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Abstract—In this paper, we investigate an approach based text categorization [6]. The formulation of SVM learning is
on support vector machines (SVMs) for detection of microcal- pased on the principle of structural risk minimization. Instead
cification (MC) clusters in digital mammograms, and propose a ot minimizing an objective function based on the training
successive enhancement learning scheme for improved perfor-
mance. SVM is a machine-learning method, based on the principle samplc_as_[such as mean square erro_r (MSE)]’ the SVM attempts
of structural risk minimization, which performs well when applied 0 minimize a bound on the generalization error (i.e., the error
to data outside the training set. We formulate MC detection as made by the learning machine on test data not used during
a supervised-learning problem and apply SVM to develop the training). As a result, an SVM tends to perform well when
detection algorithm. We use the SVM to detect at each location applied to data outside the training set. Indeed, it has been

in the image whether an MC is present or not. We tested the A
proposed r?wethod using a databaze of 76 clinical mammograms reported that SVM-based approaches are able to significantly

containing 1120 MCs. We use free-response receiver operatingOutperform competing methods in many applications [7]-[9].
characteristic curves to evaluate detection performance, and SVM achieves this advantage by focusing on the training
compare the proposed algorithm with several existing methods. examples that are most difficult to classify. These “borderline”
In our experiments, the proposed SVM framework outperformed training examples are calledipport vectors

all the other methods tested. In particular, a sensitivity as high In thi ) tigate th tential b fit of usi
as 94% was achieved by the SVM method at an error rate of one n this paper, we investiga e. € po en- lal beneti O, u3|.ng
false-positive cluster per image. The ability of SVM to outperform  an SVM-based approach for object detection from medical im-
several well-known methods developed for the widely studied ages. In particular, we consider the detection of MC clusters in
problem of MC detection suggests that SVM is a promising mammograms. There are two main reasons for addressing this
technique for object detection in a medical imaging application.  haricular application using SVM. First, accurate detection of
Index Terms—Computer-aided diagnosis, kernel methods, mi- MC clusters is itself an important problem. MC clusters can be
crocalcifications, support vector machines. an early indicator of breast cancer in women. They appear in
30-50% of mammographically diagnosed cases. In the United
States, women have a baseline risk of 5%—6% of developing
cancer; 50% of these may die from the disease [10]. Second,
I N THIS paper we propose the use of support vector machiggcause of the importance of accurate breast-cancer diagnosis
1 (SVM) learning to detect microcalcification (MC) clustersyng the difficulty of the problem, there has been a great deal
in digital mammograms. SVM is a learning tool originated iRyf research to develop methods for automatic detection of MC
modern statistical learning theory [1]. In recent years, SVMysters. Therefore, the problem of MC cluster detection is one
learning has found a wide range of real-world applicationgyat is well understood, and provides a good testing ground
including handwritten digit recognition [2], object recognitioror comparing SVM with other more-established methods. The
[3], speaker identification [4], face detection in images [5], anglrong performance of SVM in our studies indicates that SVM
indeed can be a useful technique for object detection in medical
imaging.
. . . . _ In the proposed approach, MC cluster detection is accom-
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Fig. 1. (left) Mammogram in craniocaudal view. (right) Expanded view showing MCs.

problem we propose a solution that we cltcessive enhance-[13]). The following is a brief review of some representative
ment-learning(SEL) to select the training examples. SEL semethods for detection of MCs. Karssenmeijer [14] developed
lects iteratively the “most representative” MC-absent examplas statistical Bayesian image analysis model for detection
from all the available training images while keeping the totaf MCs. Nishikawaet al. [15] investigated a method based
number of training examples small. Numerical results demoon a difference image technique followed by morphological
strate that this approach can improve the generalization abilggst-processing. Wavelet-based approaches have been pro-
of the SVM classifier. posed in [16]-[18]. In [16], a decimated wavelet transform and
We developed the proposed SVM approach using a databaspervised learning are combined for the detection of MCs,
of 76 clinical mammograms containing 1120 MCs. Thesshile in [17] and [18] an undecimated wavelet transform and
mammograms were divided equally into two subsets, one usgatimal subband weighting are used. A detection scheme is
exclusively for training and the other exclusively for testingoroposed in [19] for the automatic detection of clustered MCs
Compared to several other existing methods, the proposeging multiscale analysis based on the Laplacian-of-Gaussian
approach yielded superior performance when evaluated usfiligr and a mathematical model describing an MC as a bright
free-response receiver operating characteristic (FROC) curvgsot of a certain size and contrast. Dengdéral. [20] used
It achieved sensitivity as high as 94% with only about onmethods based on a weighted difference-of-Gaussian (DoG)
false-positive MC cluster per mammogram. This figure of meriilter for spot detection and morphological operators to extract
is difficult to compare with previous reports in the literaturshape features. Gurcahal.[21] developed a method based on
because, as we will show, the sensitivity measure depertdgher order statistics. Chemg al.[22] applied fuzzy logic for
strongly on the way MC clusters are defined. However, withiMC detection. Pfrencht al.[23] presented a two—dimensional
each of our studies we maintained a uniform definition faxdaptive lattice algorithm to predict correlated clutters (i.e., the
clusters to allow for meaningful comparisons. tissue structure) in the mammogram. éfi al. [24] proposed
The rest of the paper is organized as follows. A brief reviewsing fractal background modeling, taking the difference
of the literature on MC detection is provided in the remainddretween the original and the modeled image, which results
of this section. A background on SVM learning is furnished im enhanced MC detection. Bankman al. [25] developed a
Section Il. The use of an SVM for MC detection is formulatedhethod based on region-growing in conjunction with active
in Section lll. An evaluation study of the proposed SVM apeontours, wherein the seed points are selected as the local
proach is described in Section IV, and the experimental resultexima found by an edge-detection operator. Mixed wavelet
are presented in Section V. Finally, conclusions are drawn @omponents, gray-level statistics, and shape features were used
Section VI. A proof of convergence of the proposed SEL schertm train a two-stage multilayer neural network (TMNN) for
is given in the Appendix. detection of individual MC objects [26]. Recently, Bazzani
There exist many methods for MC detection (a thorougdt al. [27] proposed a method for MC detection based on
review of various methods can be found in Nishikawa [12]multiresolution filtering analysis and statistical testing, in
There is also a commercial computer-aided diagnosis systemich an SVM classifier was used to reduce the false detection
developed (e.g., high detection sensitivity is claimed irate. This approach is quite different from ours in that it used
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extracted image features (including area, average pixel value,
edge gradient, degree of linearity, and average gradient) as
the basis for detection, while our approach does not attempt
to extract any explicit image features. Instead, we directly use
finite image windows as input to the SVM classifier, and rely
on the capability of the SVM to automatically learn the relevant
features for optimal detection.

