
Unit 2. Point Processes

2.1 Transformations of Gray Levels

Linear Transformations of Image Grayscales. A linear transformationof an image is a function that
maps each pixel gray level value into another gray level at the same position according to a linear function.
The input (argument) is a gray levelf and the output is a new gray levelg defined at position (m,n). Linear
mappings have the form

g = af + b, or g(m,n) = af(m,n) + b (2.1)

where the coefficient a is theslope(or gain) and b is thevertical axis-intercept(or bias). These are actually
affine functions that combine a linear function with a translation byb (true linearity requires thatb = 0).
However, we refer to them henceforth aslinear.

Figure 2.1 presents a linear transformation that maps the gray levels of an input image {f(m,n)} into
the gray levels of an output image {g(m,n)}. In this case the transformation dilates the input domain from a
subinterval [fmin, fmax] onto the full interval [gmin, gmax] = [0, 255]. This stretches the contrast.

A linear transformation of the input gray level interval [fmin, fmax] onto the output interval [gmin, gmax]
has the form of Equation (2.1) above, where the slopea is defined as

a = (gmax- gmin)/(fmax- fmin) (2.2)

Thus

g = af + b =[(gmax- gmin)/(fmax- fmin)]f + b (2.3)

When f = fmin we desire that g = gmin, so we can substitute into Equation (2.3) the point (fmin, gmin) to
solve for b via

b = gmin - [(gmax- gmin)/(fmax- fmin)]fmin (2.4)

Substituting for b in Equation (2.3) and collecting terms, we obtain the results

g(m,n) =[(gmax- gmin)/(fmax- fmin)](f(m,n) - fmin) + gmin (2.5)

Figure 2.1. Dilating Linear Transformation. Figure 2.2. Piecewise Linear Transformation.

-2-

Equation (2.5) maps fmin into gmin, fmax into gmax, and everything a proportion p of the way between
fmin and fmax into that proportion p of the way between gminand gmax. This transformation may be used to map
a smaller interval of gray values into a larger one, but also may be used to map a larger interval into a smaller
one.

A related transformation breaks the range of gray levels into subintervals and uses a linear
transformation on each subinterval. Figure 2.2 shows such apiecewiselinear transformation. The only
requirement is that the conditions 0ÿ fmin ÿ fmaxÿ 255 and 0ÿ gmin ÿ gmaxÿ 255 are met. The equation for
the linear mapping must be defined appropriately on each subinterval.

The algorithm given below performs linear transformations, where fmin, fmax, gmin and gmaxare selected
beforehand for the appropriate mapping. The input image is {f(m,n): 0ÿ mÿ M, 0ÿ nÿ N} and the output
image is {g(m,n): 0ÿ mÿ M, 0 ÿ nÿ N}.

Algorithm 2.1: Linear Transformation
a � (gmax - gmin)/(fmax - fmin); //Compute slope for linear transformation
for m = 0 to M-1 do //For every row and for every

for n = 0 to N-1 do // column,
g[m,n] � a*(f[m,n] - f min) + gmin; // transform each pixel f[m,n] into g[m,n]

Nonlinear Transformations. We discuss three types of nonlinear transformations here, which are
logarithmic, exponentialandsigmoidfor respectively stretching the darker, lighter and middle gray levels.

1. Logarithmic Transformations: A nonlinear transformation is usually done after a linear
transformation has set the contrast and range of gray levels to that desired. It maps small equal intervals into
nonequal intervals. Suppose that most of the pixels have values at the lower end of the gray scale and we want
to spread them out to see the detail there, but that we don't care about the brighter values in the upper range
of grays. Then we want a small input interval at the low end to map to a larger interval at the low end for the
output image. We also want 0 to map to 0 and 255 to map to 255. The function

g(m,n) = (c)log2(f(m,n) + 1) (2.6a)

spreads out the lower gray levels. It must map 0 to 0, and (c)log2(1) = 0 does this. It also must map 255 to
255, so that 255 = (c)log2(255 + 1) = (c)log2(256) = 8c. Thus c = 255/8 = 31.875, so we have

g(m,n) = (31.875)log2(f(m,n) + 1) (2.6b)

Figure 2.3 shows this type of mapping. For example, 128 maps to 31.875log2(128 + 1)� (31.875)(7.001)
= 223.157, which is truncated to the integer 223. Thus the gray levels from 0 to 128 are dilated (more strongly
at the lower end). We can also use

g(m,n) = (c)logb(af(m,n) + 1) (2.6c)

where a > 0 is a constant and b > 1 is a logarithm base.

X-ray images are known to satisfy the intensity function f(m,n) = f0exp[-r(m,n)], where r(m,n) is the
attenutation of the x-ray signal at (m,n) due to the density and thickness of the material. Therefore, we use
logarithmic transformations (to the base e) to enhance the detail on x-ray images.

