
Unit 4. Frame Processes

4.1 Why Frame Operations are Needed

There are three basic reasons for operations on two or more frames (images). First, there may be
multiple images of the same scene that each contains noise. By averaging these frames pixelwise into a single
one, the noise is reduced and the details are strengthened. Other methods of combining them are possible,
such as using the pixelwise medians or other typical or representative values for each pixel. An example of
this type of situation would be the combination of multiple ultrasonic images of the same object into an
image that has less noise and more detail. Other examples can be found in electron microscopy and medical
imaging systems.

Second, there may be available images taken in different bands of visible light or infrared. Although the
scene is the same, each image is different because different wavelenghts of light are absorbed or reflected
by the different objects in the scene. By adding, subtracting, taking ratios, etc., we can process these multiple
images from multiple spectral bands into a single image may better expose certain features. 

Examples of the second type of fusion arise when cameras aboard aircraft or satellites are equipped with
filters that each passes a particular band of wavelength. The Landsat satellites that orbit the earth take
pictures for detecting the presence of crops, minerals, and other land uses. Other satellites, such as the GOES,
gather images that are used for weather monitoring and prediction. Orbiting satellites scan every square mile
of the earth regularly to detect frost, analyze crop yields, detect the formation of storms, etc. The earth
images taken by satellite are in different optic bands or may be from high resolution synthetic aperture radar.

Another example of the second type uses hyperspectral images that are taken at the same time from the
same point in time and space but in several different short bands of wavelength. The AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) captures over 200 images in different bands. Each pixel has an
intensity in each of these bands, so a graph can be made of the intensity in each band, which is called a
signature for that pixel. A pixel may cover a square meter or a few square meters and so its intensities in the
different bands should show different materials on the ground and its signature should show that mixture.

The third type of frame processing is for special purposes, such as differencing two consecutive frames
from a surveillance video camera to detect motion (if any objects have moved). Other processes remove or
add objects to a scene or superimpose features such as texture.

4.2 Frame Registration for Image Fusion

Translational Misalignment. While two images may contain the same scene, they may not be exactly
identical. The second may be shifted leftward, rightward, upward or downward one or more pixels or a
combination of these shifts. Such a translation of one image from the other is the simplest type of difference.
When we register one (input) image with respect to the other (base) image, we find the x and y shifts that
yield the best match according to some criterion. In other words, we shift an image up and down, left and
right with respect to another one to align them so that the total pixel differences are the smallest in some
sense. This does not work for more complex differences between the images. For this simple misalignment,
we can adjust the input image by shifting it in the x and y directions until an error measure is minimized. One
useful error measure computes the pixelwise squared difference of the two images to yield a difference image

diff in basef (m,n) = [f (m,n) - f (m,n)]  (4.1)2

Upon summing these over m and n we obtain the sum-squared error, which may be rather large for
images out of alignment. Thus we standardize closeness of fit by using the relative root summed-squared
error (RRSSE)

(n=0,N-1) (m=0,M-1) in base (m=0,M-1) base0(j,k) = {3 3  [f (m,n) - f (m-j,n-k)]  / 3  [f (m,n)] }   (4.2)2 2 1/2
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If two images are aligned exactly, then there may be differences due to noise, which is usually zero-
mean Gaussian noise. However, the sum-squared error under perfect alignment is a measure of the relative
power of the noise. This is analogous to the squaring of a voltage v to obtain the power P in watts per ohm
resistance via P = vi = v(v/R) = v /R = v , where R = 1 ohm and i is the current. As the misalignment2 2

0 0increases, this alignment error adds to the noise power. When j = j  and k = k  such that the RRSSE is
minimal, then this shift provides the optimal alignment in the mean-square sense. Figure 4.1 shows the
translational misalignment of two simple images.

 Figure 4.1. Translational misalignment.

in baseLet f (m,n) be the input and let f (m,n) be the base
image. The two images may have been taken by the same
satellite at the same time in different wavelength bands, at
different times by the same satellite, or even on different days.
The images could be two medical images taken by two
different machines or be taken by the same one at two different
times. One could be an X-ray image before the injection of
dyes and the other one could be an X-ray taken after the
injection of dyes. With small distortions allowable, the
differences are shifts. A more substantial example is a
sequence of X-rays that must be aligned to show the sequence
of heart beats. Most registration problems, however, are more
than translational misalignment.