Optimal hyperplane

Il. REVIEW OF SVM LEARNING FOR CLASSIFICATION

In this paper, we treat MC detection as a two-class pattern
classification problem. At each location in a mammogram, we
apply a classifier to determine whether an MC is present or not.
We refer to these two classes throughout as “MC present” and

“MC absent.” Let vectok € R™ denote a pattern to be ClaSSi-Flg' 2. SVM classification with a hyperplane that maximizes the separating

. . ; margin between the two classes (indicated by data points markes 'lsyehd

fied, and let scalay denote its class label (i.ey,€ {£1}). In  “(O”s). Support vectors are elements of the training set that lie on the boundary
addition, let{(x;, ¥;),% = 1, 2, ..., [} denote a given set of hyperplanes of the two classes.

[ training examples. The problem is how to construct a classi-

fier [i.e., a decision functiorf(x)] that can correctly classify an Accordingly, the cost function in (2) can be modified as follows:

input patternx that is not necessarily from the training set.

A. Linear SVM Classifiers

Let us begin with the simplest case, in which the training paihere( is a user-specified, positive, regularization parameter.
terns are linearly separable. That s, there exists a linear functmr(s), the variablé is a vector containing all the slack variables

!
J(w, &) =3wl>+C> & (6)
=1

of the form & i=1,2,...,1L
T The modified cost function in (6) constitutes the so-called
J(x)=wix+b (1) structural risk which balances thempirical risk (i.e., the

training errors reflected by the second term) with model com-

plexity (the first term) [28]. The regularization parameter

words, training examples from the two different classes afg ntrols th|_s trade-off: The purpose of using ”.‘Ode.' comple>§|ty
0 constrain the optimization of empirical risk is to avoid

_ T —
separatec! by the_hyperplam(ax) wox+b 0 overfitting a situation in which the decision boundary too
For a given training set, while there may exist many hyper- ~ . - :
e recisely corresponds to the training data, and thereby fails to
planes that separate the two classes, the SVM classifier is baSe . e
o : . perform well on data outside the training set.
on the hyperplane that maximizes the separating margin be-

tyveen the two classes (Fig. 2) [7], [9]. In other wor'ds, SVI\%_ Nonlinear SVM Classifiers
finds the hyperplane that causes the largest separation between _ ) _
the decision function values for the “borderline” examples from The linear SVM can be readily extended to a nonlinear classi-

the two classes. Mathematically, this hyperplane can be foulif by first using a nonlinear operatér-) to map the input pat-

such that for each training exampilg, the function yields
f(x;) > 0fory;, = +1,andf(x;) < 0 fory; = —1. In other

classifier so obtained is defined as
J(w) = S wTw = 1 w|? @ .
: . . fx)=w"o(x)+b (7
subject to the separability constraints o )
T’ which is linear in terms of the transformed d&téx), but non-
wixi+b>+1,  fory; =+1 linear in terms of the original data € R".
or Following nonlinear transformation, the parameters of
wlx; +b<—1, fory; = —1;i=1,2,...,1. (3) the decision functionf(x) are determined by the following
_ ) ) minimization:
Equivalently, these constraints can be written more compactly .
as min J(w, §) = 3 Iwl +C Y & 8)
T . =1
i i +0)>1; 1=1,2, ..., 1L 4 .
yi(wox; +b) > 1; ¢ / ) subject to
This specific problem formulation may not be useful in prac-,. (wTa(x;) + b) > 1 — &, G>000i=1,2, ..., 1.
tice because the training data may not be completely separable - ’ - - 9)

by a hyperplane. In this case, slack variables, denoteg; by
can be introduced to relax the separability constraints in (4) @S Solution of SVM Formulation

follows: Using the technique of Lagrange multipliers, one can show

yi(wlx; +b) > 1 &, &>0,9=1,2,...,1. (5) thatanecessary condition for minimizidgw, &) in (8) is that
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the vectorw is formed by a linear combination of the mappedby solving the optimization problem in (13) during the training
vectors®(x;), i.e., phase.

