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Abstract

How many prototypes or clusters are needed to predict real world human multiattribute subjective decision making? Although subjective

decision making problems occur daily in our life, they have received relatively little attention in artificial intelligence, machine learning and data

mining communities. We claim that for most problems, a simple set of rules derived by a nearest neighbor algorithm is the appropriate approach.

A simple version of a nearest neighbor model is tested and compared with two other well-established classification methods: neural networks and

classifications and regression trees (CART). The results of the experiments show that the simple nearest neighbor method provides very accurate

predictions while using very few prototypes or clusters. Although not always the best in accuracy, the differences are sufficiently slight to not

warrant greater complexity in deriving rules. Our research on the effectiveness of parsimonious rule sets suggests that decision trees with more

than 7–10 branches are not needed for capturing most human multiattribute decision-making problems, and minimal time or memory resources

should be used to generate decision making rules.
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1. Introduction

Finding prototypes, clusters, or classification rules from

large data sets has been the subject of extensive research in

various fields such as artificial intelligence, pattern recognition,

psychology, statistics, machine learning, and data mining over

a long period of time. Besides its academic importance, finding

classification rules has significant economic impact. Commer-

cial companies are continually trying to employ more effective

computerized decision-making tools in an increasingly

competitive business environment.

It has been long been established that, given two models that

classify a set of data equally accurately, the simpler is

preferable to the more complex. For example, given two

decision trees, which classify the data set they have been

constructed from with equal accuracy, the decision tree with

the fewer branches is preferable in terms of its generalization
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capabilities, that is on data taken from the same domain which

it has never ‘seen’ before. Similarly, rule bases with fewer rules

are likely to better generalize the underlying phenomenon than

larger, seemingly more elaborate, rule bases. As yet another

example, given two neural networks which classify a given

data set equally well, the more complex network (i.e. the one

with more layers and more processing elements) is likely to

perform poorly on a previously unseen data set compared with

the simper one (Pao, 1989).

The above phenomenon is referred to as overfitting.

Overfitting occurs when a model which is generated from

noisy learning examples ‘learns’ the noise rather than just the

underlying patterns within the data. There is a potential for

overfitting regardless of the nature of the approach being taken

for building the model (Last & Maimon, 2004; Mitchell, 1997;

Weiss & Kulikowski, 1991; Witten & Frank, 2000).

There are many more reasons why one would prefer simpler

structures. For example, the rationale behind small decision

trees or compact sets of decision-making rules is easier to

explain to employees, their integration into company manuals

and culture is simpler, they consume less space and they

classify quicker if implemented in a computer algorithm. The

‘smaller is better’ principle is usually attributed to William of
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Occam. A full discussion of Occam’s Razor is outside the

scope of this paper, and the interested reader is referred to

interesting discussions in (Domingos, 1999; Mitchell, 1997).

Beyond the basic well-understood principle of ‘smaller is

better’, it would be useful for researchers and application

developers in the context of machine learning and data mining

to have more quantitative information on the expected size of

rule sets. At least orders of magnitudes should be given as

guidelines to various types of problems and problem-solving

techniques. For example, assume that one has a large database

of past decisions about credit cards, life insurance, university

admission, or other decision-making applications. A typical

task is to extract a decision tree or a set of rules (sometimes

referred to as prototypes) which, if applied to a previously

unseen example, will yield as small an error as possible. There

are many well known algorithms which do exactly that. For a

partial list and an extensive benchmark results see (Lim, Loh,

& Shih, 2000).

Many of the available models include a predefined limit on

the size of the generated tree or an upper limit on the number of

generated prototypes. These parameters can be modified by

designers to suit their needs. However, there are typically no

indications, neither in the literature nor in user manuals, what

values of these parameters are reasonable to begin with. An

analogous question should be asked even when a tree-

generating algorithm determines the ‘optimal’ size of the tree

without any user intervention. For example, does an ‘optimal’

decision tree with 10,000 branches for granting credit line

limits according to, say, ten features really make sense? What

about a tree with 1000 branches? Maybe 100? Or 10?. This

question underlies the experiments reported in this paper

within the scope of a very common and important type of daily

human multiattribute subjective decision-making problems

(MDP for short) to be discussed in the next section.

