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Abstract

Traditional classification techniques such as decision trees and RIPPER use heuristic search methods to find a small subset of patterns. In recent

years, a promising new approach that mainly uses association rule mining in classification called associative classification has been proposed.

Most associative classification algorithms adopt the exhaustive search method presented in the famous Apriori algorithm to discover the rules and

require multiple passes over the database. Furthermore, they find frequent items in one phase and generate the rules in a separate phase consuming

more resources such as storage and processing time. In this paper, a new associative classification method called Multi-class Classification based

on Association Rules (MCAR) is presented. MCAR takes advantage of vertical format representation and uses an efficient technique for

discovering frequent items based on recursively intersecting the frequent items of size n to find potential frequent items of size nC1. Moreover,

since rule ranking plays an important role in classification and the majority of the current associative classifiers like CBA and CMAR select rules

mainly in terms of their confidence levels. MCAR aims to improve upon CBA and CMAR approaches by adding a more tie breaking constraints in

order to limit random selection. Finally we show that shuffling the training data objects before mining can impact substantially the prediction

power of some well known associative classification techniques. After experimentation with 20 different data sets, the results indicate that the

proposed algorithm is highly competitive in term of an error rate and efficiency if compared with decision trees, rule induction methods and other

popular associative classification methods. Finally, we show the effectiveness of MCAR rule sorting method on the quality of the produced

classifiers for 12 highly dense benchmark problems.
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1. Introduction

Traditional classification rule learning approaches for

building classifiers, may be divided into three main categories,

i.e. divide-and-conquer (Quinlan, 1987), separate-and-conquer

(Furnkranz, 1999) and covering algorithms (Cendrowska,

1987). The majority of traditional classification techniques

use heuristic-based strategies for building the classifier (Witten

& Frank, 2000). In constructing a classification system, they

look for rules with high accuracy. Once a rule is created, they

delete all positive training objects associated with it. Thus,

these methods often produce a small subset of rules, and may

miss detailed rules that might play an important role in some

cases. The heuristic methods that are employed by traditional
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classification techniques often use domain independent biases

to derive a small set of rules, and therefore, rules generated by

them are different in nature and more complex than those that

users might expect or be able to interpret (Pazzani, Mani, &

Shankle, 1993).

Association rule discovery and classification are analogous

tasks in data mining, with the exception that classification main

aim is the prediction of class labels, while association rule

mining discovers associations between attribute values in a

data set. In the last few years, association rule mining has been

successfully used to build accurate classifiers, which resulted in

a new approach coming to life, known as associative

classification (AC) (Ali, Manganaris, & Srikant, 1997; Liu,

Hsu, & Ma, 1998). Empirical studies (Antonie, Zaı̈ane, &

Coman, 2003; Liu et al., 1998; Yin & Han, 2003) showed that

AC often builds more accurate classifiers than traditional classi-

fication techniques and many of the rules found by ACmethods

can not be discovered by traditional classification algorithms.

Given a history or a training data set, the task of an AC

algorithm is to discover the complete class association rules
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with significant supports and high confidences (attributes

values that have frequencies above user specified constraints,

denoted by minimum support (minsup) and minimum

confidence (minconf) thresholds). One subset of the generated

class association rules is chosen to build an automatic classifier

that could be used to predict classes of previously unseen data.

Unlike the classic classification approaches such as rule

induction and decision trees, which construct usually small

sized classifiers, AC explores all associations between

attributes values and their classes in the training data set,

aiming to construct larger sized classifiers.

However, since most AC techniques adopt the exhaustive

search method presented in the Apriori algorithm and without

pruning (Agrawal and Srikant, 1994) to discover the rules, they

suffer from inherited problems such as efficiency (Liu, Ma, &

Wong, 2001; Zaki, Parthasarathy, Ogihara, & Li, 1997).

Furthermore, most of the current AC techniques rank rules

mainly in terms of their confidence levels. When several rules

have identical confidence or support, CBA algorithm (Liu et

al., 1998) for example chooses randomly between them, which

may degrade accuracy. This deterioration happens especially in

cases where the chosen rule does not have a large

representation in the training data.

For example, if we mine the ‘heart’ data set downloaded

from (WEKA, 2000) using the CBA algorithm and without

prunning with minsupp of 2% and minconf of 40%, there are

4791 potential rules with identical confidence, from which

4297 of them have the same support and only 884 of those have

breaks. The CBA algorithm ranks the remaining 3383 potential

rules randomly where the majority of these are not the optimal

choices, and thus, the accuracy of the classifier may slightly

deteriorate. There is a critical need for additional tie breaking

conditions in the selection process of the rules in order to

greatly reduce the chance of randomisation.

This paper aims to improve upon the prediction accuracy

and efficiency of AC techniques by dealing directly with three

problems. The first one is to find an effective rule selection

method during the ranking process of the rules in the hope of

reducing error by minimising rule random selection. The

second problem deals with using a truly random seed when

partitioning the training data in cross validation and ensuring

that data are not artificially prepared. The third and most

important issue is to develop an efficient method for rules

discovery. As a result, a new AC algorithm, called Multi-class

Classification based on Association Rule (MCAR) is proposed.

The proposed algorithm deals with continuous attributes

(where they are real or integer) as well as categorical attributes

(meaning they take a value from a finite set of possible values),

performs a simple shuffling on the training data before mining

and uses different random seeds in cross validation, which

gives a more truly error rate each time a data set is mined.

In addition, MCAR improves upon current AC methods that

rank rules mainly in terms of their confidence levels by

imposing more detailed conditions such as class distribution

frequency and others adopted from different artificial intelli-

gence techniques like rule cardinality for breaking ties. Also, to

speed up the process of finding rules, MCAR employs an
efficient intersection method that requires a single scan over the

training data set, instead of using the Apriori multiscan

approach. The classifier of our algorithm is of the form hr1,

r2,.,rn, default classi, where ri is a rule and the default class is

the majority class of the remaining unclassified instances in the

training data set.