w = Z ;5 P(x;) (10) D. SVM Kernel Functions

Notice that the nonlinear mappirig(-) from R" to H never
appears explicitly in either the dual form of SVM training in
(13) or the resulting decision function in (16). The mappirig)
enters the problem only implicitly through the kernel function
K(-, -), thus, it is only necessary to defidé(-, -), which im-

wherea; > 0,7 = 1, 2, ..., [, are the Lagrange multipliers
associated with the constraints in (9).
Substituting (10) into (7) yields

Z iy @7 (x;)@(x) +b = Z aiyi K ) +b plicitly defines ®(-). However, when choosing a kernel func-
(11) tion K (-, -), it is necessary to check that it is associated with
where the functiork (-, -) is defined as the inner product of some npnlinear mapping. Mercer's theorem
- states that such a mapping indeed underlies a kéftel-) pro-
K(x, z) = 07 (x)®(2). 12)  ided thatK (-, -) is a positive integral operator [28], [29], that
The Lagrange multipliers; > 0,7 =1, 2, ..., I, are solved is, for every square-integratable functigf) defined onR™ the
from the dual form of (8), which is expressed as kernel K (-, -) satisfies the following condition:
max Wi(ay, asg, ..., ;)
! ! /Kx Y)yg (y)dxdy > 0. a7)
= Z %Z Z aiogyy K(xi, x5)  (13)
=1 =1 j=1

Examples of kernels satisfying Mercer’s condition include poly-

subject to nomials and radial basis functions (RBFs), which will be dis-
0<a; <C, 1=1,2,...,1 (14) cussed in Section Ill.
Z a;y; =0. (15) Ill. SVM FORMULATION FOR MICROCALCIFICATION
. ‘ _ . DETECTION
Notice that the cost functioi (a4, as, ..., a;) is convex

and quadratic in terms of the unknown parameters In In this section, we present a supervised SVM learning frame-
practice, this problem is solved numerically through quadratitork for detection of MCs in which an SVM is first trained
programming. using existing mammograms. The ground truth of MCs in these

Analytic solutions of (13) are not readily available, but if?@mmograms is assumed to be knaavpriori. A detailed for-

is still informative to examine the conditions under which afftulation of the SVM learning framework is presented in the
optimal solution is achieved. The Karush—Kuhn—Tucker c)ptfollowmg discussion. A performance evaluation of the method
mality conditions for (13) lead to the following three cases fd Presented in Section IV.

eacho;:

1) a; = 0. This corresponds tg; f(x;) > 1. In this case,
the data element; is outside the decision margin of the Individual MCs are well localized in a mammogram; there-
function f(x) and is correctly classified. fore, to detect whether an MC is present at a given location, it

2) 0 < a; < C. Inthis casey; f(x;) = 1. The data ele- is sufficient to examine the image content within a small neigh-
mentx; is strictly located on the decision marginfifx). borhood around that location. Thus, we define the input pattern
Hence x; is called amargin support vectoof f(x). to the SVM classifier to be a smalll x M pixel window cen-

3) a; = C. In this casey; f(x;) < 1. The data element tered at the location of interest.

x; is inside the decision margin (though it may still be The window should be chosen large enough to contain an
correctly classified). Accordinglyk; is called anerror MC, but small enough to avoid potential interference from
support vectoof f(x). neighboring MCs. A small window size is also favorable

Note that most of the training examples in a typical problef@’ computational reasons. In our study, the mammograms

are correctly classified by the trained classifier (case 1), i.e., oigre digitized at a resolution of 0.1 mm/pixel, and we chose
afew training examples wiII be support vectors. For simplicity = 9. Our experiments indicated that the results were not
lets;, a%,j = 1,2, ..., ,, denote these support vectors anyery sensitive to the choice a¥/ (e.g., similar performance
their corresponding nonzero Lagrange multipliers, respectivetyas achieved whef/ = 7 was used).

and lety; denote their class labels. The decision function in (11) To suppress the image background and, thus, restrict intra-

A. Input Feature Vector

can, thus, be simplified as class variation among the training patterns, we begin by ap-
. plying a sharp high-pass filter to each mammogram. This filter
x) = Z oy, 07 (s5)®(x) + b = Z oy K (sj, x) +b. Was designed as a linear-phase finite impulse response filter

with 3-dB cutoff frequencyw,. = 0.125 and length 41. As an
(16) example, we show in Fig. 3 the result after filtering the mammo-
Note that the decision function is now determined directly byram in Fig. 1 with this filter. The filter appears to be effective
the support vectors;, j = 1, 2, ..., I5, which are determined in reducing the inhomogeneity of the background.
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whenx andy are aligned in the same direction (with their re-
spective lengths fixed); while the Gaussian RBF kernel function
in (20) assumes its maximum wha&randy are identical. The
associated parameters, orgiein (19) and widths in (20), are
determined during the training phase.

C. Preparation of Training Data Set

The procedure for extracting training data from the training
mammogram set is as follows. For each MC location in a
training-set mammogram, a window &f x M image pixels
centered at its center of mass is extracted; the vector formed by
this window of pixels, denoted hy;, is then treated as an input
pattern for the “MC present” clasg,( = +1). “MC absent”
samples are collected;( = —1) similarly, except that their
locations are selected randomly from the set of all “MC absent”
locations in the training mammograms. In this procedure, no
window in the training set is allowed to overlap with any other
training window. The reason for using only a random subset of
“MC absent” examples is that there are too many “MC absent”
examples to be used at once practically.

