
A Simple Fuzzy Neural Network

Carl G. Looney and Sergiu Dascalu

Computer Science & Engineering/171

University of Nevada, Reno

Reno, NV 89557

<looney,dascalus>@cse.unr.edu

Abstract

Our simple fuzzy neural network first thins the set of

exemplar input feature vectors and then centers a Gaussian

function on each remaining one and saves its associated

output label (target). Next, any unknown feature vector to be

classified is put through each Gaussian to get the fuzzy truth

that it belongs to that center. The fuzzy truths for all

Gaussian centers are then maximized and the label of the

winner is the class of the input feature vector. We use the

knowledge in the exemplar-label pairs directly with no

training, no weights, no local minima, no epochs, no

defuzzification, no overtraining, and no experience needed

to use it. It sets up automatically and then classifies all input

feature vectors from the same population as the exemplar

feature vectors. We compare our results on well known data

with those of several other fuzzy neural networks, which

themselves compared favorably to other neural networks.

1. INTRODUCTION

In this paper we discuss: 1) what the simple fuzzy

neural network is; 2) why a simple but accurate neural

network is needed; 3) how this one works; 4) when to use

this type of neural network; and 5) its performance on well

known data. NNs are regression machines that associate

inputs with outputs, which is why they are so useful. They

may represent particular transformations for which no

models are known.

A neural network (NN) is a black box to which we input

N values x1,...,xN that form a feature vector x to obtain an

output vector z that designates the class, identification,

group, pattern, or associated output codeword of the input

vector x. A trained NN represents a system that maps a set

of exemplar input feature vectors {x
(q)
: q = 1,...,Q} to a set

of output target vectors {t
(q)
: q = 1,...,Q}, also called labels,

so that each x
(q)
 maps more closely to t

(q)
 than to another

target. This allows the network to make interpolations and

extrapolations that map any input x to z that best matches

label t
(q)
 for the correct index q.

When trained, a NN is a computational machine that

implements an algorithm that is specified by the input nodes,

output nodes, layers of hidden nodes between them,

connecting lines, functions at the transforming nodes, and

weight multipliers w1,...,wR on these lines. We denote the

weights here as a vector w. The NN is a composition of

many functions designated by the overall NN function as

z = f(x;w) (1)

Here, x is any input feature vector and z is the resulting

output vector that should match best a label t
(q)
 for some q.

Figure 1 displays a traditional backpropagation type of

NN (e.g., see [6] for details). The vertical bar to the right of

the input nodes binds the N lines together into a bus to each

of M nodes in the hidden (middle) layer. There is a weight

on each line to the M hidden nodes, and also on each line to

the J output nodes. These weights are adjusted to train the

NN to match exemplar inputs (x
(q)
} with exemplar targets

(t
(q)
}. At the hidden nodes the weighted vector components

are summed and put through a sigmoid (logistic, or “S”

shaped) soft threshold function to go to the output nodes to

form the outputs (z
(q)
} [6]. Each output node computes a

linear combination of (weighted) line values for z.

Figure 1. A backpropagation neural network.

As the weights w vary, the NN function varies, and so

a particular form of neural network is an infinite family of

neural networks. For a particular application we must train

w so that the NN outputs a close approximation z to the

correct target t
(q)
 for any input x

(q)
. This is done by training

on a set {(x
(q)
, t
(q)
) : q = 1,...,Q} of exemplar vector pairs of

inputs and targets where the input vectors represent

sufficiently well the portion of the input space from which

the input vectors to be classified will be drawn. The trained

NN then can interpolate on an input vector x and match its

output z to the nearest target t
(q)
 to provide the class of x.

The original backpropagation NNs (BPNNs), as well as

radial basis function NNs (RBFNNs) (e.g., see [6, 7]) are

trained by steepest descent on the weights that minimize the

output sum-squared error (SSE) E, where

E = 3q=1,Q ||z
(q)
 - t

(q)
||
2
 (1)

Here z
(q)
 is the computed output for the input vector x

(q)
, and

t
(q)
 is the target output (label) to which x

(q)
 is supposed to

map. Each z
(q)
 is a differentiable function of the weights, so

training is done on each single weight wnm by taking steps

along the direction of steepest descent of the SSE E via

wnm
(i+1) = wnm

(i) + "(ME/Mwnm) (2)

where " is the step size parameter, also called the learning

rate, and i is the iteration number. The starting values of the

wnm are drawn randomly, usually between -0.5 and 0.5 for a

cautious start.

Training usually requires thousands of epochs, of which

each is a set of steps to adjust each weight in {wnm} once (or

sometimes more than once). However, the learning of one

weight tends to unlearn the other weights, so epochs are

continued until the SSE is sufficiently small. Another

problem of BPNNs is that the learned set of weights yields

a local minimum, of which it has been shown that there are

many [6] so that the learning is very likely to not be optimal.