Basic concepts in AC and common algorithms are surveyed

in Sections 2 and 3, respectively. Our proposed algorithm is

presented in Section 4 where details about rule discovery, rule

generation, evaluation phase, rule sorting and prediction of test

data objects are discussed. Extensive experimental results and

comparisons are demonstrated in Section 5 and finally

presented, are conclusions in Section 6.
2. Associative classification

AC is a special case of association rule mining in which

only the class attribute is considered in the rule’s

consequent, for example in a rule such as X/Y, Y must

be a class attribute. Let us define the classification problem

in an association rule framework. The training data set T has

m distinct attributes A1, A2,.,Am and C is a list of class

labels. Attributes could be categorical or continuous. In the

case of categorical attributes, all possible values are mapped

to a set of positive integers. For continuous attributes, any

discretisation method can be used.

Definition 1. A row or a training object in T can be described as

a combination of attribute names Ai and values ai, plus a class

denoted by cj.

Definition 2. An item can be described as an attribute name Ai

and value ai.

Definition 3. An itemset can be described as a set of items

contained in a training object.

Definition 4. A ruleitem r is of the form hitemset, ci, where c3C
is the class.

Definition 5. The actual occurrence (actoccr) of a ruleitem r in

T is the number of rows in T that match the itemsets defined in r.

Definition 6. The support count (suppcount) of ruleitem r is the

number of rows in T that match r’s itemsets, and belong to a

class ci for r.

Definition 7. An itemset i passes the minsupp threshold if

(jij/jTj)Rminsupp, where jij is the number of rows in T that

contain i and jTj is the number of instances in T.

Definition 8. A ruleitem r passes the minsupp threshold if

(suppcount(r)/jTj)Rminsupp, where jTj is the number of

instances in T.

Definition 9. A ruleitem r passes minconf threshold if

(suppcount(r)/actoccr(r))Rminconf.

Definition 10. Any itemset i that passes the minsupp threshold

is said to be a frequent itemset.
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Definition 11. Any ruleitem r that passes theminsupp threshold

is said to be a frequent ruleitem.

Definition 12. An actual class association rule is represented in

the form: (Ai1,ai1)o(Ai2,ai2)o.o(A1m,aim)/cj, where the

antecedent of the rule is an itemset and the consequent is a

class.

A classifier is of the form H:A1,A2,.An/Y, where Ai is an

attribute and Y is the class. The main task of AC is to

construct a set of rules (model) that is able to predict the

classes of previously unseen data, known as the test data set,

as accurately as possible. Formally, the goal is to find a

classifier h3H that maximises the probability that h(a)Zy for

each test instance (a, y).

3. Related work

One of the first algorithms to use an association rule mining

approach for classification was proposed in (Liu et al., 1998)

and named CBA. CBA implements the famous Apriori

algorithm (Agrawal & Srikant, 1994) in order to discover

frequent ruleitems. Once the discovery of frequent ruleitems is

finished, CBA proceeds by converting any frequent ruleitems

that passes minconf into a rule. In so doing, only one subset of

the generated classification rules will be considered in the final

classifier. Evaluating all the generated rules against the training

data set does the selection of the subset. The frequent ruleitems

discovery and rules generation are implemented in two

separate phases in CBA.

The Apriori algorithm has been applied to misleading

classification data in the water acoustic signals field (Huange,

Zhao, & Xie, 1997). The goal is to separate the misclassifi-

cation region of the feature space and to extract useful rules for

correct prediction in that misclassification region. A two-phase

training algorithm has been presented to exploit association

rules in order to reveal intrinsic rules that could lead to a

correct classification. Experimental tests on 964 training

examples contained in real vessel data indicated the potential

use of association rule discovery approach in improving the

accuracy for the difficult to classify underwater acoustic

signals.

An AC algorithm that selects and analyses the correlation

between high confidence rules, instead of relying on a single

rule, has been developed in (Li, 2001). It uses a set of related

rules to make a prediction by evaluating the correlation among

them (Li, 2001). The correlation measures how effective the

rules are based on their support values and class distribution. In

addition, a new prefix tree data structure named a CR-tree is

used to handle the set of rules generated and to speed up the

rule retrieval process.

Improvements upon the CBA algorithm with regards to

using multiple supports and extracting long patterns were

reported in (Liu et al., 2001). These improvements resulted in a

multiple local supports technique for the discovery of frequent

ruleitems for not only the dominant classes but also for the low

frequency ones. In order to extract long patterns from data, a

hybrid algorithm that combines CBA with decision trees (C4.5)
(Quinlan, 1993) has also been presented. The basic idea of the

hybrid algorithm is to segment the training data, and to apply

the CBA algorithm on each segment. Finally, the classifier that

achieves the highest accuracy on one of the segments is

selected to classify new unseen data objects.

The problems of minimising the number of rules in AC and

the effectiveness of the rule-based classifier on missing values

in test data sets have been studied in (Li, Han, & Pei, 2001).

The authors introduced two simple methods, one extends C4.5,

and the other adopts the CBA algorithm. The presented AC

method aims to derive smaller set of rules than that of CBA.

This set is claimed to be able to predict test data objects as

accurately as a CBA classifier.

A method based on association rule for medical image

classification has been presented in (Antonie et al., 2003). It

consists of three major steps, in which the first step involves

cleaning up the medical images and extracting target features.

Step two uses CBA approach in order to learn rules, which are

used to build the classifier in step three.

A new approach for building classification systems based on

both positive and negative rules has been introduced in

(Antonie & Zaı̈ane, 2004). The ‘interestingness’ of the rules

for the proposed algorithm is based on the correlation

coefficient that measures the strength of the linear relationship

between a pair of variables. Besides confidence and support

thresholds, correlation coefficient has been used for pruning the

final classifier, giving a much reduced rules set if compared

with support and confidence pruning methods. The algorithm

in (Antonie and Zaı̈ane, 2004) finds the frequent ruleitems

using Apriori approach and ranks the rules using CBA rules

ranking method.

