Unit 3. Area Processes

3.1 Pixel Neighborhoods for Area Processes

Pixel NeighborhoodsLet (m,,n,) be a pixel position in an image {f(m,n)}. Aeighborhoodf (my,n,),
designated asbhdherafter, is a set afonnectedqcontinguous) pixels that contains {imy), which is called
theorigin of the neighborhood. The most common neighborhoods are rectangles of pxq pixels that contain
the pixel (m,n,) at the center, where p and g are odd numbers so that an exact center exists. Another type
of neighborhood is the 3x&ar, which can be considered to be a rectangular neighborhood with the corner
points removed. Figure 3.1 shows some neighborhoods, but the definition above is rather general and
includes a great variety of connected blobs of pixels with one pixel in the aggregate being distinguished
as the origin, usually called treenterpixel. An area processs a transformation that maps a nbhd of each
center pixel f, into a new value g,, for the pixel.

Figure 3.1 Neighborhoods of pixels

Neighborhoods play a central role in image processing. For
example, we can process an image {f(m,n)} by taking a
HA. cmtom —5T 3x3 neighborhood of each pixel, in turn, with valyg &ind
] B 1 compute the new pixel value,g to be the average of all
[the pixel values in that neighborhood. The set of all such
new pixels form a new processed image {g(m,n)} that
would have less variation and smeared edges. As another
' example, we could order the pixel values in each
neighborhood of f, by magnitude and then pick the
CRTCH middle value as the new value.gfor the origin pixel. This
_ would clear the image of small dots of differing shades of
fi= gray (outliers) from the typical ones in the neighborhood.
" In general, for each original pixel we consider a
— neighborhood of it and map the pixel values in that
neighborhood into a new grayscale value.

Averaging on a Pixel Neighborhood_et p, = f.,,, be a pixel in the center of its 3x3 neighborhood. Let

us average the 9 pixels in the neighborhood and replabg this average, and then do this for each pixel

in the image. Thismoothghe image in the sense that all pixel values that are very different from their
neighborhood averages will be replaced by the average and so the differences between the pixels will be
reduced. Figure 3.2 shows a 3x3 nbhd with the pixels numbered in the way that we will use them
henceforth. The process of averaging replaces the ppt®f the new Pthat is computed as

Py= [P+ Pt + /9= (L9 hcroP = Y hero (LOR (3.1)
Figure 3.2. A 3x3 nbhd of a pixel

The Weighted Average on a Pixel Nbhith the averaging of Equation (3.1) the pixels

PT1 P2 P3| wereall weighted the same by the valug=1/9 and all 9 of these weights added up to
unity. Here the weights 1/9 are all equal and we say that the averageghalsveighting

P4 P P8 A weighted averaging of the pixels can use unequal weights to put more emphasis on
p7 | ps | pe certain pixel values and less on others. Consider the following weighting.

Ps :Zkzl,Q W, P (3.2)

where w = 1/10 for k | 5 and w = 2/10 =1/5. This would count the middle pixel twice as much as any
other pixel and so it would have more influence in the weighting. All weights sum to unity as required.

It is convenient to put the weights in an array callechask of the same size as the nbhd, and to
define an operation for the weighted average. Consider the operation of a mask and nbhd shown below.

Jwew, wy| | pyps s
Prew= W; W5 Wg * PsPs Ps = Zk:l,QWk P (3.3)
Jw; wg wg| | p; ps P

We call this operatiorwonvolution It leads to the terminology afonvolution maskor the mask
andmask convolutioffor the operation. This operation is designated by the syrhdaol general, the mask
and neighborhood size are fixed at some pxq for any particular convolution.

Mask Convolution on ImagesTo apply a weighted averaging over an entire image, the process starts
at the upper lefthand corner of the image and processes one pixel at a time via the mask convolution on the
pixel's neighborhood. After the top left (first) pixel is processed to obtain a new output pixel vgluene

process then moves the nbhd to the right by one pixel and convolves the mask with that pixel's
neighborhood to obtain an output pixelp When the last pixel in a row of pixels has been processed, the
mask is moved back to the left side of the image down one pixel. Then the second row of image pixels is
processed similarly. This is repeated until all rows of pixels in the image {p(m,n)} have been processed.

The pixels on the outer boundaries of the image need not be processed (the neighborhoods of these
pixel positions do not fit inside the image). Another method is to process all pixels, but on the boundary
pixels to use the convolution with only the mask and nbhd entries that intersect the image. Another
technique is to repeat the boundary pixels outside the boundaries sufficiently many times to complete the
pxqg neighborhood of the mask size.

