
520 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

Centroid Neural Network for Unsupervised Competitive Learning
Dong-Chul Park

Abstract—An unsupervised competitive learning algorithm
based on the classical -means clustering algorithm is proposed.
The proposed learning algorithm called the centroid neural
network (CNN) estimates centroids of the related cluster groups in
training date. This paper also explains algorithmic relationships
among the CNN and some of the conventional unsupervised com-
petitive learning algorithms including Kohonen’s self-organizing
map (SOM) and Kosko’s differential competitive learning (DCL)
algorithm. The CNN algorithm requires neither a predetermined
schedule for learning coefficient nor a total number of iterations
for clustering. The simulation results on clustering problems and
image compression problems show that CNN converges much
faster than conventional algorithms with compatible clustering
quality while other algorithms may give unstable results de-
pending on the initial values of the learning coefficient and the
total number of iterations.

Index Terms—Centroid, forgetting, learning gain, neural
network, unsupervised learning.

I. INTRODUCTION

CONVENTIONAL competitive learning algorithms for un-
supervised learning in artificial neural networks have been

widely used for processing the input data of complicated classi-
fication tasks. One of the most widely used competitive learning
algorithms is the -means clustering algorithm [1]. Since the

-means clustering algorithm that minimizes the energy func-
tion defined by mean squared error is simple and fast enough
to be performed in real time, it is frequently used for many ap-
plications even though it has some inevitable problems [2]. The
most serious problem with the-means clustering algorithm is
that the algorithm may not converge to an optimal solution for

.
The self-organizing map (SOM) by Kohonen does have a

strong connection with the -means algorithm [3]. Lloyd’s
batch -means algorithm [5] and MacQueen’s adaptive

-means algorithm [6] are considered as the basis for the
SOM [2]. Basically, SOM finds a winner neuron which is the
closest to a given input datum and updates the synaptic weights
of the winner and its neighbors. In order to obtain the best
results from SOM, the initial learning coefficient and the total
number of iteration for a given set of data should be chosen
carefully. Generally, the larger the predetermined total number
of iterations is and the smaller the initial learning coefficient
is, the better the results that can be expected. However, it is

Manuscript received June 22, 1998; revised February 2, 1999 and October 4,
1999. This work was supported by the Development Program for the Exemplary
Schools in Information and Communications from the Ministry of Information
and Communication (MIC) of Korea.

The author is with the Intelligent Computing Research Lab., School of
Electrical and Information Control Engineering, Myong Ji University, Yong In,
Kuung Ki-do 449–728, Korea (e-mail: parkd@wh.myongji.ac.kr).

Publisher Item Identifier S 1045-9227(00)02998-2.

not possible to determinea priori the best total number of
iterations for a given set of data.

The differential competitive learning (DCL) algorithm intro-
duces concepts of reward and punishment to the competitive
learning algorithm [7]. The DCL algorithm rewards the winner
by adapting the synaptic vectors with a positive learning coeffi-
cient like SOM does, but it can punish the loser by adapting the
synaptic vector with a negative learning coefficient. This con-
cept of punishment has not been used in conventional competi-
tive learning algorithms including SOM. Even though Kohonen
uses this concept for the learning vector quantization (LVQ)
system, the LVQ is a supervised learning algorithm [3]. The
DCL can be thought of as a local unsupervised approximation
of Kohonen’s supervised LVQ algorithm. However, choosing a
schedule for optimal learning coefficients still remains unsolved
in DCL.

The proposed learning algorithm, called centroid neural net-
work (CNN), is based on the observation that synaptic vectors
converge to the centroids of clusters as learning proceeds in con-
ventional unsupervised competitive learning algorithms such as
SOM or DCL. The centroid, or conditional expectation, can
minimize the mean-squared error of the vector quantization. As
is the case with SOM or DCL, the synaptic vectors converge to
the centroids of clusters as learning proceeds in CNN. However,
the CNN finds locally optimal synaptic vectors for each datum
presented and consequently converges to the centroids of clus-
ters much faster than conventional algorithms. One of the very
advantageous features in the CNN algorithm is that the CNN
does not require a schedule for learning coefficients. The CNN
rather finds its optimal learning coefficient in each representa-
tion of data vectors. The CNN can also reward and punish by
learning coefficients for winners and losers, respectively. Unlike
SOM or DCL, the CNN also does not require the total number
of iteration in advance.