To address this question, a modified version of the nearest

neighbor algorithm was applied to four real world MDP data

sets in different domains. The data sets all included past human

decisions. Prototype examples were iteratively tested and

added one at a time in a hill climbing search. The

generalization accuracy of the resulting rule set was tested

after each addition and the results were recorded. Two different

techniques were also applied to the same data sets and used as

benchmarks: Classification and Regression Trees, known as

CART (Breiman, Friedman, Olshen, & Stone, 1998), which

represented a well-established statistical method, and back

propagation Neural Networks (Rumelhart & McLelland, 1986)

which represented the (currently large) family of neural

network algorithms. These particular algorithms were chosen

since each of them is accepted by a wide variety of researchers

from various disciplines, and is well documented in the

literature. Ordinal Machine Learning Algorithms (i.e. those

which just use order information), on the other hand, are quite

rare and they have not been included so far in any major

benchmark (Cao-Van and De Baetes (2000) and Kotsiantis and

Pintelas (2004)). Since no error-cost function was known for

any data set, which was used in this experiment, identical

distance among all attribute and class values was assumed
throughout. The approach used in this experiment enabled to

incrementally generate rules from ordinal data sets, and to

compare the results with those obtained via well-reputed

machine learning models using identical error definition.

Similar to other reports (Lim et al., 2000; Kramer, Widmer,

Pfahringer, & Groeve, 2000), none of the three methods was a

clear-cut winner with respect to generalization accuracy, which

usually serves as the most important criterion for selecting the

‘best’ model out of several candidates. However, the seemingly

unsophisticated modified version of the nearest neighbor

algorithm that was used in this experiment proved to be very

competitive when compared with its more mathematically

oriented counterparts. More importantly, after selecting just

3–7 prototypes from the data sets using a hill climbing (i.e. not

exhaustive) search, the generalization capabilities of this

simple model matched and even sometimes outperformed

those of the other models, which served as benchmarks.

2. Background and related work

It might be instructive to begin with a short example of

human multiattribute subjective decision-making problems

(MDP): while evaluating this manuscript the reviewers have

most likely subjectively solved a MDP of the type we are

dealing with here. The reviewers quantitatively ranked several

important attributes such as novelty, importance, interest to the

readers and so on. Based on the values they have assigned to

these attributes each has made his or her own assessment:

accept, revise, reject, etc. Later on the editor has solved a

similar MDP, based on his/her impression and the recommen-

dations of the reviewers. Even the reader of this paper has

probably solved an implicit MDP while deciding whether this

paper is worth his or her precious time and attention to read.

The topic, novelty, writing style, and other obligations, etc.

have played a role in a decision: skip, browse, read carefully

and so on. Many other problems in our daily life such as

consumer preferences, credit rating, and employee assessment

share many characteristics of our reviewer/editor problem. The

reader can clearly add more MDPs to these typical examples

without any difficulty.

It is quite surprising to note that while MDPs are so

abundant in our every day life, they have received relatively

little attention from artificial intelligence, machine learning

and data mining communities until very recently. Most of the

research in this area has been conducted by Cognitive

Psychologists who were mainly interested in psychological

aspects of human decision-making rather in how machines can

mimic human behavior. Perhaps one of the main reasons for

this phenomenon stems from the fact that in many cases of

MDPs there is no clear-cut notion of a ‘correct’ class. In our

running example, each reviewer is clearly entitled to his/her

own point of view. Furthermore, he or she might be influenced

by factors which are difficult to measure—a good mood or lack

of time can sometimes affect a decision considerably. Also,

even if two reviewers agree on the values of every single

attribute of a particular manuscript, each can rightfully arrive at

a different conclusion. In many cases many attribute values
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(such as ‘credit history’—a very important consideration in

credit rating, or ‘personal impression’ during an interview of a

candidate) are highly subjective and may differ not only from

one evaluator to another, but within an individual’s decisions

over time. As a result MDP data sets, such as those which

where used in this experiment are very noisy.

