
Unit 3. Area Processes

3.1 Pixel Neighborhoods for Area Processes

Pixel Neighborhoods. Let (m0,n0) be a pixel position in an image {f(m,n)}. Aneighborhoodof (m0,n0),
designated asnbhdherafter, is a set ofconnected(continguous) pixels that contains (m0,n0), which is called
theorigin of the neighborhood. The most common neighborhoods are rectangles of pxq pixels that contain
the pixel (m0,n0) at the center, where p and q are odd numbers so that an exact center exists. Another type
of neighborhood is the 3x3star, which can be considered to be a rectangular neighborhood with the corner
points removed. Figure 3.1 shows some neighborhoods, but the definition above is rather general and
includes a great variety of connected blobs of pixels with one pixel in the aggregate being distinguished
as the origin, usually called thecenterpixel. An area processis a transformation that maps a nbhd of each
center pixel fcntr into a new value gnew for the pixel.

Figure 3.1 Neighborhoods of pixels

Neighborhoods play a central role in image processing. For
example, we can process an image {f(m,n)} by taking a
3x3 neighborhood of each pixel, in turn, with value fcntr and
compute the new pixel value gnew to be the average of all
the pixel values in that neighborhood. The set of all such
new pixels form a new processed image {g(m,n)} that
would have less variation and smeared edges. As another
example, we could order the pixel values in each
neighborhood of fcntr by magnitude and then pick the
middle value as the new value gnew for the origin pixel. This
would clear the image of small dots of differing shades of
gray (outliers) from the typical ones in the neighborhood.
In general, for each original pixel we consider a
neighborhood of it and map the pixel values in that
neighborhood into a new grayscale value.

Averaging on a Pixel Neighborhood. Let p5 = fcntr be a pixel in the center of its 3x3 neighborhood. Let
us average the 9 pixels in the neighborhood and replace p5 by this average, and then do this for each pixel
in the image. Thissmoothsthe image in the sense that all pixel values that are very different from their
neighborhood averages will be replaced by the average and so the differences between the pixels will be
reduced. Figure 3.2 shows a 3x3 nbhd with the pixels numbered in the way that we will use them
henceforth. The process of averaging replaces the pixel p5 by the new P5 that is computed as

P5 = [p1 + p2 + ... + p9] / 9 = (1/9)ÿk=1,9 pk =ÿk=1,9 (1/9)pk (3.1)

Figure 3.2. A 3x3 nbhd of a pixel.

The Weighted Average on a Pixel Nbhd. In the averaging of Equation (3.1) the pixels
were all weighted the same by the value wk = 1/9 and all 9 of these weights added up to
unity. Here the weights 1/9 are all equal and we say that the average hasequal weighting.
A weighted averaging of the pixels can use unequal weights to put more emphasis on
certain pixel values and less on others. Consider the following weighting.

P5 =ÿk=1,9 wk pk (3.2)

where wk = 1/10 for k � 5 and w5 = 2/10 =1/5. This would count the middle pixel twice as much as any
other pixel and so it would have more influence in the weighting. All weights sum to unity as required.

It is convenient to put the weights in an array called amask, of the same size as the nbhd, and to
define an operation for the weighted average. Consider the operation of a mask and nbhd shown below.

-2-

� w1 w2 w3� � p1 p2 p3�
pnew = w4 w5 w6 * p4 p5 p6 = ÿk=1,9 wk pk (3.3)

� w7 w8 w9� � p7 p8 p9�

We call this operationconvolution. It leads to the terminology ofconvolution maskfor the mask
andmask convolutionfor the operation. This operation is designated by the symbol* . In general, the mask
and neighborhood size are fixed at some pxq for any particular convolution.

Mask Convolution on Images. To apply a weighted averaging over an entire image, the process starts
at the upper lefthand corner of the image and processes one pixel at a time via the mask convolution on the
pixel's neighborhood. After the top left (first) pixel is processed to obtain a new output pixel value pnew, the
process then moves the nbhd to the right by one pixel and convolves the mask with that pixel's
neighborhood to obtain an output pixel pnew. When the last pixel in a row of pixels has been processed, the
mask is moved back to the left side of the image down one pixel. Then the second row of image pixels is
processed similarly. This is repeated until all rows of pixels in the image {p(m,n)} have been processed.

The pixels on the outer boundaries of the image need not be processed (the neighborhoods of these
pixel positions do not fit inside the image). Another method is to process all pixels, but on the boundary
pixels to use the convolution with only the mask and nbhd entries that intersect the image. Another
technique is to repeat the boundary pixels outside the boundaries sufficiently many times to complete the
pxq neighborhood of the mask size.