II. DEFINITION OF PROBLEM

Assume that data vectors, , and
number of clusters, , are given. Each of the datum is grouped
as a member of one of the clusters. When the clusterhas

members and denotes the data in the cluster for
one instance, the problem and the energy function (or cost
function), , in norm are defined as follows:

Find

such that minimize

with

1045–9227/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 521

where denotes a weight vector that has the same dimension
as .

III. OPTIMALITY CONDITIONS IN UNSUPERVISEDLEARNING

ALGORITHM

In order to achieve the minimum-energy clustering, the fol-
lowing conditions are considered [9].

1) Nearest Neighbor Selection Condition: The “winner”
neuron for a given input is defined as

2) Minimum Energy Condition: The weights for a given
output neuron, should be chosen in a way to minimize
the total distance in norm from the vectors in its
cluster such as

by the following Theorem 1.
Theorem 1: The centroid of data in a cluster is the solution

which gives the minimum energy in norm.

IV. SOME ALGORITHMS ON UNSUPERVISEDCOMPETITIVE

LEARNING

In order to attain insight into learning gain scheduling in dif-
ferent unsupervised competitive learning algorithms, some con-
ventional algorithms are summarized in this section.

A. Deterministic Competitive Learning

One of the simplest forms of the deterministic competitive
learning algorithm is the following the linear competitive
learning algorithm [8]:

where

if neuron is winner
otherwise.

This learning algorithm states that only the weights of the
winner neuron have a chance to adapt. The learning rate in this
algorithm is constant through the learning stage and is desirable
when the environment is nonstationary [2].

B. Self Learning Algorithm

A similar learning algorithm to the deterministic competitive
learning algorithm is the following self learning algorithm [9]:

where is the number of training data which output neuron
won at iteration .
This update rule is rather closely related with the MacQueen’s

-means algorithm [6] and guarantees that the cluster centers
are the means of all input patterns which have been assigned

to them. Unfortunately, this algorithm does not guarantee the
quality of the solution or the rate of convergence especially for

where represents the number of clusters [2].

C. Self-Organizing Map

Kohenen’s self-organizing map (SOM) as an unsupervised
learning algorithm is one of the most popular neural-network
algorithms and produces several variations for improving the
performance of SOM. The SOM can be summarized as

where output neuron is the winner neuron and neighbor neu-
rons to the winner at the iteration and the learning coefficient

at iteration defines a decaying constant with an iteration
such as

with predetermined constant and total number of iterations
[3], [4].
The SOM holds the very advantageous topology preserving

property that can capture the probability distribution density of
the input data without help of external supervision [11], [12]. As
mentioned in literature including [13], however, the required pa-
rameter selection prior to learning is very important in achieving
useful results. Although a recent report on the optimal sched-
uling of learning gain using the Kalman filter estimation tech-
nique is a very useful tool for running SOM [13], the selection
of proper and the width of the neighborhood function is left
in the state of art until now.

D. Differential Competitive Learning

The differential competitive learning (DCL) proposed by
Kong and Kosko [7], [10] combines two classical learning
algorithms: competitive learning and differential Hebbian
learning. The basic idea of DCL is that the winner neuron
learns only if the status of the output neuron has been changed
compared to the previous iteration. DCL updates weights by
the following procedure:

if neuron is winner

if neuron is loser

where

gets stronger
gets weaker
remains the same

and is a slowly decreasing sequence of small learning coef-
ficients () while denotes the neuron’s competition
signal in the competition layer.

The significance of DCL is that DCL allows punishment
or forgetting by using negative learning gain in unsupervised
learning. Kohonen employs this idea of punishment only in
supervised learning [3].

522 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

TABLE I
THE CENTROID NEURAL-NETWORK ALGORITHM

V. THE CNN ALGORITHM

The CNN algorithm is based on the conventional-means al-
gorithm and finds the centroid of data in corresponding clusters
at each presentation of data vectors. Instead of calculating the
centroids of the clustered data for every presentation of data,
the CNN algorithm updates their weights only when the status
of the output neuron for presenting data has changed: that is,
the weights of a winner neuron in the current epoch for the data
change only when the winner neuron did not win the data in the
previous presentation and the weights of the winner neuron in
the previous epoch for the data change only when the neuron
does not win the data in the current epoch. We call the former
one “winner neuron” and the latter one “loser neuron.”

Note that “epoch” as used in this paper is defined as “one pre-
sentation of whole data vectors in the data set,” while “iteration”
is defined as “one presentation of any data vector.” For example,

if we have data vectors and epochs of training have been
performed, then there were iterations of training have been
performed.

