
N E U R A L N E T W O R K T Y P E S

(for CS 773b, Spring 2008)

1. Standard BP NNs (also known as MLPs for multiple layered perceptron, and sometimes

called feedforward NNs). They use steepest descent on the weights from the hidden layer

to the output layer (these should be linear functions with the weights as the coefficients), and

also on the weights from the input layer to the hidden layer (summed and the sums put

through the logistic, or “S” shaped curve). These take a lot of training to find a good local

minimum for the weight set, but once it is found, they are fast on-line recognizers of

unknown input vectors. Hornik’s theorem states that 3 layers are sufficient for any learning.

2. Radial Basis Function NNs (called RBFNNs). These use Gaussian functions centered on

vectors in the feature space (it is called radial because it has equal radii in all directions from

the center). No weights are used from the input (fan out) nodes to the hidden layer nodes. The

weights from the hidden nodes to the output node(s) provide linear combinations at the

output and so the steepest descent training converges to the single global minimum. This

makes training very quick and relatively accurate.

3. Probabilistic NNs (PNNs). This type uses sums of Gaussian (normal) functions to form

probability distribution functions (pdf) centered on vectors in the feature space. The pdf with

the highest value is the winner. The assumption that the pdf’s are of this form usually holds.

4. Fuzzy NNs with Trainable Weights. This is a type of BP NN that has fuzzy inputs, or

fuzzy weights, or both. It can be trained by steepest descent.

5. Fuzzy Rule NNs. The values at the input layer go to the second layer where they are

fuzzified by fuzzy set membership functions (e.g., x(1) is HIGH with fuzzy truth f(1)). The

second layer fuzzy variables then connect to one or more of the antecedents from at the third

layer of antecedent nodes to provide them with fuzzy truth. One or more antecedent nodes

at the third layer connect to the appropriate consequent in the fourth layer, which forms a rule

(there are not complete connections, but only those connections determined by the rule

implications from antecedent nodes to consequent nodes). The consequents are defuzzified

at the output, or fifth layer to form the adjusted (weighted by fuzzy values) output.

6. Simple Fuzzy NNs. These are just like the PNNs except that the Gaussians are not

summed to form a probability density function. Instead, each Gaussian is centered on a

feature vector whose class is known. It is set up on the exemplar training vectors that are

labeled. When an unknown feature vector is presented to the system, it is put through each

Gaussian to get the fuzzy truth that it belongs to the same class as that Gaussian center. The

maximum fuzzy truth is the winner and determines the class.

7. Radial Basis Functional Link Nets (RBFLNs). Here we start with an RBFNN and add

lines with weights from the inputs layer to the output layer, bypassing the center layer. At the

output layer, the results coming in from the input layer, and from the hidden layer, are

summed in the error function and used in a steepest descent algorithm to determine both sets

of weights. It learns very quickly, but is slightly slower in on-line recognition that RBFNNs.

8. Hopfield (Recurrent) NNs. These are set up on a set of final feature vectors (that the NN

will learn to output) by computing the weights as outer products of these vectors. Then an

unknown feature vector is input, whereupon it goes through the network and the outputs are

fed back as inputs. After a number of iterations, the outputs stabilize to a fixed feature vector

that is the result that associates with the input. The dimension of the vectors must be large

in comparison with the number of classes (about 8 times as many features as classes to be

safe). These are rarely useful in applications, but hold great promise if more research leads

to useful strategies and multiple combinations of such networks or combinations with other

NNs.

9. Competitive Learning Algorithms. Given a set of feature vectors for training, a set of

prototypes is drawn randomly to be in the feature space. One feature vector at a time is

presented to these prototypes, and the prototype that is nearest to it is moved a step toward

that feature vector. The other prototypes may be move a step away from it, or may not move

at all (different strategies are used). While this is not a NN as such, it is a process known as

Learning Vector Quantization and is used in a the Kohonen networks. We will allow that this

is a part of a NN algorithm whenever the prototypes are learned and then used in a NN, such

as centers for pdf’s or Gaussian fuzzy set membership functions.

10. Combinations/Mixes with Other Algorithms. There are many different combinations

of NNs with other NNs and with non-NN algorithms. For example, there is a Fuzzy Support

Vector NN that has very good results. There are algorithms where a clustering algorithm is

used to cluster unknown feature vectors in classes, class centers found, and radial basis

functions centered on these centers in an RBFNN.

11. Support Vector Machines. This is not a NN in the strict sense, but it is a supervised

learning system that allows labeled feature vectors to be separated, so we include it here. It

is an algorithm that maps feature vectors from N-dimensions into a higher M-dimensions,

so it is easier to separate them with hyperplanes in the higher dimensional space (that would

be unknown hyperspheres in the original feature space). It is especially good for 2 classes.

A pair of vectors with one in Class 1 and the other in Class 2 is found that are the closest

from the 2 classes. Then another closest pair is found. A hyperplane is passed through the

two vectors in Class 1 and another hyperplane is passed through the other two in Class 2.

These are the support vectors. These hyperplanes provide a separating margin between the

two classes and are used to classify unknown feature vectors on line.

