03 00 01 00 00 00 80 02

00 00 11 01 04 00 04 00 01 11 hex => 273 for tag number

00 00 C0 B0 04 00 15 01 B0C0 00 04 is offset to tag value where pixel
strip data starts

03 00 01 00 00 00 01 00

00 00 16 01 04 00 01 00

00 00 7A 00 00 00 17 01

04 00 04 00 00 00 D0 B0

04 00 1A 01 05 00 01 00

00 00 08 00 00 00 1B 01

05 00 01 00 00 00 10 00

00 00 2B 01 03 00 01 00

9.5 The GIF File Format Scheme

LZW Compression. This scheme is based on the Limpel-Ziv-Welsh algorithm. In 1977, Abraham Limpel
and Jacob Ziv published an algorithm for compression that was refined by Terry Welsh in 1984 so that the
compression and decompression could generate the same codebook. The algorithm was considered public
domain but after it was used by CompuServe over a few years to compress images for transmission on the
Internet and other networks, Unisys of Minneapolis announced that it had a patent on the algorithm and that
it required royalties for its use (this is strange, because the US Patent Office does not patent algorithms
unless they are a part of a system that has real physical parts, some of which function according to the
algorithm).

 The most common case is where the pixels have byte values for 8-bit grayscale or 256 colors and n = 12
is the size of the codewords. First, a partial codebook is initialized that gives the binary integer values for
the first 256 codewords, 0 through 255, that represent 8-bit values, or characters. The process reads the
image data starting with the top-left pixel and proceeds reading one character at a time in the raster scan
order. The single characters are considered to be strings of length 1 and are called roots. The algorithm builds
up a code table as it goes by adding more and longer strings that are represented by 12-bit codewords.

7

 The algorithm first sets the current prefix, designated here by @ to NULL. Then it reads the first current
character C from the input stream and concatenates it on the right with @ to form the current string # = @
+ C = NULL + C = C, where "+" represents the concatenation procss. NULL is not written to the output
stream as it is not represented as a 12-bit codeword. C becomes the current prefix @. The algorithm reads
the next character into C and concatenates it with the current prefix @ to obtain the new current string # =
@ + C. This time it writes the 12-bit codeword for the character C to the output stream and puts a new entry
in the table: codeword = next available 12-bit integer, string = #. The new current prefix becomes the
character C via @ = C (what was in @ was output in the form of a codeword).

 The process continues with all new strings being written to the codebook with new 12-bit codewords, and
all prefixes are looked up in the codebook and their codewords are written to the output stream. The criterion
for a new current string # is: is it already in the table? If it is not, then the codeword for the prefix is written
to the output stream and C becomes the new current prefix. If the new current string is in the codebook, then
nothing is written to the output stream and the new current prefix @ becomes the current string #. The next
current character C is then read and concatenated on the right with @ to form a new extended string #. This
is repeated until there are no more characters, that is, End-of-File (EOF) symbol is read and then the End-of-
Information (EOI = 257) symbol is written to the output stream. The 12-bit codewords are written to a GIF
file (with a name of the form filename.gif).

 In the usual case the value n = 12 is used, so that 4096 different strings can be encoded, including the
single character strings from 0 to 255. When all 4096 codewords are used up, an End-of-Table (EOT, which
is codeword 256) symbol is written to the table and a new code table is initialized for the image data from
that point on.

 The Algorithm for LZW Compression

Step 1: initialize table of codewords from 0 to 257;
@ 7 NULL; /Initialize prefix/

Step 2: read next character C from input stream; /Read from input stream/
if C = EOF then /If end-of-file, stop/
 write EOI to output stream;
 stop;
else
 # 7 @ + C; /Else concatenate char with prefix/

Step 3: if # in code table then /If string # is in code table/
 @ 7 #; /then build larger string/
 go to Step 2; /Continue with next character/
else
 if table is full then

write @ to output stream;
write EOT to output stream;
initialize new code table from 0 to 257;
@ 7 C;
go to Step 2;

 else
put # in table paried with next consecutive codeword;
write codeword for C to output stream;

 Figure 9.2 displays the algorithm flowchart. As each byte character (pixel value) is read, a current string
denoted by # is constructed as follows: the current character read is concatenated on the right of the current
prefix @ to form a new current string #. A search of the code table (codebook) is made for this current string.
If # is found in the table, then the current prefix is set equal to the current string and another input pixel value
is read and put through the same procedure. If # were not found in the table, then the current string is added
to the table and the codeword for this string is output to the encoded GIF file. In this case, the current prefix

8

@ is now set to the current character. This process is repeated on each input character until all of them have
been processed. At this point, the code for the current prefix is written to the output file as is an End-of-
Information (EOI symbol).

