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Abstract

In this article, we consider unsupervised learning from the point of view of applying neural
computation on signal and data analysis problems. The article is an introductory survey, concen-
trating on the main principles and categories of unsupervised learning. In neural computation,
there are two classical categories for unsupervised learning methods and models: ,rst, exten-
sions of principal component analysis and factor analysis, and second, learning vector coding
or clustering methods that are based on competitive learning. These are covered in this article.
The more recent trend in unsupervised learning is to consider this problem in the framework of
probabilistic generative models. If it is possible to build and estimate a model that explains the
data in terms of some latent variables, key insights may be obtained into the true nature and
structure of the data. This approach is also brie.y reviewed.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Unsupervised learning is a deep concept that can be approached from very di2erent
perspectives, from psychology and cognitive science to engineering. It is often called
“learning without a teacher”. This implies that a learning human, animal, or arti,cial
system observes its surroundings and, based on these observations, adapts its behavior
without being told to associate given observations to given desired responses (super-
vised learning) or without even given any hints about the goodness of a given response
(reinforcement learning). Usually, the result of unsupervised learning is a new explana-
tion or representation of the observation data, which will then lead to improved future
responses or decisions.
In machine learning and arti,cial intelligence, such a representation is a set of con-

cepts and rules between these concepts, which give a symbolic explanation for the
data. In arti,cial neural networks, the representation may be a clustering of the data,
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a discrete map, or a continuous lower-dimensional manifold in the vector space of
observations, which explains their structure and may reveal their underlying causes.
Unsupervised learning seems to be the basic mechanism for sensory adaptation, e.g.

in the visual pathway [4]. On the engineering side, it is a highly powerful and promising
approach to some practical data processing problems like data mining and knowledge
discovery from very large databases, or new modes of human-computer interactions
in which the software adapts to the requirements and habits of the human user by
observing her behaviour.
In this article, we consider unsupervised learning from the point of view of applying

neural computation on signal and data analysis problems. The article is an introductory
survey, concentrating on the main principles and categories of unsupervised learning.
It is not possible to review all the methods in detail—for an excellent collection of
articles, see [22]. Neither is it possible to cover the more biological neural modelling
approaches in a single paper; for some collections of classical and more recent articles,
see e.g. [17,22].
In neural computation, there have been two classical categories for unsupervised

learning methods and models: ,rst, extensions of principal component analysis (PCA)
and factor analysis (FA), and second, learning vector coding or clustering methods
that are based on competitive learning. These are covered in this article in Sections 3
and 4, respectively.
The more recent trend in unsupervised learning is to consider this problem in the

framework of probabilistic generative models. If it is possible to build and estimate
a model that explains the data in terms of some latent variables, key insights may
be obtained into the true nature and structure of the data. Operations like prediction
and compression become easier and rigorously justi,able. This approach is reviewed
in Section 5.

2. Unsupervised learning in arti�cial neural networks

2.1. Supervised vs. unsupervised learning

The starting point for learning in neural networks is a training set of numerical
data vectors, typically high dimensional. Most of the recent neural network research
has focused on networks based on supervised learning, like the multi-layer perceptron
network, the radial basis function network, or the LVQ network [19]. The purpose is
to design nonlinear mappings between given inputs and outputs, using a database of
training samples from both. Examples are pattern recognition, optical character read-
ers, speech recognition, industrial diagnostics, condition monitoring, modelling complex
black box systems for control, and time series analysis and forecasting. Inputs are the
vectors of observations, and outputs are either classes, coded as binary vectors, or some
kind of desired responses given as numerical vectors. Typically, learning is completely
data-driven, without any explicit prior information on the nonlinear classi,cation or
regression function. This “black box” modelling approach is shown in Fig. 1.
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Fig. 1. Black box modelling approach.

Fig. 2. Feature extraction approach.

In many real world problems like image analysis, data mining, exploratory data
analysis, or modelling of large and complex systems, the dimensionality of the input
vectors can be very high (of the order of hundreds or even thousands) and the function
to be approximated is very nonlinear and complex. Then the networks would require
a large number of parameters in order to approximate and generalize well all over the
input domain. This means that the amount of training data must grow in proportion to
the number of free parameters. Consequently, very large amounts of training data and
training time are needed in highly complex problems to form the input–output mappings
by the black-box approach. Collecting the training samples would eventually be very
expensive if not impossible. This seems to be a major limitation of the supervised
learning paradigm for practical data processing problems.
A solution to the problem posed above is to somehow reduce the complexity of the

input data. In any meaningful data processing task, the data are not really random but
are generated by physical processes or causes of limited complexity [22]. Any decisions
on the data, like classi,cation or regression on another set of variables, are actually
decisions on these underlying processes or causes. To ,nd the underlying generating
variables, unsupervised learning is a feasible approach.
Once the observation data are reduced to the underlying variables, it may be much

easier to solve the original problem. With a reduced set of input variables, the input–
output mapping becomes simpler and less training samples are needed. Splitting the
task in two parts also makes it more transparent and allows human expertise to be
incorporated especially in the ,rst stage.
For example, in pattern recognition, this approach has always been the standard

one. The task is divided in two parts: feature extraction which is unsupervised and
maps the original input patterns or images to a feature space of reduced dimensions and
complexity, followed by classi,cation in this space [46,54]. For designing the classi,er,
supervised learning is used. This feature extraction approach is shown in Fig. 2.
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Fig. 3. Clustering approach.

