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Abstract

Several hybrid architectures combining fuzzy pattern classification and the connectionist approach will be developed and
tested for the particular problem of diagnostic classification in computerized electrocardiography. The first level of fuzzy
description of the input parameters is performed by a layer of Radial Basis Functions, and this step can be seen as a level of
data abstraction. A subsequent classical NN processes these fuzzy descriptions. Several experiments have been performed on
the components of the resulting architecture in order to point out their influence on the overall performance in the diagnostic
classification task. A large validated database has been used for the validation of the proposed hybrid architecture.

1. Introduction

In the last years an increasing interest in solving
pattern recognition tasks with the connectionist ap-
proach has been observed. In fact, the neural net-
work approach has gained considerable consensus in
pattern recognition problems, and in particular, in all
fields with large databases it expresses its better
potentiality. Lately several attempts to include in an
NN the possibility to cope with uncertain or impre-
cise information has been studied. Fuzzy set theory
from its beginning has proven to be a powerful tool
for the management and the propagation of uncer-
tainty in many areas (Dubois et al., 1993), and
several applications have been successfully imple-
mented and tested. The main objective of this paper
is to describe a hybrid architecture combining the
fuzzy approach with the connectionist approach for
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the particular problem of diagnostic classification in
computerized electrocardiography. The fuzzy module
performs a fuzzy pre-processing obtained by a layer
of Radial Basis Function units. This layer is respon-
sible for the characterization in linguistic terms of
the input feature space.

Several hybrid systems have been implemented
and tested in order to verify the potentiality of the
proposed approach. The components of the resulting
architecture have been arranged and tuned in order to
point out their influence on the overall performance.
The main characteristics of the proposed method will
be described and reported in detail.

2. The problem of ECG diagnostic classification

The particular problem of diagnostic classification
of electrocardiographic signals has been chosen for
this study. The first aspect to consider is the level at
which the ECG diagnostic classification task (Fig. 1)
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Fig. 1. The Neural Network approach in the ECG signal process-
ing.
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will be performed by the combination of the fuzzy
pattern classification and the connectionist approach.
An ECG signal is composed by 12 standard leads
acquired at the frequency of 500 Hz for a period of
10 seconds and hence for a total of 60K sample
points. The NN architecture could be applied directly
to the sample points, but this approach is not very
well feasible mainly because of problems in the
learning phase (it would require a very large
database). Consequently a first data reduction is
performed with classical pattern recognition meth-
ods. A set of algorithms, from signal conditioning to
pattern identification, from wave identification to the
measurements of wave amplitudes, duration and area,
is able to perform a quantitative description of the
signal and hence parameter extraction (see Fig. 1).
Starting from the set of ECG parameters, several
methodologies for the problem of ECG diagnostic
classification can be used: from probabilistic ap-
proaches to heuristic models, from fuzzy pattern
matching models to knowledge-based systems (De-
gani, 1992; Pedrycz et al., 1991; Special Issue CSE,
1990). In addition, the connectionist approach has
been successfully applied and tested with satisfactory
results (Bortolan et al., 1991ab; Bortolan and
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Fig. 2. Diagram of the hybrid architecture.

Willems, 1994). The main objective of this paper it
to investigate the possibility of performing a first
level of data abstraction (Clancey, 1985) on the ECG
parameters in order that a classical neural network
may process the results of this data abstraction. This
task is achieved by combining the fuzzy approach
with the connectionist approach, with the objective
of performing the two steps in the same framework.
The first level of data abstraction is performed by
applying a layer of Radial Basis Function units, and
this pre-processing can be interpreted as a fuzzy
representation of the input feature space in terms of
linguistic descriptions.

Consequently the NN will not process and com-
bine the numerical values of the input parameters,
but the fuzzy description based on linguistic terms
and more or less imprecise concepts (Fig. 2). The
resulting architecture should have the characteristic
to better simulate the reasoning process of an expert.

3. The ECG database

The proposed architecture has been applied to and
tested on the problem of diagnostic classification of
rest ECG signals. In order to have a significant
validation procedure, a large database developed at
the University of Leuven and already tested with
other classical classification methods has been used
(Willems and Lesaffre, 1987; Willems et al., 1987).

The database consists of 3266 12-lead rest ECGs,
2140 from males and 1113 from females. It is vali-
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dated by ECG independent clinical data. Seven diag-
nostic classes were taken into account: normal, Left
Ventricular Hypertrophy (LVH), Right Ventricular
Hypertrophy (RVH), Biventricular Hypertrophy
(BVH), Inferior Myocardial Infarction (IMI), Ante-
rior Myocardial Infarction (AMI) and Mixed Myo-
cardial Infarction (MIX). A random set of 2446
patients was selected for the learning phase, and the
remaining 820 cases were used for the testing. Each
ECG signal is characterized by 540 primary mea-
surements (45 for each of the 12 leads) obtained by a
Computerized ECG Program (Balda et al., 1977).
These features are mainly derived from QRS and T
wave measurements, in particular the amplitudes and
duration of the QRS and T waves, QRS axis, ST-
segment elevation or depression, and the area under
the QRS and T waves are included.