Figure 9.2. The LZW Compression Algorithm Flowchart.

A Simple Example of LZW Compression. Consider the following stream of data for which the
compression process is done in Table 9.2. Assume that 0 - 255 have been used for characters and that 256
and 257 have been used respectively for EOT and EOI. In the table, the angle brackets <> enclosing a string
denote the 12-bit codeword for the string inside of the brackets.

Input Data Stream: /$10.00/$22.00/$12.10/$222.00<EOF>

 This is a very short stream of data that is to be encoded by the same process as the LZW algorithm for
illustrative purposes. We assume here that the 12-bit codewords 0 - 255 have already been used in the
codebook. The codewords 256 and 257 designate respectively the EOT and the EOI. The output stream of
codewords from the output column is

 </><$><1><0><.><0><0>258<2><2> 262 264 259 267 260 265 266 268<EOI>

9

Table 9.2. LZW Compression of the Example Data Stream
Current

Next Input Current String Output New Current New Table
Char. C Prefix @ # = @+C Codeword Prefix @ Entry

 / NULL / -- / --
 $ / /$ </> $ 258=</$>
 1 $ $1 <$> 1 259=<$1>
 0 1 10 <1> 0 260=<10>
 . 0 0. <0> . 261=<0.>
 0 . .0 <.> 0 262=<.0>
 0 0 00 <0> 0 263=<00>
 / 0 0/ <0> / 264=<0/>
 $ / /$ -- /$ [in table]
 2 /$ /$2 258 2 265=</$2>
 2 2 22 <2> 2 266=<22>
 . 2 2. <2> . 267=<2.>
 0 . .0 -- .0 [in table]
 0 .0 .00 262 0 268=<.00>
 / 0 0/ -- 0/ [in table] $
 0/ 0/$ 264 $ 269=<0/$>
 1 $ $1 -- $1 [in table]
 2 $1 $12 259 2 270=<$12>
 . 2 2. -- 2. [in table]
 1 2. 2.1 267 1 271=<2.1>
 0 1 10 -- 10 [in table]
 / 10 10/ 260 / 272=<10/>
 $ / /$ -- /$ [in table]
 2 /$ /$2 -- /$2 [in table]
 2 /$2 /$22 265 2 273=</$22>
 2 2 22 -- 22 [in table]
 . 22 22. 266 . 274=<22.>
 0 . .0 -- .0 [in table]
 0 .0 .00 -- .00 [in table]
<EOF> 268+<EOI> --

The LZW Decompression Algorithm. To decompress a GIF file we initialize the basic string table of
roots as was done in the compression algorithm using 0 - 257 (256 and 257 are used for the EOT and EOI,
respectively). Now we create a variable old_code, denoted by % here, to hold the previous input codeword.
We initialize this via % = NULL. The current string to be written to the tale is #. Table 9.3 presents a
flowchart of the decompression process.

 The Algorithm for LZW Decompression

Step 1: initialize new code table 0 to 257;
% 7 NULL; //Initialize old_code

Step 2: read next codeword C from input stream (of LZW codewords);
translate C to character;
if C = EOI then stop;
if C = EOT then reinitialize basic string;
else
 write C to output stream;
 if C decodes to a single character string then % 7 C; # 7 % + C;

10

 else
 c 7 first_character(C); # 7 % + c; % 7 C;

 write # to code table;
go to Step 2;

A Simple Example of LZW Decompression. Table 9.3 below decompresses the compressed data from
the above compression procedure.