The most basic convolution mask is tleentity operator, which yields the pixel valug.p= f..;
on each neighborhood. The pxq identity mask contains all entries of zero except the center, which is unity.
For example, the 3x3 identity mask operates on a 3x3 neighborhood via

JO 0 OJ J P1 P2 p3J
Pew= 010 * ppsps = { s (O + (1)Ps = ps (3.4)
JO 0 OJ J P Ps ng

The central pixel is often weighted more than the others, and the others may be weighted unequally
for different degrees of smoothing. An example of weighted averaging convolution mask andsis
factor (1/16) that forces the weights to sum to unity is

Jl 2 1J J P1 P2 psj
(1/116) 242 * ppsps = {Pr+PstPrPs + 2[p+Py+Pstpel + 4p5}/16 (3.5)
Jl 2 1J J Pz Ps pgj

Averaging masks that smooth lightly are

o 10 010 111
(/5) 111 ey 121 (1/10) 121
010 1010 11 1]
Figure 3.3. Original Lena. Figure 3.4. Smoothed_ena. Figure 3.5. Blurred Lena.

Blurring Masks. It is a sometimes useful effect bdur an image by oversmoothing it by averaging the
neighborhood pixel values not adjacent to the center pixel. Figure 3.3 shows the dega2b6.tifwhile

Figure 3.4 shows the smoothed result obtained with the lefthand 3x3 mask of the three masks given above.
Figure 3.5 displays the image blurred with the mask given below as Equation (3.6a).

11111 jo1111140

10001 1111111

M=(1/16) 10001 1100011
10001 M=(/36) 1100011 (3.6a.b)

11111 1100011

1111111

01111109

The sum of all mask entries multiplied by the mask factor (1/36) in Equation (3.6b) should equal
unity to keep the output average brightness the same as in the original image. If the sum of the weights is
greater than 1 (respectively, less than 1) then the resultant image will be brighter (respectively, darker) than
the original image. Blurring can also be done with larger smoothing masks.

3.2 Smoothing with Medians and Trimmed Means

Medians and Alpha-trimmed MeansWe have already seen convolution masks that average, which is
one form of smoothing. This is useful for eliminating low level noise or giving skin a smooth look in a
photographic portrait. However, averaging is strongly affected by outlier pixel values, which is the "snake
swallowing the egg" (SSTE) syndrome. An outlier causes the average to be in error, and as the mask moves
to new centers nearby, the outlier remains in the new neighborhoods so that the outlier strongly influences
(erroneously) a block section of the image larger than the mask. A pxg mask maps an outlier into a (2p-
1)x(2g-1) block of erroneous values.

A well known method for avoiding the SSTE syndrome is to use the median (order statistics). For
each pixel and neighborhood centered on it, we order the neighborhood pixel vafues gmallest to
largest. The indexing by order is designated by

fio) fiw) -~ fipan (3.7)

There are two ways to proceed here. The first is to take the middle pixel valueyHere j(c) is
the index of the pixel with central value, and select the new output value as

Gnew = i) (3.8)

This is the middle of all of the actual nbhd gray level values (the median). This is often a good way to
removespecklgalso calledsalt and peppérnoise, which appears as pixel size dots of dark or bright.

The median of a neighborhood is not always the value that best portrays the image information.
For this reason, better results are often obtained by using-themmed meanTo obtain this value, we set
o to be 1 or 2 or so, throw out the lowestand highest: pixel values and average the remaining pg- 2
pixel values to obtain g,

Median processing does not blur the image. It preserves edges rather than smearing them as does
averaging. Thex-trimmed median also has less blurring and spreading of edges. Thus, these are powerful
processes for smoothing noise from the image while preserving its features.

Smoothing ImagesSmoothing is done after an examination of the image reveals: i) salt and pepper noise
(specklg; ii) short line noise such as small scratches; iii) any type of nonnegligible variations on areas that
should be smooth; iv) rough, blocky or zig-zaggy edges; or v) other types of noise that smoothing can
ameliorate.

-3-

Smoothing is usually done before edge detection or sharpening to attenuate the amplification of
variation done by those processes. Mild smoothing can often enhance an image. Median smoothing, also
called despecklingchanges the image the least (except for removing speckle) and will not damage the
image. Tools for processing images have smoothing capability, Batlab, XViewandLView Pra

Using the Tools for SmoothingHere we actually show how to do mask convolution with the tools, but

we use the smoothing process as the example. Smoothing is the most fundamental type of image
processing, but we must be careful not to save a smoothed image over the original because it loses some
of the information in the image that can not be recovered by sharpening or any kind of processing of the
smoothed image. Sharpening, edge detection and other types of mask convolution can be done in the same
way as smoothing by designing an appropriate mask and then applying it to an image.

1. Smoothing withMatlab: To apply a convolution mask withlatlabit sufficies to use the special
function imfilter(), which lets the user designate the image and specify the mask values. After running
Matlab and clicking in the Command Window to bring it into focus, the following commands smooth the
image with a mildly smoothing mask (also calledilter) that uses equal weighting (see Fig. 3.6 for the
original and Fig. 3.7 for the results of this smoothing).