Our proposed algorithm uses the core concepts of

association rule mining in classification framework. However,

MCAR has many distinguishing features over other AC

algorithms that will be discussed in Section 4.6.
4. MCAR algorithm

The algorithm proposed in this paper consists of two main

phases: rule generation and a classifier builder. In the first

phase, the training data set is scanned once to discover frequent

one ruleitems, and then MCAR recursively combines ruleitems

generated to produce potential frequent ruleitems (candidate

ruleitems) involving more attributes. The supports and

confidences for candidate ruleitems are calculated simul-

taneously, where any ruleitem with support and confidence

larger than minsupp and minconf, respectively, is created as a

potential rule. We will explain in details the discovery of

frequent ruleitems step in Section 4.1. In the second phase,

rules created are used to build a classifier by considering their

effectiveness on the training data set. Only effective rules will

be kept in the final classifier. Fig. 1 represents the proposed

algorithm, which we will explain in details below.

Data used by MCAR contain a header that indicates file

name, attribute names, and number of rows. Values for each

attribute are comma-separated, and the class attribute must be
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the last column in the header file. Missing values in the training

data set are treated as other existing attributes values.

MCAR treats not only categorical data but also continuous

data. For categorical attributes, we assume that all possible

values are mapped to a set of positive integers. For continuo-

valued attributes, the multi-interval discretisation technique

(Fayyad & Irani, 1993) has been implemented. We briefly

summarise the process of discretising continuous attributes

from (Fayyad & Irani, 1993). First, the training instances for

each continuous attribute are sorted in an ascending form and

the class values associated with each instance is given. The

next step is to place break points whenever the class value

changes and to calculate the information gain for each possible

break point. The information gain represents the amount of

information required to specify values of the classes given a

breaking point. Finally, the break point that leads to the least

information value is selected and the algorithm is invoked

again on the lower range of that attribute until a stopping

condition is met.

4.1. Frequent ruleitems discovery and rule generation
4.1.1. Training data format

Most of the works conducted in association rule

discovery, e.g. (Agrawal and Srikant, 1994; Brin, Motwani,
Fig. 1. MCAR algorithm.
Ullman, & Tsur, 1997; Han, Pei, & Yin, 2000; Park, Chen, &

Yu, 1995), have used the classic horizontal format presented in

the Apriori approach. There are few association rule mining

techniques which have utilised vertical format, e.g. (Savasere,

Omiecinski, & Navathe, 1995; Zaki & Gouda, 2003; Zaki et

al., 1997). The database in the horizontal format consists of a

group of transactions, where each one has a unique identifier

followed by a list of items contained in that transaction. There

are several drawbacks resulting from using horizontal data

representation, including multiple data scans when searching

for frequent itemsets at each level and the computational cost

during the support counting process of candidate itemsets.

The database in the vertical format comprises a collection of

items, where each item is followed by a list of row identifiers

(tids), which contain that item, this list is often called a tid-list.

Empirical studies (Zaki et al., 1997; Zaki & Gouda, 2003) show

that vertical layout is more efficient way of representing the

data due to often, no candidate generation and support counting

involved, rather items support is performed by fast intersec-

tions between tid-lists, saving huge I/O time.

For these reasons, we have used vertical layout to represent

classification data sets in the proposed algorithm. To the best of

our knowledge there are no AC techniques that use vertical

layout for data representation or tid-lists intersections for

finding frequent ruleitems.

4.1.2. MCAR intersection method

Most of the current AC techniques, including CBA, ADT

(Wang, He, & Cheung, 2001) and the negative-rules (Antonie

and Zaı̈ane, 2004), adopt the Aprioi candidate generation step

for the discovery of frequent ruleitems. Other AC algorithms

such as CMAR (Li et al., 2001) and L3 (Baralis & Torino,

2002) use the FP-growth approach (Han et al., 2000) in order to

decrease the number of database passes. The main drawback in

terms of mining efficiency of almost all the current AC

techniques is that they make more than one pass over the

training data set to discover frequent ruleitems, which causes

high I/O overheads (Li et al., 2001; Liu et al., 2001).

In order to improve the efficiency of frequent ruleitems

discovery, MCAR employs a technique that extends the tid-

lists intersection methods of (Savasere et al., 1995; Zaki et al.,

1997) to handle classification benchmark problems. Using the

tid-list for each itemset in association rule mining is a good

approach since the cardinality of the itemset tid-list divided by

the total number of the transactions gives the support for that

itemset. However, tid-lists intersection methods presented in

association rules discovery need to be modified in order to treat

classification problems, where classes associated with each

itemset are considered when computing the support.

The frequent ruleitems discovery method employed by

MCAR scans the training data set once to count the

occurrences of itemsets of size one, from which it determines

those that hold enough support. This is the first pruning

performed by MCAR to discard any itemset that has a support

below the user minsupp threshold. Another pruning occurs to

discard any ruleitem that is not frequent (that’s when the

number of occurrences of an itemset and its largest frequency



Table 1

Training data 1

Rowed A1 A2 Class

1 x1 y1 c1
2 x1 y2 c2
3 x1 y1 c2
4 x1 y2 c1
5 x2 y1 c2
6 x2 y1 c1
7 x2 y3 c2
8 x1 y3 c1
9 x2 y4 c1
10 x3 y1 c1

Attribute A1 Attribute A2

x1 x2 x3
1 5  10 
2 6 
3 7
4 9
8

y1 y2 y3 y4
 1 2 7 9
3 4 8
5
6
10

Fig. 2. Vertical data representation for training data in Table 4.
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class is less that the minsupp threshold). Once frequent one-

ruleitems are determined, we store them along with their

locations (rowIds) and their classes inside arrays. Then, by

intersecting the rowIds of frequent one-ruleitems discovered so

far, we can easily obtain other frequent ruleitems that involve

more than one attribute.