The most basic convolution mask is theidentity operator, which yields the pixel value pnew = fcntr
on each neighborhood. The pxq identity mask contains all entries of zero except the center, which is unity.
For example, the 3x3 identity mask operates on a 3x3 neighborhood via

� 0 0 0� � p1 p2 p3�
pnew = 0 1 0 * p4 p5 p6 = {ÿ(jÿ5) (0)pj} + (1)p5 = p5 (3.4)

� 0 0 0� � p7 p8 p9�

The central pixel is often weighted more than the others, and the others may be weighted unequally
for different degrees of smoothing. An example of weighted averaging convolution mask and itsmask
factor (1/16) that forces the weights to sum to unity is

� 1 2 1� � p1 p2 p3�
(1/16) 2 4 2 * p4 p5 p6 = {p1+p3+p7+p9 + 2[p2+p4+p6+p8] + 4p5} /16 (3.5)

� 1 2 1� � p7 p8 p9�

Averaging masks that smooth lightly are

� 0 1 0� � 0 1 0� � 1 1 1�
(1/5) 1 1 1 (1/6) 1 2 1 (1/10) 1 2 1

� 0 1 0� � 0 1 0� � 1 1 1�

Figure 3.3. Original Lena. Figure 3.4. SmoothedLena. Figure 3.5. Blurred Lena.

-3-

Blurring Masks. It is a sometimes useful effect toblur an image by oversmoothing it by averaging the
neighborhood pixel values not adjacent to the center pixel. Figure 3.3 shows the originallena256.tifwhile
Figure 3.4 shows the smoothed result obtained with the lefthand 3x3 mask of the three masks given above.
Figure 3.5 displays the image blurred with the mask given below as Equation (3.6a).

� 1 1 1 1 1� � 0 1 1 1 1 1 0�
1 0 0 0 1 1 1 1 1 1 1 1

M = (1/16) 1 0 0 0 1 1 1 0 0 0 1 1
1 0 0 0 1 M = (1/36) 1 1 0 0 0 1 1 (3.6a.b)
� 1 1 1 1 1� 1 1 0 0 0 1 1

1 1 1 1 1 1 1
� 0 1 1 1 1 1 0�

The sum of all mask entries multiplied by the mask factor (1/36) in Equation (3.6b) should equal
unity to keep the output average brightness the same as in the original image. If the sum of the weights is
greater than 1 (respectively, less than 1) then the resultant image will be brighter (respectively, darker) than
the original image. Blurring can also be done with larger smoothing masks.

3.2 Smoothing with Medians and Trimmed Means

Medians and Alpha-trimmed Means. We have already seen convolution masks that average, which is
one form of smoothing. This is useful for eliminating low level noise or giving skin a smooth look in a
photographic portrait. However, averaging is strongly affected by outlier pixel values, which is the "snake
swallowing the egg" (SSTE) syndrome. An outlier causes the average to be in error, and as the mask moves
to new centers nearby, the outlier remains in the new neighborhoods so that the outlier strongly influences
(erroneously) a block section of the image larger than the mask. A pxq mask maps an outlier into a (2p-
1)x(2q-1) block of erroneous values.

A well known method for avoiding the SSTE syndrome is to use the median (order statistics). For
each pixel and neighborhood centered on it, we order the neighborhood pixel values pk from smallest to
largest. The indexing by order is designated by

fj(0) � fj(1) � ... � fj(pq-1) (3.7)

There are two ways to proceed here. The first is to take the middle pixel value, fj(c), where j(c) is
the index of the pixel with central value, and select the new output value as

gnew = fj(c) (3.8)

This is the middle of all of the actual nbhd gray level values (the median). This is often a good way to
removespeckle(also calledsalt and pepper) noise, which appears as pixel size dots of dark or bright.

The median of a neighborhood is not always the value that best portrays the image information.
For this reason, better results are often obtained by using the� -trimmed mean. To obtain this value, we set
� to be 1 or 2 or so, throw out the lowest� and highest� pixel values and average the remaining pq - 2�
pixel values to obtain gnew.

Median processing does not blur the image. It preserves edges rather than smearing them as does
averaging. The� -trimmed median also has less blurring and spreading of edges. Thus, these are powerful
processes for smoothing noise from the image while preserving its features.

Smoothing Images. Smoothing is done after an examination of the image reveals: i) salt and pepper noise
(speckle); ii) short line noise such as small scratches; iii) any type of nonnegligible variations on areas that
should be smooth; iv) rough, blocky or zig-zaggy edges; or v) other types of noise that smoothing can
ameliorate.

-4-

Smoothing is usually done before edge detection or sharpening to attenuate the amplification of
variation done by those processes. Mild smoothing can often enhance an image. Median smoothing, also
called despeckling, changes the image the least (except for removing speckle) and will not damage the
image. Tools for processing images have smoothing capability, as doMatlab, XViewandLView Pro.

Using the Tools for Smoothing. Here we actually show how to do mask convolution with the tools, but
we use the smoothing process as the example. Smoothing is the most fundamental type of image
processing, but we must be careful not to save a smoothed image over the original because it loses some
of the information in the image that can not be recovered by sharpening or any kind of processing of the
smoothed image. Sharpening, edge detection and other types of mask convolution can be done in the same
way as smoothing by designing an appropriate mask and then applying it to an image.

1. Smoothing withMatlab: To apply a convolution mask withMatlab it sufficies to use the special
function imfilter(), which lets the user designate the image and specify the mask values. After running
Matlab and clicking in the Command Window to bring it into focus, the following commands smooth the
image with a mildly smoothing mask (also called afilter) that uses equal weighting (see Fig. 3.6 for the
original and Fig. 3.7 for the results of this smoothing).

