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Abstract – We use a Gaussian radial basis kernel function to map pairs of feature vectors from a

sample into a fuzzy connectivity matrix whose entries are fuzzy truths that the vector pairs belong

to the same classes. To reduce the matrix size when the data set is large, we obtain a smaller set of

representative vectors to form a smaller matrix. To this end we first group the feature vectors into

many small pre-clusters based on summed feature-wise similarities, and then we use the pre-cluster

centers as a reduced set of representatives. We next map the centers pair-wise to form the fuzzy

connectivity matrix entries. When an unknown feature vector is input for classification, we find the

nearest pre-cluster center and assign its class to the unknown vector. We demonstrate the method

first on a simple set of linearly nonseparable synthetic data to show how it works and then apply it

to the well known and difficult iris data and to the substantial and noisy Wisconsin breast cancer

data. 
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1.  INTRODUCTION

Classifying a given set of feature vectors is a  process of partitioning the set of feature vectors

into classes, i.e., sub-populations, where the vectors are more alike within the classes and more

different between classes. A partitioning of a data set of feature vectors into clusters of  similar

feature vectors is based on a similarity measure on pairs of feature vectors. Such partitioning can be

done on unlabeled (unknown) data sets and thus is a form of self-organizing, i.e., unsupervised

machine learning. Among many similarity measures that have been used are the Euclidean (most

common), Minkowski, Mahalanobis, city-block, point symmetry and supremum distances, and more

recently, the cosine similarity and correlation measures ( see Xu and Wunsch [1], 2005). 

Clustering is important and widely applicable for classification, pattern recognition, data mining,

representation of large data sets by smaller representative sets (data abstraction), categorization of

instances, document retrieval, image segmentation and dimensionality reduction. Classification via

any algorithm requires features, or attributes, of the objects to distinguish their classes appropriately.

A given clustering method may work well for certain data sets but not for others: there is no

clustering algorithm that can correctly group all data sets. Different algorithms, and even the same

algorithm with different parameter settings, may yield different clusterings of the same data, and

humans may disagree on the classes. However, classification is critical for high level knowledge. For

clustering overviews, see Xu and Wunsch [1], 2005, and Jain et al. [2], 1999. 

The goal here is to separate a data set into clusters, where the number K of classes (of one or

more clusters each) may be unknown and so must be determined. Our method uses a kernel function

to map each pair of feature vectors into an entry in a fuzzy connectivity that is the fuzzy truth that

both vectors in the pair belong to the same class. The mapping takes the N-dimensional feature
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vector pairs of a set of Q such vectors into Q  entries from 0 to 1 of a symmetric matrix. Entry values2

close to 0 designate strong separation and values close to 1 denote strong membership in the same

class. We call our new similarity measure the kernel similarity.  The pre-clustering is not necessary

for generating the fuzzy connectivity matrix that does the actual clustering, but it reduces the matrix

size considerably. Any method (e.g., k-means) may be used for pre-clustering, but when vectors

contain noise this does not work well. Thus we use a more robust method that is more resistant to

noise to perform the pre-clustering. Although the pre-clusters should be small in volume, there may

be a large number of vectors in one or more of them.

Before clustering a given set of N-dimensional feature vectors {x : q=1,...,Q}, where x  =(q) (q)

1 N(x ,...,x ), it is usual to standardize the features by a linear mapping of each fixed feature n so its(q) (q)

minimum value goes to 0 and its maximum value goes to 1 via

n n n n nx  6 (x   - a ) / ( b  - a )  (1)(q) (q)

n q=1,Q n n q=1,Q na  = min  {x  },    b  = max  {x  }  (2a,b)(q) (q)

This prevents features with larger ranges from dominating those of smaller ranges. Our pre-

clustering and  kernel mapping process automatically standardizes the fuzzy connectivity matrix (see

Section 3) so we need not standardize the feature vectors.

Section 2 presents the first stage that reduces the data by use of a new similarity that we

designed to deal with noisy features. It finds many pre-clusters of small volume as a reduced

representative set of vectors. Section 3 gives the main method of this paper, which is the mapping

of pairs of pre-cluster centers into a fuzzy connectivity matrix. This can be done on the original

feature vectors without any pre-clustering, but the matrix could be very large and unwieldy in that
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case. In Section 4 we discuss the data sets and the results of computer runs on simple, but also on

difficult, data sets that are substantial and noisy. Section 5 provides the conclusions.

2.  THE PRE-CLUSTERING STAGE

2.1 Reducing the Data set for Efficiency

The object of the pre-clustering first stage is to reduce a set of Q feature vectors to a smaller set

of K vectors that represent the feature space. The pre-clusters must be small in volume (very similar)

so that each is well represented by its center (a type of average or median vector). The number of

pre-clusters is not so important, as we shall see, but we should not use too few. This first stage will

be followed by the second stage where the fuzzy connectivity matrix of the pre-cluster centers is

computed to connect those centers into clusters. The use of multiple pre-cluster centers as prototypes

for a single class allows the class to have practically any shape and not be constrained by the shape

of the unit ball of a distance function or other similarity measure.

1 NGiven a set of Q feature vectors {x : q = 1,...,Q}, where each x  = (x ,...,x ) has N features,(q) (q) (q) (q)

the first stage reduces the data set by clustering the data set into pre-clusters of small volume and

then computing a center of each pre-cluster to be put into the reduced set. We then map all unique

pairs of these pre-cluster centers into the connectivity matrix in the second stage.

2.2 The First-stage Pre-clustering Algorithms

Our pre-clustering method employs a similarity measure S(x, y) [3] that sums the number of

1 Napproximate feature matches over the N features for each pair of N-dimensional vectors x = (x ,...,x )

1 N nand y =  (y ,...,y ). Given N feature thresholds  {t : n = 1,...,N}, we compute (for each n # N) 

n n n n n n n n d  = 1  if  | x  - y  | # t ,         d  = 0  if  | x  - y  | > t    (3a,b)

n n = 1,...,NA user-given single proportion p (0 < p < 1) determines all feature thresholds {t }  as the
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proportion p of the ranges of the N features over the set of all feature vectors {x : q=1,...,Q}, where(q)

1 Nx  = (x ,...,x ), via(q) (q) (q)

nt  = (p)(range(n))  (4)

q=1,Q n q=1,Q nrange(n) = max {x }  -  min  {x }  (5)(q) (q)

Our similarity measure S(x, y) is the sum 

(n=1,N) n      S(x, y) = 3 d    (6)

W (n=1,N) n n      S (x, y) = 3 w d    [weighted version] (7)

If the similarity satisfies

1      S(x, y) > T  (8)

1 1for some similarity threshold T  such that T  # N (preferably closer to N if the error magnitudes are

low), then we merge x and y into the same pre-cluster. 