When a data vector is applied to the network at time, the
adaptive equations for winner neuronand loser neuron in
CNN can be written as follows:

(1)

(2)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 523

TABLE II
COMPARISON IN LEARNING COEFFICIENTSAMONG DIFFERENTLEARNING ALGORITHMS

TABLE III
SUMMARY OF LEARNING GAINS FOR DIFFERENTALGORITHMS

where and represent the weight vectors of the
winner neuron and the loser neuron, respectively.

In order to avoid the algorithm from getting stuck at a un-
desirable local minimum solution, CNN starts with setting the
number of groups to two and increases the number of groups one
by one until it reaches the predetermined number of groups,.
Table I shows a pseudocode of the CNN algorithm.

The CNN algorithm does not provide any guarantee of con-
vergence to the global minimum solution like other unsuper-
vised algorithms such as SLA, DCL, and SOM, but does pro-
vide a guarantee of convergence to a local minimum. The con-
vergence of the CNN algorithm can be easily proven by consid-
ering the energy change in each iteration of the training proce-
dure.

VI. RELATIONSHIP OFCNN WITH SOME UNSUPERVISED

COMPETITIVE LEARNING ALGORITHMS

From (1) and (2), the adaptation rules of the CNN can be
combined such that

(3)

where

if is a winner

if is a loser and

previous winner for
otherwise.

Some of the conventional unsupervised learning algorithms
to be compared with CNN include SLA, DCL, and SOM.
The learning coefficient schedules for these algorithms are
summarized in Table II. Note that SOM does not adapt only the
weights of the winner neuron but also adapts the weights of
the neighbor neurons to the winner neuron. One of the most
widely used neighborhoods is a sphere that covers a fairly large
region initially and shrinks its diameter with time [4], [12],
[13].

When CNN is compared with SLA, SOM, and DCL, CNN
and DCL allow a forgetting factor among some of the output
neurons by using negative learning gain while SLA and SOM
do not. In most cases, the forgetting factor is very natural and
effective in unsupervised learning [10]. The magnitude of the
learning coefficient in the DCL, however, follows the idea of
SLA and SOM whose learning rates are linearly decreasing
with each iteration without considering the property of data and
learning conditions. A simple linearly decreasing learning co-
efficient, of course, does not satisfy the optimality conditions
given in Section III. The CNN, however, adapts its weights ac-
cording to the optimality conditions. Of course, this does not
mean any convergence of CNN to the global minimum. This
simply shows some relationships of CNN to other algorithms.
By employing the strategy of starting the group numbers at two
and increasing it until it reaches to the prespecified number of
groups, the CNN can improve its convergence and quality of

524 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

Fig. 1. Data sets used for experiment: (a) data set #1 and (b) data set #2.

Fig. 2. Convergence of CNN: (a) for data set #1 (# of groups is four) and (b) for data set #2 (# of groups is 16). (Note: The numbers on the curve represent the
number of groups while running the CNN algorithm.)

solution greatly. Table III summarizes the schedules of learning
gains and forgetting properties among different algorithms.

VII. EXPERIMENTS AND RESULTS

A. Example Problems

The CNN algorithm is first compared with the SOM and the
DCL algorithms for example problems shown in Fig. 1. Fig. 1(a)
shows the data set #1 that consists of 2000 data vectors with
four centers at the four corners of and of the – axis.
For data set #1, the algorithms are to group the data into four
clusters. Fig. 1(b) shows the data set #2 that has 500 data points
with an S-curve shape in two-dimensional (2-D) space. The data
set #2 is used to compare the three algorithms when the data
do not show any obvious clustering. Note that the following

neighborhood function, , for SOM is used throughout the
experiments in this section

where is the radius from the winner neuron to the neighbor-
hood neurons and the , the width of the neighborhood, is
chosen to cover 25% of the whole neuron initially and to decay
slowly with .

The clustering results are given in terms of the energy de-
fined in Section II. In order to investigate the effects of the total
number () of epochs and initial learning gain, , the ex-
periments for SOM and DCL are performed with five different

’s (10, 50, 100, 150, 200) and five different ’s (0.1, 0.3,
0.5, 0.7, 0.9). Of course, CNN is performed only once for each
data set since CNN requires neithernor . The same initial

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 525

Fig. 3. Different final energy levels with different initial parameters on data set #1: (a) for SOM and (b) for DCL. (Note: CNN always givesE = 623 after eight
epochs.)