2. Exponential Transformations: Here we are interested in spreading out the upper gray levels at
the expense of the lower gray levels, which must be contracted. Again, we want the end points to map to end
points. While a logarithmic function spreads out lower levels disproportionately, an exponential spreads out
the upper levels disproportionately. If we use

g(m,n) = exp[af(m,n)] - 1 (2.7a)

-3-

then 0 maps into exp(0) - 1 = 0. To force 255 to map into 255, we ust have that 255 = exp[a(255)] - 1, so that
256 = exp(255a). Upon taking the natural logarithm of each side, we obtain ln(256) = 255a, or a =
ln(256)/255 = 0.0217458. Then this mapping is

g(m,n) = exp[0.021746f(m,n)] - 1 (2.7b)

Figure 2.4 shows an exponential type of transformation. As an example, 128 maps to exp(0.0217458(128))
- 1 = exp(2.78346) - 1 = 16.1749 - 1 = 15.1749, which is truncated to 15. Thus the gray level is strongly
contracted on the lower half but stretched on the upper half.

Figure 2.3. Logarithmic Mapping. Figure 2.4. Exponential Mapping.

3. Sigmoid Transformations: To stretch the middle gray levels we use a sigmoid function as shown
in Figure 2.5, where the gray levels are standardized (0ÿ f(m,n)ÿ 1) by dividing the f(m,n) by 255. Thus
we must scale the outputs by 255.

g(m,n) = 255{f(m,n) - af(m,n)(b - f(m,n))}, 0 < f(m,n)ÿ b (2.8)

= 255{f(m,n) + a(f(m,n) - b)(1 - f(m,n)}, b < f(m,n) < 1

= 0, f(m,n)ÿ 0

= 255, f(m,n)� 1

Figure 2.5. A sigmoid function.

The parametera is the gain that determines how sharp the
curve is (the default value isa = 1 but values of 0.5 to 2.0 are
allowable). The parameterb centers the location of the maximum
stretch and has defaultb = 0.5, but it could be set lower or higher
depending on where the most stretching is desired. This function maps
the endpoints to endpoints while stretching the middle gray levels and
trading this off by compressing the lowest and highest gray levels.

The algorithm given below uses a predefined point
transformation T that is a function on the gray levels to new gray
levels.

-4-

Algorithm 2.2 Basic Pixel Transformation:
for m = 0 to M-1 do //For each row and

for n= 0 to N-1 do // for each column
g(m,n) = T(f[m,n]); // apply transformation T to pixel value

Figure 2.6. Using threshold mappings.

Thresholding. One or more thresholds can be used to transform an
image pointwise. Let f1, f2 and f3 be thresholds. Suppose, for example,
that we want to map all gray levels below f1 into black (0), those
between f1 and f2 into a larger range and everything betweem f2 and
f3 into black. Let us map everything above f3 into white. Figure 2.6
shows a function that performs this transformation. An unlimited
variety of maps can be constructed in a similar manner. Note that the
gray levels between f1 and f2 are dilated, while all other data are
severely compressed. The use of thresholds is a powerful tool for
exposing certain details in an image.

Segmentation with Thresholds. Sometimes it is desired to convert
an image to a set of fewer gray levels so that certain regions will have
the same gray level. Such a process is called segmentation because it

partitions the image into a number of segments. In the following algorithm it is assumed that we have input
the values for the K+1 threshold gray levels T0,...TK.

Algorithm 2.3 Basic Segmentation:
for m = 0 to M-1 do //For each row and

for n= 0 to N-1 do // for each column
for k=0 to K-1 do // and for each threshold range

if (f(m,n) � Tk) AND (f(m,n) < Tk+1) then // if graylevel is in segment range
g(m,n) = Tk; // then put it at segment gray level

2.2 Image Histograms

Distribution of Gray Levels. An image as an array of discrete values {f(m,n): 0ÿmÿM-1, 0ÿ nÿN-1},
where for any row m and column n, thepixel position(m,n) haspixel valuef(m,n). Figure 2.7 presents the
array of pixel locations in the dimensions x and y. The pixel gray level f = f(m,n) can be considered to be the
height in a third dimension above the point (m,n) in the xy-plane. The L integer values that f(m,n) can assume
represent gray levels from 0 (black) to L-1 (white). L is most often 256 (which we use henceforth).

Figure 2.8 shows a 3-dimensional graph of an image of the "+" symbol according to our model. The
background is black, or 0 level, while the symbol is white, or 255. In this simple case, the proportions of
pixels at the gray levels is zero except at gray level 0 and gray level 255. Let P be the number of pixels at gray
level 0 and Q be the number of pixels at gray level 255, so that P+Q = MN is the total number of pixels. Thus
the distribution of proportions pk of pixels at the various gray levels k, 0ÿ k ÿ L-1 = 255 is

p0 = P/(MN); pk = 0, 1ÿ k ÿ 254; p255 = Q/(MN)

Figure 2.9 shows a graph of the proportional distribution over the gray levels 0 to 255, where this
small image is 16x16 = 256 pixels and we have taken P = 160 and Q = 96. In this case, the proportion of
black pixels is 160/256 = 0.625 and the proportion of white pixels is 96/256 = 0.375.

-5-

Figure 2.7. An MxN image. Figure 2.8. A simple image.

