
 Unit 2. Point Processes

2.1 Transformations of Gray Levels

Linear Transformations of Image Grayscales. A linear transformation of an image is a function that
maps each pixel gray level value into another gray level at the same position according to a linear function.
The input (argument) is a gray level f = f(m,n) at location (m,n) and the output is a new gray level g = g(m,n)
defined at the same position (m,n). Linear mappings have the form g(m,n) = T[f(m,n)] such that

T[af(m,n) + bf(j,k)] = ag(m,n) + bg(j,k) (2.1a)

However, affine transformations are more useful and they are just a linear transformation followed by a
translation, such as the equation of a line, y = ax + b, where a is the slope and b is the y-intercept. These are
often called linear and so we will also. For images gray level transformations these take the form

g(m,n) = af(m,n) + b (2.1b)

Figure 2.1 presents a linear transformation that maps the gray levels of an input image {f(m,n)} into the
gray levels of an output image {g(m,n)}. In this case the transformation dilates the input domain from a

min max minsubinterval of minimum to maximum gray levels for the original image, [f , f], onto the full interval [g ,
maxg] = [0, 255] for the output image. This stretches the contrast to the boundaries of the grayscale.

min max min maxA linear transformation of the input gray level interval [f , f] onto the output interval [g , g] has
the form of Equation (2.1b) above, where the slope a is defined as usual. Thus

max min max mina = (g - g)/(f - f) (2.2)

max min max ming(m,n) = af(m,n) + b = [(g - g)/(f - f)]f(m,n) + b (2.3)

min minat each location (m,n). When f = f we desire that g = g , so we can substitute into Equation (2.3) the point
min min(f , g) to solve for b via

min max min max min min min minb = g - [(g - g)/(f - f)]f = g - af (2.4)

 Upon substituting for b in Equation (2.3) and collecting terms, we obtain

max min max min min ming(m,n) = [(g - g)/(f - f)](f(m,n) - f) + g (2.5)

Figure 2.1. Dilating Linear Transformation. Figure 2.2. Piecewise Linear Transformation.

-2-

min min max maxEquation (2.5) maps f into g , f into g , and everything else to its proportion p of the way
min max min maxbetween f and f into that proportion p of the way between g and g . This transformation may be used

to map a smaller interval of gray values into a larger one (contrast stretching), but also may be used to map
a larger interval into a smaller one (contrast compression).

A related transformation breaks the range of gray levels into subintervals and uses a linear
transformation on each subinterval. Figure 2.2 shows such a piecewise linear transformation. The only

min max min maxrequirement is that the conditions 0 < f < f < 255 and 0 < g < g < 255 are met. The equation for the
linear mapping must be defined appropriately on each subinterval.

min max min maxThe algorithm given below performs linear transformations, where f , f , g and g are selected
beforehand for the appropriate mapping. The input image is {f(m,n): 0 < m < M, 0 < n < N} and the output
image is {g(m,n): 0 < m < M, 0 < n < N}.

Algorithm 2.1: Linear Transformation
 max min max mininput g , g , f , f ; //Enter min. and max. values

 max min max mina = (g - g)/(f - f); //Compute slope for linear transformation
for m = 0 to M-1 do //For every row and for every
 for n = 0 to N-1 do // column,

 min ming[m,n] = a*(f[m,n] - f) + g ; // transform each pixel f[m,n] into g[m,n]

Nonlinear Transformations. We discuss three types of nonlinear transformations here, which are
logarithmic, exponential and sigmoid for respectively stretching the darker, lighter and middle gray levels.

1. Logarithmic Transformations: A nonlinear transformation is usually done after a linear
transformation has set the contrast and range of gray levels to that desired. It maps small equal intervals into
nonequal intervals. Suppose that most of the pixels have values at the lower end of the gray scale and we
want to spread them out to see the detail there, but that we don't care about the brighter values in the upper
range of grays. Then we want a small input interval at the low end to map to a larger interval at the low end
for the output image. We also want 0 to map to 0 and 255 to map to 255. The function

2g(m,n) = (c)log (f(m,n) + 1) (2.6a)

2spreads out the lower gray levels. It must map 0 to 0, and (c)log (1) = 0 does this. It also must map 255 to
2 2255, so that 255 = (c)log (255 + 1) = (c)log (256) = 8c. Thus c = 255/8 = 31.875, so we have

2g(m,n) = (31.875)log (f(m,n) + 1) (2.6b)

2 Figure 2.3 shows this type of mapping. For example, 128 maps to 31.875log (128 + 1) . (31.875)(7.001)
= 223.157, which is truncated to the integer 223. Thus the gray levels from 0 to 128 are dilated (more
strongly at the lower end). We can also use

bg(m,n) = (c)log (af(m,n) + 1) (2.6c)

where a > 0 is a constant and b > 1 is a logarithm base.

0X-ray images are known to satisfy the intensity function f(m,n) = f exp[-r(m,n)], where r(m,n) is the
attenutation of the x-ray signal at (m,n) due to the density and thickness of the material. Therefore, we use
logarithmic transformations (to the base e) to enhance the detail on x-ray images.