Fig. 4. Different final energy levels with different initial parameters on data set #2: (a) for SOM and (b) for DCL. (Note: CNN givesE = 42 after 115 epoch.)

weights around the middle of the data plane are set for the three
algorithms. For both data sets, all the algorithms successfully
converge to the centroids of possible groups of data. The differ-
ences among the algorithms are the speed of convergence and
final energy levels. Fig. 2 shows the convergence of the CNN al-
gorithm when applying the datasets #1 and #2 with the number
of clusters 4 and 16, respectively.

The results shown in Fig. 3(a) and (b) and display the final
energy level when SOM and DCL are applied to the data set #1,
respectively. As we can see from Fig. 3, generally, the larger
is and the smaller is, the better the results that can be ex-
pected for SOM and DCL. The best result for SOM is obtained
() with and while the best result
for DCL is with and among dif-
ferent combinations of and . Both SOM and DCL show
fairly good results when is over 150, while CNN gives a com-
parable result () after eight epochs of training. Note
that the actual CPU times for one epoch in SOM and DCL al-
gorithms used are almost the same with marginal differences.

However, since the CNN has two output neurons initially and
output neurons in the final stage of training process, the CNN
requires approximately half of the CPU time required for one
epoch in SOM or DCL in the average sense.

The results in Fig. 4 show the final energy levels for SOM and
DCL with data set #2. Since the number of data for this case is
relatively small, the final energy is not very distinguishable for
different cases.

The next example problem investigated with the proposed
CNN algorithm is the uniform data in the 2-D plane. The 10 000
data points are uniformly distributed over the region enclosed
by the boxed area and the task is to group the data into 25 clus-
ters. The SOM and the proposed CNN are compared on this
task. The and for SOM are given by 0.2 and 100, re-
spectively. Of course, CNN requires no initial parameters to be
set. Initial weights are clustered around the center of the plot.
At each epoch of the training stage, the presentation order of
the input data was randomized for both algorithms in order to
generalize the results. With both algorithms, weights gradually

526 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

Fig. 5. Results of convergence: (a) by SOM and (b) by CNN for 10 000 uniformly distributed data points. Each point represents the two weights of each output
neuron. Final energy levels for SOM and CNN are 0.006 611 and 0.006 621, respectively.

Fig. 6. The original images: (a) LENA and (b) PEPPERS.

spread out until the weight distribution approximates the uni-
form distribution. Fig. 5 shows the final location of weights for
SOM and CNN. The results shown in Fig. 5 are quite similar
with minor differences in final energy levels.

An interactive CNN simulator with several problems is avail-
able at the following web site: http://icrl.myongji.ac.kr/NNsim-
ulator/CNN.

B. Image Compression Problem

In order to investigate the applicability of the CNN algo-
rithm to real-world problems, the CNN is applied to image
compression problems [14], [15]. When the block size is 3

3, the original image data, LENA (255 255) as shown

in Fig. 6(a), consists of 7225 blocks of data. The problem re-
quires that the 7255 blocks of data be coded with 128 blocks
of coded data. Fig. 7 shows the results of image compres-
sion by the CNN. The CNN training for codebook design
takes 1873 s of CPU time in SUN SPARC-20. The CNN is
compared with SOM in terms of peak signal-to-noise ratio
(PSNR) for the image compression problem in Table IV.
Note that SOM with a different combination of parameters,

and , shows different results while CNN gives ac-
ceptable results without problems in parameter selection for
running the algorithm.

Another experiment on image compression is performed by
using CNN, SOM, and DCL. In this experiment, 512, 1024, and
2048 codebook size cases with 44 block size are considered.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 527

Fig. 7. Results of image compression with different initial parameters for SOM and CNN: (a) and (b) reconstructed image by CNN and its error image: SNR
= 29:26 dB (After 400 epoch), (c) and (d) reconstructed image by SOM (c(0) = 0.2 andN = 1000) and its error image: SNR = 29.30 dB, and (e) and (f)
reconstructed image by SOM (c(0) = 0:7 andN = 500) and its error image: SNR= 26:29 dB.

For SOM and DCL, and epoch are used
since it gives the best results in the previous problem. The PEP-
PERS image shown in Fig. 6(b) is used for training neural net-
works and resulting weights are tested with the LENA image.