Figure 2.9. A Proportional Distribution .
Now consider the imagelena256.pgmfrom Unit 1. The

gray levels range from 0 to 255 and the image data size is 256x256
= 65,535 pixels. Each of the gray levels from 0 to 255 can be
represented by a byte (8 bits), so the image file contains a short
header and the 65,535 pixel bytes. Let us take thecountsof the
number of pixels at each of the gray levels 0,...,255 and denote
these counts by ck, for k = 0,...,255. To obtain the proportions of
pixels at each gray level, we divide each gray level count ck by the
total number of pixels to obtain

hk = ck/65,535, k = 0,...,255 (2.9)

We display these 256 proportions as a graph, as in Figure
2.9. Proportions are like probabilities. The probability that any randomly drawn pixel from the image of
Figure 2.9 is white is 0.375.

Histograms. In general, an MxN image has MN pixels. We define thecountsof the number of pixels at gray
level k as ck, k = 0,...,L-1. The proportion hk = pk at gray level k is

hk = ck/(MN), k = 0,...,L-1 (2.10a)

where {hk} is the histogram, or graph of proportions of each gray level k over the image. The proportions of
gray levels sum to unity.

ÿ(k=1,MN) hk = (1/(MN)ÿ(k=1,MN) ck = MN/MN = 1 (2.10b)

A histogram is a summary that we can view to see some basic characteristics of the image. Sometimes
it is convenient to average every two consecutive proportions and display them, so that there are 128 (L/2)
rather than 256 proportions. A graph of proportions computed for each set of r consecutive gray levels at a
time is called ahistogramwith bin sizer. With a bin size of 2 there are 128 proportions.

If the nonzero proportions are over a small band of gray levels, then the gray levels are few and close
together so that there is little contrast and it will be difficult or impossible to see all features in the image. If
the histogram is spread out across all gray levels with approximately equal heights (a rather uniform
distribution) then the image will not only have good contrast but will represent all gray levels approximately
the same and will expose details that may otherwise be hiding in certain bands of gray levels. Thus we should
spread out the pixel distribution more uniformly.

Figure 2.10 shows the approximate histograms for four images. Part (a) has low contrast due to a
narrow range of gray levels and is too dark, while the second, Part (b), has good contrast because of a wide
range of shades of gray from very dark to very light. Part (c) has low contrast and is too bright. Part (d) is too
low in contrast and is devoid of darks and lights, that is, it contains only middle grays.

-6-

Figure 2.10. Four Approximate Histograms..

(a) Low Contrast Dark Image (b) High Contrast Image

(c) Low Contrast Bright Image (d) Low Contrast Image with Middle Grays

If all pixels of an image were at a single gray level, then the image would be uniformly gray at that
shade of gray but it would contain no information. If the pixel values were distributed randomly over all
shades of gray, that is, from 0 to 255, then there would also be no information. An arrangement of gray levels
that captures a scene of objects contains information about that scene. To the extent that there are too few
grays, or there is random error on too many pixels, callednoise, that information is degraded (there are also
other kinds of degradation such as motion of the camera or objects, or an unfocused lens).

A Histogram Algorithm. We present an efficient algorithm here for computing the histogram of an image.
The algorithm is described in a high level pseudo language that is easily translated into C or C++.

Algorithm 2.4: Computation of Histogram

for k = 0 to 255 do //Initialize all counts
c[k] � 0; //c[k] = count of pixels at gray level k

for m = 0 to M-1 do //For each row and for each
for n = 0 to N-1 do //column in the image

c[f[m,n]] � c[f[m,n]] + 1; //increment count at gray level f(m,n)
for k = 0 to 255 do //Proportionalize each gray level count

h[k] � c[k]/(M*N); //M*N = total pixel count, h[k] is proportion

Average Image Gray Level. Each image has an average gray level� and a variance� ² computed from

� = ÿ(k=0,255) (k)(hk) (2.11)

� ² =ÿ(k=0,255) (k-�)²(hk) (2.12)

Withoutapriori information we would expect that� is approximately L/2 = 256/2 = 128. However,
many important details may be in the lower range (or in the upper range) of gray levels. In that case we want
more pixels to be distributed over the gray level range of interest. It is sometimes useful to use the average
� over the entire image, or over a portion of interest, in a process that changes� to a desired value. The gray

-7-

level variation can also be increased to increase contrast.

Using the Tools for Histograms. It is almost always useful to look at the histogram of an image to see
what may need to be done to enhance it. Here we use the toolsMatlab, XViewandLView Pro.

1.MatlabHistograms: Run Matlab, click inside of the Command Window to bring that window into
focus and then enter the following commands.

>> Im1 = imread(‘building.tif’); //load image into memory at Im1
>> imshow(Im1); //show image on screen
>> figure, imhist(Im1); //make and show histogram as new figure

Figure 2.11 shows the originalbuilding.tif image and Figure 2.12 shows its histogram. The histogram graph
can be saved in the same way as any image is saved. To exit an image display, click onFile and then onExit
in the top bar of the image frame. To exitMatlab, click onFile and thenExit on the top menu bar of the main
window.

Figure 11. Original building. Figure 12. Histogram of original building.

2.XViewHistograms: XViewdoes not display the histogram, although the histogram is changed by
changing the curve in theIntensitybox in theColor Editwindow. Figure 1.9 in Unit 1 shows theColor Edit
window with the Intensity box at the bottom center. To the right of this box is an array of buttons of which
the button on the left bottom is the histogram equalization button to be used in the next sextion.