Unfortunately, human subjective MDPs have not been in the

focus of machine learning and data mining research until very

recently. As an example: 123 data sets are currently

documented at the UCI Machine Learning Repository, which

is the major source of data for Machine Learning research.

Only three or four of the UCI data sets (about 3%) can be

regarded as MDPs: credit card application, car evaluation,

nursery, and (possibly) Balance. Consequently, it is rare to read

in the literature results of machine learning or data mining

models which were applied to MDPs. Consider, for instance,

the very interesting and comprehensive comparative study

reported by (Lim et al., 2000). Out of the 16 databases that

were used in this study, only one (attitude towards smoking

restrictions) is a MDP.

One way of recognizing a MDP is by looking at the

original scales of both the attributes and the class. We as

humans tend to use ordinal (i.e. ordered) scales. This does

not necessarily mean that all the attribute and class values of

a MDP must all be ordinal. There may be some numeric

attributes as well (‘account balance’ for example), binary

values (e.g. ‘internal/external’ candidate for a position), or

categorical values. However, if most of the attributes and the

class values are numeric one may rightfully suspect whether

the problem at hand is a typical human MDP since we

humans tend to generalize and simplify our reasoning by

mapping numeric values into ordinal symbols. For instance, a

credit officer does not usually make any use of the exact

numeric values of an applicant income. Instead he or she

tends to think in ordinal terms such as ‘very high’, ‘high’,

‘average’, etc. income.

The extensive use of ordinal symbols in human MDPs has

not gone entirely unnoticed, and the topic did receive some

attention over the years. Several versions of Ordinal Logistic

Regression were proposed in the field of Statistics (e.g.

McCullagh & Ndeler, 1983). Larichev, Moshkovich, and

Furems (1986) have built a decision support system called

CLASS, which helped to generate consistent and irredundent

ordinal rule-bases. CLASS was assisting knowledge engin-

eers, but was not a machine learning model as it entirely

relied on its users choices. Only later MDPs have attracted

the attention of AI researchers. A framework for ordinal

learning reasoning was proposed by (Ben-David, Sterling, &

Pao, 1989) in order to avoid monotonic inconsistencies in

rule-bases. Later an approach for maintaining consistency in

decision trees was proposed (Ben-David, 1995). Kramer et

al. (2000) have developed a version of CART, called

S-CART, which is a modified version of the well known

CART algorithm, capable of working with ordinal classes.

The S-CART was tested on four data sets (of which one was

ordinal but a human MDP) and has shown good predictive

accuracy. Cao-Van and De Baetes (2000), Kotsiantis and
Pintelas (2004), Makino, Suda, Ono, and Ibaraki (1999) and

Potharst and Bioch (2000), studied various aspect of ordinal

classifications. However, there has been no report in these

publications regarding the size of the resulting decision trees

or other types of concepts they generated—which is the main

topic of this paper.

An interesting work which might have been relevant to our

work is Holte’s (1993) 1R program which showed that

classifying according to a single attribute may provide

surprisingly accurate predictions when compared with more

complex models. However, despite of the thorough check of

1R on sixteen data sets (taken from the UCI Repository), not a

single data set in the experiment was based on human MDP, so

it is impossible to assess whether the very interesting findings

regarding 1R are pertinent to these problems or not.
3. The data sets

The four data sets which were used in this experiment came

from actual human decision-making. They were not collected

by us. Rather they were originally used in research into

psychological decision-making1. We preferred working with

our data sets since those very few MLPs in the UCI Machine

Learning Repository are not well documented.

A characteristic of all four of the data sets is that they are all

qualitative in nature. Also each data set contained decisions,

which were taken by many individuals. The data sets included

only ordinal (i.e. ordered) values for input properties and for

the output. All the data sets were originally encoded as

integers, {1, 2, 3,.} where 1 represented the ‘worst’ or lowest

possible value, 2 the second ‘worst’, etc.