1Once T  is set the user starts with a lower value for the proportion value of p and then iterates

the pre-clustering [3] interactively by increasing p over the iterations until a usable set of pre-clusters

is obtained for which the number K of pre-clusters is significantly larger than an estimate of the final

number of classes. The value of p is a control to keep the pre-clusters compact. 

This summing of the feature-wise similarities is equivalent to voting by the features on the

1similarity between two vectors with T  determining the required majority. Such feature voting is

1more robust to noise when T  is much lower than N, and should work best for larger dimensionality

where there can be enough features of relatively low noise in each instance to classify. Because a

higher value of S indicates higher similarity, S(x, y) is a true similarity measure. We describe the

algorithm in parts below.
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Algorithm A - Set up the Pre-cluster Parameters

Step 1: Input Q, N and Q feature vectors of N dimensions, {x : q = 1,...,Q}(q)

Read Q, put K = Q //K is no. of initial singleton pre-clusters

For k = 1 to K do //For each feature vector x  (q = k here)(q)

     Read x // read it into memory and then copy it to (k)

     Put c  = x  // the center of a singleton initial pre-cluster(k) (k)

Step 2: Set up singleton pre-cluster assignments

For k=1 to K do //Assign each feature vector x  (K = Q)(k)

     clust[k] = k //  to its own pre-cluster no. k

     count[k] = 1 // and set count of pre-cluster k to 1

Step 3: Compute the range of each feature (dimension)

For n = 1 to N do //For each of N features (dimensions)

     Compute range[n] // use Equation (5)

Input T1 //No. features to match for similarity, Eqn. (8)

Algorithm B - Merge Centers to Decrease Pre-cluster Centers

nStep 1: Compute all feature thresholds t  as proportion of ranges

Input  p //Use small proportion p (say, 0.1) on first run, use it in

For n = 1 to N do  // Eqn. (4) ( increase p on later runs)

n    t  =  p*range(n)

Step 2: Assign each center to another center to which it is similar

For k = 1 to K-1 do //Select each unique pair of pre-cluster

     For kk = k+1 to K do // centers no.s  k, kk and find their
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          Compute S(c , c ) //  similarity by Eqns. (3a,b, and 6)(kk) (k)

1          If S(c , c ) $ T  then //If similarity is high then change assignment(k) (kk )

     For q = 1 to Q do // of each feature vector in pre-cluster kk to

          If clust[q] == kk do // pre-cluster k, and then

   clust[kk] = k // and then increment and

   count[k]++ // decrement the pre-cluster counts 

   count[kk]-- //Empty clusters are eliminated below

Step 3: Eliminate empty pre-clusters

For k = 1 to K-1 do //For each pre-cluster no. k, if it is

     If count[k] <= 0 then // empty then we will eliminate it

          If k == K then  K- - //If last pre-cluster K, decrement K to eliminate

          Else //Otherwise, we must move all higher indices

  For kk = k to K-1 do // down by one index unit

      count[kk] = count[kk+1] //First we move counts down by one and 

      For n = 1 to N do c[n,kk] = c[n,kk+1] // do same with centers

      For q = 1 to Q do //Move vectors in each pre-cluster above k 

 If clust[q] = kk+1 then // down by reassigning to the 

        clust[q] = kk // next lower index

  K- - // then decrement K (empty class k is eliminated)
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Algorithm C - Average Pre-cluster Centers

Step 1: Find component sums of all feature vectors in a pre-cluster

For k = 1 to K do //For each pre-cluster k set its center

     For n = 0 to N do // c  to the zero vector to be used(k)

          c[n,k] = 0.0 // for summing pre-cluster k average

For k = 1 to K do //For each pre-cluster k and each feature

     For q = 0 to Q do // vector q, if feature vector belongs to

          If clust[q] == k then // pre-cluster k, then add it to the

  For n = 0 to N do // running sum for that center

          c[n][k] = c[n][k] + x[n][q]

Step 2: Divide each pre-cluster center component by no. vectors in pre-cluster

For k = 0 to K do //Now divide center sum k by no. vectors

     For n = 0 to N do // in pre-cluster k to get the average vector

          If count[k] > 1 then // components

    c[n][k] = c[n][k]/count[k] //This is the new center c  (k)

We prefer to compute the "-trimmed mean of each pre-cluster in Step 2 of Algorithm C rather

than the mean so as to get rid of the worst outliers (see Bednar and Watt [4] 1984). This throws out

the " largest and " smallest values of each feature n over any pre-cluster and averages the remaining

ones. The median vector (with " = �K/2 - 1�) could also be used as a robust center. At this point we

have the centers {c : k = 1,...,K} of pre-clusters of small volume that serve as a set of K(k)

representatives for the entire set of Q feature vectors {x : q = 1,...,Q}, where K < Q. (q)



-9-

These centers are clustered in the second stage by mapping pairs of them into the fuzzy

connectivity matrix. Our computer program is event driven from the keyboard where we enter a

character to execute one of the algorithms A, B or C. We must execute A first to set up the

parameters, and then we execute B and C in that order one or more times with different p values.

Finally, we select D (see below) to compute the matrix. 

3. THE FUZZY CONNECTIVITY STAGE

3.1 Kernel Mappings

Any two classes of vectors in N-dimensional feature space are linearly separable if there is a

hyperplane that separates the vectors in one class from those in the other class. Letting < , > denote

the inner product, a hyperplane satisfies 

w 1 1 N N     h (x) = <w, x> - b = w x  + . . . + w x  - b = 0 (9)

wThe vectors x on the side where h (x) > 0 belong to one class, the vectors x on the other side where

w w nh (x) < 0 are in another class, and h (x) = 0 for x in the hyperplane. The w  are the weights

(coefficients) and b determines the position of the hyperplane along a line perpendicular to it. But

in the case of the inside and outside, e.g., of an ellipsoid, no hyperplane can separate them, so they

are called linearly non-separable.