Registration for Nonlinear Misalignment. Two images of
the same scene may have more serious differences. They may
have been captured from different spatial points or with
different magnifications, in which case the first image is a

nonlinear distortion of the base image. This is the most difficult type of registration problem. To register the
input image with the base image, we can use polynomial transformations of four pairs of points where each
pair contains one point in the input and one corresponding point in the base image where each point in the
pair represents the same physical point in the scene. More point pairs require higher degree polynomials that
introduce more local optima and “wiggles” that could distort the mapping. Figure 4.2 displays a situation
where four points are mapped into four points in another image in a nonlinear fashion.

1 1 1The two equations for each of 4 pairs of points makes 8 linear equations in the 8 unknowns a , b , c ,
1 2 2 2 2 outd , a , b , c , d  (mn = p is a coefficient here). The output image {f (m~,n~)} is the registered version of the

input image (registered with respect to the base image). Figure 4.2 shows a polynomial mapping of four
points.

         Figure 4.2. A 4-point polynomial mapping.

Given the four corresponding pairs of
points in the two images, we obtain a mapping

1 1 4 4(m ,n ),...,(m ,n ) from the input to the base
image that maps each (m,n) to (m ,n ) in the~ ~

output image via

1 1 1 1m  = a m + b n + c mn + d~

2 2 2 2n  = a m + b n + c mn + d   (4.3a)~

Substituting in the four pairs of points we obtain the following 8 equations.

1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 2m  = a m  + b n  +c m  n   + d , n  = a m  + b n  + c m  n  + d   (4.3b)~ ~
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2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2m  = a m  + b n  +c m  n   + d , n  = a m  + b n  + c m  n  + d   (4.3c)~ ~

3 1 3 1 3 1 3 3 1 3 2 3 2 3 2 3 3 2m  = a m  + b n  +c m  n   + d , n  = a m  + b n  + c m  n  + d   (4.3d)~ ~

4 1 4 1 4 1 4 4 1 4 2 4 2 4 2 4 4 2m  = a m  + b n  +c m  n   + d , n  = a m  + b n  + c m  n  + d   (4.3e)~ ~

Registration with Matlab. Matlab has functions that can be used to perform nonlinear registration of the
input image with a base image. The most important function is cpselect() that lets the user select the pairs
of control points, where the arguments of the function are the names of the input and base images. When we
enter this at the command line in the command window of Matlab, the Control Point Selection Tool window
comes up (see Fig. 4.8 below) with its four sub-windows: the two input and base detail windows on top and
the two input and base overview windows on the bottom. The input window is on the left in both cases. The
size of the detail images can be changed by selecting at the top and the scroll bars can be used to move the
image parts. There is also a hand-slider  (like Adobe Acrobat Reader uses) for clicking on and sliding the
images for better viewing. Checking the Lock Ratio box locks magnification of the input and base images
so that changing one changes the other proportionately.

To register the input image with the base we select four points (four here, but we could select more) in
the detail images, one point at a time either in the input or base image and for each point selected, we must
next select one that corresponds to the same physical point in the scene in the next window. Thus we obtain
four pairs of corresponding points. To begin selecting the points, we click the toolbar (at the top, under the
menu bar) on the button that contains a circled plus sign (r). Then Matlab goes into the point selection mode
and we can click on a feature point in the input image and then click on a point in the base image that is the
same feature point to create a pair. We select four pairs here, but we could select more. It is difficult to select
exactly corresponding points in small images unless we first magnify them. 

The user must now save the control points with names for the input and base image data by selecting
File on the menu bar, and then Save Points to Workspace. In the ensuing pop-up box the user types in the
names for the saved points, which are called input-points and base-points by default. We then select the
Structure with all points square and enter the name of the data structure that holds the point: we use the
default, which is cpstruct. Next, we click on the OK button to close the pop-up menu and continue with the
nonlinear transformation to register the input image with the base image. An example is shown below.