RBFNNs have only a single global minimum and are thus

preferable. But for most trained NNs there is also the

problem of overtraining, by which reducing the SSE to a

very small value causes the noise on the input exemplars to

be learned. This reduces the accuracy when other feature

vectors are put through the NN that have different noise

values.

A fuzzy NN (FNN) may have 4 layers [2, 3, 4] as

follows: 1) the first is the input layer as in a BPNN or

RBFNN that simply fans out the inputs to the next layer; 2)

a hidden layer that fuzzifies the inputs, e.g., into LOW,

MEDIUM, and HIGH linguistic variables as rule

antecedents with a fuzzy truth for each, obtained by passing

each input value through a fuzzy set membership function

(FSMF) for a linguistic variable (see [5]); 3) a rule layer

where arrows from certain fuzzifying nodes imply a

consequent fuzzy variable in this layer; and 4) the

defuzzification layer (also see [4]).

Many FNNs currently use the more general 5 layers for

fuzzy rules where the third is the AND (min.) layer and the

fourth is the OR (max.) layer [9]. Figure 2 shows the general

min-max FNN that allows the most general rule-based

representation. Consider the rule: (A1 is LOW) AND (A2 is

HIGH) => (C is LOW). The antecedents A1 and A2
propagate the minimum of their fuzzy truths to the

consequent C. If (A3 is MEDIUM)AND (A4 is HIGH) => (C

is LOW) also, then C takes the maximum of the two fuzzy

implications as its fuzzy truth, which is fuzzy ORing of the

two rules that imply (C is LOW).

Thus such a FNN is a min-max (AND-OR) fuzzy rule-

based system conceptuatlized in network format. There are

many variations and applications of FNNs (e.g., see [2, 3, 4,

5]). Rules can be built into the architecture by experts or

they can be learned by training to produce known correct

outputs.

Figure 2. The general min-max FNN.

NNs are needed for repetitive tasks and for input-output

associations for which there are no mathematical models

available for the system that is to be represented. The NNs

interpolate and extrapolate from known input-output pairs,

and provide fast on-line computation of outputs that either

could not be directly computed or would be slow to

compute. They can obviously be used only in situations

where there is good representative labeled data available for

training the NN. All training should be tested on known

(labeled) feature vectors that were not used in the training

(e.g., see [6]) so as to validate the training.

2. A SIMPLE FUZZY NEURAL NETWORK

From the above discussion we see the need for a NN

that avoids training. The general architecture for our simple

fuzzy neural network (SFNN) that satisfies this need is

shown in Figure 3. However, for the purpose of explanation

of how it works, we use the simplified case of only two

classes as shown in Figure 4. Each class grouping of the

SFNN works the same way. More classes yield fuzzy

memberships in more classes from which to select a

maximum value winner at the final output node.

In Figure 4 we have N features in the input exemplar

feature vectors. Here there are two classes in the training

exemplar data {(x
(q)
, t
(q)
): q = 1,...,Q}, i.e., the t

(q)
 have two

unique labels, so we use K = 2 class groups of hidden nodes

where each such node represents a Gaussian function

centered on an exemplar feature vector that has an

associated label. Each Gaussian in a class group has a

different center but the same label. Consider the first group

of hidden nodes for Class 1 in Figure 4.

Figure 3. The simple fuzzy neural network.

In the usual case there may be a large number Kp of

feature vectors in Class p (p = 1,2 here), so we eliminate

those feature vectors that are close to another feature vector

with the same label. This reduces the number of centers, and

thus Gaussians (nodes), that represent each Class p. The

fuzzy truth that input vector x is in the same class as x
(q)
 is

given by the Gaussian FSMF centered on x
(q)
. The q

th

Gaussian FSMF is the function

x÷ g(x;x
(q)
) = exp{-||x - x

(q)
||
2
/(2F

2
)} (3)

where F can be taken to be one-half of the average distance

between all exemplar pairs.

 Figure 4. A SFNN for only two classes.

All of the fuzzy truths for the centers of Gaussians in

Class 1 (see Fig. 4) are now fed from their Gaussian nodes

to the maximizer node of the Class 1 fuzzy truths, which acts

as a fuzzy OR node in selecting the representative center and

fuzzy truth that x belongs to some x
(k)
 for Class 1. This

maximum fuzzy truth for x to be in Class 1 is now sent to the

final output maximizer node as the Class 1 representative.

The final output maximizer node also receives the Class 2

representative (maximum fuzzy truth) that x belongs to Class

2 and determines the maximum of these fuzzy truths, so the

class that sent it is the winner. Thus the input x belongs to

the winning class determined by the label of the winning

Gaussian center vector.