2. Exponential Transformations: Here we are interested in spreading out the upper gray levels at the
expense of the lower gray levels, which must be contracted. Again, we want the end points to map to end
points. While a logarithmic function spreads out lower levels disproportionately, an exponential spreads out
the upper levels disproportionately. If we use

g(m,n) = exp[af(m,n)] - 1 (2.7a)

-3-

then 0 maps into exp(0) - 1 = 0. To force 255 to map into 255, we ust have that 255 = exp[a(255)] - 1, so that
256 = exp(255a). Upon taking the natural logarithm of each side, we obtain ln(256) = 255a, or a =
ln(256)/255 = 0.0217458. Then this mapping is

g(m,n) = exp[0.021746f(m,n)] - 1 (2.7b)

 Figure 2.4 shows an exponential type of transformation. As an example, 128 maps to
exp(0.0217458(128)) - 1 = exp(2.78346) - 1 = 16.1749 - 1 = 15.1749, which is truncated to 15. Thus the gray
level is strongly contracted on the lower half but stretched on the upper half.

 Figure 2.3. Logarithmic Mapping. Figure 2.4. Exponential Mapping.

3. Sigmoid Transformations: To stretch the middle gray levels we use a sigmoid function as shown
in Figure 2.5, where the gray levels are standardized (0 # f(m,n) # 1) by dividing the f(m,n) by 255. Thus
we must scale the outputs by 255.

g(m,n) = 255 / {1.0 + exp[-a(f(m,n) - b)]}, 0 < f(m,n) # 1 (2.8)

where b = 128 is the usual value and a is the rate that defines the steepness of the curve (a =1 is mild
whereas a = 3.8 is rather steep).

 Figure 2.5. A sigmoid function.

The parameter a is the gain that determines how sharp the
curve is (the default value is a = 1 but values of 0.5 to 2.0 are
allowable). The parameter b centers the location of the maximum
stretch and has default b = 128, but it could be set lower or higher
depending on where the most stretching is desired. This function
maps the endpoints to endpoints while stretching the middle gray
levels and trading this off by compressing the lowest and highest
gray levels.

The algorithm given below uses a predefined point
transformation T that is a function on the gray levels to new gray
levels. Any parameters that T uses must be input by the user before
T can be defined.

-4-

Algorithm 2.2 Basic Pixel Transformation:
for m = 0 to M-1 do //For each row and
 for n= 0 to N-1 do // for each column

 g(m,n) = T(f[m,n]); // apply transformation T to pixel value

Figure 2.6. Using threshold mappings.

Thresholding. One or more thresholds can be used to transform an
1 2 3image pointwise. Let f , f and f be thresholds. Suppose, for example,

1that we want to map all gray levels below f into black (0), those
1 2 2 3between f and f into a larger range and everything betweem f and f

3into black. Let us map everything above f into white. Figure 2.6
shows a function that performs this transformation. An unlimited
variety of maps can be constructed in a similar manner. Note that the

1 2gray levels between f and f are dilated, while all other data are
severely compressed. The use of thresholds is a powerful tool for
exposing certain details in an image.

Segmentation with Thresholds. Sometimes it is desired to convert
an image to a set of fewer gray levels so that certain regions will have
the same gray level. Such a process is called segmentation because it

partitions the image into a number of segments. In the following algorithm it is assumed that we have input
0 Kthe values for the K+1 threshold gray levels T ,...T .

Algorithm 2.3 Basic Segmentation:
for m = 0 to M-1 do //For each row and
 for n= 0 to N-1 do // for each column

 for k=0 to K-1 do // and for each threshold range
k k+1 if (f(m,n) > T) AND (f(m,n) < T) then // if graylevel is in segment range
kg(m,n) = T ; // then put it at segment gray level

2.2 Image Histograms

Distribution of Gray Levels. An image as an array of discrete values {f(m,n): 0 # m # M-1, 0 # n # N-1},
where for any row m and column n, the pixel position (m,n) has pixel value f(m,n). Figure 2.7 presents the
array of pixel locations in the dimensions x and y. The pixel gray level f = f(m,n) can be considered to be
the height in a third dimension above the point (m,n) in the xy-plane. The L integer values that f(m,n) can
assume represent gray levels from 0 (black) to L-1 (white). L is most often 256 (which we use henceforth).

Figure 2.8 shows a 3-dimensional graph of an image of the "+" symbol according to our model. The
background is black, or 0 level, while the symbol is white, or 255. In this simple case, the proportions of
pixels at the gray levels is zero except at gray level 0 and gray level 255. Let P be the number of pixels at
gray level 0 and Q be the number of pixels at gray level 255, so that P+Q = MN is the total number of pixels.

kThus the distribution of proportions p of pixels at the various gray levels k, 0 # k # L-1 = 255 is

0 k 255p = P/(MN); p = 0, 1 < k < 254; p = Q/(MN)

Figure 2.9 shows a graph of the proportional distribution over the gray levels 0 to 255, where this small
image is 16x16 = 256 pixels and we have taken P = 160 and Q = 96. In this case, the proportion of black
pixels is 160/256 = 0.625 and the proportion of white pixels is 96/256 = 0.375.