If an N-dimensional space is mapped nonlinearly into a higher dimensional space of dimension

D > N, there may be hyperplanes that can separate the classes. Such separating hyperplanes would

usually map inversely back into complex separating hypersurfaces in the original feature space. For

example, in the original feature space there may be an ellipsoidal surface around the origin, inside

of which is one class, while a second class is outside. But we don’t know the hypersurface

mathematically (if we did then we would be done). 
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Our method derives from historical research in the classification and pattern recognition culture.

Aizerman et al. [5], 1964, applied the kernel function of Mercer [6], 1909, to pattern recognition

learning (classification). Such functions have been used in support vector machines (SVMs),

principal component analysis (PCA) and other types of algorithms [7]. See [8, 9, 10] for SVMs and

[11, 12, 13, 14] for kernel PCA. SVMs are quite accurate for many low-noise data sets, especially

for a small number of classes and/or small dimension, but they can be numerically unstable in the

case of an order of magnitude difference in feature values [7]. Kernel PCA can also be numerically

unstable as shown by example in [7]. PCA was investigated by Pearson [15], 1901 and Hotelling

[16], 1933, to find a set of fewer components that have maximal variance to reduce the dimension

of data.

In the example of Figure 1 there are 2 points inside the unit hypersphere x  + y  = 1  shown on2 2 2

the left side of the figure. That circle separates the plane into two regions with 2 points shown inside

and 2 points outside. We map the circle boundary by g(x,y): (x,y) ÷ (u, v, w) to a line segment in 3

dimensions in (u,v,0) in the positive (first) octant. The hyperplane generated in (u, v, w) space by w

(all values of w) for the line collinear to this segment separates the mapped vectors on the inside of

the circle from those on the outside of the circle. The map is

(x, y) ÷ g(x,y) = (u, v, w) = (|x|, |y|, 1 - x  - y )  (10)2 2

If (x, y) is on the unit circle, then 1 = x  + y  so that w = 0 under the mapping. In general, it is2 2

difficult or impossible to find such facilitating mappings directly from the data. The two inside

points in Figure 1 are mapped behind the hyperplane by

 (½, 0)  6 (½, 0, 3/4), (0, ½) 6 (0, ½, 3/4)

and the two outside points are mapped to the front of the hyperplane according to 
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(2,0) 6 (2, 0, -3), (0, 2) 6 (0, 2, -3) 

Figure 1. A simple separating map from 2 to 3 dimensions.

3.2 The Kernel Function Trick

Because we can not use hyperplanes of the form <w, x> = b in the original feature space to

separate linearly non-separable classes, we want to: 1) map x 6 g(x) and w 6 g(w) nonlinearly into

higher dimensions; and 2) separate classes with linearly separating hyperplanes via

      5(w,x) = <g(w), g(x)> = b   (11)

The problem is that we don’t know what the function g(x) should be or how many dimensions are

needed. However, we can define a nonlinear kernel function to be the radial basis function (RBF)

G(-, -) as other researchers have done using similar functions. Thus we use

     6 : ú xú  6 ú  (12)K K

     6(x ,x ) = exp[-||x  - x || /(2F )] = exp[-<x ,x >/(2F )] = G(<x , x >) (13)(j) (k) (j) (k) 2 2 (j) (k) 2 (j) (k)

where the width parameter is F > 0. This is used in place of 

     5(x ,x ) = <g(x ), g(x )>   (14)(j) (k) (j) (k)
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because the function g(x) is unknown. In other words, we take the nonlinear function of the inner

product instead of the inner product of the (unknown) nonlinear function. This is known as the

“kernel function trick.” It maps the hyperplanes nonlinearly into higher dimensions so as to separate

classes.

The function 6  changes the nonlinear problem into a linear problem, as happens in a radial basis

function (RBF) neural network (NN), which is one type of support vector machine: the map from

the input layer of N dimensions to the M-dimensional hidden layer nonlinearly maps the feature

space to a higher M-dimensional space (M > N), and then the linear maps from the hidden layer to

the output layer define hyperplanes that separate the M-dimensional space. Our method is a type of

inversion of this.

3.3 The Second-stage Algorithm for the Fuzzy Connectivity Matrix

This second stage starts with the K pre-cluster centers {c : k = 1,...,K} of dimension N that are(k)

to be mapped into K vectors of K dimensions each, N < K < Q. The radial basis kernel function

maps each feature vector pair into a fuzzy connectivity truth. Let {c ,...,c } be the final set of K pre-(1) (K)

1 ncluster centers that are representatives for the original data set {x ,...,x }, where  x  = (x ,...,x ).(1) (Q) (q) (q) (q)

We use G(<c , c >) to obtain(j) (k)

jk      y  =  6(c ,c ) = exp[-||c  - c || /(2F )] (15)(j) (k) (j) (k) 2 2

so as to form the matrix

jk j=1,K; k=1,K     Y = [y ]    (fuzzy connectivity matrix) (16)

Algorithm D - Generating the Fuzzy Connectivity Matrix

Step 0: Input the data from the first stage

Input K, Q, {c }, {x } //These are from the first stage(k) (q)
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Compute F    //See Eqn. (17) below

Step 1: Compute the fuzzy connectivity matrix

Adjust F //User may increase/decrease or not change

For j = 1 to K do //For each pair of pre-cluster centers

     For k = j to K do // compute fuzzy matrix entry j-k

jk          Compute y  //  using Equation (15)