> Im1 = imread(‘lena256.tif’); //read image into memory at Im1
> imshow(Im1); //show image at Im1 on the screen
> h1 = [1 1 1; 1 1 1; 1 1 1] / 9; //define convolution mask h1
> Im2 = imfilter(Im1, h1); //filter image with mask h1
> figure, imshow(Im2); //show filtered image as new figure

Figure 3.6. The original lena256.tif. Figure 3.7. TheMatlab smoothedLena.

2. Smoothing with XView: XView does not have a mechanism for entering in the entries in a
convolution mask, but it does have a smoothing algorithm where the nbhd size is selected. Upon applying
the smoothing process consecutively, the degree of smoothing can be somewhat controlled. First runXView
and load an image, then right click inside the image to bring up the control window. SelectAlgorithmson
the top right and come down toBlur and then enter in the nbhd size (3 is the default, 5 increases the
smoothing, etc.). ClickOK to smooth. Larger nbhds or repeated smoothing will blur the image.

3. Smoothing withLView Pro: RunLView Pro. When the main window comes up selectFile and
thenOpen. Next, select the image file and click theOpenbutton to load and display the image. SelectColor
on the top menu bar and then come down in the pop up menu toUser Defined(under theHistogramitem),
and then select the optionFilters. TheUser-defined Image Filterswindow comes up next (see Fig. 3.9a).
Click Newto bring up theFilter Specificationwindow. A large mask of text entries comes up (but we can
use only the central 3x3 or 5x5 for our purposes). Enter the desired smoothing mask and then enter the
appropriate integer in theDivisor text entry slot at the bottom (this is the denominator of the scaling factor
to assure that the mask entries sum to unity). Click OK to return to theUser-defined Image Filterswindow
and then click theApplybutton to run the mask convolution on the image. Click theClosebutton to exit
this window and return the focus to the mainLView Prowindow.

-5-

Figure 3.8a. TheLView Pro User-defined Image Filterswindow.

Figure 3.8b. ThePre-defined Image Filterswindow.

Another method is to click onColor and then
on Filters to bring up thePre-defined Image Filters
window. On the left of this window there is an option
box as shown in Figure 3.8b. Select theSoftenor
Soften Moreoptions and then click onApply on the
right. To undo the filtering, click onReverton the
right.

3.3 Sharpening Images

Unsharp Masking. A process known asunsharp
masking (taken from the photographic processing
industry) first smooths an image and then the subtracts
the smoothed image from the original image. The
smoothing yields an image whose variation (rates of
change) in gray levels across the spatial dimensions is
lowered. Smoothing actually spreads out the changes

-6-

from pixel to pixel at all rates into more gradual changes in grayscale across the dimensions m and n (x and
y). When the smoothed image is subtracted, it leaves the more rapid variations (changes at a higher rate).
The resultant image appearssharp, that is, the edges are narrower and have greater contrast on each side.
The average gray level is reduced by subtraction, so we need to multiply the original image by a factor ß
> 1.0 to increase its intensity, or brightness power. We first increase the brightness power by multiplying
the identity convolution mask by thegain ß > 1.0, which is calledboostingthe original. Boosting is shown
in Equation 3.9.

� 0 0 0 0 0� � 0 0 0 0 0�
0 0 0 0 0 0 0 0 0 0

(ß) 0 0 1 0 0 = 0 0 ß 0 0 (3.9)
0 0 0 0 0 0 0 0 0 0
� 0 0 0 0 0� � 0 0 0 0 0�

Then we subtract an averaging mask that smooths/blurs the image. Using a 5x5 mask example, the resulting
unsharp masking convolution mask is obtained via

� 0 0 0 0 0� � 1 1 1 1 1� � -1 -1 -1 -1 -1�
0 0 0 0 0 1 1 1 1 1 -1 -1 -1 -1 -1
0 0 ß 0 0 - (1/26) 1 1 2 1 1 = (1/26) -1 -126ß-2 -1 -1 (3.10)
0 0 0 0 0 1 1 1 1 1 -1 -1 -1 -1 -1
� 0 0 0 0 0� � 1 1 1 1 1� � -1 -1 -1 -1 -1�

Fig. 3.9. Orginal shuttle. Fig. 3.10. Smoothed shuttle. Fig. 3.11. Unsharp masked shuttle.

A
gain ß of approximately 2.0 is often satisfactory, but the best value depends upon the average brightness
power. We used� = 2 in Equation 3.10. Figure 3.9 shows the originalshuttleimage, while Figure 3.10
shows the smoothed version that was subtracted from the boosted original (ß = 2). Figure 3.11 presents the
unsharp-masked result. While many sharpening methods have been developed, this one remains one of the
very best.

Directional Derivatives. We have seen that unsharp masking by subtracting a smoothed image is an
effective way to sharpen an image. The underlying process of sharpening must make edges more
exaggerated, that is, thinner with a greater difference between the darker and lighter pixels along the edges.
To detect the edges, it is necessary to obtain the differences in each neighborhood along the horizontal (y),
vertical (x) and two diagonal (y = -x and y = x) directions. Let a neighborhood of (m,n) have the values

� f(m-1,n-1) f(m-1,n) f(m-1,n+1)�
f(m,n-1) f(m,n) f(m,n+1)
� f(m+1,n-1) f(m+1,n) f(m+1,n+1)�

Figure 3.12 displays a sharp edge, while Figure 3.13 presents a smooth edge. The first can be
considered a sharpening of the second and likewise the second can be considered to be a smoothing of the
first. Edges in real world images are usually wider than the one shown in Figure 3.12.