-5-

 Figure 2.7. An MxN image. Figure 2.8. A simple image.

Figure 2.9. A Proportional Distribution.

Now consider the image lena256.pgm from Unit 1. The gray
levels range from 0 to 255 and the image data size is 256x256 =
65,535 pixels. Each of the gray levels from 0 to 255 can be
represented by a byte (8 bits), so the image file contains a short
header and the 65,535 pixel bytes. Let us take the counts of the
number of pixels at each of the gray levels 0,...,255 and denote

kthese counts by c , for k = 0,...,255. To obtain the proportions of
kpixels at each gray level, we divide each gray level count c by the

total number of pixels to obtain

k kh = c / 65,535, k = 0,...,255 (2.9)

We display these 256 proportions as a graph, as in Figure 2.9. Proportions are like probabilities. The
probability that any randomly drawn pixel from the image of Figure 2.9 is white is 0.375.

Histograms. In general, an MxN image has MN pixels. We define the counts of the number of pixels at
k k kgray level k as c , k = 0,...,L-1. The proportion h = p at gray level k is

k kh = c / (MN), k = 0,...,L-1 (2.10a)

kwhere {h } is the histogram, or graph of proportions of each gray level k over the image. The proportions
of gray levels sum to unity.

(k=1,MN) k (k=1,MN) kE h = (1/(MN)E c = MN/MN = 1 (2.10b)

A histogram is a summary that we can view to see some basic characteristics of the image. Sometimes
it is convenient to average every two consecutive proportions and display them, so that there are 128 (L/2)
rather than 256 proportions. A graph of proportions computed for each set of r consecutive gray levels at a
time is called a histogram with bin size r. With a bin size of 2 there are 128 proportions.

If the nonzero proportions are over a small band of gray levels, then the gray levels are few and close
together so that there is little contrast and it will be difficult or impossible to see all features in the image.
If the histogram is spread out across all gray levels with approximately equal heights (a rather uniform
distribution) then the image will not only have good contrast but will represent all gray levels approximately
the same and will expose details that may otherwise be hiding in certain bands of gray levels. Thus we should
spread out the pixel distribution more uniformly.

Figure 2.10 shows the approximate histograms for four images. Part (a) has low contrast due to a narrow
range of gray levels and is too dark, while the second, Part (b), has good contrast because of a wide range
of shades of gray from very dark to very light. Part (c) has low contrast and is too bright. Part (d) is too low
in contrast and is devoid of darks and lights, that is, it contains only middle grays.

-6-

Figure 2.10. Four Approximate Histograms..

 (a) Low Contrast Dark Image (b) High Contrast Image

 (c) Low Contrast Bright Image (d) Low Contrast Image with Middle Grays

If all pixels of an image were at a single gray level, then the image would be uniformly gray at that shade
of gray but it would contain no information. If the pixel values were distributed randomly over all shades of
gray, that is, from 0 to 255, then there would also be no information. An arrangement of gray levels that
captures a scene of objects contains information about that scene. To the extent that there are too few grays,
or there is random error on too many pixels, called noise, that information is degraded (there are also other
kinds of degradation such as motion of the camera or objects, or an unfocused lens).

A Histogram Algorithm. We present an efficient algorithm here for computing the histogram of an image.
The algorithm is described in a high level pseudo language that is easily translated into C or C++.

Algorithm 2.4: Computation of Histogram
for k = 0 to 255 do //Initialize all counts
 c[k] = 0; //c[k] = count of pixels at gray level k
for m = 0 to M-1 do //For each row and for each
 for n = 0 to N-1 do //column in the image

 c[f[m,n]] = c[f[m,n]] + 1; //increment count at gray level f(m,n)
for k = 0 to 255 do //Proportionalize each gray level count
 h[k] = c[k]/(M*N); //M*N = total pixel count, h[k] is proportion

Average Image Gray Level. Each image has an average gray level : and a variance F computed from2

(k=0,255) k: = E (k)(h) (2.11)

(k=0,255) kF = E (k-:) (h) (2.12)2 2

Without apriori information we would expect that : is approximately L/2 = 256/2 = 128. However,
many important details may be in the lower range (or in the upper range) of gray levels. In that case we want
more pixels to be distributed over the gray level range of interest. It is sometimes useful to use the average
: over the entire image, or over a portion of interest, in a process that changes : to a desired value. The gray
level variation can also be increased to increase contrast.

-7-

Using a Tool for Histograms. It is almost always useful to look at the histogram of an image to see what
may need to be done to enhance it. Here we use the tool Matlab.

1. Matlab Histograms: Run Matlab, click inside of the Command Window to bring that window into
focus and then enter the following commands.