Step 2: Set the fuzzy matrix threshold and use it on fuzzy connectivity matrix

Input threshold T //0.0 < T < 1.0, start at 0.5

For j = 1 to K do //Use threshold to zero out

     For k = j+1 to K do // any small entries

jk jk          If y  < T then y  = 0.0

jk          Display y //View results on screen

Step 3: User selects to re-do connectivity matrix or not

User input selectKey //Select to repeat or stop

If selectKey is repeat then //If repeat, then go back and set

     goto Step 1 // F (and T) again, get new matrix

jkElse write y  to file //Accept current connectivity matrix

Stop // and quit program

In Equation (15) we find the width parameter F for the kernel function from the ranges (this is

a subject for future research) by

n=1,NF  = (1/N)3  [range(n)/(]  (17)2 2

where ( (( = 2 is a good value to try) sets range. Larger ( yields a smaller F in Equation (15).
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kkBy Equation (15), Y is symmetric. When j = k, then y  = 1, but also if c  and c  are close, then(j) (k)

jk jky  is near unity. On the other hand, if c  and c  are far apart, then y  is near zero so it will be(j) (k)

converted to zero by applying the threshold T. But near and far are determined to some extent by F

and T, so the iterations through the loop allow experimentation on the data to obtain a fuzzy or crisp

partitioning. More generally, the symmetric matrix Y is a correlation type matrix for the pre-cluster

centers (correlation was used by Kohonen [17], 1982, as a similarity measure). Y is actually a fuzzy

jkconnectivity matrix because each y  is a fuzzy truth value (between 0 and 1) for vectors j and k being

in the same class: the radial basis function in Equation (15) is a fuzzy set membership function

(FSMF) that  c  belongs to the class of c .(j) (k)

The fuzzy connectivity matrix is the final result. Some repetitions with increased or decreased

values of F and T can be done for comparison before accepting the results that are rather insensitive

to these values. Upon representing a data set of hundreds, or thousands, of feature vectors by, e.g.,

10 to 30 pre-cluster centers, we reduce the fuzzy connectivity matrix dramatically. Our method is

also immune to the order of the feature vectors (unlike k-means, for which a different order can yield

different results). The combined pre-clusters can approximate a class of arbitrary shape.

3.4 Pattern Recognition with Fuzzy Connectivity

Once we compute the fuzzy connectivity matrix Y then we can put any unknown feature vector

x  (from the same population as the original sample) into the system to check which pre-cluster it

belongs to. Then we check the fuzzy connectivity matrix Y to determine which class that pre-cluster

center belongs to and the fuzzy truths of such memberships. For crisp clustering, the pre-cluster

centers can be grouped by the thresholded fuzzy connectivity matrix into core sets of prototypes (a



-15-

core set for each class). We need only store the strictly upper triangular part of the matrix Y and the

set of pre-cluster centers.

3.4 Clustering Validity and the Number of Classes

The number of classes K is very important parameter in clustering, yet it is often unknown.

Clustering can be done for different K values where a clustering validity index (or validity measure)

is applied to each result to select the final K value that provides the best validity value. Bezdek’s

work [18] allows a feature vector to belong partially to each of multiple classes rather than only one,

which originated the field of fuzzy clustering. The Xie-Beni (XB) fuzzy clustering validity (see [19],

1991) is often used to assess the clustering goodness. Also see  Pal and Bezdek [20], 1995, for fuzzy

clustering validity. The XB clustering validity for K clusters is given by

(k=1,K) k minXB = (1/K){3 F  } / D   (18)2

qkkF   = 3{ (u )||x  - c ||  :  x  0 Cluster k} (19)2 (q) (k) 2 (q)

minwhere  D  is the minimum distance between cluster centers {c : k = 1,...,K}  (the separation), and(k)

qkkF  is the mean-square error of Cluster k, and u  is the fuzzy membership of x  in Cluster k (for2 (q)

crisp clustering, it is a 0 or 1). The numerator of Equation (18) is called the compactness of the

clustering.  

The Kwon (Kw) validity index (see S. H. Kwon [21], 1998) appears to be as good, or slightly

better, than the Xie-Beni validity. It changes the compactness and is given by

(k=1,K) k (k=1,K) minKw = (1/K){3 F   +  3 ||c  - :|| } / D   (20)2 (k) 2

where : is the mean of all Q feature vectors and c  is the center  of the k  cluster. However, such(k) th

validity indices involve a sum of mean-square errors (variances) of the clusters and thus are suited

to (Euclidean) ball shaped clusters (hyperspheres), i.e., they are not valid for clusters of elongated,
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curved or other types of shapes. They are also biased toward a smaller K value. Other types of cluster

validity indices exist (see [1, p. 665]). 

An important advantage of our method here is that we don’t need to compute any clustering

validity to determine the number of classes because the fuzzy connectivity values are given in the

matrix Y. We can find the row-wise maximum fuzzy truth that a vector connects to another vector.

However, for comparison of experimental runs we can use a max-min fuzzy clustering validity for

the fuzzy connectivity classes of our fuzzy connectivity matrix. First, we find the maximum non-

kdiagonal entry (ORed value) f  within each row (unless all non-diagonal values are zero, in which

case that single diagonal entry for a pre-cluster designates a class, so we use the diagonal entry; and

ksecond, we find the minimum (ANDed) value of all such maximum fuzzy truths f  between rows.

We examine the fuzzy validities for two runs on the iris data set with different pre-clusters in the

next section.

4.  COMPUTER RUNS ON DATA SETS 

4.1 Results on the 2-Dimensional test.dta Data set

Figure 2 shows a synthetic linearly non-separable data set (test.dta), listed in Table 1, which is

designed to fool clustering algorithms. We assume the number of classes K is unknown. Our

algorithm first agglomerates all feature vectors into 10 small pre-clusters, finds their centers, and

then computes a connectivity matrix for them. Figure 3 shows these results.
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  Fig 2. Original test data set.  Figure 3. Test results, 10 pre-clusters.

We also pre-clustered the test.dta data set into 8 pre-clusters with the results shown in Figure

4. After several experiments it appeared that the number of pre-clusters had no effect on the final

classes for this data set, as long as it was large enough. The fuzzy threshold used on the matrix was

T = 0.51. Figure 5 shows one result of k-means (given K = 2), but others varied with different sets

of  initial centers.

