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An investigation of neural networks in thyroid function diagnosis
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We investigate the potential of artificial neural networks in diagnosing thyroid diseases. The robustness of neural networks with
regard to sampling variations is examined using a cross-validation method. We illustrate the link between neural networks and traditional
Bayesian classifiers. Neural networks can provide good estimates of posterior probabilities and hence can have better classification
performance than traditional statistical methods such as logistic regression. The neural network models are further shown to be robust to
sampling variations. It is demonstrated that for medical diagnosis problems where the data are often highly unbalanced, neural networks
can be a promising classification method for practical use.

1. Introduction

The thyroid gland is one of the most important organs in
the body as thyroid hormones are responsible for controlling
metabolism. As a result, thyroid function impacts on every
essential organ in the body. The most common thyroid dis-
order is an underactive thyroid, known as hypothyroidism,
in which the thyroid does not produce enough hormone.
Less frequently, the thyroid produces too much hormone
which is known as hyperthyroidism. Approximately 2–3%
of the general population in the United States suffers from
either hypothyroidism or hyperthyroidism [28]. Groups
most commonly affected by thyroid dysfunction include
women and the elderly where as many as 5–10% of those
in these groups may be affected. The seriousness of thyroid
disorders should not be underestimated as thyroid storm (an
episode of severe hyperthyroidism) and myxedema coma
(the end stage of untreated hypothyroidism) may lead to
death in a significant number of cases.

The correct diagnosis of thyroid dysfunctions based on
clinical and laboratory tests often proves difficult. One
reason stems from the nonspecific nature of many thyroid
symptoms. This is especially true of hypothyroidism where
symptoms such as lethargy, confusion, weight gain, and
poor memory are easily confused with other psychiatric
and medical conditions. The problem is often exacerbated
in older patients whose symptoms are sometimes masked
or attributed to other medical conditions [1]. While lab-
oratory tests have become more accurate and are helpful
in diagnosing thyroid abnormalities (the positive predic-
tive rates of some tests are recently reported to be over
90%. See [27, p. 339]), the results are still not very sat-
isfactory across all situations. The difficulty in diagnosis
comes from the inconsistency in test results across patients
and other factors such as pregnancy, drug interactions, non-
thyroidal illnesses, and psychiatric problems which are all

known to affect the thyroid hormone levels measured in the
laboratory tests [7,34].

Thyroid dysfunction diagnosis also presents a challenge
to traditional statistical methods because it represents a clas-
sification problem with three extremely unbalanced groups.
Highly unbalanced groups occur commonly in many fields,
particularly in medical diagnosis where a small proportion
of the population actually has a specific disease. Statisti-
cal and other quantitative methods have long been used
as decision-making tools in medical diagnosis including
thyroid disease detection. These classification methods in-
clude both parametric methods such as discriminant analy-
sis and logistic regression and nonparametric models like
k-nearest-neighbor and mathematical programming models,
as well as various machine learning methods such as CART
and ID3. One major limitation of the traditional statistical
models is that they work well only when the underlying
assumptions are satisfied. The effectiveness of these meth-
ods depends to a large extent on the various assumptions or
conditions under which models are developed. Users must
have a good knowledge of both data properties and model
capabilities before they can successfully apply the model.
For example, Press and Wilson [16] show that if the vari-
ables have multivariate normal distributions within classes,
discriminant analysis is more efficient than logistic regres-
sion. However, if the variables do not have within-class
normal distributions, logistic regression is preferable.

Research activities over the last decade have shown that
artificial neural networks (ANNs) have powerful pattern
classification and pattern recognition ability. They have
been used extensively in many different problems includ-
ing thyroid function diagnosis [26]. The success of neural
networks may be attributed to their many unique features of
pattern recognition and pattern classification. First, neural
networks are universal approximators [4,10,11]. They can
approximate any nonlinear function with arbitrary accuracy.
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Since any classification procedure seeks to establish a func-
tional relationship between the object group membership
and the attributes characterizing the object, the accurate
estimation of this relationship is essential for the success
of the classifier. Second, as opposed to traditional model-
based approaches, neural networks are data-driven methods.
They learn from examples with few a priori assumptions
about the model or the functional form of the relationship
for problems under study. Third, neural networks have gen-
eralization ability. After learning the data presented to them
(a sample), they can often correctly identify the pattern and
generalize it to the unseen part of the population. General-
ization capability is often the most important criterion for
choosing a classification model. Finally, neural networks
are able to provide accurate estimates of posterior probabili-
ties on the membership of an object [18]. It is a well-known
fact that posterior probabilities play a critical role in the tra-
ditional Bayesian classification theory. These advantages of
neural networks explain the numerous successful applica-
tions of neural networks reported in the recent literature.