Broadley speaking, if itemsets a and b have passed the

minsupp threshold, the intersection of the rowIds sets of a and

b, results in a set of tuples where a and b happen to be together

in the training data. Thus, class labels associated with the

candidate itemset aob can be easily located, from which the

support and confidence can be found. Consider for instance

itemsets h(A1, x1)i and h(A2, y1)i in Table 1, the following two

sets represent the rowIds in which they occur, {1, 2, 3, 4, 8} and

{1, 3, 5, 6, 10}. We can determine the support of a new itemset,

such as h (A1, x1), (A2, y1)i by intersecting the rowId sets for

itemsets h(A1, x1)i and h(A2, y1)i. The cardinality of the resulting

set {1, 3} represents the support for itemset h(A1, x1), (A2, y1)i,

i.e. 2/10. If it survives the minsupp threshold, then we proceed

by checking if it has sufficient number of occurrences when

associated with its largest frequency class (that’s if it is

frequent) or else prune it. The support and confidence for

frequent ruleitems are calculated by indexing their classes as

we will discuss that in depth in Section 4.1.3.

4.1.3. Support and confidence computation for a ruleitem

In this section, we briefly explain how support and

confidence for ruleitems are calculated using an example. We

assume that all frequent one-ruleitems are determined and

stored with their classes and locations. To find the support for a

ruleitem, we locate the set of classes associated with it using its

rowIds in the training data, and select the class with the largest

frequency. Then by taking the cardinality of the set of the

rowIds where the condition and the class of that ruleitem occur

and divides that by the size of the training data set, we can

obtain the ruleitem support.

The calculation of the confidence is done similarly except

that the denominator of the fraction is the size of the set of the

rowIds of the ruleitem condition instead of the size of the whole

training data set. Frequent ruleitems are generated recursively

from ruleitems having a smaller number of attributes, starting

from frequent one-ruleitems derived in a single pass through

the training data set. It should be noted that every time a

frequent ruleitem is found, only the rule with the largest
confidence is considered. In the case that a ruleitem is

associated with two classes with identical confidence, the

choice of the rule is random.

Consider the vertical representation shown in Fig. 2 for the

training data set in Table 1. Assume that the minsupp and

minconf have been set to 2 and 50%, respectively. During the

scan, the survived frequent two-itemsets are shown in bold in

Fig. 3 and all other itemsets and their rowIds are discarded. We

only need to keep itemsets that are statistically significant at

each level. Once these itemsets are identified at the first level,

we check their supports and confidences simultaneously by

locating classes that occur with their rowIds.

For example, for frequent itemset ha1, x1i, we locate its

classes in rowIds {1, 2, 3, 4, 8}, i.e. c1 {1, 4, 8} and c2 {2, 3}.

We choose the class with the largest frequency, i.e. c1, and

divide the cardinality of the set {1, 4, 8} by the size of the

training data set, to obtain the support for ruleitem h (a1, x1), c1i.

If it holds enough support, we immediately calculate its

confidence by dividing the size of rowIds of the ruleitem’s

largest class (the nominator of the ruleitem support), i.e. 3,

with the size of the ruleitem’s condition set, i.e. 5. For ruleitem

h (a1, x1), c1i the support is 3/10 and the confidence is 3/5. In the

case that the ruleitem passes the minconf threshold, we

immediately generate it as a candidate rule in the classifier.

There is no separate phase to calculate the confidences for all

frequent ruleitems in MCAR, whereas the majority of current

AC techniques produce frequent ruleitems in one step and find

their confidences in a separate step.

4.2. Main differences between MCAR intersection method

and other tid-list methods

There are some significant differences between our

intersection method and other methods used in association

rule mining algorithms (Savasere et al., 1995; Zaki & Gouda,

2003; Zaki et al., 1997) such as:

& The tid-lists method proposed in the association rule

partitioning algorithm of (Savasere et al., 1995) has

been used locally for each partition and not for the

whole database. Thus, in order to come up with global

frequent itemsets, the algorithm requires an additional

database scan to evaluate whether local frequent

itemsets in each partition are also globally frequents.

Furthermore, the partition algorithm uses Apriori

horizontal layout data representation, which suffers

from many costs as mentioned earlier, whereas, our

intersection method finds all frequent ruleitems from

the whole data set once, relaxing the partition step and



Given two rules, ra and rb,ra precedes rb(ra〉rb) if:

1.   The confidence of ra is greater than that of rb.

2.   The confidence values of ra and rb are the
      same, but the support of ra is greater thanthat
      of rb.

Fig. 3. Possible frequent two-itemsets derived from Table 1.
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takes advantage of the vertical layout representation,

minimising the time needed for finding frequent

ruleitems.

& Improvements upon the partition algorithm have been

reported in an association rule mining approach,

called Eclat (Zaki et al., 1997), where a vertical

layout representation of the transactional database and

a fast intersection of tid-lists are presented. However,

in the original version of Eclat, only frequent itemsets

of sizeR3 are generated. On the other hand, the

intersection method presented in MCAR generates

frequent ruleitems of size O1.

& A variation of Eclat algorithm that uses the so called

diffsets has been presented in an algorithm called

dEclat (Zaki & Gouda, 2003). Diffsets stores only the

differences in the transactions identifiers (tids) of a

candidate itemset from its generating frequent item-

sets; rather than storing the complete tids of each

itemset. dEclat uses diffsets rather than tid-lists to

maintain less storage at each level. Our proposed

intersection method uses rowIds similar to tids in

Eclat, and not diffsets, therefore, the methodology of

producing frequent ruleitems in MCAR is different

than that of dEclat even though both algorithms use

vertical data format.

& The tid-lists and diffsets intersection methods have

been only used in association rule mining problems

where the cardinality of an itemset tid-list divided by

the total transactions in the database gives the support

of that itemset. Whereas, the calculation of ruleitems

support in classification problems is more complex

due to not only the frequencies of the itemsets are

considered but also the highest-class frequency

associated with them. Consequently, additional cal-

culations are required in the process of discovering

frequent ruleitems in AC. We have extended the tid-

lists intersection method proposed in vertical associ-

ation rule mining algorithms to deal with classification

benchmark problems.
3.   Confidence and support values of ra and rb are 
      the same, but ra has fewer conditions in its left
      hand side thanof rb.

4.   Confidence, supportand cardinality of ra and rb
      are the same, but ra is associated with a more
      representative class than that of rb.

5.  All above criteria are identical for ra and rb, but
     ra generated from an items and columns that
     have higher order than that of rb.