A Matlab Registration Example. We first bring up Matlab and then we will type in the appropriate
commands. We resize the original image to serve as the base image with a different size and we also rotate
the original image to form the input image.

>> Iorig = imread(!shuttle.tif'); // read in original shuttle image as Iorig
>> Ibase = imresize(Iorig, 1.25); // resize it to serve as base image
>> Input = imrotate(Iorig, 15, !bilinear'); // rotate 15 deg., bilinear interpolate for input im.
>> cpselect(Input(:,:,1), Ibase); // call Control Point Selection Tool

The Control Point Selection Tool window comes up here. We select 4 pairs of control points as
described in the above discussion and close the menu. Figure 4.3 shows the original image shuttle.tif and
Figure 4.4 displays the rotated image that serves as the input image to be registered with the base image.
Figure 4.5 is the resized base image that is 25% larger than the original. We now define a transformation tht
we give the name mytform that uses the control points. To do this we use the function cp2tform().

>> mytform = cp2tform(input_points, base_points, ‘projective’); // create transf. w/control points
>> Ireg = imtransform(Input, mytform); // transf. input image w/mytform
>> imshow(Input); // show input image, Fig. 4.4
>> figure, imshow(Ibase); // show base image, Fig. 4.5
>> figure, imshow(Ireg); // show registered image, Fig. 4.6
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When we register the input image with respect to the base image we obtain the image shown in Figure
4.6. It transforms to be somewhat like the base image, but it is not transformed exactly because of error in
the points selected. Therefore, we will register the image of Figure 4.6 again with respect to Figure 4.5. This
time we obtain Figure 4.7, which appears to be a reasonable registered image.

The first registration did an approximate job, but we now register this result again with the same base
image for a better approximation.

>> cpselect(Ireg(:,:,1), Ibase); // call cp routine w/registered image as input
>> mytform = cp2transform(input_points, base_points, !projective');  //create transformation
>> Ireg2 = imtransform(Ireg, mytform); // transform/register previously reg. image
>> figure, imshow(Ireg2); // show new figure with new regstered image

Fig. 4.3. The original image.     Figure 4.4. The rotated image as input.

             Fig. 4.5. The base image.             Figure 4.6. Registered rotated image.
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    Fig. 4.7. The twice registered image.

Figure 4.3 shows the original image shuttle.tif and Fig.
4.4 shows the result of rotating it 15° in the counter-
clockwise direction to form the input image. Figure 4.5
displays the enlargement of the original image by a factor of
1.25 that is the base image. After putting in the commands
for Matlab listed above we obtained Figure 4.6, which is a
good first approximation to the enlarged base image (the
rotation has been taken out by the polynomial mapping).
However, the left side is not as high as the right side so the
right side is stretched. We apply another round of registration
to Fig. 4.6 to arrive at Fig. 4.7. We could do another round to
tune the registration, but we have made the point that
repeated registration (up to a point) improves it.

           Fig. 4.8. The Matlab Control Point Selection Tool window.

Figure 4.8 shows the Control Point Selection Tool window with the original shuttle.tif as the input at
90% of its original size in the detail input window (upper left) and in the overall input window (lower left).
The base image here is shown at 200% of its orginal size in the detailed base window (upper right) and at
112% of its original size in the overview base window (lower right). In this latter window, the section that
is magnified above is shown in a rectangle.

The circled plus button is down for selecting points in either the input base or detail base images, but
whichever is used, the next selection must be from the opposite detail image to create a pair of corresponding
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points. After this window is closed, the function cp2tform() must be used to create a transformation
(mapping) that we called the variable mytform above. This mapping is then applied with the function
imtransform() as was done above.

Generating Examples with Matlab by Cropping. We created an example above by resizing and rotation.
These are critical to creating good examples, but we also need to be able to crop an image with Matlab. The
following example shows the use of the imcrop tool in Matlab’s Image Processing Toolbox.

>> I1 = imread(!shuttle.tif'); // read in image to location I1
>> imshow(I1); // show the rotated image
>> I2 = imcrop; // call tool to crop displayed image I1 

At this point we click a point in the image to be the upper lefthand corner of a rectangle and drag down
to the lower righthand corner and release the mouse button. The rectangular area is stored at location I2 in
memory. Now we display the new image I2 and enlarge it by clicking and pulling down the bottom left corner
for better viewing. Figure 4.9 shows the result.