In using neural networks, the entire available data set
is usually randomly divided into training and test samples.
The training sample is used for neural network model build-
ing and the test set is used to evaluate the predictive ca-
pability of the model. While this practice is adopted in
many studies, the random division of a sample into train-
ing and test sets may introduce bias in model selection and
evaluation in that the characteristics of the test sample may
be very different from those of the training sample. Fur-
thermore, different partitions may also have effects on the
model building and classification performance. The esti-
mated classification rate can be very different from the true
classification rate particularly when small-sized samples are
involved. For this reason, it is a major focus of this paper to
use a cross-validation scheme to accurately describe predic-
tive performance of neural networks. Cross-validation is a
resampling technique which uses multiple random training
and test subsamples. The advantage of cross-validation is
that all of the observations or patterns in the available sam-

ple are used for testing and most of them are also used for
training the model. The cross-validation analysis will yield
valuable insights into the reliability of the neural networks
with respect to sampling variation.

The remainder of the paper is organized as follows. The
next section contains an introduction to neural networks.
The link between neural networks and the Bayesian clas-
sification theory is discussed in section 3. Section 4 is the
methodology section which includes the description of the
data set, the design of the neural network model employed
and the description of cross-validation study. Results are
presented in section 5. The final section contains summary
remarks and discussions.

2. An introduction to neural networks

A neural network is a massively parallel system of inter-
connected computing elements called nodes. Information
is processed via the interaction between a large number
of nodes where knowledge is not stored in the individual
nodes, but rather it is represented by the weights of the
connections between the nodes. Figure 1 contains a sim-
ple three-layer feedforward network representative of those
used in this research. The first or lowest layer is called
the input layer where external information enters the net-
work while the last or top layer is called the output layer
where the network produces the model solution. The mid-
dle layer(s) or hidden layer(s) provide the connections nec-
essary for the ANN to identify complex patterns in the data.
All nodes in adjacent layers are connected by arcs from the
input layer to the hidden layer to the output layer.

Arc weights are the parameters in a neural network
model. As in any statistical model, these parameters need
to be estimated before the network can be adopted for fur-
ther use. Neural network training is a process in which
these weights are determined, and hence is the way the
network learns. Network training for classification prob-
lems is performed via supervised learning in which known
outputs and their associated inputs are presented to the net-

Figure 1. Multi-layer feedforward neural network.
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work. The input node activation values are weighted and
summed at each hidden layer node. The weighted sum is
then transmitted by an appropriate transfer function into the
hidden node’s activation value, which becomes the input to
the output layer nodes. The same computation process is
repeated at the output nodes. The network output values
are then compared to the known actual values for the pur-
pose of minimizing the differences between network output
values and the known target values for all training patterns.

Let x = (x1,x2, . . . ,xd) be a d-vector of attribute values,
y = (y1, y2, . . . , yM ) be the M -dimensional output vector
from the network, and w1 and w2 be the matrices of linking
weights from input to hidden layer and from hidden to out-
put layer, respectively. Then a three-layer neural network
is in fact a nonlinear model of the form

y = f2
(
w2f1(w1x)

)
, (1)

where f1 and f2 are the transfer functions for the hidden
nodes and output nodes, respectively. The most popular
choice for f1 and f2 is the sigmoid (logistic) function. That
is,

f1(x) = f2(x) = (1 + exp(−x))−1.

Theoretically speaking, any differentiable function can
qualify as a transfer function. The reason for using the
logistic function is that it is simple, has a number of
good characteristics (bounded and monotonically increas-
ing), and bears a better resemblance to real neurons [9].
Klimasauskas [13] suggests that the logistic function should
be used for classification problems that involve learning
about average behavior.