3. LView ProHistograms: RunLView Pro, click onFile at the top left corner of the window in the
menu bar, clickOpen, select the directory and the image file building.tif and clickOK. When the image is
displayed, click on theColor item in the top menu bar and then selectHistograms. When the histogram
window comes up then look at the histogram on the left side. If the histogram has more pixels respectively
on the left, middle or right side, then the histogram isLow Key, Normalor High Key. Click on the appropriate
button on the right side of this window to equalize the histogram and somewhat correct for the type of
histogram it is (low, normal or high).

Figure 2.13 displays the mainLView Prowindow with Color andHistogramsselected. The image
and theHistogramswindow are both displayed in the main window which is shown here clipped at the
bottom to save space.

-8-

Figure 2.13. TheLView Pro Histograms window.

2.3 Histogram Equalization

Cumulative Distributions. A histogram {hk} for an image may have its nonzero proportions
predominately in the lower, upper or middle part of the grayscale. Ideally, the image grays should cover the
range [0,L-1] and not have too many or too few counts in any gray levels. A transformation that spreads out
the gray levels used and also changes the proportions to be more uniform is calledhistogram equalization.
Figure 2.10b shows an approximately equalized histogram.

Consider the distribution of gray levels in Figure 2.11 (shown as a continuous function for
convenience rather than as a discrete one). The area under the curve is unity as it represents the total
proportions over all gray levels designated here by f. This is the same as aprobability density function(pdf)
hF(f) for the random variable F that assumes grayscale values f. The total probability is

256ÿhF(f)df = 1 (2.13)
0

For the purposes of this discussion, f is a continuous grayscale variable with normalized domain of
[0,1]. The accumulated probability at any grayscale value f (summed over a dummy grayscale variabler) is

-9-

f
g = HF(f) = ÿhF(r)dr (2.14)

0

The function HF(f) that accumulates area up to each point f is called thecumulative distribution function(cdf)
for the pdf hF(f). Figure 2.12 shows the cdf HF(f) for the pdf of Figure 2.11. Cdf's are monotonic and an
assumption of strict monotonicity implies that they are one-to-one and have values between 0 and 1. We now
use this function HF(f) as a nonlinear transformation function on the gray levels. The objective of such a
transformation is to obtain transformed gray levels g = HF(f) that are uniformly distributed across the
grayscale, that is, the pdf hG(g) is a constant over all g.

We now show that the transformation g = HF(f) can be used as a transformation that maps the gray
levels f to gray levels g that are uniformly distributed. The subscripts on the pdf’s indicate what random
variables they describe, F or G. From probability theory for the transformation of random variables F� G,
we have that

g = HF(f) (2.15)

hG(g) = [d/dg]HF(f) = hF(f)[df/dg] (2.16)

The inverse transformation exists as an inverse function whenever HF(f) is strictly increasing and one-
to-one and onto [0,1].

HF
-1(g) = HF

-1(HF(f)) = f (2.17)

Figure 2.14. A Density Function. Figure 2.15. A Cumulative Distribution.

Upon differentiating g with respect to f we obtain

dg/df = dHF(f)/df = hF(f) (2.18)

By the one-to-one property, Equation (2.18) and where hF(f) � 0, we have

df/dg = 1/(dg/df) = 1/hF(f) (2.19)

Upon substituting Equation (2.19) into Equation (2.16), we obtain

hG(g) = hF(f)[1/hF(f)] = 1, 0 ÿ f ÿ 1 (1/hF(f) � 0) (2.20)

so that the pdf hG(g) (or histogram) of g is the constant 1 on the normalized gray levels [0,1]. Thus we have
proved the following theorem: if the cdf of a histogram {hk} for an image is used as a nonlinear
transformation on the gray levels f of that image, then the resulting transformed image is uniformly
distributed. The implementation is done via f� g = HF(f), which is the cdf of the random variable F.

While this is true in the continuous case, it is only approximate in the discrete case. However, it does
tend to spread out the gray levels and approximately equalize the proportions at the various gray levels. We

-10-

have shown that g = HF(f) is a grayscale transformation f� g on [0,1] to [0,1] such that g has a uniform
distribution. Because g satisfies 0ÿ gÿ 1, we need to multiply it by 255 to obtain the gray levels, so that 0
ÿ 255gÿ 255.

The Equalizing Transformation. Let {f k: k = 1,...,L-1} be the set of gray levels with histogram
proportions {hk: k = 0,...,L-1}. Then the gray level transformation is given by

gk = ÿ(j=0,k) hj = HF(k) (for each gray level k) (2.21)

where the summation replaces the integral of Equation (2.13). An algorithm for histogram equalization is
given below for the case when the histogram has already been computed.

Algorithm 2.4: Histogram Equalization :
sum � 0.0; //Initialize sum to zero
for k = 0 to 255 do //For each gray level

sum � sum + h[k]; //sum histogram proportions
H[k] � sum; //Collect cumulative values

for m = 0 to M-1 do /For each row and each column pixel
for n = 0 to N-1 do //position, compute new gray level g

g[m,n] � 255*H[f[m,n]]; //Compute and scale g, 0ÿ gÿ 1

The transformed gray levels g[m,n] are approximately uniformly distributed across the grayscale (and
are more uniform when the cdf is more one-to-one).