Fig. 4. Rule selection in MCAR.
4.3. Rule selection in the sorting process

Rules preference often determined based on some par-

ameters, including support, confidence and cardinality. This

section presents the additional parameters taken by the MCAR

rule ranking method to discriminate between rules. AC

techniques like CBA and CMAR rank rules mainly in terms

of the confidence and support level. When several rules have

identical confidences or supports, these techniques randomly
choose one of the rules, which in some cases may degrade

accuracy.

On the other hand, the MCAR tries to minimise random

selection whenever there is a choice between tie rules by

imposing additional constraints. The rule ranking method

introduced in this section and shown in Fig. 4 breaks

ties between rules having high strength and statistically

representative by looking into classes associated with them.

Moreover, it uses other tie breaking conditions such as

rules cardinality and items ordering in the training data set

(Li et al., 2001).

To show the need for extra parameters to discriminate

between tie rules, consider the following example: If someone

mines the ‘balance-scale’ data set, which has been downloaded

from (WEKA, 2000) with a minsupp of 5% and minconf of

40% using the CBA algorithm (Liu et al., 1998), the resulting

classifier consists of 15 rules, all of which have identical

supports and the top 4 also have identical confidences, leaving

no way for CBA to discriminate between them. Moreover, the

15 rules extracted by CBA have the same length, and therefore

other rule ranking methods that employ the cardinality as a tie

breaking such as CMAR (Li et al., 2001) can not favour one

rule over another in this case.

A more serious case is the ‘tic-tac’ data set, if we mine it

using the same support and confidence, there will be 340

potential rules with the same confidence and 270 of them

have identical support too. When the support is lowered

further to 2 or 1%, there could be a huge number of rules

with identical support and confidence, therefore, additional

tie breaking conditions are essential to minimise random

selection. Also since classification data sets are often highly

dense, then there can be many rules with similar support,

confidence and cardinality, which make it hard for most

current AC algorithms to distinguish between them in the

rule sorting process.

Though, MCAR adds upon the previous approaches by

looking at class labels frequencies associated with the tied
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rules in the training data set, and selects the rule associated

with the largest frequency class. In addition, it looks at the

position of the items and columns used to produce each

rule in the database and favours rules that have a higher

order. We will show in Section 5 the effectiveness of the

proposed rule sorting method on the quality of the produced

classifiers.
4.4. Classifier builder and pruning

A rule is significant if and only if it covers at least one

training instance. After the rules have been generated, an

evaluation step tests each rule in order to remove rules which

fail to classify at least one training instance and place high

confidence rules at the top of the classifier. At each step in

the rule evaluation phase, all rows correctly classified by the

selected rule will be deleted from the training data set.

Whenever a rule does not classify any rows of the data, it

will be removed from the rules set because a higher ranked

rule has correctly classified its instances. This pruning should

remove many redundant rules. Fig. 5 represents the classifier

builder algorithm used by MCAR, which has three main

steps:

1. Rank rules produced in R based on the sorting procedure

shown in Fig. 4 (line 1). This step is important because

we only look for large confidence and support rules to

keep in the classifier.

2. For each rule r, find all instances that match r body by

indexing. Since, we hold the rowIds for each rule in
Fig. 5. MCAR classifier builder algorithm.
arrays during the learning phase, locating rule items in

the training data by using their rowIds, is a straightfor-

ward task. If r correctly covers at least one training

instance (line 4), then it is marked as a candidate rule

(line 6), all instances associated with r are removed (line

7) from the training data and r is inserted in the classifier

(line 10). We continue until we finish all rules, at that

point, we choose a default class (line 14).

3. Prune redundant rules to improve the quality of the

classifier as follows: A rule R1:I/c is said to be more

general than R2:I
0/c, if and only if I is subset of I 0 and

R1_R2. This pruning removes specific rules having less

confidence values than their subsets of general rules,

which significantly reduces the number of rules in the

resulted classifier and minimises redundancy.

The classifier builder ensures that each training instance is

covered by at most one rule, which has the highest precedence

among all rules applicable to it. Furthermore, there are no

useless rules in the MCAR classifier since every rule correctly

covers at least one training instance. This approach is similar to

the CBA classifier builder as each rule in CBA also covers at

least one training instance. However, the way MCAR builds

the classifier by locating training instances is more efficient

than that of CBA due to abounding going through the training

data set multiple times.

To clarify, one needs to go though the training data more

than once while building the classifier in CBA to determine

the subset of rules that form the classifier. For each training

instance t, CBA finds the highest precedence rule that

correctly classifies t, (rc) and the highest precedence rule that

incorrectly classifies t, (ri). If rcOri, CBA assigns rc to t, but,

if ri!rc, CBA stores t along with its rc and ri in a data

structure object and goes through the training data again to

determine which rule to assign to t by looking at those ri
which have been used by other training instances as rc. This

is the reason why CBA classifier builder requires more than

on scan, whereas, the classifier procedure of MCAR locates

training instances for each rule by using their items rowIds

stored in the arrays. Consequently, there is no need to scan

the training data in order to find applicable training instances

for each rule, which substantially reduces the time needed to

construct the classifier.
4.5. Prediction of test instances

In prediction the classes of a test data set, let R be the set of

generated rules and Ts be the set of test data objects. The basic

idea of the proposed method as shown in Fig. 6 is to choose

the best rule among a set of high confidence, representative

and general rules in R to cover Ts. In classifying a test object

(line 1), the proposed algorithm uses a simple method, which

states that the first rule in the set of ranked rules that matches

the test object condition classifies it (line 5). In a case where

no rule fully matching the test object condition, MCAR

prediction procedure seeks for the highest precedence rule that

matches part of the test object body and applies it (line 7). In
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cases where no rule matches the test object condition, the

default class will be assigned to the test object (line 8).

This classification process ensures that only the highest

ranked rules classify test objects. The prediction method

presented in MCAR is similar to CBA prediction method

where an instance is fired by only one rule to overcome conflict

decisions. Except that, MCAR tries to find an exact match to

the test object in the classifier instead on taking the highest

precedence rule that partially matches the test instance. When

no rule fully matching the test instance is found, then MCAR

takes on the highest precedence rule as CBA does.
4.6. MCAR features

The proposed algorithm has the following distinguishing

features over other AC algorithms:

† Other AC techniques often use horizontal layout represen-

tation where multiple passes are required to discover

frequent ruleitems, Alternatively, and to the best of our

knowledge, MCAR is the first AC method that uses vertical

layout representation and a recursive technique based on

intersection to discover rules, which requires only one scan.