The purpose of network training is to estimate the weight
matrices in (1) so that an overall error measure such as the
mean squared errors (MSE) or sum of squared errors (SSE)
is minimized. MSE can be defined as

MSE =
1
M

1
N

M∑
m=1

N∑
j=1

(amj − ymj)2, (2)

where amj and ymj represent the target value and network
output (activation) at the mth node for the jth training pat-
tern respectively, M is the number of output nodes, and N
is the number of training patterns. Network training can
therefore be seen as an unconstrained nonlinear minimiza-
tion problem.

A number of researchers have illustrated the connec-
tion of neural networks to traditional statistical methods.
Cheng and Titterington [2] make a detailed analysis and
comparison of various neural network models with tra-
ditional statistical methods. In their paper, perceptrons
like the feedforward neural networks are shown to have
strong associations with discriminant analysis and regres-
sion, and unsupervised networks such as self-organizing
neural networks with cluster analysis. Sarle [23] translates
neural network jargon into statistical terminology and illus-
trates the relationship between neural networks and statis-
tical models such as generalized linear models, projection

pursuit and cluster analysis. Warner and Misra [30] con-
trast neural networks to regression models. Schumacher et
al. [25] and Vach et al. [29] present a thorough compari-
son between feedforward neural networks and the logistic
regression. The conceptual similarities and discrepancies
between the two methods are analyzed. Gallinari et al. [6]
study the relations between discriminant analysis and mul-
tilayer perceptrons for classification problems. Richard and
Lippmann [18] show that neural networks can provide es-
timates of Bayesian posterior probabilities. Ripley [20,21]
discusses the statistical aspects of neural networks and clas-
sifies neural networks as one of a class of flexible nonlinear
regression methods. White [31] provides statistical prop-
erties and asymptotic results for neural network learning.
Ciampi and Lechevallier [3] show that the statistical model-
ing approach provides a good starting point for constructing
a neural network model and neural networks, on the other
hand, provide a powerful expansion to classical statistical
model families.

3. Neural networks and Bayesian classifiers

Bayesian decision theory is the traditional statistical ap-
proach to pattern classification that defines the problem in
probabilistic terms and assumes that all of the relevant prob-
abilities are known [5]. In applying the theory to an M -
group classification problem, consider that each object is
associated with a d-vector x of attributes. Assume that
X ⊆ Rd is the sample space which is divided into M sub-
spaces. Letting ωj represent that an object is a member of
group j, the following notations will be used:

P (ωj) = the prior probability that a randomly selected
object belongs to group j;

f (x | ωj) = the probability density function for x given that
its membership is ωj . This probability function
is also known as the likelihood function.

According to Bayes’ rule, if we obtain an observation x,
the prior probability will be modified into the posterior
probability, P (ωj | x), that object x belongs to group j
by incorporating all this information, that is,

P (ωj | x) =
f (x,ωj)
f (x)

=
f (x | ωj)P (ωj)
M∑
j=1

f (x | ωj)P (ωj)

,

j = 1, 2, . . . ,M.

The above Bayes rule shows how observing the value of x
changes the prior probability P (ωj) to the posterior prob-
ability P (ωj | x) upon which the classification decision is
based.

Suppose that a particular x is observed and is to be as-
signed to a group. Let λij (x) be the cost of misclassi-
fying x to group i when it actually belongs to group j.
Since P (ωj | x) is the probability that the object belongs to
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group j given x, the expected loss associated with assign-
ing x to group i is

Li(x) =
M∑
j=1

λij (x)P (ωj | x), i = 1, 2, . . . ,M. (3)

Li(x) is also known as the conditional risk function. Since x
will be assigned to only one group, let L(x) be the resultant
loss. The objective is to minimize the total expected loss,

L =

∫
x∈X

L(x)f (x) dx.

Function L is minimized when each term L(x) is mini-
mized. This is accomplished by following what is known
as the Bayesian decision rule in classification:

Decide ωk for x if Lk(x) = min
i=1,2,...,M

Li(x).

A loss function of special interest in the literature is
known as the symmetrical or zero-one loss function. The
zero-one loss function is specified as λij (x) = 0 for i = j,
and 1 otherwise. In this case, the conditional risk function
of (3) can be simplified to

Li(x) =
∑
j 6=i

P (ωj | x) = 1− P (ωi | x).

