Fuzzy Set Membership Functions

We will be concerned here with continuous fuzzy set membership functions, although discrete
ones are used for cerain situations.

Definition: We take a fuzzy set membership function (FSMF) to be a unimodal (one hump shaped)
continuous nonnegative function that monotonically decreases moving away from its maximum
value of 1.
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Traditionally, triangular shaped and trapezoidal shaped functions have been used. Nowadays,
bell shaped functions are also used. Especially useful are Gaussians that take a center vector p and
a spread parameter o. For vectors with a center vector ¢, and spread parameter o, the format is

1) = exp[-||x - ¢| /2]

Because the values of a FSMF are between 0 and /, we say they are truth values that the vector
x belongs to a set represented by the function. The description of the set the function represents is
a linguistic variable.

As an example, consider the linguistic variables: 1) the pressure is LOW; 2) the pressure is
MEDIUM; and 3) the pressure is HIGH. For each such linguistic variable we use a FSMF to get the
fuzzy truth that a value for variable P (pressure) is one of the FSMFs LOW, MEDUM, or HIGH.



In Fig. 2 the variable P (pressure) has 3 FSMFs defined on its range for a particular application.
The FSMFs represent the linguistic conditions (P is LOW), (P is MEDIUM), and (P is HIGH).

Given a particular value of the pressure, P= ;| | OV MEDIUM HIGH
P, we fuzzify P, by passing it through each of ¢ |
the FSMFs for P. In this case we obtain the fuzzy —
values

fyep and ey
Thus we have the fuzzification

(P is MED [f\zn]), (P is HIGH [f,64])

Such fuzzified conditions are used in fuzzy rules. For example, if we have a set of rules, of which
one is the rule

(P is MED [f,;zn]) AND (P is HIGH [f,,61]) =>
(VALVE-ADJUSTMENT is -A [f,,4;veapsust])
then this tells us that when we have the antecedents (P is MED [f,,z,]) and (P is HIGH [f,c/) being
true, then the consequent is (VALVE-ADJUSTMENT is -A). The negative increment means that we
should turn down the valve on the fuel supply to prevent the pressure from being too high. But the

fuzzy truths provide a way to also adjust the increment -A.

We need a fuzzy truth for the consequent so we can take the size of the valve turn increment to
be a proportion of -A. Thus we use a fuzzy weighting such as

Svavve-apusrs = Min{fyep, frcnts s0 the actual adjustment is (f).4,yz.apjusr) (-4)
If another rule (say with temperature T) also affects the valve adjustment, such as
(P is HIGH [f;]) AND (T is HIGH [fypsspiul) =>
(VALVE-ADJUSTMENT is -€ [f,11 v apsusrs])

then we have an ORing of the 2 rules with the same consequent. Then the truth of the consequent
becomes

(VALVE-ADJUSTMENT is n) where 7 is the fuzzy weighted average

77 = {O(‘VAL VE-ADJUST. 1) (-A) + O(‘VAL VE-ADJUS TJ (- 6)} / {O(‘VAL VE-ADJUS T]) + OJ‘VAL VE-ADJUST. y}

This is a defuzzification of the rule implications. The fuzzy truth is max{f, ., yr_ipsusri Jvarveapiusrs -



As an example of fuzzy rules, consider the rule
(A; is LOW) AND (4, is HIGH) => (C is LOW)

It performs the AND of the fuzzy truths of the antecedents for 4; and A, and propagates the results
to the consequent (C is LOW). But if another rule, e.g.

(A; is MED) AND (A, is LOW) => (C is LOW)
also holds true, then (C is LOW) takes the maximum of the two fuzzy rule implications as its ORed

fuzzy truth. Thus a min-max FNN is an AND-OR fuzzy rule-based system conceptualized in the
neural network format of Figure 3.
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