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Retrieval of Oceanic Chlorophyll Concentration
Using Support Vector Machines

Haigang Zhan, Ping Shi, and Chuqun Chen

Abstract—This letter investigates the possibility of using a new
universal approximator—support vector machines (SVMs)—as
the nonlinear transfer function between oceanic chlorophyll con-
centration and marine reflectance. The SeaBAM dataset is used to
evaluate the proposed approach. Experimental results show that
the SVM performs as well as the optimal multilayer perceptron
(MLP) and can be a promising alternative to the conventional
MLPs for the retrieval of oceanic chlorophyll concentration from
marine reflectance.

Index Terms—Oceanic chlorophyll, ocean color remote sensing,
neural network, support vector machine (SVM).

I. INTRODUCTION

RETRIEVAL of chlorophyll concentration from ocean
color observations requires a transfer function to convert

satellite measurements into chlorophyll concentration. Statis-
tical regression of radiance or reflectance versus chlorophyll
concentration is the most popular approach to construct the
transfer function. However, statistical regression has limitations
because of the nonlinear relationship between radiance (or
reflectance) and chlorophyll concentration. In recent years,
more attention has been paid to the use of neural networks
(NNs). The advantages of this approach are mainly due to
its ability to approximate any nonlinear continuous function
without a priori assumptions about the data. It is also more
noise tolerant, having the ability to learn complex systems
with incomplete and corrupted data. Different models of NNs
have been proposed, among which, multilayer perceptrons
(MLPs) with the backpropagation training algorithm are the
most widely used. MLPs have been applied for retrieval of
water constituent concentrations and optical properties in both
case 1 and case 2 waters [1]–[7].

However, MLPs still suffer from some problems. First, the
training algorithm may be trapped in a local minimum. The ob-
jective function of MLPs is very often extremely complex. The
conventional training algorithms can easily be trapped in a local
minimum and never converge to an acceptable error. In that case,
even the training dataset cannot be fit properly. Second, it is
generally a difficult task to determine the best architecture of
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MLPs, such as the selection of the number of hidden layers and
the number of nodes therein. Third, overfitting of the training
dataset may also pose a problem. MLP training is based on the
so-called empirical risk minimization (ERM) principle, which
minimizes the error on a given training dataset. A drawback of
this principle is the fact that it can lead to overfitting and thereby
poor generalization [8], [9].

These problems can be avoided by using a promising new
universal approximator, i.e., support vector machines (SVMs).
SVMs have been developed by Vapnik [9] within the area of sta-
tistical learning theory and structural risk minimization (SRM).
SVM training leads to a convex quadratic programming (QP)
problem, rather than a nonconvex, unconstrained minimization
problem as in MLP training; hence, it always converges to the
global solution for a given dataset, regardless of initial condi-
tions. SVMs use the principle of structural risk minimization to
simultaneously control generalization and performance on the
training dataset, which provides it with a greater ability to gen-
eralize. Furthermore, there are few free parameters to adjust, and
the architecture of the SVM does not need to be found by exper-
imentations. SVM has been used to perform data merger from
multiple ocean color sensors [10]. This letter is intended to ex-
plore the application of SVM for retrieval of oceanic chlorophyll
concentration from marine reflectance and compare its perfor-
mance with MLPs and statistical regression algorithms.

II. SVM FOR REGRESSION

SVMs were first developed to solve the classification prob-
lems, but recently they have been extended to the domain of
regression approximation. In this section, we briefly introduce
some basic ideas behind SVM for regression. A more detailed
description of the technique can be found in [9] and [11].

Given the training data for
the case of nonlinear regression, the SVM first mapsinto a
high-dimensional feature space by using some nonlinear map-
ping and then constructs a linear model in
this feature space

b (1)

where denotes the dot product between and
is a vector in the feature space, and b is a constant.