>> Im1 = imread(‘building.tif’); //load image into memory at Im1
>> imshow(Im1); //show image on screen
>> figure, imhist(Im1); //make and show histogram as new figure

Figure 2.11 shows the original building.tif image and Figure 2.12 shows its histogram. The histogram graph
can be saved in the same way as any image is saved. To exit an image display, click on File and then on Exit
in the top bar of the image frame. To exit Matlab, click on File and then Exit on the top menu bar of the main
window.

 Figure 11. Original building. Figure 12. Histogram of original building.

2.3 Histogram Equalization

kCumulative Distributions. A histogram {h } for an image may have its nonzero proportions
predominately in the lower, upper or middle part of the grayscale. Ideally, the image grays should cover the
range [0,L-1] and not have too many or too few counts in any gray levels. A transformation that spreads out
the gray levels used and also changes the proportions to be more uniform is called histogram equalization.
Figure 2.10b shows an approximately equalized histogram.

Consider the distribution of gray levels in Figure 2.11 (shown as a continuous function for convenience
rather than as a discrete one). The area under the curve is unity as it represents the total proportions over all

Fgray levels designated here by f. This is the same as a probability density function (pdf) h (f) for the random
variable F that assumes grayscale values f. The total probability is

 256

F *h (f)df = 1 (2.13)
 0

-8-

For the purposes of this discussion, f is a continuous grayscale variable with normalized domain of [0,1]. The
accumulated probability at any grayscale value f (summed over a dummy grayscale variable r) is

 f

F Fg = H (f) = *h (r)dr (2.14)
 0

FThe function H (f) that accumulates area up to each point f is called the cumulative distribution function (cdf)
F Ffor the pdf h (f). Figure 2.12 shows the cdf H (f) for the pdf of Figure 2.11. Cdf's are monotonic and an

assumption of strict monotonicity implies that they are one-to-one and have values between 0 and 1. We now
Fuse this function H (f) as a nonlinear transformation function on the gray levels. The objective of such a

Ftransformation is to obtain transformed gray levels g = H (f) that are uniformly distributed across the
Ggrayscale, that is, the pdf h (g) is a constant over all g.

FWe now show that the transformation g = H (f) can be used as a transformation that maps the gray levels
f to gray levels g that are uniformly distributed. The subscripts on the pdf’s indicate what random variables
they describe, F or G. From probability theory for the transformation of random variables F 6 G, we have
that

Fg = H (f) (2.15)

G F Fh (g) = [d/dg]H (f) = h (f)[df/dg] (2.16)

FThe inverse transformation exists as an inverse function whenever H (f) is strictly increasing and one-to-
one and onto [0,1].

F F FH (g) = H (H (f)) = f (2.17)-1 -1

 Figure 2.14. A Density Function. Figure 2.15. A Cumulative Distribution.

Upon differentiating g with respect to f we obtain

F Fdg/df = dH (f)/df = h (f) (2.18)

FBy the one-to-one property and Equation (2.18) where h (f) � 0, we have

Fdf/dg = 1/(dg/df) = 1/h (f) (2.19)

Upon substituting Equation (2.19) into Equation (2.16), we obtain

G F F Fh (g) = h (f)[1/h (f)] = 1, 0 # f # 1 (1/h (f) � 0) (2.20)

Gso that the pdf h (g) (or histogram) of g is the constant 1 on the normalized gray levels [0,1]. Thus we have
kproved the following theorem: if the cdf of a histogram {h } for an image is used as a nonlinear

transformation on the gray levels f of that image, then the resulting transformed image is uniformly
Fdistributed. The implementation is done via f 6 g = H (f), which is the cdf of the random variable F.

-9-

While this is true in the continuous case, it is only approximate in the discrete case. However, it does
tend to spread out the gray levels and approximately equalize the proportions at the various gray levels. We

Fhave shown that g = H (f) is a grayscale transformation f 6 g on [0,1] to [0,1] such that g has a uniform
distribution. Because g satisfies 0 # g # 1, we need to multiply it by 255 to obtain the scaled gray levels, so
that 0 < (255g) < 255.

kThe Equalizing Transformation. Let {f : k = 1,...,L-1} be the set of gray levels with histogram
kproportions {h : k = 0,...,L-1}. Then the gray level transformation is given by

k (j=0,k) j Fg = E h = H (k) (for each gray level k) (2.21)

where the summation replaces the integral of Equation (2.13). An algorithm for histogram equalization is
given below for the case when the histogram has already been computed.

Algorithm 2.4: Histogram Equalization:
sum 7 0.0; //Initialize sum to zero
for k = 0 to 255 do //For each gray level
 sum 7 sum + h[k]; //sum histogram proportions
 H[k] 7 sum; //Collect cumulative values
for m = 0 to M-1 do /For each row and each column pixel
 for n = 0 to N-1 do //position, compute new gray level g

 g[m,n] 7 255*H[f[m,n]]; //Compute and scale g, 0 # g # 1

The transformed gray levels g[m,n] are approximately uniformly distributed across the grayscale (and
are more uniform when the cdf is more one-to-one).