A first reduced dataset of 166 parameters was
established as a result of a clinical selection. From
this subset, a second selection of the most statisti-
cally significant parameters regarding the seven di-
agnostic classes was determined resulting in 39 pa-
rameters. For this study, the second subset of 39
ECG features was used taking into account the di-
mensions of the resulting neural networks.

The same database was used in order to establish
the performance of linear discriminant analysis and
logistic discriminant analysis (Willems et al., 1987).
In addition several experiments were made with the
same database in order to test the connectionist
approach (Bortolan et al., 1991; Bortolan and
Willems, 1994).

4. An hybrid architecture for fuzzy pattern classi-
fication

4.1. The RBF pre-processing layer

In order to characterize the input patterns in terms
of a set of linguistic variables and to perform the
data abstraction step (Fig. 2), fuzzy pre-processing
was applied (Fig. 3). Each input parameter is repre-
sented by means of a set of membership functions,
which are related to the different diagnostic classes
under examination, and which are represented by
Gaussian functions or Radial Basis Functions (RBF).

'1 fuzzy
description

input values (numeric description)

Fig. 3. Fuzzy description of the input feature space.

The shapes of these RBF can be represented as
follows:

— Y
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where u! and o;" are the central value and the

dispersion factor of the bell shaped functions. The
initial values of these parameters can be derived
from the statistics of the input features, and in partic-
ular the estimated mean and standard deviation of
the input parameter x; in the diagnostic class A can
be utilized for this purpose. In this way, the RBF
functions are used as activation functions in the input
layer, which can be interpreted as a fuzzy pre-
processing of the input feature space. This input
layer will feed a normal feed-forward neural network
completely connected, in which the activation func-
tions are sigmoidal units (Fig. 4).

The resulting hybrid architecture can be devel-
oped in the same connectionist framework, and con-

NN
(sigmoidal
units)

Fig. 4. The hybrid architecture: fuzzy pre-processing and the
neural network.
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sequently the learning process can be carried out by
a modified back-propagation algorithm (Gori and
Tesi, 1992; Jang, 1993; Moody and Darken, 1989).
During the training phase, the Root Mean Square
(RMS) error was adopted as the error function:

2
E= E (dk.i‘)’k,i) >
keT,ie0

where T is the training set and O is the output space,
d is the desired target and y is the output of the
neural network. The update of the weights is com-
puted following the back-propagation algorithm

oE
-9 .
l awijl

Aw,.j, =

Following the same delta rule algorithm, it is possi-
ble to update the parameters p,;’ and crj" of the RBF
units in the following way:

Ayt oF
#jz*”fh@,

R oE
Ag;" = _’72@'

The two learning rates 7, and 7, are designed to be
adaptive, in order to avoid the problem of local
minima. In fact, the use of an RBF for each diagnos-
tic class has the effect to increase the dimension of
the resulting neural network, with possible oscilla-
tions due to the local minima. Initially the two
factors 7, and 1, were set to be equal. In case the
system error started to oscillate, these values were
reduced by a factor of 2. First 7, is reduced, while
m, is reduced in case the error behaviour does not
change after the reduction of 7,. This adaptive algo-
rithm revealed to be effective in the various experi-
ments performed in this study.

4.2. The hybrid architectures

The hybrid architecture proposed is achieved by
considering a fuzzy characterization of the input
parameters with respect to all the considered diag-
nostic classes (Multi-RBF) as shown in Fig. 5.
Consequently each input feature is connected with m
RBF nodes, where m is the number of diagnostic

Fig. 5. The Multi-RBF architecture.

classes considered. In this case m is equal to 7. The
RBF units are characterized by two parameters: the
mean and the standard deviation of the bell shaped
functions, and they are tuned considering the statis-
tics of the learning set. In particular, the initial
values of the parameters of the RBF nodes are
obtained by the following procedure: the learning set
is clustered according to the known diagnostic classi-
fication, and the mean and standard deviations of all
the features are considered as possible values or
initial values of the u! and o;" parameters (original
p and o). In this case 39 input parameters were
selected and seven diagnostic classes were consid-
ered, for a total of 273 RBF units (Fig. 5).

In addition, a simplified version was tested, con-
sidering only one RBF unit for every input feature
(Single-RBF). The critical point of this approach is
the choice of the appropriate RBF, and in this study
the statistics of the *‘normal’’ diagnostic class (from
the learning set) was considered for the computation
of the initial values of u! and o}*.