-7-

Figure 3.12. A sharp edge. Figure 3.13. A smooth edge.

On this fixed 3x3 (or any fixed pxq) neighborhood centered on any pixel position (m,n), the
differences in the various directions are

� f(x,y)/ � y = [f(m,n+1) - f(m,n-1)]/2 (3.11a)

� f(x,y)/ � x = [f(m+1,n) - f(m-1,n)]/2 (3.11b)

� f(x,y)/ � u = [f(m+1,n+1) - f(m-1,n-1)]/2 (3.11c)

� f(x,y)/ � v = [f(m-1,n+1) - f(m+1,n-1)]/2 (3.11d)

where u is in the direction along the line y = x and v is the direction along the line y = -x.

Masks that produce these differences under convolution (ignoring the 1/2 factor) are

� 0 0 0� � 0 -1 0� � -1 0 0� � 0 0 1�
-1 0 1 0 0 0 0 0 0 0 0 0
� 0 0 0� � 0 1 0� � 0 0 1� � -1 0 0�

More effective differencing masks average more than a single difference of pixels to mitigate errors
due to a noisy pixel. ThePrewitt operators are

� -1 0 1� � -1 -1 -1� � -1 -1 0� � 0 1 1�
-1 0 1 0 0 0 -1 0 1 -1 0 1
� -1 0 1� � 1 1 1� � 0 1 1� � -1 -1 0�

More effective yet are theSobeloperators that weight the key differencing pixels more. They are

� -1 0 1� � -1 -2 -1� � -2 -1 0� � 0 1 2�
-2 0 2 0 0 0 -1 0 1 -1 0 1
� -1 0 1� � 1 2 1� � 0 1 2� � -2 -1 0�

After convolution with all four difference operators, the edges will be light lines on a dark
background in four different images. These can be thresholded to bi-level images of black and white and
then combined via use of the maximum at each pixel.

Laplacian Masks. TheLaplaciansums the squares of the second derivatives via

� 2f(x,y) = � 2f(x,y)/ � x2 + � 2f(x,y)/ � y2 (3.12)

Recalling that the second derivative can be approximated by the difference of two derivatives at two
adjacent points, the second derivatives become

-8-

� 2f(x,y)/ � x2 = { [f(m+1,n) - f(m,n)]/� - [f(m,n) - f(m-1,n)]/� } / � =

{ [f(m+1,n) - 2f(m,n)] + f(m-1,n)} / � 2 (3.13)

� 2f(x,y)/ � y2 = { [f(m,n+1) - f(m,n)]/� - [f(m,n) - f(m,n-1)]/� } / � =

{ [f(m,n+1) - 2f(m,n)] + f(m,n-1)} / � 2 (3.14)

The 3x3 Laplacian mask is therefore the sum of the two second differencing masks, which is

� 0 1 0� � 0 0 0� � 0 1 0�
0 -2 0 + 1 -2 1 = 1 -4 1 (3.15)
� 0 1 0� � 0 0 0� � 0 1 0�

when � is ignored (� = 1 = � 2). Strangely, the literature calls the Laplacian the negative Laplacian.

� 0 1 0� � 0 -1 0� � 1 1 1� � -1 -1 -1�
(-1) 1 -4 1 = -1 4 -1 , (-1) 1 -8 1 = -1 8 -1 (3.16a,b)

� 0 1 0� � 0 -1 0� � 1 1 1� � -1 -1 -1�

Note, for example, that both the negative and positive Laplacian processes produce an output gnew
near zero (very dark) when all pixels on the matching "plus-shaped" neighborhood are approximately the
same (the mask entries sum to zero). On the other hand, the negative Laplacian produces a positive output
only when the central pixel value is greater than the average of the others. If the central pixel value is less
than the average of the others, then the negative result is truncated to zero (black). Equation (3.16a) uses
only the vertical and horizontal differences while Equation (3.16b) uses differences in all four directions.

Hedged Laplacians. Figure 3.14 uses the negative 3x3 Laplacian given in Equation (3.17b) on the
original "Shuttle", while Figure 3.15 shows the effect of using thehedgedLaplacian mask of Equation
(3.17).

� -1 -1 -1� � 0 0 0� � -1 -1 -1�
-1 9 -1 = 0 1 0 + -1 8 -1 (3.17)
� -1 -1 -1� � 0 0 0� � -1 -1 -1�

Figure 3.14. Laplacian onshuttle.tif. Figure 3.15. Hedged Laplacian onshuttle.tif.