One can easily think of more complex decision-making

tasks, for example using more features or using numeric values.

However, it is not clear whether problems with significantly

higher dimensionality than those which were used here actually

reflect how we, as human beings, do our problem-solving

(Tversky, 1969). We refer to this point again in the Discussion

section.
3.1. Social workers decision (SWD)

The SWD data set contains real-world assessments of

qualified social workers regarding the risk facing children if

they stayed with their families at home. This evaluation of risk

assessment is often presented to judicial courts to help decide

what is in the best interest of an alleged abused or neglected

child.

The total number of examples in the SWD data file was

1000, each having 10 inputs, such as the economic situation

at home and the quality of the child–parent relationship, and

one output, reflecting the assessed risk to the child.



Table 1

Quantitative characteristics of the data

SWD LEV ESL ERA

No. of examples 1000 1000 488 1000

No. of input attributes 10 4 4 4

No. of possible values

(each attribute)

4 5 10 15

No. of possible values

(output)

7 5 10 10
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3.2. Lecturers evaluation (LEV)

The LEV data set contains 1000 examples of anonymous

lecturer evaluations, taken at the end of MBA courses. Before

receiving the final grades, students were asked to score their

lecturers according to four attributes such as oral skills and

contribution to their professional/general knowledge. The

single output was a total evaluation of the lecturer’s

performance.

3.3. Employee selection (ESL)

The ESL data set contains 488 profiles of applicants for

certain industrial jobs. Expert psychologists of a recruiting

company, based upon psychometric test results and interviews

with the candidates, determined the values of the input

attributes. The same experts also predicted an overall score

corresponding to the degree of fitness of the candidate to this

type of job (the output).

3.4. Employee rejection–acceptance (ERA)

The ERA data set was originally gathered during an

academic decision-making experiment aiming at determining

which are the most important qualities of candidates for a

certain type of jobs. Unlike ESL data set which was collected

from expert recruiters, this data set was collected during a

MBA academic course.

The input in the data set are features of a candidates such as

past experience, verbal skills, etc., and the output is the

subjective judgment of a decision-maker to which degree he or

she tends to accept the applicant to the job or to reject him

altogether (the lowest score means total tendency to reject an

applicant and vice versa). The number of example decisions in

ERA was 1000.

Table 1 shows quantitative characteristics of the three data

sets.
Fig. 1. Nearest neighb
4. The models

4.1. A variant of nearest neighbor

Nearest Neighbor is one of the oldest and most well known

family of classification algorithms. The algorithms in the family

all require some metric to determine how close two patterns are

with respect to each other. Many distance metrics have been

suggested over the years. Euclidean and Hamming distances are

two notable examples (Pao, 1989). A description of the

particular algorithm which we used for this experiment follows.

Since all the values in all the data sets were ordinal, a simple

distance metric has been defined for this experiment. Let
�
k and

�
l denote two example vectors taken from the same problem

domain, each with n attributes and one output value, the

distance between their jth attribute value has been defined as:

Dist
kl
j Z j

�
k
j
K

�
l
j
j (1)

where kj and lj are integers representing the jth ordinal value in
example vectors

�
k and

�
l, respectively.

The total distance between two example attributes (i.e.

input) is the summation of the distances over all their n

attributes:

Distkl Z
X

j

Dist
kl
j (2)

The rationale behind this interpretation of ‘distance’ is to

avoid favoring smaller distances over larger as in Euclidean

distance, and to avoid just counting the number of disagree-

ments as in Hamming distance while ignoring their magnitude.

Given an example vector
�
e taken from a data setE and a set of

already selected prototypes P, PZ f
�
p
1
;
�
p
2
;
�
p
3
;.;

�
p
jpj
g, classifi-

cation requires finding which prototype,
�
p03P, is the closest to

the example input attributes and assigning it the output value of

�
p0. The classification error of an example

�
e with respect to a set

of prototypes P, denoted Err �
e
P, has thus been defined as in (1)

for the reasons discussed above, where jZnC1:

Err �
e
PZErrep

0

ZDist
ep0

nC1 Z j
�
e
nC1

K
�
p0

nC1
j (3)

where
�
p0 is the closest prototype inP to the input attributes of the

example
�
e.