>> figure, imshow(I2); // show cropped image, which may be small
>> I3 = imresize(I2, 2.0); // double size of I2 and store as I3
>> figure, imshow(I3); // show the enlarged cropped image in new figure

                   Figure 4.9. A cropped rectangle from an image.
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4.3 Pointwise Fusion of Pixels in Different Images

1 2The Pointwise Process. Given two registered images {f (m,n)} and {f (m,n)} there are many ways to
combine two pixels at the same locations in the two different images. At pixel location (i,j) in each image

1 2we can use most any kind of arithmetic or logical operation to combine the two pixels f (i,j) and f (i,j) into
an output pixel, where the operation is denoted by �.

out 1 2f (i,j) = f (i,j) � f (i,j)    (4.4)

The operation � can represent such operations as: i) addition; ii) weighted averaging; iii) subtraction;
iv) multiplication; v) minimum; vi) maximum; vii) ratio of logarithm of pixel values; viii) AND, OR or XOR
logic (for binary black and white, images); and others that may include combinations of these operations.
Also, decisions can be made at each pixel location as to which of the two pixels from the two different
images at that location is to be used as the output pixel.

Matlab Example to Blank the Frame Background. In the following example we have the original
shuttle.tif image. We employ the function graythresh() to find a good greylevel to use as the threshold,
followed by the function im2bw() to convert the image to black and white. All pixels below the threshold are
converted to black while all pixels above the threshold are converted to white. Using this black and white
image to multiply with the original image, we obtain a new image that has all background pixels below the
threshold blanked out, while all pixels above the threshold are an appropriate gray shade. To complete the
process, we stretch the contrast. Figures 4.10 and 4.11show the original and black and white images while
Figures 4.12 and 4.13 display the multiplied and contrast stretched images. Images can be added, subtracted,
multiplied and divided by either another image (arithmetic on the two corresponding pixels) or by a constant
(arithmetic of the constant with each pixel).

>> clear, close all; // clear all data structures from memory
>> I1 = imread('shuttle.tif'); // read in original image
>> imshow(I1); // show image on screen
>> T = graythresh(I1); // find good graylevel T for threshold
>> Ibw = im2bw(I1, T); // convert I1 to black & white with threshold T
>> figure, imshow(Ibw); // show the black and white image
>> I2 = immultiply(I1, Ibw); // multiply original by black and white image
>> figure, imshow(I2); // show result of mulltiplication
>> I3 = imadjust(I2, [0.3 0.9], [0 1]); // contrast stretch image I2 
>> figure, imshow(I3); // show final image as new figure

Fig. 4.10. Original image.  Fig. 4.11. Black and white image.

To reduce the background further, we could multiply the image in Figure 4.13 by, say, 0.25 to reduce
the contrast and zero (blank) out many of the moderately light shades of gray and follow this by a contrast
stretching or multiplication by 4 (why will multiplication by 0.25 followed by multiplication by 4 not yield
the same image back?).
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 Fig. 4.12. Orig. multiplied by b&w.              Fig. 4.13. Contrast stretched final image.

Frame Averaging.  A simple way to combine two or more frames is to average them pixelwise. We use
1 2two frames {f (m,n)} and {f (m,n)} here, but the process is the same for more than two images. We assume

outthat the second image has been registered against the first one and designate the output image by {f (m,n)}.
Then

out 1 2f (m,n) = af (m,n) + (1-a)f (m,n),   0 # a # 1 (4.5)

When a = 0.5 the output image is just the pixelwise arithmetic mean. However, if the first image is
considered to be a little better than the second one, then a can be increased to, say, 0.6, etc. For R frames,
a can vary from 1/R. There are other ways to average the pixels at each location. For example, the fuzzy
weighted average that is described later. For more than two frames, the pixelwise median can be used in
place of averages. 

The alpha-trimmed mean can also be used for R > 2: for small integer ", throw out the highest " values
and the lowest " pixel values at each pixel location, and then average the remaining ones. This eliminates
the "snake swallowing an egg" effect of outliers and provides an average of the "good" pixel values. We
modify the method and count the middle pixel twice to help stabilize the result.