D. Model Selection and SVM Training

Fig. 3. The mammogram in Fig. 1 after background removal by a high-pass L )
filter designed for the purpose. Once the training examples are gathered, the next step is to

determine the SVM decision function in (16). In this process,
To summarize, if we lef denote the entire mammogram, aneve must decide the following variables: the type of kernel func-
W be a windowing operator that extracts the x M window tion, its associated parameter, and the regularization parameter
centered at a particular location, then the input feature vectoC' in the structural risk function. To optimize these parameters,
is extracted as follows: we appliedm-fold cross validation [8] to the training-mam-
x = W[Hf] (1g) Mmogram set. This procedure consists of the following steps.

) ) First, divide randomly all the available training examples into
where [ denotes the high-pass filter for background removal, oqa1-sized subsets. Second, for each model-parameter set-

Note that the vectax is of dimension\/* (81 in this study), and iy train the SVM classifier times: during each time one of
is formed at every image location where an MC is to be detectggl,, spsets is held out in turn while all the rest of the subsets
[the fact thatx varies with location is not explicitly indicated in are used to train the SVM. The trained SVM classifier is then
(18) for notational simplicity]. _ . tested using the held-out subset, and its classification error is
The task of the SVM classifier is to decide whether the inpyi . rqeq. Third, the classification errors are averaged to obtain
vectorx at each location is an MC pattefp = +1) or not 5, estimate of the generalization error of the SVM classifier. In
(y = —1). the end, the model with the smallest generalization error will be
B. SVM Kernel Eunctions ?gg(;:)ttiicrjl. Il\t/s) performance will be evaluated using FROC analysis
The kernel function in an SVM plays the central role of im- s explained in Section II, the training of the SVM classifier
plicitly mapping the input vector (through an inner product) intgs accomplished by solving the quadratic optimization problem
a high-dimensional feature space. In this paper, we consider t{§q13). While in principle this can be done using any existing
kernel types: polynomial kernels and Gaussian RBFs. These ggeral-purpose quadratic programming software, it should be
among the most commonly used kernels in SVM research, aigted that the number of training examples (hence, the number
are known to satisfy Mercer’s condition [28]. They are definegf ynknowns) used in this study is large (on the order of several

as follows. thousand). Fortunately, numerically efficient algorithms have
1) Polynomial kernel: been developed for solving the SVM optimization problem [8].
K(x,y)=x"y+1) (19) These algorithms typically take advantage of the fact that most

. ' of the Lagrange multipliers in (13) are zero. In this paper, we
2) \g:irsega? gSFakC;?;ﬁ?nt that defines the kernel order. adopted a technique call_esi_lccessive_minima_l opti_mization_
' ) (SMO) [30]-[32]. The basic idea of this technique is to opti-
K(x,y) = exp (_ lIx — g’” ) (20) mize the objective function in (13) iteratively over a pair of
20 variables (i.e., two training samples) at a time. The solution can
whereo > 0 is a constant that defines the kernel width. be found analytically for each pair, thus, faster convergence can
Notice that in both cases the kernel function serves essée- achieved. We found in this study that the SMO algorithm
tially as a similarity measure betweanandy. In particular, is typically five to ten times faster than a general-purpose
the polynomial kernel function in (19) assumes its maximuiuadratic optimization algorithm.
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E. Insight on the SVM Classifier sent their respective classes. As mentioned earlier, in a mam-

Consider the SVM decision function in (16), which is exmogram there are vastly more examples available from the “MC
pressed in terms of the support vectejs;j = 1, 2, absent” class than from the “MC present” class. Yet, in training

Let /! denote the number of support vectors that belong to tRBYY a small fraction of them can practically be used. As such, a

“MC present” class and, for notational simplicity, let them paotential concern is whether this fraction of randomly selected

denoted in an ordered fashionsgs;j = 1, 2, ..., I1. Then, we training samples_ca_n represent the “MC absent” class well.

can rewritef(x) as To address this issue we propose an SEL scheme to make
use of all the available “MC absent” examples. The basic idea
is to select iteratively the “most representative” “MC absent”

)= Z oy K (s;. Z oy K (sj, x) +b examples from all the available training images while keeping

=L+l the total number of training examples small. Such a scheme im-

s s proves the generalization ability of the trained SVM classifier

= Z a; K(sj, x) — Z a;K(sj, x)+b. (21) (as shown experimentally in Section 1V). The proposed algo-
' j=li+1 rithm is summarized below. A proof of convergence of the pro-

ReplacingK (-, -) by the inner product of the mappirig(-) in  posed algorithm is given in the Appendix.
(12) and making use of the symmetry of the inner product, we

obtain

L ls SUCCESSIVE ENHANCEMENI EARNING ALGORITHM
F0) = @7(x) | Y a;o(s)) - a;j®(s;)| +b. (22) 1. Extract an initial set of training ex-

j=1 j=1i+1 amples from the available training im-
Defining ages (e.g., through random selection).

1 Is Let Z = {(x1,v1), (X2, ¥2), ..., (x1, y1)} denote

= L B(ss) — L D(s. 2 this resulting set of training examples.