Table 9.3. LZW Decompression of the Example Encoded Data Stream
String C

Input Stream Character Old String to Output # String
 (Codewords) String C Variable % # = %+C Stream Table
__
 </> / NULL / / [in table]
 <$> $ / /$ $ 258=</$>
 <1> 1 $ $1 1 259=<$1>
 <0> 0 1 10 0 260=<10>
 <.> . 0 0. . 261=<0.>
 <0> 0 . .0 0 262=<.0>
 <0> 0 0 00 0 263=<00>
 258 /$ 0 0/$ /$ 264=<0/>
 <2> 2 <258> /$2 2 265=</$2>
 <2> 2 2 22 2 266=<22>
 262 .0 2 2.0 .0 267=<2.>
 264 0/ <262> .00/$ 0/ 268=<.00>
 259 $1 <264> 0/$$1 $1 269=<0/$>
 267 2. <259> $12.0 2. 270=<$12>
 260 10 <267> 2.010 10 271=<2.1>
 265 /$2 <260> 10/$2 /$2 272=<10/>
 266 22 <265> /$222 22 273=</$22>
 268 .00 <266> 22.00/$.00 274=<22.>
 <EOI> <EOF>

 The input stream of codewords to the decompression process is

</><$><1><0><.><0><0>258<2><2> 262 264 259 267 260 265 266 268<EOI>

The output stream of decoded characters is

/$10.00/$22.00/$12.10/$222.00

This is identical to the original data stream. Thus there has been no loss of information.

 Figure 9.3 presents a flowchart for the process of decompression. In a sense, it is the an analogous process
to the compression process.

11

Figure 9.3. The LZW Decompression Flowchart.

GIF File Structure. GIF ("jif") files have a file header, a logical screen descriptor, a global color palette
(optional), one or more image data section, and a file trailer. In the definitions given below, the byte number
is the file offset (address).

 File Header (6 bytes)
Bytes 0-2: GIF (the ASCII characters "GIF" appear here in that order)
Bytes 3-5: Version (this is either "87a" or "89a" for 1987 or 1989 versions)

 Logical Screen Descriptor
Bytes 5-7 Screen Width (this gives the screen width)
Bytes 8-9 Screen Ht. (this gives the screen height)
Byte 10 n (this packed fields byte provides the following information:

 Bits 0-2, 3*2n+1 bytes is size of global palette
 Bit 3, sort flag (0 6 not sorted, 1 6 sorted palette)
 Bits 4-6, number bits - 1 per primary color
 Bit 7, global palette flag (0 6 not present, 1 6 present)

Byte 11 BkClr Background color index
Byte 12 Aspect Pixel aspect ratio = (Aspect + 15)/64 if Aspect not zero

 Global Color Paltette
If Byte 10 of the logical screen descriptor above has Bits 0-2 not all set to 0, then the global color

palette follows immediately starting at Byte 13 in the file. It consists of triads for the R, G and B primary
colors so that 16 colors would occupy 48 bytes and 256 colors would occupy 768 bytes.

12

 Image Data Section
Byte 0 (of this section) always 2Ch as an image separator
Bytes 1-2 image position at left in pixels
Bytes 3-4 image position at top in pixels
Bytes 5-6 image width in pixels
Bytes 7-8 image height in pixels
Byte 9 packed fields byte

 n is in bits 0-2, 3*2n+1 bytes = size of local palette
 bits 3-4 are reserved
 bit 5, sorted flag (0 6 not sorted, 1 6 sorted palette)
 bit 6, interlaced flag (0 6 not interlaced, 1 6 interlaced)
 bit 7, local pallete flag (0 6 not present, 1 6 present

Bytes 10-? if local color palette is present, it follows here in the form of
 triplets of bytes for R, G and B for each color

Byte ?-?+1 the LZW minimum code size goes here, which is the number
 of bits in the codebook

Blocks the first byte of each block of image data gives the size of
 the block, which can not exceed 256 bytes. Each data block
 contains LZW encoded pixel values in raster scan order from
 the top-left to the bottom-right in left-to-right, top-to-bottom
 fashion. The codes are packed from right to left: the 6-bit
 codes aaaaaa bbbbbb cccccc would appear as:

 Byte 1 = bbaaaaaa; Byte 2: ccccbbbb; etc.