Note that P (ωi | x) is the conditional probability that the
correct classification is group i given the feature vector x.
Therefore, to minimize the average probability of error, we
should select the i that maximizes the posterior probability
P (ωi | x). As a result, the Bayesian decision rule becomes

Decide ωk for x if P (ωk | x) = max
i=1,2,...,M

P (ωi | x). (4)

The above discussion clearly shows the important role of
posterior probabilities in the Bayesian classification deci-
sion.

To see the relationship between neural networks and
Bayesian classifiers, we need the following theorem [14]:

Theorem 1. Consider the problem of predicting y from x,
where x is a d-vector random variable and y is an M -vector
random variable. The function mapping F : x → y which
minimizes the squared expected error

E[y− F (x)]2 (5)

is the conditional expectation of y given x,

F (x) = E[y | x].

The result stated in the above theorem is the well-known
least squares estimation theory in statistics.

In the M -group classification context, if x is the ob-
served attribute vector and y is the true membership vector,
that is

y = (1, 0, 0, . . . , 0, 0)t if x ∈ group 1,
y = (0, 1, 0, . . . , 0, 0)t if x ∈ group 2,

...
y = (0, . . . , 0, 1, 0, . . . , 0)t if x ∈ groupm,

...
y = (0, 0, 0, . . . , 0, 1)t if x ∈ groupM ,

where t represents the transpose of a vector, then for
x ∈ groupm, there is a unit probability with y =
(0, . . . , 0, 1, 0, . . . , 0)t and a zero probability with other y’s.
Hence, F (x) becomes

F (x)

= E[y | x]

= (0, . . . , 0, 1, 0, . . .)t P (y = (0, . . . , 0, 1, 0, . . . , 0)t | x)

= (0, . . . , 0,P (y = (0, . . . , 0, 1, 0, . . . , 0)t | x), 0, . . . , 0)t

= (0, . . . , 0,P (ωm | x), 0, . . . , 0)t. (6)

Equation (6) shows that the least squares estimate for the
mapping function in a classification problem is exactly the
posterior probability.

As noted earlier, neural networks are universal function
approximators. A neural network in a classification prob-
lem can be viewed as a mapping function, F :Rd → RM ,
where d-dimensional input x is submitted to the network
and an M -dimensional network output y is obtained to
make the classification decision. If all the data in the entire
population are available for training and the global optimal
solution can be found in neural network training, then (2)
and (5) are equivalent and neural networks produce ex-
act posterior probabilities in theory. In practice, however,
training data is almost always a sample from an unknown
population and the global optimal solution can not be guar-
anteed. Thus it is clear that the network output is actually
the estimate of the posterior probability. Hung et al. [12]
show that neural networks are able to provide accurate es-
timates of posterior probabilities in practical applications.

4. Research design and methodology

The purpose of this research is to study how robust the
neural network performance is in predicting thyroid disease
in terms of sampling variability. Specifically, we are inter-
ested in the impact of sampling variability on classification
of thyroid patients based on neural network posterior prob-
ability estimates. A four-fold cross-validation approach is
employed in this study. This section first describes the data
set. Then a detailed description of the issues in neural net-
work model building is given. Finally, we illustrate the
cross-validation methodology.
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4.1. Data set

The data set employed in this study comes from Quin-
lan [17], which contains information related to thyroid dys-
function. The problem is to determine whether a patient
has a normally functioning thyroid, an under-functioning
thyroid (hypothyroid), or an over-active thyroid (hyperthy-
roid). There are 7200 cases in the data set with 3772
from the year 1985 and 3428 from 1986. The hyperthy-
roid class represents 2.3% (166 cases) of the data points,
the hypothyroid class accounts for 5.1% (368 cases) of the
observations, while the normal group makes up the remain-
ing 92.6% (6666 cases). This highly unbalanced data set
is a notoriously difficult problem for traditional classifica-
tion methods. For each of the 7200 cases, there are 21
attributes with 15 binary and 6 continuous variables used
to determine in which of the three classes the patient be-
longs. These attributes represent information on patients
such as age, sex, health condition, and the results of var-
ious medical tests [17]. Appendix A lists these 21 input
variables and their descriptions.

4.2. Neural network design

Several factors are important in designing a feedforward
neural network for classification problems. These include
the input, hidden and output layer configurations as well
as the training methodology used. While there are some
guidelines for the determination of some factors, no uni-
formly applicable principles exist to guide neural network
design. As a result, much of the neural network architecture
is determined by experimentation in practice.