Hedged Laplacians can be considered to add the negative Laplacian processed image back onto
the original image. This is actually the subtraction of the Laplacian from the original image, which is a
powerful technique as shown in Figure 3.15. Note that the sum of the weights in the hedged Laplacian is
equal to unity, so the average gray level will remain the same as in the original image. While the image in
Figure 3.15 is sharp, the small differences due to random effects (noise) are exaggerated (a disadvantage
of Laplacian and other differencing methods). A milder hedged Laplacian mask is

-9-

� 0 -1 0� � 0 0 0� � 0 -1 0�
-1 5 -1 = 0 1 0 + -1 4 -1 (3.18a)
� 0 -1 0� � 0 0 0� � 0 -1 0�

Other interesting hedged Laplacians are

� -1 -2 -1� � 0 0 0� � -1 -2 -1�
-2 13 -2 = 0 1 0 + -2 12 -2 (3.18b)
� -1 -2 -1� � 0 0 0� � -1 -2 -1�

� -1 -1 -1 -1 -1�
-1 -1 -2 -1 -1
-1 -2 29 -2 -1 = ? (3.18c)
-1 -1 -2 -1 -1
� -1 -1 -1 -1 -1�

Edge Enhancement. A cross-section of an image shows edges as rises in Figure 3.16 (here the dark side
is on the left and the light side is on the right). Figure 3.17 shows the first and second derivatives of the
moderate edge and the effect of adding the original to the (negative) Laplacian, which is actually
subtracting the Laplacian from the original (see the bottom graph). This is analogous to unsharp masking,
where the smoothed edges (see the center graph of Figure 3.16) are subtracted from the original edges to
sharpen them, which yields a result similar to the bottom graph of Figure 3.17.

Edges are enhanced by unsharp masking and hedged Laplacians, but can also be done by
thresholded Laplacians and rule-based processing. Laplacians perform edge detection, which is not the
same as edge enhancement.

Figure 3.16. Edge cross-sections. Figure 3.17. Subtracting the Laplacian.

Thresholded Laplacians. A variation on the Laplacian processing is to check the value of each Laplacian
against a fixed threshold T. If the Laplacian is too large (larger than the threshold), then it is likely to be
erroneous due to noise and should be suppressed. In this case the neighborhood average is taken to be the
new pixel value gnew. On the other hand, if the Laplacian is low (lower than the threshold), then the new
pixel value gnew is enhanced by adding a proportion� of the Laplacian to it. The algorithm is

if � 2f(m,n) > T then gc = (1/r)ÿ(k=1,r) fk (3.19a)

else gc = f(m,n) + ß� 2f(m,n) (3.19b)

The disadvantages of Laplacian operators are that they give no direction for the edge, they produce
double edges and they are extra sensitive to noise (they amplify noise). Derivatives and differences are

-10-

sensitive to noise and second differences are even more sensitive in that small errors in the input data can
cause large errors in the output data. Noise should be reduced before edge detection is performed.

The gradient can be used in situations where it is important to know the direction of the edge or
line segment. The gradient and direction� can be found per

(� f(x,y)/ � x,� f(x,y)/ � y) = (f(m+1,n) - f(m-1,n), f(m,n+1) - f(m,n-1)) (3.20)

� = atan(� f(x,y)/ � y / � f(x,y)/ � x) (3.21)

Rule-based Simultaneous Sharpening and Smoothing. On a 3x3 nbhd of pixel p5, we first compute
the 9 differences

d(1) = p1 - p5, . . ., d(9) = p9 - p5 (3.22)

To obtain a representative value for these 9 differences, we take their1-trimmed meanby throwing out a
single maximum and a single minimum values and averaging those remaining. The resulting� is resistant
to outliers. We use two thresholds T1 and T2 where the latter one is the greatest. The rules are

if (� < T1) then pnew = p5 + �� ; (3.23a)

else if (� > T2) then pnew = p5 + �� ; (3.23b)

Equation (3.23a) smooths while Equation (3.23b) exaggerates the difference between a center pixel and
its neighbors. Otherwise there is no change. The result is a smoothing of relatively smooth pixels and a
sharpening of those that differ sufficiently from the nbhd trimmed mean.

Sharpening with the Tools. We have already seen how to useMatlab, XviewandLview Proto perform
smoothing with mask convolution. We do the same type of mask operations (filtering) but use different
masks as described above for unsharp masking, laplacian and hedged laplacian processes. We present
examples below.

1. Matlab Sharpening: To apply a sharpening convolution mask withMatlab it sufficies to use the
special functionimfilter() again as we did for smoothing. After runningMatlab and clicking in the
Command Window to bring it into focus, the following commands smooth the image with a mildly
smoothing mask (also called afilter).

> Im1 = imread(‘lena256.tif’); //read image into memory at Im1
> imshow(Im1); //show image at Im1 on the screen
> h1 = [-1 -1 -1

-1 12 -1
-1 -1 -1] / 4; //define sharpening convolution mask h1

> Im2 = imfilter(Im1, h1); //filter image with mask, store at Im2
> figure, imshow(Im2); //show filtered image at Im2 as new figure

Figure 3.18. The original lena256.tif. Figure 3.19. The Matlab sharpenedlena256.