Z @i (s5) j:lzlﬂ o () (23) 2. Train the SVM classifier

we have ) F(x) = 250 gy K(sj, x) +b with 2.
3. Apply the resulting classifier f(x)
f(x) = &7 (x)®* +b. (24) to all the mammogram regions (except

those in  Z) in the available training
Note that,When eXpressed asin (24),the SVM decision fUnC-imageS and record the “MC absent” lo-

tion assumes the form of a template-matching detector in thegations that have been misclassified as
nonlinear-transform spack: the vector®* can be viewed as  “MC present.”
a known template, against which the input patterfs com- 4. Gather N new input examples from the
pared in thef{ space. A careful examination of the form of the mjsclassified “MC absent” locations:
template®™ provides further insight to the SVM classifier. The ypdate the set Z by replacing N “MC ab-
first sum in (23) is composed of support vectors from the “MC sent” examples that have been classified
present” class, while the second sum consists of those from theorrectly by f(x) with the newly col-
“MC absent” class. Naturally, a large positive matching score |ected “MC absent” examples.
is expected when an input pattetris from the “MC present” 5 Re-train the SVM classifier with the
class; similarly, a large but negative matching score is expecteqpdated set Z.
whenx is from the “MC absent” class. 6. Repeat steps 3-5 until convergence is
Furthermore, by definition, support vectors are those training gchieved.
examples found to be either on or near the decision boundaries
of the decision function. In a sense, they consist of the “border-
line,” difficult-to-classify examples from each class. The SVM |n Step 1, the training set siZeis typically kept small for
classifier then defines the decision boundary between the twigmerical efficiency. Consequently, the training examples rep-
classes by “memorizing” these support vectors. This in philogesent only a small fraction of all the possible mammogram re-
ophy is quite different from a neural network, for example, thafions. The purpose of steps 3 and 4 is to identify those difficult
is based on minimization of MSE. “MC absent” examples in the training mammograms that were
In an interesting study in [33], where a neural network wagsot included in the initial training sef. In Step 4, there may be
trained for MC detection, it was reported that better performangeveral ways for gathering the new “MC absent” examples. One
was achieved when the neural network was trained with a sef©&imply to select théV most-misclassified “MC absent” loca-
“difficult cases” (identified by human observers) than with théions [i.e., those with the most positive valuesf¢k)]. This is
whole available data set. In our method, the “difficult cases” areferred to as thgreedyapproach. An alternative would be to
automatically identified by the SVM during training. select randomly among all those misclassified “MC absent” lo-
cations. In our studies, we experimented with both approaches.
In Step 6, the numerical convergence of the algorithm is deter-
The support vectors define the decision boundaries of thened by monitoring the change in support vectors during each
SVM classifier; therefore, it is essential that they well repréteration.

F. Successive Enhancement Learning
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IV. PERFORMANCEEVALUATION STUDY C. Other Methods for Comparison

For comparison purposes, the following four existing
methods for MC detection were also considered in this study:

We developed and tested the proposed algorithm using a dhtdmage difference technique (IDT) [15]; 2) DoG method
set collected by the Department of Radiology at The Universitg0l; 3) wavelet-decomposition (WD)-based method [17], [18];
of Chicago. This data set consists of 76 clinical mammogran®)d 4) @ TMNN method [26]. We selected these because they
all containing multiple MCs. These mammograms are of dimef@t€ Well-known methods that are representative of two main
sion 1000x 700 pixels, with a spatial resolution of 0.1 mm/pixePPProaches that are widely used: template-matching techniques
and 10-bit grayscale. Collectively, there are a total of 1120 M@§d learning-based methods.
in these mammograms, which were identified by a group of ex- The following is a summary of the parameter values we used
perienced mammographers. These mammograms were obtaM{Bgn implementing the four methods for comparison. For the
at The University of Chicago which are representative of case§G method, the values of the kernel widih) used for the
that contain clustered MCs that are difficult to detect. positive and negative Gaussian kernels were 0.75 and 4, re-

In this study, we divided the data set in a random fashion inf@ectively. The weight associated with the positive kernel was
two separate subsets, each of which consisted of 38 images. O For the WD method, four-octave decomposition was used
of these subsets was used exclusively during the training ph#4eere an additional voice was inserted between octaves 2 and
of the proposed algorithm, and is hereafter designated as thé&nd one between octaves 3 and 4. For the TMNN method, a
training-mammogram sgthe other subset was used exclusivel{hree-layer feed-forward neural network with six neurons in the
during the testing phase, and is designated asetsttemammo- hidden layer was used in the first stage; and another three-layer

gram setAt no time was a test-set image used in any way in tfieed-forward neural network with eight neurons in the hidden
training procedure, andce versa layer was used for the second stage. The 15-component feature

vector described in [26] was used.
While it was nearly impossible to obtain the globally optimal
parametric setting for each algorithm, care was taken in our im-

To summarize quantitatively the performance of the tr‘,Jlim{qjemer}tation so that it i§ as faithful to its or_iginal description
SVM classifier, we used FROC curves [34]. An FROC curve in the Iltgrature as possible. .Whenever feaS|bI¢, these methods
a plot of the correct detection rate (i.e., true-positive fractiofjere typically run under multiple parameter settings and the one
achieved by a classifier versus the average number of false ngdu_ﬂg the be;t results was chosen for the final test.
itives (FPs) per image varied over the continuum of the decision’® final note is that both the WD and TMNN methods are

threshold. An FROC curve provides a comprehensive summéigning-based, thus training was required. The same training-
of the trade-off between detection sensitivity and specificity. @mmogram setwas used for these methods as for the proposed
We constructed the FROC curves by the following proc SVM method. All the methods were evaluated using the same

dure. First, the trained SVM classifier was applied with Varyin?gest-mammogram set.