It should be noted that, a traditional decision tree algorithm

called SPRINT (Shafer, Agrawal, & Mehta, 1996) uses a

similar data format to vertical layout to store attribute

values called attribute lists. However, SPRINT does not use

fast intersections of rowIds to discover frequent ruleitems,
Fig. 6. MCAR prediction algorithm.
instead it uses an information gain approach to build

decision trees similar to (Frank & Witten, 1998; Quinlan,

1993)

† Most AC techniques, e.g. CBA, CMAR, locate training

instances matching each potential rule by going through the

training data more than one time during building the

classifier. MCAR on the other hand, avoids going through

the training data and locates training instances for each rule

using their rowIds.

† MCAR employs a rule ranking technique, which uses two

new conditions to break ties between rules. Our rule

selection method looks at the class distribution frequencies,

items and columns ordering for each rule in the training data

and favours rules that are associated with the dominant class

and have higher order.

† There are several association rule mining algorithms that

discover frequent itemsets and rules simultaneously, i.e.

(Zaki, 1999). MCAR takes the principle of such

approaches and utilises it in AC to find frequent ruleitems

and produce rules in one main step. Other AC algorithms,

including (Antonie & Zaı̈ane, 2004; Baralis & Torino,

2000; Liu et al., 1998; Liu et al., 2003) find frequent

ruleitems in one step and generate rules in a separate step,

requiring more computational time.
5. Experimental results

Experiments on 20 different data sets from the UCI data

collection (Merz & Murphy, 1996) were conducted using

stratified 10-fold cross validation (Witten & Frank, 2000).

Three popular classification techniques: decision trees (C4.5)

(Quinlan, 1993), RIPPER (Cohen, 1995) and CBA (Liu et al.,

1998) have been compared to our proposed algorithm in terms

of error rate, efficiency, rule features and number of rules. The

choice of such learning methods is based on the different

strategies they use to generate the rules.

We have observed in the experiments of CBA that its

authors have used the same random seed when partitioning

the training data in cross validation, which results in an

optimistic measurement of accuracy. Thus, if a user mines a

training data set A 10 different times, the resulting error rate

on A for the 10 times will be identical. Though in cross

validation, the training data should be randomly split, and

therefore the resulting error rate should be slightly different

every time.

We ran the CBA against ‘contact-lenses’ data set twice,

once with the original version that been downloaded from

(Merz & Murphy, 1996), and once with a shuffled version. The

resulting error rate on the original data set was 15.00%, but,

when we shuffled the data before mining, we observed that the

error rate has increased to 20.00%. In this case the CBA system

used a random seed that produced somewhat optimistic results.

Using a truly (pseudo) random row ordering gives a more

accurate evaluation of the classification accuracy, for this

purpose, we have implemented a simple shuffling method that

uses a different random seed for each run. We simply change
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the location of the training objects randomly according to the

size of the training data set by a factor specified by the end-

user. This ensures that a particular ordering of the rows in the

training data will not impact the error rate. The MCAR error

rate shown in Table 2 is the average error rate obtained in 10

different runs for each data set. In all experiments, data sets

were shuffled before they have been mined.

Table 2 gives the error rates of CBA, C4.5, RIPPER and our

proposed algorithms obtained on the 20 data sets. The

experiments of C4.5 and RIPPER algorithms were conducted

using Weka software system (WEKA, 2000). Weka stands for

Waikato Environment for Knowledge Analysis, which is an

open java source code for the machine learning community that

includes implementations of several data mining tasks such as

classification, clustering, association rule mining and

regression. CBA experiments were conducted using an

implementation version provided by the authors of (CBA,

1998) and MCAR was implemented in Java.

From our experiments, we observed that the classifiers

derived when the support threshold was set between 2 and 5%

achieved good accuracy, and most often better than that of

C4.5, RIPPER and CBA, and following the experiments, the

minsupp was set to 5%. The confidence threshold, on the other

hand, has a smaller impact on the behaviour of any AC method,

and it has been set in our experiments to 35%. The results

shown in Table 2, where the least error rate for each data set is

in bold, indicate that our proposed algorithm outperforms the

other rule learning techniques on the majority of the data sets.

One of the main reasons for this appears to be that MCAR

rule ranking method reduces the chance of random selection

between tie rules, which in most cases lead to a better decision.

Shortly, we will show the impact of the additional tie breaking

parameters used byMCAR rule selection method on the quality

on the resulting classifiers. Another reason for the slight

decrease of error rate appears to be the less pruning utilised by
Table 2

Error rate of MCAR, CBA, C4.5 and RIPPER algorithms using 10-fold cross valid

Data Size Classes C4.5

Cleve 303 2 23.77

Breast-w 699 2 5.44

Diabetes 768 2 26.18

Glass 214 7 33.18

Iris 150 3 4.00

Pima 768 2 27.22

Wine 178 3 5.62

Austral 690 2 14.79

German 1000 2 29.10

Labor 57 2 26.32

Tic-tac 958 2 16.29

Led7 3200 10 26.44

Heart-s 294 2 18.71

Lymph 148 4 18.92

Vote 435 2 11.73

Zoo 101 7 6.94

Balance-scale 625 3 35.68

Primary-tumor 339 23 58.41

Mushroom 8124 2 0.23

Contact-lenses 24 3 16.67
MCAR than CBA, RIPPER and C4.5, which often leads to the

production of larger classifiers than the other learning

algorithms. The won-loss-tied record of the proposed algorithm

against CBA in term of error rate is 11-8-1. The won-loss-tied

record of the proposed method against C4.5 and RIPPER

algorithms in term of error rate are 13-7-0 and 16-3-1,

respectively.