Histogram Equalization Using Software Tools. It is convenient to use the histogram functions of the
tools we have available. We useMatlab, XviewandLView Pro.

1. Histogram Equalization with Matlab: The functionimhist(Im) makes and displays a histogram
for the image represented by the variableIm1that has been read into memory withimread(‘building.tif’), for
example. TheMatlab function (Im2 =)histeq(Im1) makes a histogram of the image in memory at Im1 but
does not show it on the screen so we must useimshow(Im2) to display it. The following command script
shows the steps to equalize and show the new histogram ofbuilding.tif.

>> Im1 = imread(‘building.tif’); //load image into memory at Im1
>> imshow(Im1); //show image on screen
>> figure, imhist(Im1); //make/show histogram of image
>> Im2 = histeq(Im1); //equal. hist. of Im1, put at Im2
>> figure, imshow(Im2); //show new image as separate figure
>> figure, imhist(Im2); //make/show histogram of new image

Figure 16. Original building. Figure 17. Histogram of Original building .

-11-

Figure 18. Image with equalized histogram. Figure 19. Equalized histogram.

Figures 16 and 17 show respectively the original image and its histogram, while Figures 18 and 19
show respectively the image and histogram after histogram equalization.

2. Histogram Equalization with XView: We load an image and display it via

> xv building.tif

When the image appears on the screen, right-click inside the image to obtain the control window (see
Figure 1.5). From the center position along the top of the control window, bring the pointer down to the
Windowsitem, click and hold down the left mouse button and move down to theColor Edit item. Release
the button. A new large window now appears on the screen (see Figure 1.9). Move the imagebuilding.tif up
to the top of the monitor screen by left-clicking in its top border and dragging the image to the desired
location.

At the middle part of the bottom of this window is theIntensitybox (see Figure 1.9). To the left of
that box is an array of buttons with labels. The button at the lower left hasHistEqwritten on it. By clicking
on this button the current image being displayed will change to the histogram equalized version. Click on the
Resetbutton in the button array to restore the original image and histogram. Note in the Intensity box that the
identity transformation has been replaced with a nonlinear transformation for the histogram equalization. The
histogram equalized image can be saved by clicking onSavein theXViewcontrol window.

3. Histogram Equalization with LView Pro : Run theLView Proprogram and click onFile at the
upper left corner of the main window (see Fig. 1.6 in Unit 1) and then selectOpen. Choose the appropriate
directory and then click twice onbuilding.tif to display that image.

Next, click on theColor item on the top menu bar and then selectHistogramson the menu that comes
up. A histogram window will pop up (see Fig. 2.13 which shows most of the weight of grays in the lower
half, that is, to the left of the center balance point on the scale bar below the histogram). Click on theLow Key
button on the right side and then click onApply on the right side. The image will change, as will the
histogram graph on the left side of the histogram window. ClickCloseto keep the modified image or else
click Revertto get the original image back. The changed image can be saved after closing the histogram
window.

Dual Level Histogram Equalization. Histogram equalization often yields too many dark pixels and too
many bright pixels. To better equalize an image we partition it into two sets of gray levels according to a
threshold T. Let D and B be the sets of dark and bright pixels, respectively. The best results occur when T
is selected so that D and B have approximately equal numbers of pixels. T can be found by counting up to
MN/2 and finding the closest gray level where a change occurs.

-12-

D ={p(m,n): p(m,n)ÿ T}, B = {p(m,n): p(m,n) > T}

Now we equalize the histogram of D on the interval [0,T] and then equalize the histogram of B on
the interval (T,255]. After this, we combine D and B into a single image. The results can be strikingly better
than the usual histogram equalization, depending upon the image and gray level distribution.

Fig. 2.20. The original image. Fig. 2.21. Hist. equal. Fig, 2.22. Dual hist. equal.

Figures 2.20, 2.21 and 2.22 respectively show the original, the histogram equalized and the dual level
histogram equalization images. In this case the original histogram was fairly well balanced and the histogram
equalization made it too dark (histogram equalization does not always improve an image). Here the dual level
histogram equalization gave a better balance with more darks, lights and middle grays than did the regular
histogram equalization.

2.4 Statistical Techniques

Statistics-based Linear Transformations. Let � be the average pixel gray level over an image {f(m,n)}
and let� ² be the variance. If the overall image is too dark or too light, we may choose a desired mean� d. If
the contrast is too low or too high, we may choose a desired variance� d², where either� d > � or � d < � . We
compute theslope(gain) for a linear transformationg = af + b via

a = � d/ � (2.22)

We can now compute thevertical axis-intercept, or bias, b and find the expected value E[b] via

b = g - af = g - (� d/ �)f

E[b] = E[g - (� d/ �)f] = E[g] - (� d/ �)E[f]

b = � d - a� (2.23)

where� is the actual mean. The following linear transformation is called thestatistics-basedlinear map and
can easily be worked into Algorithm 2.2 where T(f(m,n)) = g(m,n) is defined by

g(m,n) = af + b = [� d/ �]f(m,n) + (� d - [� d/ �] �) (2.24)

Statistical Differencing. For the next method, we need the concept of a neighborhood of a pixel. This is
actually an area process rather than a point process, but is strongly related to the point process above. For our
purposes here, a pxqneighborhoodof a pixel is a rectangular array of pixels of p rows and q columns, where
p and q are odd integers and pc is the center pixel. Thus we could write it as a (2r+1)x(2s+1) neighborhood
of the center pixel. Figure 2.17 shows a 5x5-neighborhood of a pixel at position (m,n).