When comparing supervised and unsupervised learning, quite another question is
the plausibility of these learning modes in real nervous systems. It may be hard to
postulate where the rich supervision signals would come from, for example in sensory
adaptation and learning. If we accept the hypothesis that learning is based on synaptic
modi,cation, another problem is how supervised learning rules like back-propagation
could be implemented locally on the synaptic level. The biological substrate seems to
be much more compatible with the unsupervised mode of learning.

2.2. The two basic categories of unsupervised neural learning

The goal of unsupervised learning, ,nding a new compressed representation for the
observations, can be interpreted as coding of the data. Basically, the unsupervised neural
learning algorithms fall into one of two categories [19]: ,rst, extensions of the linear
transform coding methods of statistics, and second, learning vector coding methods
that are based on competitive learning.
The ,rst class of unsupervised learning methods are motivated by standard statistical

methods like PCA or FA, which give a reduced subset of linear combinations of
the original input variables. Many of the learning rules for PCA are based on the
author’s PCA neuron model [35]. A more recent model in this category is that of
independent components, which would maximally reduce the redundancy between the
latent variables. This leads to the techniques of independent component analysis (ICA)
and blind source separation (BSS) [25]. In the latter technique, a set of parallel time
signals such as speech waveforms, electromagnetic measurements from the brain, or
,nancial time series, are assumed to be linear combinations of underlying independent
latent variables. The variables, called independent components, are found by eJcient
ICA learning rules. The approach of basic PCA, FA, and ICA is covered in Section 3.
The second class of methods is close to clustering; see Fig. 3. A typical application

is data mining or pro,ling from massive databases. It is of interest to ,nd out what
kind of typical clusters there are among the data records. In a customer pro,ling
application, ,nding the clusters from a large customer database means more sharply
targeted marketing with less cost. In process modelling, ,nding the relevant clusters of
the process state vector in real operation helps in diagnosis and control. A competitive
learning neural network gives an eJcient solution to this problem. Section 4 reviews the
best-known competitive learning network, the self-organizing map (SOM) introduced
by Kohonen [31], and its use in massive data clustering.
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3. Principal and independent component analysis

3.1. Principal component analysis

PCA and the closely related Karhunen–LoLeve Transform, or the Hotelling Transform,
as well as FA, are classical techniques in statistical data analysis, feature extraction,
and data compression [12,36,54]. Given a set of multivariate measurements, the purpose
is to ,nd a smaller set of variables with less redundancy, that would give as good a
representation as possible.
The starting point for PCA is a random vector x with n elements. We may assume

that x is zero mean: E{x}=0, with E denoting the expectation with respect to the
(unknown) density of x. This can always be achieved by centering x, or computing
its mean from an available sample x(1); : : : ; x(T ) and then subtracting the mean.
Consider a linear combination

y1 =
n∑

k=1
wk1xk = wT

1x

of the elements x1; : : : ; xn of the vector x. There w11; : : : ; wn1 are scalar coeJcients or
weights, elements of an n-dimensional vector w1, and wT

1 denotes the transpose of w1.
We seek for a weight vector w1 maximizing the PCA criterion

JPCA
1 (w1) = E{y2

1} (1)

= E{(wT
1x)

2} = wT
1E{xxT}w1 = wT

1Cxw1; (2)

‖w1‖ = 1: (3)

The matrix Cx in Eq. (1) is the n × n covariance matrix de,ned for the zero-mean
vector x by

Cx = E{xxT}: (4)

It is well known from basic linear algebra (see, e.g., [36,12]) that the solution to
the PCA problem is given in terms of the unit-length eigenvectors e1; : : : ; en of the
matrix Cx. The ordering of the eigenvectors is such that the corresponding eigenvalues
d1; : : : ; dn satisfy d1¿d2¿ · · ·¿dn. The solution maximizing (1) is given by

w1 = e1:

Thus the ,rst principal component of x is y1 = eT1x.
The criterion JPCA

1 in Eq. (1) can be generalized to m principal components, with
m any number between 1 and n. Then the variances of yi =wT

i x are maximized under
the constraint that the principal component vectors are orthonormal, or wT

i wj = �ij for
all j¡i. The solution is given by the ith eigenvector wi = ei.
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Another, alternative criterion for PCA is minimizing the mean square error

JPCA
MSE = E

{∣∣∣∣
∣∣∣∣x− m∑

i=1
(wT

i x)wi

∣∣∣∣
∣∣∣∣
2
}
: (5)

assuming that the basis vectors wi are orthonormal. The sum in Eq. (5) is the orthog-
onal projection of x on the subspace spanned by the vectors w1; : : : ;wm. A minimum
(although not the only one) of this criterion is again given by wi = ei; for more details,
see [12,25].
To use the closed form solution wi = ei given above for the PCA basis vectors, the

eigenvectors of the covariance matrix Cx must be known. In the conventional use of
PCA, there is a suJciently large sample of vectors x(t) available, from which the
mean and the covariance matrix Cx can be estimated by standard methods. There are
several eJcient numerical methods available for solving the eigenvectors of Cx, e.g.
the QR algorithm with its variants [12].

