
Backpropagation Neural Network Tutorial

The Architecture of BPNN’s

A population P of objects that are similar but not identical allows P to be partitioned into a set of K
groups, or classes, whereby the objects within the same class are more similar and the objects
between classes are more dissimilar. The objects have N attributes (called properties or features) that
can be measured (observed) so that each object can be represented by its N-dimensional feature
vector

1 Nx = (x ,...,x )

We represent the objects by the feature vectors and partition the set of feature vectors into
classes. A neural network is a scheme and algorithm that allow such a partition of a set of feature
vectors into classes to be learned. We must have a set of Q feature vectors {x : q = 1,...,Q} and a setq

of target codewords that represent the classes, {t : q = 1,...,Q} such that for each feature vector thereq

is a codeword that represents the class of that feature vector. The same target codeword may be the
codeword for multiple feature vectors because multiple feature vectors can belong to the same class.

The above figure shows a standard BPNN. At the M hidden nodes the incoming feature values

n nm{x } are weighted by the {u } and summed to form the values

m (n=1,N) nm nr  = 3 u  x    (1)

mat each m-th node. Then each r  value is put through a sigmoid function at the m-th node to get

m m my  = g(r  ) = 1 / [1 + exp(-"(r  - a))] (2)

m mjThe y  values are weighted by the {v } and summed at each of the J output nodes to obtain

j (m=1,M) mj ms  = 3 v  y    (3)

This weighted sum is put through the sigmoid function
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j j jz  = h(s  ) =  1 / [1 + exp(-$(s  - b))]   (4)

jThis is an actual output for each j = 1,...,J that is to be made to approximately equal the target t  by

nm mjadjusting the parameters {u } and {v }.  

The Training Method for BPNNs

The BPNN is trained on a set of feature vectors {x : q = 1,...,Q}, called exemplars, and a paired(q)

set of corresponding target vectors {t : q = 1,...,Q} that are the desired outputs. These outputs are(q)

codewords that represent the different classes to which the feature vectors belong. This type of
supervised training adjusts the parameters so that whenever x  (or a vector very close to it) is put(q)

into the BPNN, then the actual output vector z  is approximately equal to the target t  for that input(q) (q)

feature vector. The actual output is compared with all target vectors to make the decision as to what
target, and class (each target represents a class), the input vector belongs.

The process of adjusting the parameters to achieve the training goal is to start with a randomly

nm mjchosen set of initial parametric values for the {u } and {v } and then to iteratively adjust these
parameters to minimize the mean-square error E over all J outputs and Q training pairs x , t , where(q) (q)

(q=1,Q) (j=1,J) j jE = [1/(QJ)]3 3  (t  - z )    (5)(q) (q) 2

Such adjustment is done by using the method of steepest descent from differential calculus.

nm mjSteepest descent finds the nearest local minimum from a starting point {u , v } in the(0) (0)

parameter space, for which the miniumum  may not be a global minimum. The formulas are

nm nm nmu  = u  - 0(ME/Mu )  (6)(k+1) (k)

mj mj mjv  = v  - 8(ME/Mv )  (7)(k+1) (k)

for all n and m, and all m and j, where 0 and 8 are the step sizes that are called learning rates.

We will now derive these formulas in terms of the parameters, inputs, sums and sigmoid
function values by means of the chain rule for derivatives. But first we need to know the derivative
of the sigmoid function

w = h(s ) = 1 / [1 + exp(-$(s - b))] (8)

dh(s)/ds =  [1 + exp(-$(s - b))]  [exp(-$(s - b))](-") = (9)-2

 [w  ][ 1 + exp(-$(s - b)) - 1](-$) =2

[w  ][ (1/w) - 1](-$) = [w  ][ (1 - w)/w]($) =  $w(1 - w)2 2
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where 

w = 1 / [1 + exp(-$(s - a))]   (10)

Now we proceed with the derivations using the chain rule. We suppress the q superscripts for
simplicity (we will sum over q in the final result) and show the derivation for a single input feature
vector and target vector.

mj j j j j mjME/Mv  = (ME/Mz )(Mz /Ms )(Ms /Mv ) =    (11)

j (p=1,J) p p j j j mj(M/Mz )[3  (t  - z )  ](Mz /Ms )(Ms /Mv ) =2

j j j j j mj[(-2)(t  - z )] (Mz /Ms )(Ms /Mv ) =

j j j j (m=1,M) mj m mj j j j j m[(-2)(t  - z )] (dh(s )/ds )(M3 v  y )/Mv ) =  -2(t  - z )$z (1 - z )y

Thus, training over all Q training feature vectors and their corresponding targets yields

mj (q=1,Q) j j j j mME/Mv  = -2"3 (t  - z )z (1 - z )y    (12)(q) (q) (q) (q) (q)

nmThe process is a little more complex for finding ME/Mu  because we must express the parts as
functions of the key variables. Having done that, we again suppress the q index in the derivation.

nm m m m m nmME/Mu  = (ME/My )(My /Mr )(Mr /Mu ) =    (13)
 

(p=1,J) j p p j j j m m m m nm[3 (M/Mz ) (t  - z )  ][(Mz /Ms )(Ms /My )(My /Mr )(Mr /Mu ) = 2

(p=1,J) p p j j mj m m n[-23 (t  - z )][$z (1 - z )]v ["y (1 - y )]x  

m jwhere we have used the sigmoid derivatives for g(r ) and h(s ). This gives, over all Q training feature
vectors, the following result.

nm (q=1,Q) (p=1,J) j j j j mj m m nME/Mu  = [-2"$3  3 (t  - z )][z (1 - z )]v [ y (1 - y )]x  (14)(q) (q) (q) (q) (q) (q) (q)