-13-

Figure 2.23. 5x5 Nbhds.

Statistical differencingis a local adjustment method that tends to
produce a similar contrast throughout the image and the degree of contrast is
user selectable. It uses statistics over a large neighborhood, say 11x11 to
31x31, to adjust the center pixel. The statistics� and� are computed over the
neighborhood pixels and applied to the center pixel value f(mc,nc) via

g(mc,nc) = � + ß[f(mc,nc) - �] (2.25)

where ß =� d/ � and � d is the desired parameter. We select the variance to
satisfy either of� d > � or � d < � to respectively stretch (dilate) or compress (contract) the output grayscale.

The user control of this method can be improved by use of a desired mean parameter� d per

g(mc,nc) = �� d + (1-�) � + ß[f(mc,nc) - �] (2.26)

where 0 <� < 1. This gives the user the ability to adjust the average levels� on the neighborhoods up or
down. Another adjustment is needed to prevent ß from being too large when� is too close to zero over a
neighborhood of similar values. We therefore use ß0 in place of ß, where

ß0 = r� d/(� d+r�) (2.27)

When � = 0, ß0 = r. By choosing r such that r > 1 or r < 1 (to move g(mc,nc) farther from, or closer
to f(mc,nc)), we may dilate or contract the difference� = f(m,n) - � . The computation required is much greater
than for the statistics-based global adjustment because the neighborhood statistics must be computed for every
pixel in the image. When a pixel is near the boundary, we use only those neighborhood and mask entries that
intersect the image. Algorithm 2.1 may be modified to use Equation (2.25) per

g(mc,nc) = �� d + (1-�) � + [r � d/(� d+r�)][f(m c,nc) - �] (2.28)

where the� and � are computed over a large neighborhood. Some rather dramatic enhancement effects can
be achieved by the use of statistical differencing in the form of Equation (2.27).

2.5 Exercises

2.1 Write the function for a linear transformation that maps [0,255] into [64,128]. What will this
transformation do to the histograms of Figure 2.10 (approximately)?

2.2Make a general statement of the effects any linear transformation will have on the histogram? Will the
proportions change? Explain.

2.3Suppose that an image had a histogram that showed a high proportion of pixels in the middle gray range,
and that here is where it is suspected that a lot of detail lies. Design a transformation that blacks out the lowest
and highest gray levels and stretches the middle grays. Give the equation(s) for this transformation.

2.4How can the transformation of Exercise 2.3 be implemented inMatlab? In Xview? In LView Pro?

2.5UseXViewto displaylena256.tifand then use the Intensity box to transform the image to make it have
lower contrast. Now equalize the histogram. What is the result? How does it compare with the histogram
equaliztion of the original image?

2.6Design a linear transformation of gray levels that stretches out the darkest and lightest shades of gray but
compresses the gray levels between, say, approximately 80 and 180. Show the equations for T.

-14-

2.7 Design a nonlinear transformation usingLView Pro that approximates the linear transformation of
Exercise 2.6.

2.8 Graph the linear transformation with slope of -1 that maps 0 to 255 and 255 to 0. What does this
transformation do to an image? Implement this usingLView Pro. Repeat withXView.

2.9 Find a way to useMatlab to make an image into a negative image via the mapping f� 255 - f (use the
help menu for functions for image processing).

2.10Write a high level pseudo-code algorithm to map an image via a sigmoid function.

2.11Write a pseudo-code algorithm to read a PGM P5 image file and write a new P5 image file that is the
negative of the original image that has the middle gray levels stretched.

2.12Compile the program of Appendix 2.A and build in the sigmoid nonlinear transformation. Run this on
the imagebuilding.pgm(P5) and write the results to a new P5 image file. Study the results and compare with
the original. Now change the parametersa andb one at a time in a nonnegligible manner. What are the
effects?

Appendix 2.A - C Programs for Point Processes

PGM (P5) Image Files. A P2 file saves binary characters in ASCII, that is, the pixel value 234 would be
saved with 3 bytes respectively for the digits 2, 3 and 4 (00000010, 00000011 and 00000100). We will read
and write in binary integers where 234 is encoded as the single byte 11101010, which is the P5 format for
PGM. When we look at the file with an editor, the numbers are interpreted as characters. Thus the following
is whatbuilding.pgmlooks like from the top.

P5
CREATOR: XV Version 3.10a Rev: 12/29/94 (PNG patch 1.2)
320 240 255
mklmmllmjc\TaimnljjlmgaZVadehjigge_ZYdedegfffedb[S\bcddefffibXR_efc_SE@AFRj‚Œ“.....