-11-

2. XView Sharpening: To sharpen with this tool we runXViewand load an image. Then we right
click inside the image to get the control window. We click on theAlgorithmsbutton at the top right and
come down toSharpen. Then enter a percentage for sharpening (75% is the default and is a good value).
The displayed image is then sharpened on the screen. The process can be repeated for extra sharpening.
This tool does not let the user enter a convolution mask but uses its own standard masks. Therefore this
is a weak tool for mask convolution. To overcome this deficiency, we include a C program in Appendix
3.B that allows the user to enter a mask of the desired size, process an image and then callXViewto display
thebeforeandafter images.

3. LView Pro Sharpening: Run the program, selectFile, thenOpenand select a file and click the
Openbutton to load and display the image. SelectColor on the top menu bar and then come down in the
pop up menu toUser Defined(under theHistogramitem), and then select the optionFilters. TheUser-
defined Image Filterswindow as shown in Figure 3.20 comes up next. ClickNew to bring up theFilter
Specificationwindow. A large mask of text entries comes up (but we can use only the central 3x3 or 5x5
for our purposes). Enter the hedged Laplacian mask from the left side of Equation (3.17) and enter1 in the
Divisor text entry slot at the bottom. Click OK to return to theUser-defined Image Filterswindow and then
click theApplybutton to run the mask convolution on the image. Click theClosebutton to exit this window
and return the focus to the mainLView Prowindow.

Figure 3.20. The User-defined Image Filter window.

3.4 Detecting Edges and Lines

Line Detection. Lines are extended edges.
A line drawing can be developed from an
image {f(m,n)} by convolving it with an
edge detector such as the Laplacian or the
four Sobel operators. These yield light lines
on a black background, so we invert by
putting g(m,n) = 255 - f(m,n) to achieve
black lines on a white background. We can
also use a threshold to transform the image
to black and white only.

A problem is that the lines are too
thick (edge detection thickens the lines).
Other problems include broken lines and
noise. It is useful to remove noise before
processing to detect lines, but this should not
be done by averaging because this spreads
and weakens the edges. The thinning of lines
after line detection is often necessary, as is
the removal of spurs sticking out from the
lines at various angles. The processes of
thinning lines and trimming spurs from them
is covered in a later unit.

Line detection is a type of edge detection. Consider a horizontal line segment in an image. If the
pxq neighborhood straddles a horizontal line, for example, that line could be detected if the pixels along
the center row have a higher average than those of the other rows. Thus

� -1 -1 -1� � -1 -1 -1 -1 -1�
2 2 2 2 2 2 2 2

� -1 -1 -1� � -1 -1 -1 -1 -1�

-12-

are horizontal line detectors. The larger mask is more immune to noise. Similarly detectors of vertical, -45°
and 45° lines are

� -1 2 -1� � -1 2 -1� � -1 -1 2� � -1 -1 -1 -1 4� � 2 -1 -1� � 4 -1 -1 -1 -1�
-1 2 -1 -1 2 -1 -1 2 -1 -1 -1 -1 4 -1 -1 2 -1 -1 4 -1 -1 -1
� -1 2 -1� -1 2 -1 � 2 -1 -1� -1 -1 4 -1 -1 � -1 -1 2� -1 -1 4 -1 -1

-1 2 -1 -1 4 -1 -1 -1 -1 -1 -1 4 -1
� -1 2 -1� � 4 -1 -1 -1 -1� � -1 -1 -1 -1 4�

We can now answer an important question:is it possible to detect lines in all directions with a single
mask?Upon adding the 3x3 horizontal and vertical line detector masks first to obtain a horizontal-vertical
line detector, and then adding the 3x3 diagonal line detector masks second to obtain a diagonal line
detector, we obtain the respective two sums

� -2 1 -2� � 1 -2 1�
1 4 1 -2 4 -2

� -2 1 -2� � 1 -2 1�

The sum of these two masks yields a mask that detects edges in the horizontal, vertical, -45° and 45°
diagonal directions, which is

� -2 1 -2� � 1 -2 1� � -1 -1 -1�
1 4 1 + -2 4 -2 = -1 8 -1 (3.24)
� -2 1 -2� � 1 -2 1� � -1 -1 -1�

Thus we have proved that the Laplacian mask on the righthand side of Equation (3-22) detects
edges in all directions (quod erat demonstrandum).

Sobel Edge Detection. Certain mask operators weight key differencing pixels more and are more effective
than certain other edge operators. ThePrewitt operators were previously defined to be

� -1 0 1� � -1 -1 -1� � -1 -1 0� � 0 1 1�
-1 0 1 0 0 0 -1 0 1 -1 0 1
� -1 0 1� � 1 1 1� � 0 1 1� � -1 -1 0�

The next set of mask edge operators are theSobeloperators that we defined previously and that are more
powerful and useful than those of Prewitt (they weight the central differences more).