3.2. PCA and neural networks

It is not always feasible to solve the eigenvectors by standard numerical methods.
In an on-line data compression application like image or speech coding, the data sam-
ples x(t) arrive at high speed, and it may not be possible to estimate the covariance
matrix and solve the eigenvector–eigenvalue problem once and for all.
An alternative is to derive gradient ascent algorithms or other online methods for the

maximization problems above. The algorithms will then converge to the solutions of
the problems, that is, to the eigenvectors. The advantage of this approach is that such
algorithms work on-line, using each input vector x(t) once as it becomes available
and making an incremental change to the eigenvector estimates, without computing the
covariance matrix at all. This approach is the basis of the PCA neural network learning
rules.
In the Constrained Hebbian learning rule introduced by the author [35], the gradient

of y2
1 is taken with respect to w1 and the normalizing constraint ‖w1‖=1 is taken into

account. The learning rule is

w1(t + 1) = w1(t) + �(t)[y1(t)x(t)− y2
1(t)w1(t)] (6)

with y1(t)=w1(t)Tx(t). This is iterated over the training set x(1); x(2); : : : : The pa-
rameter �(t) is the learning rate controlling the speed of convergence of w1(t) to e1 as
t→∞.

Likewise, taking the gradient of y2
j with respect to the weight vector wj and using

the constraints wT
i wj = �ij, we end up with the learning rule

wj(t + 1) = wj(t) + �(t)yj(t)

[
x(t)− yj(t)wj(t)− 2

∑
i¡j

yi(t)wi(t)

]
: (7)

On the right-hand side there is a term yj(t)x(t), which is a so-called Hebbian term,
product of the output yj of the jth neuron and the input x to it. The other terms are
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Fig. 4. The 3-layer MLP in autoassociative mode.

implicit orthonormality constraints. The case j=1 gives the one-unit learning rule (6)
of the basic PCA neuron. The convergence of the vectors w1; : : : ;wm to the eigenvec-
tors e1; : : : ; em was established in [36]. A modi,cation called the generalized Hebbian
algorithm (GHA) was later presented by Sanger [45], who also applied it to image
coding, texture segmentation, and the development of receptive ,elds.
Other related on-line algorithms have been introduced in [14,44,12,53]. Some of

them, like the APEX algorithm by Diamantaras and Kung [12], are based on a feedback
neural network. Also minor components de,ned by the eigenvectors corresponding to
the smallest eigenvalues can be computed by similar algorithms [38].
Another possibility for PCA computation in neural networks is the multi-layer

perceptron network, which learns using the back-propagation algorithm (see [19]) in
unsupervised autoassociative mode. The network is depicted in Fig. 4.
The input and output layers have n units and the hidden layer has m ¡ n units. The

outputs of the hidden layer are given by

h = �(W1x + b1); (8)

where W1 is the input-to-hidden layer weight matrix, b1 is the corresponding bias
vector, and � is the activation function, to be applied elementwise. The output y of
the network is an aJne linear function of the hidden layer outputs:

y = W2h + b2 (9)

with obvious notation.
In autoassociative mode, the same vectors x are used both as inputs and as desired

outputs in back-propagation learning. If � is linear, then the hidden layer outputs will
become the principal components of x [3]. For the linear network, back-propagation
learning is especially feasible because it can be shown that the “energy” function has
no local minima.
This network with nonlinear hidden layer was suggested for data compression by

[10], and it was shown to be closely connected to the theoretical PCA by [7]. It is not
equivalent to PCA, however, as shown by [27], unless the hidden layer is linear. A
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much more powerful network is obtained if more hidden layers are added. For instance,
a 5-layer autoassociative MLP is able to compute in principle any smooth nonlinear
mapping between the inputs and the central hidden layer, and another mapping between
the central hidden layer and the outputs. This is due to the two extra nonlinear hidden
layers; see e.g. [37].