thresholds to classify each pixel in each test mammogram as
“MC present” or “MC absent.” Because several neighboring
pixels may be part of an MC, it is necessary next to group V. EXPERIMENTAL RESULTS
the pixels classified as “MC present” to form MC objects. Thii
was accomplished by a morphological processing procedure dé-
scribed in [15], where isolated spurious pixels were removed.The training-mammogram set contained 547 MCs. Conse-
Finally, MC clusters were identified by grouping the objects thajuently, 547 examples were gathered for the “MC present” class
have been determined by the algorithm to be MCs. from this set of mammograms. In addition, twice as many “MC

In our implementation, we adopted a criterion recommendatisent” examples were selected by random sampling from these
by Kallergiet al. [35] for identifying MC clusters. Specifically, mammograms. Thus, there were 1641 training examples in total.
a group of objects classified as MCs is considered to be a tlydenfold cross-validation procedure was used for training and
positive (TP) cluster only if: 1) the objects are connected witiesting the SVM classifier under various model and parametric
nearest-neighbor distances less than 0.2 cm; and 2) at least tagtings.
true MCs should be detected by the algorithm within an area ofWe also experimented with using an increased number of
1 cn?. Likewise, a group of objects classified as MCs is labele®IC absent” examples in training (e.g., up to five times more
as an FP cluster provided that the objects satisfy the clustertigan the number of MC examples), but no significant improve-
qguirement but contain no true MCs. It was reported [35] thatent was observed in the generalization error of the resulting
such a criterion yields more-realistic performance than seve®&VM classifier. We believe this is largely due to the redundancy
other alternatives. among the vast collection of “MC absent” examples. This partly

It bears repeating here that, to ensure a realistic evaluatiomtivated our proposed SEL training scheme for the SVM clas-
the FROC curves in this study were all computed using only tisdier. In this regard, the SEL is an informed scheme for selecting
test-mammogram set. As mentioned before, this set of 38 maiime “MC absent” samples for training, making use of both the
mograms, chosen randomly, was held aside at the beginningofrent state of the SVM classifier in training and all the avail-
the study, and was never used by any of the training algorithnagle “MC absent” samples.

A. Mammogram Data Set

B. Performance Evaluation Method

SVM Training and Model Selection
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In our evaluations, we used generalization error as a figure
merit. Generalization error was defined as the total number
incorrectly classified examples divided by the total number o w1 I NIRRT
examples classified. Generalization error was computed Us |\ /1 Lo i
only those examples held-out during training. L

In Fig. 4(a), we summarize the results for the trained SVI 5, A
classifier when a polynomial kernel was used. The estimat 2
generalization error is plotted versus the regularization para
eterC for kernel ordep = 2 andp = 3. Similarly, in Fig. 4(b) g
we summarize the results when the Gaussian RBF kernel v g 1/ i\ i —oni
used; here, the estimated generalization error is plotted for ¢ OIS n@j-
ferent values of the width (2.5, 5, and 10). 008 i )

For the polynomial kernel, we found that the best error level heUll LTI

[
I
141 AR e e I
4 HH - Y

achieved whep = 3 andC'is between 1 and 10; interestingly, 008 -8 =mias@ i o nie i

a similar error level was also achieved by the Gaussian Rl | | il b il i i i
kernel over a wide range of parameter settings (e.g., wherb 10" 10° 10’ 10° 10° 10* 10° 10°
andC is in the range of 100—-1000). These results indicate tt ¢

the performance of the SVM classifier is not very sensitive to

the values of the model parameters. Indeed, essentially similar

- -

ralizatiol

‘ 000!

L

@)

performance was achieved whemwvas varied from 2.5 to 5. B R R
Having determined that the SVM results do not vary signifi 5| ,;,;;;;;# L _2 F?o
cantly over a wide range of parameter settings, we will focus f T O L ] __aamkt
the remainder of the paper on a particular, representative ¢ 021 |-/ i 5 F - Hil- b E B -
figuration of the SVM classifier, having a Gaussian RBF kern Ui "‘.‘l R IR R TR R R R AT
with o = 5 andC’ = 1000. B oas| J-fm_ Lyim ey gnm gL
Some insight about the SVM classifier can be gained t g A N O
looking at the support vectors produced by the training pr: g i N e
cedure. The number of support vectors in the representat g o L s LR
case that we studied was approximately 12% of the tol & | | [/l ™ a1 i i
number of training examples and the training time is arour gl 1L LU S L0l i
7s (implemented in MATLAB on a Pentium 11l 933-MHz PC). L N A "R l_,l.q'"‘*':;}}l_glll
Fig. 5 shows some examples of the support vectors obtair IR fFfL;Jjéln. ”u‘m&_.a,ﬁ»gi* bR
for both “MC present’ and “MC absent” image windows % " " By
For comparison, some randomly selected examples from 1 005" i o bt bbb b i)
training set are also shown. Note that, as expected, some 10 1o 10 v 10 10 10

the support vectors indeed appear to be the difficult-to-classiiy,
“borderline” cases; i.e., the “MC present” support vectors are (b)
MCs that could be mistaken for background regions, and th@. 4. Plot of generalization error rate versus regularization parantéter

“MC absent” support vectors are background regions from tlaehieved by trained SVM classifiers using (a) a polynomial kernel with orders
training set that look like MCs. two and three and (b) a Gaussian RBF kernel with widts 2.5, 5, and10