Histogram Equalization Using Software Tools. It is easy to use the histogram function of the tool we
have available. We use Matlab. Histogram does not always make the image look better, but often does.

1. Histogram Equalization with Matlab: The function imhist(Im) makes and displays a histogram for
the image represented by the variable Im1 that has been read into memory with imread(‘building.tif’), for
example. The Matlab function (Im2 =) histeq(Im1) makes a histogram of the image in memory at Im1 but
does not show it on the screen so we must use imshow(Im2) to display it. The following command script
shows the steps to equalize and show the new histogram of building.tif.

>> Im1 = imread(‘building.tif’); //load image into memory at Im1
>> imshow(Im1); //show image on screen (Fig. 16)
>> figure, imhist(Im1); //make and show histogram of image (Fig. 17)
>> Im2 = histeq(Im1); //equal. hist. of Im1, put new image at Im2
>> figure, imshow(Im2); //show new image as separate figure (Fig. 18)
>> figure, imhist(Im2); //make/show histogram of new image (Fig. 19)

 Figure 16. Original building. Figure 17. Histogram of Original building.

-10-

Figure 18. Image with equalized histogram. Figure 19. Equalized histogram.

Figures 16 and 17 show respectively the original image and its histogram, while Figures 18 and 19 show
respectively the image and histogram after histogram equalization.

Multi-Level Histogram Equalization. Histogram equalization often yields too many dark pixels and too
many bright pixels. To better equalize an image we partition it into two sets of gray levels according to a
threshold T, below which 50% of the pixels fall (and 50% above). Let D and B be the sets of dark and bright
pixels, respectively. The percentages of D and B do not necessarily need to be equal, but without prior
knowledge, it is a good value for T, which can be found by counting up to MN/2 and finding the closest gray
level T so that approximately 50% of the pixels are below T. D and B are found by

D ={p(m,n): p(m,n) # T}, B = {p(m,n): p(m,n) > T}

Now we equalize the histogram of only those pixels in the interval [0, T] and then equalize the
histogram of B on the interval [T+1, 255], writing both sets of pixels to their locations in the output image.
The results can be striking, depending upon the image and its original gray level distribution.

Fig. 2.20. The original image. Fig. 2.21. Hist. equal. Fig, 2.22. Dual hist. equal.

Figures 2.20, 2.21 and 2.22 respectively show the original, the histogram equalized and the dual level
histogram equalization images. In this case the original histogram was fairly well balanced and the histogram
equalization made it too dark (histogram equalization does not always improve an image). Here the dual level
histogram equalization gave a better balance with more darks, lights and middle grays than did the regular
histogram equalization.

-11-

2.4 Statistical Techniques

Statistics-based Linear Transformations. Let : be the average pixel gray level over an image {f(m,n)}
dand let F² be the variance. If the overall image is too dark or too light, we may choose a desired mean : . If

d d dthe contrast is too low or too high, we may choose a desired variance F ², where either F > F or F < F. We
compute the slope (gain) for a linear transformation g = af + b via

da = F /F (2.22)

We can now compute the vertical axis-intercept, or bias, b and find the expected value E[b] via

db = g - af = g - (F /F)f

d dE[b] = E[g - (F /F)f] = E[g] - (F /F)E[f]

db = : - a: (2.23)

where : is the actual mean. The following linear transformation is called the statistics-based linear map and
can easily be worked into Algorithm 2.2 where T(f(m,n)) = g(m,n) is defined by

d d dg(m,n) = af + b = [F /F]f(m,n) + (: - [F /F]:) (2.24)

Statistical Differencing. For the next method, we need the concept of a neighborhood of a pixel. This is
actually an area process rather than a point process, but is strongly related to the point process above. For
our purposes here, a pxq neighborhood of a pixel is a rectangular array of pixels of p rows and q columns,

cwhere p and q are odd integers and p is the center pixel. Thus we could write it as a (2r+1)x(2s+1)
neighborhood of the center pixel. Figure 2.17 shows a 5x5-neighborhood of a pixel at position (m,n).

Figure 2.23. 5x5 Nbhds.

Statistical differencing is a local adjustment method that tends to
produce a similar contrast throughout the image and the degree of contrast
is user selectable. It uses statistics over a large neighborhood, say 11x11 to
31x31, to adjust the center pixel. The statistics : and F are computed over

c cthe neighborhood pixels and applied to the center pixel value f(m ,n) via

c c c cg(m ,n) = : + ß[f(m ,n) - :] (2.25)

d dwhere ß = F /F and F is the desired parameter. We select the variance to
d dsatisfy either of F > F or F < F to respectively stretch (dilate) or compress

(contract) the output grayscale.