3.3. Factor analysis

In FA [18], a generative latent variable model is assumed for x

x = Ay + n: (10)

FA was originally developed in social sciences and psychology. In these disciplines,
the researchers want to ,nd relevant and meaningful factors that explain observed
results [18,30,54]. The interpretation in model (10) is that the elements of y are the
unobservable factors.
The elements aij of the unknown matrix A are called factor loadings. The elements

of the unknown additive term n are called speci,c factors. The elements of y (the
factors) are uncorrelated, zero mean and gaussian, and their variances are absorbed
into the matrix A so that we may assume

E{yyT} = I: (11)

The elements of vector n are zero mean, uncorrelated with each other and also with the
factors yi; denote Q=E{nnT}. It is a diagonal matrix. We may write the covariance
matrix of the observations from (10) as

E{xxT} = Cx = AAT +Q: (12)

In practice, we have a good estimate of Cx available, given by the sample covariance
matrix. The main problem is then to solve the matrix A of factor loadings and the
diagonal covariance matrix Q such that they will explain the observed covariances
from (12). There is no closed-form analytic solution for A and Q. Assuming Q is
known or can be estimated, we can solve A from AAT =Cx −Q.

This solution is not unique, however: any matrix A′ =AT where T is an orthogonal
matrix (TTT = I) will also be a solution. Then the factors will change to y′ =TTy. For
A′ and y′, the FA model (10) holds, and the elements of y′ are still uncorrelated. The
reason is that the property of uncorrelatedness is invariant to orthogonal transformations
(rotations). Note that because the factors are uncorrelated and gaussian, they are also
independent.

3.4. Independent component analysis

In ICA [1,5,8,9,25,26,28,29,39] the same model (10) is assumed, but now the as-
sumption on yi is much stronger: we require that they are statistically independent
and nongaussian. Interestingly, then the ambiguity in Factor Analysis disappears and
the solution, if we can ,nd one, is (almost) unique.
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In the simplest form of ICA, the additive noise n is not included and the standard
notation for the independent components or sources is si; thus the ICA model for
observation vectors x is

x = As: (13)

It is again assumed that both x and s are zero mean. The observations xi are now
linear combinations or mixtures of the sources sj. The matrix A is called in ICA the
mixing matrix.
We may further assume that the dimensions of x and s are the same. If originally

dim x¡dim s, or there are more sources than observed variables, then the problem
becomes quite diJcult—see [25]. If, on the other hand, m=dim x¿dim s= n, then
model (13) implies that there is redundancy in x which is revealed and can be removed
by performing PCA on x. This is done as follows.
We can write the m×m covariance matrix of x as

Cx = AE{ssT}AT = AAT: (14)

We have used the knowledge that matrix E{ssT} is diagonal, due to the fact that the
elements of s are zero mean and independent; if we further absorb their variances to
matrix A and assume that E{s2i }=1, then it holds E{ssT}= I. Now, matrix A is an
m× n matrix and so matrix Cx =AAT is an m×m matrix with rank n. It will have
only n nonzero eigenvalues and the corresponding eigenvectors span a signal subspace.
By projecting x onto this signal subspace, a reduced model is obtained in which the
dimensions of x and s are both the same.
In fact, another step called whitening is very useful as a preprocessing stage in ICA,

and it can be combined into the dimensionality reduction. Let us denote the diagonal
matrix of the nonzero eigenvalues of Cx by D; as noted above, it will be an n× n
matrix. Let us again denote the orthonormal eigenvectors of Cx by e1; : : : ; em and the
orthogonal matrix that has the n ,rst ones as columns by E. Thus E is m× n. Make
now a linear transformation for the m-dimensional observation vectors x:

x′ = D−1=2ETx: (15)

For the covariance matrix of the transformed n-dimensional vector x′ it holds:

E{x′x′T}=D−1=2ETCxED−1=2

=D−1=2ETEDD−1=2 = I:

A vector whose covariance matrix is the unit matrix is called white. Whitening can
be always performed because we only need the covariance matrix of observation vectors
x, which can be readily estimated from a sample. Alternatively, whitening can be done
by neural network learning rules, that are simpli,cations of the on-line PCA learning
rules [25]. Let us assume in the following that whitening has always been performed in
the model, and denote simply by x the whitened observation vector whose dimension
is the same as that of the source vector s.
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Fig. 5. Mixed signals.

Fig. 6. Histogram of the two amplitudes of the mixed signals.

Whitening has another desirable side-e2ect, which can be seen by noting from
Eq. (14) that now AAT = I. But this means that matrix A is an orthogonal matrix,
for which A−1 =AT. So, if we knew matrix A, we could directly solve the unknown
source vector s from the model by

s = ATx:

It is an interesting ,nding that very few assumptions suJce for solving the mixing
matrix and, hence, the sources. All we need is the assumption that the sources si are
statistically independent and nongaussian. Consider the following simple example: we
have two signals, shown in Fig. 5, that are linear combinations or mixtures of two
underlying independent nongaussian source signals. This example is related to model
(13) in such a way that the elements x1; x2 of the random vector x in (13) are the
amplitudes of the two signals in Fig. 5. The signals provide a sample x(1); : : : ; x(T )
from this random vector. The joint histogram of the sample vectors is plotted in Fig. 6;
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Fig. 7. Histogram of the two amplitudes of the separated signals.