> Im1 = imread(‘lena256.tif"); /Iread image into memory at Im1

> imshow(Im1); /Ishow image at Im1 on the screen

>hl=[111;1211;111]/9; /ldefine convolution mask hl

> Im2 = imfilter(Im1, hl); [[filter image with mask hl

> figure, imshow(Im2); //show filtered image as new figure
Figure 3.6. The originallena256.tit Figure 3.7. TheMatlab smoothedLena

1

2. Smoothing with XView. XView does not have a mechanism for entering in the entries in a
convolution mask, but it does have a smoothing algorithm where the nbhd size is selected. Upon applying
the smoothing process consecutively, the degree of smoothing can be somewhat controlled. Xifgwun
and load an image, then right click inside the image to bring up the control window. @édecithmson
the top right and come down lur and then enter in the nbhd size (3 is the default, 5 increases the
smoothing, etc.). CliclOK to smooth. Larger nbhds or repeated smoothing will blur the image.

3. Smoothing withLView Pro: RunLView Pra When the main window comes up selgéde and
thenOpen Next, select the image file and click t@gpenbutton to load and display the image. Selgotor
on the top menu bar and then come down in the pop up medsédo Definedunder theHistogramitem),
and then select the optidrilters. TheUser-defined Image Filtereindow comes up next (see Fig. 3.9a).
Click Newto bring up theFilter Specificationrwindow. A large mask of text entries comes up (but we can
use only the central 3x3 or 5x5 for our purposes). Enter the desired smoothing mask and then enter the
appropriate integer in thBivisor text entry slot at the bottom (this is the denominator of the scaling factor
to assure that the mask entries sum to unity). Click OK to return tt/lee-defined Image Filtersrindow
and then click théApply button to run the mask convolution on the image. Click @lesebutton to exit
this window and return the focus to the maiiew Prowindow.

Figure 3.8a. TheLView Pro User-defined Image Filtersvindow.

Fo Edt ew Image oy [T
| TewdXd| o e |

L P P R R R

I_n.u Mask Windey Help

o
|
: #

«
£ 1
ol IR [iz
‘ | .r-'\:.l] ‘
- == T:
£ e
L-'"': Iﬂh%ﬁ"_ Hew I
o1 e |
L |
: [Pt ekt My _Dwer_|
i e riile. ey
* |H:lr.|l g Ei
T
f‘
O

For Help. prags F1 i o 2p B Hia P

wBstart] Q>0 " K WordPerf. | EEMS-DOS . [k Lview Pr.. i LIS @ siemm

Figure 3.8b. ThePre-defined Image Filteravindow.

Pre-defined Image Filters %Iﬂ Another method is to click oolor and then
on Filters to bring up thePre-defined Image Filters
window. On the left of this window there is an option
box as shown in Figure 3.8b. Select tBeftenor
Soften Moreoptions and then click oApply on the

Select; Frevie:

Find Edges -]
Find Wertical Edges
Find Horizontal Edges

glrjfetontour right. To undo the filtering, click orReverton the
Blur More rlght-
Soften
gﬁﬂe More
arpen .

Ehabrﬁenrwme 3.3 Sharpening Images
Drgsggzkle .
Mediar Unsharp Masking A process known asinsharp
B K masking (taken from the photographic processing
I Bevert before Apply industry) first smooths an image and then the subtracts

: _ = the smoothed image from the original image. The
Biending Meds S smoothing yields an image whose variation (rates of
[Mormal -l IE;I change) in gray levels across the spatial dimensions is

-5-

lowered. Smoothing actually spreads out the changes

from pixel to pixel at all rates into more gradual changes in grayscale across the dimensions m and n (x and
y). When the smoothed image is subtracted, it leaves the more rapid variations (changes at a higher rate).
The resultant image appeaisarp that is, the edges are narrower and have greater contrast on each side.
The average gray level is reduced by subtraction, so we need to multiply the original image by a factor 3
> 1.0 to increase its intensity, or brightness power. We first increase the brightness power by multiplying
the identity convolution mask by thgain 3 > 1.0, which is calletboostingthe original. Boosting is shown

in Equation 3.9.

poooo 00000
00000 00000
® 00100 = 00RBO0O (3.9)
00000 00000
poooo 00000

Then we subtract an averaging mask that smooths/blurs the image. Using a 5x5 mask example, the resulting
unsharp masking convolution mask is obtained via

00000 J11111 |11 -1 -1-1
00000 11111 -1-1 -1 -1 -1
O0OROO -(1/26) 11211 =(1/26) -1 -26R-2 -1 -1 (3.10)
00000 11111
00000 J11111 J-l-l -1
Fig. 3.9. Orginal shuttle. Fig. 3.10. Smoothed shuttle

A
gain 3 of approximately 2.0 is often satisfactory, but the best value depends upon the average brightness
power. We usedt = 2 in Equation 3.10. Figure 3.9 shows the origisblttleimage, while Figure 3.10
shows the smoothed version that was subtracted from the boosted original (3 = 2). Figure 3.11 presents the
unsharp-masked result. While many sharpening methods have been developed, this one remains one of the
very best.