Adapting Gray Levels with Statistical Methods. The user control of this method can be improved by use of
da desired mean parameter : per

c c d c cg(m ,n) = ": + (1-"): + ß[f(m ,n) - :] (2.26)

where 0 < " < 1. This gives the user the ability to adjust the average levels : on the neighborhoods up or
down. Another adjustment is needed to prevent ß from being too large when F is too close to zero over a

0neighborhood of similar values. We therefore use ß in place of ß, where

0 d dß = rF /(F +rF) (2.27)

0 c cWhen F = 0, ß = r. By choosing r such that r > 1 or r < 1 (to move g(m ,n) farther from, or closer to
c cf(m ,n)), we may dilate or contract the difference * = f(m,n) - :. The computation required is much greater

than for the statistics-based global adjustment because the neighborhood statistics must be computed for

-12-

every pixel in the image. When a pixel is near the boundary, we use only those neighborhood and mask
entries that intersect the image. Algorithm 2.1 may be modified to use Equation (2.25) per

c c d d d c cg(m ,n) = ": + (1-"): + [rF /(F +rF)][f(m ,n) - :] (2.28)

where the : and F are computed over a large neighborhood. Some rather dramatic enhancement effects can
be achieved by the use of statistical differencing in the form of Equation (2.27).

2.5 Exercises

2.1 Write the function for a linear transformation that maps [0, 255] into [64, 128]. What will this
transformation do to the histograms of Figure 2.10 (approximately)? What are the slopes and vertical axis-
intercept? Write the function for a piecewise linear transformation that maps [64, 128] into [0, 255] also.

2.2 Make a general statement of the effects any piecewise linear transformation will have on the histogram?
What about the proportions on subintervals - do they change? Explain. Can a logarithmic type of
transformation be approximated with a piecewise linear transformation? Explain with graph drawings.

2.3 Suppose that an image had a histogram that showed a high proportion of pixels in the middle gray range,
and that here is where it is suspected that a lot of detail lies. Design a nonlinear transformation that
compresses the lowest and highest gray levels and stretches the middle grays. Give the equation for this
transformation.

2.4 How can the transformation of Exercise 2.1 be implemented in Matlab? What about the transformation
in Exercise 2.3.

2.5 Design a linear transformation of gray levels that stretches out the darkest and lightest shades of gray but
compresses the gray levels between 80 and 180. Show the equations for T.

2.6 Graph the linear transformation with slope of -1 that maps 0 to 255 and 255 to 0. What does this
transformation do to an image? Implement this using Matlab.

2.7 Find a way to use Matlab to make an image into a negative image via the mapping f = 1.0 - f (recall
Matlab standardizes gray level to values between 0 and 1). Use the help menu for functions for image
processing and look for subtraction of images under the Image Processing Toolbox item).

2.8 Write a high level (pseudo-code - see the histogram algorithm for a model) algorithm to map an image
via a sigmoid function.

2.9 Write a pseudo-code algorithm to read a PGM P5 image file and write a new P5 image file that is the
negative of the original image that has the middle gray levels stretched.

2.10 Compile the program of Appendix 2.A and build in the sigmoid nonlinear transformation. Run this on
the image building.pgm (P5) and write the results to a new P5 image file. Study the results and compare with
the original. Now change the parameters a and b one at a time in a nonnegligible manner. Describe the effects
of increasing/decreasing these.

-13-

Appendix 2.A - C Programs for Point Processes

PGM (P5) Image Files. A P2 file saves binary characters in ASCII, that is, the pixel value 234 would be
saved with 3 bytes respectively for the digits 2, 3 and 4 (00000010, 00000011 and 00000100). We will read
and write in binary integers where 234 is encoded as the single byte 11101010, which is the P5 format for
PGM. When we look at the file with an editor, the numbers are interpreted as characters. Thus the following
is what building.pgm looks like from the top.

P5
CREATOR: XV Version 3.10a Rev: 12/29/94 (PNG patch 1.2)
320 240 255
mklmmll)##)mjc\TaimnljjlmgaZVadehjigge_ZYdedegfffedb[S\bcddefffibXR_efc_SE@AFRj‚Œ...

The dots at the end of the fourth line indicate that the data continues to the end of the file. This image
is 320x240 (columns by rows), which gives 76,800 pixels of data in addition to the small header. We list a
simple C program that can be compiled with MS Visual C++ (console mode), Borland C++ Builder, or under
Gnu C or C++ in Linux or standard C or C++ in Solaris or UNIX.

The algorithm given below uses the main() function to call various functions to perform the parts needed
to read a PGM image file and implement a pointwise transformation on an image and write the results to an
output image PGM file. The main function displays a heading on the screen (console, or command line,
mode), opens the input and output files with the user-given file names, reads the input file header and writes
it to the output file, applies the transformation and then, if the operating system is Linux, Solaris, Iris, or any
other type UNIX with XView, makes a system call to XView to display the before and after images..

The C Code for Point Processing.