The error rate figures revealed also that CBA outperforms

RIPPER and C4.5 algorithms, which support results reported in

other research works, e.g. (Li et al., 2001; Liu et al., 1998; Yin

and Han, 2003). These results provide facts that AC algorithms

generate more accurate classifiers than decision trees and rule

induction approaches. However, they have their own draw-

backs such as the exponential growth of rules, which is not

addressed in this paper.

To validate the significance of the proposed rule sorting

method, Table 3 shows the number of times each condition of

the MCAR rule selection method has been used to break

between tie rules for 12 highly dense classification problems.

Columns ‘No. of rules with the same Conf.’ and ‘No. of rules

with the same Conf. & Supp.’ stand for the confidence and

support conditions, respectively. Column ‘No. of rules with the

same Conf., Supp. & Cardinality’ corresponds to the

cardinality of the rule condition and column ‘No. of rules

with the same Conf., Supp., Cardinality & Class Freq.’

represents the largest frequency class associated with each

rule. The last column ‘RowOrd & ColOrd‘ indicates the

row and column ordering for items contained in the rules.

The “RowOrd & ColOrd“ combined gives a better measure

for favouring rules than random selection. We have used a

minsupp of 2% and a minconf of 40% to produce the

numbers shown in Table 3. These numbers represent the

potential rules tested by the MCAR algorithm during the

ranking process and before building the classifier or

performing any pruning.
ation

RIPPER CBA MCAR

22.45 16.87 17.13

4.58 4.16 3.52

23.96 24.66 22.18

31.31 30.11 30.33

5.34 6.75 4.68

26.70 24.51 21.46

7.31 1.67 2.89

14.79 14.64 12.57

27.80 27.43 27.90

22.81 5.01 12.81

3.03 0.00 0.00

30.47 28.26 28.76

21.77 20.80 18.86

22.98 23.62 23.98

12.65 13.09 11.30

14.86 4.04 2.22

25.44 34.34 22.46

65.20 74.89 58.90

0.10 8.71 2.44

25.00 20.00 25.00



Table 3

Number of times each condition in the rule ranking method does not break tie between potential rules

Data No. of rules with the

same Conf.

No. of rules with the

same Conf. & Supp.

No. of rules with the

same Conf., Supp., &

Cardinality

No. of rules with the

same Conf., Supp.,

Cardinality & Class Freq.

RowOrd and ColOrd

Autos 2660 2492 2117 1683 181

Glass 759 624 409 245 7

Lymph 11019 10775 10217 9595 2381

Cleve 17092 16289 14647 12942 469

Tic-tac 2297 2047 1796 1541 278

Diabetes 252 91 15 3 0

Breast 3471 2980 2217 1643 75

Vote 7755 6802 5126 4013 207

Heart 4791 4267 3383 2562 145

Pima 252 91 15 3 0

Table 5

Runtime for building the classifiers in seconds

Data C4.5 RIPPER CBA MCAR

Cleve 0.020 0.050 0.890 0.300

Breast-w 0.030 0.200 1.430 0.670
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The figures obviously provide a clear picture that additional

tie breaking constraints beside support and confidence are vital

as they have been used heavily to distinguish between rules in

the rule sorting process for the 12 benchmark problems. For the

‘Cleve’ data set for instance, there are 17092 potential rules

with similar confidence, in which 16289 of them have identical

support. From these, there are 14647 with the same cardinality

and 12942 from the 14647 are associated with classes that have

the same frequency in the training data set.

The frequent use of the two conditions proposed in the

MCAR sorting method suggests the validity of the hypothesis,

which states the more constraints imposed to discriminate

between tie potential rules, the more random selection is

minimised, which certainly should positively increase the

accuracy of the classifiers.

To show the effectiveness of the rule sorting method on the

quality of the classifiers produced, we conduct a large number

of experiments with reference to accuracy in order to compare

between the proposed rule sorting method and two other

popular existing rule sorting methods in AC, which are CBA

and CMAR ones. We have implemented the three rule sorting

methods in Java within the MCAR algorithm. We have used 10

fold cross validation in the experiments and each value in

Table 4 represents an overage of ten cross validation runs since,

we utilise different random seed when partitioning the training

data set in cross validation.
Table 4

Impact of the three rule sorting method on the accuracy of MCAR algorithm

Data CBA CMAR MCAR

Cleve 82.44 82.16 81.35

Breast-w 94.61 95.11 96.32

Diabetes 76.90 77.05 77.18

Glass 67.76 68.79 69.97

Pima 77.16 77.34 77.11

Tic-tac 99.76 99.77 100.00

Led7 70.95 71.07 71.00

Heart-s 81.30 81.87 82.14

Lymph 79.10 77.13 78.57

Vote 88.86 88.17 87.70

Zoo 95.38 97.73 97.78

Contact-lenses 72.93 73.54 75.54

Average 82.26 82.48 82.88
Table 4 indicates the accuracy of the classifiers generated by

MCAR algorithm when each rule sorting method is used on the

12 benchmark problems. The figures show a slight improve-

ment of the proposed rule sorting method over existing AC rule

sorting methods. In particular, our hybrid rule selection method

achieved on average C0.63 and C0.41% improvements with

reference to accuracy on the 12 benchmark problems over that

of CBA and CMAR rule sorting methods, respectively. This

gives evidence that the additional constraints imposed to break

between tie rules by MCAR slightly improve the predictive

power of the resulting classifiers.