each point in the scatter plot corresponds to one time point in Fig. 5. The vector x
is now white in the sense that x1 and x2 are zero mean, uncorrelated, and have unit
variance. This may not be apparent from the histogram but can be veri,ed by estimating
the covariance matrix of all the points.
The example suggests a method that in fact is highly useful and forms the basis of

some practical ICA algorithms. Consider a line passing through the origin at the center
of the data cloud in Fig. 6. Denote a unit vector de,ning the direction of the line
by w. Then the projection of a data point x on the line is given by y=wTx. This can
be considered as a random variable whose density is approximated by the histogram
of the projections of all the data points in the cloud on this line. No matter what is
the orientation of the line, it always holds that y has zero mean and unit variance. The
unit variance is due to E{y2}=E{(wTx)2}=wTE{xxT}w=wTw=1 where we have
used the facts that x is white and w has unit norm.

However, it is easy to see from Fig. 6 that the density of y will certainly vary
as the orientation of the line varies, meaning that all the moments of y cannot stay
constant. In fact, any other moment than the ,rst and second ones is not constant.
What is most important is that any such moment, say, E{y3} or E{y4} or in fact
E{G(y)}, with G(y) a nonlinear and nonquadratic function, will attain a number of
maxima and minima when the orientation of the line goes full circle, and some of
these extrema coincide with orientations in which the 2-dimensional density factorizes
into the product of its marginal densities—meaning independence.
In Fig. 7, the coordinate system has been rotated so that the fourth moment E{y4}

is maximal in the vertical direction and minimal in the horizontal direction. We have
found two new variables y1 =wT

1x and y2 =wT
2x, with w1;w2 orthonormal, that satisfy

p(y1; y2) = p(y1)p(y2)

with p(:) the appropriate probability densities. The variables are thus independent and
it holds

y = Wx;



198 E. Oja / Theoretical Computer Science 287 (2002) 187–207

Fig. 8. Separated signals.

where W=(w1w2)T. We have solved the inverse of model (13) and obviously found
the mixing matrix: A=WT.

Fig. 8 shows y1; y2 again arranged in their correct time order. It is seen that they
form two signals, one a random nongaussian noise and the other one a deterministic
sinusoid. These were in fact the original signals that were used to make the arti,cial
mixtures in Fig. 5. In the context of separating time series or signals, the ICA technique
is an example of blind signal separation.
The above illustrative example can be formalized to an eJcient mathematical al-

gorithm. What we need is a numerical method to maximize, say, the fourth moment
E{y4} in terms of a unit norm weight vector w. A possibility is gradient ascent: the
gradient of E{y4} with respect to w is 4E{y3x}=4E{(wTx)3x}. However, gradient
methods are notoriously slow. A better idea is a fast algorithm with higher-order con-
vergence speed. Such a method is provided by the FAstICA algorithm. For ,nding one
independent component (one weight vector w), the algorithm is as follows:
1. Choose the initial value randomly for the weight vector w.
2. Repeat steps 3, 4 until the algorithm has converged.
3. Normalize w to unit norm.
4. Update w by

w←E{(wTx)3x} − 3w: (16)

This algorithm was introduced in [26] and further extended and analyzed in [24]; for a
detailed review, see [25]. The FastICA algorithm is available in public-domain software
[13] from the author’s web pages. The algorithm can be run either in a de.ation mode,
in which the orthogonal weight vectors (columns of the mixing matrix A) can be found
one at a time, or in a parallel mode, in which all the independent components and the
whole matrix A are solved in one iteration.
An analysis of the local maxima and minima of a general cost function E{G(y)}=

E{G(wTx)} over the unit sphere ‖w‖=1 was made by the author in [41]. The result is
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Theorem. Under the linear mixing model x=As, with whitened x (hence: orthogonal
A), the local maxima (resp. minima) of E{G(wTx)} under the constraint ‖w‖=1
include those columns ai of the mixing matrix A such that the corresponding sources
si satisfy

E{sig(si)− g′(si)}¿ 0 (resp: ¡ 0); (17)

where g(:) is the derivative of G(:).

The Theorem essentially says that all the columns of the mixing matrix will be among
the local minima or maxima of E{G(wTx)}, but there may be also other extrema.
Condition (17) states that some columns (and the corresponding sources) are found by
minimizing, others by maximizing. For the case G(y)=y4, (17) becomes

E{s4i − 3}¿ 0

(note that the sources have unit variances). The term on the left-hand side is the
kurtosis of si. Thus, the positively kurtotic sources are found at the local maxima of
E{(wTx)4} and vice versa. For other cost functions G(y), condition (17) always splits
the sources in two groups, too.
In [25], the above method of fourth-order moment maximization is shown to be an

example of a powerful criterion of ,nding maximally nongaussian orthogonal direc-
tions through the multidimensional density p(x). Cost functions like maximum likeli-
hood or minimal mutual information are shown to be intimately related to this basic
criterion. Other algorithms to solving the basic linear ICA model have been reported,
e.g. by [1,5,8,9,28], as reviewed in [25].
When the additive noise cannot be assumed to be zero in the ICA model, we have

the noisy ICA model, also termed independent factor analysis [2]. This is due to the
fact that it is otherwise similar to the factor analysis model (10), with the di2erence
that the factors yi are not uncorrelated (thus independent) gaussians, but rather inde-
pendent nongaussians. Some solution methods are reviewed in [25]. Another extension
is nonlinear ICA, discussed in Section 5.3.

