
Unit 3. Area Processes

3.1 Pixel Neighborhoods for Area Processes

0 0 0 0Pixel Neighborhoods. Let (m ,n ) be a pixel position in an image {f(m,n)}. A neighborhood of (m ,n ),
0 0designated as nbhd herafter, is a set of connected (continguous) pixels that contains (m ,n ), which is called

the origin of the neighborhood. The most common neighborhoods are rectangles of pxq pixels that contain
0 0the pixel (m ,n ) at the center, where p and q are odd numbers so that an exact center exists. Another type

of neighborhood is the 3x3 star, which can be considered to be a rectangular neighborhood with the corner
points removed. Figure 3.1 shows some neighborhoods, but the definition above is rather general and
includes a great variety of connected blobs of pixels with one pixel in the aggregate being distinguished as
the origin, usually called the center pixel. An area process is a transformation that maps a nbhd of each

cntr newcenter pixel f  into a new value g  for the pixel.

      Figure 3.1 Neighborhoods of pixels

Neighborhoods play a central role in image processing.
For example, we can process an image {f(m,n)} by taking a

cntr3x3 neighborhood of each pixel, in turn, with value f  and
newcompute the new pixel value g  to be the average of all the

pixel values in that neighborhood. The set of all such new
pixels form a new processed image {g(m,n)} that would have
less variation and smeared edges. As another example, we

cntrcould order the pixel values in each neighborhood of f  by
magnitude and then pick the middle value as the new value

newg  for the origin pixel. This would clear the image of small
dots of differing shades of gray (outliers) from the typical ones
in the neighborhood. In general, for each original pixel we
consider a neighborhood of it and map the pixel values in that
neighborhood into a new grayscale value.

5 cntrAveraging on a Pixel Neighborhood. Let p  = f  be a pixel in the center of its 3x3 neighborhood. Let
5us average the 9 pixels in the neighborhood and replace p  by this average, and then do this for each pixel

in the image. This smooths the image in the sense that all pixel values that are very different from their
neighborhood averages will be replaced by the average and so the differences between the pixels will be
reduced. Figure 3.2 shows a 3x3 nbhd with the pixels numbered in the way that we will use them henceforth.

5 5The process of averaging replaces the pixel p  by the new P  that is computed as 

5 1 2 9 k=1,9 k k=1,9 kP  = [p  + p  + ... + p ] / 9 = (1/9)3  p  = 3  (1/9)p  (3.1)

Fig. 3.2. A 3x3 nbhd.

The Weighted Average on a Pixel Nbhd. In the averaging of Equation (3.1) the pixels
kwere all weighted the same by the value w  = 1/9 and all 9 of these weights added up to

unity. Here the weights 1/9 are all equal and we say that the average has equal weighting.
A weighted averaging of the pixels can use unequal weights to put more emphasis on
certain pixel values and less on others. Consider the following weighting. 

5 k=1,9 k kP  =3  w  p     (3.2)

k 5where w  = 1/10 for k � 5 and w  = 2/10 =1/5. This would count the middle pixel twice as much as any other
pixel and so it would have more influence in the weighting. All weights sum to unity as required.

It is convenient to put the weights in an array called a mask, of the same size as the nbhd, and to define
an operation for the weighted average. Consider the operation of a mask and nbhd shown below.
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1 2 3 1 2 3|w   w   w |  |p   p   p |

new 4 5 6 4 5 6 k=1,9 k kp  =    w   w   w     *   p   p   p     =  3  w  p     (3.3)

7 8 9 7 8 9|w   w   w |    |p   p   p |

We call this operation convolution. It leads to the terminology of convolution mask for the mask and
mask convolution for the operation. This operation is designated by the symbol *. In general, the mask and
neighborhood size are fixed at some pxq for any particular convolution. 

Mask Convolution on Images. To apply a weighted averaging over an entire image, the process starts at
the upper lefthand corner of the image and processes one pixel at a time via the mask convolution on the

newpixel's neighborhood. After the top left (first) pixel is processed to obtain a new output pixel value p , the
process then moves the nbhd to the right by one pixel and convolves the mask with that pixel's neighborhood

newto obtain an output pixel p . When the last pixel in a row of pixels has been processed, the mask is moved
back to the left side of the image down one pixel. Then the second row of image pixels is processed similarly.
This is repeated until all rows of pixels in the image {p(m,n)} have been processed. 