The goal of regression estimation is to find the best regression
function by minimizing some loss function for all training
data. One of the main characteristics of the SVM is that instead
of minimizing the training error, it attempts to minimize the
generalization error bound so as to prevent the phenomena of
overfitting and achieve higher generalization performance. This
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Fig. 1. Graphical depiction of an"-tube and slack variables� ; � .

generalization error bound is the combination of the training
error (empirical risk) and a regularization term that controls the
model complexity (structural risk). The first term is calculated
by Vapnik’s -insensitive loss function [9]

if
otherwise

(2)

in which is the tolerance to error. This defines an-tube (Fig.
1) so that if the predicted value is within the tube the loss is
zero, while if the predicted point is outside the tube, the loss is
the magnitude of the difference between the predicted value and
the radius of the tube; thus, SVM is more robust to small errors
in the training data to the least square loss function used for
MLPs. The Vapnik -insensitive loss function can be formally
described by introducing nonnegative slack variables

to measure the deviation of training data outside the
-insensitive zone (Fig. 1). The second term is anorm of

the vector . Thus, SVM regression can be posed as a convex
optimization problem as follows:

C (3)

Subject to
b

b

where C is a fixed regularization constant determining the
tradeoff between the model complexity and the training error.
This optimization problem can be solved through the technique
of lagrange multipliers [9], [11], and the regression function is

b (4)

where is a kernel function that sat-
isfies Mercer’s condition [11], and and are the lagrange
multipliers that obtained by solving the following QP problem

subject to C (5)

Fig. 2. Architecture of support vector machine.

and b can be obtained by exploiting the Karush–Kuhn–Tucker
(KKT) conditions [9]

b for C

b for C (6)

Note that is always positive definite. Then, (5) is a strictly
convex problem and has a unique global minimum; thus, the
problem of many local optima in the case of training, for ex-
ample, an MLP, is avoided.

In representation (4), typically only some of the coefficients
differ from zero, and the corresponding training data

are called support vectors (SVs). These data are on the-tube
border or outside the-tube, and the data inside the-tube do
not contribute to the regression function. Generally, the larger
the , the fewer the number of SVs and thus the sparser the rep-
resentation of the solution. However, a largercan also decrease
the approximation accuracy of the SVM. In this sense,is a
tradeoff between the sparseness of the representation and close-
ness to the data.

Three commonly used kernel functions for nonlinear regres-
sions are

(7)

(8)

(9)

Equation (7) is the radial basic function (RBF) kernel with width
parameter ; equation (8) is the polynomial regression of degree

that will revert to the linear function when , and (9) is the
two-layer sigmoid perceptron. The polynomial and RBF kernel
functions always satisfy Mercer’s condition, and the two-layer
perceptron kernel function satisfies Mercer’s condition only for
some values of and [11].

As displayed in Fig. 2, the architecture of SVM is similar to
that of MLP. However, their constructions are very different. In
MLPs, determination of architecture, e.g., the number of hidden
nodes depends on “trial and error.” In contrast, in the two-layer



ZHAN et al.: RETRIEVAL OF OCEANIC CHLOROPHYLL CONCENTRATION 2949

Fig. 3. Comparison of the SVM-derived versusin situ chlorophyll concentration on (a) training and (b) the validation dataset.

perceptron type of SVMs, the number of hidden nodes and their
weight vectors are determined automatically by the number of
SVs and their values, respectively.

III. RETRIVAL EXPERIMENTS

A. Data Description and Preprocessing

To carry out an experimental analysis to validate the pro-
posed approach, we considered anin situ dataset that was
archived by the National Aeronautics and Space Adminis-
tration Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
Project as the SeaBAM dataset [12]. This dataset consists of
coincident remote sensing reflectance (Rrs) at the SeaWiFS
wavelengths (412, 443, 490, 510, and 555 nm) and surface
chlorophyll concentration measurements at 919 stations around
the U.S. and Europe. It is encompassed a wide range of
chlorophyll concentration between 0.019 and 32.79gL
with a geometric mean of 0.27gL . Most of the data are
from Case 1 nonpolar waters, and about 20 data items collected
from the North Sea and Chesapeake Bay should be considered
as case 2 waters. Log-transferred Rrs values and chlorophyll
concentrations are used as the inputs and output, respectively.
The advantage of this transformation is that the distribution of
transformed data will become more symmetrical and closer to
normal. To facilitate training of SVMs, the values of each input
and output were scaled into the range of .

B. Training of the SVM

The training software used in our experiments is LIBSVM.1

It is an integrated software package for support vector classifica-
tion, regression, and distribution estimation and uses a modified
sequential minimal optimization (SMO) algorithm to train the
SVMs. The SMO algorithm breaks the large QP problem into a
series of smallest possible QP problems. These small QP prob-
lems are solved analytically, which avoids using a time-con-
suming numerical QP optimization as an inner loop [13]. The

1LIBSVM: A library for support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

RBF kennel function was chosen because it is much more flex-
ible than the two-layer perceptron and the polynomial kennel
function. Consequently, it tends to perform best over a range of
applications, regardless of the particulars of the data [14].