4. The self-organizing map

One of the best-known neural networks in the unsupervised category is the SOM
introduced by Kohonen [31]. It belongs to the class of vector coding algorithms.
In vector coding, the problem is to place a ,xed number of vectors, called codewords,
into the input space which is usually a high-dimensional vector space. The input data
are given as a training set x(1); : : : ; x(T ). For example, the inputs can be gray-scale
windows from a digital image, measurements from a machine or an industrial process,
,nancial data describing a company or a customer, or pieces of English text repre-
sented by word histograms. The dimension n of the data vectors is determined by the
problem and can be very large. In the WEBSOM system [32] for organizing collections
of text documents, the dimensionality of the data in the largest applications is about
n=50; 000 and the size of the training sample is about T =7; 000; 000.
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Fig. 9. The SOM network. Each neuron in the map layer receives the same inputs. The best matching neuron
(BMU) can be found by a winner-take-all (WTA) layer which outputs its index. In learning, the BMU and
its neighbors receive a learning signal from the WTA (only the signal to the BMU is shown by the thick
arrow), telling them to update their weights.

A well-known method for vector coding is the Linde-Buzo-Gray (LBG) algorithm,
which is very similar to the k-means clustering algorithm [46]. It is possible to interpret
these as unsupervised neural learning rules. Assume a set of units (neurons) which are
numbered by index i=1; : : : ; k, and assume that each unit i has a weight vector wi

that has the same dimension as the input vectors x that we wish to cluster. In both
the LBG algorithm and k-means clustering, the goal is to place the weight vectors
(codewords) into the input space in such a way that the average squared distance
from each x to its closest codeword is minimized. The learning algorithm is based on
competitive learning, in which the codewords compete for the vectors and the winner
is allowed to adapt. This is a very natural approach to neural learning. For instance,
building on his early work on competitive learning, Grossberg introduced the adaptive
resonance theory (ART) [16]. The ART network can be used for pattern recognition
and clustering.
In the SOM introduced by Kohonen [31], there is an extra feature compared to mere

clustering: the neurons (nodes) are arranged to a 1-, 2- or multidimensional lattice,
such that each neuron has a set of neighbors; see Fig. 9. The goal of SOM learning is
not only to ,nd the most representative code vectors for the input training set in the
sense of minimum distance, but at the same time to form a topological mapping from
the input space to the grid of neurons. This idea originally stems from the modelling
of the topographic maps on the sensory cortical areas of the brain. A related early
work in neural modelling is [34].
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For any data point x in the input space, one or several of the codewords are closest
to it. Assume that wi is the closest among all codewords:

‖x− wi‖ = min ‖x− wj‖; j = 1; : : : ; k: (18)

The unit i having the weight vector wi is then called the best-matching unit (BMU)
for vector x. Note that for ,xed x, Eq. (18) de,nes the index i= i(x) of the BMU,
and for ,xed i, Eq. (18) de,nes the set of points x that are mapped to that index. By
the above relation, the input vectors x are mapped to the discrete set of indices i.

By a topological mapping the following property is meant: if a given point x is
mapped to unit i, then all points in neighborhoods of x are mapped either to i itself
or to one of the units in the neighborhood of i in the lattice. Because no topological
maps between two spaces of di2erent dimensions can exist in the strict mathematical
sense, a two-dimensional neural layer can only follow locally two dimensions of the
multidimensional input space. Usually the input space has a much higher dimension,
but the data cloud x(1); : : : ; x(T ) used in training may be roughly concentrated on a
lower-dimensional manifold that the map is able to follow at least approximately [31].
The SOM network is shown in Fig. 5. The role of the output ‘winner-take-all’ layer

is to compare the outputs from the map layer (equivalently, the distances ‖x− wi‖)
and give out the index of the BMU. The well-known Kohonen algorithm for self-
organization of the code vectors is as follows [31]:
1. Choose initial values for the weight vectors wi.
2. Repeat steps 3, 4 until the algorithm has converged.
3. Draw a sample vector x from the training set and ,nd the best matching unit i= i(x)

according to Eq. (18).
4. Adjust the weight vectors of all units by

wj ← wj + � ∗ hr ∗ (x− wj) (19)

where � is a gain factor and hr is a function of the distance r= ‖i− j‖ of units i and
j measured along the lattice.
There are several choices for the initial values and for the neighborhood; these,

as well as the convergence and the mathematical properties of this algorithm have
been considered by several authors, e.g. [31,42,40,51]. For SOM learning, topology
preservation, and its relation to a cost function, see [52,11,20]. A more eJcient learning
rule for the SOM is the batch algorithm, covered, e.g. in [31]. The 2-dimensional
map is also a powerful tool for data visualization: e.g., a color code can be used
in which each unit has its own characteristic color. For a public domain software
implementation of the SOM, with various graphical tools for map presentations as
well as with preprocessing methods, see [48]. A database of well over three thousand
applications of SOM is given by [47].