The pixels on the outer boundaries of the image need not be processed (the neighborhoods of these pixel
positions do not fit inside the image). Another method is to process all pixels, but on the boundary pixels to
use the convolujtion with only the mask and nbhd entries that intersect the image. Another technique is to
repeat the boundary pixels outside the boundaries sufficiently many times  to complete the pxq neighborhood
of the mask size.

new cntrThe most basic convolution mask is the identity operator, which yields the pixel value p  = f  on each
neighborhood. The pxq identity mask contains all entries of zero except the center, which is unity. For
example, the 3x3 identity mask operates on a 3x3 neighborhood via

1 2 3|0  0  0| |p  p  p |

new 4 5 6 (jP5) j 5 5  p   =   0  1  0       *  p  p  p   =  {E  (0)p } + (1)p   = p  (3.4)

7 8 9 |0  0  0| |p  p  p |

The central pixel is often weighted more than the others, and the others may be weighted unequally for
different degrees of smoothing. An example of weighted averaging convolution mask and its mask factor
(1/16) that forces the weights to sum to unity is

1 2 3|1  2  1| |p  p  p |

4 5 6 1 3 7 9 2 4 6 8   (1/16)  2  4  2       *  p  p  p    =  {p +p +p +p  + 2[p +p +p +p ] + 4p5}/16 (3.5)

7 8 9|1  2  1| |p  p  p |

Averaging masks that smooth lightly are

|0  1  0| |0  1  0| |1  1  1|
       (1/5)  1  1  1    (1/6)  1  2  1  (1/10)  1  2  1

|0  1  0| |0  1  0| |1  1  1|

 Figure 3.3. Original Lena.      Figure 3.4. Smoothed Lena.        Figure 3.5. Blurred Lena.
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Blurring Masks.  It is a sometimes useful effect to blur an image by oversmoothing it by averaging the
neighborhood pixel values not adjacent to the center pixel. Figure 3.3 shows the original lena256.tif while
Figure 3.4 shows the smoothed result obtained with the lefthand 3x3 mask of the three masks given above.
Figure 3.5 displays the image blurred with the mask given below as Equation (3.6a).

|1  1  1  1  1| |0  1  1  1  1  1  0| 
 1  0  0  0  1  1  1  1  1  1  1  1

   M = (1/16)  1  0  0  0  1   1  1  0  0  0  1  1
  1  0  0  0  1    M  =   (1/36)  1  1  0  0  0  1  1  (3.6a.b)

|1  1  1  1  1|  1  1  0  0  0  1  1
 1  1  1  1  1  1  1
|0  1  1  1  1  1  0|

The sum of all mask entries multiplied by the mask factor (1/36) in Equation (3.6b) should equal unity
to keep the output average brightness the same as in the original image. If the sum of the weights is greater
than 1 (respectively, less than 1) then the resultant image will be brighter (respectively, darker) than the
original image. Blurring can also be done with larger smoothing masks.

3.2 Smoothing with Medians and Trimmed Means

Medians and Alpha-trimmed Means.  We have already seen convolution masks that average, which is
one form of smoothing. This is useful for eliminating low level noise or giving skin a smooth look in a
photographic portrait. However, averaging is strongly affected by outlier pixel values, which is the "snake
swallowing the egg" (SSTE) syndrome. An outlier causes the average to be in error, and as the mask moves
to new centers nearby, the outlier remains in the new neighborhoods so that the outlier strongly influences
(erroneously) a block section of the image larger than the mask. A pxq mask maps an outlier into a (2p-
1)x(2q-1) block of erroneous values.

A well known method for avoiding the SSTE syndrome is to use the median (order statistics). For each
kpixel and neighborhood centered on it, we order the neighborhood pixel values p  from smallest to largest.

The indexing by order is designated by

j(0) j(1) j(pq-1)f  < f  < ... < f (3.7)

j(c)There are two ways to proceed here. The first is to take the middle pixel value, f , where j(c) is the
index of the pixel with central value, and select the new output value as

new j(c)g  = f (3.8)

This is the middle of all of the actual nbhd gray level values (the median). This is often a good way to remove
speckle (also called salt and pepper) noise, which appears as pixel size dots of dark or bright.

The median of a neighborhood is not always the value that best portrays the image information. For this
reason, better results are often obtained by using the "-trimmed mean. To obtain this value, we set " to be
1 or 2 or so, throw out the lowest " and highest " pixel values and average the remaining pq - 2" pixel values

newto obtain g .

Median processing does not blur the image. It preserves edges rather than smearing them as does
averaging. The "-trimmed median also has less blurring and spreading of edges. Thus, these are powerful
processes for smoothing noise from the image while preserving its features. 

Smoothing Images. Smoothing is done after an examination of the image reveals: i) salt and pepper noise
(speckle);  ii) short line noise such as small scratches; iii) any type of nonnegligible variations on areas that
should be smooth; iv) rough, blocky or zig-zaggy edges; or v) other types of noise that smoothing can
ameliorate. 
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Smoothing is usually done before edge detection or sharpening to attenuate the amplification of
variation done by those processes. Mild smoothing can often enhance an image. Median smoothing, also
called despeckling, changes the image the least (except for removing speckle) and will not damage the image.
Tools for processing images have smoothing capability, as do Matlab, XView and LView Pro.

Using the Tools for Smoothing. Here we actually show how to do mask convolution with the tools, but
we use the smoothing process as the example. Smoothing is the most fundamental type of image processing,
but we must be careful not to save a smoothed image over the original because it loses some of the
information in the image that can not be recovered by sharpening or any kind of processing of the smoothed
image. Sharpening, edge detection and other types of mask convolution can be done in the same way as
smoothing by designing an appropriate mask and then applying it to an image. 