3. WHY THE SFNN IS NEEDED

For this fuzzy neural network there is no adjustment of

parameters (no steepest descent), no SSEs, no epochs, no

explicit rules, no overtraining, and no local or other minima

to find. There are also no fuzzy rules to learn by training.

Thus the SFNN can be used by researchers in other fields

who have no experience or intuition about training NNs. The

algorithm specifies the computations with no parameters or

thresholds to be estimated.

We start with a set of labeled data {(x
(q)
, t

(q)
): q =

1,...,Q} and eliminate all exemplar input vectors that are too

close to another exemplar vector with the same label. Of the

remaining thinned vector set, we center a Gaussian on each

vector and keep a list of indices of the labels for the vectors

that remain as Gaussian centers. The knowledge is in the

labels, so we use it directly instead of creating extraneous

mappings to try to reach the equivalent knowledge.

If there are not too many labeled exemplars (say, 100 or

less for each class), and with reasonable input dimension N,

then we do not need to thin them due to the speed of today’s

computers. We can just use each exemplar as a Gaussian

center that is a FSMF. Our computer program allows us to

thin or not thin the labeled exemplar feature vectors to

become centers. Obviously the algorithm is faster for fewer

Gaussians, which is the motivator for thinning, but it can be

(but is not necessarily) more accurate for more Gaussians,

just as more rules provides more accuracy in other FNNs

[4].

4. THE SFNN ALGORITHM

The high level algorithm is straight forward as given in

the steps listed below, and is easy to program. The training

and learning reside in the exemplar feature vector and their

labels so we don’t need to expend computation time to train.

We sometimes use some computation to thin the exemplars

that are very similar and belong to the same class. The

algorithm is given here in a form for human understanding,

but can be readily adapted to program code.

Step 0: Read in the data file (the number of features N, the

number of feature vectors Q, the dimension J of the labels,

the number K of classes, all Q feature vectors and all Q

labels).

Step 1: Find minimal distance Dmin over all feature vector

 pairs

 Put F = Dmin/2 //Use F in Eqn. (3)

 Put G = Q //Starting no. Gaussian centers

Step 2: Find two exemplar vectors of min. distance d with

 indices k1 and k2

 If d < (½)Dmin //If vectors are close and

 If label[k1] = label[k2] // have same label

 Eliminate Gaussian center k2

 G = G -1 //Reduce no. Gaussians

 Goto Step 2

Step 3: Input next unknown x to SFNN to be classified

 For k = 1 to G do //For each Gaussian center

Compute g[k] = exp{-||x - x
(k)
||
2
/(2F

2
)}

 Find maximum g[k*], over k = 1,...,G

 Output x, label[k*] //label[k*] is class of x

Step 4: If all inputs for classifying are done, stop

 Else, goto Step 3

5. TESTING ON THE IRIS DATASET

The iris dataset of Anderson [1], 1935, remains a

rigorous test of any classification system. There are Q = 150

feature vectors consisting of N = 4 features for K = 3 classes

of iris flowers. The classes are sestosa, virginicus, and

versicolor. The features are sepal length and width, and

petal length and width. The second feature tends to be in a

narrow range with overlapping values between the classes,

which prevents clustering from yielding the 3 classes of 50

vectors each. Clustering algorithms, including the fuzzy c-

means, do not agree with Anderson’s labels completely.

For neural networks, the training is supervised learning

instead of self-organizing as done by clustering methods,

and the data is learned accurately, so the data needs to be

quite good. Overlapping feature values between the classes

(as in the iris data) prevent learning that accurately

discriminates all feature vectors. But in general, while neural

network algorithms learn what they are trained to know, they

learn any errors in the data as facts, as do other supervised

learning machines, including support vector machines [4].

We obtained the iris data set from the repository at

University of California, Irvine [8] whose Internet URL is:

www.ics.uci.edu/~mlearn/MLRepository.html . The data set

from the repository was arranged as follows: 50 feature

vectors in Class 1, followed by 50 feature vectors in Class 2,

and 50 feature vectors in Class 3 (each feature vector also

contained the class number as the last field).

We rearranged our feature vectors so that: the first was

from Class 1, the second was from Class 2 and the third was

from Class 3. The next three features alternated this way, as

did the remainder of the data file. There is no advantage to

either ordering of the data (just personal preference).

We ran our SFNN on the iris data and obtained the

results shown in Table 1. For comparison, we also include

the runs made in [5] with their new general fuzzy NN

(GFNN), which compared favorably to two other types of

FNNs, the general fuzzy min-max NN (GFMMNN) and the

general fuzzy hyperspheroidal NN (GFHSNN). We also

include those results for comparison with our method, as

well as those of the support vector fuzzy neural network

(SVFNN) of C.-ST. Lin et al. [4].