Putting these results into Equations (6, 7) yields the iterative algorithms on the (k+1)-st iteration
to be

nm nmu   =  u  + (k+1) (k)

(q=1,Q) (j=1,J) j j j j mj m m n       0 3 [3 (t  - z )][z (1 - z )]v [ y (1 - y )]x     (15)(q) (q) (q) (q) (q) (q) (q)

mj mj (q=1,Q) j j j j mv   =  v  + 8 3 (t  - z )z (1 - z )y    (16)(k+1) (k) (q) (q) (q) (q) (q)

where we have let 0 absorb 2"$ and let 8 absorb 2$ in Equations (13) and (12) respectively.
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Improving the Training

In practice we use values less than or equal to unity in magnitude to prevent errors from growing
and this applies to feature values, output codeword values and parametric weights. We draw the
initial parameters randomly to be between -0.5 and 0.5 (empirical studies show that values of smaller

mjmagnitude are better to start the training). We first adjust the v  for all m and j and then adjust the

nmu  for all n and m. This constitutes one iteration. We repeat this a given number of iterations,
possibly thousands or tens of thousands. We train multiple times from different random initial
parameter sets to assure a solution set of parameters that provide a good local minimum.

There are methods for helping the convergence to be smoother because the method usually is
jumpy (the parameters jump around too much). The most commonly used method is to use a ter
momentum term to smooth the direction of descent (or ascent on some steps):  instead of using only

nm mjthe new increments to add to u  and v  on iteration k+1, we add an average of the new(k) (k)

increments with the previous increments that we save. The increments from Equations (15, 16) are

nm (q=1,Q) (j=1,J) j j j j mj m m n)u  = 0 3  [3 (t  - z )][z (1 - z )]v [y (1 - y )]x   (17)(k) (q) (q) (q) (q) (q) (q) (q)

mj (q=1,Q) j j j j m)v  =  8 3 (t  - z )z (1 - z )y  (18)(k) (q) (q) (q) (q) (q)

Thus the smoothed increments added onto the parameters on the (k+1)-st iteration are

1 nm 2 nm w )u  + w )u  (19)(k) (k-1)

3 mj 4 mjw )v  + w )v  (20)(k) (k-1)

instead of those in Equations (17, 18), where the positive weights satisfy

1 2 3 4w  + w  = 1, w  + w  = 1 (21)

There is also the en route method of adjusting the learning rates. We start small so the

mjconvergence starts. If an adjustment of the v  parameters makes the MSE decrease, then we increase
the learning rate 8 (converging so speed it up with bigger steps). For any increase in E we decrease
8 (we have gone past the local minimum and need to proceed with smaller steps). This technique

nmis also applied to adjustments to 0 when the  u  are adjusted.

A High Level Algorithm

We can implement an algorithm for BPNN’s by the following steps.

Step 1.  Input N, M, J, Q, x  and t  for q = 1,..,Q, and number of iterations I (set i = 0)(q) (q)

nm mjStep 2.  Randomly draw all parameters of {u } and {v } where each is between -0.5 and 0.5
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m m j jStep 3.  Compute all r , y , s , z  and E

mjStep 4.  Update all parameters v  using momentum to smooth the direction of steepest descent and

j jcompute s , z  and E. If new E is smaller than previous E then increase learning parameter 8 else
decrease it

nmStep 5. Update all parameters u  using momentum to smooth the direction of steepest descent and

m m j jcompute r , y , s , z  and E. If new E is smaller than previous E then increase learning parameter 0,
else decrease it

Step 6. Increment iteration number i

Step 7.  If I > I then stop, else go to Step 4

The Ins and Outs of BPNN’s

The question arises naturally as to how we choose the targets to pair with the feature vector
inputs for the purpose of training the BPNN. A simple example here will show a general way to do
this. Suppose we have the 2-dimensional vectors shown in the figure below. There are two classes.
The vectors and their classes are give below.

Class 1:
(1,1), (2,1), (1,2), (2,2), (3,2), (2,3)

Class 2:
(5,4), (6,4), (5,5), (6,5)

These can be put in any order in the file of feature vectors, but for each feature vector we must
also have a target vector that provides its class. Let us choose the following target vectors.

Target 1:  (0,1) [represents Class 1] Target 2: (1,0) [represents Class 2]
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Thus we can put all of this information in a file of rows in the form shown below. We includes
notes to the right that are not in the file to explain the data.

2 (N = dimension of feature vectors)
2 (M = number of hidden nodes)
2 ( J = dimension of target vectors)
10 (Q = number of feature vectors)
1, 1, 0, 1 (first feature vector (1,1), target (0,1))
2, 1, 0, 1 (second feature vector (2,1), target (0,1)
1, 2, 0, 1 :
2, 2, 0, 1
3, 2, 0, 1
2, 3, 0, 1
5, 4, 1, 0
6, 4, 1, 0
5, 5, 1, 0 :
6, 5, 1, 0 (Qth feature vector (6,5), target (1,0)

When we read this data into the computer, we have values for the input feature vectors and their
target vectors. For example, the 10 feature vectors and their paired targets are

1 2 1 2x  = 1,   x  = 1,    t  = 0,  t  = 1(1) (1) (1) (1)

:        :

1 2 1 2x  = 6,  x  = 5,    t  = 1, t  = 0(10) (10) (10) (10)

In the usual case we would process the feature vectors to be used for training the BPNN by dividing
all of the feature values for the first feature by the maximum value of that feature, i.e., by 6, so all
of its values would be between 0 and 1. Similarly we would divide the second feature values by 5.
This is a good principle to keep the numerical errors from repeated multiplications well behaved.