 The Trailer

This is always the single byte 3Bh that terminates the GIF data stream.

An Example of a GIF File. The following data is taken from the san_fran.gif file, which is a GIF image
file with 256 colors. An examination of the data with a text editor shows the various parts of the file.

 File
 Byte Hex
Offset Value Notes
__
 0 47 "G" ASCII code
 1 49 "I"
 2 46 "F"
 3 38 "8"
 4 37 "7"
 5 61 "a"
 6 80 lower byte hexadecimal value of raster width
 7 02 upper byte of raster width: 02 80 = 2x162 + 8x16 = 640
 8 A6 lower byte hexadecimal value of raster heightf
 9 01 upper byte of raster height: 1x162 + Ax16 + 6 = 422
 10 97 1001 0111: global color palatte, xxxx x111 = 8 bit color pixels
 11 00 background color
 12 00 aspect ratio, if given
 13 DB Red_1 (256 RGB byte triplets begin here for color palette)
 14 7A Green_1
 15 5D Blue_1
 16 92 Red_2
 17 55 Green_2
 18 4D Blue_2
 19 7A :
 20 45 :

13

 21 45 :
 22 65 :
 : : :
778 FF Red_256
779 FF Green_256
780 FF Blue_256 (end of 256 colors, 768 bytes)
781 2C "," (image separator)
782 00 LSB left edge of image [image descriptor]
783 00 MSB left edge of image
784 00 LSB top edge of image
785 00 MSB top edge of image
786 80 LSB image width in pixels
787 02 MSB image width
788 A6 LSB image height in pixels
789 01 MSB image height
790 07 Flag: 0xxx xxxx 6 no local color table; x0xxx xxxx 6 no interlacing
791 08 8-bit colors are encoded in the following image data blocks
792 FE 254 = byte count of first image data block
793 00 code byte 1 (not a complete codeword): 00991C has 24 bits, split into 3 12-bit
794 99 code byte 2 (not a complete codeword) codewords, decompress, and when
795 1C code byte 3 (not a complete codeword) block has been decoded, display

9.6 Targa Image Files

...

9.7 BMP Images Files

The Headers and the File Header. The BMP image file format was specified by Microsoft for ease of
use and it has a structure somewhat similar to PCX. The file sections are

__

File Header, Image Header, Color Table, Pixel Data
__

We consider the File Header first. Its fields are described below.

1. 2-bytes: BM designate the file type
2. 4-bytes: file size in bytes
3. 2-bytes: reserved
4. 2-bytes: reserved
5. 4-bytes: offset to start of pixel data

The Image Header. The Image Header is larger than the File Header and provides information about the
image. Its fields are listed below. There is a separate type of Image Header for the OS/2 operating system,
but we give only the MS Windows version here.

Field 1 4-bytes: header size (at least 40 bytes)
Field 2 4-bytes: image width
Field 3 4-bytes: image height
Field 4 2-bytes: value must be 1
Field 5 2-bytes: bits per pixel (1, 4, 8, 16, 24, 32)
Field 6 4-bytes: compression type (may be none)
Field 7 4-bytes: image size (0 if not compressed)

14

Field 8 4-bytes: pixels/meter resolution in X-direction
Field 9 4-bytes: pixels/meter resolution in Y-direction
Field 10 4-bytes: number of entries in color map actually used
Field 11 4 -bytes: number of significant colors

The Color Header. The Color Table (also called color palette) immediately follows the Image Header. It
can be in one of three different formats. The first two map pixel data to RGB color values when the number
of bits used per pixel is 1, 4, or 8. For BMP files in the Windows format, the palette consists of an array of
2n structures (the second format is for OS/2). The BMP Windows format is

1. 1- byte: blue color value
2. 1-byte: red color value
3. 1-byte: green color value
4. 1-byte: reserved

The third color palette format is not really a color mapping. If the number of bits used is 16 or 32
and the value in the Compression Type field of the Image Header is 3, then in place of the RGB structure
shown in the Color Palette above, there is an array of three 4-byte integers. These are bit masks that specify
the bits
used for red, green and blue, respectively. The nonzeros must be contiguous in each mask. Images that use
24 bits, and 16 or 32 bits without the Compression Type field set 3 do not have a color palette. As an
example, in a 32 bit image the three 32-bit values are

0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0

These specify 10-bit nonzero values for each of the colors red, green and blue.