The dots at the end of the fourth line indicate that the data continues to the end of the file. This image
is 320x240 (columns by rows), which gives 76,800 pixels of data in addition to the small header. We list a
simple C program that can be compiled with MS Visual C++ (console mode), Borland C++ Builder, or under
Gnu C or C++ in Linux or standard C or C++ in Solaris or UNIX.

The C Code for Point Processing.

// DIP1 - POINT PROCESSES Digital Image Processing Program
// Linux Version -- Gnu C or C++ Compiler (gcc)
// UNIX Version with C or C++ Compiler (cc)
// This can be compiled with MS Visual C++, Console Mode, but
// certain lines indicated below must be taken out
//===
// This program reads an input PGM P5 image, implements a
// user supplied point transformation and writes the result to a PGM
// P5 type image file.
//===
// Version: 29June2002
//===
// The PGM file may be of size up to N = 4096 columns and M
// rows where M can be up to 4096 or even greater.
//--

-15-

// The user is asked to type in the input image file name and a name
// for the output image file, which will also be in PGM P5 format.
//
//---------------------P R O G R A M Modular Layout--------------------------
// main();
// heading(); display program heading
// openfiles(); opens input & output image files
// readhdr(); reads input image file header
// getrow(); reads rows from input image file
// applytransformation(); does transformation on input image
// writefile(); writes processed row to output image file
// closefiles(); closes input and processed output image files
// display(); displays original and processed image via XV
//--
include <stdio.h>
include <math.h>
include <stdlib.h>
//--
void heading(void);
void openfiles(void);
void readhdr(void);
void applytransformation(void);
void display(void); // take out for MS Visual C++
//---
int fin[4096]; //input pixels in a row
int gout[4096]; //output pixels in a row
int MRows, NCols; //indices for rows and cols
int rowcount; //count of row being processed
FILE *infptr, *outfptr; //input/output file pointers
char infile[40]; //name of input file
char static outfile[40]; //names of output image file
char key; //key to select instructions
char display_File1[] = "Original_Image"; //take this out for MS Windows
char display_File2[] = "Processed_Image"; //take this out for MS Windows
int first_time;
//---
//--------------------------------------MAIN---
//---
main()
{ void closefiles(void);

void readhdr(void);
char changekey, stopkey; //key to process another image or stop

//-------------------------(Put Heading on Screen)--------------------------------------
do
{ heading();

first_time = 1;
do
{ //-----------------------------(Open I/O Image Files)------------------------------

openfiles();
//-----------------------------(Read Input File Header)----------------------------
readhdr();

//-----------------------(Do Transformations on Row Pixels)--------------------
applytransformation();
//-----------------------(Display Image with XV Program)-----------------------
display(); //take out for MS Visual C++

-16-

//-----------------------(Select to Change this Image or Not)---------------------
do
{ printf("\n Process this image again with new parameters (y/n): ?");

scanf("%1s",&changekey);
if ((changekey=='y')||(changekey=='Y')) first_time = 1;

} while ((changekey!='y') && (changekey!='Y') &&
(changekey!='n') && (changekey!='N'));

} while ((changekey=='y') || (changekey=='Y'));
//---------------------------(Close Any Open Image Files)--------------------------
closefiles();
//--------------------------(Select Stop or Process an Image)----------------
do
{ printf("\n Enter <s> to stop or <i> to process another image ");

scanf("%1s",&stopkey);
if ((stopkey=='i')||(stopkey=='I')) first_time = 1;

} while ((stopkey != 's') && (stopkey != 'S') &&
(stopkey != 'i') && (stopkey != 'I'));

//--
} while ((stopkey != 's') && (stopkey != 'S'));
printf("\n Bye! Bye!\n");
return;

} //end main()
//--
//----------------------------------HEADING--
//--
void heading()
{ int i;

for (i=0;i<16;i++) printf(" +\n");
printf(" DIP1 - POINT TRANSFORMATION of DIGITAL IMAGE\n");
printf(" by Prof. Carl G. Looney\n");
printf(" Computer Science and Engineering Department/171\n");
printf(" UNIVERSITY OF NEVADA\n");
printf(" Reno, NV 89557\n");
printf(" looney@cs.unr.edu\n");
printf(" Updated: 22Jun2002\n");
for (i=0;i<4;i++) printf(" +\n");
do
{ printf("\n Enter <c> to continue of <x> to exit: ");

scanf("%1s",&key); printf(“\n”);
} while ((key != 'c') && (key != 'C') && (key != ‘x’) && (key != ‘X’));

if ((key == ‘x’) || (key == ‘X’)) exit();
return;

}//end heading()
//--
//---OPENFILES-------------------------------------
//--
void openfiles(void)
{

if (first_time == 1)
{ printf("\n OPEN an image file\n");

printf("~~~\n");
printf(" Enter name of *.pgm INPUT image file: ? ");
scanf("%s",&infile); printf(“\n”);
printf(" Enter name of *.pgm OUTPUT image file: ? ");
scanf("%s",&outfile); printf(“\n”);