Differencing, Multiplying and Dividing. This is a useful operation in certain situations. We take

out 1 2f (m,n) = f (m,n) - f (m,n)    (4.6)

as the difference. One purpose is to remove background from an image to better expose details. Another is
to equalize illumination in microscopic images, where a background image that shows the nonuniformly
distributed illumination is subtracted. The process called digital subtraction angiography subtracts an image
of heart tissue from another where a dye has been added to the blood. This takes out the obscurring parts
to enhance the blood vessels in the image. Another differencing application is motion detection given later.

Ratio-ing is used in special situations. An example is in the detection of alive or dead vegetation among
vegetation that is both dead and alive. It is known that alive vegetation gives off considerable energy in the
infrared band but reflects very little energy in the red color band. On the other hand, it is also known that

1dead vegetation reflects red band energy but gives off very little infrared. Let {f (m,n)} be an image taken
2in the infrared band, and let {f (m,n)} be an image taken in the red color (visible light) band. We use the log()

function to compress the drastic range of values of the ratio of pixel values.

1 1 2 1 2g (m,n) = log[f (m,n)/f (m,n)] = log[f (m,n)] - log[f (m,n)] (4.7a)

2 2 1 2 1g (m,n) = log[f (m,n)/f (m,n)] = log[f (m,n)] - log[f (m,n)] (4.7b)

1 1     The first image, g (m,n), is increased in illumination (intensity) because the pixels f (m,n) of greater
2infrared intensity are divided by the low level pixel values of f (m,n) that do not radiate much infrared. Thus

the first image enhances the alive vegetation. Analogously, the second image enhances the dead vegetation.
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The logarithm keeps the resulting values reasonable, but these values must then be mapped scaled into the
interval [0, 255] to display a properly contrasted image.

A Matlab Example of Frame Arithmetic. The Matlab commands given below are an example of
converting the original image shuttle.tif into one that appears to be at night with bright lights shining on the
space shuttle. Figure 4.14, 4.15 and 4.16 are respectively the original, inverted and darkened inverted images.
Figures 4.17 and 4.18 show the respective subtraction of Figure 4.16 from 4.14 and the multiplication of Fig.
4.16 by the constant 2.

  Figure 4.14. Original shuttle.          Figure 4.15. Inverted shuttle. Figure 4.16. Darkened inverse.

Figure 4.17. Subtracted image.        Figure 4.18. Multiplied image.

>> i1 = imread('shuttle.tif'); //read in image
>> i2 = imcomplement(i1); //invert it by taking its complement
>> i3 = immultiply(i2, 0.5); //multiply the result by 0.5 to darken it further
>> imshow(i1); //show original image (Fig. 4.14)
>> figure, imshow(i2); //show inverted image (Fig. 4.15)
>> figure, imshow(i3); //show darkened inverted image (Fig. 4.16)
>> i4 = imsubtract(i1, i3); //subtract darkened inverted image from original
>> figure, imshow(i4); //show result (Fig. 4.17)
>> i5 = immultiply(i4, 2); //multiply result by 2 to whiten light pixels
>> figure, imshow(i5); //show whitened results (Fig. 4.18)

1Image compositing. This is a process where a part (usually an object) of an image f (m,n) can be
1segmented or isolated. All pixels outside of the boundary are set to zero in the output image g (m,n) and this

image is then multiplied by the original image. Thus the output image contains only the object on a black
2background. This image can be added to any other image f (m,n) that forms a background. The new output

image is then

2 2 1g (m,n) = f (m,n) + g (m,n)   (4.8)

Such techniques are used to show, for example, a new car sitting on a mountain top with steep cliffs all
around it where the car could not be put except with a freight helicopter. We can also physically cut part of
an image with scissors and scan it on a black background. The result can be added to another image that
contains the desired backgound. For example, an entertainer’s head can be put on a different body.
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4.4 Pixel Fusion Based on Areas