1. Smoothing with Matlab: To apply a convolution mask with Matlab it sufficies to use the special
function imfilter(), which lets the user designate the image and specify the mask values. After running Matlab
and clicking in the Command Window to bring it into focus, the following commands smooth the image with
a mildly smoothing mask (also called a filter) that uses equal weighting (see Fig. 3.6 for the original and Fig.
3.7 for the results of this smoothing).

>> Im1 = imread('lena256.tif'); //read image into memory at Im1
>> imshow(Im1); //show image at Im1 on the screen
>> h1 = [1 1 1; 1 1 1; 1 1 1] / 9; //define convolution mask h1
>> Im2 = imfilter(Im1, h1); //filter image with mask h1
>> figure, imshow(Im2); //show filtered image as new figure

   Figure 3.6. The original lena256.tif.              Figure 3.7. The Matlab smoothed Lena.

                    

To demonstrate the use of Matlab to smooth with the median filter, we first add some salt and pepper
(speckle) noise to the image (Fig. 3.8) and apply the medfilt2() function to do median filtering (Fig. 3.9).

>> Im1 = imread('lena256.tif'); // load image into memory at Im1
>> Im2 = imnoise(Im1, 'salt & pepper', 0.25); // add noise on 25% of pixels
>> Im3 = medfilt2(Im2, [3 3]); // median filter on 3x3 nbhds of pixels
>> imshow(Im2); // show noisy image
>> figure, imshow(Im3); // show filtered image as new figure

      Fig. 3.8. Noisy lena256.tif. Fig. 3.9. Median filtered noisy image.
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3.3 Sharpening Images

Unsharp Masking. A process known as unsharp masking (taken from the photographic publishing
industry) first smooths an image and then the subtracts the smoothed image from the original image. The
smoothing yields an image whose variation (rates of change) in gray levels across the spatial dimensions is
lowered. Smoothing actually spreads out the changes from pixel to pixel at all rates into more gradual
changes in grayscale across the dimensions m and n (x and y). When the smoothed image is subtracted, it
leaves the more rapid variations (changes at a higher rate). The resultant image appears sharp, that is, the
edges are narrower and have greater contrast on each side. The average gray level is reduced by subtraction,
so we need to multiply the original image by a factor ß > 1.0 to increase its intensity, or brightness power.
We first increase the brightness power by multiplying the identity convolution mask by the gain ß > 1.0,
which is called boosting the original. Boosting is shown in Equation 3.9.

|0  0  0  0  0| |0  0  0  0  0|
 0  0  0  0  0  0  0  0  0  0

   (ß)  0  0  1  0  0     =  0  0  ß  0  0 (3.9)
 0  0  0  0  0  0  0  0  0  0
|0  0  0  0  0| |0  0  0  0  0|

Then we subtract an averaging mask that smooths/blurs the image. Using a 5x5 mask example, the resulting
unsharp masking convolution mask is obtained via

  |0  0  0  0  0| |1  1  1  1  1| |-1  -1    -1      -1   -1|
   0  0  0  0  0  1  1  1  1  1  -1  -1    -1      -1   -1
   0  0  ß  0  0     - (1/26)  1  1  2  1  1    = (1/26)  -1  -1  26ß-2  -1   -1 (3.10)

 0  0  0  0  0  1  1  1  1  1  -1  -1    -1      -1   -1
  |0  0  0  0  0| |1  1  1  1  1| |-1  -1    -1      -1   -1|

   Fig. 3.10. Orginal shuttle.      Fig. 3.11. Smoothed shuttle.      Fig. 3.12. Unsharp masked shuttle.

    
    
    
    
  

A gain ß of approximately 2.0 is usually satisfactory, but the best value depends upon the average
brightness power. We used $ = 2 in Equation 3.10. Figure 3.11 shows the original shuttle image, while Figure
3.11 shows the smoothed version that was subtracted from the boosted original (ß = 2). Figure 3.12 presents
the unsharp-masked result. While many sharpening methods have been developed, this one remains one of
the very best.

Directional Derivatives.  We have seen that unsharp masking by subtracting a smoothed image is an
effective way to sharpen an image. The underlying process of sharpening must make edges more exaggerated,
that is, thinner with a greater difference between the darker and lighter pixels along the edges. To detect the
edges, it is necessary to obtain the differences in each neighborhood along the horizontal (y), vertical (x) and
two diagonal (y = -x and y = x) directions. Let a neighborhood of (m,n) have the values

| f(m-1,n-1)  f(m-1,n) f(m-1,n+1) |
  f(m,n-1)  f(m,n) f(m,n+1)
| f(m+1,n-1)  f(m+1,n) f(m+1,n+1)|
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Figure 3.13 displays a sharp edge, while Figure 3.14 presents a smooth edge. The first can be considered
a sharpening of the second and likewise the second can be considered to be a smoothing of the first. Edges
in real world images are usually wider than the one shown in Figure 3.13.

           Figure 3.13. A sharp edge.           Figure 3.14. A smooth edge.