// DIP1 - POINT PROCESSES Digital Image Processing Program
// Linux Version -- Gnu C or C++ Compiler (gcc)
// UNIX Version with C or C++ Compiler (cc)
// This can be compiled with MS Visual C++, Console Mode, but
// certain lines indicated below must be taken out
//===
// This program reads an input PGM P5 image, implements a
// user supplied point transformation and writes the result to a PGM
// P5 type image file.
//===
// Version: 29June2002
//===
// The PGM file may be of size up to N = 4096 columns and M
// rows where M can be up to 4096 or even greater.
//--
// The user is asked to type in the input image file name and a name
// for the output image file, which will also be in PGM P5 format.
//
//---------------------P R O G R A M Modular Layout--------------------------
// main();
// heading(); display program heading
// openfiles(); opens input & output image files
// readhdr(); reads input image file header
// getrow(); reads rows from input image file
// applytransformation(); does transformation on input image
// writefile(); writes processed row to output image file
// closefiles(); closes input and processed output image files
// display(); displays before/after images in XV (not used here)
//--

-14-

include <stdio.h>
include <math.h>
include <stdlib.h>
//--
void heading(void);
void openfiles(void);
void readhdr(void);
void applytransformation(void);
void display(void); // take out for MS Visual C++
//---
int fin[4096]; //input pixels in a row
int gout[4096]; //output pixels in a row
int MRows, NCols; //indices for rows and cols
int rowcount; //count of row being processed
FILE *infptr, *outfptr; //input/output file pointers
char infile[40]; //name of input file
char static outfile[40]; //names of output image file
char key; //key to select instructions
char display_File1[] = "Original_Image"; //take this out for MS Windows
char display_File2[] = "Processed_Image"; //take this out for MS Windows
int first_time;
//---

//--------------------------------------MAIN---
//---
main()
{ void closefiles(void);
 void readhdr(void);
 char changekey, stopkey; //key to process another image or stop
//-------------------------(Put Heading on Screen)--------------------------------------
 do
 { heading();
 first_time = 1;
 do
 { //-----------------------------(Open I/O Image Files)------------------------------
 openfiles();
 //-----------------------------(Read Input File Header)----------------------------
 readhdr();

 //-----------------------(Do Transformations on Row Pixels)--------------------
 applytransformation();
 //-----------------------(Display Image with XV Program)-----------------------
 display(); //take out for MS Visual C++
 //-----------------------(Select to Change this Image or Not)---------------------
 do
 { printf("\n Process this image again with new parameters (y/n): ?");
 scanf("%1s",&changekey);
 if ((changekey=='y')||(changekey=='Y')) first_time = 1;
 } while ((changekey!='y') && (changekey!='Y') &&
 (changekey!='n') && (changekey!='N'));
 } while ((changekey=='y') || (changekey=='Y'));
 //---------------------------(Close Any Open Image Files)--------------------------
 closefiles();

-15-

 //--------------------------(Select Stop or Process an Image)----------------
 do
 { printf("\n Enter <s> to stop or <i> to process another image ");
 scanf("%1s",&stopkey);
 if ((stopkey=='i')||(stopkey=='I')) first_time = 1;
 } while ((stopkey != 's') && (stopkey != 'S') &&
 (stopkey != 'i') && (stopkey != 'I'));
 //--
 } while ((stopkey != 's') && (stopkey != 'S'));
 printf("\n Bye! Bye!\n");
 return;
} //end main()
//--
//----------------------------------HEADING--
//--
void heading()
{ int i;
 for (i=0;i<16;i++) printf(" +\n");
 printf(" DIP1 - POINT TRANSFORMATION of DIGITAL IMAGE\n");
 printf(" by Prof. Carl G. Looney\n");
 printf(" Computer Science and Engineering Department/171\n");
 printf(" UNIVERSITY OF NEVADA\n");
 printf(" Reno, NV 89557\n");
 printf(" looney@cs.unr.edu\n");
 printf(" Updated: 22Jun2002\n");
 for (i=0;i<4;i++) printf(" +\n");
 do
 { printf("\n Enter <c> to continue of <x> to exit: ");
 scanf("%1s",&key); printf(“\n”);
 } while ((key != 'c') && (key != 'C') && (key != ‘x’) && (key != ‘X’));
 if ((key == ‘x’) || (key == ‘X’)) exit();
 return;
}//end heading()
//--
//---OPENFILES-------------------------------------
//--
void openfiles(void)
{
 if (first_time == 1)
 { printf("\n OPEN an image file\n");
 printf("~~~\n");
 printf(" Enter name of *.pgm INPUT image file: ? ");
 scanf("%s",&infile); printf(“\n”);
 printf(" Enter name of *.pgm OUTPUT image file: ? ");
 scanf("%s",&outfile); printf(“\n”);
 }
 if ((infptr = fopen(infile, "r")) == NULL)
 { printf(" Can NOT open input image file: <%s>\n",infile);
 printf(" Exiting program..... "); exit(1);
 }
 else printf(" Input file <%s> opened sucessfully\n\n",infile);
 if ((outfptr = fopen(outfile,"w")) == NULL)
 { printf(" Can NOT open output image file <%s>\n\n",outfile);
 printf(" Exiting program....."); exit(1);
 }