There are three free parameters, namely C,, and , that
should be determined to find the optimal solution. In our exper-
iments, we split the SeaBAM dataset into two subsets and used
the split-sample validation approach to tune these free parame-
ters. This split-sample validation approach estimates the free pa-
rameters by using one subset (training set) to train various candi-
date models and the other subset (validation set) to validate their
performance [1], [2]. In order to ensure the representative of the
datasets, the SeaBAM dataset was first arranged in increasing
order of the chlorophyll concentrations and then, starting from
the top, the odd order samples were picked up as the
training set and the remaining samples were used
as the validation set. We set C , and ,
because these values were found to produce the best possible
results on the validation set by slit-sample validation approach.
After these parameters are fixed, the SVM automatically deter-
mines the number (how many SVs) and locations (the SVs) of
RBF centers during its training.

C. Results

The performance of the SVM was evaluated using the same
criteria as [2], namely, root-mean-square error (RMSE), coef-
ficient of determination , and scatterplot of derived versus
in situ chlorophyll concentrations. All results were based on
log-transformed data. Fig. 3 displays the scatterplots of the
SVM-derived versus thein situ chlorophyll (Chl) concentra-
tion on the training and the validation set. The RMSE for the
training set is 0.122, and its is 0.958. The RMSE for the
validation set is 0.138, and its is 0.946. The number of SVs
is 288, which close to 60% of the training data. These SVs
contains all the information necessary to model the nonlinear
transfer function.

The performance of the SVM was compared with those of
MLPs and SeaWiFS empirical algorithms. In order to allow for
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TABLE I
STATISTICAL RESULTS OFMLPS, SVM,AND EMPIRICAL ALGORITHMS ON THEVALIDATION SET

this comparison, the training and validation data were prepro-
cessed in a similar manner for SVM and MLP uses, and the re-
sults of MLPs and SeaWiFS empirical algorithms were based
on the same validation set as was used for the SVM. There
are a large number of factors that control the performance of
MLPs, such as the number of hidden layers, the number of
hidden nodes, activation functions, epochs, weights initializa-
tion methods, and parameters of the training algorithm. It is a
difficult task to obtain an optimal combination of these factors
that produces the best retrieval performance. We used MLPs
with one hidden layer and tan-sigmoid activation, and we trained
them using the Matlab Neural Network Toolbox 4.0 with the
Levenberg–Marquardt algorithm. The epoch was set to 500, and
other training parameters were set to the default values of the
software. The training process was run ten times with different
random seeds for the number of hidden nodes from four to ten.
The statistical results of the MLPs, the SVM, and the SeaWiFS
algorithm OC2 and OC4 on the validation set are reported in
Table I. Several results can be found from this table. First, the
performance of the SVM is as good as the optimal MLP solu-
tion. There are only two trials in which the RMSE of the best
MLP is slighty smaller than that of the SVM. Second, the op-
timal number of hidden nodes is difficult to determine because
it varies with different weights initialization. Third, large er-
rors occurred in some trials due to the training algorithm being
trapped in a local minimum. Finally, the SVM and the best MLP
with different weights initialization outperform the SeaWiFS
empirical algorithms.

IV. CONCLUSION

The use of SVMs in retrieval of oceanic chlorophyll con-
centration was studied in this letter. Experiments on SeaBAM
dataset demonstrated that the performance of SVMs were
comparable in accuracy to the best MLP. Advantages of SVMs

over MLPs include the existence of fewer parameters to be
chosen, a unique, global minimum solution, and high-general-
ization ability. The proposed method seems to be a promising
alternative to the conventional MLPs for modeling the non-
linear transfer function between chlorophyll concentration and
marine reflectance.

It is worthy to note that SVM generalization performance,
unlike those of conventional neural networks such as MLPs,
does not depend on the dimensionality of the input space. The
SVM can have good performance even in problems with a large
number of inputs and, thus, provide a way to avoid the curse of
dimensionality [9]. This makes it attractive for case 2 waters,
since more spectral channels are needed for retrieval of some
parameters in such waters. Further research will be carried out
to validate the performance of SVMs for inverse problem in case
2 waters.
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