B. Effect of Successive Enhancement Learning the training-mammogram set. These 5000 samples were then
The SVM classifier (with the representative parametersed to compute the generalization error rate of the trained
described previously) was then further trained using the prf8VM classifier with SEL. Both the greedy approach and
posed SEL scheme on the training mammogram set. For tragdom selection were tested. Up A = 50 misclassified
purpose, a total of additional 50000 nonoverlapping, “MEMC absent” samples were selected during each iteration.
absent” sample windows were randomly selected from theln Fig. 6, we show a plot of the generalization error rate
training-mammogram set. Collectively these samples togeti@ghieved by the trained SVM classifier for the first nine iter-
with the previous 1641 training samples cover as much asions. Note that in both cases there is a significant drop in the
15% of the total training-mammogram areas. The proposgéneralization error rate after the first two iterations, and dimin-
SEL scheme was then applied with this set of 50 000 sampl&ging gain from subsequent iterations. We believe this indicates
Note that this slightly deviates from the original descriptiothat most of the “difficult” “MC absent” examples were effec-
of the SEL scheme in that only a subset of the mammogrdively selected by the proposed SEL scheme during the first
background areas (rather than all the mammogram regioh&p iterations. Also, note that the random SEL approach out-
were used. We find this is sufficient to demonstrate the effegerformed the greedy method in Fig. 6. This is possibly due
of the SEL scheme. For testing the resulting trained SVNR the fact that the latter always selects the most misclassified
5000 additional nonoverlapping, “MC absent” samples weg@mples during each iteration, which may not necessarily be
randomly selected from the remaining mammogram areasnogst representative of the “MC absent” class; on the other hand,
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Fig. 5. Examples of 9 9 image windows and support vectors. Image windows with and without MCs are shown at top-left and bottom-left, respectively.
Support vectors representing the “MC present” and “MC absent” classes of image windows are shown at top-right and bottom-right, respectivaiythBote t
SVs represent the borderline examples from each class that are difficult to categorize (“MC present” SVs could be mistaken for “MC absent” insatfd @gio
absent” SVs might be mistaken for MCs. The support vectors shown are for the case of a SVM with Gaussian kerhedqgdC' = 1000).

“MC absent” class templates

EE

0.04 ‘ ‘ ‘ ‘ ‘ As can be seen, the SVM classifier offers the best detection re-
\ l l | e e | sult, and is improved by the proposed SEL scheme. The SVM
’ 1 achieves a sensitivity of approximately 85% when the false-pos-
itive (FP) rate is at an average of one FP cluster per image.
The FROC results obtained here for WD and IDT filteringare
very similar to those described in the original reports of these
methods [15], [17], [18]. For the DoG method (for which no
FROC information is given in its original report), the detection
rate is close to that of the IDTF when the FP rate is around
two FP clusters per image. This is not surprising because both
methods operate under a similar principle (the detection ker-
nels in both cases behave like a bandpass filter). In addition,
the FROC results indicate that the TMNN method outperforms
the other three methods we compared (WD, IDTF, and DoG)
when the FP rate is above one FP cluster per image. The nu-
merical FROC results we obtained for the TMNN are somewhat
different from those in its original report. There are several pos-
! o ) o _sible explanations: 1) the mammogram set used was different;
Fig. 6. Plot of generalization error rate of the trained SVM classifier usmg) the detection criterion for MC clusters used in performance
SEL versus the number of iterations. p
evaluation was different; and 3) in the original work [26] the

) .MC clusters used for training were also included in testing.
the random approach selects samples from all the misclassifieg}, Fig. 8, we demonstrate that the method of defining

s_amples, leading to_the possibility of seleciing more-represe_nmc clusters has an influence on the FROC curves, making
tive samples as the iterations progress. This random SEL traifefigicult to compare reported results in the literature that
SVM was used in the rest of the evaluation study. were derived using various criteria. The results in Fig. 8,
which differ from those in Fig. 7, were obtained when the
nearest-neighbor-distance threshold for MC cluster detec-
The performance of the proposed SVM approach, along witlon was increased from 0.2 cm to 0.3 cm. In particular, the
the other methods, is summarized by the FROC curves in Figsénsitivity of the SVM approach increased to nearly 90% at

Generalization error

Iteration

C. Performance Evaluation
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p : p %E ined by a successive learning SVM classifier, which achieves around 94%

successive learning SVM classifier, which achieves around 85% detection rg Téction rate at a cost of one FP cluster per image. The nearest neighbor
at a cost of one FP cluster per image. The nearest neighbor distance thres QW 1\ ce threshold used for cluster detection is 0.5 cm.

used for cluster detection is 0.2 cm.

SVM classifier was trained through supervised learning to test
at every location in a mammogram whether an MC is present
2 or not. The formulation of SVM learning is based on the prin-
T D r CELET EETT B ciple of structural risk minimization. The decision function of

’ the trained SVM classifier is determined in terms of support
,,,,,,,,,,,,,,,,,,,,, vectors that were identified from the examples during training.
The result is that the SVM classifier achieves low generaliza-
tion error when applied to classify samples that were not in-
cluded in training. In addition, the proposed SEL scheme can
further lead to improvement in the performance of the trained

TP fraction

'_1"_‘ Sy classifer SVM classifier. Experimental results using a set of 76 clinical
- Wawelet mammograms demonstrate that the proposed framework is very
g %’T‘i insensitive to the choice of several model parameters. In our