Directional Derivatives We have seen that unsharp masking by subtracting a smoothed image is an
effective way to sharpen an image. The underlying process of sharpening must make edges more
exaggerated, that is, thinner with a greater difference between the darker and lighter pixels along the edges.
To detect the edges, it is necessary to obtain the differences in each neighborhood along the horizontal (y),
vertical (x) and two diagonal (y = -x and y = x) directions. Let a neighborhood of (m,n) have the values

|f(m-1,n-1) f(m-1,n) f(m-1,n+1)|
f(m,n-1) f(m,n) f(m,n+1)
|f(m+1,n-1) f(m+1,n) f(m+1,n+1)

Figure 3.12 displays a sharp edge, while Figure 3.13 presents a smooth edge. The first can be

considered a sharpening of the second and likewise the second can be considered to be a smoothing of the
first. Edges in real world images are usually wider than the one shown in Figure 3.12.

-6-

Figure 3.12. A sharp edge. Figure 3.13. A smooth edge.

On this fixed 3x3 (or any fixed pxq) neighborhood centered on any pixel position (m,n), the
differences in the various directions are

|f(x,y) |y = [f(m,n+1) - f(m,n-1)]/2 (3.11a)
Jf(x.y) | x = [((m+1,n) - f(m-1,n)}/2 (3.11b)
Jf(x,y) |u = [f(m+1,n+1) - f(m-1,n-1))/2 (3.11¢)
Jf(xy)/ v = [f(m-1,n+1) - f(m+1,n-1)}/2 (3.11d)

where u is in the direction along the line y = x and v is the direction along the line y = -
Masks that produce these differences under convolution (ignoring the 1/2 factor) are
Joooj lo-1 0 |-100 loo1
000 000 000
JOOOJ 10 10 | 001 |-10 0

More effective differencing masks average more than a single difference of pixels to mitigate errors
due to a noisy pixel. ThErewittoperators are

lelj |-1-1-1] |-1-1 0 jOllj
-101 000 -101 -10
10 1 |11 1] |01 1] Jlloj
More effective yet are th8obeloperators that weight the key differencing pixels more. They are
10 1 |-1-2-1 j210j] 012
0 -10
o1 121 j012J |-2-1 0

After convolution with all four difference operators, the edges will be light lines on a dark
background in four different images. These can be thresholded to bi-level images of black and white and

then combined via use of the maximum at each pixel.
Laplacian Masks ThelLaplaciansums the squares of the second derivatives via

1Ay = Ay X2+ J2(xy)] y? (3.12)

Recalling that the second derivative can be approximated by the difference of two derivatives at two
adjacent points, the second derivatives become

|y %2 = { [f(m+1,n) - f(m,n))lec - [f(m,n) - f(m-1,n))ec} /| o =
{[f(m+1,n) - 2f(m,n)] + f(m-1,n} / o? (3.13)
Ay y? = { [f(m,n+1) - f(m,n)llee - [f(m,n) - f(m,n-1))/ec} / o =
{[f(m,n+1) - 2f(m,n)] + f(m,n-1} / o2 (3.14)
The 3x3 Laplacian mask is therefore the sum of the two second differencing masks, which is
o1o Jooo Joio

020 + 121 = ~1-41 (3.15)
010 Jo oo Jjo10

wheno is ignored ¢ = 1 = «?). Strangely, the literature calls the Laplacian the negative Laplacian.

010 J010J Ji11 J-1-1-
(1) 141 = " -14-1 ((1)° 1-81 =~ -18-1 (3.16a,b)
o 10 Jo-10 J11 1]-1-1-1j

Note, for example, that both the negative and positive Laplacian processes produce an gptput g
near zero (very dark) when all pixels on the matching "plus-shaped" neighborhood are approximately the
same (the mask entries sum to zero). On the other hand, the negative Laplacian produces a positive output
only when the central pixel value is greater than the average of the others. If the central pixel value is less
than the average of the others, then the negative result is truncated to zero (black). Equation (3.16a) uses
only the vertical and horizontal differences while Equation (3.16b) uses differences in all four directions.

Hedged Laplacians Figure 3.14 uses the negative 3x3 Laplacian given in Equation (3.17b) on the
original "Shuttle", while Figure 3.15 shows the effect of using leelgedLaplacian mask of Equation
(3.17).

11 -1 100 0 J-1-1-1]
19 -1 = 010 + -18-1 (3.17)
11 - Jooo |-1-1-i

Figure 3.14. Laplacian onshuttle.tif.

=
-

e
o
Am
nu
Ty
w5

el

Hedged Laplacians can be considered to add the negative Laplacian processed image back onto
the original image. This is actually the subtraction of the Laplacian from the original image, which is a
powerful technique as shown in Figure 3.15. Note that the sum of the weights in the hedged Laplacian is
equal to unity, so the average gray level will remain the same as in the original image. While the image in
Figure 3.15 is sharp, the small differences due to random effects (noise) are exaggerated (a disadvantage
of Laplacian and other differencing methods). A milder hedged Laplacian mask is

-8-

]0-1 0 Jo 00 Jo-10
151 = 010 + ~ -14-1 (3.18a)
Jo-1 0 Joooq J0-10

Other interesting hedged Laplacians are
lelJ jOOOj lelj
-2 13 - + -2 12 - (3.18b)
1 -2 -1J JO O OJ |-1-2 -1J