The Area Fusion Process. In this process we consider two pixels at the same location in two registered
images. Here, however, we use the areas around the two pixels to make a decision as to what the output pixel
in the fused image should be. This provides much more power than the pointwise pixel fusion methods. The
area is usually a nbhd of a pixel p that occupies the central location of the nbhd. In other words, we compute
the output pixel value at location (m,n)  to be a function of the nbhds of the pixels at that location.

out nbhd inf (m,n) = T [f (m,n)]  (4.9)

out in1 in2Spatial Frequency Fusion. The f (m,n) value can be chosen from two input pixels f (m,n) and f (m,n)
by their pointwise spatial frequency (psf), which is defined as the sum of the magnitudes of  differences
between a pixel and each other pixel in its neighborhood. For a 3x3 neighborhood the psf is

5 k�5 k 5psf (p ) =E  *p -p *    (4.10)

As we can see, the psf includes all directional absolute differences and reflects the degree to which the
5 in1 in2center pixel p  differs from its neighbors overall. For fusion, the psf’s for {f (m,n)} and {f (m,n)} are

calculated respectively at every pixel location (m,n). During the fusion process, we compare the psf values
in1 in2 out in1at each pixel (m,n). If psf(f (m,n)) is larger than psf(f (m,n)), f (m,n) = f (m,n), and so forth. This is

because a greater psf indicates a greater variation at the pixel, which in turn indicates greater detail. In
Figures 4.19 and 4.20 the respective right tree and left tree were blurred. Figure 4.21 shows the result of
fusing them with pointwise spatial frequency to eliminate the blurring.

 Fig. 4.19. Right tree is blurred.      Fig. 4.20. Middle tree is blurred.   Fig. 4.21. Fused image is clear.

1Maximum Difference and Related Fusion. In these types of methods we consider two pixels f (m,n) and
2f (m,n) in two different images but at the same location that represents the same physical point in the scene,

i.e., the images are registered. We consider a block neighborhood
of each corresponding pixel in the two images,  and also a larger
outer block about the inner block. Figure 4.22 shows the situation.
The process can take different forms, but essentially it is that the
inner blocks are processed to compute  representative values and
similarly for the outer blocks. The difference between the inner and
outer block representative values for each image determines the
weights for a weighted average of the center pixels to form the
output pixel.

Figure 4.22. Nbhds inside nbhds for
                      fusing pixels.
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1 2For example, let us take the averages u  and u  of the inner blocks and also the averages of the outer
1 2 1 2blocks v  and v . The differences are d  and d  where

1 1 1 2 2 2d  = |u  - v |,     d  = |u  - v |   (4.11)

1Upon comparing these we determine which one, say d , is the largest. Then we can select the first pixel,
1denoted by p , as the output pixel. This is an option where we want to obtain the image with the greatest

differences. Another method is to compute weights, standardize them and then take a weighted average.

1 1 1 2 2 2W  = |u  - v |,     W  = |u  - v |  (4.12a)

1 1 1 2w  = W  / (W  + W )      (4.12b)

2 2 1 2w  = W  / (W  + W )   (4.12c)

out 1 1 2 2p  = w  p  + w  p    (4.12d)

Variations of this type of algorithm include the use of medians or trimmed means in place of the
averages. We could also use pointwise spatial frequencies at the center pixel with respect to the inner block
and with respect to the outer block, provided that speckle noise has been remove and light smoothing applied.
It goes without saying that more than two images can be fused at each pixel in such a manner.

4.5 Multispectral and Hyperspectral Images

Multispectral Image Fusion. Here we have two or more images of the same scene in different bands of
optic or infrared wavelengths. We consider the case of optic and infrared images that are to be fused (two
images) with the objective of detecting humans or man-made objects among natural backgrounds. The
infrared image will show metal as extra warm (emitting more heat) or extra cold from a background of
foliage. Humans aare extra warm, where warmer implies greater intensity in the grayscale image. For optic
images, the  objects of interest are determined by grayscale edges. 

Hyperspectral Images and Fusion. Hypersepctral
images are what we call numerous images taken at the
same time instant from the same point in space in
different short bands of wavelength. For example the
AVIRIS captures over 200 narrow bands of the same
scene. For any given pixel, there are, say, 200 intensity
values for the respective bands. If we graph these
intensity values on the vertical axis over the 200 bands
on the horizontal axis, we obtain a graph called a
signature of the pixel. Figure 4.22 displays a hypothetical
signature for a single pixel.