                   

     Fig. 4. Test results, 8 pre-clusters.      Fig. 5. Test results for k-means, K = 2.
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     Table 1. The test Data for Testing
     Vector               Pre-
       No .               x          y     Class    Cluster

 1  1.000  7.000    1     1

 2  1.500  7.500    1     1

 3  2.000  8.000    1     1

 4  3.000  9.000    1     2

 5  3.000  10.00    1     2

 6  3.500  9.500    1     2

 7  4.500  8.500    1     3

 8  5.500  8.500    1     3

 9  5.000  9.000    1     3

10  6.500  7.500    1     4

11  7.000  8.000    1     4

12  7.000  7.000    1     4

13  4.000  6.000    2     5

14  3.500  5.500    2     5

15  4.000  4.500    2     6

16  4.000  3.000    2     7

17  4.500  3.500    2     7

18  5.000  3.500    2     7

19  5.500  2.500    2     8

20  8.500  6.500    1     9

21  9.000  6.000    1     9

22  9.000  5.500    1     9

23  9.000  3.500    1   10

24  9.000  4.000    1   10

25  9.500  4.000    1   10

 Table 2 shows the 10x10 fuzzy connectivity matrix for the 10 pre-clusters shown in Table 3 and

displayed in Figure 3. By using the pre-cluster centers, we reduced the matrix from 25x25 (625

entries) to 10x10 (100 entries) for 10 pre-clusters, for this case. 

The first row of Table 2 shows that pre-cluster centers 1 and 2 are connected; the second row

shows that Pre-clusters 1, 2 and 3 are connected; from the third row we see that Pre-clusters 2, 3, and

4 are connected; and the fourth row shows that Pre-clusters 3, 4 and 9 are connected. The ninth and

tenth rows show the connectivity of Pre-clusters 4, 9 and 10, and pre-clusters 9 and 10. Thus Pre-

clusters 1, 2, 3, 4, 9, and 10 are all connected. On the other hand, rows 5, 6, 7, and 8 show that Pre-

clusters 5, 6, 7, and 8 are connected (underlined). Thus K = 2 classes have been established from 10

pre-clusters per Figure 3 where K is not given. The class results were the same for 8 pre-clusters.
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Table 2. The Fuzzy Connectivity Matrix for test Data

   1.00  0.52  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

   0.52  1.00  0.67  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

   0.00  0.67  1.00  0.63  0.00  0.00  0.00  0.00  0.00  0.00 

   0.00  0.00  0.63  1.00  0.00  0.00  0.00  0.00  0.54  0.00 

   0.00  0.00  0.00  0.00  1.00  0.85  0.54  0.00  0.00  0.00 

   0.00  0.00  0.00  0.00  0.85  1.00  0.85  0.54  0.00  0.00 

   0.00  0.00  0.00  0.00  0.54  0.85  1.00  0.85  0.00  0.00 

   0.00  0.00  0.00  0.00  0.00  0.54  0.85  1.00  0.00  0.00 

   0.00  0.00  0.00  0.54  0.00  0.00  0.00  0.00  1.00  0.63 

   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.63  1.00 

Table 3. Pre-clusters for test.dta Data, 10 Pre-clusters
        Pre-Cluster                              Feature   

  No.              Class       Count             Vector No.s  
    1    1      3          1  2  3 

    2     1      3          4  5  6 

    3      1      3          7  8  9 

    4     1      3          10  11  12 

    5     2      2          13  14 

    6     2      1          15 

    7      2      3          16  17  18 

    8      2      1          19 

    9     1      3          20  21  22 

  10     1      3      23  24  25 

We also computed the 25x25 fuzzy connectivity matrix for the 25 original feature vectors (as

singleton pre-clusters) without merging any pre-clusters. While this full fuzzy connectivity matrix

produced the same class results, the reduced matrices were easier to work with. The 25x25 matrix

is displayed in Appendix B, which shows that the original feature vectors 13 - 19 (underlined bold

italic) are in one class, and original feature vectors 1 - 12 and 20 - 24 make up the other class (bold).

4.2 Runs on the Iris Data

The well-known iris data set is not separable into the 3 classes originally classified manually

by Anderson [22], 1935. This data set can be obtained from the University of California, Irvine

Machine Learning Repository [23]. This data set has the first 50 feature vectors with labels of 1, the

second 50 with labels of 2 and the third 50 with labels of 3, but we rearranged the vectors to alternate
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labels 1, 2, 3, and repeat this throughout, and we numbered the vectors from 1 to 150. The iris data

set is accepted to be a major difficult test for clustering algorithms. Its 150 feature vectors have 4

features that represent petal length, petal width, sepal length and sepal width of 3 species of iris

flowers. Anderson labeled them into 3 classes of 50 samples each for the respective 3 species.

The iris data can be learned fairly well by a radial basis function neural network or vector

support machine because it is labeled, but neural networks and support vector machines learning

systems learn mislabeled and noisy vectors as valid vectors and so will misclassify upon such

incorrect learning. But self-organizing learning finds an inherent structure in the data, which may

not agree with the given labels. It is now thought by many researchers that the iris data set contains

two main classes (see [24], 2002; Lin and Lee [25], 1995; Billaudel et al. [26], 1999; Kim and

Ramakrishna [27], 2005; and Wu and Yang [28], 2005). In [28], 5 of 8 validity indices showed 2

classes were the best, while the remaining 3 others showed 3, 5 and 8 classes, respectively, to be

best. Thus the case of 3 classes was best in only 1 out of 8, yet this would be the result of training

a NN or an SVM with the given labels.

Figure 6 shows the fuzzy weighted average (FWA)

[24] of each of the 4 iris features by classes obtained

using Anderson’s labels. It can be seen that Feature 2

does not distinguish well between the classes and that

small noise will contribute to overlapping of its values.

Omitting it should improve the clustering. We can set

1T  = 3 in the first stage so that only 3 of the 4 features

must match well in Equations (6, 8).           Fig. 6. FWA of the four iris features.
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Table 4 lists the thresholded (T = 0.51) fuzzy connection matrix for the 8 obtained pre-clusters

1of the iris data for T  = 3. Our feature vector numbers of the pre-clusters are shown in Table A-1 of

Appendix A. The first pre-cluster has size 50 but low volume. It is a class by itself because no other

11pre-clusters are connected to it (the first row and first column are all 0s except for y ). All of the

remaining pre-clusters, however, are connected and so belong to the same fuzzy connectivity class.