5. Generative models

The concept of a generative model is very general and potentially powerful. In fact,
as discussed by Roweis and Ghahramani [43], a large number of central techniques like
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FA, PCA, ICA, mixtures of Gaussians, vector quantization, and also dynamical models
like Kalman ,lters or Hidden Markov Models, can be presented in a uni,ed framework
of unsupervised learning under a single basic generative model. In his Bayesian Ying–
Yang model, Xu [55] likewise has presented a generic framework of unsupervised
learning for the basic data models, both static and temporal.
In this review, we concentrate on generative models for the central neural network

techniques reviewed in the previous sections: FA, PCA, ICA, and topographic maps.
We already saw examples of generative models in the case of FA and ICA. Also PCA
can be derived from a generative model in the technique called probabilistic PCA [49]
or principal factor analysis [18].
A problem with such linear models is that they cannot represent well data that is

not a linear mixture of some underlying gaussian or nongaussian variables. For data
clouds that have an irregular or curved shape, these methods fail. A possible remedy is
to use a piecewise linear model, or a mixture of local linear models. The probabilistic
approach allows the extension of PCA to such a mixture model, which is covered ,rst
in Section 5.1. There is an approximative generative model for the SOM, too, called the
generative topographic map (GTM). It will be reviewed in Section 5.2. Then, recent
nonlinear generalizations of FA and ICA are reviewed in Section 5.3.

5.1. Mixtures of principal component analyzers

A fairly obvious general idea of combining the two major unsupervised learning
paradigms—PCA and vector coding (VQ)—is to use mixtures of linear models, for
example PCA’s, in which the data cloud is ,rst clustered or parcelled using VQ, and
then a separate linear model is ,tted to each of the clusters around the code vector. This
notion has been formalized by several authors [21,42,43,49,55]. For instance, consider
the FA model

x = Ay + n (20)

with both y and n zero mean and gaussian, with E{yyT}= I and Q=E{nnT}. From
this, the gaussian conditional density p(x|y) is directly obtained, and this immediately
gives p(x) because p(y) is a gaussian of simple form. If there are several FA models
instead, with di2erent mean values, then the data obeys a mixture density

p(x) =
m∑
i=1

"ip(x|i): (21)

The log-likelihood can be derived directly. Tipping and Bishop [49] consider this under
the constraint that in each model i, the noise co-variance is Qi = �2

i I—they call this
the probabilistic PCA model. They develop an iterative EM algorithm for optimizing
all the model parameters (the weights "i, the means, the factor loading matrices Ai,
and the noise variances �2

i ). The obtained model can be used for local dimensionality
reduction in cases where a single linear PCA model would fail completely.
This approach is closely related to the conventional technique of semiparametric

density estimation, the mixture of gaussians (MoG) model. However, instead of using
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full covariance matrices for the component gaussians, the local linear models constrain
the covariances in a natural and easily adjustable way.

5.2. Generative topographic map

In the Generative topographic map (GTM) algorithm [6], the vectors x are expressed
in terms of a number of latent variables, which are de,ned on a similar lattice or grid
as the neurons in the SOM. Assume a neuron grid with dimension l (usually, this
would be equal to 2, at most 3), and assume there are k nodes yi ; i = 1; : : : ; k on
the grid. Assume a random latent variable y, whose values are concentrated at these
nodes. We can then express the density of y as

p(y) =
1
k

k∑
i=1

�(y − yi)

with �(:) the Dirac delta function. Let us now make a nonlinear mapping from the
l-dimensional random variable y to the original n-dimensional vectors x:

x = f(y;M) + n; (22)

where M is an array of parameters of the nonlinear function f , and n is additive
noise. The form of the function f is assumed to be determined except for the unknown
parameters. Model (22) is the generative latent variable model of the GTM method.
It means that the data x are basically concentrated on an l-dimensional nonlinear
manifold in the data space, except for the additive noise. The k vectors wi = f(yi ;M)
that are the images of the node points yi are analogous to the weight vectors or
codewords of the SOM. If f is smooth, a topographic ordering for the codewords is
automatically guaranteed, because such an ordering is valid for the points yi. The GTM
also has the advantage that it postulates a smooth manifold that naturally interpolates
between the code vectors wi.
If we assume that the noise has a radially symmetrical gaussian density with variance

$−1, the density of x, given y, is

p(x|y;M; $) ∝ exp
{
−$
2
‖x− f(y;M)‖2

}
(23)

from which the unconditional density is obtained as

p(x|M; $) =
∫
p(x|y;M; $)p(y) dy =

1
k

k∑
i=1

p(x|yi ;M; $):