We compared the processing time taken C4.5, RIPPER,

CBA and MCAR to build the classifier on the 18 data sets in

order to compare scalability and efficiency. We would like

to validate whether the classifier builder presented in

MCAR algorithm reduces the training time if compared with

that of CBA. All the runtime experiments were conducted on

Pentium IV 1.7 Ghz, 256 RAM machine. Table 5 shows

the runtime in seconds obtained in the experiments. The

runtime numbers revealed that MCAR is faster than CBA in

most cases.
Diabetes 0.160 0.170 1.390 0.770

Glass 0.030 0.130 0.650 0.210

Iris 0.020 0.020 0.480 0.150

Pima 0.060 0.220 1.180 0.770

Wine 0.020 0.030 0.760 0.180

Austral 0.020 0.020 1.800 0.690

German 0.130 0.340 2.710 1.000

Labor 0.020 0.020 0.050 0.050

Tic-tac 0.020 0.420 1.360 0.515

Led7 0.130 1.580 5.670 0.689

Heart-s 0.005 0.005 0.500 0.031

Lymph 0.005 0.020 0.410 0.281

Vote 0.005 0.030 0.970 0.960

Zoo 0.188 0.005 0.020 0.430

Balance-

scale

0.013 0.005 0.440 1.110

Contact-

lenses

0.005 0.005 0.005 0.005
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The intersection method that MCAR employed to find

frequent ruleitems is significantly an advantage. Moreover,

abounding going through the training data set to locate

instances applicable to each rule in the training phase reduces

the I/O time. The training time results indicated that

traditional classification algorithms like decision trees and

RIPPER are faster than AC methods. This is due the

simplicity in the way they construct the classifier, based on

heuristic search, whereas, AC algorithms use exhaustive

search methods adapted from association rules, which

necessitates higher computational complexity. It should be

noted that the classification data sets used in the experiments

are smaller in size than market basket databases used in

association rule mining, therefore a slight improvement in

runtime for a small data set in classification can be considered

a notable improvement.

A deeper analysis of the rules produced by MCAR and

CBA has been conducted to compare their effects on the

accuracy. Let us consider the classifiers derived by MCAR,

and CBA from three benchmark problems, i.e. ‘contact-

lenses’, ‘zoo’ and ‘balance-scale’. Figs. 7(a,b), 8(a,b) and 9(a,

b) represent the support and confidence values derived by
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Fig. 7. (a) Support and confidence values of MCAR classifier for contact-lenses

data. (b) Support and confidence values of CBA classifier for contact-lenses

data.
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Fig. 8. (a) Support and confidence values of MCAR classifier for zoo data. (b)

Support and confidence values of CBA classifier for zoo data.
CBA and MCAR on the above mentioned data sets using a

minsupp of 5% and a minconf of 35%. After analysing the

rules generated, it was found that there is consistency in the

rule features between CBA and MCAR. For example, 15 of

the generated rules from ‘balance-scale’ and four from

‘contact-lenses’ are identical in CBA and MCAR classifiers.

However, the MCAR method derived more rules than CBA

on all data sets, with all rules having confidence as large or

greater for MCAR than CBA. For instance, the classifier

derived by CBA algorithm on the ‘balance-scale’ has an error

rate of 34.34% data set. By comparison, the MCAR classifier

has one more rule, giving a much reduced 11.88% error rate.

Table 6 indicates the number of rules extracted from the

rule learning algorithms where association rules based

techniques extract more rules than heuristic classification

algorithms. In fact, Table 6 shows that MCAR often derives

more number of rules than CBA due to the less pruning

employed, whereas CBA utilises the decision tree pessimistic

error pruning. This results in learning quite more rules than

CBA, and thus explains the reason behind extracting more

rules.
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Fig. 9. (a) Support and confidence values of MCAR classifier for

balance-scale data. (b) Support and confidence values of CBA classifier for

balance-scale data.

Table 6

Number of rules of MCAR, CBA, C4.5 and RIPPER algorithms using 10-fold

cross validation

Data C4.5 RIPPER CBA MCAR

Cleve 30 5 72 100

Breast-w 14 6 45 61

Diabetes 20 4 36 66

Glass 30 8 36 66

Iris 5 4 18 31

Pima 26 3 36 66

Wine 5 4 11 12

Austral 9 4 121 179

German 103 3 157 225

Labor 5 4 17 16

Tic-tac 95 9 25 27

Led7 37 19 53 193

Heart-s 2 2 22 31

Lymph 12 6 38 49

Vote 4 4 40 85

Zoo 10 6 7 8

Balance-scale 33 17 15 16

Primary-tumor 23 7 1 31

Mushroom 44 14 38 53

Contact-lenses 4 3 6 9
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6. Conclusions

In this paper, the problem of using association rule approaches

in classification has been investigated. The outcome is a new

effective AC algorithm that has the following features over other

existing techniques:

† MCAR extends the fast intersection method used in vertical

association rule mining approaches to handle classification

benchmark problems. The intersection method used by the

MCAR algorithm requires only one pass over the training

data, consuming significantly less storage and I/O time than

other multi-pass approaches.

† MCARpresents a rule ranking technique,which uses two new

conditions, in which one of them considers the class

distribution frequencies to discriminate between tied rules.

The other condition looks at the items ordering and column

ordering in the training data. All of these conditions have been

used to minimise random selection when a choice between

two or more rules occurs in the rule ranking process.
† In building a classifier, most AC techniques locate training

instances matching each potential rule by going through the

training data more than one time. Alternatively, and to reduce

CPU time, locating training instances applicable to a selected

rule inMCAR is carried out byusing the rowIds of the items in

the selected rule.

† MCARfinds frequent ruleitems and produce rules in the same

step, whereas most other AC methods like CBA, L3 and

CMAR find frequent ruleitems in one step and generate rules

in a separate step, requiring more computational expenses.

Performance studies on 20 data sets from UCI data collection

indicated that our proposed algorithm is highly competitive

when compared with traditional classification algorithms such as

RIPPER and C4.5 in term of prediction accuracy. Furthermore,

MCAR scales well if compared with popular AC like CBA with

regards to prediction power, rules features and efficiency.

Experiments using 12 highly correlated classification problems

revealed that adding more constraints to distinguish between ties

rules improve the quality of the resulting classifiers. Particularly,

the rule sorting method of MCAR improves the accuracy on

averageC0.61 andC0.41%more than of that CBA and CMAR

sorting procedures.

MCAR produced classifiers with slightly more rules than

current AC techniques, resulting in reduced error rate.

However, for some benchmark problems a post pruning

method may be beneficial to reduce the number of rules

derived. Finally, the experiments revealed that changing

locations for some training instances before mining may

greatly deteriorates the quality of the resulting classifier. In the

near future, we will investigate the extraction of multiple class

labels using association rule discovery for a wide range of

application problems.
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