The Pixel Data. The pixel data follows the Color Table if it is present, but if it is not present, then it follows
the prescription given in the Image Header. The pixel data usually follows the previous headers immediately,
but sometimes there may be filler before it and it is always a good idea to use the offset given in the Image
Header. This offset is the address in bytes from the beginning of the file, where the first byte is offset 0.

The pixel rows are order from bottom row to top row. The number of rows is given in the Image
Header. The number of pixels in a row is given from image width and bits-per-pixel numbers. The number
of bytes per row is rounded up to a multiple of 4 and is found from

bytes-per-row = {[widthxbit-count + 7]/8 + 3 } / 4

The format of thepixel data depends upon the number of bits per pixel.

1 or 4 bits/pixel: each data byte is either 8 or 2 fields that are indices into
the
color palette (the leftmost bit is the most significant)

8 bits/pixel: each byte is an index into the color palette (register)
16 bits/pixel: each 2-byte integer represents a pixel; if the compression

type is
0 then the intensity of each color is represented by 5 bits
with the most significant bit not being used (3x5 = 15 with
1 bit left); if the compression type is set to 3 (?), then three
4-byte bit masks used as described above (red, blue and
green in order)

24 bits/pixel: each pixel is represented by three consecutive bytes that
specify
blue, green and red in order

15

32 bits/pixel: each pixel is represented by a 4-byte integer; if the
compression type is set to 0 then the three low order bytes
represent the 8-bit
values for blue, green and red, in order (the high order byte
is not used); if the compression type is 3, then the 3 4-byte
masks given above specify the bits to be used for red, blue
and green.

For example, the format for 16-bit pixel values is:

Bit 15 | 14 13 12 11 10 | 9 8 7 6 5 | 4 3 2 1 0
 | Red | Blue | Green |

Run Length Encoding. The BMP format supports simple run-length encoding (RLE). RLE-8 is for 8-bit
pixel values. It uses a pair of bytes for each pixel value, where the first byte gives the count of the number
of pixels that have the pixel value, and the second byte gives the pixel value.

_____________ ____________

 Count Pixel Value
_____________ ____________

 First Byte Second Byte

For example, the encoded 2-byte pair 08h 00h expands to 8 bytes of 00h, i.e., to

00h 00h 00h 00h 00h 00h 00h 00h

The 2-byte pair of zeros is used as an escape code: 00h 00h, which means to jump to a new row in
the image. Another special code is: 00h 01h, which means the end of the image. A third special code is: 00h
02h, which means changes the position in the image, where the next two bytes give the respective number
of columns and rows to advance. This allows a large number of zeros to be skipped.

As another example, the encoded sequence 04h 15h 00h 00h 02h 11h 02h 03h 00h 01h decodes
to the sequence

15h 15h 15h 15h
11h 11h 03h 03h
End of Image

RLE-4 is similar but uses 4 bits per pixel and is interpreted slightly in a special situation for color
coding. The encoded pair

05h 56h

is decoded to

5 6 5 6 5

The count is 5, so the following byte is actually two 4-bit values, which are repeated for 5 pixel values.

16

9.8 JPEG Image Files

9.9 Exercises

9.10 References

Randy Crane, A Simplified Approach to Image Processing, Prentice-Hall, Upper Saddle River, NJ 1997.

Marv Luse, Bitmapped Graphics Programming in C++, Addison-Wesley, Reading, MA 1993.

Roger T. Stevens, The C Graphics Handbook, Academic Press, San Diego, CA 1992.

Control-Zed, Bitmapped Graphics, WROX Press, Ltd., Birmingham, UK 1994.

Gregory Baxes, Digital Image Processing, Wiley, NY, 1994.

John Miano, Compressed Image File Formats, ACM Press, SIGGRAPH Series, New York (Addison-
Wesley), 1999.