This density is a mixture of gaussians, having a separate gaussian density around each
of the code vectors wi = f(yi ;M). From this, the likelihood function for the parameters
M; $ follows immediately. The EM algorithm can now be used to numerically solve
the parameters by maximum likelihood, due to the mixture of gaussians form of the
density—for details, see [6]. The reference also discusses the similarities and di2erences
between GTM and SOM.
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5.3. Nonlinear factor and independent component analysis

When comparing the FA model (20) and the GTM model (22), certain similarities
emerge: both have a number of latent variables, given by the vector y, and additive
gaussian noise n. In FA, the mapping from y to the data x is linear, in GTM it is
nonlinear. Another clear di2erence is that in FA, the factors are gaussian, while in
GTM, the prior density p(y) for the latent factors has a very special form.
Another possibility for this density in the nonlinear case, too, would be the gaussian

density, which would be closer to the original .avor of FA. If we assume that the
prior for y is gaussian with unit (or diagonal) covariance, making the elements yi

independent, model (22) may be called nonlinear factor analysis. A further extension
would be p(y) that is nongaussian but factorizable so that the yi are independent; then
the model becomes nonlinear independent component analysis.
Recently, Valpola [33] used an approximation for the nonlinear function f(y;M)

in the model, that was based on a Multi layer Perceptron (MLP) network with one
hidden layer. It is well known [23,15] that this function can approximate uniformly
any continuous functions on compact input domains and it is therefore suitable for this
task. Then the model becomes

x = B%(Ay + a) + b+ n; (24)

where A; a are the weight matrix and o2set vector of the hidden layer, % is the
sigmoidal nonlinearity, typically a tanh or sinh−1 function, and B; b are the weight
matrix and o2set vector of the linear output layer. It is understood that % is applied
to its argument vector element by element. In practice, there is a training sample
x(1); : : : ; x(T ), and we wish to solve from the model the corresponding source or
factor vectors y(1); : : : ; y(T ).
The problem now is that, contrary to the usual supervised learning situations, the

inputs to the MLP are not known and therefore back-propagation type of learning
rules cannot be used for ,nding the unknown parameters. The idea in [33] is to use a
purely Bayesian approach called ensemble learning. The cost function is the Kullback–
Leibler divergence between the true posterior probability for the parameters, given the
observations, and an approximation of that density. Denote the set of all the unknown
parameters by .= {Y;M}. There the vector Y contains all the unknown source vectors
y(1); : : : ; y(T ), while M contains the weights of the MLP network that de,ne the
unknown nonlinear function f , and also the parameters of the gaussian noise n. In
addition, because this is a Bayesian model, it includes hyperparameters de,ning the
distributions of the weights. Denote the sample of observations by X= x(1); : : : ; x(T ).
We can write for the posterior density of the parameters

p(V|X) = p(Y;M|X) = p(X|Y;M)p(Y|M)p(M)
p(X)

: (25)

The ,rst term p(X|Y;M) is obtained from the data model; it is simply a product of
gaussians with means B%(Ay(t) + a) + b. Likewise, the terms p(Y|M) and p(M)
are obtained as products of gaussians, when we assume mutually independent gaussian



E. Oja / Theoretical Computer Science 287 (2002) 187–207 205

priors for all the parameters. The term p(X) does not contain any unknown parameters
and can be omitted.
This density is now approximated by another density q(.)—the ensemble—that has

a simple form [33]: it is a gaussian with diagonal covariance. Then the KL divergence

CKL =
∫
d. q(.) log

q(.)
p(.|X) (26)

also obtains a relatively simple form, splitting into the expectations of many simple
terms. It can be minimized by a suitable numerical method.
In [50], several applications with real data are shown. The model is also extended to

a dynamical model, similar to an extended Kalman ,lter but with unknown parameters,
and very promising results are obtained in case studies.

6. Conclusions

The two main paradigms of unsupervised neural learning have been reviewed: the
extensions to the principal component analysis (PCA) technique, and the neural vector
coding and topological mapping technique. The ,rst class of methods form a contin-
uous linear or nonlinear transformation of the original input vectors to feature vectors
of lower dimensionality, and are especially useful in feature extraction. The reduced
representation given by the feature vectors would typically be input to another network,
e.g. a classi,er. Both the PCA networks and the autoassociative multi-layer perceptron
networks were reviewed.
The second class of methods are able to map highly nonlinear input data manifolds

onto low-dimensional neural lattices, preserving optimally the mutual topological rela-
tions of input vectors. Thus these methods, notably the self-organizing map are suitable
for data clustering and visualization. The applications range from industrial quality con-
trol to ,nancial data mining. Also generative latent variable versions for these basic
models and their combinations were reviewed.
This paper was a review of the essential principles and theory underlying unsu-

pervised learning, with some central references cited. It is not possible here to give
even a rudimentary list of applications of these techniques. There are available good
text-books that cover some of the major approaches [22,31,12,25].
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