On this fixed 3x3 (or any fixed pxq) neighborhood centered on any pixel position (m,n), the differences
in the various directions are

Mf(x,y)/My = [f(m,n+1) - f(m,n-1)]/2 (3.11a)

Mf(x,y)/Mx = [f(m+1,n) - f(m-1,n)]/2 (3.11b)

Mf(x,y)/Mu = [f(m+1,n+1) - f(m-1,n-1)]/2 (3.11c)

Mf(x,y)/Mv = [f(m-1,n+1) - f(m+1,n-1)]/2 (3.11d)

where u is in the direction along the line y = x and v is the direction along the line y = -x.

Masks that produce these differences under convolution (ignoring the 1/2 factor) are

| 0  0  0| |0 -1   0| |-1  0  0|    | 0  0  1|
 -1  0  1  0  0   0    0  0  0     0  0  0
| 0  0  0| |0   1  0| | 0  0  1|   |-1  0  0|

More effective differencing masks average more than a single difference of pixels to mitigate errors due
to a noisy pixel. The Prewitt operators are

|-1  0  1| |-1 -1 -1| |-1 -1  0| | 0  1  1|
 -1  0  1   0  0  0  -1  0  1  -1  0  1
|-1  0  1| | 1  1  1| | 0  1  1| |-1 -1  0|

More effective yet are the Sobel operators that weight the key differencing pixels more. They are

     6      7      `       b
|-1  0  1| |-1 -2 -1| |-2 -1 0| | 0 -1 -2|
 -2  0  2   0  0  0  -1  0 1    1  0 -1
|-1  0  1| | 1  2  1| | 0  1 2| | 2  1  0|

After convolution with all four difference operators, the edges will be light lines on a dark background
in four different images. These can be thresholded to bi-level images of black and white and then combined
via use of the maximum at each pixel.
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Laplacian Masks.  The Laplacian sums the squares of the second derivatives via

L f(x,y) = M f(x,y)/Mx  + M f(x,y)/My (vertical and horizontal) (3.12)2 2 2 2 2

Recalling that the second derivative can be approximated by the difference of two derivatives at two adjacent
points, the second derivatives become

M f(x,y)/Mx  = {[f(m+1,n) - f(m,n)]/*  - [f(m,n) - f(m-1,n)]/*} / * =2 2

{[f(m+1,n) - 2f(m,n)] + f(m-1,n)} / * (3.13)2

M f(x,y)/My  = {[f(m,n+1) - f(m,n)]/*  - [f(m,n) - f(m,n-1)]/*} / * =2 2

{[f(m,n+1) - 2f(m,n)] + f(m,n-1)} / * (3.14)2

The 3x3 Laplacian mask is therefore the sum of the two second differencing masks, which is

|0  1  0| |0  0  0| |0  1  0|
 0 -2  0    +  1 -2  1    =  1 -4  1          (horizontal and vertical derivatives) (3.15)
|0  1  0| |0  0  0| |0  1  0|

when * is ignored (* = 1 = * ). Strangely, the literature calls the Laplacian the negative Laplacian.2

 |0  1  0| | 0 -1  0| |1  1  1| |-1 -1 -1|
     (-1)  1 -4  1       =  -1  4 -1  ,   (-1)  1 -8  1    =  -1  8  -1 (diagonals added) (3.16a,b)

|0  1  0| | 0 -1  0| |1  1  1| |-1 -1 -1|

newNote, for example, that both the negative and positive Laplacian processes produce an output g  near
zero (very dark) when all pixels on the matching "plus-shaped" neighborhood are approximately the same
(the mask entries sum to zero). On the other hand, the negative Laplacian produces a positive output only
when the central pixel value is greater than the average of the others. If the central pixel value is less than
the average of the others, then the negative result is truncated to zero (black). Equation (3.16a) uses only the
vertical and horizontal differences while Equation (3.16b) uses differences in all four directions.

Hedged Laplacians.  Figure 3.15 uses the negative 3x3 Laplacian given in Equation (3.16b) on the original
"Shuttle", while Figure 3.16 shows the effect of using the hedged Laplacian mask of Equation (3.17).

|-1  -1  -1| |0  0  0| |-1 -1 -1|
 -1   9  -1    =  0  1  0      +  -1  8 -1 (3.17)
|-1  -1  -1| |0  0  0| |-1 -1 -1|

 Figure 3.15 Laplacian on shuttle.tif.                                    Figure 3.16. Hedged Laplacian on shuttle.tif.
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Hedged Laplacians add the negative Laplacian processed image back onto the original image. This is
actually the subtraction of the Laplacian from the original image, which is a powerful technique as shown
in Figure 3.15. Note that the sum of the weights in the hedged Laplacian is equal to unity, so the average gray
level will remain the same as in the original image. While the image in  Figure 3.15 is sharp, the small
differences due to random effects (noise) are exaggerated (a disadvantage of Laplacian and other differencing
methods). A milder hedged Laplacian mask is

 | 0 -1  0| |0  0  0| | 0 -1  0|
 -1  5 -1    =  0  1  0     +  -1  4 -1 (3.18a)
 |0 -1  0| |0  0  0|   | 0 -1  0|