11 -1 -1 -1

11 2 -1 -1
12 29 2-1 = ? (3.18¢)
1-1 2 -1-1

11 -1 -1-1

Edge EnhancementA cross-section of an image shows edges as rises in Figure 3.16 (here the dark side
is on the left and the light side is on the right). Figure 3.17 shows the first and second derivatives of the
moderate edge and the effect of adding the original to the (negative) Laplacian, which is actually
subtracting the Laplacian from the original (see the bottom graph). This is analogous to unsharp masking,
where the smoothed edges (see the center graph of Figure 3.16) are subtracted from the original edges to
sharpen them, which yields a result similar to the bottom graph of Figure 3.17.

Edges are enhanced by unsharp masking and hedged Laplacians, but can also be done by
thresholded Laplacians and rule-based processing. Laplacians perform edge detection, which is not the
same as edge enhancement.

Figure 3.16. Edge cross-sections Figure 3.17. Subtracting the Laplacian
UTHEIH r'!.".llil.!l'-.'-:'!’-l_i :
WEAFTLATE i BTH ll-a.!!'-.'\:':T-"I-Z
MOOTHEL: FDGE N e)

RGIAAL MILESLARLACIAN |
e L E
CHARF ETEE FITE I

Thresholded LaplaciansA variation on the Laplacian processing is to check the value of each Laplacian
against a fixed threshold T. If the Laplacian is too large (larger than the threshold), then it is likely to be
erroneous due to noise and should be suppressed. In this case the neighborhood average is taken to be the
new pixel value g,,. On the other hand, if the Laplacian is low (lower than the threshold), then the new
pixel value ¢, is enhanced by adding a proportiarof the Laplacian to it. The algorithm is

if |2(m,n)>T then g=(1/NZyer,fy (3.19a)
else g =f(m,n) + B %(m,n) (3.19Db)

The disadvantages of Laplacian operators are that they give no direction for the edge, they produce
double edges and they are extra sensitive to noise (they amplify noise). Derivatives and differences are

-9-

sensitive to noise and second differences are even more sensitive in that small errors in the input data can
cause large errors in the output data. Noise should be reduced before edge detection is performed.

The gradient can be used in situations where it is important to know the direction of the edge or
line segment. The gradient and directimrcan be found per

(Y X, [fx,y) |y) = (f(m+1,n) - f(m-1,n), f(m,n+1) - f(m,n-1) (3.20)
o = atar(|f(x,y)/ |y / |f(x,y)/ |x) (3.21)

Rule-based Simultaneous Sharpening and Smoothi@m a 3x3 nbhd of pixel § we first compute
the 9 differences

d1)=p-ps ..., d9)=R-ps (3.22)

To obtain a representative value for these 9 differences, we takeltiwinmed meaiby throwing out a
single maximum and a single minimum values and averaging those remaining. The residtiggistant
to outliers. We use two thresholds dnd T, where the latter one is the greatest. The rules are

if (a<T) then P, = Ps+ @ ; (3.23a)
elseif @ >T),) then Pew= Ps+ 0 ; (3.23b)

Equation (3.23a) smooths while Equation (3.23b) exaggerates the difference between a center pixel and
its neighbors. Otherwise there is no change. The result is a smoothing of relatively smooth pixels and a
sharpening of those that differ sufficiently from the nbhd trimmed mean.

Sharpening with the Toolswe have already seen how to Wdatlab, XviewandLview Proto perform
smoothing with mask convolution. We do the same type of mask operations (filtering) but use different
masks as described above for unsharp masking, laplacian and hedged laplacian processes. We present
examples below.

1. Matlab Sharpening To apply a sharpening convolution mask witlatlab it sufficies to use the
special functionimfilter() again as we did for smoothing. After runnirdatlab and clicking in the
Command Window to bring it into focus, the following commands smooth the image with a mildly
smoothing mask (also calleditter).

> Im1 = imread(‘lena256.tif"); /lread image into memory at Im1
> imshow(Im1); /Ishow image at Im1 on the screen
>hl=[-1-1-1
-112-1
-1-1-1]/4; //define sharpening convolution mask hl
> |m2 = imfilter(Im1, hl); [[filter image with mask, store at Im2
> figure, imshow(Im2); /Ishow filtered image at Im2 as new figure
Figure 3.18. The originallena256.tit Figure 3.19. The Matlab sharpenedena256

-10-

2. XView Sharpening To sharpen with this tool we rukViewand load an image. Then we right
click inside the image to get the control window. We click on &igorithmsbutton at the top right and
come down tdcSharpen Then enter a percentage for sharpening (75% is the default and is a good value).
The displayed image is then sharpened on the screen. The process can be repeated for extra sharpening.
This tool does not let the user enter a convolution mask but uses its own standard masks. Therefore this
is a weak tool for mask convolution. To overcome this deficiency, we include a C program in Appendix
3.B that allows the user to enter a mask of the desired size, process an image and K¥ieedt display
thebeforeandafterimages.