We checked the first class and found that all of the 50 feature vectors labeled by Anderson as being

in the first class are contained here in our first pre-cluster. The remaining 100 in the second class do

not break into 2 classes of sizes 50 each (as labeled by Anderson) according to any clustering

algorithms we know of in the literature.

1Table 4. Iris Data Fuzzy Connection Matrix, T  = 3    

  1.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00 

  0.00   1.00   0.78   0.72   0.96   0.67   0.84   0.58 

   0.00   0.78   1.00   0.00   0.85   0.90   0.00   0.00 

   0.00   0.72   0.00   1.00   0.78   0.00   0.87   0.77 

   0.00   0.96   0.85   0.78   1.00   0.70   0.79   0.52 

   0.00   0.67   0.90   0.00   0.70   1.00   0.00   0.00 

  0.00   0.84   0.00   0.87   0.79   0.00   1.00   0.90 

   0.00   0.58   0.00   0.77   0.52   0.00   0.90   1.00 

1The computer run on the iris data with T  = 4 is shown in Table 5 (also see Table A-2 of

Appendix A). Upon examination of the fuzzy connectivity matrix in Table 5 we see that the first

class consists of pre-clusters 1,7, and 8, which together contain the 50 feature vectors labeled as the

first class by Anderson. The remaining pre-clusters are all connected and thus make up the second

class of 100 feature vectors that Anderson had labeled into two classes of size 50 each. It appears

from Figure 6 that the second class is composed of two sets of respectively larger and small

specimens of the same class (perhaps different soil nutrients made the difference).
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1Table 5. Iris Data Fuzzy Connection Matrix, T  = 4 

  1.00   0.00   0.00   0.00   0.00   0.00   0.82   0.81 

  0.00   1.00   0.74   0.94   0.00   0.85   0.00   0.00 

  0.00   0.74   1.00   0.82   0.76   0.00   0.00   0.00 

  0.00   0.94   0.82   1.00   0.00   0.78   0.00   0.00 

  0.00   0.00   0.76   0.00   1.00   0.00  0.00    0.00 

  0.00   0.85   0.00   0.78   0.00   1.00   0.00   0.00 

  0.82   0.00   0.00   0.00   0.00   0.00   1.00   0.00 

  0.81   0.00   0.00   0.00   0.00   0.00   0.00   1.00

1Upon comparing Tables 4 and 5 (T  = 3 and 4, respectively), we obtain different values for our

1fuzzy validities. For T  = 3  the minimum of the values max{0.78, 0.72, 0.96, 0.67, 0.84, 0.58},

max{0.78, 0.85, 0.90}, max{0.72, 0.78, 0.87, 0.77}, max{0.96, 0.85, 0.78, 0.70, 0.79, 0.52},

max{0.67, 0.90, 0.70}, max{0.84, 0.87, 0.79, 0.90}, max{0.58, 0.77, 0.52, 0.90} is f =  0.87.

1However, for the case of T  = 4 the minimum of the row-wise maxima is 0.76 (from Row 5 of Table

15). This means that even though the final results of classes of 50 and 100 were the same, the T  =

3 (where f = 0.87) case gave better pre-cluster centers to represent the fuzzy classes. 

4.3 Runs on the Wisconsin Breast Cancer Data

The wisc9-699 data set [23, 29, 30] has 699 records, of which the first field is the identification

number.  The next 9 fields contain the 9 features that have to do with properties of the hypothesis

tissue: (1) clump thickness; (2) uniformity of cell size; (3) uniformity of cell shape; (4) marginal

adhesion; (5) single epithelial cell size; (6) bare nuclei; (7) bland chromatin; (8) normal nucleoli; and

(9) mitosis. The final field is the label, which is 2 for normal and 4 for malignant. Each of these 9

features takes values from 1 to 10.

There are 458 records (feature vectors) with labels of 2 for normal and 241 with labels of 4  for

malignant. Most clustering methods of which we are aware obtain far too many feature vectors in
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the normal cluster and too few in the malignant class. The field values were judged and entered by

humans and there is significant noise power, but we also believe there are a few incorrect labels.

This is an extremely difficult data set to classify with self-organizing learning, but it is fairly easy

to train a neural network or support vector machine to recognize an input vector as being in one or

the other. However, we would have very little confidence in results from such an algorithm trained

on such data.

 Table 6. Some Feature Vectors from the wisc9-699 Data Set.
         Our No.   ID No.  f1 f2 f3 f4 f5 f6 f7 f8 f9         Label

 1 1041801  5 3 3 3 2 3 4 4 1 4
 2 1043999  1 1 1 1 2 3 3 1 1 2
 3 1044572  8 7 5 10 7 9 5 5 4 4
 4 1047630  7 4 6 4 6 1 4 3 1 4
 5 1049815  4 1 1 1 2 1 3 1 1 2
 6 1050670  10 7 7 6 4 10 4 1 2 4
 7 1050718  6 1 1 1 2 1 3 1 1 2
 8 1054590  7 3 2 10 5 10 5 4 4 4
 9 1054593 10 5 5 3 6 7 7 10 1 4
10 1056784  3 1 1 1 2 1 2 1 1 2
11 1057013  8 4 5 1 2 12 7 3 1 4
12 1059552  1 1 1 1 2 1 3 1 1 2
13 1065726  5 2 3 4 2 7 3 6 1 4
14 1066373  3 2 1 1 1 1 2 1 1 2
15 1071760  2 1 1 1 2 1 3 1 1 2
16 1072179  10 7 7 3 8 5 7 4 3 4
17 1080185 10 10 10 8 6 1 8 9 1 4
18 1081791  6 2 1 1 1 1 7 1 1 2
19 1084584  5 4 4 9 2 10 5 6 1 4
20 1096800  6 6 6 9 6 12 7 8 1 2
21 1091262  2 5 3 3 6 7 7 5 1 4
22 1099510  10 4 3 1 3 3 6 5 2 4
23 1100524  6 10 10 2 8 10 7 3 3 4
24 1002945  5 4 4 5 7 10 3 2 1 2
25 1102573  5 6 5 6 10 1 3 1 1 4
26 1103608 10 10 10 4 8 1 8 10 1 4

Table 6 shows some feature vectors that we selected from the data file. We note that one or more

high feature values associate with malignant (label 4), while the others may be low, and so any two

malignant feature vectors may be quite different on any similarity measure. Thus the usual

similarities do not fare well here. Vector 20 has a label of 2 but its value of Feature 6 is 12, which

is an obvious mistake (10 is the maximum value) and it is definitely mislabeled.
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If we compare the 1  and 13  vectors (label 4) with the 17 , 23 , and 26  vectors (label 4) west th th rd th

see that they are very different. Further, 23  and 26  vectors both have label 4 but they are far (inrd th

Euclidean distance) from, say, the 22  and 25  vectors that also have label 4. The vectors with labelnd th

2 generally have small values.