Artificial neural networks are characterized by their ar-
chitectures. Network architecture refers to the number of
layers, nodes in each layer, and the number of connection
arcs. It has been shown by Cybenko [4], Hornik [10], and
Patuwo et al. [15] that neural networks with one hidden
layer are generally sufficient for most problems. All the
networks investigated in this study use one hidden layer.
The number of input nodes is 21 corresponding to the input
attributes in the original data set. Three binary output nodes
are employed, corresponding to the three classes of normal,
hypothyroid, and hyperthyroid. The target values for each
node are either zero or one depending on the desired output
class. For example, a target output of 0-0-1 corresponds to
a hypothyroid case, 0-1-0 to a hyperthyroid case, and 1-0-
0 to a normal patient. The logistic activation function is
specified for both hidden and output nodes while the layers
are fully connected from input to hidden to output.

The number of hidden nodes is not easy to determine a
priori. There are several rules of thumb proposed for de-
termining the number of hidden nodes, but none of them
works well for all situations. Hence different numbers of
hidden nodes from 5 to 50 were tested. Using the training
sample of 3772 cases and 3428 test cases, we found that
10 hidden nodes provided the best test set results in terms
of MSE and the test set classification error rate. There-

fore, neural networks with 10 hidden nodes are utilized for
experimentation in the cross-validation study.

The training methodology is another important factor in
designing feedforward neural networks. As noted earlier,
the purpose of neural network training is to estimate the
node connection weights in order to minimize an error mea-
sure such as MSE. The most commonly used training algo-
rithm is the backpropagation [22] which is simply a steep-
est descent method with constant step size. In this study,
we use a more efficient, faster converging training method
than standard backpropagation called Rprop for Resilient
backpropagation [19]. The basic principle of the Rprop
algorithm is to eliminate the harmful effect of the partial
derivative magnitude on the step size of each arc weight
and hence give a more efficient search for the solution.

The improvement in the training convergence of the
Rprop algorithm compared to that using the standard back-
propagation is significant. We find that the Rprop algorithm
converges in 100 to 500 epochs with training completed in
a matter of seconds while 6000 to 70000 epochs and several
hours are required using a backpropagation algorithm.

4.3. Cross validation

Cross-validation methods are used in examining the ro-
bustness of classifiers. The simplest of these methods is the
single training and testing scheme that is often employed in
the medical literature. The original data set is split into two
groups and one is used for designing the classifier while the
hold-out sample is used for testing purposes. The classi-
fication error rate on this test set is then reported as the
estimate of the classifier’s true error rate. There are several
problems related to this method. First, since the number of
cases in the test sample is often relatively small in prac-
tice, the estimate of the true classification capability of a
classifier is often not satisfactory. Second, with the sin-
gle training and testing method, the training set is much
smaller than the whole data set available. Hence the result-
ing model is unlikely to be the one that would be obtained
using all observations. Third, the single training and test-
ing partition may be uncharacteristic of the true underlying
population, resulting in large sampling errors or biases.

Resampling techniques such as random subsampling,
leaving-one-out, and k-fold cross validation can reduce the
bias problem by averaging the results over several ran-
domly generated training-and-testing partitions. While the
leaving-one-out technique is preferred for small samples, it
is computationally difficult for large data sets. We elect to
use a four-fold cross validation method in this study. Two
cross-validation schemes using mutually exclusive random
subsets of the data are used. Both schemes utilize the same
training samples while the test samples vary to measure
different perspectives of the classifier performance.

The original 7200 cases in the data set are randomly
divided into four mutually exclusive partitions of approx-
imately equal size. Stratification of the original cases is
employed to ensure that the percentage of each class found
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in the overall sample is approximately the same in each
partition. Four partitions are used here to ensure that each
partition has enough cases in the smallest class (hyperthy-
roid) because if there are too few observations in one group,
then almost all classifiers will fail to perform satisfactorily.
Training is performed on three of the partitions while the
fourth is used for the testing purpose. The process is re-
peated until each partition has served as the test data. The
training sample is used for model fitting and/or parameter
estimation while the predictive effectiveness of the fitted
model is evaluated in two ways. First, each fitted model
is applied to the unseen portion of the data (the hold-out
partition). The average classification error of four test par-
titions (we call them small test samples) is a good indicator
of the out-of-sample performance of the classifier. Second,
to get a better picture of the true overall capability of the
classifier for the unknown population, we test each of the
four fitted models using the whole data set. The idea behind
this scheme is that the total sample should be more repre-
sentative of the true underlying population than a small test
set. Additionally, when the whole data set is employed as
the test sample, sampling variation in the testing environ-
ment is completely eliminated as the same sample is tested
four different times. Therefore, the variability across the
four large test set results reflects only the effect of training
sample variation.