‘ _ -0~ Neural Network experiments, FROC curves indicated that the SVM approach
"0 o5 1 15 =2 =25 3 35 4 45 5 Yyieldedthe bestperformance whencompared to several existing
Avg. Number of FP Clusters methods, owing to the better generalization performance by the
SVM classifier.
Fig. 8. FROC curves of the methods tested. The best performance was

obtained by a successive learning SVM classifier, which achieves around 90%
detection rate at a cost of one FP cluster per image. The nearest neighbor

distance threshold used for cluster detection is 0.3 cm. APPENDIX
PROOF OF THESUCCESSIVEENHANCEMENT LEARNING
an FP rate of one FP cluster per image. Similarly, when the ALGORITHM

nearest-neighbor-distance threshold is increased further Kfn this section. we provide a proof for the converaence of the
0.5 cm, the sensitivity of the SVM approach increased to as ! lon, we provi b Verg

high as 94% while the FP rate remains at one FP cluster Pposed successive enhancement leaming (SEL) algorithm.

image. The FROC curves in this case are shown in Fig. 9. Note> proof follows a similar approach to one given by Osuna

that, while different criteria may affect the numerical FRO@t al. [5] for a decomposition strategy for SVM training with

results, the relative ordering of performance of the methodsals!arge data set. Hefe’ we apply it to prove convergence of the
proposed SEL algorithm.

reserved.
P Let Z = {(x1, 1), (X2, 92), .., (x1,)} denote a
subset of the training examples, and Bt= {(xi+1, ¥1+1).
VI. CONCLUSION (X142, Yi+2), ---» (X1, yr)} denote the remainder of the

In this paper, we proposed the use of an SVM for detectidraining set so that the entire training set is represented by
of MCs in digital mammograms. In the proposed method, d = 7 U B.
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Thus, the original dual problem in (13) can be extended &boting thatK (x;, x;) iS symmetric, we have
follows:

Wr (&) = Wr(a®) = =5 (81 + 255 + S3). (A-9)
max WT<CM1, A2y ooy Oy 41y -y aL)
L . L L Furthermore, sincg; = f(xs) = —1, we have
=3 ai— 3> Y oy K(xix;) (A1)
i=1 =1 j=1 9 ! "
SUbjeCt to S = (55) K(Xm Xs) - 255 Z a; yiK(Xi7 Xs)
0<aq;<C  fori=1,2,..., L (A-2) = (65)°K (xg, X) — 26,[—1 — b]. (A-10)
and
L Noting thata; = 6,/N andy; = —1 for i € E, we obtain
Z a;Y; = 0. (A-3) !
- = Vi )y K (%, X5
Observe that the original problem in (13) now becomes ;ﬂ ]2:1 Gides )y K (i, %)

only a subproblem of (A-1). Indeed, lét], a3, ..., o))
denote an optimal solution to (13), i.e., solution of training
the SVM with subsetZ. Let o* denote the vector formed

l
Z K (xi, x;)

2|m
mM

by (af, a3, ..., af, ajyy, ..., af), with of = 0 for
=1+1,..., L. Thena* automatically satisfies both the ' 4
constraints in (A-2) and (A-3) and, thus, is a feasible solution N ZE Z 5V K (i, %;) + 8. K (xi, Xs)
to (A-1). -
Let x, denote a margin support vector from the “MC ab- _— _ﬁ [f(x:) — b+ 6. K (x4, X,)]
sent” class obtained when the SVM is trained wihthat is, N icE
0 < a* < C andf(xs;) = —1. In addition, letE denote the (6,)? .
index set of thoseV examples in3 that have been selectedto =~ > K(xi, %)+ N > f(xi) + b8, (A1)
update the training sef. Note that thes&/ examples have been 1€E =2
misclassified by the trainefi(x). and
Let 6, be a positive constant such that — &, > 0. Now ( > Z Z K(xi, ;). (A-12)
consider a vectof = (&4, do, ..., &, &i41, ..., @r) having Py
components
af—6,, j=s Therefore
G = % jeE (A-4) Wi (&) — Wr(a)
2
aj, otherwise. 1+ _Z f(xi ] _ .)
Then i€E
L L L L
Wr(a) = Wrp(a®) = Z Q; — Z o — %Z Z 0y Y x| K (x5, xs) = N ; K(xi, x;)
i=1 i=1 i=1 j=1 o
L L 1
XK(Xi7 Xj) + %Z Z a,’fa;yiyj[((xi7 Xj). +m Z Z K(Xi7 Xj) : (A'l?’)
i=1 j=1 i€l jek
From (A-4), we havé | &; = i, o} and, thus Whené, is chosen sufficiently small, the second-order term in
Wr(a) — Wr(a*) (A-13) is negligible and, thus
L L
A A X % A * 1
= =3 > (Gd; — ofa} )y K (xi, x;). (A5) Wr (&) = Wr(a®) = 6 |1+ + > f(xi)] . (A-14)
=1 j=1 i€E
Let . : .
. By selection, we havg(x;) > 0 for ¢ € E. Thus,Wr(&) —
Sy = Z (Gidj — ol o )yiy; K (i, X;) (A-6) Wr(a*) > 0. Therefore, the extended objective function in
- e 1 j /] Jrd) Ly 2

(A-1) can be further improved by training the SVM with the
newly updated set. A successive application of this procedure

l . . . . .
S, = Z (Gid; — o)y K (xi, x;) (A7) W|_II eventually lead to. an .optlmal solution of (A-1), wh|ch im-
Barnd it plies that the generalization error of the trained SVM will also
and be improved.
L L This proof also shows that, when retrained with the updated

Sy = Z Z (Gudj — afal)yiy; K (%, x;).  (A-8) setZ, areasonable choice of the starting point for the optimiza-
i=l41 j=I+1 tion algorithm isa*.
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