3. LView Pro Sharpening Run the program, seleEile, thenOpenand select a file and click the
Openbutton to load and display the image. Sel€cior on the top menu bar and then come down in the
pop up menu tdJser Defined(under theHistogramitem), and then select the optidiilters. The User-
defined Image Filtersvindow as shown in Figure 3.20 comes up next. Clidwto bring up theFilter
Specificatiorwindow. A large mask of text entries comes up (but we can use only the central 3x3 or 5x5
for our purposes). Enter the hedged Laplacian mask from the left side of Equation (3.17) aridietier
Divisor text entry slot at the bottom. Click OK to return to tbser-defined Image Filterwindow and then
click the Applybutton to run the mask convolution on the image. Click@hesebutton to exit this window
and return the focus to the mdiview Prowindow.

Figure 3.20. The User-defined Image Filter window

Jser-defined Image Filters 3.4 Detecting Edges and Lines
Line Detection Lines are extended edges.

Sl Fleiet A line drawing can be developed from an
Defocus Tl image {f(m,n)} by convolving it with an
|aplacian2 S edge detector such as the Laplacian or the
smaoth? o four Sobel operators. These yield light lines
blur3 Y on a black background, so we invert by
unsharpal) putting g(m,n) = 255 - f(m,n) to achieve
smooth2B : Revert black lines on a white background. We can
W also use a threshold to transform the image
= Help to black and white only.
Mew A problem is that the lines are too
thick (edge detection thickens the lines).
Edit Other problems include broken lines and
noise. It is useful to remove noise before
Delete processing to detect lines, but this should not
I~ Revert before Apply " | be done by averaging because this spreads
and weakens the edges. The thinning of lines
Blending maode: Opacity: after line detection is often necessary, as is
= the removal of spurs sticking out from the
[Normal =] Ej lines at various angles. The processes of

thinning lines and trimming spurs from them
is covered in a later unit.

Line detection is a type of edge detection. Consider a horizontal line segment in an image. If the
pxq neighborhood straddles a horizontal line, for example, that line could be detected if the pixels along
the center row have a higher average than those of the other rows. Thus

1 -1 -1 J-1-1-1-1-1
2 22 222 272
1 -1 -1 J-1-1-1-1-1

-11-

are horizontal line detectors. The larger mask is more immune to noise. Similarly detectors of vertical, -45°
and 45° lines are

121 J12-1 J1-12 |-1-1-1-14 |2-1-1 | 4-1-1-1-1

1 2-1 121 121 1-1-14-17 -12-1 14-1-1-1

1 2-1 1241 J2-1-1] 1-14-1-1]1-12 1-14-1-1
1241 14-1-1-1 1-1-14-1
1 2-1 | 4-1-1-1-1] -1-1-1-1 4

We can now answer an important questiisrit possible to detect lines in all directions with a single
mask?Upon adding the 3x3 horizontal and vertical line detector masks first to obtain a horizontal-vertical
line detector, and then adding the 3x3 diagonal line detector masks second to obtain a diagonal line
detector, we obtain the respective two sums

21 2 121
2422
21 -2 J1-2 1]

The sum of these two masks yields a mask that detects edges in the horizontal, vertical, -45° and 45°
diagonal directions, which is

12 J12y
14 1+ 242 = ~ 18- (3.24)
J21-2 |1-21 @]-1-1-1

Thus we have proved that the Laplacian mask on the righthand side of Equation (3-22) detects
edges in all directionggliod erat demonstrandym

Sobel Edge DetectiarCertain mask operators weight key differencing pixels more and are more effective
than certain other edge operators. Hrewitt operators were previously defined to be

101 J-1-1-1 -1 1oj] 011
101 000 101 101
101 J111 Jo11 |-1-10

The next set of mask edge operators areShbeloperators that we defined previously and that are more
powerful and useful than those of Prewitt (they weight the central differences more).

poy 124 240 Jo12
202 000 101 101
101 121 | 012]]-2-1 0

Note that the sum of the entries in each differencing mask is zero. This means that if a
neighborhood consists of pixels of constant value a, then the new pixel has value

Onew = Z)(j =0,pg-1)] l Z(J =0,pg-1) hja a{Z(J =0,pg-1) J} a{O} 0 (325)

Thus pixels with near constant neighborhood values are changed to near black (near 0). If the
average of the pixels in the positive direction is greater than that in the negative direction (both taken from
the center), then the new pixel valug gwill be brighter and contrast against the darker background. If the
average pixel value in the negative direction is greater than that in the positive direction, then the new pixel
value computed will be negative, and will be truncated to zero and so will be black (0). For L levels of
grayscale, all computed pixel values are bounded by 0 and L-1 (usually 0 and 255). Thus each difference
(edge detecting) operator works in only one direction.

-12-

After convolution with all four difference operators, the edges will be light lines on a dark
background in four different images. These can be thresholded to bi-level images of black and white and
then combined via use of the maximum at each pixel.