     Other interesting hedged Laplacians are

|-1  -2  -1| |0  0  0| |-1  -2  -1|
 -2 13  -2   =  0  1  0     + -2  12  -2 (3.18b)
|-1  -2  -1| |0  0  0| |-1  -2  -1|

|-1  -1    -1   -1   -1|
 -1  -1    -2   -1   -1
 -1  -2    29   -2  -1    =    ? (3.18c)
 -1  -1    -2   -1   -1
|-1  -1    -1   -1   -1|

Edge Enhancement.  A cross-section of an image shows edges as rises in Figure 3.18 (here the dark side
is on the left and the light side is on the right). Figure 3.19 shows the first and second derivatives of the
moderate edge and the effect of adding the original to the (negative) Laplacian, which is actually subtracting
the Laplacian from the original (see the bottom graph). This is analogous to unsharp masking, where the
smoothed edges (see the center graph of Figure 3.17) are subtracted from the original edges to sharpen them,
which yields a result similar to the bottom graph of Figure 3.18.

Edges are enhanced by unsharp masking and hedged Laplacians, but can also be done by thresholded
Laplacians and rule-based processing. Laplacians perform edge detection, which is not the same as edge
enhancement.

Thresholded Laplacians. A variation on the Laplacian processing is to check the value of each Laplacian
against a fixed threshold T. If the Laplacian is too large (larger than the threshold), then it is likely to be
erroneous due to noise and should be suppressed. In this case the neighborhood average is taken to be the

newnew pixel value g . On the other hand, if the Laplacian is low (lower than the threshold), then the new pixel
newvalue g  is enhanced by adding a proportion $ of the Laplacian to it. The algorithm is 

c (k=1,r) kif L f(m,n) > T then g  = (1/r)E  f   (3.19a)2

celse g  = f(m,n) + ßL f(m,n)  (3.19b)2
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           Figure 3.17 Edge cross-sections.       Figure 3.18 Subtracting the Laplacian.

The disadvantages of Laplacian operators are that they give no direction for the edge, they produce
double edges and they are extra sensitive to noise (they amplify noise). Derivatives and differences are
sensitive to noise and second differences are even more sensitive in that small errors in the input data can
cause large errors in the output data. Noise should be reduced before edge detection is performed.

The gradient can be used in situations where it is important to know the direction of the edge or line
segment. The gradient and direction 1 can be found per 

(Mf(x,y)/Mx, Mf(x,y)/My) = (f(m+1,n) - f(m-1,n), f(m,n+1) - f(m,n-1)) (3.20)

1 = atan(Mf(x,y)/My / Mf(x,y)/Mx) (3.21)

5Rule-based Simultaneous Sharpening and Smoothing. On a 3x3 nbhd of pixel p , we first compute
the 9 differences

1 5 9 5d(1) = p  - p , . . .,   d(9) = p  - p     (3.22)

To obtain a representative value for these 9 differences, we take their 1-trimmed mean by throwing out a
single maximum and a single minimum values and averaging those remaining. The resulting : is resistant

1 2to outliers. We use two thresholds T  and T  where the latter one is the greatest. The rules are

1 new 5if  (: < T ) then p  =  p  + ":; (3.23a)

2 new 5else if  (: > T ) then p  =  p  + $:; (3.23b)

Equation (3.23a) smooths while Equation (3.23b) exaggerates the difference between a center pixel and its
neighbors. Otherwise there is no change. The result is a smoothing of relatively smooth pixels and a
sharpening of those that differ sufficiently from the nbhd trimmed mean.

Sharpening with the Tools. We have already seen how to use Matlab to perform smoothing with mask
convolution. We do sharpening with the same type of mask operations (filtering) but use different masks as
described above for unsharp masking, Laplacian and hedged Laplacian processes. We present examples
below.

1. Matlab Sharpening: To apply a sharpening convolution mask with Matlab it sufficies to use the
special function imfilter() again as we did for smoothing. After running Matlab and clicking in the Command
Window to bring it into focus, the following commands smooth the image with a mildly smoothing mask
(also called a filter). Figures 19 and 20 show the before and after images.
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>> Im1 = imread('lena256.tif''); //read image into memory at Im1
>> imshow(Im1); //show image at Im1 on the screen
>> h1 = [-1  -1 -1 //mask elements sum to unit

                            -1 12 -1 // so to not change average gray level of image
                            -1 -1 -1] / 4; //define sharpening convolution mask h1

>> Im2 = imfilter(Im1, h1); //filter image with mask, store at Im2
>> figure, imshow(Im2); //show filtered image at Im2 as new figure

  Figure 3.19. The original lena256.tif.           Figure 3.20. The Matlab sharpened lena256.
                                          

                    

3.4 Detecting Edges and Lines

Line Detection.  Lines are extended edges. A line drawing can be developed from an image {f(m,n)} by
convolving it with an edge detector such as the Laplacian or the four Sobel operators. These yield light lines
on a black background, so we invert by putting g(m,n) = 255 - f(m,n) to achieve black lines on a white
background. We can also use a threshold to transform the image to black and white only.