In order to have a direct comparison with the
simple neural network approach, a three-layer, feed-
forward completely connected ANN with only sig-
moidal activation functions and trained with the
back-propagation algorithm (Ref) was used in the
same simulation studies.
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4.3. The classification strategies

Different classification strategies were adopted
and implemented in order to cope with or to test
different aspects of the classification task:

(a) all the output nodes with a positive outcome are
considered as possible candidates to the classifi-
cation;

(b) same strategy as (a) but in case all the outcomes
are negative, the normal class is chosen;

(c) same strategy as (a) but in case all the outcomes
are negative, the highest output is considered as
the outcome of the classifier;

(d) the max rule is followed, i.e., the class with the
highest output is considered as the outcome of
the classifier.

The sensitivity and the specificity are the indices

used for the validation and for the comparisons of

the different architectures proposed and tested.

5. Results

Several hybrid systems were implemented and
tested in order to verify the potentiality of the result-
ing NN. The components of the resulting architecture
were arranged and tuned in order to point out their
influence on the overall performance.

The learning rates for the sigmoidal units (n,) and
for the RBF units (7,) are both adaptive with an
initial value set to 0.001 in Ref and Single-RBF
architectures and to 0.0001 in the Multi-RBF case.
Several experiments were performed for choosing
the number of nodes in the hidden layer, trying to
find a good trade-off between learning speed and
generalization property. Consequently 30 units were
chosen in the Single-RBF and in the Ref architec-
ture and 50 units in the Multi-RBF case.

The initial values of the parameters that character-
ize the RBF units were computed from the distribu-
tion of the ECG parameters in the learning set in the
different diagnostic classes.

The role of the RBF functions derived from the
statistics of the input parameters in the different
diagnostic classes was investigated, studying in par-
ticular the effect of the initial shape of the RBF. In
general, the initial values of o were set equal to the
standard deviation of the corresponding input param-

eters (original o values). In addition increasing

values of ¢ for the RBF nodes (o equals to twice,

three and four times the standard deviation) were
adopted in order to avoid the saturation phenomenon
in the RBF units, and o values equal to twice, three
and four times the standard deviation were tested.

The following four experimental conditions were
tested in this study:

o the RBF unit parameters and the input weights
were trained (tr:RBF + inp.w);

o the RBF unit parameters were set to their initial
values and the input weights were trained
(tr:inp.w);

o the RBF unit parameters were trained and the
input weights were set to the unit value (tr:RBF);

e the RBF unit parameters were set to their initial
values and the input weights were set to the unit
value (tr:--).

In Fig. 6 the sensitivity and the specificity of the four

different experimental conditions are reported for the
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Fig. 6. Sensitivity and specificity of the Single-RBF architecture
(original o values).
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Fig. 7. Sensitivity and specificity of the Multi-RBF architecture
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Single-RBF architecture, considering the four classi-
fication strategies (a), (b), (¢), (d).

In Fig. 7 the sensitivity and the specificity of the
four different experimental conditions are reported

9000
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for the Multi-RBF architecture. In general, the clas-
sification strategies (c) and (d) realize better perfor-
mances. In fact (c) and (d) yield higher sensitivity
values and a satisfactory specificity in the two hybrid
architectures.

5.1. The influence of the initial values of the parame-
ters of the RBF units

The influence of the initial values of the two
parameters of the RBF units was studied. Large
initial values of aj" in the RBF units cause a faster
learning process, preventing saturation phenomena in
the RBF units. On the other hand, the use of too
large crj" values may damage the fuzzy pre-
processing, because the fuzzy sets loose their origi-
nal scope, and they are no longer able to characterize
the input parameters in a meaningful way. In order to
visualize the convergence properties with different
strategies in the choice of the initial values of the
RBF units, the RMS error plots are reported.

In Fig. 8, the RMS error in the training phase is
reported for the Ref and the Single-RBF architec-
ture. On the x-axis, the epoch number is reported,
while on the y-axis the corresponding RMS error

8000
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4000

3000 L I 1

o] 500 1000 1500

2000 2500 3000 3500

Fig. 8. Training error plots of the evaluated systems (Single-RBF, tr:RBF + inp.w) with original RBF o values compared with the reference

system error.
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Fig. 9. Training error plots of system Single-RBF (tr:inp.w) with different o values compared with the reference system error.

values are reported. The curves from top to bottom

(at epoch number 3500) correspond to

(1) the reference system (Ref),

(2) the system with trained RBF parameters and
input weights (tr:RBF + inp.w),

(3) the system with trained RBF parameters (tr:RBF),

(4) with no trained components (tr:--), and

(5) with trained input weights (tr:inp.w).

A test was performed choosing different initial
values of the parameters, which were initially set to
once, twice, three and four times the original stan-
dard deviation extracted from the learning set.