SobelEdge Detection withMatlab. The functionedge()is what we use itMatlab to apply different
edge detection methods such as, Sobel, Canny, Prewitt, Laplacian, etc. To apply Sobel edge detection, the
following command line is used.

>> |m_out=edgdIm_in, 'sobel', threshold, direction);

The second parameter in the function is a string that specifiesSdiel method. The third
parameterthreshold is numerical to specify the sensitivity threshold for Bebelmethod. All edges that
are not stronger thathresholdwill be ignored. Ifthresholdis not specified by the user when the function
is called, it will be done automatically. The fourth parametiection specifies the direction of detection
for the Sobelmethod. The parametelirection is a string specifying whether to look for 'horizontal' or
‘vertical' edges, or 'both’ (the default).

With the default settings, the function can be simply used as Im_oatige (Im_in, 'sobel,
threshold), Im_out =edgdlm_in, 'sobel’, ‘direction’) or Im_out ==dg€lm_in, ‘sobel’). The execution of
following code gives the edges shown in Figure 3.21. A threshold@&worked best for this example.

>> Iml=imread(‘shuttle.tif *); /lload image into memory at Im1
>>|m2=edge(Im1, ‘sobel’, 0.05); //Sobel edge detect and store at Im2
>> imshow (Im2); //show image at Im2 on screen

Figure 3.21. Sobel results oshuttle.

The Canny Edge Detector The Canny method
employs a Guassian low pass filter first to smooth
the image before edge detection. The standard
deviationa is an input parameter that determines
the width of the filter and hence the amount of
smoothing. Then the gradient vector (the magnitude
and direction of the gray level change) at each pixel
of the smoothed image is calculated. Next, non-
maximal suppression and hysteresis thresholding
are applied, where non-maximal suppression thins
the wide ridges around local maxima in gradient
magnitude down to edges that are only one pixel
wide. Hysteresis thresholding uses two thresholds,
Tiow and T The higher one is used to mark the
best edge pixel candidates. It then attempts to grow
these pixels into contours by searching for
neighbours with gradient magnitudes higher than
T,.w fOr connecting together with lines.

Canny Edge Detection withMatlab. We still use theedge()function here, but applfannyedge
detection by substitutingannyin place ofsobel We call it with the following parameter settings.

>> |m_out =edg€lm_in, 'canny’, threshold, sigma)

While the second parameter specifies the Canny mettiodsholdspecifies sensitivity thresholds
for the Canny method. The valuetbfesholditself is taken as the high threshold, and @k&sholdis used
for the low threshold. If you do not specifigreshold low and high thresholds will be chosen automatically.
The parametegsigmais used as the standard deviation of @eussiarfilter. The defaultsigmais 1 and the
size of the filter is chosen automatically, basedsama

-13-

Also, we can leavéhresholdor boththresholdandsigmaunspecified as shown below.
>> |m_out = edge(Im_in, 'canny’, thresh);
>>|m_out = edge(Im_in, ‘canny");

The following Matlab script uses threshold = 0.1 ad= 0.6 to yield the image in Figure 3.22,
which is displayed below.

>>Iml=imread(‘shuttle.tif *); /Nload image into memory at Im1
>>Im2=edge(Im1, ‘canny’, 0.1, 0.6); /[Canny edge detect, store at Im2
>>imshow (Im2); /Ishow image at Im2 on screen

Figure 3.22.Cannyresults onshuttle.tif.

Edge Detection with XView. To run XView and
bring up the imagshuttle.tifwe type in the command
line shown below.

> xv shuttle.tif

Next, right-click inside the image to bring up
the control window (see Figure 1.5). On the upper-
right corner, there is thalgorithmitem. Left click and
hold down and move down to thedge Detecitem
and release the button. Now only the detected edges
are left on the original image as shown in Figure 3.23.

The Color Editor can be used to reverse the
result to black line drawing on a white background.
Chose theColor Edititem on the control window and
adjust thdntensityprofile as shown in Figure 3.24 to get an image shown as in Figure 3.25.

Figure 3.23. XView detected edges. Fig. 3.24. Intensity profile of color inversion.

Intensity

HEIRR

RESET

GAM

-14-

Figure 3.25. Edges after inversion.

===T Edge Detection withLView Pro. Run the program, load an
_ image and then click on th€olor item on the top menu bar.
L= SelectFilters on the menu that comes up. TRee-defined Image
o f £ A Filters window (shown as in Figure 3.26) will pop up. Click on
- A = the Find Edgestem on the left side and then click dxpplyon
7 the right side. ClickCloseto keep the modified image (shown as
in Figure 3.27) or else clicReverto get the original image back.

. 0/ A\, To invert the color of the result image, cli€kolor on

' the top menu and theAdjustment®n the menu that comes up.
£ When thePre-defined Color Adjustmentsindow (See Figure

L 1.14) pops up, select thidegativeitem on it.

Fig. 3.26.LView Pro Pre-defined Image Filtersvindow. Fig. 3.27. Shuttle Edges by View Pro.