A problem is that the lines are too thick (edge detection thickens the lines). Other problems include
broken lines and noise. It is useful to remove noise before processing to detect lines, but this should not be
done by averaging because this spreads and weakens the edges. The thinning of lines after line detection is
often necessary, as is the removal of spurs sticking out from the lines at various angles. The processes of
thinning lines and trimming spurs from them is covered in a later unit.

Line detection is a type of edge detection. Consider a horizontal line segment in an image. If the pxq
neighborhood straddles a horizontal line, for example, that line could be detected if the pixels along the
center row have a higher average than those of the other rows. Thus

|-1  -1  -1| |-1  -1  -1  -1  -1|
  2   2   2   2   2   2    2   2
|-1  -1  -1| |-1  -1  -1  -1  -1|

are horizontal line detectors. The larger mask is more immune to noise. Similarly detectors of vertical, -45°
and 45° lines are

  |-1  2 -1| |-1  2 -1| |-1 -1  2| |-1 -1 -1 -1  4|   | 2 -1 -1| |  4 -1 -1 -1 -1|
   -1  2 -1  -1  2 -1  -1  2 -1  -1 -1 -1  4 -1    -1  2 -1   -1  4 -1 -1 -1   
  |-1  2 -1|  -1  2 -1 | 2 -1 -1|  -1 -1  4 -1 -1   |-1 -1  2|   -1 -1  4 -1 -1

 -1  2 -1  -1  4 -1 -1 -1     -1 -1 -1  4 -1 
 |-1  2 -1| | 4 -1 -1 -1 -1| | -1 -1 -1 -1  4|

We can now answer an important question: is it possible to detect lines in all directions with a single
mask? Upon adding the 3x3 horizontal and vertical line detector masks first to obtain a horizontal-vertical
line detector, and then adding the 3x3 diagonal line detector masks second to obtain a diagonal line detector,
we obtain the respective two sums
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|-2  1  -2|    |1 -2  1|
  1  4   1   -2  4 -2
|-2  1  -2|    |1 -2  1|

The sum of these two masks yields a mask that detects edges in the horizontal, vertical, -45° and 45° diagonal
directions, which is

|-2  1  -2| | 1 -2  1| |-1 -1 -1|
  1  4    1   +  -2  4 -2    =  -1  8 -1 (3.24)
|-2  1  -2| | 1 -2  1| |-1 -1 -1|

Thus we have proved that the Laplacian mask on the righthand side of Equation (3-24) detects edges
in all directions (quod erat demonstrandum, or q.e.d., as the logicians say in Latin).

Sobel Edge Detection. Certain mask operators weight key differencing pixels more and are more effective
than certain other edge operators. The Prewitt operators were previously defined to be

|-1  0  1| |-1 -1 -1| |-1 -1  0| | 0  1  1|
 -1  0  1   0  0  0   -1  0  1  -1  0  1
|-1  0  1| | 1  1  1| | 0  1  1| |-1 -1  0|

The next set of mask edge operators are the Sobel operators that we defined previously and that are more
powerful and useful than those of Prewitt (they weight the central differences more).

|-1  0  1| |-1 -2 -1| |-2 -1 0| | 0  1  2|
 -2  0  2   0  0  0     -1  0  1  -1  0  1
|-1  0  1| | 1  2  1| |  0  1 2| |-2 -1  0|

Note that the sum of the entries in each differencing mask is zero. This means that if a neighborhood
consists of pixels of constant value a, then the new pixel has value

new (j=0,pq-1) j j (j=0,pq-1) j (j=0,pq-1) jg  = 3  h f   =  3  h a = a{3  h }  = a{0} = 0 (3.25)

Thus pixels with near constant neighborhood values are changed to near black (near 0). If the average
of the pixels in the positive direction is greater than that in the negative direction (both taken from the

newcenter), then the new pixel value g  will be brighter and contrast against the darker background. If the
average pixel value in the negative direction is greater than that in the positive direction, then the new pixel
value computed will be negative, and will be truncated to zero and so will be black (0). For L levels of
grayscale, all computed pixel values are bounded by 0 and L-1 (usually 0 and 255). Thus each difference
(edge detecting) operator works in only one direction.

After convolution with all four difference operators, the edges will be light lines on a dark background
in four different images. These can be thresholded to bi-level images of black and white and then combined
via use of the maximum at each pixel.

Sobel Edge Detection with Matlab. The function edge() is what we use in Matlab to apply different edge
detection methods such as, Sobel, Canny, Prewitt, Laplacian, etc. To apply Sobel edge detection, the
following command line is used.

>> Im_out= edge(Im_in, 'sobel', threshold, direction); 

The second parameter in the function is a string that specifies the Sobel method. The third parameter,
threshold, is numerical to specify the sensitivity threshold for the Sobel method. All edges that are not
stronger than threshold will be ignored. If threshold is not specified by the user when the function is called,
it will be done automatically. The fourth parameter, direction,  specifies the direction of detection for the 
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Sobel method. The parameter direction is a string specifying whether to look for 'horizontal' or 'vertical'
edges, or 'both' (the default). 