-16-

 else printf(" Output file <%s> is opened sucessfully\n\n",outfile);
 return;
}//end openfiles()

//---
//-----------------------APPLYTRANSFORMATION-----------------------------

//----------------------------Put your function here-----------------------------------
void applytransformation()
{
 void getrow(void);
 void writefile(void);
 void closefiles(void);
 rowcount = 0;
 do
 { //-----------------------[Read an Image Row to Process]-------------------------
 getrow();
 //-------------------[Transform Row with Transform Map]---------------------
 for (col=0;col<NCols;NCols++)
 { gvalue = fin[col];
 if ((gvalue >= 0) && (gvalue < 50)) gout[col] = 25;
 if ((gvalue >= 50) && (gvalue < 100)) gout[col] = 75;
 if ((gvalue >=100) && (gvalue < 150)) gout[col] = 125;
 if ((gvalue >=150) && (gvalue < 200)) gout[col] = 175;
 if ((gvalue >= 200) && (gvalue < 256)) gout[col] = 205;
 }
 //---------------------[Write Processed Row to Output File]-------------------
 writefile();
 rowcount++;
 } while (rowcount < MRows);
 closefiles();
 return;
}//end applytransformation()

//---
//-------------------------------------READHDR-------------------------------------
//---
void readhdr()
{
 int i, k, Maxgrays;
 char c, c1, buffer[128];
 //----------------------------[Read PGM File Header]---------------------------
 printf("\n\n File <%s> Header Bytes:\n",infile);
 printf(" ---\n");
 k = 0; //k is line number of header lines
 do
 { i = 0;
 do
 { c = fgetc(infptr); //read characters to end of header line
 buffer[i] = c; i++; //put characters into a memory buffer
 } while (c != '\n'); //until a newline is encountered
 if (k == 0) //if line is the first line
 { c1 = buffer[1]; //get second character read
 if (c1 == '5') printf("\n File is: <P%c>\n",c1); //print out ‘P5' if so
 }

-17-

 else
 { printf(" Image NOT in P5 format!! Quitting.........\n\n");
 exit(0);
 }
 buffer[i] = '\0'; k++; //end buffer with NULL (‘\0')
 fprintf(outfptr,"%s",buffer); //write buffer to output file
 printf("%s",buffer); //write buffer to screen
 } while (k < 2); // for first two lines - next read third header line
 fscanf(infptr,"%d %d %d",&NCols, &MRows, &Maxgrays); c = fgetc(infptr);
 fprintf(outfptr,"%d %d", NCols, Mrows); //write no. cols, rows to output file
 fprintf(outfptr,"%c %d %c",'\n', Maxgrays, '\n'); //write max. gray level to output file
 printf(" %d ",Ncols); //write no. cols, rows, max gray value to screen
 printf(" %d <-----(Width & Height)\n", MRows);
 printf(" %d <-----(Max. Gray Level)\n\n",Maxgrays);
}//end readhdr()

//---
//---------------------------------------GETROW--
//---
void getrow()
{ int row, col;
 unsigned char item; //pixel s are read as chars
 for (col=0;col<NCols;col++) //now read in new row
 { item = fgetc(infptr);
 fin[col] = (int) item;
 }
 printf(" . ");
}
}//end getrow()

//---
//---------------------------------WRITEFILE---
//---
void writefile()
{ int col;
 int pixchar;
 //-----------------[write processed row to output file]-------------------
 for (col=0;col<NCols;col++)
 { pixchar = gout[col];
 fprintf(outfptr,"%c", (char) pixchar);
 }
} //end writefile()

//---
//----------------------------CLOSEFILES-------------------------------------
//---
void closefiles()
{ //-----------------------------(Close Files)------------------------------------
 fclose(infptr);
 fclose(outfptr);
 return;
} //end closefiles()

-18-

//---
//-----------DISPLAY BEFORE/AFTER IMAGES IN UNIX-----------
//---------------------(take out for MS Visual C++)--------------------------
void display()
{ char buffer1[100], buffer2[100];
//----------------Part 1: Copy and Display Original Image-----------------
 //copy original image to display_File1 for displaying on first time
 if (first_time == 1)
 { sprintf(buffer1," %s %s %s "," cp ", infile, display_File1);
 system(buffer1);
 system("sleep 2");
 //-------------------(Display Original Image at (y,x)----------------------
 sprintf(buffer2," %s %s %s "," xv -geometry +2-2 ", display_File1,"&");
 system(buffer2);
 }
 //--
 //------------Part 2: Copy and Display Processed Image-----------------
 sprintf(buffer1," %s %s %s "," cp ", outfile, display_File2);
 system(buffer1);
 system("sleep 2");
 //display processed image on first time this function is called
 if (first_time == 1)
 { sprintf(buffer2," %s %s %s "," xv -poll -geometry +200-200 ",
 display_File2," & ");
 system(buffer2);
 //-------------------------Turn first_time off--------------------------------
 first_time = 0;
 }
 printf("\n Move images to desired position on screen!\n");
 return;
} //end display()
//---