� -1 0 1� � -1 -2 -1� � -2 -1 0� � 0 1 2�
-2 0 2 0 0 0 -1 0 1 -1 0 1
� -1 0 1� � 1 2 1� � 0 1 2� � -2 -1 0�

Note that the sum of the entries in each differencing mask is zero. This means that if a
neighborhood consists of pixels of constant value a, then the new pixel has value

gnew = ÿ)(j=0,pq-1) hjfj = ÿ(j=0,pq-1) hja = a{ÿ(j=0,pq-1) hj} = a{0} = 0 (3.25)

Thus pixels with near constant neighborhood values are changed to near black (near 0). If the
average of the pixels in the positive direction is greater than that in the negative direction (both taken from
the center), then the new pixel value gnew will be brighter and contrast against the darker background. If the
average pixel value in the negative direction is greater than that in the positive direction, then the new pixel
value computed will be negative, and will be truncated to zero and so will be black (0). For L levels of
grayscale, all computed pixel values are bounded by 0 and L-1 (usually 0 and 255). Thus each difference
(edge detecting) operator works in only one direction.

-13-

After convolution with all four difference operators, the edges will be light lines on a dark
background in four different images. These can be thresholded to bi-level images of black and white and
then combined via use of the maximum at each pixel.

SobelEdge Detection withMatlab. The functionedge()is what we use inMatlab to apply different
edge detection methods such as, Sobel, Canny, Prewitt, Laplacian, etc. To apply Sobel edge detection, the
following command line is used.

>> Im_out=edge(Im_in, 'sobel', threshold, direction);

The second parameter in the function is a string that specifies theSobel method. The third
parameter,threshold, is numerical to specify the sensitivity threshold for theSobelmethod. All edges that
are not stronger thanthresholdwill be ignored. Ifthresholdis not specified by the user when the function
is called, it will be done automatically. The fourth parameter,direction, specifies the direction of detection
for the Sobelmethod. The parameterdirection is a string specifying whether to look for 'horizontal' or
'vertical' edges, or 'both' (the default).

With the default settings, the function can be simply used as Im_out =edge (Im_in, 'sobel',
threshold), Im_out =edge(Im_in, 'sobel', ‘direction’) or Im_out =edge(Im_in, ‘sobel’). The execution of
following code gives the edges shown in Figure 3.21. A threshold of0.05worked best for this example.

>> Im1=imread(‘shuttle.tif ’); //load image into memory at Im1
>> Im2=edge(Im1, ‘sobel’, 0.05); //Sobel edge detect and store at Im2
>> imshow (Im2); //show image at Im2 on screen

Figure 3.21. Sobel results onshuttle.

The Canny Edge Detector. The Canny method
employs a Guassian low pass filter first to smooth
the image before edge detection. The standard
deviation � is an input parameter that determines
the width of the filter and hence the amount of
smoothing. Then the gradient vector (the magnitude
and direction of the gray level change) at each pixel
of the smoothed image is calculated. Next, non-
maximal suppression and hysteresis thresholding
are applied, where non-maximal suppression thins
the wide ridges around local maxima in gradient
magnitude down to edges that are only one pixel
wide. Hysteresis thresholding uses two thresholds,
Tlow and Thigh. The higher one is used to mark the
best edge pixel candidates. It then attempts to grow
these pixels into contours by searching for
neighbours with gradient magnitudes higher than
Tlow for connecting together with lines.

Canny Edge Detection withMatlab. We still use theedge()function here, but applyCannyedge
detection by substitutingcannyin place ofsobel. We call it with the following parameter settings.

>> Im_out =edge(Im_in, 'canny', threshold, sigma)

While the second parameter specifies the Canny method,thresholdspecifies sensitivity thresholds
for the Canny method. The value ofthresholditself is taken as the high threshold, and 0.4*thresholdis used
for the low threshold. If you do not specifythreshold, low and high thresholds will be chosen automatically.
The parametersigmais used as the standard deviation of theGaussianfilter. The defaultsigmais 1 and the
size of the filter is chosen automatically, based onsigma.

-14-

Also, we can leavethresholdor boththresholdandsigmaunspecified as shown below.

>> Im_out = edge(Im_in, 'canny', thresh);

>> Im_out = edge(Im_in, 'canny');

The following Matlab script uses threshold = 0.1 and� = 0.6 to yield the image in Figure 3.22,
which is displayed below.

>>Im1=imread(‘shuttle.tif ’); //load image into memory at Im1

>>Im2=edge(Im1, ‘canny’, 0.1, 0.6); //Canny edge detect, store at Im2

>>imshow (Im2); //show image at Im2 on screen

Figure 3.22.Cannyresults onshuttle.tif.

Edge Detection with XView. To run XView and
bring up the imageshuttle.tifwe type in the command
line shown below.

> xv shuttle.tif

Next, right-click inside the image to bring up
the control window (see Figure 1.5). On the upper-
right corner, there is theAlgorithmitem. Left click and
hold down and move down to theEdge Detectitem
and release the button. Now only the detected edges
are left on the original image as shown in Figure 3.23.

The Color Editor can be used to reverse the
result to black line drawing on a white background.
Chose theColor Edit item on the control window and

adjust theIntensityprofile as shown in Figure 3.24 to get an image shown as in Figure 3.25.

Figure 3.23. XView detected edges. Fig. 3.24. Intensity profile of color inversion.

-15-

Figure 3.25. Edges after inversion.

Edge Detection withLView Pro. Run the program, load an
image and then click on theColor item on the top menu bar.
SelectFilters on the menu that comes up. ThePre-defined Image
Filters window (shown as in Figure 3.26) will pop up. Click on
the Find Edgesitem on the left side and then click onApply on
the right side. ClickCloseto keep the modified image (shown as
in Figure 3.27) or else clickRevertto get the original image back.