With the default settings, the function can be simply used as Im_out = edge (Im_in, 'sobel', threshold),
Im_out = edge(Im_in, 'sobel', ‘direction’) or Im_out = edge(Im_in, ‘sobel’). The execution of following code
gives the edges shown in Figure 3.21. A threshold of 0.05 worked best for this example.

>> Im1=imread('shuttle.tif '); //load image into memory at Im1
>> Im2=edge(Im1, 'sobel', 0.05); //Sobel edge detect and store at Im2
>> imshow (Im2); //show image at Im2 on screen

The Canny Edge Detector. The Canny method employs a Guassian low pass filter first to smooth the
image before edge detection. The standard deviation F is an input parameter that determines the width of the
filter and hence the amount of smoothing. Then the gradient vector (the magnitude and direction of the gray
level change) at each pixel of the smoothed image is calculated. Next, non-maximal suppression and
hysteresis thresholding are applied, where non-maximal suppression thins the wide ridges around local
maxima in gradient magnitude down to edges that are only one pixel wide. Hysteresis thresholding uses two

low highthresholds, T and T . The higher one is used to mark the best edge pixel candidates. It then attempts to
lowgrow these pixels into contours by searching for neighbours with gradient magnitudes higher than T  for

connecting together with lines.

           Figure 3.21. Sobel results on shuttle.

Canny Edge Detection with Matlab. We still use
the edge( ) function here, but apply Canny edge
detection by substituting canny in place of sobel. We
call it with the following parameter settings.

  >> Im_out = edge(Im_in, 'canny', threshold, sigma)

While the second parameter specifies the Canny
method,  threshold specifies sensitivity thresholds
for the Canny method. The value of threshold itself
is taken as the high threshold, and 0.4*threshold is
used for the low threshold. If you do not specify
threshold, low and high thresholds will be chosen
automatically. The parameter sigma is used as the
standard deviation of the Gaussian filter. The default
sigma is 1 and the size of the filter is chosen
automatically, based on sigma.

Also, we can leave threshold or both threshold and sigma unspecified as shown below.

>> Im_out = edge(Im_in, 'canny', thresh);
>> Im_out = edge(Im_in, 'canny');

The following Matlab script uses threshold = 0.1 and F = 0.6 to yield the image in Figure 3.22, which
is displayed below. Use Matlab Help | Image Processing | Toolbox | Functions for help on parameters.

>>Im1=imread('shuttle.tif '); //load image into memory at Im1
>>Im2=edge(Im1, 'canny', 0.1, 0.6); //Canny edge detect, store at Im2
>>imshow (Im2); //show image at Im2 on screen
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   Figure 3.22. Canny results on shuttle.tif.

Edge Detection with Pointwise Spatial Frequency. The
pointwise spatial frequency (psf) of a pixel f(m,n) in an
image is computed on a 3x3 nbhd as 

k= -1,1) (j= -1,1)   psf(m,n) = 3( 3  |f(m+j,n+k) - f(m,n)|  (3.26)

This is the sum of the magnitudes of differences between
the center pixel and each of the other nbhd pixels on this
nbhd. The psf can be similarly defined on QxR nbhds for
Q and R odd integers.

For an image {f(m,n)} in which we want to detect
edges, the psf method computes the psf values at each

maxpixel, finds the maximum value p  of all psf’s and
standardizes the psf image by multiplying each psf value

maxat (m,n) by the factor c = (255/p ). The resulting image
will have values from 0 to 255. Next, the psf values are compared to a threshold T, say 10, and all values
below T are set to 0, which blanks out the noise before the next step of histogram equalization. After that,
we threshold again to form a black and white image. Figure 3.23 is the original and Figure 3.24 is the result
of standardizing to [0, 255]. The image in Figure 3.25 is the final result of the processing described above
and Figure 3.26 is the inverse of Figure 3.25, which shows the black lines on a white background.

   Fig. 3.23. Original building.tif.          Fig. 3.24. PSF of building.tif.

       Fig. 3.25. Thresholded hist. eq. image.   Fig. 3.26. Inverse of processed image.
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Thinning with Matlab. Edges often are thicker than we desire so we apply a thinning algorithm. The theory
of thinning will be discussed in Unit5, but we show the results of it here to thin the edges of the psf image
in Figure 3.31. First we convert the image to a black and white one with the function im2bw(). Then we use
the morphological function bwmorph() to thin the image. The Matlab code is given below.

>> I1 = imread('building.tif'); //read in original building image
>> Ibw = im2bw(I1, 0.11); //convert I1 to black & white as Ibw, threshold is 0.11
>> figure, imshow(Ibw); //show black & white image Ibw
>> Ibw2 =  bwmorph(Ibw, 'thin'); //thin image Ibw with black & white morphing function
>> figure, imshow(Ibw2); //show thinned image

Figure 3.27 shows the black and white conversion of the image in Figure 3.24. This is necessary because
the function bwmorph() only works on black and white images. Figure 3.28 displays the result of the
thinning.

  Figure 3.27. The black & white image.    Figure 3.28. Result of thinning black & white image.