Pre-defined Image Filters

Selact Fresissr

Edoe Enhance -

Find Werbcal Edges
Find Hoizonial Edges
Trace Conlow

Soften

Soften Mo
Shaipen
Shaipen Moe
Embxzs
Dzzpeckl ;|

[* Bewvert before Apply

Blending mods Dpacihy
— = |1 o) =
[Momal = ;

Otherwise, we can choo%golor, User-definedFilters, Newand enter a mask that detects edges.
Then click on Apply to process with the mask.

Competitive Fuzzy Edge DetectionFuzzy logic can also be applied on image edge detection. Here we
introduce a fuzzy classifier, which first classifies image pixels as different kinds of edge pixels or non-edge
pixels. It then applies competitive rules on them according to their classification so that not all the edge
pixels are output as edges, which thins the edges. This fuzzy classifier, is caltahipetitive fuzzy edge
detector

The competitive fuzzy classifier is made up of the fuzzy classifier part and the rule-based
competition part. In the fuzzy classifier, there are six classes: background, vertical edge, horizontal edge,
two kinds of diagonal edge classes and a speckle edge classes. Either a Gaussian or an extended
Epanechnikov function [Liang and Looney] is used for each class as its fuzzy set membership function.
The fuzzy truth for a pixel to be a member of a class is given by the evaluation of its function on the vector
of features for that pixel.

-15-

Each pixel determines a vector of differences (d(1), d(2), d(3), d(4)) in the four directions across
that pixel in its 3x3 nbhd. For example, the vertical difference is

d(1) =R - ps| +p; - s (3.26)

A feature vector is evaluated by putting it through each fuzzy set membership function that is centered on
a prototypical difference vector for that class. Thus each pixel has a fuzzy truth value for each class and
the maximum fuzzy truth determines the class of that pixel.

In the competition, neighboring edge pixels in the same direction compete with each other in
directional edge strength. To be a black edge pixel in the output image, a classified directional edge pixel
must have larger edge strength on its edge direction in comparison to its neighbors on that direction. If an
edge pixel does not win the competition, then it will be output as white (background). The result is a black
line drawing on a white background.

Speckle edge pixels are mapped to black directly without competition. This may introduce isolated
single/double-pixel speckles. A despeckler operates on the image after all other processes have been
completed so as to remove these speckles. See [Liang and Looney, 2002] for complete details.

Fuzzy Classification

Stepl set parameters for the fuzzy set membership functions; open the image file;
Step2 for each pixel in the image

compute graylevel change magnitudes in the 4 different directions

construct the pixel feature vector from those magnitudes

for each class

compute the fuzzy truth of the feature vector
determine maximum fuzzy truth and record pixel class for that pixel

Edge Strength Competition
Stepl for each pixel in the image
if (edge class) then apply competitive rule and record pixel value
if (background class) then write white pixel
if (speckle edge class) then write black pixel

Despeckling
Stepl for each pixel in the image
if (pixel is isolated single/double speckle) then change to white.

Fig. 3.26. Original peppers Fig. 3.27. CFEDpeppergesults. Fig. 3.28. Cannypeppergesults.

-16-

Figure 3.28 is the original peppers image, which presents a difficult edge detection problem. The
results of the competitive fuzzy edge detection method are shown in Figure 3.29 and the results of the
Canny method with the threshold set at 0.04 erskt at 0.5 are shown in Figure 3.30. The CFED method
took about 1/10 of the time that the Canny method took.

3.5 Exercises

3.1ls it possible to construct a 5x5 mask that detects a weak (smooth) vertical edge that is dark on the left
side and light on the right side, but that doesn't use the middle column (it consists of zeros)? If so, explain
how it works.

3.2 Develop an algorithm whereby a pixel is smoothed if all pixels in its neighborhood are close in
graylevel to its graylevel but is sharpened if a majority of the neighborhood pixels differ significantly. In
the processing, use neighborhoods of differences between the pixels and the origin (center) pixel.

3.3 Discuss the effect of unsharp masking when 3 > 1 and the smoothing mask to be subtracted is
multiplied bya =3 - 1.

3.4 What is the result of adding a sharpening and a smoothing mask to obtain a mask whose entries sum
to unity?

3.5Develop a 5x5 Laplacian mask by adding line detectors in the horizontal, vertical and +45° directions.
3.6 Complete Equation (3.19c¢). Explain the effects of each of the two parts.

3.7 Invert shuttle.pgnand then smooth it lightly before detecting its edges. Show the results.
3.8UseXViewor LView Proto threshold the image of building.tif to convert it to black and white only.
3.9Write a simple program in C that performs mask convolution (see Appendix 3.B).

3.10Perform unsharp masking on shuttle.tif to sharpen it by entering a single mask into Matlab.

3.11What effect does 8 have (try a higher and lower value than 3 = 2) on unsharp masking? What effect
does the degree of smoothing have? Experiment with these and describe the results.

3.12Describe an overall method to process an image to remove noise, detect edges and convert it to a line
drawing. Implement this method douilding.tif.

-17-