Table 1. Comparisons of SFNN Results, Iris Data

 Algorithm Ave. No. Errors No. Runs

SFNN 1.0 8

GFNN 2.6 8

GFMMNN 3.1 8

GFHSNN 4.0 10

-

SFNN* 3.5 2

SVFNN** 3.5 2

* SFNN used 75 training, 75 test, vectors, 2 runs with

 disjoint test sets (3 and 4 errors, respectively)

** SVFNN used 75 training, 75 test, vectors, 2 single

 runs with 14, and 7 rules, respectively (with 3 and 4

 errors)

For all of the runs shown in Table 1, except the two in

the bottom section (where SFNN and SVFNN used 75 of the

exemplars for training and the remaining 75 for testing), 25

iris feature vectors were kept out for testing and the training

was done on the 125 remaining iris vectors. All errors were

from the test vectors, where the number of incorrect

classifications were averaged over all runs. In our first group

of SFNN runs, all of the 125 feature vectors used for setting

up the NN were correctly classified. Our first 6 sets of 25

feature vectors for testing were disjoint, but because these

exhausted the 150 feature vectors, the remaining two sets of

25 feature vectors were not disjoint, but overlapped two

other test sets of 25 vectors about half way.

Our numbers of Gaussians for the various runs were

automatically generated to be 37 and 74. We did not make

any runs using 150 Gaussians (one for each exemplar feature

vector) because then we would have no remaining feature

vectors for testing. It can be seen that our results were better

than all FNNs except the SVFNN with which it tied.

However, the SVFNN is much more complicated.

5. ANALYSIS AND CONCLUSIONS

We see that the SFNN is indeed simple to use with no

parameters required to be selected by the user. There are no

training (no steepest descent), no weights, no local minima,

no epochs, no defuzzification, no overtraining, and no

experience required to use the SFNN. It sets up

automatically when given a file of labeled vectors by

associating the knowledge in the labels with the Gaussian

fuzzy set membership functions. Then a file of vectors to be

classified is read and put through the SFNN and the results

are written to a file.

On the tests made on the difficult iris data set, our

results were better than all except the SVFNN, which were

the samed. However, the SFNN is much simpler to use than

the SVFNN and avoids the Cartesian product rectangular

classes formed by rules, e.g., (A is LOW) AND (B is HIGH)

=> (C is MEDIUM) is satisfied with pairs (a,b) in the A×B

Cartesian product space.

The SFNN is a powerful classifier/recognizer with

labeled exemplar data being used to set up the fuzzy set

membership functions. Like all supervised learning systems,

its accuracy is only as good as the accuracy of the labeled

exemplars and the absence of significant noise. Instead of

the final crisp classification, the highest two or three fuzzy

set membership values can be kept to designate the fuzzy

classification of unknown feature vectors.

This method should be used to set up a fuzzy NN for

accurately labeled feature vectors that have low noise

values, especially where the number of exemplar feature

vectors is fewer than 1,000. We used the dificult iris data

and 25 test vectors on each run so we could compare our

results with those of other current fuzzy neural network

methods. Future work will apply the SFNN to other data

sets.

6. REFERENCES

[1] E. Anderson, “The Irises of the Gaspe Peninsula,” Bull.

American Iris Soc. 59, 2-5, 1935.

[2] B. Gabrys and A. Burgiela, “General fuzzy min-max

neural network for clustering and classification,” IEEE

Trans. Neural Networks 11(3), 769-783, 2000.

[3] H. M. Lee, C. M. Chen and Y. L. Jou, “An efficient

fuzzy classifier with feature selection based on fuzzy

entropy,” IEEE Trans. SMC-B 31(3), 426-432, 2001.

[4] C.-T. Lin, C.-M. Yeh, S.-F. Liang, J.-F. Chung and N.

Kumar, “Support vector based fuzzy neural network for

pattern classification,” IEEE Trans. Neural Networks 14(1),

31-41, 2006.

[5] P.M. Patil and T.R. Sontakke, “Rotation, scale and

tanslation invariant handwritten Devanagari numeral

character recognition using general fuzzy neural network,”

Pattern Recognition 40, 2110-2117, 2007.

[6] Carl G. Looney, Pattern Recognition Using Neural

Networks, Oxford University Press, Oxford/NY, 1997.

[7] Carl G. Looney, “Radial basis functional link neural

networks and fuzzy systems,” Neurocomputing, 48(1-4),

489-509, 2002.

[8] UCI Repository of Machine Learning Databases, Info.

Computer Sci., University of California, Irvine, on-line at:

http://www.ics.uci.edu/~mlearn/MLRepository.html .

[9] X. Zhang, S. Tan, C.-C. Hang, and P.-Z. Wang, “An

efficient computational algorithm for min-max operations,”

Fuzzy Sets and Systems 14, 297-304, 1999.