The results of neural networks are compared to those
of logistic regression. Logistic regression is chosen as the
traditional statistical method of comparison because it is of-
ten preferred over discriminant analysis in practice [8,16].
Additionally, the statistical property of logistic regression
is well understood. We are interested in knowing which
method gives more accurate estimates of the posterior prob-
abilities and hence leads to better classification results.
Since logistic regression is a special case of the neural net-
work without hidden nodes, it is expected in theory that
ANNs will produce more accurate estimates than logistic
regression because of their flexible nonlinear modeling ca-
pabilities. Logistic regression is implemented using the
SAS procedure LOGISTIC (SAS Institute Inc., 1990).

5. Results

Table 1 presents the results for both neural network and
logistic regression models when the single partition strategy
is used. The 3772 observations from 1985 are used as the
training set and the 3428 cases from 1986 are naturally used
as the test set. The failure of the logistic regression model is
clearly seen from the table. It simply places all cases into
the largest group of euthyroid (normal) which represents
92.58% of the total observations. This is a typical phe-
nomenon for many classical statistical classifiers when the
data are highly unbalanced. They fail to correctly classify
any smaller group member which in reality is usually more
important. The use of neural networks improves over the
logistic regression significantly not only in the overall clas-
sification result but also in the classification performance

Table 1
Single partition results.

Class Measure Neural network Logistic regression

Training Test Training Test

Hyperthyroid % Correct 95.70% 82.19% 0.00% 0.00%
Correct # 89 60 0 0

Hypothyroid % Correct 96.86% 94.92% 0.00% 0.00%
Correct # 185 168 0 0

Euthyroid % Correct 99.66% 98.71% 100.00% 100.00%
Correct # 3476 3137 3488 3178

Overall % Correct 99.42% 98.16% 92.47% 92.71%
Correct # 3750 3365 3488 3178

within each group. In the training set, the overall classifi-
cation rate increases from 95.70% to 99.42%. The correct
classification rates for two smaller groups of hyperthyroid
and hypothyroid groups are 95.70% and 96.86%, respec-
tively. From test sample results, neural networks also sig-
nificantly outperform logistic regression models. The clas-
sification rates for individual groups of hyper-, hypo-, and
euthyroid are 82.19%, 94.92% and 98.71%, respectively.
The relatively low classification rate for the hyperthyroid
group may result from the small number of cases in that
group (only 73 cases). Overall, we have a 98.16% correct
prediction rate for the 1986 data set using neural networks.

Cross-validation results for the training set, the small
test set, and the large test set are given in tables 2(a)–
2(c), respectively. Again, logistic regression models do not
provide good discrimination particularly for the important
smaller groups of hyper- and hypo-thyroid at each cross-
validation subsample. Neural networks, however, exhibit
consistently greater classification capabilities not only in
the overall classification result but also in the individual
group identification. It can be seen from these tables that
both neural networks and logistic regression models show
high robustness in the overall classification performance.
But neural networks provide better classification results not
only in the training sample but also in the test samples.

For the training sample, table 2(a) shows that neural
networks can achieve high classification rates for all indi-
vidual groups. Across different training samples, the results
are quite stable. The variability in the classification results
for the smallest group of hyperthyroid is slightly higher
than that for the other two groups. This can be explained
because the hyperthyroid group has far fewer observations
than the other two groups. The large number of cases in the
euthyroid group explains the highly robust classification re-
sults for this group as well as the overall classification rates
among different training samples.

Tables 2(b) and 2(c) contain classification results for
small test samples and large test samples. As mentioned
earlier, the small test sets are used to evaluate the neural
network predictive capability since the observations in each
test set are not used in the model building process while
the large test sets are employed to measure the variability
among different training sets. Overall, we see the effec-
tiveness of neural networks in classifying unseen objects.
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Table 2
(a) Cross-validation performance results of the training subsamples.