1Table 7 shows the results of classifying the wisc9-699 data set with our algorithm using T  =

N = 9 (all features). The first pre-cluster of 471 feature vectors was somewhat compact and formed

very early in the process (and remained constant as we increased p in very small increments). Pre-

clusters 2 - 11 formed the second class in Table 7. On some runs, we tried to force the reduction in

the number of pre-clusters used by increasing p too much, which put all, or almost all (on different

runs) feature vectors into a single normal pre-cluster. This tells us that the normal pre-cluster has

certain vectors that are quite similar to malignant ones and so connect to them when p increases a

little too much.There were differences in the counts of our classes with the labeled classes, and also

differences in the labels (e.g., if L vectors labeled 2 were classified by our method as being in the

class with label 4 and L vectors labeled 4 were classified as label 2, it would not affect the counts).

1Table 7. Results on the wisc9-699 Data with T  = 9.
Pre-cluster No.     Class No.   Total No. of Vectors
   1 1 471
   2,3,4,5,7,9,11 2 222
   6 3    2
   8 4    1
  10 5    1
  12 6    2

1 1We also made runs with T  = 8 and T  = 7. In the first of these cases, there were 494 vectors

classified in the normal class, and in the second case there were 516. We found that the lower we put

1T , the more quickly the normal class (the first pre-cluster) became larger. Upon looking at vectors
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from the same labeled class, we found many of their features varied about as much as those with

different class labels. 

Table 8 shows the results when we selected only 6 of 9 features (no.s 2, 3, 4, 6, 7, 8) to use (here

1T  = 6 so that all 6 features were used). The first and fifth pre-clusters comprised the normal group,

while the second, third, fourth, sixth and seventh pre-clusters made up the malignant group. The

thresholded fuzzy connectivity matrix is shown in Table 9, where T = 0.34 (a larger F value

increased the non-unity fuzzy entry values in a later run). 

Table 10 shows the differences between the labels and the classes found by our method. This

means that we found 14 vectors in the malignant class (4) that were labeled normal, and 15 vectors

in the normal class (2) that were labeled malignant. That gave an overall difference rate of 29/699

= 0.0415, or a 4% difference, which is about 2% false positive and 2% false negative. However, we

are reasonably sure that some of the labels are incorrect and some data have significant errors. These

results are for future comparison to those of other researchers on this difficult data set.

Table 8. Results on the wisc9-699 Data with 6 Features
Pre-cluster No.     Class No.   Total No. of Vectors
   1 1 447
   2 2 132
   3 2   53
   4 2   30
   5 1   12
   6 2   23
   7 2     2
  Class 1 total: 459          Class 2 total: 240
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Table 9. The Thresholded Fuzzy Connectivity Matrix for 6 Features, wisc9-699 Data

  1.000000  0.000000  0.000000  0.000000  0.681618  0.000000  0.000000 

  0.000000  1.000000  0.701849  0.442690  0.000000  0.372693  0.000000 

  0.000000  0.701849  1.000000  0.614846  0.000000  0.668216  0.000000 

  0.000000  0.442690  0.614846  1.000000  0.000000  0.603763  0.532708 

  0.681618  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000 

  0.000000  0.372693  0.668216  0.603763  0.000000  1.000000  0.000000 

  0.000000  0.000000  0.000000  0.532708  0.000000  0.000000  1.000000 

1Table 10. Differences on the wisc9-699 Data, 6 Features and T  = 6
                 Labeled Data                       Results of Our Method                   
   Labeled Class     No. Vectors      Class Found No. Vectors Differences*

2 (1)   458       1        459       15
4 (2)   241       2        240       14

* Differences between labels and classes found
     ——————————————————————————————

5.  CONCLUSIONS

This new method reduces a data set of feature vectors to be clustered by finding the centers of

compact pre-clusters to use as representatives. This is the first stage. For this pre-clustering we use

a special similarity function for noise suppression, but k-means (with Euclidean distance similarity)

or other clustering could be used in this stage if the noise power is low and abundant pre-clusters of

small volume are found. The second stage generates a fuzzy connectivity matrix with an entry for

each pair of pre-cluster centers that is generated by a Gaussian kernel function used as a fuzzy set

membership function. Pairs that belong to the same class have higher fuzzy truths. The number of

classes K and the classes are found from the connectivity matrix. Upon starting with a small fuzzy

threshold for the fuzzy connectivity matrix and increasing it if needed, we can obtain a partition of

the pre-cluster centers into classes. The user can obtain, with few iterations, both the number K of

the classes and the multiple prototypes (pre-cluster centers) of each class. 
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The 150 iris feature vectors were respectively reduced to K = 10 and K = 8 pre-clusters with

10x10 and 8x8 and fuzzy connectivity matrices that both yielded K = 2 classes upon thresholding.

The wisc9-699 data is very noisy but our method classified it with a 4% error from the labels, but

it appears that the labels contain a few errors also.

Strong advantages of this method are: (1) the number K of classes is determined correctly from

the fuzzy connectivity matrix; (2) the ordering of the data have no effect on the results; (3) the shapes

of the classes are constructed by the automatic adjoining of multiple centers and so are not

constrained by a distance similarity measure; and (4) the order of merging and the order of the

vectors do not affect the results. Our fuzzy clustering validity measure appears to be useful. 