Table V shows the resulting PSNR comparison among the algo-
rithms. The CPU times required for CNN, SOM, DCL for this
task are given in Table VI. As can be seen from the CPU time
table, CNN requires much less CPU time than what SOM and

528 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

TABLE IV
PSNR COMPARISONBETWEEN SOM AND CNN WITH DIFFERENTSETS OF

TOTAL NUMBER OF TRAINING EPOCHS ANDLEARNING COEFFICIENTS

FOR LENA IMAGE COMPRESSIONPROBLEM

TABLE V
PSNR COMPARISON FORLENA IMAGE COMPRESSIONPROBLEM WITH

DIFFERENTSIZES OFCODEBOOKSDESIGNED BY PEPPERS IMAGE

TABLE VI
CPU TIME (IN SECONDS) WITH SUN SPARC-20 REQUIRED FOR THE

EXPERIMENT

DCL use. As can be seen from Tables V and VI, CNN gives very
comparable results with much less computational effort.

VIII. C ONCLUSION

The CNN algorithm based on the-means clustering algo-
rithm is proposed. The proposed CNN algorithm has a strong
connection with some of the conventional unsupervised learning
algorithms. In order to obtain lower energy, the CNN dynami-
cally allocates the synaptic weights to the clusters with high en-
ergy. Even though the CNN algorithm is not new when we con-
sider the -means algorithm, the CNN provides us with a new
interpretation of the -means algorithm and the relationships
with some of the conventional algorithms. While applying the
CNN algorithm to several problems, the CNN successfully con-

verges to suboptimal solutions. Any undesirable local minimum
problem was not observed in our CNN experiments performed
with many different data sets. The CNN algorithm is applied to
several problems such as simple 2-D data problems and image
compression problems. When compared with conventional clus-
tering algorithms such as Kohonen’s self-organizing map and
Kosko’s differential competitive learning on these problems, the
proposed CNN algorithm produces comparable results with less
computational effort and is free of the optimum parameter se-
lection problem.

ACKNOWLEDGMENT

The author would like to thank T. Dinh, Y. J. Woo, and Prof.
R. Zarub for their help in preparing this manuscript and the
anonymous reviewers for their careful reviews and constructive
comments.

REFERENCES

[1] J. Hartigan,Clustering Algorithms. New York: Wiley, 1975.
[2] C. Darken and J. Moody, “Fast adaptivek-means clustering: Some em-

pirical results,” inProc. 1990 Int. Joint Conf. Neural Networks, vol. 2,
1990, pp. 233–238.

[3] T. Kohonen, Self-Organization and Associative Memory, 3rd
ed. Berlin, Germany: Springer-Velag, 1989.

[4] , “The self-organizing map,”Proc. IEEE, vol. 78, no. 9, pp.
1464–1480, 1990.

[5] S. Lloyd, “Least-square quantization in PCM,” Bell Labs Tech. Rep..
[6] J. MacQueen, “Some methods for classification and analysis of multi-

variate observations,” inProc. 5th Berkeley Symp. Math. Statist. Proba-
bility, 1967, pp. 281–297.

[7] S. Kong and B. Kosko, “Differential competitive learning for centroid
estimation and phoneme recognition,”IEEE Trans. Neural Networks,
vol. 2, pp. 118–124, Jan. 1991.

[8] S. Grossberg, “On learning and energy–entropy dependence in recurrent
and nonrecurrent signed networks,”J. Statist. Phys., vol. 1, pp. 319–350,
1969.

[9] Y. Tsypkin, Foundations of the Theory of Learning Systems. New
York: Academic, 1973.

[10] B. Kosko,Neural Networks and Fuzzy Systems: A Dynamic Systems Ap-
proach to Machine Intelligence. Englewood Cliffs, NJ: Prentice-Hall,
1991.

[11] T. Villmann et al., “Topology preservation in self-organizing feature
maps,”IEEE Trans. Neural Networks, vol. 8, pp. 256–266, Mar. 1997.

[12] J. Zurada,Int. to Artificial Neural Systems. St. Paul, MN: West, 1992.
[13] K. Haese, “Self-organizing feature maps with self-adjusted learning pa-

rameters,”IEEE Trans. Neural Networks, vol. 9, Nov. 1998.
[14] O. Chen, B. Sheu, and W. Fang, “Image compression using self-organi-

zation networks,”IEEE Trans. Circuits, Syst., Video Technol., vol. 4, pp.
480–489, Oct. 1994.

[15] C. Amerijckx et al., “Image compression by self-organized Kohonen
maps,”IEEE Trans. Neural Networks, vol. 9, pp. 503–507, May 1998.

[16] IEEE Trans. Inform. Theory, vol. IT-28, p. 129, 1982.