Fig. 9 reports the influence of the choice of
different values of the standard deviation of the RBF
nodes; the error plot of the Single-RBF architecture
in the case of training the input weights (tr:inp.w) is
shown. In this figure the following cases can be
observed from top to bottom:

(1) the reference system,
(2) twic the original o,
(3) three times the original o,
(4) four times the original o,
(5) the origiaal o.
In Fig. 11 is the error plot corresponding to the
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Fig. 10. Training error plots of system Single-RBF (ir:RBF), and different o values compared with the reference system error.

't

(o]

500

1000

1500

2000

2500

3000

3500



668 G. Bortolan et al. / Pattern Recognition Letters 17 (1996) 661-670

S000

8000

7000

6000

5000

4000

3000

2000

1000 |

[o] il il [l

L L L

o] SO0 1000 1500

2000 2500 3000 3500

Fig. 11. Training error plots of the evaluated systems (Multi-RBF) with original RBF o values compared with the reference system error.

Single-RBF architecture in the case of training the
parameters of the RBF units (tr:RBF); from top to
bottom we have the following:

(1) the reference system,

(2) twice the original o,

(3) four times the original o,

(4) three times the original o,

(5) the original o.

In Fig. 11 the error plots as obtained with the
Multi-RBF architecture are shown. From top to bot-
tom the following cases can be observed:

(1) tr:RBF + inp.w,

(2) the reference system,
(3) tr:inp.w,

(4,5) tr:--, r:RBF.
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Fig. 12. Sensitivity and specificity of the Multi-RBF architecture
with original (1 std) and double original standard deviation (2 std).

In Fig. 12 the sensitivity and specificity of the
Multi-RBF architecture with original (1 std) and
twice the original standard deviation (2 std) is re-
ported for the various classification strategies.

We observe that the learning speed of conver-
gence is higher in systems where training of the
input weights is not performed. Moreover, those
systems having original initial RBF standard devia-
tion values learn much faster than the other ones,
even if the resulting performances are quite similar.
The slowest system in learning is almost always the
reference system, while the evaluated hybrid struc-
tures become slower and slower in learning when
larger initial RBF o values are applied. Finally,
when both RBF units and input weights are trained,
the error plots show many oscillations, because there
can be more local minima than with the other config-
uration structures. In this case, the error trends are
also closer to each other than in the previous situa-
tions.

5.2. Pruning techniques

A pruning algorithm was applied in order to study
the possibility to simplify the neural network and in
order to decrease the dimension or the size of the
network. In addition, the influence of this procedure
on the performance of the classification task was
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Fig. 13. Performance of the Single-RBF architecture with the pruning procedure.

studied. A penalty term was added to the cost func-
tion of the back-propagation algorithm, in order to
lead the network to configurations in which the
weights assume low values (Reed, 1993). In this way
the pruning algorithm consists in setting to zero the
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Fig. 14. Performance of the Multi-RBF architecture with pruning.
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In Fig. 13 the results of pruning the Single-RBF
architecture are illustrated. The sensitivity and the
specificity with the classification strategies (c) and
(d) are reported with different values of the pruning
thresholds: ¢t=0.0, t=0.01, r=0.1, r=0.2, r=
0.3, t=0.4. In addition, the percentage of pruned
nodes and weights in the corresponding situations
are reported.

The results reported in Fig. 14 concern the Multi-
RBF architecture. The sensitivity and the specificity
with strategies (c) and (d) are reported with different
values of the pruning thresholds: 7= 0.0, r=0.01,
t=0.02, t=0.5. Again, in the lower figure the per-
centage of nodes and weights are reported.

From these results, it is evident that the specificity
is not significantly influenced by the pruning algo-
rithm at the different threshold values. On the other
hand, the sensitivity shows a higher dependence on
the pruning procedure. In addition, classification
strategy (c) is more sensitive than strategy (d), and
this is more evident in the Multi-RBF architecture.

6. Conclusions

In this paper several hybrid architectures of neural
networks have been tested for the particular problem
of diagnostic classification in computerized electro-
cardiography. The possibility to combine the fuzzy
approach with the connectionist approach has been
investigated. A first level of data abstraction on the
feature space has been performed with a layer of
RBF units which produce a fuzzy description of the
input parameters. The subsequent NN will not pro-
cess numerical values but the fuzzy description based
on linguistic terms or concepts. Several systems have
been implemented and tested and the components of
the resulting architectures have been arranged and
tuned in order to point out their influence on the
overall performance in the diagnostic classification
task.

In particular, several experiments have been ana-
lyzed implementing and testing different training
strategies concerning the weights of the input layer
and the parameters of the RBF units. The influence

on the speed of convergence has been considered. In
addition, a pruning algorithm has been applied in
order to simplify the resulting architecture preserving
the generalization property.
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