To invert the color of the result image, clickColor on
the top menu and thenAdjustmentson the menu that comes up.
When thePre-defined Color Adjustmentswindow (See Figure
1.14) pops up, select theNegativeitem on it.

Fig. 3.26.LView Pro Pre-defined Image Filterswindow. Fig. 3.27. Shuttle Edges byLView Pro.

Otherwise, we can chooseColor, User-defined, Filters, Newand enter a mask that detects edges.
Then click on Apply to process with the mask.

Competitive Fuzzy Edge Detection. Fuzzy logic can also be applied on image edge detection. Here we
introduce a fuzzy classifier, which first classifies image pixels as different kinds of edge pixels or non-edge
pixels. It then applies competitive rules on them according to their classification so that not all the edge
pixels are output as edges, which thins the edges. This fuzzy classifier, is called thecompetitive fuzzy edge
detector.

The competitive fuzzy classifier is made up of the fuzzy classifier part and the rule-based
competition part. In the fuzzy classifier, there are six classes: background, vertical edge, horizontal edge,
two kinds of diagonal edge classes and a speckle edge classes. Either a Gaussian or an extended
Epanechnikov function [Liang and Looney] is used for each class as its fuzzy set membership function.
The fuzzy truth for a pixel to be a member of a class is given by the evaluation of its function on the vector
of features for that pixel.

-16-

Each pixel determines a vector of differences (d(1), d(2), d(3), d(4)) in the four directions across
that pixel in its 3x3 nbhd. For example, the vertical difference is

d(1) = |p2 - p5| +|p8 - p5| (3.26)

A feature vector is evaluated by putting it through each fuzzy set membership function that is centered on
a prototypical difference vector for that class. Thus each pixel has a fuzzy truth value for each class and
the maximum fuzzy truth determines the class of that pixel.

In the competition, neighboring edge pixels in the same direction compete with each other in
directional edge strength. To be a black edge pixel in the output image, a classified directional edge pixel
must have larger edge strength on its edge direction in comparison to its neighbors on that direction. If an
edge pixel does not win the competition, then it will be output as white (background). The result is a black
line drawing on a white background.

Speckle edge pixels are mapped to black directly without competition. This may introduce isolated
single/double-pixel speckles. A despeckler operates on the image after all other processes have been
completed so as to remove these speckles. See [Liang and Looney, 2002] for complete details.

Fuzzy Classification
Step1: set parameters for the fuzzy set membership functions; open the image file;
Step2: for each pixel in the image

compute graylevel change magnitudes in the 4 different directions
construct the pixel feature vector from those magnitudes
for each class

compute the fuzzy truth of the feature vector
determine maximum fuzzy truth and record pixel class for that pixel

Edge Strength Competition
Step1: for each pixel in the image

if (edge class) then apply competitive rule and record pixel value
if (background class) then write white pixel
if (speckle edge class) then write black pixel

Despeckling
Step1: for each pixel in the image

if (pixel is isolated single/double speckle) then change to white.

Fig. 3.26. Original peppers. Fig. 3.27. CFEDpeppersresults. Fig. 3.28. Cannypeppersresults.

-17-

Figure 3.28 is the original peppers image, which presents a difficult edge detection problem. The
results of the competitive fuzzy edge detection method are shown in Figure 3.29 and the results of the
Canny method with the threshold set at 0.04 and� set at 0.5 are shown in Figure 3.30. The CFED method
took about 1/10 of the time that the Canny method took.

3.5 Exercises

3.1 Is it possible to construct a 5x5 mask that detects a weak (smooth) vertical edge that is dark on the left
side and light on the right side, but that doesn't use the middle column (it consists of zeros)? If so, explain
how it works.

3.2 Develop an algorithm whereby a pixel is smoothed if all pixels in its neighborhood are close in
graylevel to its graylevel but is sharpened if a majority of the neighborhood pixels differ significantly. In
the processing, use neighborhoods of differences between the pixels and the origin (center) pixel.

3.3 Discuss the effect of unsharp masking when ß > 1 and the smoothing mask to be subtracted is
multiplied by � = ß - 1.

3.4 What is the result of adding a sharpening and a smoothing mask to obtain a mask whose entries sum
to unity?

3.5Develop a 5x5 Laplacian mask by adding line detectors in the horizontal, vertical and ±45° directions.

3.6Complete Equation (3.19c). Explain the effects of each of the two parts.

3.7 Invert shuttle.pgmand then smooth it lightly before detecting its edges. Show the results.

3.8UseXViewor LView Proto threshold the image of building.tif to convert it to black and white only.

3.9Write a simple program in C that performs mask convolution (see Appendix 3.B).

3.10Perform unsharp masking on shuttle.tif to sharpen it by entering a single mask into Matlab.

3.11What effect does ß have (try a higher and lower value than ß = 2) on unsharp masking? What effect
does the degree of smoothing have? Experiment with these and describe the results.

3.12Describe an overall method to process an image to remove noise, detect edges and convert it to a line
drawing. Implement this method onbuilding.tif.