}

-17-

if ((infptr = fopen(infile, "r")) == NULL)
{ printf(" Can NOT open input image file: <%s>\n",infile);

printf(" Exiting program..... "); exit(1);
}
else printf(" Input file <%s> opened sucessfully\n\n",infile);
if ((outfptr = fopen(outfile,"w")) == NULL)
{ printf(" Can NOT open output image file <%s>\n\n",outfile);

printf(" Exiting program....."); exit(1);
}
else printf(" Output file <%s> is opened sucessfully\n\n",outfile);
return;

}//end openfiles()
//--
//-----------------------APPLYTRANSFORMATION-----------------------------
//--
void applytransformation()
{

void getrow(void);
void writefile(void);
void closefiles(void);
rowcount = 0;
do
{ //-----------------------[Read an Image Row to Process]-------------------------

getrow();
//-------------------[Transform Row with Transform Map]---------------------
for (col=0;col<NCols;NCols++)
{ gvalue = fin[col];

if ((gvalue >= 0) && (gvalue < 50)) gout[col] = 25;
if ((gvalue >= 50) && (gvalue < 100)) gout[col] = 75;
if ((gvalue >=100) && (gvalue < 150)) gout[col] = 125;
if ((gvalue >=150) && (gvalue < 200)) gout[col] = 175;
if ((gvalue >= 200) && (gvalue < 256)) gout[col] = 205;

}
//---------------------[Write Processed Row to Output File]-------------------
writefile();
rowcount++;

} while (rowcount < MRows);
closefiles();
return;

}//end applytransformation()
//---
//-------------------------------------READHDR-------------------------------------
//---
void readhdr()
{

int i, k, Maxgrays;
char c, c1, buffer[128];
//----------------------------[Read PGM File Header]---------------------------
printf("\n\n File <%s> Header Bytes:\n",infile);
printf(" ---\n");
k = 0; //k is line number of header lines
do
{ i = 0;

do
{ c = fgetc(infptr); //read characters to end of header line

buffer[i] = c; i++; //put characters into a memory buffer

-18-

} while (c != '\n'); //until a newline is encountered
if (k == 0) //if line is the first line
{ c1 = buffer[1]; //get second character read

if (c1 == '5') printf("\n File is: <P%c>\n",c1); //print out ‘P5' if so
}
else
{ printf(" Image NOT in P5 format!! Quitting.........\n\n");

exit(0);
}
buffer[i] = '\0'; k++; //end buffer with NULL (‘\0')
fprintf(outfptr,"%s",buffer); //write buffer to output file
printf("%s",buffer); //write buffer to screen

} while (k < 2); // for first two lines - next read third header line
fscanf(infptr,"%d %d %d",&NCols, &MRows, &Maxgrays); c = fgetc(infptr);
fprintf(outfptr,"%d %d", NCols, Mrows); //write no. cols, rows to output file
fprintf(outfptr,"%c %d %c",'\n', Maxgrays, '\n'); //write max. gray level to output file
printf(" %d ",Ncols); //write no. cols, rows, max gray value to screen
printf(" %d <-----(Width & Height)\n", MRows);
printf(" %d <-----(Max. Gray Level)\n\n",Maxgrays);

}//end readhdr()
//---
//---------------------------------------GETROW--
//---
void getrow()
{ int row, col;

unsigned char item; //pixel s are read as chars
for (col=0;col<NCols;col++) //now read in new row
{ item = fgetc(infptr);

fin[col] = (int) item;
}
printf(" . ");

}
}//end getrow()
//---
//---------------------------------WRITEFILE---
//---
void writefile()
{ int col;

int pixchar;
//-----------------[write processed row to output file]-------------------
for (col=0;col<NCols;col++)
{ pixchar = gout[col];

fprintf(outfptr,"%c", (char) pixchar);
}

} //end writefile()
//---
//----------------------------CLOSEFILES-------------------------------------
//---
void closefiles()
{ //-----------------------------(Close Files)------------------------------------

fclose(infptr);
fclose(outfptr);
return;

} //end closefiles()

-19-

//---
//-----------DISPLAY BEFORE/AFTER IMAGES IN UNIX-----------
//---------------------(take out for MS Visual C++)--------------------------
void display()
{ char buffer1[100], buffer2[100];
//----------------Part 1: Copy and Display Original Image-----------------
//copy original image to display_File1 for displaying on first time
if (first_time == 1)
{ sprintf(buffer1," %s %s %s "," cp ", infile, display_File1);

system(buffer1);
system("sleep 2");
//-------------------(Display Original Image at (y,x)----------------------
sprintf(buffer2," %s %s %s "," xv -geometry +2-2 ", display_File1,"&");
system(buffer2);

}
//--
//------------Part 2: Copy and Display Processed Image-----------------
sprintf(buffer1," %s %s %s "," cp ", outfile, display_File2);
system(buffer1);
system("sleep 2");
//display processed image on first time this function is called
if (first_time == 1)
{ sprintf(buffer2," %s %s %s "," xv -poll -geometry +200-200 ",

display_File2," & ");
system(buffer2);
//-------------------------Turn first_time off--------------------------------
first_time = 0;

}
printf("\n Move images to desired position on screen!\n");
return;

} //end display()
//---