The algorithm shown in Fig. 1 classifies a single example

according to a set of already selected prototypes by choosing

the closest one according to the defined metric.
or classification.
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Finding the average classification error of a set E with jEj
examples with respect to a set P of prototypes, designated

AvErrEP, involves picking the closest prototype for each

example:

AvErrEP Z 1=jEj*SErr �
e
P (4)

where Err �
e
P is the classification error of a single example with

respect to a prototype set P, defined in (3) and jEj is the number

of examples.

During the learning phase the exemplar-based algorithm

selected those examples in the training set, which would

become prototypes. Fig. 2 gives an algorithm for generating the

set of prototypes.

As can be seen from Fig. 2, the search for the best prototype

set is not exhaustive as not all possible rule sets are tested.

Rather it is a hill-climbing search for a locally optimized set of

(hopefully) reasonably good prototypes. As we will shortly see,

this simplified search strategy performed quite satisfactorily in

all the experiments.
0.600

0.700
RULES CART N. NETS

SWDMAE
4.2. Neural networks (NN)

Neural networks (Minsky & Papert, 1969) have gained

acceptance in recent years as an accurate classification tool.

Back propagation neural networks (Rumelhart & McLelland,

1986) with several hidden layers and sigmoid transfer

function were used in this experiment. These networks are

known as being capable of approximating any nonlinear

function to an arbitrary precision (Leshno, Ya Lin, Pinkus,

& Schocken, 1993; Wary & Green, 1995). Since the model

is well documented, it will not be discussed here in more

detail.
0.400

0.500

1 2 3 4 5 6 7 8 9 10

RULE NUMBER

Fig. 3. Prediction errors (SWD).
4.3. Classification and regression trees (CART)

Classification and Regression Trees (Breiman et al., 1995),

CART for short, have also gained wide recognition and

acceptance in recent years. The CART algorithm is also well
documented in the literature and will not be discussed here any

further.
5. The experiment

Each data set was randomly partitioned into two mutually

exclusive subsets: a learning set (three quarters of the

examples) and a hold-out or validation set (one quarter of

the examples). Testing examples were randomly selected from

the respective learning sets (one third of the learning set). Each

experiment was repeated ten times to allow ten-fold 25%

holdout estimate of the prediction accuracies over the

previously unseen examples.

The version for the Nearest Neighbor algorithm outlined

above was written in Matlab. SPSSs Clementine version 7.2

package was used for Neural Networks and CART. Several

Neural Networks topologies and CART parameter settings

were tested for each set, but they generally did not

outperform the default values with one notable exception:

In Neural Networks, the number of hidden layers and the

number of processing elements in each of them had to be

determined manually for each data set by a trail and error

process.
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Fig. 4. Prediction errors (LEV).
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Fig. 5. Prediction errors (ESL).

Table 2

Summary of results

SWD LEV ESL ERA

MAE: nearest neighbor

(seven rules)

0.5192 0.5436 0.5074 1.3876

MAE: neural networks 0.5972 0.5972 0.6147 1.3153

MAE: C&R trees 0.6318 0.6318 0.7187 1.3072

95% Confidence interval:

nearest neighbor (half

width)

0.0536 0.0304 0.0261 0.0619

95% Confidence interval:

neural networks (half

width)

0.0358 0.0358 0.0417 0.0464

95% Confidence interval:

C&R trees (half width)

0.0523 0.0523 0.0419 0.0295
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6. Results

The results of the experiment are shown in Figs. 3–6. Each

of these graphs shows the Mean Absolute Error (MAE) over

the ten validation runs on the vertical axis versus the number of

selected classification rules of the Nearest Neighbor algorithm

(designated ‘rules’ in the legends). The errors were not

normalized and they are as in the original data sets (see

above). The MAE for CART and Neural Networks are shown

in horizontal lines for comparison for their best performance

only. These are the average MAE results of all the validation

runs for each model. Again, note that unlike the Nearest

Neighbor results which are shown incrementally, those which
1.000
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Fig. 6. Prediction errors (ERA).
are shown for the two benchmark models reflect only their best

and final results.