Method Measure Subsample 1 Subsample 2 Subsample 3 Subsample 4

Hyper Hypo Euth Overall Hyper Hypo Euth Overall Hyper Hypo Euth Overall Hyper Hypo Euth Overall

Neural % Correct 91.94 97.10 99.50 99.20 94.35 94.93 99.52 99.19 88.80 96.38 99.48 99.07 93.60 96.74 99.48 99.20
network Correct # 114 268 4974 5356 117 262 4975 5354 111 266 4974 5351 117 267 4974 5358

Logistic % Correct 0.00 0.00 100.00 92.59 0.00 0.00 100.00 92.59 0.00 0.00 100.00 92.59 0.00 0.00 100.00 92.59
regression Correct # 0 0 4999 4999 0 0 4999 4999 0 0 5000 5000 0 0 5000 5000

(b) Cross-validation performance results of the predictive performance for small test sets.

Method Measure Subsample 1 Subsample 2 Subsample 3 Subsample 4

Hyper Hypo Euth Overall Hyper Hypo Euth Overall Hyper Hypo Euth Overall Hyper Hypo Euth Overall

Neural % Correct 73.81 91.30 99.46 98.45 83.33 92.39 99.16 98.45 75.61 92.39 99.58 98.67 92.68 97.83 98.80 98.61
network Correct # 31 84 1658 1773 35 85 1653 1773 31 85 1659 1775 38 90 1646 1774

Logistic % Correct 0.00 0.00 100.00 92.56 0.00 0.00 100.00 92.56 0.00 0.00 100.00 93.86 0.00 0.00 100.00 93.86
regression Correct # 0 0 1667 1667 0 0 1667 1667 0 0 1666 1666 0 0 1666 1666

(c) Cross-validation performance results of the estimation of true classification rates for large test sets.

Method Measure Subsample 1 Subsample 2 Subsample 3 Subsample 4

Hyper Hypo Euth Overall Hyper Hypo Euth Overall Hyper Hypo Euth Overall Hyper Hypo Euth Overall

Neural % Correct 87.35 95.65 99.49 99.01 92.16 94.29 99.44 98.99 85.54 95.38 99.50 98.97 93.37 97.01 99.31 99.06
network Correct # 145 352 6632 7129 152 347 6628 7127 142 351 6633 7126 155 357 6620 7132

Logistic % Correct 0.00 0.00 100.00 92.58 0.00 0.00 100.00 92.58 0.00 0.00 100.00 92.58 0.00 0.00 100.00 92.58
regression Correct # 0 0 6666 6666 0 0 6666 6666 0 0 6666 6666 0 0 6666 6666

The effects of sampling variation on the classification per-
formance of hypothyroid and euthyroid groups as well as
the overall performance are very small. The range of the
overall classification rates is only 0.22% for the small test
samples and 0.09% for the large test samples. In the largest
euthyroid group, the classification rate ranges from 98.80%
to 99.58% for the small test set case and from 99.31% to
99.50% for the large test samples. The variability in clas-
sification rates for the hypothyroid group is slightly higher,
ranging from 91.30% to 97.83% for the small test samples.
In both test cases, there is relatively high variability in the
classification rate across different samples for the smallest
hyperthyroid group. For example, using subsample 1, we
have only 73.81% classification rate for the correct identi-
fication of hyperthyroid patients. Using subsample 4, how-
ever, a high classification rate of 92.68% is achieved.

Comparing the results for small test sets in table 2(b) and
those for large test sets in table 2(c), we make the follow-
ing observations. First, the variability in results across the
four large test samples is smaller than that of the small test
set. As pointed out earlier, this is to be expected because
the large test set is the same for each of the four different
training sets and the variability in the test results reflects
only the difference in the training set. Second, the neural
network performance improves from small test sets to large
test sets. The explanation lies in the fact that neural net-
works have much better classification rates in the training
samples.

Table 3 compares classification performance of the
neural network model using the simple partition test set
and the small cross-validation test sets. The classification

Table 3
Comparison of neural network test results.

Class Single partition Cross-validation

Hyperthyroid 82.19% 81.36%
Hypothyroid 94.92% 93.48%
Euthyroid 98.71% 99.25%

Overall 98.16% 98.55%

rate for the cross-validation set is the average across four
test subsamples. Cross-validation achieves higher overall
classification rate and euthyroid classification rate than the
simple partition method. However, for the smaller groups,
the single partition has higher classification rate although
the difference is not very significant.