          Figure 4.22. A pixel signature.

Often is is useful to fuse red, green and blue representative frames of lower resolution with a higher
resolution panchromatic grayscale image. The Brovey algorithm (Brovey transform) is used for this. The
basic idea is to use the R, G and B intensity images to merge with the higher resolution intensity image and
convert back to color. We will consider this further when we discuss color models in a later unit.
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4.6 Motion Detection.

Time Sequences of Frames. A video type of camera produces a sequence of consecutive frames over time.
By comparing the frames by a type of differencing, motion of any objects in the scene can be detected.
Motion detection can be performed by working with consecutive images taken over a sequence of time

1 2 ppoints. Given the sequence {f (m,n)}, {f (m,n)},..., {f (m,n)} of images, we difference the two frames to
blank out all pixels that are the same. The output magnitude of differences is essentially a zero (black) image
except for noise and the pixels in objects that have moved. A connected blob of pixels that are not zeroed
out is an object that has moved. This works very well for objects of different intensity from the background.

diff1 r r+1f (m,n) = |f (m,n) - f (m,n)|   (4.13a)

diff2 r+1 rf (m,n) = |f (m,n) - f (m,n)|   (4.13b)

diff diff1 diff2f (m,n) = (1/2)(f (m,n) + (1/2)f (m,n)   (4.13c)

The reason that we need to obtain two differences is that the object that moves may be either lighter or
darker than the background, so one of the two differences may blank out the object.

Tracking. Another useful process is to use thresholding on the two images first to blank out the image or
the background. Then by using a sequence of consecutive image pairs, and computing the center of gravity
of a connected blob in the difference image at each time step, a moving object can be tracked, that is, a
trajectory of the moving object can be constructed. If the camera rotates to follow a moving blob, then the
corrective adjustments must be made to accurately track the blob. The blob must be located, the left, right,
upper, lower, upper left, lower left, upper right and lower right edges determined and then the approximate
center of gravity computed. A similar technique is the fit an ellipse to the blob and use the center of the
ellipse as the center of gravity.

An Example of Motion and Tracking. Figures 4.23 and 4.24 show two images of the same scene where an
object (the cup in this example) has moved. First we subtracted the image of Fig. 4.24 from that of Fig. 4.23
to obtain Figure 4.25 shown below. We also subtracted Fig. 4.23 from Fig. 4.24 with the resulting image
shown in Figure 4.26. Figures 4.27 and 4.28 are the inverses of Figures 4.25 and 4.26. It is clear that the cup
object has moved.

To show the objects in two different locations in a single image, we add the two images of Figures 4.25
and 4.26, noting that the black pixels sum to black while black and a specific gray sum to the specific gray.
Figure 4.29 is the resulting image.

   Figure 4.23. First image with cup. Figure 4.24. Second image with cup.

Figure 4.25. Fig. 4.23 minus Fig. 4.24. Figure 4.26. Fig. 4.24 minus Fig. 4.23.
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   Figure 4.27. Inverse of Fig. 4.25. Figure 4.28. Inverse of Fig. 4.26. 

   Figure 4.29. Sum of Figs. 4.25 and 4.26.

4.8 Exercises

4.1 Use Matlab to crop the lower 2/3 of the central area of the image shuttle.tif. Take care to obtain as few
gray levels as possible. Now enhance the contrast and sharpen this image to expose the cable that goes from
the left bottom of the overdeck (between the platform and the shuttle) downward and leftward to the ground.
Show all of the images.

4.2 Crop the overdeck in the shuttle image, resize it to be twice as wide and twice as high and then rotate it
30 degrees. Now register it as the input image with the original as the base image using Matlab. Show all
images.

4.3 At the end of Unit 3 is a C program for mask transformations. Modify it so it computes the pointwise
spatial frequency of an image. Use it to compute the psf image of the shuttle image (be sure to standardize
the psf image). Select a good threshold to show all edges of moderate or greater strength and then invert the
resultusing a tool. Show all images and describe all uses of tool and your own program.