Competitive Fuzzy Edge Detection. Fuzzy logic can also be applied on image edge detection. Here we
introduce a fuzzy classifier, which first classifies image pixels as different kinds of edge pixels or non-edge
pixels. It then applies competitive rules on them according to their classification so that not all the edge
pixels are output as edges, which thins the edges. This fuzzy classifier, is called the competitive fuzzy edge
detector. 

The competitive fuzzy classifier is made up of the fuzzy classifier part and the rule-based competition
part. In the fuzzy classifier, there are six classes:  background, vertical edge, horizontal edge, two kinds of
diagonal edge classes and a speckle edge classes. Either a Gaussian or an extended Epanechnikov function
[Liang and Looney] is used for each class as its fuzzy set membership function. The fuzzy truth for a pixel
to be a member of a class is given by the evaluation of its function on the vector of features for that pixel.

Each pixel determines a vector of differences (d(1), d(2), d(3), d(4)) in the four directions across that
pixel in its 3x3 nbhd. The vertical, horizontal, and two diagonal differences are

2 5 8 5 1 5 9 5d(1) = |p  - p | +|p  - p |, . . . ,  d(4) = |p  - p | +|p  - p |    (3.27)

A feature vector is evaluated by putting it through each fuzzy set membership function that is centered on
a prototypical difference vector for that class. Thus each pixel has a fuzzy truth value for each class and the
maximum fuzzy truth determines the class of that pixel.

In the competition, neighboring edge pixels in the same direction compete with each other in directional
edge strength. To be a black edge pixel in the output image, a classified directional edge pixel must have
larger edge strength on its edge direction in comparison to its neighbors on that direction. If an edge pixel
does not win the competition, then it will be output as white (background). The result is a black line drawing
on a white background.
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Speckle edge pixels are mapped to black directly without competition. This may introduce isolated
single/double-pixel speckles. A despeckler operates on the image after all other processes have been
completed so as to remove these speckles. See [Lily Liang and Carl Looney, “Fuzzy competitive edge
detection," Applied Soft Computing 3(2), September, 2003, 123 - 137] for complete details.

Fuzzy Classification
Step1:   set parameters for the fuzzy set membership functions; open the image file;
Step2: for each pixel in the image

     compute graylevel change magnitudes in the 4 different directions
     construct the pixel feature vector from those magnitudes
     for each class

compute the fuzzy truth of the feature vector
     determine maximum fuzzy truth and record pixel class for that pixel

Edge Strength Competition
Step1:  for each pixel in the image

      if (edge class) then apply competitive rule and record pixel value
      if (background class) then write white pixel
      if (speckle edge class) then write black pixel

Despeckling
Step1: for each pixel in the image

      if (pixel is isolated single/double speckle) then change to white. 

Figure 3.30 is the original peppers image,  which presents a difficult edge detection problem. The results
of the competitive fuzzy edge detection method are shown in Figure 3.31 and the results of the Canny method
with the threshold set at 0.04 and F set at 0.5 are shown in Figure 3.32. The CFED method took about 1/10
of the time that the Canny method took.    

Fig. 3.30. Original peppers.          Fig. 3.31.  CFED peppers results.   Fig. 3.32 Canny peppers results.

3.5 Exercises

 3.1 Is it possible to construct a 5x5 mask that detects a weak (smooth) vertical edge that is dark on the left
side and light on the right side, but that doesn't use the middle column (it consists of zeros)? If so, explain
how it works.

 3.2 Develop an algorithm whereby a pixel is smoothed if all pixels in its neighborhood are close in graylevel
to its graylevel but is sharpened if a majority of the neighborhood pixels differ significantly. Show by
examples of nbhds that both smoothing and sharpening can be done on one pass by applying rules.
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 3.3 Discuss the effect of unsharp masking when ß > 1 and the smoothing mask to be subtracted is multiplied
by " = ß - 1. What happens as ß increases upward and past 2.0?

 3.4 What is the result of adding a sharpening and a smoothing mask to obtain a convolution mask for
processing? Justify your analysis.

 3.5 Show the 5x5 mask that is the sum of line detector masks in the horizontal, vertical and diagonal
directions.

 3.6 Complete Equation (3.18c). Explain the effects of each of the two parts.

 3.7 Invert shuttle.pgm and then smooth it lightly before detecting its edges. Show the results.

 3.8 Threshold the image building.tif to convert it to black and white only. Try to get good line detection by
varying the threshold. Show the results.

 3.9 Write a simple program in C that performs mask convolution (see Appendix 3.B). Test it by running the
hedged Laplacian mask of Equation (3.17).

3.10 Perform unsharp masking on shuttle.tif to sharpen it by entering a single mask into Matlab. Adjust the
parameter to get the best possible result with this method.

3.11 What effect does ß have (try a higher and lower value than ß = 2) on unsharp masking? What effect does
the extent of smoothing have (light, medium or strong)? Experiment with these and describe the results.

3.12 Describe an overall method, i.e., methodology of processes, to remove noise, detect edges and convert
to a line drawing an input image. Implement this method on building.tif.