6. Discussion

In this paper we have investigated the potential of neural
networks in thyroid dysfunction diagnosis. Thyroid dis-
ease identification is an important yet difficult task from
both clinical diagnosis and statistical classification points
of view. The large number of interrelated patient attributes
as well as extremely unbalanced groups in the thyroid di-
agnosis problem complicate the relationship between these
attributes and the patient true group membership, which
causes poor performance for traditional model-based statis-
tical methods. Artificial neural networks, being a flexible
modeling technique for complex function mapping, show
promise in the thyroid disease diagnosis.
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Many successful studies have been reported in the litera-
ture using neural networks for classification including med-
ical diagnosis. However, the connection between neural
networks and traditional statistical methods are often not
fully understood. In this paper we present the basic frame-
work of understanding the role of neural networks in clas-
sification problems. We show that the neural network out-
puts are estimates of the posterior probabilities – which
play an important role in traditional Bayesian classification
theory. The results in this research and previous studies
clearly show the superiority of neural networks over tradi-
tional statistical methods in the estimation of the posterior
probabilities and hence in classification performance.

In this paper, we have examined the robustness of neural
networks in thyroid diagnosis with respect to sampling vari-
ations. Model robustness has important managerial impli-
cations particularly when the model is used for prediction
purposes. A useful model is the one which is robust across
different samples or time periods. The cross-validation
technique described in this study provides decision makers
with a method for examining predictive validity and hence
the usefulness of the classification method. From the point
of view of medical diagnosis, employing a classifier with
high robustness and reliability in different sampling situa-
tions is a very critical issue. Our results show that neural
networks are both robust and accurate methods for the task
of diagnosing thyroid dysfunction. Not only can they pro-
vide excellent overall classification rate, they are also able
to identify the more important, harder-to-classify smaller
group members. It is also encouraging to note that overall

the variation across samples in training and test classifica-
tion rates are reasonably small. The classification results for
individual groups, however, are quite sensitive to the num-
ber of observations in each group. Our results for the three
thyroid function groups clearly show that for larger groups
with relatively more observations, better classification re-
sults are often obtained. Therefore, increasing the number
of cases in small groups will improve the performance of
neural network classifiers. The above discussion also sug-
gests that the traditional single partition method is valid
for neural network model building and evaluation when
the overall classification rate is of primary concern. How-
ever, when robust identification of the small group member
is more critical, the cross-validation approach should be
used.

Future research will focus on the following issues. First,
there is a need to develop a variable selection method via
neural networks to choose, from a large number of at-
tributes, the best subset of variables. The regression-based
method to select variables may not be appropriate for many
complex medical diagnosis problems due to highly nonlin-
ear relationships in the data. Second, there is a possibil-
ity to further improve classification by combining neural
networks and traditional statistical classification methods.
Statistical methods may provide a basis for neural net-
work model selection. Finally, the development of cost-
based neural network decision model should be more use-
ful and appropriate for medical diagnosis. The impact of
unequal misclassification costs on the classification perfor-
mance should be investigated.

Appendix A: Input variables used for thyroid diagnosis

Input Description

1 Age Patient age in years
2 Gender Patient gender
3 Illness indicator Patient reports malaise
4 Pregnancy indicator Patient is pregnant
5 Thyroid surgery Patient has history of thyroid surgery
6 Iodine 131 Patient is currently receiving iodine 131 treatment
7 Hypothyroid indicator Patient responses indicate likelihood of hypothyroidism
8 Hyperthyroid indicator Patient responses indicate likelihood of hyperthyroidism
9 Lithium treatment Patient is on lithium treatment

10 Thyroxine indicator 1 Patient on thyroxine treatment
11 Thyroxine indicator 2 Patient thyroxine treatment status unknown or unreported
12 Goitre Patient has goitre
13 Antithyroid indicator Patient is on antithyroid medication
14 Tumor Patient has thyroid tumor
15 Hypopituitary Patient is hypopituitary
16 Psycological indicator Patient has psychological symptoms
17 TSH results TSH test results
18 T3 results T3 test results
19 TT4 results TT4 test results
20 T4U results T4U test results
21 FTI value FTI calculated from TT4 and T4U values
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