We note that Ben-Hur et al. [31] used a support vector clustering algorithm with PCA that

yielded K = 4 classes on the iris data set. Other spectral methods [13, 14] have done clustering on

data with one cluster inside of another circular cluster, but only in 2-dimensional feature space. We

entertain some doubts as to the capability of such methods on large data sets (see [2] for a discussion

of what works and doesn’t work on large data sets).
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Appendix A - Results of Clustering the Iris Data

1Table A-1. Iris Pre-cluster Numbers, T  = 3

Pre-cluster 1 has 50 vectors numbered:  1  4  7  10  13  16  19 22  25  28  31  34  37  40  43  46  49  52  55  58  61  64  67 
70  73  76  79  82  85  88  91  94  97  100  103  106  109  112  115 118  21 124  127 130  133  136  139  142  145  148 
 Pre-cluster 2 has 33 vectors numbered:  2  5  8  14  20  26  33 35  39  41  47  50  56  60  65  68  71  74  77  80  83  86  102  104  105  107  110  113
120  125  126  138  143 
 Pre-cluster 3 has 9 vectors numbered:  3  30  48  75  111  123  132  135  147 
 Pre-cluster 4 has 1 vectors numbered:  21 
 Pre-cluster 5 has 21 vectors numbered:  6  12  17  27  36  42  45  51 53 62  66 72  81  84 99  101  114  117  129  141  150 
 Pre-cluster 6 has 15 vectors numbered:  9  15  18  24  54  57  63  69  78  87  90  93  96  108  144 
 Pre-cluster 7 has 16 vectors numbered:  11  29  38  44  59  92  95  98  116  119  122  128  134  137  140  149 
 Pre-cluster 8 has 5 vectors numbered:  23  32  89  131  146 

Class 1: pre-cluster 1 Class 2: pre-clusters 2 - 8

1Table A-2. Iris Pre-cluster Numbers, T  = 4
Pre-cluster 1 has 48 vectors numbered: 1  4  7  10  13  16  19 22  25  28  31  34  37  40  43  49  52  55  58  61  64  67  70 
73  76  79  82  85  88  91  94  97  100  103  106  109  112  115  118  121  127  130  133  136  139  142  145  148 
 Pre-cluster 2 has 22 vectors numbered: 2  5  8  14  20  26  35  41  47  62  68  71  74  77  80  83  86  105  107  110  125  143 
 Pre-cluster 3 has 28 vectors numbered: 3  9  15  18  24  27  30  33  39  48  54  63  69  75  78  90  93  96  99  108  111  120  123  126  132  135  138
147 
 Pre-cluster 4 has 20 vectors numbered: 6  12  21  36  42  45  51  66  72  81  84  87  101  102  114  117  129  141  144  150 
 Pre-cluster 5 has 1 vectors numbered: 57 
 Pre-cluster 6 has 29 vectors numbered: 11  17  23  29  32  38  44  50  53  56  59  60  65  89  92  95  98  104  113  116  119  122  128  131  134  137
140  146  149 
 Pre-cluster 7 has 1 vectors numbered: 46 
 Pre-cluster 8 has 1 vectors numbered: 124 

Class 1: pre-clusters 1, 7, 8 Class 2: pre-clusters 2, 3, 4, 5, 6
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Appendix B. The 25x25 Fuzzzy Connection Matrix for the test.dta Data set  
                                                              
         1.    2.     3.      4.    5.      6.     7.      8.     9.    10.    11.   12.   13.   14.   15.   16.   17.   18.   19.   20.   21.   22.   23.   24.  25.
1.    1.00 0.95 0.91 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
2.    0.95 1.00 0.95 0.78 0.65 0.61 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
3.    0.91 0.95 1.00 0.82 0.61 0.65 0.53 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
4.    0.61 0.78 0.82 1.00 0.91 0.95 0.78 0.61 0.68 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
5.    0.00 0.65 0.61 0.91 1.00 0.95 0.65 0.00 0.61 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
6.    0.00 0.61 0.65 0.95 0.95 1.00 0.82 0.65 0.78 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
7.    0.00 0.00 0.53 0.78 0.65 0.82 1.00 0.95 0.95 0.61 0.53 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
8.    0.00 0.00 0.00 0.61 0.00 0.65 0.95 1.00 0.91 0.78 0.68 0.61  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
9.    0.00 0.00 0.00 0.68 0.61 0.78 0.95 0.91 1.00 0.65 0.61 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
10.  0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.78 0.65 1.00 0.95 0.95  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.61 0.66 0.53 0.00 0.00 0.00 
11.  0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.68 0.61 0.95 1.00 0.91  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.65 0.73 0.61 0.00 0.00 0.00 
12.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.95 0.91 1.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.78 0.80 0.68 0.00 0.00 0.00 
13.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  1.00 0.89 0.91 0.54 0.66 0.61 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
14.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.89 1.00 0.98 0.78 0.82 0.73 0.54  0.00 0.00 0.00 0.00 0.00 0.00 
15.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.91 0.98 1.00 0.80 0.89 0.82 0.61  0.00 0.00 0.00 0.00 0.00 0.00 
16.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.54 0.78 0.80 1.00 0.95 0.89 0.89  0.00 0.00 0.00 0.00 0.00 0.00 
17.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.66 0.82 0.89 0.95 1.00 0.98 0.89  0.00 0.00 0.00 0.00 0.00 0.00 
18.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.61 0.73 0.82 0.89 0.98 1.00 0.91  0.00 0.00 0.00 0.00 0.00 0.00 
19.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.54 0.61 0.89 0.89 0.91 1.00  0.00 0.00 0.00 0.00 0.00 0.00 
20.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.65 0.78  0.00 0.00 0.00 0.00 0.00 0.00 0.00  1.00  0.98 0.95 0.78 0.61 0.82 
21.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.66 0.73 0.80  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.98 1.00 0.98 0.66 0.00 0.73 
22.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.61 0.68  0.00 0.00 0.00 0.00  0.00 0.00 0.00  0.95  0.981.00 0.68 0.53 0.78 
23.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.78  0.66 0.68 1.00 0.95 0.95 
24.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.61  0.00 0.53 0.95 1.00 0.91 
25.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.82  0.73 0.78 0.95 0.91 1.00 