Table 2 shows the main results of the ten validation runs for

each data set. The first three rows show the Mean Average

Errors for each model, while the next three show the value of

half the width of a 95% confidence interval around the MAE.

The numbers of the Nearest Neighbor MAEs and confidence

intervals were calculated after finding seven prototypes or

classification rules in each data set.

For comparison, CARTs decision trees, for which the best

results are shown in Figs. 3–6, were with 14 leaves (SWD),

19 leaves (LEV), 15 leaves (ELS), and 9 leaves (ERA).

CART trees are also quite compact but still significantly

larger than those, which were obtained by the Nearest

Neighbor algorithm. The Neural Network configurations,

which are shown in these figures, had three hidden layers

with 10, 20, and 10 processing elements respectively for

SWD, LEV and ERA and only one internal hidden layer with

7 processing elements for ESL.

Two observations are quite evident from the results:

First, it is clear from Figs. 3–6 that there has not been a

clear-cut winner accuracy-wise. This observation is perhaps

important and interesting by itself but it will not be discussed

here any further simply because it reproduces known results.

Several benchmarks, notably the extensive one reported in

(Lim et al., 2000) have shown that not a single model can

claim universal superiority in solving all classification

problems; Methods which excel in some problem domains

frequently score poorly in others. However, note that this is

the first time these results are confirmed with respect to

human MDPs. Even within this restricted class of problems,

it was impossible to identify any winning Machine Learning

algorithm.

The second observation is central to our research; It is

quite evident that very few classification rules which were

selected by a not-so-sophisticated and certainly not statisti-

cally oriented Nearest Neighbor algorithm were quite

successful in generalizing previously unseen examples.

Furthermore, there were cases where three classification

rules (SDW) or six (LEV) were sufficient to beat their well

established counterparts.
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7. Conclusions

Certainly it has not been shown here (nor has it been

intended) that the particular version of the Nearest Neighbor

algorithm which is detailed above is superior to other

classification models when applied to human MDPs. What

has been shown here indeed is that an order of magnitude of ten

prototypes, if found amongst the training set, can generalize

very well, sometimes doing even better than other, more

sophisticated models.

Our main conclusion from this experiment is that while

applying classification techniques to the many problem

domains which are similar in nature to those which are

reported here, it is pointless to allow decision trees or rule bases

to grow beyond an order of magnitude of ten branches or rules.

Not 10,000, not 1000, not 100 but an order of magnitude of ten.

Some support for our findings comes from the field of

Cognitive Psychology: Miller (1956) has shown what human

short-term memory can hold only about 7G2 ‘chunks of

information’ (later known as Miller’s ‘Magical Numbers’).

Each ‘chunk’ is roughly equivalent to one multiattribute

decision-making rule. This phenomenon was later confirmed

by Ganzach (1993), Simon (1978) and Tversky (1969) as well

as by others. We suspect that human MDPs utilize our short-

term memory due to similar storage requirements, but we leave

the burden of proof to Cognitive Psychology. However, form

Machine Leaning point of view, if we human beings can do

quite well at generalizing from previous experience using such

a limited capacity of short-term memory, there is no reason to

expect a contradictory phenomenon while building decision

trees or rule bases which are intended to solve very similar

problems.

But what about those many application domains which are

known to have classification rules in numbers which by far

exceed an order of magnitude of ten? Problems which require

significantly more branches or rules in their (machine) learned

concepts are apparently not MDPs: Chess playing, image

understanding, some medical and complex mechanical

diagnosis, etc., require additional human skills (and ‘compu-

tational’ resources) such as processing of sensual data, pattern

recognition, etc.. Those problems are quite distinct from human

MDPs which were studied here. Nevertheless, MDPs are so

very common and important in our daily life, hence a better

understanding how to efficiently learn then by computers can

be very interesting and rewarding.
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